srcContext
stringlengths
274
35.4k
theoremStatement
stringlengths
62
1.08k
theoremName
stringlengths
16
52
fileCreated
dict
theoremCreated
dict
file
stringlengths
26
42
module
stringlengths
15
31
jsonFile
stringlengths
21
37
positionMetadata
dict
dependencyMetadata
dict
proofMetadata
dict
import ConNF.Model.RaiseStrong /-! # New file In this file... ## Main declarations * `ConNF.foo`: Something new. -/ noncomputable section universe u open Cardinal Ordinal open scoped Pointwise namespace ConNF variable [Params.{u}] /-- A redefinition of the derivative of allowable permutations that is invariant of level, but still has nice definitional properties. -/ @[default_instance 200] instance {β γ : TypeIndex} : Derivative (AllPerm β) (AllPerm γ) β γ where deriv ρ A := A.recSderiv (motive := λ (δ : TypeIndex) (A : β ↝ δ) ↦ letI : Level := ⟨δ.recBotCoe (Nonempty.some inferInstance) id⟩ letI : LeLevel δ := ⟨δ.recBotCoe (λ _ ↦ bot_le) (λ _ h ↦ WithBot.coe_le_coe.mpr h.le) (show δ.recBotCoe (Nonempty.some inferInstance) id = Level.α from rfl)⟩ AllPerm δ) ρ (λ δ ε A h ρ ↦ letI : Level := ⟨δ.recBotCoe (Nonempty.some inferInstance) id⟩ letI : LeLevel δ := ⟨δ.recBotCoe (λ _ ↦ bot_le) (λ _ h ↦ WithBot.coe_le_coe.mpr h.le) (show δ.recBotCoe (Nonempty.some inferInstance) id = Level.α from rfl)⟩ letI : LeLevel ε := ⟨h.le.trans LeLevel.elim⟩ PreCoherentData.allPermSderiv h ρ) @[simp] theorem allPerm_deriv_nil' {β : TypeIndex} (ρ : AllPerm β) : ρ ⇘ (.nil : β ↝ β) = ρ := rfl @[simp] theorem allPerm_deriv_sderiv' {β γ δ : TypeIndex} (ρ : AllPerm β) (A : β ↝ γ) (h : δ < γ) : ρ ⇘ (A ↘ h) = ρ ⇘ A ↘ h := rfl @[simp] theorem allPermSderiv_forget' {β γ : TypeIndex} (h : γ < β) (ρ : AllPerm β) : (ρ ↘ h)ᵁ = ρᵁ ↘ h := letI : Level := ⟨β.recBotCoe (Nonempty.some inferInstance) id⟩ letI : LeLevel β := ⟨β.recBotCoe (λ _ ↦ bot_le) (λ _ h ↦ WithBot.coe_le_coe.mpr h.le) (show β.recBotCoe (Nonempty.some inferInstance) id = Level.α from rfl)⟩ letI : LeLevel γ := ⟨h.le.trans LeLevel.elim⟩ allPermSderiv_forget h ρ @[simp] theorem allPerm_inv_sderiv' {β γ : TypeIndex} (h : γ < β) (ρ : AllPerm β) : ρ⁻¹ ↘ h = (ρ ↘ h)⁻¹ := by apply allPermForget_injective rw [allPermSderiv_forget', allPermForget_inv, Tree.inv_sderiv, allPermForget_inv, allPermSderiv_forget'] def Symmetric {α β : Λ} (s : Set (TSet β)) (hβ : (β : TypeIndex) < α) : Prop := ∃ S : Support α, ∀ ρ : AllPerm α, ρᵁ • S = S → ρ ↘ hβ • s = s def newSetEquiv {α : Λ} : letI : Level := ⟨α⟩ @TSet _ α newModelData.toPreModelData ≃ TSet α := letI : Level := ⟨α⟩ castTSet (D₁ := newModelData) (D₂ := globalModelData) rfl (by rw [globalModelData, motive_eq, constructMotive, globalLtData_eq]) @[simp] theorem newSetEquiv_forget {α : Λ} (x : letI : Level := ⟨α⟩; @TSet _ α newModelData.toPreModelData) : (newSetEquiv x)ᵁ = xᵁ := letI : Level := ⟨α⟩ castTSet_forget (D₁ := newModelData) (D₂ := globalModelData) _ x def allPermEquiv {α : Λ} : letI : Level := ⟨α⟩ NewPerm ≃ AllPerm α := letI : Level := ⟨α⟩ castAllPerm (D₁ := newModelData) (D₂ := globalModelData) rfl (by rw [globalModelData, motive_eq, constructMotive, globalLtData_eq]) @[simp] theorem allPermEquiv_forget {α : Λ} (ρ : letI : Level := ⟨α⟩; NewPerm) : (allPermEquiv ρ)ᵁ = ρᵁ := letI : Level := ⟨α⟩ castAllPerm_forget (D₁ := newModelData) (D₂ := globalModelData) _ ρ theorem allPermEquiv_sderiv {α β : Λ} (ρ : letI : Level := ⟨α⟩; NewPerm) (hβ : (β : TypeIndex) < α) : letI : Level := ⟨α⟩ letI : LtLevel β := ⟨hβ⟩ allPermEquiv ρ ↘ hβ = ρ.sderiv β := by letI : Level := ⟨α⟩ letI : LeLevel α := ⟨le_rfl⟩ letI : LtLevel β := ⟨hβ⟩ apply allPermForget_injective rw [allPermSderiv_forget, allPermEquiv_forget, NewPerm.forget_sderiv] theorem TSet.exists_of_symmetric {α β : Λ} (s : Set (TSet β)) (hβ : (β : TypeIndex) < α) (hs : Symmetric s hβ) : ∃ x : TSet α, ∀ y : TSet β, y ∈[hβ] x ↔ y ∈ s := by letI : Level := ⟨α⟩ letI : LtLevel β := ⟨hβ⟩ suffices ∃ x : (@TSet _ α newModelData.toPreModelData), ∀ y : TSet β, yᵁ ∈[hβ] xᵁ ↔ y ∈ s by obtain ⟨x, hx⟩ := this use newSetEquiv x intro y rw [← hx, ← TSet.forget_mem_forget, newSetEquiv_forget] obtain rfl | hs' := s.eq_empty_or_nonempty · use none intro y simp only [Set.mem_empty_iff_false, iff_false] exact not_mem_none y · use some (Code.toSet ⟨β, s, hs'⟩ ?_) · intro y erw [mem_some_iff] exact Code.mem_toSet _ · obtain ⟨S, hS⟩ := hs use S intro ρ hρS have := hS (allPermEquiv ρ) ?_ · simp only [NewPerm.smul_mk, Code.mk.injEq, heq_eq_eq, true_and] rwa [allPermEquiv_sderiv] at this · rwa [allPermEquiv_forget] theorem TSet.exists_support {α : Λ} (x : TSet α) : ∃ S : Support α, ∀ ρ : AllPerm α, ρᵁ • S = S → ρ • x = x := by letI : Level := ⟨α⟩ obtain ⟨S, hS⟩ := NewSet.exists_support (newSetEquiv.symm x) use S intro ρ hρ have := @Support.Supports.supports _ _ _ newPreModelData _ _ _ hS (allPermEquiv.symm ρ) ?_ · apply tSetForget_injective have := congr_arg (·ᵁ) this simp only at this erw [@smul_forget _ _ newModelData (allPermEquiv.symm ρ) (newSetEquiv.symm x), ← allPermEquiv_forget, ← newSetEquiv_forget, Equiv.apply_symm_apply, Equiv.apply_symm_apply] at this rwa [smul_forget] · rwa [← allPermEquiv_forget, Equiv.apply_symm_apply]
theorem TSet.symmetric {α β : Λ} (x : TSet α) (hβ : (β : TypeIndex) < α) : Symmetric {y : TSet β | y ∈[hβ] x} hβ
ConNF.TSet.symmetric
{ "commit": "6fdc87c6b30b73931407a372f1430ecf0fef7601", "date": "2024-12-03T00:00:00" }
{ "commit": "b0bc9d69a413800c2ef0d0e3495ee0e71dc3fea7", "date": "2024-12-01T00:00:00" }
ConNF/ConNF/Model/TTT.lean
ConNF.Model.TTT
ConNF.Model.TTT.jsonl
{ "lineInFile": 154, "tokenPositionInFile": 5178, "theoremPositionInFile": 12 }
{ "inFilePremises": true, "numInFilePremises": 4, "repositoryPremises": true, "numRepositoryPremises": 39, "numPremises": 84 }
{ "hasProof": true, "proof": ":= by\n obtain ⟨S, hS⟩ := exists_support x\n use S\n intro ρ hρ\n conv_rhs => rw [← hS ρ hρ]\n simp only [← forget_mem_forget, smul_forget, StrSet.mem_smul_iff]\n ext y\n rw [Set.mem_smul_set_iff_inv_smul_mem, Set.mem_setOf_eq, Set.mem_setOf_eq,\n smul_forget, allPermForget_inv, allPermSderiv_forget']", "proofType": "tactic", "proofLengthLines": 8, "proofLengthTokens": 304 }
import ConNF.Background.Rel import ConNF.Base.Small /-! # Enumerations In this file, we define enumerations of a type. ## Main declarations * `ConNF.Enumeration`: The type family of enumerations. -/ universe u open Cardinal namespace ConNF variable [Params.{u}] {X Y : Type u} @[ext] structure Enumeration (X : Type u) where bound : κ rel : Rel κ X lt_bound : ∀ i ∈ rel.dom, i < bound rel_coinjective : rel.Coinjective variable {E F G : Enumeration X} namespace Enumeration instance : CoeTC (Enumeration X) (Set X) where coe E := E.rel.codom instance : Membership X (Enumeration X) where mem E x := x ∈ E.rel.codom theorem mem_iff (x : X) (E : Enumeration X) : x ∈ E ↔ x ∈ E.rel.codom := Iff.rfl theorem mem_congr {E F : Enumeration X} (h : E = F) : ∀ x, x ∈ E ↔ x ∈ F := by intro x rw [h] theorem dom_small (E : Enumeration X) : Small E.rel.dom := (iio_small E.bound).mono E.lt_bound theorem coe_small (E : Enumeration X) : Small (E : Set X) := small_codom_of_small_dom E.rel_coinjective E.dom_small theorem graph'_small (E : Enumeration X) : Small E.rel.graph' := small_graph' E.dom_small E.coe_small noncomputable def empty : Enumeration X where bound := 0 rel _ _ := False lt_bound _ h := by cases h; contradiction rel_coinjective := by constructor; intros; contradiction
@[simp] theorem not_mem_empty (x : X) : x ∉ Enumeration.empty
ConNF.Enumeration.not_mem_empty
{ "commit": "39c33b4a743bea62dbcc549548b712ffd38ca65c", "date": "2024-12-05T00:00:00" }
{ "commit": "6709914ae7f5cd3e2bb24b413e09aa844554d234", "date": "2024-11-30T00:00:00" }
ConNF/ConNF/ModelData/Enumeration.lean
ConNF.ModelData.Enumeration
ConNF.ModelData.Enumeration.jsonl
{ "lineInFile": 66, "tokenPositionInFile": 1348, "theoremPositionInFile": 5 }
{ "inFilePremises": true, "numInFilePremises": 4, "repositoryPremises": true, "numRepositoryPremises": 6, "numPremises": 13 }
{ "hasProof": true, "proof": ":= by\n rintro ⟨i, h⟩\n cases h", "proofType": "tactic", "proofLengthLines": 2, "proofLengthTokens": 31 }
import ConNF.Levels.Path /-! # Trees In this file, we define the notion of a tree on a type. ## Main declarations * `ConNF.Tree`: The type family of trees parametrised by a given type. -/ universe u open Cardinal namespace ConNF variable [Params.{u}] {X Y : Type _} {α β γ : TypeIndex} /-- An `α`-tree of `X` associates an object of type `X` to each path `α ↝ ⊥`. -/ def Tree (X : Type _) (α : TypeIndex) := (α ↝ ⊥) → X namespace Tree instance : Derivative (Tree X α) (Tree X β) α β where deriv T A B := T (A ⇘ B) @[simp] theorem deriv_apply (T : Tree X α) (A : α ↝ β) (B : β ↝ ⊥) : (T ⇘ A) B = T (A ⇘ B) := rfl @[simp] theorem deriv_nil (T : Tree X α) : T ⇘ .nil = T := by funext A rw [deriv_apply, Path.nil_deriv] theorem deriv_deriv (T : Tree X α) (A : α ↝ β) (B : β ↝ γ) : T ⇘ A ⇘ B = T ⇘ (A ⇘ B) := by funext C simp only [deriv_apply, Path.deriv_assoc] theorem deriv_sderiv (T : Tree X α) (A : α ↝ β) (h : γ < β) : T ⇘ A ↘ h = T ⇘ (A ↘ h) := by rw [← Derivative.deriv_single, ← Derivative.deriv_single, deriv_deriv] @[simp] theorem sderiv_apply (T : Tree X α) (h : β < α) (B : β ↝ ⊥) : (T ↘ h) B = T (B ↗ h) := rfl instance : BotDerivative (Tree X α) X α where botDeriv T A := T A botSderiv T := T <| Path.nil ↘. botDeriv_single T h := by cases α using WithBot.recBotCoe with | bot => cases lt_irrefl ⊥ h | coe => rfl @[simp] theorem botDeriv_eq (T : Tree X α) (A : α ↝ ⊥) : T ⇘. A = T A := rfl theorem botSderiv_eq (T : Tree X α) : T ↘. = T (Path.nil ↘.) := rfl /-- The group structure on the type of `α`-trees of `X` is given by "branchwise" multiplication, given by `Pi.group`. -/ instance group [Group X] : Group (Tree X α) := Pi.group @[simp] theorem one_apply [Group X] (A : α ↝ ⊥) : (1 : Tree X α) A = 1 := rfl @[simp] theorem one_deriv [Group X] (A : α ↝ β) : (1 : Tree X α) ⇘ A = 1 := rfl @[simp] theorem one_sderiv [Group X] (h : β < α) : (1 : Tree X α) ↘ h = 1 := rfl @[simp] theorem one_sderivBot [Group X] : (1 : Tree X α) ↘. = 1 := rfl @[simp] theorem mul_apply [Group X] (T₁ T₂ : Tree X α) (A : α ↝ ⊥) : (T₁ * T₂) A = T₁ A * T₂ A := rfl
@[simp] theorem mul_deriv [Group X] (T₁ T₂ : Tree X α) (A : α ↝ β) : (T₁ * T₂) ⇘ A = T₁ ⇘ A * T₂ ⇘ A
ConNF.Tree.mul_deriv
{ "commit": "8896e416a16c39e1fe487b5fc7c78bc20c4e182b", "date": "2024-12-03T00:00:00" }
{ "commit": "012929981ca97cb4447881b386c61e3bac0c6b93", "date": "2024-11-30T00:00:00" }
ConNF/ConNF/Levels/Tree.lean
ConNF.Levels.Tree
ConNF.Levels.Tree.jsonl
{ "lineInFile": 102, "tokenPositionInFile": 2187, "theoremPositionInFile": 13 }
{ "inFilePremises": true, "numInFilePremises": 3, "repositoryPremises": true, "numRepositoryPremises": 7, "numPremises": 16 }
{ "hasProof": true, "proof": ":=\n rfl", "proofType": "term", "proofLengthLines": 1, "proofLengthTokens": 8 }
import ConNF.Model.Result /-! # New file In this file... ## Main declarations * `ConNF.foo`: Something new. -/ noncomputable section universe u open Cardinal Ordinal ConNF.TSet namespace ConNF variable [Params.{u}] {α β γ δ ε ζ : Λ} (hβ : (β : TypeIndex) < α) (hγ : (γ : TypeIndex) < β) (hδ : (δ : TypeIndex) < γ) (hε : (ε : TypeIndex) < δ) (hζ : (ζ : TypeIndex) < ε) def union (x y : TSet α) : TSet α := (xᶜ' ⊓' yᶜ')ᶜ' notation:68 x:68 " ⊔[" h "] " y:68 => _root_.ConNF.union h x y notation:68 x:68 " ⊔' " y:68 => x ⊔[by assumption] y @[simp] theorem mem_union_iff (x y : TSet α) : ∀ z : TSet β, z ∈' x ⊔' y ↔ z ∈' x ∨ z ∈' y := by rw [union] intro z rw [mem_compl_iff, mem_inter_iff, mem_compl_iff, mem_compl_iff, or_iff_not_and_not] def higherIndex (α : Λ) : Λ := (exists_gt α).choose theorem lt_higherIndex {α : Λ} : (α : TypeIndex) < higherIndex α := WithBot.coe_lt_coe.mpr (exists_gt α).choose_spec theorem tSet_nonempty (h : ∃ β : Λ, (β : TypeIndex) < α) : Nonempty (TSet α) := by obtain ⟨α', hα⟩ := h constructor apply typeLower lt_higherIndex lt_higherIndex lt_higherIndex hα apply cardinalOne lt_higherIndex lt_higherIndex def empty : TSet α := (tSet_nonempty ⟨β, hβ⟩).some ⊓' (tSet_nonempty ⟨β, hβ⟩).someᶜ' @[simp] theorem mem_empty_iff : ∀ x : TSet β, ¬x ∈' empty hβ := by intro x rw [empty, mem_inter_iff, mem_compl_iff] exact and_not_self def univ : TSet α := (empty hβ)ᶜ' @[simp] theorem mem_univ_iff : ∀ x : TSet β, x ∈' univ hβ := by intro x simp only [univ, mem_compl_iff, mem_empty_iff, not_false_eq_true] /-- The set of all ordered pairs. -/ def orderedPairs : TSet α := vCross hβ hγ hδ (univ hδ) @[simp] theorem mem_orderedPairs_iff (x : TSet β) : x ∈' orderedPairs hβ hγ hδ ↔ ∃ a b, x = ⟨a, b⟩' := by simp only [orderedPairs, vCross_spec, mem_univ_iff, and_true] def converse (x : TSet α) : TSet α := converse' hβ hγ hδ x ⊓' orderedPairs hβ hγ hδ @[simp] theorem op_mem_converse_iff (x : TSet α) : ∀ a b, ⟨a, b⟩' ∈' converse hβ hγ hδ x ↔ ⟨b, a⟩' ∈' x := by intro a b simp only [converse, mem_inter_iff, converse'_spec, mem_orderedPairs_iff, op_inj, exists_and_left, exists_eq', and_true] def cross (x y : TSet γ) : TSet α := converse hβ hγ hδ (vCross hβ hγ hδ x) ⊓' vCross hβ hγ hδ y @[simp] theorem mem_cross_iff (x y : TSet γ) : ∀ a, a ∈' cross hβ hγ hδ x y ↔ ∃ b c, a = ⟨b, c⟩' ∧ b ∈' x ∧ c ∈' y := by intro a rw [cross, mem_inter_iff, vCross_spec] constructor · rintro ⟨h₁, b, c, rfl, h₂⟩ simp only [op_mem_converse_iff, vCross_spec, op_inj] at h₁ obtain ⟨b', c', ⟨rfl, rfl⟩, h₁⟩ := h₁ exact ⟨b, c, rfl, h₁, h₂⟩ · rintro ⟨b, c, rfl, h₁, h₂⟩ simp only [op_mem_converse_iff, vCross_spec, op_inj] exact ⟨⟨c, b, ⟨rfl, rfl⟩, h₁⟩, ⟨b, c, ⟨rfl, rfl⟩, h₂⟩⟩ def singletonImage (x : TSet β) : TSet α := singletonImage' hβ hγ hδ hε x ⊓' (cross hβ hγ hδ (cardinalOne hδ hε) (cardinalOne hδ hε)) @[simp] theorem singletonImage_spec (x : TSet β) : ∀ z w, ⟨ {z}', {w}' ⟩' ∈' singletonImage hβ hγ hδ hε x ↔ ⟨z, w⟩' ∈' x := by intro z w rw [singletonImage, mem_inter_iff, singletonImage'_spec, and_iff_left_iff_imp] intro hzw rw [mem_cross_iff] refine ⟨{z}', {w}', rfl, ?_⟩ simp only [mem_cardinalOne_iff, singleton_inj, exists_eq', and_self] theorem exists_of_mem_singletonImage {x : TSet β} {z w : TSet δ} (h : ⟨z, w⟩' ∈' singletonImage hβ hγ hδ hε x) : ∃ a b, z = {a}' ∧ w = {b}' := by simp only [singletonImage, mem_inter_iff, mem_cross_iff, op_inj, mem_cardinalOne_iff] at h obtain ⟨-, _, _, ⟨rfl, rfl⟩, ⟨a, rfl⟩, ⟨b, rfl⟩⟩ := h exact ⟨a, b, rfl, rfl⟩ /-- Turn a model element encoding a relation into an actual relation. -/ def ExternalRel (r : TSet α) : Rel (TSet δ) (TSet δ) := λ x y ↦ ⟨x, y⟩' ∈' r @[simp] theorem externalRel_converse (r : TSet α) : ExternalRel hβ hγ hδ (converse hβ hγ hδ r) = (ExternalRel hβ hγ hδ r).inv := by ext simp only [ExternalRel, op_mem_converse_iff, Rel.inv_apply] /-- The codomain of a relation. -/ def codom (r : TSet α) : TSet γ := (typeLower lt_higherIndex hβ hγ hδ (singletonImage lt_higherIndex hβ hγ hδ r)ᶜ[lt_higherIndex])ᶜ'
@[simp] theorem mem_codom_iff (r : TSet α) (x : TSet δ) : x ∈' codom hβ hγ hδ r ↔ x ∈ (ExternalRel hβ hγ hδ r).codom
ConNF.mem_codom_iff
{ "commit": "66f4e3291020d4198ca6ede816acae5cee584a07", "date": "2025-01-06T00:00:00" }
{ "commit": "66f4e3291020d4198ca6ede816acae5cee584a07", "date": "2025-01-06T00:00:00" }
ConNF/ConNF/External/Basic.lean
ConNF.External.Basic
ConNF.External.Basic.jsonl
{ "lineInFile": 139, "tokenPositionInFile": 4169, "theoremPositionInFile": 23 }
{ "inFilePremises": true, "numInFilePremises": 7, "repositoryPremises": true, "numRepositoryPremises": 22, "numPremises": 57 }
{ "hasProof": true, "proof": ":= by\n simp only [codom, mem_compl_iff, mem_typeLower_iff, not_forall, not_not]\n constructor\n · rintro ⟨y, hy⟩\n obtain ⟨a, b, rfl, hb⟩ := exists_of_mem_singletonImage lt_higherIndex hβ hγ hδ hy\n rw [singleton_inj] at hb\n subst hb\n rw [singletonImage_spec] at hy\n exact ⟨a, hy⟩\n · rintro ⟨a, ha⟩\n use {a}'\n rw [singletonImage_spec]\n exact ha", "proofType": "tactic", "proofLengthLines": 12, "proofLengthTokens": 368 }
import ConNF.Model.Externalise /-! # New file In this file... ## Main declarations * `ConNF.foo`: Something new. -/ noncomputable section universe u open Cardinal Ordinal namespace ConNF variable [Params.{u}] {β γ : Λ} {hγ : (γ : TypeIndex) < β} namespace Support theorem not_mem_scoderiv_botDeriv (S : Support γ) (N : NearLitter) : N ∉ (S ↗ hγ ⇘. (Path.nil ↘.))ᴺ := by rintro ⟨i, ⟨A, N'⟩, h₁, h₂⟩ simp only [Prod.mk.injEq] at h₂ cases A case sderiv δ A hδ _ => simp only [Path.deriv_sderiv] at h₂ cases A case nil => cases h₂.1 case sderiv ζ A hζ _ => simp only [Path.deriv_sderiv] at h₂ cases h₂.1 variable [Level] [LtLevel β] theorem not_mem_strong_botDeriv (S : Support γ) (N : NearLitter) : N ∉ ((S ↗ hγ).strong ⇘. (Path.nil ↘.))ᴺ := by rintro h rw [strong, close_nearLitters, preStrong_nearLitters, Enumeration.mem_add_iff] at h obtain h | h := h · exact not_mem_scoderiv_botDeriv S N h · rw [mem_constrainsNearLitters_nearLitters] at h obtain ⟨B, N', hN', h⟩ := h cases h using Relation.ReflTransGen.head_induction_on case refl => exact not_mem_scoderiv_botDeriv S N hN' case head x hx₁ hx₂ _ => obtain ⟨⟨γ, δ, ε, hδ, hε, hδε, A⟩, t, B, hB, hN, ht⟩ := hx₂ simp only at hB cases B case nil => cases hB obtain ⟨C, N''⟩ := x simp only at ht cases ht.1 change _ ∈ t.supportᴺ at hN rw [t.support_supports.2 rfl] at hN obtain ⟨i, hN⟩ := hN cases hN case sderiv δ B hδ _ _ => cases B case nil => cases hB case sderiv ζ B hζ _ _ => cases hB theorem raise_preStrong' (S : Support α) (hS : S.Strong) (T : Support γ) (ρ : AllPerm β) (hγ : (γ : TypeIndex) < β) : (S + (ρᵁ • ((T ↗ hγ).strong + (S ↘ LtLevel.elim + (T ↗ hγ).strong).interferenceSupport)) ↗ LtLevel.elim).PreStrong := by apply hS.toPreStrong.add constructor intro A N hN P t hA ht obtain ⟨A, rfl⟩ := eq_of_nearLitter_mem_scoderiv_botDeriv hN simp only [scoderiv_botDeriv_eq, add_derivBot, smul_derivBot, BaseSupport.add_nearLitters, BaseSupport.smul_nearLitters, interferenceSupport_nearLitters, Enumeration.mem_add_iff, Enumeration.mem_smul, Enumeration.not_mem_empty, or_false] at hN obtain ⟨δ, ε, ζ, hε, hζ, hεζ, B⟩ := P dsimp only at * cases A case sderiv ζ' A hζ' _ => rw [← Path.coderiv_deriv] at hA cases Path.sderiv_index_injective hA apply Path.sderiv_left_inj.mp at hA cases A case nil => cases hA cases not_mem_strong_botDeriv T _ hN case sderiv ι A hι _ _ => rw [← Path.coderiv_deriv] at hA cases Path.sderiv_index_injective hA cases hA haveI : LtLevel δ := ⟨A.le.trans_lt LtLevel.elim⟩ haveI : LtLevel ε := ⟨hε.trans LtLevel.elim⟩ haveI : LtLevel ζ := ⟨hζ.trans LtLevel.elim⟩ have := (T ↗ hγ).strong_strong.support_le hN ⟨δ, ε, ζ, hε, hζ, hεζ, A⟩ (ρ⁻¹ ⇘ A ↘ hε • t) rfl ?_ · simp only [Tangle.smul_support, allPermSderiv_forget, allPermDeriv_forget, allPermForget_inv, Tree.inv_deriv, Tree.inv_sderiv] at this have := smul_le_smul this (ρᵁ ⇘ A ↘ hε) simp only [smul_inv_smul] at this apply le_trans this intro B constructor · intro a ha simp only [smul_derivBot, Tree.sderiv_apply, Tree.deriv_apply, Path.deriv_scoderiv, deriv_derivBot, Enumeration.mem_smul] at ha rw [deriv_derivBot, ← Path.deriv_scoderiv, Path.coderiv_deriv', scoderiv_botDeriv_eq,] simp only [Path.deriv_scoderiv, add_derivBot, smul_derivBot, BaseSupport.add_atoms, BaseSupport.smul_atoms, Enumeration.mem_add_iff, Enumeration.mem_smul] exact Or.inl ha · intro N hN simp only [smul_derivBot, Tree.sderiv_apply, Tree.deriv_apply, Path.deriv_scoderiv, deriv_derivBot, Enumeration.mem_smul] at hN rw [deriv_derivBot, ← Path.deriv_scoderiv, Path.coderiv_deriv', scoderiv_botDeriv_eq,] simp only [Path.deriv_scoderiv, add_derivBot, smul_derivBot, BaseSupport.add_nearLitters, BaseSupport.smul_nearLitters, Enumeration.mem_add_iff, Enumeration.mem_smul] exact Or.inl hN · rw [← smul_fuzz hε hζ hεζ, ← ht] simp only [Path.botSderiv_coe_eq, BasePerm.smul_nearLitter_litter, allPermDeriv_forget, allPermForget_inv, Tree.inv_deriv, Tree.inv_sderiv, Tree.inv_sderivBot] rfl theorem raise_closed' (S : Support α) (hS : S.Strong) (T : Support γ) (ρ : AllPerm β) (hγ : (γ : TypeIndex) < β) (hρ : ρᵁ • (S ↘ LtLevel.elim : Support β) = S ↘ LtLevel.elim) : (S + (ρᵁ • ((T ↗ hγ).strong + (S ↘ LtLevel.elim + (T ↗ hγ).strong).interferenceSupport)) ↗ LtLevel.elim).Closed := by constructor intro A constructor intro N₁ N₂ hN₁ hN₂ a ha simp only [add_derivBot, BaseSupport.add_nearLitters, Enumeration.mem_add_iff, BaseSupport.add_atoms] at hN₁ hN₂ ⊢ obtain hN₁ | hN₁ := hN₁ · obtain hN₂ | hN₂ := hN₂ · exact Or.inl ((hS.closed A).interference_subset hN₁ hN₂ a ha) · obtain ⟨B, rfl⟩ := eq_of_nearLitter_mem_scoderiv_botDeriv hN₂ simp only [smul_add, scoderiv_botDeriv_eq, add_derivBot, smul_derivBot, BaseSupport.add_nearLitters, BaseSupport.smul_nearLitters, Enumeration.mem_add_iff, Enumeration.mem_smul, BaseSupport.add_atoms, BaseSupport.smul_atoms] at hN₁ hN₂ ⊢ refine Or.inr (Or.inr ?_) rw [mem_interferenceSupport_atoms] refine ⟨(ρᵁ B)⁻¹ • N₁, ?_, (ρᵁ B)⁻¹ • N₂, ?_, ?_⟩ · simp only [add_derivBot, BaseSupport.add_nearLitters, Enumeration.mem_add_iff] rw [← Enumeration.mem_smul, ← BaseSupport.smul_nearLitters, ← smul_derivBot, hρ] exact Or.inl hN₁ · simp only [add_derivBot, BaseSupport.add_nearLitters, Enumeration.mem_add_iff] simp only [interferenceSupport_nearLitters, Enumeration.not_mem_empty, or_false] at hN₂ exact Or.inr hN₂ · rw [← BasePerm.smul_interference] exact Set.smul_mem_smul_set ha · obtain ⟨B, rfl⟩ := eq_of_nearLitter_mem_scoderiv_botDeriv hN₁ simp only [smul_add, scoderiv_botDeriv_eq, add_derivBot, smul_derivBot, BaseSupport.add_nearLitters, BaseSupport.smul_nearLitters, Enumeration.mem_add_iff, Enumeration.mem_smul, BaseSupport.add_atoms, BaseSupport.smul_atoms] at hN₁ hN₂ ⊢ refine Or.inr (Or.inr ?_) rw [mem_interferenceSupport_atoms] refine ⟨(ρᵁ B)⁻¹ • N₁, ?_, (ρᵁ B)⁻¹ • N₂, ?_, ?_⟩ · simp only [add_derivBot, BaseSupport.add_nearLitters, Enumeration.mem_add_iff] simp only [interferenceSupport_nearLitters, Enumeration.not_mem_empty, or_false] at hN₁ exact Or.inr hN₁ · simp only [add_derivBot, BaseSupport.add_nearLitters, Enumeration.mem_add_iff] simp only [interferenceSupport_nearLitters, Enumeration.not_mem_empty, or_false] at hN₂ obtain hN₂ | hN₂ := hN₂ · rw [← Enumeration.mem_smul, ← BaseSupport.smul_nearLitters, ← smul_derivBot, hρ] exact Or.inl hN₂ · exact Or.inr hN₂ · rw [← BasePerm.smul_interference] exact Set.smul_mem_smul_set ha theorem raise_strong' (S : Support α) (hS : S.Strong) (T : Support γ) (ρ : AllPerm β) (hγ : (γ : TypeIndex) < β) (hρ : ρᵁ • (S ↘ LtLevel.elim : Support β) = S ↘ LtLevel.elim) : (S + (ρᵁ • ((T ↗ hγ).strong + (S ↘ LtLevel.elim + (T ↗ hγ).strong).interferenceSupport)) ↗ LtLevel.elim).Strong := ⟨raise_preStrong' S hS T ρ hγ, raise_closed' S hS T ρ hγ hρ⟩
theorem convAtoms_injective_of_fixes {S : Support α} {T : Support γ} {ρ₁ ρ₂ : AllPerm β} {hγ : (γ : TypeIndex) < β} (hρ₁ : ρ₁ᵁ • (S ↘ LtLevel.elim : Support β) = S ↘ LtLevel.elim) (hρ₂ : ρ₂ᵁ • (S ↘ LtLevel.elim : Support β) = S ↘ LtLevel.elim) (A : ↑α ↝ ⊥) : (convAtoms (S + (ρ₁ᵁ • ((T ↗ hγ).strong + (S ↘ LtLevel.elim + (T ↗ hγ).strong).interferenceSupport)) ↗ LtLevel.elim) (S + (ρ₂ᵁ • ((T ↗ hγ).strong + (S ↘ LtLevel.elim + (T ↗ hγ).strong).interferenceSupport)) ↗ LtLevel.elim) A).Injective
ConNF.Support.convAtoms_injective_of_fixes
{ "commit": "abf71bc79c407ceb462cc2edd2d994cda9cdef05", "date": "2024-04-04T00:00:00" }
{ "commit": "6709914ae7f5cd3e2bb24b413e09aa844554d234", "date": "2024-11-30T00:00:00" }
ConNF/ConNF/Model/RaiseStrong.lean
ConNF.Model.RaiseStrong
ConNF.Model.RaiseStrong.jsonl
{ "lineInFile": 181, "tokenPositionInFile": 7503, "theoremPositionInFile": 5 }
{ "inFilePremises": false, "numInFilePremises": 0, "repositoryPremises": true, "numRepositoryPremises": 71, "numPremises": 148 }
{ "hasProof": true, "proof": ":= by\n rw [Support.smul_eq_iff] at hρ₁ hρ₂\n constructor\n rintro a₁ a₂ a₃ ⟨i, hi₁, hi₂⟩ ⟨j, hj₁, hj₂⟩\n simp only [add_derivBot, BaseSupport.add_atoms, Rel.inv_apply,\n Enumeration.rel_add_iff] at hi₁ hi₂ hj₁ hj₂\n obtain hi₁ | ⟨i, rfl, hi₁⟩ := hi₁\n · obtain hi₂ | ⟨i', rfl, _⟩ := hi₂\n swap\n · have := Enumeration.lt_bound _ _ ⟨_, hi₁⟩\n simp only [add_lt_iff_neg_left] at this\n cases (κ_zero_le i').not_lt this\n cases (Enumeration.rel_coinjective _).coinjective hi₁ hi₂\n obtain hj₁ | ⟨j, rfl, hj₁⟩ := hj₁\n · obtain hj₂ | ⟨j', rfl, _⟩ := hj₂\n · exact (Enumeration.rel_coinjective _).coinjective hj₂ hj₁\n · have := Enumeration.lt_bound _ _ ⟨_, hj₁⟩\n simp only [add_lt_iff_neg_left] at this\n cases (κ_zero_le j').not_lt this\n · obtain hj₂ | hj₂ := hj₂\n · have := Enumeration.lt_bound _ _ ⟨_, hj₂⟩\n simp only [add_lt_iff_neg_left] at this\n cases (κ_zero_le j).not_lt this\n · simp only [add_right_inj, exists_eq_left] at hj₂\n obtain ⟨B, rfl⟩ := eq_of_atom_mem_scoderiv_botDeriv ⟨j, hj₁⟩\n simp only [scoderiv_botDeriv_eq, smul_derivBot, add_derivBot, BaseSupport.smul_atoms,\n BaseSupport.add_atoms, Enumeration.smul_rel, add_right_inj, exists_eq_left] at hj₁ hj₂\n have := (Enumeration.rel_coinjective _).coinjective hj₁ hj₂\n rw [← (hρ₂ B).1 a₁ ⟨_, hi₁⟩, inv_smul_smul, inv_smul_eq_iff, (hρ₁ B).1 a₁ ⟨_, hi₁⟩] at this\n exact this.symm\n · obtain ⟨B, rfl⟩ := eq_of_atom_mem_scoderiv_botDeriv ⟨i, hi₁⟩\n simp only [scoderiv_botDeriv_eq, smul_derivBot, add_derivBot, BaseSupport.smul_atoms,\n BaseSupport.add_atoms, Enumeration.smul_rel, add_right_inj, exists_eq_left] at hi₁ hi₂ hj₁ hj₂\n obtain hi₂ | hi₂ := hi₂\n · have := Enumeration.lt_bound _ _ ⟨_, hi₂⟩\n simp only [add_lt_iff_neg_left] at this\n cases (κ_zero_le i).not_lt this\n have hi := (Enumeration.rel_coinjective _).coinjective hi₁ hi₂\n suffices hj : (ρ₁ᵁ B)⁻¹ • a₂ = (ρ₂ᵁ B)⁻¹ • a₃ by\n rwa [← hj, smul_left_cancel_iff] at hi\n obtain hj₁ | ⟨j, rfl, hj₁⟩ := hj₁\n · obtain hj₂ | ⟨j', rfl, _⟩ := hj₂\n · rw [← (hρ₁ B).1 a₂ ⟨_, hj₁⟩, ← (hρ₂ B).1 a₃ ⟨_, hj₂⟩, inv_smul_smul, inv_smul_smul]\n exact (Enumeration.rel_coinjective _).coinjective hj₁ hj₂\n · have := Enumeration.lt_bound _ _ ⟨_, hj₁⟩\n simp only [add_lt_iff_neg_left] at this\n cases (κ_zero_le j').not_lt this\n · obtain hj₂ | hj₂ := hj₂\n · have := Enumeration.lt_bound _ _ ⟨_, hj₂⟩\n simp only [add_lt_iff_neg_left] at this\n cases (κ_zero_le j).not_lt this\n · simp only [add_right_inj, exists_eq_left] at hj₂\n exact (Enumeration.rel_coinjective _).coinjective hj₁ hj₂", "proofType": "tactic", "proofLengthLines": 52, "proofLengthTokens": 2698 }
import ConNF.ModelData.PathEnumeration /-! # Supports In this file, we define the notion of a support. ## Main declarations * `ConNF.BaseSupport`: The type of supports of atoms. * `ConNF.Support`: The type of supports of objects of arbitrary type indices. -/ universe u open Cardinal namespace ConNF variable [Params.{u}] /-! ## Base supports -/ structure BaseSupport where atoms : Enumeration Atom nearLitters : Enumeration NearLitter namespace BaseSupport instance : SuperA BaseSupport (Enumeration Atom) where superA := atoms instance : SuperN BaseSupport (Enumeration NearLitter) where superN := nearLitters @[simp] theorem mk_atoms {a : Enumeration Atom} {N : Enumeration NearLitter} : (BaseSupport.mk a N)ᴬ = a := rfl @[simp] theorem mk_nearLitters {a : Enumeration Atom} {N : Enumeration NearLitter} : (BaseSupport.mk a N)ᴺ = N := rfl theorem atoms_congr {S T : BaseSupport} (h : S = T) : Sᴬ = Tᴬ := h ▸ rfl theorem nearLitters_congr {S T : BaseSupport} (h : S = T) : Sᴺ = Tᴺ := h ▸ rfl @[ext] theorem ext {S T : BaseSupport} (h₁ : Sᴬ = Tᴬ) (h₂ : Sᴺ = Tᴺ) : S = T := by obtain ⟨SA, SN⟩ := S obtain ⟨TA, TN⟩ := T cases h₁ cases h₂ rfl instance : SMul BasePerm BaseSupport where smul π S := ⟨π • Sᴬ, π • Sᴺ⟩ @[simp] theorem smul_atoms (π : BasePerm) (S : BaseSupport) : (π • S)ᴬ = π • Sᴬ := rfl @[simp] theorem smul_nearLitters (π : BasePerm) (S : BaseSupport) : (π • S)ᴺ = π • Sᴺ := rfl @[simp] theorem smul_atoms_eq_of_smul_eq {π : BasePerm} {S : BaseSupport} (h : π • S = S) : π • Sᴬ = Sᴬ := by rw [← smul_atoms, h] @[simp] theorem smul_nearLitters_eq_of_smul_eq {π : BasePerm} {S : BaseSupport} (h : π • S = S) : π • Sᴺ = Sᴺ := by rw [← smul_nearLitters, h] instance : MulAction BasePerm BaseSupport where one_smul S := by apply ext · rw [smul_atoms, one_smul] · rw [smul_nearLitters, one_smul] mul_smul π₁ π₂ S := by apply ext · rw [smul_atoms, smul_atoms, smul_atoms, mul_smul] · rw [smul_nearLitters, smul_nearLitters, smul_nearLitters, mul_smul] theorem smul_eq_smul_iff (π₁ π₂ : BasePerm) (S : BaseSupport) : π₁ • S = π₂ • S ↔ (∀ a ∈ Sᴬ, π₁ • a = π₂ • a) ∧ (∀ N ∈ Sᴺ, π₁ • N = π₂ • N) := by constructor · intro h constructor · rintro a ⟨i, ha⟩ have := congr_arg (·ᴬ.rel i (π₁ • a)) h simp only [smul_atoms, Enumeration.smul_rel, inv_smul_smul, eq_iff_iff] at this have := Sᴬ.rel_coinjective.coinjective ha (this.mp ha) rw [eq_inv_smul_iff] at this rw [this] · rintro N ⟨i, hN⟩ have := congr_arg (·ᴺ.rel i (π₁ • N)) h simp only [smul_nearLitters, Enumeration.smul_rel, inv_smul_smul, eq_iff_iff] at this have := Sᴺ.rel_coinjective.coinjective hN (this.mp hN) rw [eq_inv_smul_iff] at this rw [this] · intro h ext : 2 · rfl · ext i a : 3 rw [smul_atoms, smul_atoms, Enumeration.smul_rel, Enumeration.smul_rel] constructor · intro ha have := h.1 _ ⟨i, ha⟩ rw [smul_inv_smul, ← inv_smul_eq_iff] at this rwa [this] · intro ha have := h.1 _ ⟨i, ha⟩ rw [smul_inv_smul, smul_eq_iff_eq_inv_smul] at this rwa [← this] · rfl · ext i a : 3 rw [smul_nearLitters, smul_nearLitters, Enumeration.smul_rel, Enumeration.smul_rel] constructor · intro hN have := h.2 _ ⟨i, hN⟩ rw [smul_inv_smul, ← inv_smul_eq_iff] at this rwa [this] · intro hN have := h.2 _ ⟨i, hN⟩ rw [smul_inv_smul, smul_eq_iff_eq_inv_smul] at this rwa [← this] theorem smul_eq_iff (π : BasePerm) (S : BaseSupport) : π • S = S ↔ (∀ a ∈ Sᴬ, π • a = a) ∧ (∀ N ∈ Sᴺ, π • N = N) := by have := smul_eq_smul_iff π 1 S simp only [one_smul] at this exact this noncomputable instance : Add BaseSupport where add S T := ⟨Sᴬ + Tᴬ, Sᴺ + Tᴺ⟩ @[simp] theorem add_atoms (S T : BaseSupport) : (S + T)ᴬ = Sᴬ + Tᴬ := rfl @[simp] theorem add_nearLitters (S T : BaseSupport) : (S + T)ᴺ = Sᴺ + Tᴺ := rfl end BaseSupport def baseSupportEquiv : BaseSupport ≃ Enumeration Atom × Enumeration NearLitter where toFun S := (Sᴬ, Sᴺ) invFun S := ⟨S.1, S.2⟩ left_inv _ := rfl right_inv _ := rfl theorem card_baseSupport : #BaseSupport = #μ := by rw [Cardinal.eq.mpr ⟨baseSupportEquiv⟩, mk_prod, lift_id, lift_id, card_enumeration_eq card_atom, card_enumeration_eq card_nearLitter, mul_eq_self aleph0_lt_μ.le] /-! ## Structural supports -/ structure Support (α : TypeIndex) where atoms : Enumeration (α ↝ ⊥ × Atom) nearLitters : Enumeration (α ↝ ⊥ × NearLitter) namespace Support variable {α β : TypeIndex} instance : SuperA (Support α) (Enumeration (α ↝ ⊥ × Atom)) where superA := atoms instance : SuperN (Support α) (Enumeration (α ↝ ⊥ × NearLitter)) where superN := nearLitters @[simp] theorem mk_atoms (E : Enumeration (α ↝ ⊥ × Atom)) (F : Enumeration (α ↝ ⊥ × NearLitter)) : (⟨E, F⟩ : Support α)ᴬ = E := rfl @[simp] theorem mk_nearLitters (E : Enumeration (α ↝ ⊥ × Atom)) (F : Enumeration (α ↝ ⊥ × NearLitter)) : (⟨E, F⟩ : Support α)ᴺ = F := rfl instance : Derivative (Support α) (Support β) α β where deriv S A := ⟨Sᴬ ⇘ A, Sᴺ ⇘ A⟩ instance : Coderivative (Support β) (Support α) α β where coderiv S A := ⟨Sᴬ ⇗ A, Sᴺ ⇗ A⟩ instance : BotDerivative (Support α) BaseSupport α where botDeriv S A := ⟨Sᴬ ⇘. A, Sᴺ ⇘. A⟩ botSderiv S := ⟨Sᴬ ↘., Sᴺ ↘.⟩ botDeriv_single S h := by dsimp only; rw [botDeriv_single, botDeriv_single] @[simp] theorem deriv_atoms {α β : TypeIndex} (S : Support α) (A : α ↝ β) : Sᴬ ⇘ A = (S ⇘ A)ᴬ := rfl @[simp] theorem deriv_nearLitters {α β : TypeIndex} (S : Support α) (A : α ↝ β) : Sᴺ ⇘ A = (S ⇘ A)ᴺ := rfl @[simp] theorem sderiv_atoms {α β : TypeIndex} (S : Support α) (h : β < α) : Sᴬ ↘ h = (S ↘ h)ᴬ := rfl @[simp] theorem sderiv_nearLitters {α β : TypeIndex} (S : Support α) (h : β < α) : Sᴺ ↘ h = (S ↘ h)ᴺ := rfl @[simp] theorem coderiv_atoms {α β : TypeIndex} (S : Support β) (A : α ↝ β) : Sᴬ ⇗ A = (S ⇗ A)ᴬ := rfl @[simp] theorem coderiv_nearLitters {α β : TypeIndex} (S : Support β) (A : α ↝ β) : Sᴺ ⇗ A = (S ⇗ A)ᴺ := rfl @[simp] theorem scoderiv_atoms {α β : TypeIndex} (S : Support β) (h : β < α) : Sᴬ ↗ h = (S ↗ h)ᴬ := rfl @[simp] theorem scoderiv_nearLitters {α β : TypeIndex} (S : Support β) (h : β < α) : Sᴺ ↗ h = (S ↗ h)ᴺ := rfl @[simp] theorem derivBot_atoms {α : TypeIndex} (S : Support α) (A : α ↝ ⊥) : Sᴬ ⇘. A = (S ⇘. A)ᴬ := rfl @[simp] theorem derivBot_nearLitters {α : TypeIndex} (S : Support α) (A : α ↝ ⊥) : Sᴺ ⇘. A = (S ⇘. A)ᴺ := rfl theorem ext' {S T : Support α} (h₁ : Sᴬ = Tᴬ) (h₂ : Sᴺ = Tᴺ) : S = T := by obtain ⟨SA, SN⟩ := S obtain ⟨TA, TN⟩ := T cases h₁ cases h₂ rfl @[ext] theorem ext {S T : Support α} (h : ∀ A, S ⇘. A = T ⇘. A) : S = T := by obtain ⟨SA, SN⟩ := S obtain ⟨TA, TN⟩ := T rw [mk.injEq] constructor · apply Enumeration.ext_path intro A exact BaseSupport.atoms_congr (h A) · apply Enumeration.ext_path intro A exact BaseSupport.nearLitters_congr (h A) @[simp] theorem deriv_derivBot {α : TypeIndex} (S : Support α) (A : α ↝ β) (B : β ↝ ⊥) : S ⇘ A ⇘. B = S ⇘. (A ⇘ B) := rfl @[simp] theorem coderiv_deriv_eq {α β : TypeIndex} (S : Support β) (A : α ↝ β) : S ⇗ A ⇘ A = S := ext' (Sᴬ.coderiv_deriv_eq A) (Sᴺ.coderiv_deriv_eq A) theorem eq_of_atom_mem_scoderiv_botDeriv {α β : TypeIndex} {S : Support β} {A : α ↝ ⊥} {h : β < α} {a : Atom} (ha : a ∈ (S ↗ h ⇘. A)ᴬ) : ∃ B : β ↝ ⊥, A = B ↗ h := Enumeration.eq_of_mem_scoderiv_botDeriv ha theorem eq_of_nearLitter_mem_scoderiv_botDeriv {α β : TypeIndex} {S : Support β} {A : α ↝ ⊥} {h : β < α} {N : NearLitter} (hN : N ∈ (S ↗ h ⇘. A)ᴺ) : ∃ B : β ↝ ⊥, A = B ↗ h := Enumeration.eq_of_mem_scoderiv_botDeriv hN @[simp] theorem scoderiv_botDeriv_eq {α β : TypeIndex} (S : Support β) (A : β ↝ ⊥) (h : β < α) : S ↗ h ⇘. (A ↗ h) = S ⇘. A := BaseSupport.ext (Enumeration.scoderiv_botDeriv_eq _ _ _) (Enumeration.scoderiv_botDeriv_eq _ _ _) @[simp] theorem scoderiv_deriv_eq {α β γ : TypeIndex} (S : Support β) (A : β ↝ γ) (h : β < α) : S ↗ h ⇘ (A ↗ h) = S ⇘ A := by apply ext intro B simp only [deriv_derivBot, ← scoderiv_botDeriv_eq S (A ⇘ B) h, Path.coderiv_deriv'] @[simp] theorem coderiv_inj {α β : TypeIndex} (S T : Support β) (A : α ↝ β) : S ⇗ A = T ⇗ A ↔ S = T := by constructor swap · rintro rfl rfl intro h ext B : 1 have : S ⇗ A ⇘ A ⇘. B = T ⇗ A ⇘ A ⇘. B := by rw [h] rwa [coderiv_deriv_eq, coderiv_deriv_eq] at this @[simp] theorem scoderiv_inj {α β : TypeIndex} (S T : Support β) (h : β < α) : S ↗ h = T ↗ h ↔ S = T := coderiv_inj S T (.single h) instance {α : TypeIndex} : SMul (StrPerm α) (Support α) where smul π S := ⟨π • Sᴬ, π • Sᴺ⟩ @[simp] theorem smul_atoms {α : TypeIndex} (π : StrPerm α) (S : Support α) : (π • S)ᴬ = π • Sᴬ := rfl @[simp] theorem smul_nearLitters {α : TypeIndex} (π : StrPerm α) (S : Support α) : (π • S)ᴺ = π • Sᴺ := rfl theorem smul_atoms_eq_of_smul_eq {α : TypeIndex} {π : StrPerm α} {S : Support α} (h : π • S = S) : π • Sᴬ = Sᴬ := by rw [← smul_atoms, h] theorem smul_nearLitters_eq_of_smul_eq {α : TypeIndex} {π : StrPerm α} {S : Support α} (h : π • S = S) : π • Sᴺ = Sᴺ := by rw [← smul_nearLitters, h] instance {α : TypeIndex} : MulAction (StrPerm α) (Support α) where one_smul S := by apply ext' · rw [smul_atoms, one_smul] · rw [smul_nearLitters, one_smul] mul_smul π₁ π₂ S := by apply ext' · rw [smul_atoms, smul_atoms, smul_atoms, mul_smul] · rw [smul_nearLitters, smul_nearLitters, smul_nearLitters, mul_smul] @[simp] theorem smul_derivBot {α : TypeIndex} (π : StrPerm α) (S : Support α) (A : α ↝ ⊥) : (π • S) ⇘. A = π A • (S ⇘. A) := rfl theorem smul_coderiv {α : TypeIndex} (π : StrPerm α) (S : Support β) (A : α ↝ β) : π • S ⇗ A = (π ⇘ A • S) ⇗ A := by ext B i x · rfl · constructor · rintro ⟨⟨C, x⟩, hS, hx⟩ simp only [Prod.mk.injEq] at hx obtain ⟨rfl, rfl⟩ := hx exact ⟨⟨C, x⟩, hS, rfl⟩ · rintro ⟨⟨C, x⟩, hS, hx⟩ simp only [Prod.mk.injEq] at hx obtain ⟨rfl, rfl⟩ := hx exact ⟨⟨C, _⟩, hS, rfl⟩ · rfl · constructor · rintro ⟨⟨C, x⟩, hS, hx⟩ simp only [Prod.mk.injEq] at hx obtain ⟨rfl, rfl⟩ := hx exact ⟨⟨C, x⟩, hS, rfl⟩ · rintro ⟨⟨C, a⟩, hS, hx⟩ simp only [Prod.mk.injEq] at hx obtain ⟨rfl, rfl⟩ := hx exact ⟨⟨C, _⟩, hS, rfl⟩ theorem smul_scoderiv {α : TypeIndex} (π : StrPerm α) (S : Support β) (h : β < α) : π • S ↗ h = (π ↘ h • S) ↗ h := smul_coderiv π S (Path.single h) theorem smul_eq_smul_iff (π₁ π₂ : StrPerm β) (S : Support β) : π₁ • S = π₂ • S ↔ ∀ A, (∀ a ∈ (S ⇘. A)ᴬ, π₁ A • a = π₂ A • a) ∧ (∀ N ∈ (S ⇘. A)ᴺ, π₁ A • N = π₂ A • N) := by constructor · intro h A have := congr_arg (· ⇘. A) h simp only [smul_derivBot, BaseSupport.smul_eq_smul_iff] at this exact this · intro h apply ext intro A simp only [smul_derivBot, BaseSupport.smul_eq_smul_iff] exact h A theorem smul_eq_iff (π : StrPerm β) (S : Support β) : π • S = S ↔ ∀ A, (∀ a ∈ (S ⇘. A)ᴬ, π A • a = a) ∧ (∀ N ∈ (S ⇘. A)ᴺ, π A • N = N) := by have := smul_eq_smul_iff π 1 S simp only [one_smul, Tree.one_apply] at this exact this noncomputable instance : Add (Support α) where add S T := ⟨Sᴬ + Tᴬ, Sᴺ + Tᴺ⟩ @[simp] theorem add_derivBot (S T : Support α) (A : α ↝ ⊥) : (S + T) ⇘. A = (S ⇘. A) + (T ⇘. A) := rfl theorem smul_add (S T : Support α) (π : StrPerm α) : π • (S + T) = π • S + π • T := rfl theorem add_inj_of_bound_eq_bound {S T U V : Support α} (ha : Sᴬ.bound = Tᴬ.bound) (hN : Sᴺ.bound = Tᴺ.bound) (h' : S + U = T + V) : S = T ∧ U = V := by have ha' := Enumeration.add_inj_of_bound_eq_bound ha (congr_arg (·ᴬ) h') have hN' := Enumeration.add_inj_of_bound_eq_bound hN (congr_arg (·ᴺ) h') constructor · exact Support.ext' ha'.1 hN'.1 · exact Support.ext' ha'.2 hN'.2 end Support def supportEquiv {α : TypeIndex} : Support α ≃ Enumeration (α ↝ ⊥ × Atom) × Enumeration (α ↝ ⊥ × NearLitter) where toFun S := (Sᴬ, Sᴺ) invFun S := ⟨S.1, S.2⟩ left_inv _ := rfl right_inv _ := rfl theorem card_support {α : TypeIndex} : #(Support α) = #μ := by rw [Cardinal.eq.mpr ⟨supportEquiv⟩, mk_prod, lift_id, lift_id, card_enumeration_eq, card_enumeration_eq, mul_eq_self aleph0_lt_μ.le] · rw [mk_prod, lift_id, lift_id, card_nearLitter, mul_eq_right aleph0_lt_μ.le (card_path_lt' α ⊥).le (card_path_ne_zero α)] · rw [mk_prod, lift_id, lift_id, card_atom, mul_eq_right aleph0_lt_μ.le (card_path_lt' α ⊥).le (card_path_ne_zero α)] /-! ## Orders on supports -/ -- TODO: Is this order used? instance : LE BaseSupport where le S T := (∀ a ∈ Sᴬ, a ∈ Tᴬ) ∧ (∀ N ∈ Sᴺ, N ∈ Tᴺ) instance : Preorder BaseSupport where le_refl S := ⟨λ _ ↦ id, λ _ ↦ id⟩ le_trans S T U h₁ h₂ := ⟨λ a h ↦ h₂.1 _ (h₁.1 a h), λ N h ↦ h₂.2 _ (h₁.2 N h)⟩ theorem BaseSupport.smul_le_smul {S T : BaseSupport} (h : S ≤ T) (π : BasePerm) : π • S ≤ π • T := by constructor · intro a exact h.1 (π⁻¹ • a) · intro N exact h.2 (π⁻¹ • N) theorem BaseSupport.le_add_right {S T : BaseSupport} : S ≤ S + T := by constructor · intro a ha simp only [Support.add_derivBot, BaseSupport.add_atoms, Enumeration.mem_add_iff] exact Or.inl ha · intro N hN simp only [Support.add_derivBot, BaseSupport.add_nearLitters, Enumeration.mem_add_iff] exact Or.inl hN
theorem BaseSupport.le_add_left {S T : BaseSupport} : S ≤ T + S
ConNF.BaseSupport.le_add_left
{ "commit": "39c33b4a743bea62dbcc549548b712ffd38ca65c", "date": "2024-12-05T00:00:00" }
{ "commit": "251ac752f844dfde539ac2bd3ff112305ad59139", "date": "2024-11-30T00:00:00" }
ConNF/ConNF/ModelData/Support.lean
ConNF.ModelData.Support
ConNF.ModelData.Support.jsonl
{ "lineInFile": 487, "tokenPositionInFile": 13576, "theoremPositionInFile": 51 }
{ "inFilePremises": true, "numInFilePremises": 5, "repositoryPremises": true, "numRepositoryPremises": 14, "numPremises": 25 }
{ "hasProof": true, "proof": ":= by\n constructor\n · intro a ha\n simp only [add_atoms, Enumeration.mem_add_iff]\n exact Or.inr ha\n · intro N hN\n simp only [add_nearLitters, Enumeration.mem_add_iff]\n exact Or.inr hN", "proofType": "tactic", "proofLengthLines": 7, "proofLengthTokens": 197 }
import ConNF.ModelData.PathEnumeration /-! # Supports In this file, we define the notion of a support. ## Main declarations * `ConNF.BaseSupport`: The type of supports of atoms. * `ConNF.Support`: The type of supports of objects of arbitrary type indices. -/ universe u open Cardinal namespace ConNF variable [Params.{u}] /-! ## Base supports -/ structure BaseSupport where atoms : Enumeration Atom nearLitters : Enumeration NearLitter namespace BaseSupport instance : SuperA BaseSupport (Enumeration Atom) where superA := atoms instance : SuperN BaseSupport (Enumeration NearLitter) where superN := nearLitters @[simp] theorem mk_atoms {a : Enumeration Atom} {N : Enumeration NearLitter} : (BaseSupport.mk a N)ᴬ = a := rfl @[simp] theorem mk_nearLitters {a : Enumeration Atom} {N : Enumeration NearLitter} : (BaseSupport.mk a N)ᴺ = N := rfl theorem atoms_congr {S T : BaseSupport} (h : S = T) : Sᴬ = Tᴬ := h ▸ rfl theorem nearLitters_congr {S T : BaseSupport} (h : S = T) : Sᴺ = Tᴺ := h ▸ rfl @[ext] theorem ext {S T : BaseSupport} (h₁ : Sᴬ = Tᴬ) (h₂ : Sᴺ = Tᴺ) : S = T := by obtain ⟨SA, SN⟩ := S obtain ⟨TA, TN⟩ := T cases h₁ cases h₂ rfl instance : SMul BasePerm BaseSupport where smul π S := ⟨π • Sᴬ, π • Sᴺ⟩ @[simp] theorem smul_atoms (π : BasePerm) (S : BaseSupport) : (π • S)ᴬ = π • Sᴬ := rfl @[simp] theorem smul_nearLitters (π : BasePerm) (S : BaseSupport) : (π • S)ᴺ = π • Sᴺ := rfl @[simp] theorem smul_atoms_eq_of_smul_eq {π : BasePerm} {S : BaseSupport} (h : π • S = S) : π • Sᴬ = Sᴬ := by rw [← smul_atoms, h] @[simp] theorem smul_nearLitters_eq_of_smul_eq {π : BasePerm} {S : BaseSupport} (h : π • S = S) : π • Sᴺ = Sᴺ := by rw [← smul_nearLitters, h] instance : MulAction BasePerm BaseSupport where one_smul S := by apply ext · rw [smul_atoms, one_smul] · rw [smul_nearLitters, one_smul] mul_smul π₁ π₂ S := by apply ext · rw [smul_atoms, smul_atoms, smul_atoms, mul_smul] · rw [smul_nearLitters, smul_nearLitters, smul_nearLitters, mul_smul] theorem smul_eq_smul_iff (π₁ π₂ : BasePerm) (S : BaseSupport) : π₁ • S = π₂ • S ↔ (∀ a ∈ Sᴬ, π₁ • a = π₂ • a) ∧ (∀ N ∈ Sᴺ, π₁ • N = π₂ • N) := by constructor · intro h constructor · rintro a ⟨i, ha⟩ have := congr_arg (·ᴬ.rel i (π₁ • a)) h simp only [smul_atoms, Enumeration.smul_rel, inv_smul_smul, eq_iff_iff] at this have := Sᴬ.rel_coinjective.coinjective ha (this.mp ha) rw [eq_inv_smul_iff] at this rw [this] · rintro N ⟨i, hN⟩ have := congr_arg (·ᴺ.rel i (π₁ • N)) h simp only [smul_nearLitters, Enumeration.smul_rel, inv_smul_smul, eq_iff_iff] at this have := Sᴺ.rel_coinjective.coinjective hN (this.mp hN) rw [eq_inv_smul_iff] at this rw [this] · intro h ext : 2 · rfl · ext i a : 3 rw [smul_atoms, smul_atoms, Enumeration.smul_rel, Enumeration.smul_rel] constructor · intro ha have := h.1 _ ⟨i, ha⟩ rw [smul_inv_smul, ← inv_smul_eq_iff] at this rwa [this] · intro ha have := h.1 _ ⟨i, ha⟩ rw [smul_inv_smul, smul_eq_iff_eq_inv_smul] at this rwa [← this] · rfl · ext i a : 3 rw [smul_nearLitters, smul_nearLitters, Enumeration.smul_rel, Enumeration.smul_rel] constructor · intro hN have := h.2 _ ⟨i, hN⟩ rw [smul_inv_smul, ← inv_smul_eq_iff] at this rwa [this] · intro hN have := h.2 _ ⟨i, hN⟩ rw [smul_inv_smul, smul_eq_iff_eq_inv_smul] at this rwa [← this] theorem smul_eq_iff (π : BasePerm) (S : BaseSupport) : π • S = S ↔ (∀ a ∈ Sᴬ, π • a = a) ∧ (∀ N ∈ Sᴺ, π • N = N) := by have := smul_eq_smul_iff π 1 S simp only [one_smul] at this exact this noncomputable instance : Add BaseSupport where add S T := ⟨Sᴬ + Tᴬ, Sᴺ + Tᴺ⟩ @[simp] theorem add_atoms (S T : BaseSupport) : (S + T)ᴬ = Sᴬ + Tᴬ := rfl @[simp] theorem add_nearLitters (S T : BaseSupport) : (S + T)ᴺ = Sᴺ + Tᴺ := rfl end BaseSupport def baseSupportEquiv : BaseSupport ≃ Enumeration Atom × Enumeration NearLitter where toFun S := (Sᴬ, Sᴺ) invFun S := ⟨S.1, S.2⟩ left_inv _ := rfl right_inv _ := rfl theorem card_baseSupport : #BaseSupport = #μ := by rw [Cardinal.eq.mpr ⟨baseSupportEquiv⟩, mk_prod, lift_id, lift_id, card_enumeration_eq card_atom, card_enumeration_eq card_nearLitter, mul_eq_self aleph0_lt_μ.le] /-! ## Structural supports -/ structure Support (α : TypeIndex) where atoms : Enumeration (α ↝ ⊥ × Atom) nearLitters : Enumeration (α ↝ ⊥ × NearLitter) namespace Support variable {α β : TypeIndex} instance : SuperA (Support α) (Enumeration (α ↝ ⊥ × Atom)) where superA := atoms instance : SuperN (Support α) (Enumeration (α ↝ ⊥ × NearLitter)) where superN := nearLitters @[simp] theorem mk_atoms (E : Enumeration (α ↝ ⊥ × Atom)) (F : Enumeration (α ↝ ⊥ × NearLitter)) : (⟨E, F⟩ : Support α)ᴬ = E := rfl @[simp] theorem mk_nearLitters (E : Enumeration (α ↝ ⊥ × Atom)) (F : Enumeration (α ↝ ⊥ × NearLitter)) : (⟨E, F⟩ : Support α)ᴺ = F := rfl instance : Derivative (Support α) (Support β) α β where deriv S A := ⟨Sᴬ ⇘ A, Sᴺ ⇘ A⟩ instance : Coderivative (Support β) (Support α) α β where coderiv S A := ⟨Sᴬ ⇗ A, Sᴺ ⇗ A⟩ instance : BotDerivative (Support α) BaseSupport α where botDeriv S A := ⟨Sᴬ ⇘. A, Sᴺ ⇘. A⟩ botSderiv S := ⟨Sᴬ ↘., Sᴺ ↘.⟩ botDeriv_single S h := by dsimp only; rw [botDeriv_single, botDeriv_single] @[simp] theorem deriv_atoms {α β : TypeIndex} (S : Support α) (A : α ↝ β) : Sᴬ ⇘ A = (S ⇘ A)ᴬ := rfl @[simp] theorem deriv_nearLitters {α β : TypeIndex} (S : Support α) (A : α ↝ β) : Sᴺ ⇘ A = (S ⇘ A)ᴺ := rfl @[simp] theorem sderiv_atoms {α β : TypeIndex} (S : Support α) (h : β < α) : Sᴬ ↘ h = (S ↘ h)ᴬ := rfl @[simp] theorem sderiv_nearLitters {α β : TypeIndex} (S : Support α) (h : β < α) : Sᴺ ↘ h = (S ↘ h)ᴺ := rfl @[simp] theorem coderiv_atoms {α β : TypeIndex} (S : Support β) (A : α ↝ β) : Sᴬ ⇗ A = (S ⇗ A)ᴬ := rfl @[simp] theorem coderiv_nearLitters {α β : TypeIndex} (S : Support β) (A : α ↝ β) : Sᴺ ⇗ A = (S ⇗ A)ᴺ := rfl @[simp] theorem scoderiv_atoms {α β : TypeIndex} (S : Support β) (h : β < α) : Sᴬ ↗ h = (S ↗ h)ᴬ := rfl @[simp] theorem scoderiv_nearLitters {α β : TypeIndex} (S : Support β) (h : β < α) : Sᴺ ↗ h = (S ↗ h)ᴺ := rfl @[simp] theorem derivBot_atoms {α : TypeIndex} (S : Support α) (A : α ↝ ⊥) : Sᴬ ⇘. A = (S ⇘. A)ᴬ := rfl @[simp] theorem derivBot_nearLitters {α : TypeIndex} (S : Support α) (A : α ↝ ⊥) : Sᴺ ⇘. A = (S ⇘. A)ᴺ := rfl theorem ext' {S T : Support α} (h₁ : Sᴬ = Tᴬ) (h₂ : Sᴺ = Tᴺ) : S = T := by obtain ⟨SA, SN⟩ := S obtain ⟨TA, TN⟩ := T cases h₁ cases h₂ rfl @[ext] theorem ext {S T : Support α} (h : ∀ A, S ⇘. A = T ⇘. A) : S = T := by obtain ⟨SA, SN⟩ := S obtain ⟨TA, TN⟩ := T rw [mk.injEq] constructor · apply Enumeration.ext_path intro A exact BaseSupport.atoms_congr (h A) · apply Enumeration.ext_path intro A exact BaseSupport.nearLitters_congr (h A) @[simp] theorem deriv_derivBot {α : TypeIndex} (S : Support α) (A : α ↝ β) (B : β ↝ ⊥) : S ⇘ A ⇘. B = S ⇘. (A ⇘ B) := rfl @[simp] theorem coderiv_deriv_eq {α β : TypeIndex} (S : Support β) (A : α ↝ β) : S ⇗ A ⇘ A = S := ext' (Sᴬ.coderiv_deriv_eq A) (Sᴺ.coderiv_deriv_eq A) theorem eq_of_atom_mem_scoderiv_botDeriv {α β : TypeIndex} {S : Support β} {A : α ↝ ⊥} {h : β < α} {a : Atom} (ha : a ∈ (S ↗ h ⇘. A)ᴬ) : ∃ B : β ↝ ⊥, A = B ↗ h := Enumeration.eq_of_mem_scoderiv_botDeriv ha theorem eq_of_nearLitter_mem_scoderiv_botDeriv {α β : TypeIndex} {S : Support β} {A : α ↝ ⊥} {h : β < α} {N : NearLitter} (hN : N ∈ (S ↗ h ⇘. A)ᴺ) : ∃ B : β ↝ ⊥, A = B ↗ h := Enumeration.eq_of_mem_scoderiv_botDeriv hN @[simp] theorem scoderiv_botDeriv_eq {α β : TypeIndex} (S : Support β) (A : β ↝ ⊥) (h : β < α) : S ↗ h ⇘. (A ↗ h) = S ⇘. A := BaseSupport.ext (Enumeration.scoderiv_botDeriv_eq _ _ _) (Enumeration.scoderiv_botDeriv_eq _ _ _) @[simp] theorem scoderiv_deriv_eq {α β γ : TypeIndex} (S : Support β) (A : β ↝ γ) (h : β < α) : S ↗ h ⇘ (A ↗ h) = S ⇘ A := by apply ext intro B simp only [deriv_derivBot, ← scoderiv_botDeriv_eq S (A ⇘ B) h, Path.coderiv_deriv'] @[simp] theorem coderiv_inj {α β : TypeIndex} (S T : Support β) (A : α ↝ β) : S ⇗ A = T ⇗ A ↔ S = T := by constructor swap · rintro rfl rfl intro h ext B : 1 have : S ⇗ A ⇘ A ⇘. B = T ⇗ A ⇘ A ⇘. B := by rw [h] rwa [coderiv_deriv_eq, coderiv_deriv_eq] at this @[simp] theorem scoderiv_inj {α β : TypeIndex} (S T : Support β) (h : β < α) : S ↗ h = T ↗ h ↔ S = T := coderiv_inj S T (.single h) instance {α : TypeIndex} : SMul (StrPerm α) (Support α) where smul π S := ⟨π • Sᴬ, π • Sᴺ⟩ @[simp] theorem smul_atoms {α : TypeIndex} (π : StrPerm α) (S : Support α) : (π • S)ᴬ = π • Sᴬ := rfl @[simp] theorem smul_nearLitters {α : TypeIndex} (π : StrPerm α) (S : Support α) : (π • S)ᴺ = π • Sᴺ := rfl theorem smul_atoms_eq_of_smul_eq {α : TypeIndex} {π : StrPerm α} {S : Support α} (h : π • S = S) : π • Sᴬ = Sᴬ := by rw [← smul_atoms, h] theorem smul_nearLitters_eq_of_smul_eq {α : TypeIndex} {π : StrPerm α} {S : Support α} (h : π • S = S) : π • Sᴺ = Sᴺ := by rw [← smul_nearLitters, h] instance {α : TypeIndex} : MulAction (StrPerm α) (Support α) where one_smul S := by apply ext' · rw [smul_atoms, one_smul] · rw [smul_nearLitters, one_smul] mul_smul π₁ π₂ S := by apply ext' · rw [smul_atoms, smul_atoms, smul_atoms, mul_smul] · rw [smul_nearLitters, smul_nearLitters, smul_nearLitters, mul_smul] @[simp] theorem smul_derivBot {α : TypeIndex} (π : StrPerm α) (S : Support α) (A : α ↝ ⊥) : (π • S) ⇘. A = π A • (S ⇘. A) := rfl theorem smul_coderiv {α : TypeIndex} (π : StrPerm α) (S : Support β) (A : α ↝ β) : π • S ⇗ A = (π ⇘ A • S) ⇗ A := by ext B i x · rfl · constructor · rintro ⟨⟨C, x⟩, hS, hx⟩ simp only [Prod.mk.injEq] at hx obtain ⟨rfl, rfl⟩ := hx exact ⟨⟨C, x⟩, hS, rfl⟩ · rintro ⟨⟨C, x⟩, hS, hx⟩ simp only [Prod.mk.injEq] at hx obtain ⟨rfl, rfl⟩ := hx exact ⟨⟨C, _⟩, hS, rfl⟩ · rfl · constructor · rintro ⟨⟨C, x⟩, hS, hx⟩ simp only [Prod.mk.injEq] at hx obtain ⟨rfl, rfl⟩ := hx exact ⟨⟨C, x⟩, hS, rfl⟩ · rintro ⟨⟨C, a⟩, hS, hx⟩ simp only [Prod.mk.injEq] at hx obtain ⟨rfl, rfl⟩ := hx exact ⟨⟨C, _⟩, hS, rfl⟩ theorem smul_scoderiv {α : TypeIndex} (π : StrPerm α) (S : Support β) (h : β < α) : π • S ↗ h = (π ↘ h • S) ↗ h := smul_coderiv π S (Path.single h) theorem smul_eq_smul_iff (π₁ π₂ : StrPerm β) (S : Support β) : π₁ • S = π₂ • S ↔ ∀ A, (∀ a ∈ (S ⇘. A)ᴬ, π₁ A • a = π₂ A • a) ∧ (∀ N ∈ (S ⇘. A)ᴺ, π₁ A • N = π₂ A • N) := by constructor · intro h A have := congr_arg (· ⇘. A) h simp only [smul_derivBot, BaseSupport.smul_eq_smul_iff] at this exact this · intro h apply ext intro A simp only [smul_derivBot, BaseSupport.smul_eq_smul_iff] exact h A theorem smul_eq_iff (π : StrPerm β) (S : Support β) : π • S = S ↔ ∀ A, (∀ a ∈ (S ⇘. A)ᴬ, π A • a = a) ∧ (∀ N ∈ (S ⇘. A)ᴺ, π A • N = N) := by have := smul_eq_smul_iff π 1 S simp only [one_smul, Tree.one_apply] at this exact this noncomputable instance : Add (Support α) where add S T := ⟨Sᴬ + Tᴬ, Sᴺ + Tᴺ⟩ @[simp] theorem add_derivBot (S T : Support α) (A : α ↝ ⊥) : (S + T) ⇘. A = (S ⇘. A) + (T ⇘. A) := rfl theorem smul_add (S T : Support α) (π : StrPerm α) : π • (S + T) = π • S + π • T := rfl theorem add_inj_of_bound_eq_bound {S T U V : Support α} (ha : Sᴬ.bound = Tᴬ.bound) (hN : Sᴺ.bound = Tᴺ.bound) (h' : S + U = T + V) : S = T ∧ U = V := by have ha' := Enumeration.add_inj_of_bound_eq_bound ha (congr_arg (·ᴬ) h') have hN' := Enumeration.add_inj_of_bound_eq_bound hN (congr_arg (·ᴺ) h') constructor · exact Support.ext' ha'.1 hN'.1 · exact Support.ext' ha'.2 hN'.2 end Support def supportEquiv {α : TypeIndex} : Support α ≃ Enumeration (α ↝ ⊥ × Atom) × Enumeration (α ↝ ⊥ × NearLitter) where toFun S := (Sᴬ, Sᴺ) invFun S := ⟨S.1, S.2⟩ left_inv _ := rfl right_inv _ := rfl theorem card_support {α : TypeIndex} : #(Support α) = #μ := by rw [Cardinal.eq.mpr ⟨supportEquiv⟩, mk_prod, lift_id, lift_id, card_enumeration_eq, card_enumeration_eq, mul_eq_self aleph0_lt_μ.le] · rw [mk_prod, lift_id, lift_id, card_nearLitter, mul_eq_right aleph0_lt_μ.le (card_path_lt' α ⊥).le (card_path_ne_zero α)] · rw [mk_prod, lift_id, lift_id, card_atom, mul_eq_right aleph0_lt_μ.le (card_path_lt' α ⊥).le (card_path_ne_zero α)] /-! ## Orders on supports -/ -- TODO: Is this order used? instance : LE BaseSupport where le S T := (∀ a ∈ Sᴬ, a ∈ Tᴬ) ∧ (∀ N ∈ Sᴺ, N ∈ Tᴺ) instance : Preorder BaseSupport where le_refl S := ⟨λ _ ↦ id, λ _ ↦ id⟩ le_trans S T U h₁ h₂ := ⟨λ a h ↦ h₂.1 _ (h₁.1 a h), λ N h ↦ h₂.2 _ (h₁.2 N h)⟩ theorem BaseSupport.smul_le_smul {S T : BaseSupport} (h : S ≤ T) (π : BasePerm) : π • S ≤ π • T := by constructor · intro a exact h.1 (π⁻¹ • a) · intro N exact h.2 (π⁻¹ • N)
theorem BaseSupport.le_add_right {S T : BaseSupport} : S ≤ S + T
ConNF.BaseSupport.le_add_right
{ "commit": "39c33b4a743bea62dbcc549548b712ffd38ca65c", "date": "2024-12-05T00:00:00" }
{ "commit": "251ac752f844dfde539ac2bd3ff112305ad59139", "date": "2024-11-30T00:00:00" }
ConNF/ConNF/ModelData/Support.lean
ConNF.ModelData.Support
ConNF.ModelData.Support.jsonl
{ "lineInFile": 477, "tokenPositionInFile": 13240, "theoremPositionInFile": 50 }
{ "inFilePremises": true, "numInFilePremises": 5, "repositoryPremises": true, "numRepositoryPremises": 14, "numPremises": 25 }
{ "hasProof": true, "proof": ":= by\n constructor\n · intro a ha\n simp only [Support.add_derivBot, BaseSupport.add_atoms, Enumeration.mem_add_iff]\n exact Or.inl ha\n · intro N hN\n simp only [Support.add_derivBot, BaseSupport.add_nearLitters, Enumeration.mem_add_iff]\n exact Or.inl hN", "proofType": "tactic", "proofLengthLines": 7, "proofLengthTokens": 265 }
import ConNF.External.Basic /-! # New file In this file... ## Main declarations * `ConNF.foo`: Something new. -/ noncomputable section universe u open Cardinal Ordinal ConNF.TSet namespace ConNF variable [Params.{u}] {α β γ δ ε ζ : Λ} (hβ : (β : TypeIndex) < α) (hγ : (γ : TypeIndex) < β) (hδ : (δ : TypeIndex) < γ) (hε : (ε : TypeIndex) < δ) (hζ : (ζ : TypeIndex) < ε) /-- A set in our model that is a well-order. Internal well-orders are exactly external well-orders, so we externalise the definition for convenience. -/ def InternalWellOrder (r : TSet α) : Prop := IsWellOrder (ExternalRel hβ hγ hδ r).field (InvImage (ExternalRel hβ hγ hδ r) Subtype.val) def InternallyWellOrdered (x : TSet γ) : Prop := {y : TSet δ | y ∈' x}.Subsingleton ∨ (∃ r, InternalWellOrder hβ hγ hδ r ∧ x = field hβ hγ hδ r) @[simp] theorem externalRel_smul (r : TSet α) (ρ : AllPerm α) : ExternalRel hβ hγ hδ (ρ • r) = InvImage (ExternalRel hβ hγ hδ r) ((ρ ↘ hβ ↘ hγ ↘ hδ)⁻¹ • ·) := by ext a b simp only [ExternalRel, mem_smul_iff', allPerm_inv_sderiv', smul_op, InvImage] omit [Params] in /-- Well-orders are rigid. -/ theorem apply_eq_of_isWellOrder {X : Type _} {r : Rel X X} {f : X → X} (hr : IsWellOrder X r) (hf : Function.Bijective f) (hf' : ∀ x y, r x y ↔ r (f x) (f y)) : ∀ x, f x = x := by let emb : r ≼i r := ⟨⟨⟨f, hf.injective⟩, λ {a b} ↦ (hf' a b).symm⟩, ?_⟩ · have : emb = InitialSeg.refl r := Subsingleton.elim _ _ intro x exact congr_arg (λ f ↦ f x) this · intro a b h exact hf.surjective _ omit [Params] in theorem apply_eq_of_isWellOrder' {X : Type _} {r : Rel X X} {f : X → X} (hr : IsWellOrder r.field (InvImage r Subtype.val)) (hf : Function.Bijective f) (hf' : ∀ x y, r x y ↔ r (f x) (f y)) : ∀ x ∈ r.field, f x = x := by have : ∀ x ∈ r.field, f x ∈ r.field := by rintro x (⟨y, h⟩ | ⟨y, h⟩) · exact Or.inl ⟨f y, (hf' x y).mp h⟩ · exact Or.inr ⟨f y, (hf' y x).mp h⟩ have := apply_eq_of_isWellOrder (f := λ x ↦ ⟨f x.val, this x.val x.prop⟩) hr ⟨?_, ?_⟩ ?_ · intro x hx exact congr_arg Subtype.val (this ⟨x, hx⟩) · intro x y h rw [Subtype.mk.injEq] at h exact Subtype.val_injective (hf.injective h) · intro x obtain ⟨y, hy⟩ := hf.surjective x.val refine ⟨⟨y, ?_⟩, ?_⟩ · obtain (⟨z, h⟩ | ⟨z, h⟩) := x.prop <;> rw [← hy] at h <;> obtain ⟨z, rfl⟩ := hf.surjective z · exact Or.inl ⟨z, (hf' y z).mpr h⟩ · exact Or.inr ⟨z, (hf' z y).mpr h⟩ · simp only [hy] · intros apply hf' theorem exists_common_support_of_internallyWellOrdered' {x : TSet δ} (h : InternallyWellOrdered hγ hδ hε x) : ∃ S : Support β, ∀ y, y ∈' x → S.Supports { { {y}' }' }[hγ] := by obtain (h | ⟨r, h, rfl⟩) := h · obtain (h | ⟨y, hy⟩) := h.eq_empty_or_singleton · use ⟨Enumeration.empty, Enumeration.empty⟩ intro y hy rw [Set.eq_empty_iff_forall_not_mem] at h cases h y hy · obtain ⟨S, hS⟩ := TSet.exists_support y use S ↗ hε ↗ hδ ↗ hγ intro z hz rw [Set.eq_singleton_iff_unique_mem] at hy cases hy.2 z hz refine ⟨?_, λ h ↦ by cases h⟩ intro ρ hρ simp only [Support.smul_scoderiv, ← allPermSderiv_forget', Support.scoderiv_inj] at hρ simp only [smul_singleton, singleton_inj] exact hS _ hρ obtain ⟨S, hS⟩ := TSet.exists_support r use S intro a ha refine ⟨?_, λ h ↦ by cases h⟩ intro ρ hρ have := hS ρ hρ simp only [smul_singleton, singleton_inj] apply apply_eq_of_isWellOrder' (r := ExternalRel hγ hδ hε r) · exact h · exact MulAction.bijective (ρ ↘ hγ ↘ hδ ↘ hε) · intro x y conv_rhs => rw [← this] simp only [externalRel_smul, InvImage, inv_smul_smul] · rwa [mem_field_iff] at ha include hγ in
theorem Support.Supports.ofSingleton {S : Support α} {x : TSet β} (h : S.Supports {x}') : letI : Level := ⟨α⟩ letI : LeLevel α := ⟨le_rfl⟩ (S.strong ↘ hβ).Supports x
ConNF.Support.Supports.ofSingleton
{ "commit": "66f4e3291020d4198ca6ede816acae5cee584a07", "date": "2025-01-06T00:00:00" }
{ "commit": "1c08486feb882444888c228ce1501e92bb85e0e2", "date": "2025-01-07T00:00:00" }
ConNF/ConNF/External/WellOrder.lean
ConNF.External.WellOrder
ConNF.External.WellOrder.jsonl
{ "lineInFile": 113, "tokenPositionInFile": 3749, "theoremPositionInFile": 6 }
{ "inFilePremises": false, "numInFilePremises": 0, "repositoryPremises": true, "numRepositoryPremises": 43, "numPremises": 114 }
{ "hasProof": true, "proof": ":= by\n refine ⟨?_, λ h ↦ by cases h⟩\n intro ρ hρ\n open scoped Pointwise in\n have := sUnion_singleton_symmetric_aux hγ hβ {y | y ∈' x} S ?_ ρ hρ\n · apply ConNF.ext hγ\n intro z\n simp only [Set.ext_iff, Set.mem_setOf_eq, Set.mem_smul_set_iff_inv_smul_mem] at this\n rw [mem_smul_iff', allPerm_inv_sderiv', this]\n · intro ρ hρ\n ext z\n simp only [Set.mem_smul_set_iff_inv_smul_mem, Set.mem_image, Set.mem_setOf_eq]\n have := h.supports ρ hρ\n simp only [smul_singleton, singleton_inj] at this\n constructor\n · rintro ⟨y, h₁, h₂⟩\n rw [← smul_eq_iff_eq_inv_smul, smul_singleton] at h₂\n refine ⟨_, ?_, h₂⟩\n rw [← this]\n simp only [mem_smul_iff', allPerm_inv_sderiv', inv_smul_smul]\n exact h₁\n · rintro ⟨y, h, rfl⟩\n refine ⟨(ρ ↘ hβ ↘ hγ)⁻¹ • y, ?_, ?_⟩\n · rwa [← allPerm_inv_sderiv', ← mem_smul_iff', this]\n · simp only [smul_singleton, allPerm_inv_sderiv']", "proofType": "tactic", "proofLengthLines": 24, "proofLengthTokens": 920 }
import ConNF.ModelData.PathEnumeration /-! # Supports In this file, we define the notion of a support. ## Main declarations * `ConNF.BaseSupport`: The type of supports of atoms. * `ConNF.Support`: The type of supports of objects of arbitrary type indices. -/ universe u open Cardinal namespace ConNF variable [Params.{u}] /-! ## Base supports -/ structure BaseSupport where atoms : Enumeration Atom nearLitters : Enumeration NearLitter namespace BaseSupport instance : SuperA BaseSupport (Enumeration Atom) where superA := atoms instance : SuperN BaseSupport (Enumeration NearLitter) where superN := nearLitters @[simp] theorem mk_atoms {a : Enumeration Atom} {N : Enumeration NearLitter} : (BaseSupport.mk a N)ᴬ = a := rfl @[simp] theorem mk_nearLitters {a : Enumeration Atom} {N : Enumeration NearLitter} : (BaseSupport.mk a N)ᴺ = N := rfl theorem atoms_congr {S T : BaseSupport} (h : S = T) : Sᴬ = Tᴬ := h ▸ rfl theorem nearLitters_congr {S T : BaseSupport} (h : S = T) : Sᴺ = Tᴺ := h ▸ rfl @[ext] theorem ext {S T : BaseSupport} (h₁ : Sᴬ = Tᴬ) (h₂ : Sᴺ = Tᴺ) : S = T := by obtain ⟨SA, SN⟩ := S obtain ⟨TA, TN⟩ := T cases h₁ cases h₂ rfl instance : SMul BasePerm BaseSupport where smul π S := ⟨π • Sᴬ, π • Sᴺ⟩ @[simp] theorem smul_atoms (π : BasePerm) (S : BaseSupport) : (π • S)ᴬ = π • Sᴬ := rfl @[simp] theorem smul_nearLitters (π : BasePerm) (S : BaseSupport) : (π • S)ᴺ = π • Sᴺ := rfl @[simp] theorem smul_atoms_eq_of_smul_eq {π : BasePerm} {S : BaseSupport} (h : π • S = S) : π • Sᴬ = Sᴬ := by rw [← smul_atoms, h] @[simp] theorem smul_nearLitters_eq_of_smul_eq {π : BasePerm} {S : BaseSupport} (h : π • S = S) : π • Sᴺ = Sᴺ := by rw [← smul_nearLitters, h] instance : MulAction BasePerm BaseSupport where one_smul S := by apply ext · rw [smul_atoms, one_smul] · rw [smul_nearLitters, one_smul] mul_smul π₁ π₂ S := by apply ext · rw [smul_atoms, smul_atoms, smul_atoms, mul_smul] · rw [smul_nearLitters, smul_nearLitters, smul_nearLitters, mul_smul] theorem smul_eq_smul_iff (π₁ π₂ : BasePerm) (S : BaseSupport) : π₁ • S = π₂ • S ↔ (∀ a ∈ Sᴬ, π₁ • a = π₂ • a) ∧ (∀ N ∈ Sᴺ, π₁ • N = π₂ • N) := by constructor · intro h constructor · rintro a ⟨i, ha⟩ have := congr_arg (·ᴬ.rel i (π₁ • a)) h simp only [smul_atoms, Enumeration.smul_rel, inv_smul_smul, eq_iff_iff] at this have := Sᴬ.rel_coinjective.coinjective ha (this.mp ha) rw [eq_inv_smul_iff] at this rw [this] · rintro N ⟨i, hN⟩ have := congr_arg (·ᴺ.rel i (π₁ • N)) h simp only [smul_nearLitters, Enumeration.smul_rel, inv_smul_smul, eq_iff_iff] at this have := Sᴺ.rel_coinjective.coinjective hN (this.mp hN) rw [eq_inv_smul_iff] at this rw [this] · intro h ext : 2 · rfl · ext i a : 3 rw [smul_atoms, smul_atoms, Enumeration.smul_rel, Enumeration.smul_rel] constructor · intro ha have := h.1 _ ⟨i, ha⟩ rw [smul_inv_smul, ← inv_smul_eq_iff] at this rwa [this] · intro ha have := h.1 _ ⟨i, ha⟩ rw [smul_inv_smul, smul_eq_iff_eq_inv_smul] at this rwa [← this] · rfl · ext i a : 3 rw [smul_nearLitters, smul_nearLitters, Enumeration.smul_rel, Enumeration.smul_rel] constructor · intro hN have := h.2 _ ⟨i, hN⟩ rw [smul_inv_smul, ← inv_smul_eq_iff] at this rwa [this] · intro hN have := h.2 _ ⟨i, hN⟩ rw [smul_inv_smul, smul_eq_iff_eq_inv_smul] at this rwa [← this] theorem smul_eq_iff (π : BasePerm) (S : BaseSupport) : π • S = S ↔ (∀ a ∈ Sᴬ, π • a = a) ∧ (∀ N ∈ Sᴺ, π • N = N) := by have := smul_eq_smul_iff π 1 S simp only [one_smul] at this exact this noncomputable instance : Add BaseSupport where add S T := ⟨Sᴬ + Tᴬ, Sᴺ + Tᴺ⟩ @[simp] theorem add_atoms (S T : BaseSupport) : (S + T)ᴬ = Sᴬ + Tᴬ := rfl @[simp] theorem add_nearLitters (S T : BaseSupport) : (S + T)ᴺ = Sᴺ + Tᴺ := rfl end BaseSupport def baseSupportEquiv : BaseSupport ≃ Enumeration Atom × Enumeration NearLitter where toFun S := (Sᴬ, Sᴺ) invFun S := ⟨S.1, S.2⟩ left_inv _ := rfl right_inv _ := rfl theorem card_baseSupport : #BaseSupport = #μ := by rw [Cardinal.eq.mpr ⟨baseSupportEquiv⟩, mk_prod, lift_id, lift_id, card_enumeration_eq card_atom, card_enumeration_eq card_nearLitter, mul_eq_self aleph0_lt_μ.le] /-! ## Structural supports -/ structure Support (α : TypeIndex) where atoms : Enumeration (α ↝ ⊥ × Atom) nearLitters : Enumeration (α ↝ ⊥ × NearLitter) namespace Support variable {α β : TypeIndex} instance : SuperA (Support α) (Enumeration (α ↝ ⊥ × Atom)) where superA := atoms instance : SuperN (Support α) (Enumeration (α ↝ ⊥ × NearLitter)) where superN := nearLitters @[simp] theorem mk_atoms (E : Enumeration (α ↝ ⊥ × Atom)) (F : Enumeration (α ↝ ⊥ × NearLitter)) : (⟨E, F⟩ : Support α)ᴬ = E := rfl @[simp] theorem mk_nearLitters (E : Enumeration (α ↝ ⊥ × Atom)) (F : Enumeration (α ↝ ⊥ × NearLitter)) : (⟨E, F⟩ : Support α)ᴺ = F := rfl instance : Derivative (Support α) (Support β) α β where deriv S A := ⟨Sᴬ ⇘ A, Sᴺ ⇘ A⟩ instance : Coderivative (Support β) (Support α) α β where coderiv S A := ⟨Sᴬ ⇗ A, Sᴺ ⇗ A⟩ instance : BotDerivative (Support α) BaseSupport α where botDeriv S A := ⟨Sᴬ ⇘. A, Sᴺ ⇘. A⟩ botSderiv S := ⟨Sᴬ ↘., Sᴺ ↘.⟩ botDeriv_single S h := by dsimp only; rw [botDeriv_single, botDeriv_single] @[simp] theorem deriv_atoms {α β : TypeIndex} (S : Support α) (A : α ↝ β) : Sᴬ ⇘ A = (S ⇘ A)ᴬ := rfl @[simp] theorem deriv_nearLitters {α β : TypeIndex} (S : Support α) (A : α ↝ β) : Sᴺ ⇘ A = (S ⇘ A)ᴺ := rfl @[simp] theorem sderiv_atoms {α β : TypeIndex} (S : Support α) (h : β < α) : Sᴬ ↘ h = (S ↘ h)ᴬ := rfl @[simp] theorem sderiv_nearLitters {α β : TypeIndex} (S : Support α) (h : β < α) : Sᴺ ↘ h = (S ↘ h)ᴺ := rfl @[simp] theorem coderiv_atoms {α β : TypeIndex} (S : Support β) (A : α ↝ β) : Sᴬ ⇗ A = (S ⇗ A)ᴬ := rfl @[simp] theorem coderiv_nearLitters {α β : TypeIndex} (S : Support β) (A : α ↝ β) : Sᴺ ⇗ A = (S ⇗ A)ᴺ := rfl @[simp] theorem scoderiv_atoms {α β : TypeIndex} (S : Support β) (h : β < α) : Sᴬ ↗ h = (S ↗ h)ᴬ := rfl @[simp] theorem scoderiv_nearLitters {α β : TypeIndex} (S : Support β) (h : β < α) : Sᴺ ↗ h = (S ↗ h)ᴺ := rfl @[simp] theorem derivBot_atoms {α : TypeIndex} (S : Support α) (A : α ↝ ⊥) : Sᴬ ⇘. A = (S ⇘. A)ᴬ := rfl @[simp] theorem derivBot_nearLitters {α : TypeIndex} (S : Support α) (A : α ↝ ⊥) : Sᴺ ⇘. A = (S ⇘. A)ᴺ := rfl theorem ext' {S T : Support α} (h₁ : Sᴬ = Tᴬ) (h₂ : Sᴺ = Tᴺ) : S = T := by obtain ⟨SA, SN⟩ := S obtain ⟨TA, TN⟩ := T cases h₁ cases h₂ rfl @[ext] theorem ext {S T : Support α} (h : ∀ A, S ⇘. A = T ⇘. A) : S = T := by obtain ⟨SA, SN⟩ := S obtain ⟨TA, TN⟩ := T rw [mk.injEq] constructor · apply Enumeration.ext_path intro A exact BaseSupport.atoms_congr (h A) · apply Enumeration.ext_path intro A exact BaseSupport.nearLitters_congr (h A) @[simp] theorem deriv_derivBot {α : TypeIndex} (S : Support α) (A : α ↝ β) (B : β ↝ ⊥) : S ⇘ A ⇘. B = S ⇘. (A ⇘ B) := rfl @[simp] theorem coderiv_deriv_eq {α β : TypeIndex} (S : Support β) (A : α ↝ β) : S ⇗ A ⇘ A = S := ext' (Sᴬ.coderiv_deriv_eq A) (Sᴺ.coderiv_deriv_eq A) theorem eq_of_atom_mem_scoderiv_botDeriv {α β : TypeIndex} {S : Support β} {A : α ↝ ⊥} {h : β < α} {a : Atom} (ha : a ∈ (S ↗ h ⇘. A)ᴬ) : ∃ B : β ↝ ⊥, A = B ↗ h := Enumeration.eq_of_mem_scoderiv_botDeriv ha theorem eq_of_nearLitter_mem_scoderiv_botDeriv {α β : TypeIndex} {S : Support β} {A : α ↝ ⊥} {h : β < α} {N : NearLitter} (hN : N ∈ (S ↗ h ⇘. A)ᴺ) : ∃ B : β ↝ ⊥, A = B ↗ h := Enumeration.eq_of_mem_scoderiv_botDeriv hN @[simp] theorem scoderiv_botDeriv_eq {α β : TypeIndex} (S : Support β) (A : β ↝ ⊥) (h : β < α) : S ↗ h ⇘. (A ↗ h) = S ⇘. A := BaseSupport.ext (Enumeration.scoderiv_botDeriv_eq _ _ _) (Enumeration.scoderiv_botDeriv_eq _ _ _) @[simp] theorem scoderiv_deriv_eq {α β γ : TypeIndex} (S : Support β) (A : β ↝ γ) (h : β < α) : S ↗ h ⇘ (A ↗ h) = S ⇘ A := by apply ext intro B simp only [deriv_derivBot, ← scoderiv_botDeriv_eq S (A ⇘ B) h, Path.coderiv_deriv'] @[simp] theorem coderiv_inj {α β : TypeIndex} (S T : Support β) (A : α ↝ β) : S ⇗ A = T ⇗ A ↔ S = T := by constructor swap · rintro rfl rfl intro h ext B : 1 have : S ⇗ A ⇘ A ⇘. B = T ⇗ A ⇘ A ⇘. B := by rw [h] rwa [coderiv_deriv_eq, coderiv_deriv_eq] at this @[simp] theorem scoderiv_inj {α β : TypeIndex} (S T : Support β) (h : β < α) : S ↗ h = T ↗ h ↔ S = T := coderiv_inj S T (.single h) instance {α : TypeIndex} : SMul (StrPerm α) (Support α) where smul π S := ⟨π • Sᴬ, π • Sᴺ⟩ @[simp] theorem smul_atoms {α : TypeIndex} (π : StrPerm α) (S : Support α) : (π • S)ᴬ = π • Sᴬ := rfl @[simp] theorem smul_nearLitters {α : TypeIndex} (π : StrPerm α) (S : Support α) : (π • S)ᴺ = π • Sᴺ := rfl theorem smul_atoms_eq_of_smul_eq {α : TypeIndex} {π : StrPerm α} {S : Support α} (h : π • S = S) : π • Sᴬ = Sᴬ := by rw [← smul_atoms, h] theorem smul_nearLitters_eq_of_smul_eq {α : TypeIndex} {π : StrPerm α} {S : Support α} (h : π • S = S) : π • Sᴺ = Sᴺ := by rw [← smul_nearLitters, h] instance {α : TypeIndex} : MulAction (StrPerm α) (Support α) where one_smul S := by apply ext' · rw [smul_atoms, one_smul] · rw [smul_nearLitters, one_smul] mul_smul π₁ π₂ S := by apply ext' · rw [smul_atoms, smul_atoms, smul_atoms, mul_smul] · rw [smul_nearLitters, smul_nearLitters, smul_nearLitters, mul_smul] @[simp] theorem smul_derivBot {α : TypeIndex} (π : StrPerm α) (S : Support α) (A : α ↝ ⊥) : (π • S) ⇘. A = π A • (S ⇘. A) := rfl theorem smul_coderiv {α : TypeIndex} (π : StrPerm α) (S : Support β) (A : α ↝ β) : π • S ⇗ A = (π ⇘ A • S) ⇗ A := by ext B i x · rfl · constructor · rintro ⟨⟨C, x⟩, hS, hx⟩ simp only [Prod.mk.injEq] at hx obtain ⟨rfl, rfl⟩ := hx exact ⟨⟨C, x⟩, hS, rfl⟩ · rintro ⟨⟨C, x⟩, hS, hx⟩ simp only [Prod.mk.injEq] at hx obtain ⟨rfl, rfl⟩ := hx exact ⟨⟨C, _⟩, hS, rfl⟩ · rfl · constructor · rintro ⟨⟨C, x⟩, hS, hx⟩ simp only [Prod.mk.injEq] at hx obtain ⟨rfl, rfl⟩ := hx exact ⟨⟨C, x⟩, hS, rfl⟩ · rintro ⟨⟨C, a⟩, hS, hx⟩ simp only [Prod.mk.injEq] at hx obtain ⟨rfl, rfl⟩ := hx exact ⟨⟨C, _⟩, hS, rfl⟩ theorem smul_scoderiv {α : TypeIndex} (π : StrPerm α) (S : Support β) (h : β < α) : π • S ↗ h = (π ↘ h • S) ↗ h := smul_coderiv π S (Path.single h) theorem smul_eq_smul_iff (π₁ π₂ : StrPerm β) (S : Support β) : π₁ • S = π₂ • S ↔ ∀ A, (∀ a ∈ (S ⇘. A)ᴬ, π₁ A • a = π₂ A • a) ∧ (∀ N ∈ (S ⇘. A)ᴺ, π₁ A • N = π₂ A • N) := by constructor · intro h A have := congr_arg (· ⇘. A) h simp only [smul_derivBot, BaseSupport.smul_eq_smul_iff] at this exact this · intro h apply ext intro A simp only [smul_derivBot, BaseSupport.smul_eq_smul_iff] exact h A theorem smul_eq_iff (π : StrPerm β) (S : Support β) : π • S = S ↔ ∀ A, (∀ a ∈ (S ⇘. A)ᴬ, π A • a = a) ∧ (∀ N ∈ (S ⇘. A)ᴺ, π A • N = N) := by have := smul_eq_smul_iff π 1 S simp only [one_smul, Tree.one_apply] at this exact this noncomputable instance : Add (Support α) where add S T := ⟨Sᴬ + Tᴬ, Sᴺ + Tᴺ⟩ @[simp] theorem add_derivBot (S T : Support α) (A : α ↝ ⊥) : (S + T) ⇘. A = (S ⇘. A) + (T ⇘. A) := rfl theorem smul_add (S T : Support α) (π : StrPerm α) : π • (S + T) = π • S + π • T := rfl theorem add_inj_of_bound_eq_bound {S T U V : Support α} (ha : Sᴬ.bound = Tᴬ.bound) (hN : Sᴺ.bound = Tᴺ.bound) (h' : S + U = T + V) : S = T ∧ U = V := by have ha' := Enumeration.add_inj_of_bound_eq_bound ha (congr_arg (·ᴬ) h') have hN' := Enumeration.add_inj_of_bound_eq_bound hN (congr_arg (·ᴺ) h') constructor · exact Support.ext' ha'.1 hN'.1 · exact Support.ext' ha'.2 hN'.2 end Support def supportEquiv {α : TypeIndex} : Support α ≃ Enumeration (α ↝ ⊥ × Atom) × Enumeration (α ↝ ⊥ × NearLitter) where toFun S := (Sᴬ, Sᴺ) invFun S := ⟨S.1, S.2⟩ left_inv _ := rfl right_inv _ := rfl theorem card_support {α : TypeIndex} : #(Support α) = #μ := by rw [Cardinal.eq.mpr ⟨supportEquiv⟩, mk_prod, lift_id, lift_id, card_enumeration_eq, card_enumeration_eq, mul_eq_self aleph0_lt_μ.le] · rw [mk_prod, lift_id, lift_id, card_nearLitter, mul_eq_right aleph0_lt_μ.le (card_path_lt' α ⊥).le (card_path_ne_zero α)] · rw [mk_prod, lift_id, lift_id, card_atom, mul_eq_right aleph0_lt_μ.le (card_path_lt' α ⊥).le (card_path_ne_zero α)] /-! ## Orders on supports -/ -- TODO: Is this order used? instance : LE BaseSupport where le S T := (∀ a ∈ Sᴬ, a ∈ Tᴬ) ∧ (∀ N ∈ Sᴺ, N ∈ Tᴺ) instance : Preorder BaseSupport where le_refl S := ⟨λ _ ↦ id, λ _ ↦ id⟩ le_trans S T U h₁ h₂ := ⟨λ a h ↦ h₂.1 _ (h₁.1 a h), λ N h ↦ h₂.2 _ (h₁.2 N h)⟩ theorem BaseSupport.smul_le_smul {S T : BaseSupport} (h : S ≤ T) (π : BasePerm) : π • S ≤ π • T := by constructor · intro a exact h.1 (π⁻¹ • a) · intro N exact h.2 (π⁻¹ • N) theorem BaseSupport.le_add_right {S T : BaseSupport} : S ≤ S + T := by constructor · intro a ha simp only [Support.add_derivBot, BaseSupport.add_atoms, Enumeration.mem_add_iff] exact Or.inl ha · intro N hN simp only [Support.add_derivBot, BaseSupport.add_nearLitters, Enumeration.mem_add_iff] exact Or.inl hN theorem BaseSupport.le_add_left {S T : BaseSupport} : S ≤ T + S := by constructor · intro a ha simp only [add_atoms, Enumeration.mem_add_iff] exact Or.inr ha · intro N hN simp only [add_nearLitters, Enumeration.mem_add_iff] exact Or.inr hN def BaseSupport.Subsupport (S T : BaseSupport) : Prop := Sᴬ.rel ≤ Tᴬ.rel ∧ Sᴺ.rel ≤ Tᴺ.rel theorem BaseSupport.Subsupport.le {S T : BaseSupport} (h : S.Subsupport T) : S ≤ T := by constructor · rintro a ⟨i, hi⟩ exact ⟨i, h.1 i a hi⟩ · rintro N ⟨i, hi⟩ exact ⟨i, h.2 i N hi⟩ theorem BaseSupport.Subsupport.trans {S T U : BaseSupport} (h₁ : S.Subsupport T) (h₂ : T.Subsupport U) : S.Subsupport U := ⟨h₁.1.trans h₂.1, h₁.2.trans h₂.2⟩ theorem BaseSupport.smul_subsupport_smul {S T : BaseSupport} (h : S.Subsupport T) (π : BasePerm) : (π • S).Subsupport (π • T) := by constructor · intro i a ha exact h.1 i _ ha · intro i N hN exact h.2 i _ hN instance {α : TypeIndex} : LE (Support α) where le S T := ∀ A, S ⇘. A ≤ T ⇘. A instance {α : TypeIndex} : Preorder (Support α) where le_refl S := λ A ↦ le_rfl le_trans S T U h₁ h₂ := λ A ↦ (h₁ A).trans (h₂ A) theorem Support.smul_le_smul {α : TypeIndex} {S T : Support α} (h : S ≤ T) (π : StrPerm α) : π • S ≤ π • T := λ A ↦ BaseSupport.smul_le_smul (h A) (π A)
theorem Support.le_add_right {α : TypeIndex} {S T : Support α} : S ≤ S + T
ConNF.Support.le_add_right
{ "commit": "39c33b4a743bea62dbcc549548b712ffd38ca65c", "date": "2024-12-05T00:00:00" }
{ "commit": "251ac752f844dfde539ac2bd3ff112305ad59139", "date": "2024-11-30T00:00:00" }
ConNF/ConNF/ModelData/Support.lean
ConNF.ModelData.Support
ConNF.ModelData.Support.jsonl
{ "lineInFile": 532, "tokenPositionInFile": 14912, "theoremPositionInFile": 57 }
{ "inFilePremises": true, "numInFilePremises": 9, "repositoryPremises": true, "numRepositoryPremises": 14, "numPremises": 23 }
{ "hasProof": true, "proof": ":= by\n intro A\n rw [add_derivBot]\n exact BaseSupport.le_add_right", "proofType": "tactic", "proofLengthLines": 3, "proofLengthTokens": 68 }
import ConNF.Model.TTT /-! # New file In this file... ## Main declarations * `ConNF.foo`: Something new. -/ noncomputable section universe u open Cardinal Ordinal namespace ConNF variable [Params.{u}] {α β γ δ ε ζ : Λ} (hβ : (β : TypeIndex) < α) (hγ : (γ : TypeIndex) < β) (hδ : (δ : TypeIndex) < γ) (hε : (ε : TypeIndex) < δ) (hζ : (ζ : TypeIndex) < ε) namespace TSet theorem exists_inter (x y : TSet α) : ∃ w : TSet α, ∀ z : TSet β, z ∈[hβ] w ↔ z ∈[hβ] x ∧ z ∈[hβ] y := by refine exists_of_symmetric {z | z ∈[hβ] x ∧ z ∈[hβ] y} hβ ?_ obtain ⟨S, hS⟩ := symmetric x hβ obtain ⟨T, hT⟩ := symmetric y hβ use S + T intro ρ hρ specialize hS ρ (smul_eq_of_le Support.le_add_right hρ) specialize hT ρ (smul_eq_of_le Support.le_add_left hρ) simp [Set.ext_iff, Set.mem_smul_set_iff_inv_smul_mem] at hS hT ⊢ aesop theorem exists_compl (x : TSet α) : ∃ y : TSet α, ∀ z : TSet β, z ∈[hβ] y ↔ ¬z ∈[hβ] x := by refine exists_of_symmetric {z | ¬z ∈[hβ] x} hβ ?_ obtain ⟨S, hS⟩ := symmetric x hβ use S intro ρ hρ specialize hS ρ hρ simp [Set.ext_iff, Set.mem_smul_set_iff_inv_smul_mem] at hS ⊢ aesop theorem exists_up (x y : TSet β) : ∃ w : TSet α, ∀ z : TSet β, z ∈[hβ] w ↔ z = x ∨ z = y := by refine exists_of_symmetric {x, y} hβ ?_ obtain ⟨S, hS⟩ := exists_support x obtain ⟨T, hT⟩ := exists_support y use (S + T) ↗ hβ intro ρ hρ rw [Support.smul_scoderiv, Support.scoderiv_inj, ← allPermSderiv_forget'] at hρ specialize hS (ρ ↘ hβ) (smul_eq_of_le Support.le_add_right hρ) specialize hT (ρ ↘ hβ) (smul_eq_of_le Support.le_add_left hρ) simp only [Set.smul_set_def, Set.image, Set.mem_insert_iff, Set.mem_singleton_iff, exists_eq_or_imp, hS, exists_eq_left, hT] ext z rw [Set.mem_insert_iff, Set.mem_singleton_iff, Set.mem_setOf_eq] aesop /-- The unordered pair. -/ def up (x y : TSet β) : TSet α := (exists_up hβ x y).choose @[simp] theorem mem_up_iff (x y z : TSet β) : z ∈[hβ] up hβ x y ↔ z = x ∨ z = y := (exists_up hβ x y).choose_spec z /-- The Kuratowski ordered pair. -/ def op (x y : TSet γ) : TSet α := up hβ (singleton hγ x) (up hγ x y) theorem up_injective {x y z w : TSet β} (h : up hβ x y = up hβ z w) : (x = z ∧ y = w) ∨ (x = w ∧ y = z) := by have h₁ := mem_up_iff hβ x y z have h₂ := mem_up_iff hβ x y w have h₃ := mem_up_iff hβ z w x have h₄ := mem_up_iff hβ z w y rw [h, mem_up_iff] at h₁ h₂ rw [← h, mem_up_iff] at h₃ h₄ aesop @[simp] theorem up_inj (x y z w : TSet β) : up hβ x y = up hβ z w ↔ (x = z ∧ y = w) ∨ (x = w ∧ y = z) := by constructor · exact up_injective hβ · rintro (⟨rfl, rfl⟩ | ⟨rfl, rfl⟩) · rfl · apply tSet_ext' hβ aesop @[simp] theorem up_self {x : TSet β} : up hβ x x = singleton hβ x := by apply tSet_ext' hβ aesop @[simp] theorem up_eq_singleton_iff (x y z : TSet β) : up hβ x y = singleton hβ z ↔ x = z ∧ y = z := by constructor · intro h have h₁ := typedMem_singleton_iff' hβ z x have h₂ := typedMem_singleton_iff' hβ z y rw [← h, mem_up_iff] at h₁ h₂ aesop · rintro ⟨rfl, rfl⟩ rw [up_self]
@[simp] theorem singleton_eq_up_iff (x y z : TSet β) : singleton hβ z = up hβ x y ↔ x = z ∧ y = z
ConNF.TSet.singleton_eq_up_iff
{ "commit": "f804f5c71cfaa98223fc227dd822801e8bf77004", "date": "2024-03-30T00:00:00" }
{ "commit": "79d0b7460f1a514629674a45c428d31c1a50bb03", "date": "2024-12-01T00:00:00" }
ConNF/ConNF/Model/Hailperin.lean
ConNF.Model.Hailperin
ConNF.Model.Hailperin.jsonl
{ "lineInFile": 114, "tokenPositionInFile": 3103, "theoremPositionInFile": 10 }
{ "inFilePremises": true, "numInFilePremises": 2, "repositoryPremises": true, "numRepositoryPremises": 10, "numPremises": 30 }
{ "hasProof": true, "proof": ":= by\n rw [← up_eq_singleton_iff hβ x y z, eq_comm]", "proofType": "tactic", "proofLengthLines": 1, "proofLengthTokens": 52 }
import ConNF.Model.RunInduction /-! # Externalisation In this file, we convert many of our *internal* results (i.e. inside the induction) to *external* ones (i.e. defined using the global `TSet`/`AllPerm` definitions). ## Main declarations * `ConNF.foo`: Something new. -/ noncomputable section universe u open Cardinal Ordinal WithBot namespace ConNF variable [Params.{u}] instance globalModelData : {α : TypeIndex} → ModelData α | (α : Λ) => (motive α).data | ⊥ => botModelData instance globalPosition : {α : TypeIndex} → Position (Tangle α) | (α : Λ) => (motive α).pos | ⊥ => botPosition instance globalTypedNearLitters {α : Λ} : TypedNearLitters α := (motive α).typed instance globalLtData [Level] : LtData where instance globalLeData [Level] : LeData where omit [Params] in theorem heq_funext {α : Sort _} {β γ : α → Sort _} {f : (x : α) → β x} {g : (x : α) → γ x} (h : ∀ x, HEq (f x) (g x)) : HEq f g := by cases funext λ x ↦ type_eq_of_heq (h x) simp only [heq_eq_eq] at h ⊢ exact funext h theorem globalLtData_eq [Level] : globalLtData = ltData (λ β _ ↦ motive β) := by apply LtData.ext · ext β hβ induction β using recBotCoe case bot => rfl case coe β => rfl · apply heq_funext intro β induction β using recBotCoe case bot => rfl case coe β => rfl · rfl theorem globalLeData_eq [Level] : globalLeData = leData (λ β _ ↦ motive β) := by apply LeData.ext · ext β hβ induction β using recBotCoe case bot => rfl case coe β => by_cases h : (β : TypeIndex) = α · cases coe_injective h rw [leData_data_eq] unfold globalLeData globalModelData dsimp only rw [motive_eq] rfl · rw [leData_data_lt _ (hβ.elim.lt_of_ne h)] rfl · apply heq_funext intro β apply heq_funext intro hβ induction β using recBotCoe case bot => rfl case coe β => rw [leData] simp only [coe_inj, id_eq, eq_mpr_eq_cast, recBotCoe_bot, recBotCoe_coe, LtLevel.elim.ne] exact HEq.symm (cast_heq _ _) instance globalPreCoherentData [Level] : PreCoherentData where allPermSderiv h := cast (by rw [globalLeData_eq]) ((preCoherentData (λ β _ ↦ motive β) (λ β _ ↦ hypothesis β)).allPermSderiv h) singleton h := cast (by rw [globalLeData_eq]) ((preCoherentData (λ β _ ↦ motive β) (λ β _ ↦ hypothesis β)).singleton h) omit [Params] in @[simp] theorem heq_cast_eq_iff {α β γ : Type _} {x : α} {y : β} {h : α = γ} : HEq (cast h x) y ↔ HEq x y := by cases h rw [cast_eq]
theorem globalPreCoherentData_eq [Level] : globalPreCoherentData = preCoherentData (λ β _ ↦ motive β) (λ β _ ↦ hypothesis β)
ConNF.globalPreCoherentData_eq
{ "commit": "6fdc87c6b30b73931407a372f1430ecf0fef7601", "date": "2024-12-03T00:00:00" }
{ "commit": "e409f3d0cd939e7218c3f39dcf3493c4b6e0b821", "date": "2024-11-29T00:00:00" }
ConNF/ConNF/Model/Externalise.lean
ConNF.Model.Externalise
ConNF.Model.Externalise.jsonl
{ "lineInFile": 99, "tokenPositionInFile": 2555, "theoremPositionInFile": 4 }
{ "inFilePremises": true, "numInFilePremises": 5, "repositoryPremises": true, "numRepositoryPremises": 36, "numPremises": 61 }
{ "hasProof": true, "proof": ":= by\n have := globalLeData_eq\n rw [LeData.ext_iff] at this\n apply PreCoherentData.ext\n · exact this.1\n · exact this.2\n · unfold globalPreCoherentData\n apply heq_funext; intro β\n apply heq_funext; intro γ\n apply heq_funext; intro hβ\n apply heq_funext; intro hγ\n apply heq_funext; intro hβγ\n simp only [heq_cast_eq_iff]\n rfl\n · unfold globalPreCoherentData\n apply heq_funext; intro β\n apply heq_funext; intro γ\n apply heq_funext; intro hβ\n apply heq_funext; intro hγ\n apply heq_funext; intro hβγ\n simp only [heq_cast_eq_iff]\n rfl", "proofType": "tactic", "proofLengthLines": 21, "proofLengthTokens": 577 }
import ConNF.Model.Externalise /-! # New file In this file... ## Main declarations * `ConNF.foo`: Something new. -/ noncomputable section universe u open Cardinal Ordinal namespace ConNF variable [Params.{u}] {β γ : Λ} {hγ : (γ : TypeIndex) < β} namespace Support
theorem not_mem_scoderiv_botDeriv (S : Support γ) (N : NearLitter) : N ∉ (S ↗ hγ ⇘. (Path.nil ↘.))ᴺ
ConNF.Support.not_mem_scoderiv_botDeriv
{ "commit": "abf71bc79c407ceb462cc2edd2d994cda9cdef05", "date": "2024-04-04T00:00:00" }
{ "commit": "251ac752f844dfde539ac2bd3ff112305ad59139", "date": "2024-11-30T00:00:00" }
ConNF/ConNF/Model/RaiseStrong.lean
ConNF.Model.RaiseStrong
ConNF.Model.RaiseStrong.jsonl
{ "lineInFile": 24, "tokenPositionInFile": 274, "theoremPositionInFile": 0 }
{ "inFilePremises": false, "numInFilePremises": 0, "repositoryPremises": true, "numRepositoryPremises": 32, "numPremises": 71 }
{ "hasProof": true, "proof": ":= by\n rintro ⟨i, ⟨A, N'⟩, h₁, h₂⟩\n simp only [Prod.mk.injEq] at h₂\n cases A\n case sderiv δ A hδ _ =>\n simp only [Path.deriv_sderiv] at h₂\n cases A\n case nil => cases h₂.1\n case sderiv ζ A hζ _ =>\n simp only [Path.deriv_sderiv] at h₂\n cases h₂.1", "proofType": "tactic", "proofLengthLines": 10, "proofLengthTokens": 271 }
import ConNF.Model.RaiseStrong /-! # New file In this file... ## Main declarations * `ConNF.foo`: Something new. -/ noncomputable section universe u open Cardinal Ordinal open scoped Pointwise namespace ConNF variable [Params.{u}] /-- A redefinition of the derivative of allowable permutations that is invariant of level, but still has nice definitional properties. -/ @[default_instance 200] instance {β γ : TypeIndex} : Derivative (AllPerm β) (AllPerm γ) β γ where deriv ρ A := A.recSderiv (motive := λ (δ : TypeIndex) (A : β ↝ δ) ↦ letI : Level := ⟨δ.recBotCoe (Nonempty.some inferInstance) id⟩ letI : LeLevel δ := ⟨δ.recBotCoe (λ _ ↦ bot_le) (λ _ h ↦ WithBot.coe_le_coe.mpr h.le) (show δ.recBotCoe (Nonempty.some inferInstance) id = Level.α from rfl)⟩ AllPerm δ) ρ (λ δ ε A h ρ ↦ letI : Level := ⟨δ.recBotCoe (Nonempty.some inferInstance) id⟩ letI : LeLevel δ := ⟨δ.recBotCoe (λ _ ↦ bot_le) (λ _ h ↦ WithBot.coe_le_coe.mpr h.le) (show δ.recBotCoe (Nonempty.some inferInstance) id = Level.α from rfl)⟩ letI : LeLevel ε := ⟨h.le.trans LeLevel.elim⟩ PreCoherentData.allPermSderiv h ρ) @[simp] theorem allPerm_deriv_nil' {β : TypeIndex} (ρ : AllPerm β) : ρ ⇘ (.nil : β ↝ β) = ρ := rfl @[simp] theorem allPerm_deriv_sderiv' {β γ δ : TypeIndex} (ρ : AllPerm β) (A : β ↝ γ) (h : δ < γ) : ρ ⇘ (A ↘ h) = ρ ⇘ A ↘ h := rfl @[simp] theorem allPermSderiv_forget' {β γ : TypeIndex} (h : γ < β) (ρ : AllPerm β) : (ρ ↘ h)ᵁ = ρᵁ ↘ h := letI : Level := ⟨β.recBotCoe (Nonempty.some inferInstance) id⟩ letI : LeLevel β := ⟨β.recBotCoe (λ _ ↦ bot_le) (λ _ h ↦ WithBot.coe_le_coe.mpr h.le) (show β.recBotCoe (Nonempty.some inferInstance) id = Level.α from rfl)⟩ letI : LeLevel γ := ⟨h.le.trans LeLevel.elim⟩ allPermSderiv_forget h ρ @[simp] theorem allPerm_inv_sderiv' {β γ : TypeIndex} (h : γ < β) (ρ : AllPerm β) : ρ⁻¹ ↘ h = (ρ ↘ h)⁻¹ := by apply allPermForget_injective rw [allPermSderiv_forget', allPermForget_inv, Tree.inv_sderiv, allPermForget_inv, allPermSderiv_forget'] def Symmetric {α β : Λ} (s : Set (TSet β)) (hβ : (β : TypeIndex) < α) : Prop := ∃ S : Support α, ∀ ρ : AllPerm α, ρᵁ • S = S → ρ ↘ hβ • s = s def newSetEquiv {α : Λ} : letI : Level := ⟨α⟩ @TSet _ α newModelData.toPreModelData ≃ TSet α := letI : Level := ⟨α⟩ castTSet (D₁ := newModelData) (D₂ := globalModelData) rfl (by rw [globalModelData, motive_eq, constructMotive, globalLtData_eq]) @[simp] theorem newSetEquiv_forget {α : Λ} (x : letI : Level := ⟨α⟩; @TSet _ α newModelData.toPreModelData) : (newSetEquiv x)ᵁ = xᵁ := letI : Level := ⟨α⟩ castTSet_forget (D₁ := newModelData) (D₂ := globalModelData) _ x def allPermEquiv {α : Λ} : letI : Level := ⟨α⟩ NewPerm ≃ AllPerm α := letI : Level := ⟨α⟩ castAllPerm (D₁ := newModelData) (D₂ := globalModelData) rfl (by rw [globalModelData, motive_eq, constructMotive, globalLtData_eq]) @[simp] theorem allPermEquiv_forget {α : Λ} (ρ : letI : Level := ⟨α⟩; NewPerm) : (allPermEquiv ρ)ᵁ = ρᵁ := letI : Level := ⟨α⟩ castAllPerm_forget (D₁ := newModelData) (D₂ := globalModelData) _ ρ theorem allPermEquiv_sderiv {α β : Λ} (ρ : letI : Level := ⟨α⟩; NewPerm) (hβ : (β : TypeIndex) < α) : letI : Level := ⟨α⟩ letI : LtLevel β := ⟨hβ⟩ allPermEquiv ρ ↘ hβ = ρ.sderiv β := by letI : Level := ⟨α⟩ letI : LeLevel α := ⟨le_rfl⟩ letI : LtLevel β := ⟨hβ⟩ apply allPermForget_injective rw [allPermSderiv_forget, allPermEquiv_forget, NewPerm.forget_sderiv] theorem TSet.exists_of_symmetric {α β : Λ} (s : Set (TSet β)) (hβ : (β : TypeIndex) < α) (hs : Symmetric s hβ) : ∃ x : TSet α, ∀ y : TSet β, y ∈[hβ] x ↔ y ∈ s := by letI : Level := ⟨α⟩ letI : LtLevel β := ⟨hβ⟩ suffices ∃ x : (@TSet _ α newModelData.toPreModelData), ∀ y : TSet β, yᵁ ∈[hβ] xᵁ ↔ y ∈ s by obtain ⟨x, hx⟩ := this use newSetEquiv x intro y rw [← hx, ← TSet.forget_mem_forget, newSetEquiv_forget] obtain rfl | hs' := s.eq_empty_or_nonempty · use none intro y simp only [Set.mem_empty_iff_false, iff_false] exact not_mem_none y · use some (Code.toSet ⟨β, s, hs'⟩ ?_) · intro y erw [mem_some_iff] exact Code.mem_toSet _ · obtain ⟨S, hS⟩ := hs use S intro ρ hρS have := hS (allPermEquiv ρ) ?_ · simp only [NewPerm.smul_mk, Code.mk.injEq, heq_eq_eq, true_and] rwa [allPermEquiv_sderiv] at this · rwa [allPermEquiv_forget] theorem TSet.exists_support {α : Λ} (x : TSet α) : ∃ S : Support α, ∀ ρ : AllPerm α, ρᵁ • S = S → ρ • x = x := by letI : Level := ⟨α⟩ obtain ⟨S, hS⟩ := NewSet.exists_support (newSetEquiv.symm x) use S intro ρ hρ have := @Support.Supports.supports _ _ _ newPreModelData _ _ _ hS (allPermEquiv.symm ρ) ?_ · apply tSetForget_injective have := congr_arg (·ᵁ) this simp only at this erw [@smul_forget _ _ newModelData (allPermEquiv.symm ρ) (newSetEquiv.symm x), ← allPermEquiv_forget, ← newSetEquiv_forget, Equiv.apply_symm_apply, Equiv.apply_symm_apply] at this rwa [smul_forget] · rwa [← allPermEquiv_forget, Equiv.apply_symm_apply] theorem TSet.symmetric {α β : Λ} (x : TSet α) (hβ : (β : TypeIndex) < α) : Symmetric {y : TSet β | y ∈[hβ] x} hβ := by obtain ⟨S, hS⟩ := exists_support x use S intro ρ hρ conv_rhs => rw [← hS ρ hρ] simp only [← forget_mem_forget, smul_forget, StrSet.mem_smul_iff] ext y rw [Set.mem_smul_set_iff_inv_smul_mem, Set.mem_setOf_eq, Set.mem_setOf_eq, smul_forget, allPermForget_inv, allPermSderiv_forget'] theorem tSet_ext' {α β : Λ} (hβ : (β : TypeIndex) < α) (x y : TSet α) (h : ∀ z : TSet β, z ∈[hβ] x ↔ z ∈[hβ] y) : x = y := letI : Level := ⟨α⟩ letI : LeLevel α := ⟨le_rfl⟩ letI : LtLevel β := ⟨hβ⟩ tSet_ext hβ x y h @[simp] theorem TSet.mem_smul_iff' {α β : TypeIndex} {x : TSet β} {y : TSet α} (h : β < α) (ρ : AllPerm α) : x ∈[h] ρ • y ↔ ρ⁻¹ ↘ h • x ∈[h] y := by letI : Level := ⟨α.recBotCoe (Nonempty.some inferInstance) id⟩ letI : LeLevel α := ⟨α.recBotCoe (λ _ ↦ bot_le) (λ _ h ↦ WithBot.coe_le_coe.mpr h.le) (show α.recBotCoe (Nonempty.some inferInstance) id = Level.α from rfl)⟩ letI : LtLevel β := ⟨h.trans_le LeLevel.elim⟩ exact mem_smul_iff h ρ -- For some reason, using `exact` instead of term mode speeds this up! def singleton {α β : Λ} (hβ : (β : TypeIndex) < α) (x : TSet β) : TSet α := letI : Level := ⟨α⟩ letI : LeLevel α := ⟨le_rfl⟩ letI : LtLevel β := ⟨hβ⟩ PreCoherentData.singleton hβ x @[simp] theorem typedMem_singleton_iff' {α β : Λ} (hβ : (β : TypeIndex) < α) (x y : TSet β) : y ∈[hβ] singleton hβ x ↔ y = x := letI : Level := ⟨α⟩ letI : LeLevel α := ⟨le_rfl⟩ letI : LtLevel β := ⟨hβ⟩ typedMem_singleton_iff hβ x y @[simp] theorem smul_singleton {α β : Λ} (hβ : (β : TypeIndex) < α) (x : TSet β) (ρ : AllPerm α) : ρ • singleton hβ x = singleton hβ (ρ ↘ hβ • x) := by apply tSet_ext' hβ intro z rw [TSet.mem_smul_iff', allPerm_inv_sderiv', typedMem_singleton_iff', typedMem_singleton_iff', inv_smul_eq_iff] theorem singleton_injective {α β : Λ} (hβ : (β : TypeIndex) < α) : Function.Injective (singleton hβ) := by intro x y hxy have := typedMem_singleton_iff' hβ x y rw [hxy, typedMem_singleton_iff'] at this exact (this.mp rfl).symm @[simp] theorem singleton_inj {α β : Λ} {hβ : (β : TypeIndex) < α} {x y : TSet β} : singleton hβ x = singleton hβ y ↔ x = y := (singleton_injective hβ).eq_iff
theorem sUnion_singleton_symmetric_aux' {α β γ : Λ} (hγ : (γ : TypeIndex) < β) (hβ : (β : TypeIndex) < α) (s : Set (TSet γ)) (S : Support α) (hS : ∀ ρ : AllPerm α, ρᵁ • S = S → ρ ↘ hβ • singleton hγ '' s = singleton hγ '' s) : letI : Level := ⟨α⟩ letI : LeLevel α := ⟨le_rfl⟩ ∀ (ρ : AllPerm β), ρᵁ • S.strong ↘ hβ = S.strong ↘ hβ → ρ ↘ hγ • s ⊆ s
ConNF.sUnion_singleton_symmetric_aux'
{ "commit": "6fdc87c6b30b73931407a372f1430ecf0fef7601", "date": "2024-12-03T00:00:00" }
{ "commit": "1c08486feb882444888c228ce1501e92bb85e0e2", "date": "2025-01-07T00:00:00" }
ConNF/ConNF/Model/TTT.lean
ConNF.Model.TTT
ConNF.Model.TTT.jsonl
{ "lineInFile": 216, "tokenPositionInFile": 7508, "theoremPositionInFile": 20 }
{ "inFilePremises": true, "numInFilePremises": 5, "repositoryPremises": true, "numRepositoryPremises": 43, "numPremises": 94 }
{ "hasProof": true, "proof": ":= by\n letI : Level := ⟨α⟩\n letI : LeLevel α := ⟨le_rfl⟩\n letI : LtLevel β := ⟨hβ⟩\n rintro ρ hρ _ ⟨x, hx, rfl⟩\n obtain ⟨T, hT⟩ := exists_support x\n obtain ⟨ρ', hρ'₁, hρ'₂⟩ := Support.exists_allowable_of_fixes S.strong S.strong_strong T ρ hγ hρ\n have hρ's := hS ρ' (smul_eq_of_le (S.subsupport_strong.le) hρ'₁)\n have hρ'x : ρ' ↘ hβ ↘ hγ • x = ρ ↘ hγ • x := by\n apply hT.smul_eq_smul\n simp only [allPermSderiv_forget', allPermSderiv_forget, WithBot.recBotCoe_coe, id_eq, hρ'₂]\n dsimp only\n rw [← hρ'x]\n have := (Set.ext_iff.mp hρ's (ρ' ↘ hβ • singleton hγ x)).mp ⟨_, Set.mem_image_of_mem _ hx, rfl⟩\n rw [smul_singleton] at this\n rwa [(singleton_injective hγ).mem_set_image] at this", "proofType": "tactic", "proofLengthLines": 15, "proofLengthTokens": 698 }
import ConNF.Background.Rel import ConNF.Base.Small /-! # Enumerations In this file, we define enumerations of a type. ## Main declarations * `ConNF.Enumeration`: The type family of enumerations. -/ universe u open Cardinal namespace ConNF variable [Params.{u}] {X Y : Type u} @[ext] structure Enumeration (X : Type u) where bound : κ rel : Rel κ X lt_bound : ∀ i ∈ rel.dom, i < bound rel_coinjective : rel.Coinjective variable {E F G : Enumeration X} namespace Enumeration instance : CoeTC (Enumeration X) (Set X) where coe E := E.rel.codom instance : Membership X (Enumeration X) where mem E x := x ∈ E.rel.codom theorem mem_iff (x : X) (E : Enumeration X) : x ∈ E ↔ x ∈ E.rel.codom := Iff.rfl theorem mem_congr {E F : Enumeration X} (h : E = F) : ∀ x, x ∈ E ↔ x ∈ F := by intro x rw [h] theorem dom_small (E : Enumeration X) : Small E.rel.dom := (iio_small E.bound).mono E.lt_bound theorem coe_small (E : Enumeration X) : Small (E : Set X) := small_codom_of_small_dom E.rel_coinjective E.dom_small theorem graph'_small (E : Enumeration X) : Small E.rel.graph' := small_graph' E.dom_small E.coe_small noncomputable def empty : Enumeration X where bound := 0 rel _ _ := False lt_bound _ h := by cases h; contradiction rel_coinjective := by constructor; intros; contradiction @[simp] theorem not_mem_empty (x : X) : x ∉ Enumeration.empty := by rintro ⟨i, h⟩ cases h noncomputable def singleton (x : X) : Enumeration X where bound := 1 rel i y := i = 0 ∧ y = x lt_bound i h := by have : i = 0 := by simpa only [Rel.dom, exists_eq_right, Set.setOf_eq_eq_singleton, Set.mem_singleton_iff] using h rw [this, κEquiv_lt, ← Subtype.coe_lt_coe, κEquiv_ofNat, κEquiv_ofNat, Nat.cast_zero, Nat.cast_one] exact zero_lt_one rel_coinjective := by constructor cc @[simp] theorem mem_singleton_iff (x y : X) : y ∈ singleton x ↔ y = x := by constructor · rintro ⟨_, _, h⟩ exact h · intro h exact ⟨0, rfl, h⟩ theorem singleton_injective : Function.Injective (singleton : X → Enumeration X) := by intro x y h have := mem_singleton_iff y x rw [← h, mem_singleton_iff] at this exact this.mp rfl /-! ## Cardinality bounds on enumerations -/ end Enumeration theorem card_enumeration_ge (X : Type u) : #X ≤ #(Enumeration X) := mk_le_of_injective Enumeration.singleton_injective def enumerationEmbedding (X : Type u) : Enumeration X ↪ κ × {s : Set (κ × X) | Small s} where toFun E := (E.bound, ⟨E.rel.graph', E.graph'_small⟩) inj' := by intro E F h rw [Prod.mk.injEq, Subtype.mk.injEq] at h exact Enumeration.ext h.1 (Rel.graph'_injective h.2) theorem card_enumeration_le (h : #X ≤ #μ) : #(Enumeration X) ≤ #μ := by apply (mk_le_of_injective (enumerationEmbedding X).injective).trans rw [mk_prod, lift_id, lift_id] apply mul_le_of_le aleph0_lt_μ.le κ_le_μ apply card_small_le rw [mk_prod, lift_id, lift_id] exact mul_le_of_le aleph0_lt_μ.le κ_le_μ h theorem card_enumeration_lt (h : #X < #μ) : #(Enumeration X) < #μ := by apply (mk_le_of_injective (enumerationEmbedding X).injective).trans_lt rw [mk_prod, lift_id, lift_id] apply mul_lt_of_lt aleph0_lt_μ.le κ_lt_μ apply (mk_subtype_le _).trans_lt rw [mk_set] apply μ_isStrongLimit.2 rw [mk_prod, lift_id, lift_id] exact mul_lt_of_lt aleph0_lt_μ.le κ_lt_μ h theorem card_enumeration_eq (h : #X = #μ) : #(Enumeration X) = #μ := le_antisymm (card_enumeration_le h.le) (h.symm.le.trans (card_enumeration_ge X)) namespace Enumeration /-! ## Enumerations from sets -/ theorem exists_equiv (s : Set X) (hs : Small s) : Nonempty ((i : κ) × (s ≃ Set.Iio i)) := by rw [Small] at hs refine ⟨κEquiv.symm ⟨(#s).ord, ?_⟩, Nonempty.some ?_⟩ · rwa [Set.mem_Iio, ord_lt_ord] · rw [← Cardinal.eq, Set.Iio, κ_card_Iio_eq, Equiv.apply_symm_apply, card_ord] noncomputable def ofSet (s : Set X) (hs : Small s) : Enumeration X where bound := (exists_equiv s hs).some.1 rel i x := ∃ h, i = (exists_equiv s hs).some.2 ⟨x, h⟩ lt_bound := by rintro _ ⟨x, h, rfl⟩ exact ((exists_equiv s hs).some.2 ⟨x, h⟩).prop rel_coinjective := by constructor rintro x y i ⟨hx, hix⟩ ⟨hy, hiy⟩ rw [hix] at hiy cases (exists_equiv s hs).some.2.injective (Subtype.coe_injective hiy) rfl @[simp] theorem mem_ofSet_iff (s : Set X) (hs : Small s) (x : X) : x ∈ ofSet s hs ↔ x ∈ s := by constructor · rintro ⟨i, hx, _⟩ exact hx · intro h exact ⟨(exists_equiv s hs).some.2 ⟨x, h⟩, h, rfl⟩ @[simp] theorem ofSet_coe (s : Set X) (hs : Small s) : (ofSet s hs : Set X) = s := by ext x rw [← mem_ofSet_iff s hs] rfl /-! ## Operations on enumerations -/ def image (E : Enumeration X) (f : X → Y) : Enumeration Y where bound := E.bound rel i y := ∃ x, E.rel i x ∧ f x = y lt_bound := by rintro i ⟨_, x, hi, rfl⟩ exact E.lt_bound i ⟨x, hi⟩ rel_coinjective := by constructor rintro i _ _ ⟨x₁, hx₁, rfl⟩ ⟨x₂, hx₂, rfl⟩ rw [E.rel_coinjective.coinjective hx₁ hx₂] @[simp] theorem image_bound {f : X → Y} : (E.image f).bound = E.bound := rfl theorem image_rel {f : X → Y} (i : κ) (y : Y) : (E.image f).rel i y ↔ ∃ x, E.rel i x ∧ f x = y := Iff.rfl @[simp] theorem mem_image {f : X → Y} (y : Y) : y ∈ E.image f ↔ y ∈ f '' E := by constructor · rintro ⟨i, x, hx, rfl⟩ exact ⟨x, ⟨i, hx⟩, rfl⟩ · rintro ⟨x, ⟨i, hx⟩, rfl⟩ exact ⟨i, x, hx, rfl⟩ def invImage (E : Enumeration X) (f : Y → X) (hf : f.Injective) : Enumeration Y where bound := E.bound rel i y := E.rel i (f y) lt_bound := by rintro i ⟨y, hy⟩ exact E.lt_bound i ⟨f y, hy⟩ rel_coinjective := by constructor intro i y₁ y₂ h₁ h₂ exact hf <| E.rel_coinjective.coinjective h₁ h₂ theorem invImage_rel {f : Y → X} {hf : f.Injective} (i : κ) (y : Y) : (E.invImage f hf).rel i y ↔ E.rel i (f y) := Iff.rfl @[simp] theorem mem_invImage {f : Y → X} {hf : f.Injective} (y : Y) : y ∈ E.invImage f hf ↔ f y ∈ E := Iff.rfl def comp (E : Enumeration X) (r : Rel X Y) (hr : r.Coinjective) : Enumeration Y where bound := E.bound rel := E.rel.comp r lt_bound := by rintro i ⟨y, x, hy⟩ exact E.lt_bound i ⟨x, hy.1⟩ rel_coinjective := E.rel_coinjective.comp hr instance {G X : Type _} [Group G] [MulAction G X] : SMul G (Enumeration X) where smul π E := E.invImage (λ x ↦ π⁻¹ • x) (MulAction.injective π⁻¹) @[simp] theorem smul_rel {G X : Type _} [Group G] [MulAction G X] (π : G) (E : Enumeration X) (i : κ) (x : X) : (π • E).rel i x ↔ E.rel i (π⁻¹ • x) := Iff.rfl @[simp] theorem mem_smul {G X : Type _} [Group G] [MulAction G X] (π : G) (E : Enumeration X) (x : X) : x ∈ π • E ↔ π⁻¹ • x ∈ E := Iff.rfl @[simp] theorem smul_rel_dom {G X : Type _} [Group G] [MulAction G X] (π : G) (E : Enumeration X) : (π • E).rel.dom = E.rel.dom := by ext i constructor · rintro ⟨x, h⟩ exact ⟨π⁻¹ • x, h⟩ · rintro ⟨x, h⟩ use π • x rwa [smul_rel, inv_smul_smul] open scoped Pointwise in @[simp] theorem smul_rel_codom {G X : Type _} [Group G] [MulAction G X] (π : G) (E : Enumeration X) : (π • E).rel.codom = π • E.rel.codom := by ext x constructor · rintro ⟨i, h⟩ exact ⟨π⁻¹ • x, ⟨i, h⟩, smul_inv_smul π x⟩ · rintro ⟨x, ⟨i, h⟩, rfl⟩ use i rwa [smul_rel, inv_smul_smul] open scoped Pointwise in @[simp] theorem smul_coe {G X : Type _} [Group G] [MulAction G X] (π : G) (E : Enumeration X) : ((π • E : Enumeration X) : Set X) = π • (E : Set X) := smul_rel_codom π E instance {G X : Type _} [Group G] [MulAction G X] : MulAction G (Enumeration X) where one_smul E := by ext i x · rfl · rw [smul_rel, inv_one, one_smul] mul_smul π₁ π₂ E := by ext i x · rfl · rw [smul_rel, smul_rel, smul_rel, mul_inv_rev, mul_smul] theorem mem_smul_iff {G X : Type _} [Group G] [MulAction G X] (x : X) (g : G) (E : Enumeration X) : x ∈ g • E ↔ g⁻¹ • x ∈ E := Iff.rfl theorem eq_of_smul_eq_smul {G X : Type _} [Group G] [MulAction G X] {g₁ g₂ : G} {E : Enumeration X} (h : g₁ • E = g₂ • E) (x : X) (hx : x ∈ E) : g₁ • x = g₂ • x := by obtain ⟨i, hi⟩ := hx have : (g₁ • E).rel i (g₁ • x) := by rwa [smul_rel, inv_smul_smul] rw [h] at this have := E.rel_coinjective.coinjective hi this exact (eq_inv_smul_iff.mp this).symm theorem eq_of_smul_eq {G X : Type _} [Group G] [MulAction G X] {g : G} {E : Enumeration X} (h : g • E = E) (x : X) (hx : x ∈ E) : g • x = x := by have := eq_of_smul_eq_smul (g₁ := g) (g₂ := 1) ?_ x hx · rwa [one_smul] at this · rwa [one_smul] @[simp] theorem smul_singleton {G X : Type _} [Group G] [MulAction G X] {g : G} {x : X} : g • singleton x = singleton (g • x) := by apply Enumeration.ext · rfl · ext i y rw [smul_rel] simp only [singleton, and_congr_right_iff, inv_smul_eq_iff] /-! ## Concatenation of enumerations -/ noncomputable instance : Add (Enumeration X) where add E F := { bound := E.bound + F.bound rel := E.rel ⊔ Rel.comp (E.bound + ·).graph.inv F.rel lt_bound := by rintro i ⟨x, hi | ⟨j, rfl, hjx⟩⟩ · exact (E.lt_bound i ⟨x, hi⟩).trans_le (κ_le_add E.bound F.bound) · rw [add_lt_add_iff_left] exact F.lt_bound j ⟨x, hjx⟩ rel_coinjective := by constructor rintro x y i (hix | ⟨j, hj, hjx⟩) (hiy | ⟨k, hk, hky⟩) · exact E.rel_coinjective.coinjective hix hiy · cases hk have := E.lt_bound _ ⟨x, hix⟩ rw [add_lt_iff_neg_left] at this cases (κ_zero_le k).not_lt this · cases hj have := E.lt_bound _ ⟨y, hiy⟩ rw [add_lt_iff_neg_left] at this cases (κ_zero_le j).not_lt this · cases hj simp only [Rel.inv, flip, Function.graph_def, add_right_inj] at hk cases hk exact F.rel_coinjective.coinjective hjx hky } @[simp] theorem add_bound (E F : Enumeration X) : (E + F).bound = E.bound + F.bound := rfl theorem rel_add_iff {E F : Enumeration X} (i : κ) (x : X) : (E + F).rel i x ↔ E.rel i x ∨ ∃ j, E.bound + j = i ∧ F.rel j x := Iff.rfl
theorem add_rel_dom {X : Type _} (E F : Enumeration X) : (E + F).rel.dom = E.rel.dom ∪ (E.bound + ·) '' F.rel.dom
ConNF.Enumeration.add_rel_dom
{ "commit": "39c33b4a743bea62dbcc549548b712ffd38ca65c", "date": "2024-12-05T00:00:00" }
{ "commit": "6709914ae7f5cd3e2bb24b413e09aa844554d234", "date": "2024-11-30T00:00:00" }
ConNF/ConNF/ModelData/Enumeration.lean
ConNF.ModelData.Enumeration
ConNF.ModelData.Enumeration.jsonl
{ "lineInFile": 365, "tokenPositionInFile": 10091, "theoremPositionInFile": 31 }
{ "inFilePremises": true, "numInFilePremises": 5, "repositoryPremises": true, "numRepositoryPremises": 9, "numPremises": 49 }
{ "hasProof": true, "proof": ":= by\n ext i\n simp only [Rel.dom, rel_add_iff, Set.mem_setOf_eq, Set.mem_union, Set.mem_image]\n aesop", "proofType": "tactic", "proofLengthLines": 3, "proofLengthTokens": 104 }
import ConNF.Model.Hailperin /-! # New file In this file... ## Main declarations * `ConNF.foo`: Something new. -/ noncomputable section universe u open Cardinal Ordinal ConNF.TSet namespace ConNF variable [Params.{u}] {α β γ δ ε ζ : Λ} (hβ : (β : TypeIndex) < α) (hγ : (γ : TypeIndex) < β) (hδ : (δ : TypeIndex) < γ) (hε : (ε : TypeIndex) < δ) (hζ : (ζ : TypeIndex) < ε) theorem ext (x y : TSet α) : (∀ z : TSet β, z ∈' x ↔ z ∈' y) → x = y := tSet_ext' hβ x y def inter (x y : TSet α) : TSet α := (TSet.exists_inter hβ x y).choose notation:69 x:69 " ⊓[" h "] " y:69 => _root_.ConNF.inter h x y notation:69 x:69 " ⊓' " y:69 => x ⊓[by assumption] y @[simp] theorem mem_inter_iff (x y : TSet α) : ∀ z : TSet β, z ∈' x ⊓' y ↔ z ∈' x ∧ z ∈' y := (TSet.exists_inter hβ x y).choose_spec def compl (x : TSet α) : TSet α := (TSet.exists_compl hβ x).choose notation:1024 x:1024 " ᶜ[" h "]" => _root_.ConNF.compl h x notation:1024 x:1024 " ᶜ'" => xᶜ[by assumption] @[simp] theorem mem_compl_iff (x : TSet α) : ∀ z : TSet β, z ∈' xᶜ' ↔ ¬z ∈' x := (TSet.exists_compl hβ x).choose_spec notation:1024 "{" x "}[" h "]" => _root_.ConNF.singleton h x notation:1024 "{" x "}'" => {x}[by assumption] @[simp] theorem mem_singleton_iff (x y : TSet β) : y ∈' {x}' ↔ y = x := typedMem_singleton_iff' hβ x y notation:1024 "{" x ", " y "}[" h "]" => _root_.ConNF.TSet.up h x y notation:1024 "{" x ", " y "}'" => {x, y}[by assumption] @[simp] theorem mem_up_iff (x y z : TSet β) : z ∈' {x, y}' ↔ z = x ∨ z = y := TSet.mem_up_iff hβ x y z notation:1024 "⟨" x ", " y "⟩[" h ", " h' "]" => _root_.ConNF.TSet.op h h' x y notation:1024 "⟨" x ", " y "⟩'" => ⟨x, y⟩[by assumption, by assumption] theorem op_def (x y : TSet γ) : (⟨x, y⟩' : TSet α) = { {x}', {x, y}' }' := rfl def singletonImage' (x : TSet β) : TSet α := (TSet.exists_singletonImage hβ hγ hδ hε x).choose @[simp] theorem singletonImage'_spec (x : TSet β) : ∀ z w, ⟨ {z}', {w}' ⟩' ∈' singletonImage' hβ hγ hδ hε x ↔ ⟨z, w⟩' ∈' x := (TSet.exists_singletonImage hβ hγ hδ hε x).choose_spec def insertion2' (x : TSet γ) : TSet α := (TSet.exists_insertion2 hβ hγ hδ hε hζ x).choose @[simp] theorem insertion2'_spec (x : TSet γ) : ∀ a b c, ⟨ { {a}' }', ⟨b, c⟩' ⟩' ∈' insertion2' hβ hγ hδ hε hζ x ↔ ⟨a, c⟩' ∈' x := (TSet.exists_insertion2 hβ hγ hδ hε hζ x).choose_spec def insertion3' (x : TSet γ) : TSet α := (TSet.exists_insertion3 hβ hγ hδ hε hζ x).choose theorem insertion3'_spec (x : TSet γ) : ∀ a b c, ⟨ { {a}' }', ⟨b, c⟩' ⟩' ∈' insertion3' hβ hγ hδ hε hζ x ↔ ⟨a, b⟩' ∈' x := (TSet.exists_insertion3 hβ hγ hδ hε hζ x).choose_spec def vCross (x : TSet γ) : TSet α := (TSet.exists_cross hβ hγ hδ x).choose @[simp] theorem vCross_spec (x : TSet γ) : ∀ a, a ∈' vCross hβ hγ hδ x ↔ ∃ b c, a = ⟨b, c⟩' ∧ c ∈' x := (TSet.exists_cross hβ hγ hδ x).choose_spec def typeLower (x : TSet α) : TSet δ := (TSet.exists_typeLower hβ hγ hδ hε x).choose
@[simp] theorem mem_typeLower_iff (x : TSet α) : ∀ a, a ∈' typeLower hβ hγ hδ hε x ↔ ∀ b, ⟨ b, {a}' ⟩' ∈' x
ConNF.mem_typeLower_iff
{ "commit": "b12701769822aaf5451982e26d7b7d1c2f21b137", "date": "2024-04-11T00:00:00" }
{ "commit": "66f4e3291020d4198ca6ede816acae5cee584a07", "date": "2025-01-06T00:00:00" }
ConNF/ConNF/Model/Result.lean
ConNF.Model.Result
ConNF.Model.Result.jsonl
{ "lineInFile": 109, "tokenPositionInFile": 2983, "theoremPositionInFile": 27 }
{ "inFilePremises": true, "numInFilePremises": 1, "repositoryPremises": true, "numRepositoryPremises": 13, "numPremises": 25 }
{ "hasProof": true, "proof": ":=\n (TSet.exists_typeLower hβ hγ hδ hε x).choose_spec", "proofType": "term", "proofLengthLines": 1, "proofLengthTokens": 54 }
import ConNF.Base.TypeIndex /-! # Paths of type indices In this file, we define the notion of a *path*, and the derivative and coderivative operations. ## Main declarations * `ConNF.Path`: A path of type indices. * `ConNF.Path.recSderiv`, `ConNF.Path.recSderivLe`, `ConNF.Path.recSderivGlobal`: Downwards induction principles for paths. * `ConNF.Path.recScoderiv`: An upwards induction principle for paths. -/ universe u open Cardinal WithBot namespace ConNF variable [Params.{u}] {α β γ δ : TypeIndex} /-- A path of type indices starting at `α` and ending at `β` is a finite sequence of type indices `α > ... > β`. -/ inductive Path (α : TypeIndex) : TypeIndex → Type u | nil : Path α α | cons {β γ : TypeIndex} : Path α β → γ < β → Path α γ @[inherit_doc] infix:70 " ↝ " => Path def Path.single {α β : TypeIndex} (h : β < α) : α ↝ β := .cons .nil h /-- Typeclass for the `↘` notation. -/ class SingleDerivative (X : Type _) (Y : outParam <| Type _) (β : outParam TypeIndex) (γ : TypeIndex) where sderiv : X → γ < β → Y /-- Typeclass for the `⇘` notation. -/ class Derivative (X : Type _) (Y : outParam <| Type _) (β : outParam TypeIndex) (γ : TypeIndex) extends SingleDerivative X Y β γ where deriv : X → β ↝ γ → Y sderiv x h := deriv x (.single h) deriv_single : ∀ x : X, ∀ h : γ < β, deriv x (.single h) = sderiv x h := by intros; rfl /-- Typeclass for the `↘.` notation. -/ class BotSingleDerivative (X : Type _) (Y : outParam <| Type _) where botSderiv : X → Y /-- Typeclass for the `⇘.` notation. -/ class BotDerivative (X : Type _) (Y : outParam <| Type _) (β : outParam TypeIndex) extends BotSingleDerivative X Y where botDeriv : X → β ↝ ⊥ → Y /-- We often need to do case analysis on `β` to show that it's a proper type index here. This case check doesn't need to be done in most actual use cases of the notation. -/ botDeriv_single : ∀ x : X, ∀ h : ⊥ < β, botDeriv x (.single h) = botSderiv x /-- Typeclass for the `↗` notation. -/ class SingleCoderivative (X : Type _) (Y : outParam <| Type _) (β : TypeIndex) (γ : outParam TypeIndex) where scoderiv : X → γ < β → Y /-- Typeclass for the `⇗` notation. -/ class Coderivative (X : Type _) (Y : outParam <| Type _) (β : TypeIndex) (γ : outParam TypeIndex) extends SingleCoderivative X Y β γ where coderiv : X → β ↝ γ → Y scoderiv x h := coderiv x (.single h) coderiv_single : ∀ x : X, ∀ h : γ < β, coderiv x (.single h) = scoderiv x h := by intros; rfl infixl:75 " ↘ " => SingleDerivative.sderiv infixl:75 " ⇘ " => Derivative.deriv postfix:75 " ↘." => BotSingleDerivative.botSderiv infixl:75 " ⇘. " => BotDerivative.botDeriv infixl:75 " ↗ " => SingleCoderivative.scoderiv infixl:75 " ⇗ " => Coderivative.coderiv @[simp] theorem deriv_single {X Y : Type _} [Derivative X Y β γ] (x : X) (h : γ < β) : x ⇘ .single h = x ↘ h := Derivative.deriv_single x h @[simp] theorem coderiv_single {X Y : Type _} [Coderivative X Y β γ] (x : X) (h : γ < β) : x ⇗ .single h = x ↗ h := Coderivative.coderiv_single x h @[simp] theorem botDeriv_single {X Y : Type _} [BotDerivative X Y β] (x : X) (h : ⊥ < β) : x ⇘. .single h = x ↘. := BotDerivative.botDeriv_single x h /-! ## Downwards recursion along paths -/ instance : SingleDerivative (α ↝ β) (α ↝ γ) β γ where sderiv := .cons /-- The downwards recursion principle for paths. -/ @[elab_as_elim, induction_eliminator, cases_eliminator] def Path.recSderiv {motive : ∀ β, α ↝ β → Sort _} (nil : motive α .nil) (sderiv : ∀ β γ (A : α ↝ β) (h : γ < β), motive β A → motive γ (A ↘ h)) : {β : TypeIndex} → (A : α ↝ β) → motive β A | _, .nil => nil | _, .cons A h => sderiv _ _ A h (recSderiv nil sderiv A) @[simp] theorem Path.recSderiv_nil {motive : ∀ β, α ↝ β → Sort _} (nil : motive α .nil) (sderiv : ∀ β γ (A : α ↝ β) (h : γ < β), motive β A → motive γ (A ↘ h)) : recSderiv (motive := motive) nil sderiv .nil = nil := rfl @[simp] theorem Path.recSderiv_sderiv {motive : ∀ β, α ↝ β → Sort _} (nil : motive α .nil) (sderiv : ∀ β γ (A : α ↝ β) (h : γ < β), motive β A → motive γ (A ↘ h)) {β γ : TypeIndex} (A : α ↝ β) (h : γ < β) : recSderiv (motive := motive) nil sderiv (A ↘ h) = sderiv β γ A h (recSderiv nil sderiv A) := rfl theorem Path.le (A : α ↝ β) : β ≤ α := by induction A with | nil => exact le_rfl | sderiv β γ _A h h' => exact h.le.trans h' /-- The downwards recursion principle for paths, specialised to the case where the motive at `β` only depends on the fact that `β ≤ α`. -/ def Path.recSderivLe {motive : ∀ β ≤ α, Sort _} (nil : motive α le_rfl) (sderiv : ∀ β γ, ∀ (A : α ↝ β) (h : γ < β), motive β A.le → motive γ (h.le.trans A.le)) : {β : TypeIndex} → (A : α ↝ β) → motive β A.le := Path.recSderiv (motive := λ β A ↦ motive β A.le) nil sderiv @[simp] theorem Path.recSderivLe_nil {motive : ∀ β ≤ α, Sort _} (nil : motive α le_rfl) (sderiv : ∀ β γ (A : α ↝ β) (h : γ < β), motive β A.le → motive γ (h.le.trans A.le)) : recSderivLe (motive := motive) nil sderiv .nil = nil := rfl @[simp] theorem Path.recSderivLe_sderiv {motive : ∀ β ≤ α, Sort _} (nil : motive α le_rfl) (sderiv : ∀ β γ (A : α ↝ β) (h : γ < β), motive β A.le → motive γ (h.le.trans A.le)) {β γ : TypeIndex} (A : α ↝ β) (h : γ < β) : recSderivLe (motive := motive) nil sderiv (A ↘ h) = sderiv β γ A h (recSderiv nil sderiv A) := rfl /-- The downwards recursion principle for paths, specialised to the case where the motive is not dependent on the relation of `β` to `α`. -/ @[elab_as_elim] def Path.recSderivGlobal {motive : TypeIndex → Sort _} (nil : motive α) (sderiv : ∀ β γ, α ↝ β → γ < β → motive β → motive γ) : {β : TypeIndex} → α ↝ β → motive β := Path.recSderiv (motive := λ β _ ↦ motive β) nil sderiv @[simp] theorem Path.recSderivGlobal_nil {motive : TypeIndex → Sort _} (nil : motive α) (sderiv : ∀ β γ, α ↝ β → γ < β → motive β → motive γ) : recSderivGlobal (motive := motive) nil sderiv .nil = nil := rfl @[simp] theorem Path.recSderivGlobal_sderiv {motive : TypeIndex → Sort _} (nil : motive α) (sderiv : ∀ β γ, α ↝ β → γ < β → motive β → motive γ) {β γ : TypeIndex} (A : α ↝ β) (h : γ < β) : recSderivGlobal (motive := motive) nil sderiv (A ↘ h) = sderiv β γ A h (recSderiv nil sderiv A) := rfl /-! ## Derivatives of paths -/ instance : Derivative (α ↝ β) (α ↝ γ) β γ where deriv A := Path.recSderivGlobal A (λ _ _ _ h B ↦ B ↘ h) instance : BotDerivative (α ↝ β) (α ↝ ⊥) β where botDeriv A B := A ⇘ B botSderiv A := match β with | ⊥ => A | (β : Λ) => A ↘ bot_lt_coe β botDeriv_single A h := by cases β using WithBot.recBotCoe with | bot => cases lt_irrefl ⊥ h | coe => rfl instance : Coderivative (β ↝ γ) (α ↝ γ) α β where coderiv A B := B ⇘ A @[simp] theorem Path.deriv_nil (A : α ↝ β) : A ⇘ .nil = A := rfl @[simp] theorem Path.deriv_sderiv (A : α ↝ β) (B : β ↝ γ) (h : δ < γ) : A ⇘ (B ↘ h) = A ⇘ B ↘ h := rfl @[simp] theorem Path.nil_deriv (A : α ↝ β) : (.nil : α ↝ α) ⇘ A = A := by induction A with | nil => rfl | sderiv γ δ A h ih => rw [deriv_sderiv, ih] @[simp] theorem Path.deriv_sderivBot (A : α ↝ β) (B : β ↝ γ) : A ⇘ (B ↘.) = A ⇘ B ↘. := by cases γ using WithBot.recBotCoe with | bot => rfl | coe => rfl @[simp] theorem Path.botSderiv_bot_eq (A : α ↝ ⊥) : A ↘. = A := rfl @[simp] theorem Path.botSderiv_coe_eq {β : Λ} (A : α ↝ β) : A ↘ bot_lt_coe β = A ↘. := rfl @[simp] theorem Path.deriv_assoc (A : α ↝ β) (B : β ↝ γ) (C : γ ↝ δ) : A ⇘ (B ⇘ C) = A ⇘ B ⇘ C := by induction C with | nil => rfl | sderiv ε ζ C h ih => simp only [deriv_sderiv, ih] @[simp] theorem Path.deriv_sderiv_assoc (A : α ↝ β) (B : β ↝ γ) (h : δ < γ) : A ⇘ (B ↘ h) = A ⇘ B ↘ h := rfl @[simp] theorem Path.deriv_scoderiv (A : α ↝ β) (B : γ ↝ δ) (h : γ < β) : A ⇘ (B ↗ h) = A ↘ h ⇘ B := by induction B with | nil => rfl | sderiv ε ζ B h' ih => rw [deriv_sderiv, ← ih] rfl @[simp] theorem Path.botDeriv_scoderiv (A : α ↝ β) (B : γ ↝ ⊥) (h : γ < β) : A ⇘. (B ↗ h) = A ↘ h ⇘. B := deriv_scoderiv A B h theorem Path.coderiv_eq_deriv (A : α ↝ β) (B : β ↝ γ) : B ⇗ A = A ⇘ B := rfl theorem Path.coderiv_deriv (A : β ↝ γ) (h₁ : β < α) (h₂ : δ < γ) : A ↗ h₁ ↘ h₂ = A ↘ h₂ ↗ h₁ := rfl theorem Path.coderiv_deriv' (A : β ↝ γ) (h : β < α) (B : γ ↝ δ) : A ↗ h ⇘ B = A ⇘ B ↗ h := by induction B with | nil => rfl | sderiv ε ζ B h' ih => rw [deriv_sderiv, ih] rfl theorem Path.eq_nil (A : β ↝ β) : A = .nil := by cases A with | nil => rfl | sderiv γ _ A h => cases A.le.not_lt h theorem Path.sderiv_index_injective {A : α ↝ β} {B : α ↝ γ} {hδβ : δ < β} {hδγ : δ < γ} (h : A ↘ hδβ = B ↘ hδγ) : β = γ := by cases h rfl theorem Path.sderivBot_index_injective {β γ : Λ} {A : α ↝ β} {B : α ↝ γ} (h : A ↘. = B ↘.) : β = γ := by cases h rfl theorem Path.sderiv_path_injective {A B : α ↝ β} {hγ : γ < β} (h : A ↘ hγ = B ↘ hγ) : A = B := by cases h rfl theorem Path.sderivBot_path_injective {β : Λ} {A B : α ↝ β} (h : A ↘. = B ↘.) : A = B := by cases h rfl theorem Path.deriv_left_injective {A B : α ↝ β} {C : β ↝ γ} (h : A ⇘ C = B ⇘ C) : A = B := by induction C with | nil => exact h | sderiv δ ε C hε ih => rw [deriv_sderiv_assoc, deriv_sderiv_assoc] at h exact ih (Path.sderiv_path_injective h) theorem Path.deriv_right_injective {A : α ↝ β} {B C : β ↝ γ} (h : A ⇘ B = A ⇘ C) : B = C := by induction C with | nil => exact B.eq_nil | sderiv δ ε C hε ih => cases B with | nil => cases C.le.not_lt hε | sderiv ζ η B hε' => cases Path.sderiv_index_injective h rw [deriv_sderiv_assoc, deriv_sderiv_assoc] at h rw [ih (Path.sderiv_path_injective h)] @[simp] theorem Path.sderiv_left_inj {A B : α ↝ β} {h : γ < β} : A ↘ h = B ↘ h ↔ A = B := ⟨Path.sderiv_path_injective, λ h ↦ h ▸ rfl⟩ @[simp] theorem Path.deriv_left_inj {A B : α ↝ β} {C : β ↝ γ} : A ⇘ C = B ⇘ C ↔ A = B := ⟨deriv_left_injective, λ h ↦ h ▸ rfl⟩ @[simp] theorem Path.deriv_right_inj {A : α ↝ β} {B C : β ↝ γ} : A ⇘ B = A ⇘ C ↔ B = C := ⟨deriv_right_injective, λ h ↦ h ▸ rfl⟩
@[simp] theorem Path.scoderiv_left_inj {A B : β ↝ γ} {h : β < α} : A ↗ h = B ↗ h ↔ A = B
ConNF.Path.scoderiv_left_inj
{ "commit": "8896e416a16c39e1fe487b5fc7c78bc20c4e182b", "date": "2024-12-03T00:00:00" }
{ "commit": "ce890707e37ede74a2fcd66134d3f403335c5cc1", "date": "2024-11-30T00:00:00" }
ConNF/ConNF/Levels/Path.lean
ConNF.Levels.Path
ConNF.Levels.Path.jsonl
{ "lineInFile": 337, "tokenPositionInFile": 10251, "theoremPositionInFile": 43 }
{ "inFilePremises": true, "numInFilePremises": 6, "repositoryPremises": true, "numRepositoryPremises": 11, "numPremises": 21 }
{ "hasProof": true, "proof": ":=\n deriv_right_inj", "proofType": "term", "proofLengthLines": 1, "proofLengthTokens": 20 }
import ConNF.Model.Externalise /-! # New file In this file... ## Main declarations * `ConNF.foo`: Something new. -/ noncomputable section universe u open Cardinal Ordinal namespace ConNF variable [Params.{u}] {β γ : Λ} {hγ : (γ : TypeIndex) < β} namespace Support theorem not_mem_scoderiv_botDeriv (S : Support γ) (N : NearLitter) : N ∉ (S ↗ hγ ⇘. (Path.nil ↘.))ᴺ := by rintro ⟨i, ⟨A, N'⟩, h₁, h₂⟩ simp only [Prod.mk.injEq] at h₂ cases A case sderiv δ A hδ _ => simp only [Path.deriv_sderiv] at h₂ cases A case nil => cases h₂.1 case sderiv ζ A hζ _ => simp only [Path.deriv_sderiv] at h₂ cases h₂.1 variable [Level] [LtLevel β] theorem not_mem_strong_botDeriv (S : Support γ) (N : NearLitter) : N ∉ ((S ↗ hγ).strong ⇘. (Path.nil ↘.))ᴺ := by rintro h rw [strong, close_nearLitters, preStrong_nearLitters, Enumeration.mem_add_iff] at h obtain h | h := h · exact not_mem_scoderiv_botDeriv S N h · rw [mem_constrainsNearLitters_nearLitters] at h obtain ⟨B, N', hN', h⟩ := h cases h using Relation.ReflTransGen.head_induction_on case refl => exact not_mem_scoderiv_botDeriv S N hN' case head x hx₁ hx₂ _ => obtain ⟨⟨γ, δ, ε, hδ, hε, hδε, A⟩, t, B, hB, hN, ht⟩ := hx₂ simp only at hB cases B case nil => cases hB obtain ⟨C, N''⟩ := x simp only at ht cases ht.1 change _ ∈ t.supportᴺ at hN rw [t.support_supports.2 rfl] at hN obtain ⟨i, hN⟩ := hN cases hN case sderiv δ B hδ _ _ => cases B case nil => cases hB case sderiv ζ B hζ _ _ => cases hB theorem raise_preStrong' (S : Support α) (hS : S.Strong) (T : Support γ) (ρ : AllPerm β) (hγ : (γ : TypeIndex) < β) : (S + (ρᵁ • ((T ↗ hγ).strong + (S ↘ LtLevel.elim + (T ↗ hγ).strong).interferenceSupport)) ↗ LtLevel.elim).PreStrong := by apply hS.toPreStrong.add constructor intro A N hN P t hA ht obtain ⟨A, rfl⟩ := eq_of_nearLitter_mem_scoderiv_botDeriv hN simp only [scoderiv_botDeriv_eq, add_derivBot, smul_derivBot, BaseSupport.add_nearLitters, BaseSupport.smul_nearLitters, interferenceSupport_nearLitters, Enumeration.mem_add_iff, Enumeration.mem_smul, Enumeration.not_mem_empty, or_false] at hN obtain ⟨δ, ε, ζ, hε, hζ, hεζ, B⟩ := P dsimp only at * cases A case sderiv ζ' A hζ' _ => rw [← Path.coderiv_deriv] at hA cases Path.sderiv_index_injective hA apply Path.sderiv_left_inj.mp at hA cases A case nil => cases hA cases not_mem_strong_botDeriv T _ hN case sderiv ι A hι _ _ => rw [← Path.coderiv_deriv] at hA cases Path.sderiv_index_injective hA cases hA haveI : LtLevel δ := ⟨A.le.trans_lt LtLevel.elim⟩ haveI : LtLevel ε := ⟨hε.trans LtLevel.elim⟩ haveI : LtLevel ζ := ⟨hζ.trans LtLevel.elim⟩ have := (T ↗ hγ).strong_strong.support_le hN ⟨δ, ε, ζ, hε, hζ, hεζ, A⟩ (ρ⁻¹ ⇘ A ↘ hε • t) rfl ?_ · simp only [Tangle.smul_support, allPermSderiv_forget, allPermDeriv_forget, allPermForget_inv, Tree.inv_deriv, Tree.inv_sderiv] at this have := smul_le_smul this (ρᵁ ⇘ A ↘ hε) simp only [smul_inv_smul] at this apply le_trans this intro B constructor · intro a ha simp only [smul_derivBot, Tree.sderiv_apply, Tree.deriv_apply, Path.deriv_scoderiv, deriv_derivBot, Enumeration.mem_smul] at ha rw [deriv_derivBot, ← Path.deriv_scoderiv, Path.coderiv_deriv', scoderiv_botDeriv_eq,] simp only [Path.deriv_scoderiv, add_derivBot, smul_derivBot, BaseSupport.add_atoms, BaseSupport.smul_atoms, Enumeration.mem_add_iff, Enumeration.mem_smul] exact Or.inl ha · intro N hN simp only [smul_derivBot, Tree.sderiv_apply, Tree.deriv_apply, Path.deriv_scoderiv, deriv_derivBot, Enumeration.mem_smul] at hN rw [deriv_derivBot, ← Path.deriv_scoderiv, Path.coderiv_deriv', scoderiv_botDeriv_eq,] simp only [Path.deriv_scoderiv, add_derivBot, smul_derivBot, BaseSupport.add_nearLitters, BaseSupport.smul_nearLitters, Enumeration.mem_add_iff, Enumeration.mem_smul] exact Or.inl hN · rw [← smul_fuzz hε hζ hεζ, ← ht] simp only [Path.botSderiv_coe_eq, BasePerm.smul_nearLitter_litter, allPermDeriv_forget, allPermForget_inv, Tree.inv_deriv, Tree.inv_sderiv, Tree.inv_sderivBot] rfl theorem raise_closed' (S : Support α) (hS : S.Strong) (T : Support γ) (ρ : AllPerm β) (hγ : (γ : TypeIndex) < β) (hρ : ρᵁ • (S ↘ LtLevel.elim : Support β) = S ↘ LtLevel.elim) : (S + (ρᵁ • ((T ↗ hγ).strong + (S ↘ LtLevel.elim + (T ↗ hγ).strong).interferenceSupport)) ↗ LtLevel.elim).Closed := by constructor intro A constructor intro N₁ N₂ hN₁ hN₂ a ha simp only [add_derivBot, BaseSupport.add_nearLitters, Enumeration.mem_add_iff, BaseSupport.add_atoms] at hN₁ hN₂ ⊢ obtain hN₁ | hN₁ := hN₁ · obtain hN₂ | hN₂ := hN₂ · exact Or.inl ((hS.closed A).interference_subset hN₁ hN₂ a ha) · obtain ⟨B, rfl⟩ := eq_of_nearLitter_mem_scoderiv_botDeriv hN₂ simp only [smul_add, scoderiv_botDeriv_eq, add_derivBot, smul_derivBot, BaseSupport.add_nearLitters, BaseSupport.smul_nearLitters, Enumeration.mem_add_iff, Enumeration.mem_smul, BaseSupport.add_atoms, BaseSupport.smul_atoms] at hN₁ hN₂ ⊢ refine Or.inr (Or.inr ?_) rw [mem_interferenceSupport_atoms] refine ⟨(ρᵁ B)⁻¹ • N₁, ?_, (ρᵁ B)⁻¹ • N₂, ?_, ?_⟩ · simp only [add_derivBot, BaseSupport.add_nearLitters, Enumeration.mem_add_iff] rw [← Enumeration.mem_smul, ← BaseSupport.smul_nearLitters, ← smul_derivBot, hρ] exact Or.inl hN₁ · simp only [add_derivBot, BaseSupport.add_nearLitters, Enumeration.mem_add_iff] simp only [interferenceSupport_nearLitters, Enumeration.not_mem_empty, or_false] at hN₂ exact Or.inr hN₂ · rw [← BasePerm.smul_interference] exact Set.smul_mem_smul_set ha · obtain ⟨B, rfl⟩ := eq_of_nearLitter_mem_scoderiv_botDeriv hN₁ simp only [smul_add, scoderiv_botDeriv_eq, add_derivBot, smul_derivBot, BaseSupport.add_nearLitters, BaseSupport.smul_nearLitters, Enumeration.mem_add_iff, Enumeration.mem_smul, BaseSupport.add_atoms, BaseSupport.smul_atoms] at hN₁ hN₂ ⊢ refine Or.inr (Or.inr ?_) rw [mem_interferenceSupport_atoms] refine ⟨(ρᵁ B)⁻¹ • N₁, ?_, (ρᵁ B)⁻¹ • N₂, ?_, ?_⟩ · simp only [add_derivBot, BaseSupport.add_nearLitters, Enumeration.mem_add_iff] simp only [interferenceSupport_nearLitters, Enumeration.not_mem_empty, or_false] at hN₁ exact Or.inr hN₁ · simp only [add_derivBot, BaseSupport.add_nearLitters, Enumeration.mem_add_iff] simp only [interferenceSupport_nearLitters, Enumeration.not_mem_empty, or_false] at hN₂ obtain hN₂ | hN₂ := hN₂ · rw [← Enumeration.mem_smul, ← BaseSupport.smul_nearLitters, ← smul_derivBot, hρ] exact Or.inl hN₂ · exact Or.inr hN₂ · rw [← BasePerm.smul_interference] exact Set.smul_mem_smul_set ha theorem raise_strong' (S : Support α) (hS : S.Strong) (T : Support γ) (ρ : AllPerm β) (hγ : (γ : TypeIndex) < β) (hρ : ρᵁ • (S ↘ LtLevel.elim : Support β) = S ↘ LtLevel.elim) : (S + (ρᵁ • ((T ↗ hγ).strong + (S ↘ LtLevel.elim + (T ↗ hγ).strong).interferenceSupport)) ↗ LtLevel.elim).Strong := ⟨raise_preStrong' S hS T ρ hγ, raise_closed' S hS T ρ hγ hρ⟩ theorem convAtoms_injective_of_fixes {S : Support α} {T : Support γ} {ρ₁ ρ₂ : AllPerm β} {hγ : (γ : TypeIndex) < β} (hρ₁ : ρ₁ᵁ • (S ↘ LtLevel.elim : Support β) = S ↘ LtLevel.elim) (hρ₂ : ρ₂ᵁ • (S ↘ LtLevel.elim : Support β) = S ↘ LtLevel.elim) (A : ↑α ↝ ⊥) : (convAtoms (S + (ρ₁ᵁ • ((T ↗ hγ).strong + (S ↘ LtLevel.elim + (T ↗ hγ).strong).interferenceSupport)) ↗ LtLevel.elim) (S + (ρ₂ᵁ • ((T ↗ hγ).strong + (S ↘ LtLevel.elim + (T ↗ hγ).strong).interferenceSupport)) ↗ LtLevel.elim) A).Injective := by rw [Support.smul_eq_iff] at hρ₁ hρ₂ constructor rintro a₁ a₂ a₃ ⟨i, hi₁, hi₂⟩ ⟨j, hj₁, hj₂⟩ simp only [add_derivBot, BaseSupport.add_atoms, Rel.inv_apply, Enumeration.rel_add_iff] at hi₁ hi₂ hj₁ hj₂ obtain hi₁ | ⟨i, rfl, hi₁⟩ := hi₁ · obtain hi₂ | ⟨i', rfl, _⟩ := hi₂ swap · have := Enumeration.lt_bound _ _ ⟨_, hi₁⟩ simp only [add_lt_iff_neg_left] at this cases (κ_zero_le i').not_lt this cases (Enumeration.rel_coinjective _).coinjective hi₁ hi₂ obtain hj₁ | ⟨j, rfl, hj₁⟩ := hj₁ · obtain hj₂ | ⟨j', rfl, _⟩ := hj₂ · exact (Enumeration.rel_coinjective _).coinjective hj₂ hj₁ · have := Enumeration.lt_bound _ _ ⟨_, hj₁⟩ simp only [add_lt_iff_neg_left] at this cases (κ_zero_le j').not_lt this · obtain hj₂ | hj₂ := hj₂ · have := Enumeration.lt_bound _ _ ⟨_, hj₂⟩ simp only [add_lt_iff_neg_left] at this cases (κ_zero_le j).not_lt this · simp only [add_right_inj, exists_eq_left] at hj₂ obtain ⟨B, rfl⟩ := eq_of_atom_mem_scoderiv_botDeriv ⟨j, hj₁⟩ simp only [scoderiv_botDeriv_eq, smul_derivBot, add_derivBot, BaseSupport.smul_atoms, BaseSupport.add_atoms, Enumeration.smul_rel, add_right_inj, exists_eq_left] at hj₁ hj₂ have := (Enumeration.rel_coinjective _).coinjective hj₁ hj₂ rw [← (hρ₂ B).1 a₁ ⟨_, hi₁⟩, inv_smul_smul, inv_smul_eq_iff, (hρ₁ B).1 a₁ ⟨_, hi₁⟩] at this exact this.symm · obtain ⟨B, rfl⟩ := eq_of_atom_mem_scoderiv_botDeriv ⟨i, hi₁⟩ simp only [scoderiv_botDeriv_eq, smul_derivBot, add_derivBot, BaseSupport.smul_atoms, BaseSupport.add_atoms, Enumeration.smul_rel, add_right_inj, exists_eq_left] at hi₁ hi₂ hj₁ hj₂ obtain hi₂ | hi₂ := hi₂ · have := Enumeration.lt_bound _ _ ⟨_, hi₂⟩ simp only [add_lt_iff_neg_left] at this cases (κ_zero_le i).not_lt this have hi := (Enumeration.rel_coinjective _).coinjective hi₁ hi₂ suffices hj : (ρ₁ᵁ B)⁻¹ • a₂ = (ρ₂ᵁ B)⁻¹ • a₃ by rwa [← hj, smul_left_cancel_iff] at hi obtain hj₁ | ⟨j, rfl, hj₁⟩ := hj₁ · obtain hj₂ | ⟨j', rfl, _⟩ := hj₂ · rw [← (hρ₁ B).1 a₂ ⟨_, hj₁⟩, ← (hρ₂ B).1 a₃ ⟨_, hj₂⟩, inv_smul_smul, inv_smul_smul] exact (Enumeration.rel_coinjective _).coinjective hj₁ hj₂ · have := Enumeration.lt_bound _ _ ⟨_, hj₁⟩ simp only [add_lt_iff_neg_left] at this cases (κ_zero_le j').not_lt this · obtain hj₂ | hj₂ := hj₂ · have := Enumeration.lt_bound _ _ ⟨_, hj₂⟩ simp only [add_lt_iff_neg_left] at this cases (κ_zero_le j).not_lt this · simp only [add_right_inj, exists_eq_left] at hj₂ exact (Enumeration.rel_coinjective _).coinjective hj₁ hj₂ theorem atomMemRel_le_of_fixes {S : Support α} {T : Support γ} {ρ₁ ρ₂ : AllPerm β} {hγ : (γ : TypeIndex) < β} (hρ₁ : ρ₁ᵁ • (S ↘ LtLevel.elim : Support β) = S ↘ LtLevel.elim) (hρ₂ : ρ₂ᵁ • (S ↘ LtLevel.elim : Support β) = S ↘ LtLevel.elim) (A : ↑α ↝ ⊥) : atomMemRel (S + (ρ₁ᵁ • ((T ↗ hγ).strong + (S ↘ LtLevel.elim + (T ↗ hγ).strong).interferenceSupport)) ↗ LtLevel.elim) A ≤ atomMemRel (S + (ρ₂ᵁ • ((T ↗ hγ).strong + (S ↘ LtLevel.elim + (T ↗ hγ).strong).interferenceSupport)) ↗ LtLevel.elim) A := by rw [Support.smul_eq_iff] at hρ₁ hρ₂ rintro i j ⟨N, hN, a, haN, ha⟩ simp only [add_derivBot, BaseSupport.add_atoms, Rel.inv_apply, Enumeration.rel_add_iff, BaseSupport.add_nearLitters] at ha hN obtain hN | ⟨i, rfl, hi⟩ := hN · obtain ha | ⟨j, rfl, hj⟩ := ha · exact ⟨N, Or.inl hN, a, haN, Or.inl ha⟩ · obtain ⟨B, rfl⟩ := eq_of_atom_mem_scoderiv_botDeriv ⟨j, hj⟩ simp only [scoderiv_botDeriv_eq, smul_derivBot, add_derivBot, BaseSupport.smul_atoms, BaseSupport.add_atoms, Enumeration.smul_rel] at hj hN refine ⟨N, Or.inl hN, ρ₂ᵁ B • (ρ₁ᵁ B)⁻¹ • a, ?_, ?_⟩ · dsimp only rw [← (hρ₂ B).2 N ⟨_, hN⟩, BasePerm.smul_nearLitter_atoms, Set.smul_mem_smul_set_iff] have := (hρ₁ B).2 N ⟨_, hN⟩ rw [smul_eq_iff_eq_inv_smul] at this rwa [this, BasePerm.smul_nearLitter_atoms, Set.smul_mem_smul_set_iff] · rw [Rel.inv_apply, add_derivBot, BaseSupport.add_atoms, Enumeration.rel_add_iff] simp only [add_right_inj, scoderiv_botDeriv_eq, smul_derivBot, add_derivBot, BaseSupport.smul_atoms, BaseSupport.add_atoms, Enumeration.smul_rel, inv_smul_smul, exists_eq_left] exact Or.inr hj · obtain ⟨B, rfl⟩ := eq_of_nearLitter_mem_scoderiv_botDeriv ⟨i, hi⟩ simp only [scoderiv_botDeriv_eq, smul_derivBot, add_derivBot, BaseSupport.smul_atoms, BaseSupport.add_atoms, Enumeration.smul_rel] at hi ha obtain ha | ⟨j, rfl, hj⟩ := ha · refine ⟨ρ₂ᵁ B • (ρ₁ᵁ B)⁻¹ • N, ?_, a, ?_, Or.inl ha⟩ · rw [add_derivBot, BaseSupport.add_nearLitters, Enumeration.rel_add_iff] simp only [add_right_inj, scoderiv_botDeriv_eq, smul_derivBot, add_derivBot, BaseSupport.smul_nearLitters, BaseSupport.add_nearLitters, Enumeration.smul_rel, inv_smul_smul, exists_eq_left] exact Or.inr hi · dsimp only rw [← (hρ₂ B).1 a ⟨_, ha⟩, BasePerm.smul_nearLitter_atoms, Set.smul_mem_smul_set_iff] have := (hρ₁ B).1 a ⟨_, ha⟩ rw [smul_eq_iff_eq_inv_smul] at this rwa [this, BasePerm.smul_nearLitter_atoms, Set.smul_mem_smul_set_iff] · refine ⟨ρ₂ᵁ B • (ρ₁ᵁ B)⁻¹ • N, ?_, ρ₂ᵁ B • (ρ₁ᵁ B)⁻¹ • a, ?_, ?_⟩ · rw [add_derivBot, BaseSupport.add_nearLitters, Enumeration.rel_add_iff] simp only [add_right_inj, scoderiv_botDeriv_eq, smul_derivBot, add_derivBot, BaseSupport.smul_nearLitters, BaseSupport.add_nearLitters, Enumeration.smul_rel, inv_smul_smul, exists_eq_left] exact Or.inr hi · simp only [BasePerm.smul_nearLitter_atoms, Set.smul_mem_smul_set_iff] exact haN · rw [Rel.inv_apply, add_derivBot, BaseSupport.add_atoms, Enumeration.rel_add_iff] simp only [add_right_inj, scoderiv_botDeriv_eq, smul_derivBot, add_derivBot, BaseSupport.smul_atoms, BaseSupport.add_atoms, Enumeration.smul_rel, inv_smul_smul, exists_eq_left] exact Or.inr hj theorem convNearLitters_cases {S : Support α} {T : Support γ} {ρ₁ ρ₂ : AllPerm β} {hγ : (γ : TypeIndex) < β} {A : α ↝ ⊥} {N₁ N₂ : NearLitter} : convNearLitters (S + (ρ₁ᵁ • ((T ↗ hγ).strong + (S ↘ LtLevel.elim + (T ↗ hγ).strong).interferenceSupport)) ↗ LtLevel.elim) (S + (ρ₂ᵁ • ((T ↗ hγ).strong + (S ↘ LtLevel.elim + (T ↗ hγ).strong).interferenceSupport)) ↗ LtLevel.elim) A N₁ N₂ → N₁ = N₂ ∧ N₁ ∈ (S ⇘. A)ᴺ ∨ ∃ B : β ↝ ⊥, A = B ↗ LtLevel.elim ∧ (ρ₁ᵁ B)⁻¹ • N₁ = (ρ₂ᵁ B)⁻¹ • N₂ ∧ (ρ₁ᵁ B)⁻¹ • N₁ ∈ (((T ↗ hγ).strong + (S ↘ LtLevel.elim + (T ↗ hγ).strong).interferenceSupport) ⇘. B)ᴺ := by rintro ⟨i, hN₁, hN₂⟩ simp only [add_derivBot, BaseSupport.add_nearLitters, Rel.inv_apply, Enumeration.rel_add_iff] at hN₁ hN₂ obtain hN₁ | ⟨i, rfl, hN₁⟩ := hN₁ · obtain hN₂ | ⟨i, rfl, hN₂⟩ := hN₂ swap · have := Enumeration.lt_bound _ _ ⟨_, hN₁⟩ simp only [add_lt_iff_neg_left] at this cases (κ_zero_le i).not_lt this exact Or.inl ⟨(Enumeration.rel_coinjective _).coinjective hN₁ hN₂, _, hN₁⟩ · obtain ⟨B, rfl⟩ := eq_of_nearLitter_mem_scoderiv_botDeriv ⟨i, hN₁⟩ simp only [scoderiv_botDeriv_eq, smul_derivBot, add_derivBot, BaseSupport.smul_nearLitters, BaseSupport.add_nearLitters, Enumeration.smul_rel, add_right_inj, exists_eq_left] at hN₁ hN₂ obtain hN₂ | hN₂ := hN₂ · have := Enumeration.lt_bound _ _ ⟨_, hN₂⟩ simp only [add_lt_iff_neg_left] at this cases (κ_zero_le i).not_lt this exact Or.inr ⟨B, rfl, (Enumeration.rel_coinjective _).coinjective hN₁ hN₂, _, hN₁⟩ theorem inflexible_of_inflexible_of_fixes {S : Support α} {T : Support γ} {ρ₁ ρ₂ : AllPerm β} {hγ : (γ : TypeIndex) < β} (hρ₁ : ρ₁ᵁ • (S ↘ LtLevel.elim : Support β) = S ↘ LtLevel.elim) (hρ₂ : ρ₂ᵁ • (S ↘ LtLevel.elim : Support β) = S ↘ LtLevel.elim) {A : α ↝ ⊥} {N₁ N₂ : NearLitter} : convNearLitters (S + (ρ₁ᵁ • ((T ↗ hγ).strong + (S ↘ LtLevel.elim + (T ↗ hγ).strong).interferenceSupport)) ↗ LtLevel.elim) (S + (ρ₂ᵁ • ((T ↗ hγ).strong + (S ↘ LtLevel.elim + (T ↗ hγ).strong).interferenceSupport)) ↗ LtLevel.elim) A N₁ N₂ → ∀ (P : InflexiblePath ↑α) (t : Tangle P.δ), A = P.A ↘ P.hε ↘. → N₁ᴸ = fuzz P.hδε t → ∃ ρ : AllPerm P.δ, N₂ᴸ = fuzz P.hδε (ρ • t) := by rintro hN ⟨γ, δ, ε, hδ, hε, hδε, A⟩ t hA ht haveI : LeLevel γ := ⟨A.le⟩ haveI : LtLevel δ := ⟨hδ.trans_le LeLevel.elim⟩ haveI : LtLevel ε := ⟨hε.trans_le LeLevel.elim⟩ obtain ⟨rfl, _⟩ | ⟨B, rfl, hN'⟩ := convNearLitters_cases hN · use 1 rw [one_smul, ht] · clear hN cases B case sderiv ε B hε' _ => rw [← Path.coderiv_deriv] at hA cases Path.sderiv_index_injective hA apply Path.sderiv_path_injective at hA cases B case nil => simp only [Path.botSderiv_coe_eq, add_derivBot, BaseSupport.add_nearLitters, interferenceSupport_nearLitters, Enumeration.add_empty] at hN' cases not_mem_strong_botDeriv _ _ hN'.2 case sderiv ζ B hζ _ _ => rw [← Path.coderiv_deriv] at hA cases Path.sderiv_index_injective hA apply Path.sderiv_path_injective at hA dsimp only at hA hζ hε' B t cases hA use (ρ₂ * ρ₁⁻¹) ⇘ B ↘ hδ rw [inv_smul_eq_iff] at hN' rw [← smul_fuzz hδ hε hδε, ← ht, hN'.1] simp only [allPermDeriv_forget, allPermForget_mul, allPermForget_inv, Tree.mul_deriv, Tree.inv_deriv, Tree.mul_sderiv, Tree.inv_sderiv, Tree.mul_sderivBot, Tree.inv_sderivBot, Path.botSderiv_coe_eq, BasePerm.smul_nearLitter_litter, mul_smul] erw [inv_smul_smul, smul_inv_smul] theorem atoms_of_inflexible_of_fixes {S : Support α} (hS : S.Strong) {T : Support γ} {ρ₁ ρ₂ : AllPerm β} {hγ : (γ : TypeIndex) < β} (hρ₁ : ρ₁ᵁ • (S ↘ LtLevel.elim : Support β) = S ↘ LtLevel.elim) (hρ₂ : ρ₂ᵁ • (S ↘ LtLevel.elim : Support β) = S ↘ LtLevel.elim) (A : α ↝ ⊥) (N₁ N₂ : NearLitter) (P : InflexiblePath ↑α) (t : Tangle P.δ) (ρ : AllPerm P.δ) : A = P.A ↘ P.hε ↘. → N₁ᴸ = fuzz P.hδε t → N₂ᴸ = fuzz P.hδε (ρ • t) → convNearLitters (S + (ρ₁ᵁ • ((T ↗ hγ).strong + (S ↘ LtLevel.elim + (T ↗ hγ).strong).interferenceSupport)) ↗ LtLevel.elim) (S + (ρ₂ᵁ • ((T ↗ hγ).strong + (S ↘ LtLevel.elim + (T ↗ hγ).strong).interferenceSupport)) ↗ LtLevel.elim) A N₁ N₂ → ∀ (B : P.δ ↝ ⊥), ∀ a ∈ (t.support ⇘. B)ᴬ, ∀ (i : κ), ((S + (ρ₁ᵁ • ((T ↗ hγ).strong + (S ↘ LtLevel.elim + (T ↗ hγ).strong).interferenceSupport)) ↗ LtLevel.elim) ⇘. (P.A ↘ P.hδ ⇘ B))ᴬ.rel i a → ((S + (ρ₂ᵁ • ((T ↗ hγ).strong + (S ↘ LtLevel.elim + (T ↗ hγ).strong).interferenceSupport)) ↗ LtLevel.elim) ⇘. (P.A ↘ P.hδ ⇘ B))ᴬ.rel i (ρᵁ B • a) := by rw [Support.smul_eq_iff] at hρ₁ hρ₂ obtain ⟨γ, δ, ε, hδ, hε, hδε, B⟩ := P haveI : LeLevel γ := ⟨B.le⟩ haveI : LtLevel δ := ⟨hδ.trans_le LeLevel.elim⟩ haveI : LtLevel ε := ⟨hε.trans_le LeLevel.elim⟩ dsimp only at t ρ ⊢ intro hA hN₁ hN₂ hN C a ha i hi obtain ⟨rfl, hN'⟩ | ⟨A, rfl, hN₁', hN₂'⟩ := convNearLitters_cases hN · have haS := (hS.support_le hN' ⟨γ, δ, ε, hδ, hε, hδε, _⟩ t hA hN₁ _).1 a ha rw [hN₂] at hN₁ have hρt := congr_arg Tangle.support (fuzz_injective hN₁) rw [Tangle.smul_support, Support.smul_eq_iff] at hρt simp only [add_derivBot, BaseSupport.add_atoms, Enumeration.rel_add_iff] at hi ⊢ rw [(hρt C).1 a ha] obtain hi | ⟨i, rfl, hi⟩ := hi · exact Or.inl hi · simp only [add_right_inj, exists_eq_left] obtain ⟨D, hD⟩ := eq_of_atom_mem_scoderiv_botDeriv ⟨i, hi⟩ cases B using Path.recScoderiv case nil => cases Path.scoderiv_index_injective hD cases Path.scoderiv_left_inj.mp hD simp only [hD, Path.coderiv_deriv, Path.coderiv_deriv', scoderiv_botDeriv_eq, smul_derivBot, add_derivBot, BaseSupport.smul_atoms, BaseSupport.add_atoms, Enumeration.smul_rel] at hi ⊢ rw [deriv_derivBot, hD] at haS rw [← (hρ₂ _).1 a haS, inv_smul_smul] rw [← (hρ₁ _).1 a haS, inv_smul_smul] at hi exact Or.inr hi case scoderiv ζ B hζ' _ => rw [Path.coderiv_deriv, Path.coderiv_deriv'] at hD cases Path.scoderiv_index_injective hD rw [Path.scoderiv_left_inj] at hD cases hD simp only [Path.coderiv_deriv, Path.coderiv_deriv', scoderiv_botDeriv_eq, smul_derivBot, add_derivBot, BaseSupport.smul_atoms, BaseSupport.add_atoms, Enumeration.smul_rel] at hi ⊢ rw [deriv_derivBot, Path.coderiv_deriv, Path.coderiv_deriv'] at haS rw [← (hρ₂ _).1 a haS, inv_smul_smul] rw [← (hρ₁ _).1 a haS, inv_smul_smul] at hi exact Or.inr hi · simp only [add_derivBot, BaseSupport.add_nearLitters, interferenceSupport_nearLitters, Enumeration.add_empty] at hN₂' cases A case sderiv ζ A hζ' _ => rw [← Path.coderiv_deriv] at hA cases Path.sderiv_index_injective hA apply Path.sderiv_path_injective at hA cases A case nil => cases hA cases not_mem_strong_botDeriv _ _ hN₂' case sderiv ζ A hζ _ _ => rw [← Path.coderiv_deriv] at hA cases Path.sderiv_index_injective hA apply Path.sderiv_path_injective at hA cases hA simp only [Path.coderiv_deriv, Path.coderiv_deriv', add_derivBot, scoderiv_botDeriv_eq, smul_derivBot, BaseSupport.add_atoms, BaseSupport.smul_atoms] at hi ⊢ have : N₂ᴸ = (ρ₂ ⇘ A)ᵁ ↘ hζ ↘. • (ρ₁⁻¹ ⇘ A)ᵁ ↘ hζ ↘. • fuzz hδε t := by rw [inv_smul_eq_iff] at hN₁' rw [hN₁', Path.botSderiv_coe_eq, BasePerm.smul_nearLitter_litter, BasePerm.smul_nearLitter_litter, smul_smul, smul_eq_iff_eq_inv_smul, mul_inv_rev, inv_inv, mul_smul, ← Tree.inv_apply, ← allPermForget_inv] at hN₁ rw [hN₁] simp only [allPermForget_inv, Tree.inv_apply, allPermDeriv_forget, Tree.inv_deriv, Tree.inv_sderiv, Tree.inv_sderivBot] rfl rw [smul_fuzz hδ hε hδε, smul_fuzz hδ hε hδε] at this have := fuzz_injective (hN₂.symm.trans this) rw [smul_smul] at this rw [t.smul_atom_eq_of_mem_support this ha] rw [Enumeration.rel_add_iff] at hi ⊢ obtain hi | ⟨i, rfl, hi⟩ := hi · left simp only [allPermForget_mul, allPermSderiv_forget, allPermDeriv_forget, allPermForget_inv, Tree.inv_deriv, Tree.inv_sderiv, Tree.mul_apply, Tree.sderiv_apply, Tree.deriv_apply, Path.deriv_scoderiv, Tree.inv_apply, mul_smul] rwa [← (hρ₁ _).1 a ⟨i, hi⟩, inv_smul_smul, (hρ₂ _).1 a ⟨i, hi⟩] · refine Or.inr ⟨i, rfl, ?_⟩ simp only [allPermForget_mul, allPermSderiv_forget, allPermDeriv_forget, allPermForget_inv, Tree.inv_deriv, Tree.inv_sderiv, Tree.mul_apply, Tree.sderiv_apply, Tree.deriv_apply, Path.deriv_scoderiv, Tree.inv_apply, mul_smul, Enumeration.smul_rel, inv_smul_smul] exact hi theorem nearLitters_of_inflexible_of_fixes {S : Support α} (hS : S.Strong) {T : Support γ} {ρ₁ ρ₂ : AllPerm β} {hγ : (γ : TypeIndex) < β} (hρ₁ : ρ₁ᵁ • (S ↘ LtLevel.elim : Support β) = S ↘ LtLevel.elim) (hρ₂ : ρ₂ᵁ • (S ↘ LtLevel.elim : Support β) = S ↘ LtLevel.elim) (A : α ↝ ⊥) (N₁ N₂ : NearLitter) (P : InflexiblePath ↑α) (t : Tangle P.δ) (ρ : AllPerm P.δ) : A = P.A ↘ P.hε ↘. → N₁ᴸ = fuzz P.hδε t → N₂ᴸ = fuzz P.hδε (ρ • t) → convNearLitters (S + (ρ₁ᵁ • ((T ↗ hγ).strong + (S ↘ LtLevel.elim + (T ↗ hγ).strong).interferenceSupport)) ↗ LtLevel.elim) (S + (ρ₂ᵁ • ((T ↗ hγ).strong + (S ↘ LtLevel.elim + (T ↗ hγ).strong).interferenceSupport)) ↗ LtLevel.elim) A N₁ N₂ → ∀ (B : P.δ ↝ ⊥), ∀ N ∈ (t.support ⇘. B)ᴺ, ∀ (i : κ), ((S + (ρ₁ᵁ • ((T ↗ hγ).strong + (S ↘ LtLevel.elim + (T ↗ hγ).strong).interferenceSupport)) ↗ LtLevel.elim) ⇘. (P.A ↘ P.hδ ⇘ B))ᴺ.rel i N → ((S + (ρ₂ᵁ • ((T ↗ hγ).strong + (S ↘ LtLevel.elim + (T ↗ hγ).strong).interferenceSupport)) ↗ LtLevel.elim) ⇘. (P.A ↘ P.hδ ⇘ B))ᴺ.rel i (ρᵁ B • N) := by rw [Support.smul_eq_iff] at hρ₁ hρ₂ obtain ⟨γ, δ, ε, hδ, hε, hδε, B⟩ := P haveI : LeLevel γ := ⟨B.le⟩ haveI : LtLevel δ := ⟨hδ.trans_le LeLevel.elim⟩ haveI : LtLevel ε := ⟨hε.trans_le LeLevel.elim⟩ dsimp only at t ρ ⊢ intro hA hN₁ hN₂ hN C N₀ hN₀ i hi obtain ⟨rfl, hN'⟩ | ⟨A, rfl, hN₁', hN₂'⟩ := convNearLitters_cases hN · have haS := (hS.support_le hN' ⟨γ, δ, ε, hδ, hε, hδε, _⟩ t hA hN₁ _).2 N₀ hN₀ rw [hN₂] at hN₁ have hρt := congr_arg Tangle.support (fuzz_injective hN₁) rw [Tangle.smul_support, Support.smul_eq_iff] at hρt simp only [add_derivBot, BaseSupport.add_nearLitters, Enumeration.rel_add_iff] at hi ⊢ rw [(hρt C).2 N₀ hN₀] obtain hi | ⟨i, rfl, hi⟩ := hi · exact Or.inl hi · simp only [add_right_inj, exists_eq_left] obtain ⟨D, hD⟩ := eq_of_nearLitter_mem_scoderiv_botDeriv ⟨i, hi⟩ cases B using Path.recScoderiv case nil => cases Path.scoderiv_index_injective hD cases Path.scoderiv_left_inj.mp hD simp only [hD, Path.coderiv_deriv, Path.coderiv_deriv', scoderiv_botDeriv_eq, smul_derivBot, add_derivBot, BaseSupport.smul_nearLitters, BaseSupport.add_nearLitters, Enumeration.smul_rel] at hi ⊢ rw [deriv_derivBot, hD] at haS rw [← (hρ₂ _).2 N₀ haS, inv_smul_smul] rw [← (hρ₁ _).2 N₀ haS, inv_smul_smul] at hi exact Or.inr hi case scoderiv ζ B hζ' _ => rw [Path.coderiv_deriv, Path.coderiv_deriv'] at hD cases Path.scoderiv_index_injective hD rw [Path.scoderiv_left_inj] at hD cases hD simp only [Path.coderiv_deriv, Path.coderiv_deriv', scoderiv_botDeriv_eq, smul_derivBot, add_derivBot, BaseSupport.smul_nearLitters, BaseSupport.add_nearLitters, Enumeration.smul_rel] at hi ⊢ rw [deriv_derivBot, Path.coderiv_deriv, Path.coderiv_deriv'] at haS rw [← (hρ₂ _).2 N₀ haS, inv_smul_smul] rw [← (hρ₁ _).2 N₀ haS, inv_smul_smul] at hi exact Or.inr hi · simp only [add_derivBot, BaseSupport.add_nearLitters, interferenceSupport_nearLitters, Enumeration.add_empty] at hN₂' cases A case sderiv ζ A hζ' _ => rw [← Path.coderiv_deriv] at hA cases Path.sderiv_index_injective hA apply Path.sderiv_path_injective at hA cases A case nil => cases hA cases not_mem_strong_botDeriv _ _ hN₂' case sderiv ζ A hζ _ _ => rw [← Path.coderiv_deriv] at hA cases Path.sderiv_index_injective hA apply Path.sderiv_path_injective at hA cases hA simp only [Path.coderiv_deriv, Path.coderiv_deriv', add_derivBot, scoderiv_botDeriv_eq, smul_derivBot, BaseSupport.add_nearLitters, BaseSupport.smul_nearLitters] at hi ⊢ have : N₂ᴸ = (ρ₂ ⇘ A)ᵁ ↘ hζ ↘. • (ρ₁⁻¹ ⇘ A)ᵁ ↘ hζ ↘. • fuzz hδε t := by rw [inv_smul_eq_iff] at hN₁' rw [hN₁', Path.botSderiv_coe_eq, BasePerm.smul_nearLitter_litter, BasePerm.smul_nearLitter_litter, smul_smul, smul_eq_iff_eq_inv_smul, mul_inv_rev, inv_inv, mul_smul, ← Tree.inv_apply, ← allPermForget_inv] at hN₁ rw [hN₁] simp only [allPermForget_inv, Tree.inv_apply, allPermDeriv_forget, Tree.inv_deriv, Tree.inv_sderiv, Tree.inv_sderivBot] rfl rw [smul_fuzz hδ hε hδε, smul_fuzz hδ hε hδε] at this have := fuzz_injective (hN₂.symm.trans this) rw [smul_smul] at this rw [t.smul_nearLitter_eq_of_mem_support this hN₀] rw [Enumeration.rel_add_iff] at hi ⊢ obtain hi | ⟨i, rfl, hi⟩ := hi · left simp only [allPermForget_mul, allPermSderiv_forget, allPermDeriv_forget, allPermForget_inv, Tree.inv_deriv, Tree.inv_sderiv, Tree.mul_apply, Tree.sderiv_apply, Tree.deriv_apply, Path.deriv_scoderiv, Tree.inv_apply, mul_smul] rwa [← (hρ₁ _).2 N₀ ⟨i, hi⟩, inv_smul_smul, (hρ₂ _).2 N₀ ⟨i, hi⟩] · refine Or.inr ⟨i, rfl, ?_⟩ simp only [allPermForget_mul, allPermSderiv_forget, allPermDeriv_forget, allPermForget_inv, Tree.inv_deriv, Tree.inv_sderiv, Tree.mul_apply, Tree.sderiv_apply, Tree.deriv_apply, Path.deriv_scoderiv, Tree.inv_apply, mul_smul, Enumeration.smul_rel, inv_smul_smul] exact hi theorem litter_eq_of_flexible_of_fixes {S : Support α} {T : Support γ} {ρ₁ ρ₂ : AllPerm β} {hγ : (γ : TypeIndex) < β} (hρ₁ : ρ₁ᵁ • (S ↘ LtLevel.elim : Support β) = S ↘ LtLevel.elim) (hρ₂ : ρ₂ᵁ • (S ↘ LtLevel.elim : Support β) = S ↘ LtLevel.elim) {A : ↑α ↝ ⊥} {N₁ N₂ N₃ N₄ : NearLitter} : convNearLitters (S + (ρ₁ᵁ • ((T ↗ hγ).strong + (S ↘ LtLevel.elim + (T ↗ hγ).strong).interferenceSupport)) ↗ LtLevel.elim) (S + (ρ₂ᵁ • ((T ↗ hγ).strong + (S ↘ LtLevel.elim + (T ↗ hγ).strong).interferenceSupport)) ↗ LtLevel.elim) A N₁ N₂ → convNearLitters (S + (ρ₁ᵁ • ((T ↗ hγ).strong + (S ↘ LtLevel.elim + (T ↗ hγ).strong).interferenceSupport)) ↗ LtLevel.elim) (S + (ρ₂ᵁ • ((T ↗ hγ).strong + (S ↘ LtLevel.elim + (T ↗ hγ).strong).interferenceSupport)) ↗ LtLevel.elim) A N₃ N₄ → ¬Inflexible A N₁ᴸ → ¬Inflexible A N₂ᴸ → ¬Inflexible A N₃ᴸ → ¬Inflexible A N₄ᴸ → N₁ᴸ = N₃ᴸ → N₂ᴸ = N₄ᴸ := by rw [Support.smul_eq_iff] at hρ₁ hρ₂ rintro ⟨i, hi₁, hi₂⟩ ⟨j, hj₁, hj₂⟩ hN₁ hN₂ hN₃ hN₄ hN₁₃ simp only [add_derivBot, BaseSupport.add_nearLitters, Rel.inv_apply, Enumeration.rel_add_iff] at hi₁ hi₂ hj₁ hj₂ obtain hi₁ | ⟨i, rfl, hi₁⟩ := hi₁ · obtain hi₂ | ⟨i, rfl, hi₂⟩ := hi₂ swap · have := Enumeration.lt_bound _ _ ⟨_, hi₁⟩ simp only [add_lt_iff_neg_left] at this cases (κ_zero_le i).not_lt this cases (Enumeration.rel_coinjective _).coinjective hi₁ hi₂ obtain hj₁ | ⟨j, rfl, hj₁⟩ := hj₁ · obtain hj₂ | ⟨j, rfl, hj₂⟩ := hj₂ swap · have := Enumeration.lt_bound _ _ ⟨_, hj₁⟩ simp only [add_lt_iff_neg_left] at this cases (κ_zero_le j).not_lt this cases (Enumeration.rel_coinjective _).coinjective hj₁ hj₂ exact hN₁₃ · simp only [add_right_inj, exists_eq_left] at hj₂ obtain hj₂ | hj₂ := hj₂ · have := Enumeration.lt_bound _ _ ⟨_, hj₂⟩ simp only [add_lt_iff_neg_left] at this cases (κ_zero_le j).not_lt this obtain ⟨A, rfl⟩ := eq_of_nearLitter_mem_scoderiv_botDeriv ⟨j, hj₁⟩ simp only [scoderiv_botDeriv_eq, smul_derivBot, add_derivBot, BaseSupport.smul_nearLitters, BaseSupport.add_nearLitters, Enumeration.smul_rel] at hj₁ hj₂ have := congr_arg (·ᴸ) ((Enumeration.rel_coinjective _).coinjective hj₁ hj₂) simp only [BasePerm.smul_nearLitter_litter] at this rw [← hN₁₃, ← (hρ₁ A).2 N₁ ⟨i, hi₁⟩, BasePerm.smul_nearLitter_litter, inv_smul_smul] at this have hN₁' := (hρ₂ A).2 N₁ ⟨i, hi₁⟩ rw [smul_eq_iff_eq_inv_smul] at hN₁' rwa [hN₁', BasePerm.smul_nearLitter_litter, smul_left_cancel_iff] at this · obtain hi₂ | hi₂ := hi₂ · have := Enumeration.lt_bound _ _ ⟨_, hi₂⟩ simp only [add_lt_iff_neg_left] at this cases (κ_zero_le i).not_lt this simp only [add_right_inj, exists_eq_left] at hi₂ obtain ⟨A, rfl⟩ := eq_of_nearLitter_mem_scoderiv_botDeriv ⟨i, hi₁⟩ simp only [scoderiv_botDeriv_eq, smul_derivBot, add_derivBot, BaseSupport.smul_nearLitters, BaseSupport.add_nearLitters, Enumeration.smul_rel] at hi₁ hi₂ hj₁ hj₂ have hN₁₂ := congr_arg (·ᴸ) ((Enumeration.rel_coinjective _).coinjective hi₁ hi₂) obtain hj₁ | ⟨j, rfl, hj₁⟩ := hj₁ · obtain hj₂ | ⟨j, rfl, hj₂⟩ := hj₂ swap · have := Enumeration.lt_bound _ _ ⟨_, hj₁⟩ simp only [add_lt_iff_neg_left] at this cases (κ_zero_le j).not_lt this cases (Enumeration.rel_coinjective _).coinjective hj₁ hj₂ simp only [BasePerm.smul_nearLitter_litter] at hN₁₂ rw [hN₁₃, ← (hρ₁ A).2 N₃ ⟨j, hj₁⟩, BasePerm.smul_nearLitter_litter, inv_smul_smul, eq_inv_smul_iff, ← BasePerm.smul_nearLitter_litter, (hρ₂ A).2 N₃ ⟨j, hj₁⟩] at hN₁₂ rw [hN₁₂] · simp only [add_right_inj, exists_eq_left] at hj₂ obtain hj₂ | hj₂ := hj₂ · have := Enumeration.lt_bound _ _ ⟨_, hj₂⟩ simp only [add_lt_iff_neg_left] at this cases (κ_zero_le j).not_lt this have hN₃₄ := congr_arg (·ᴸ) ((Enumeration.rel_coinjective _).coinjective hj₁ hj₂) simp only [BasePerm.smul_nearLitter_litter] at hN₁₂ hN₃₄ rw [hN₁₃] at hN₁₂ rwa [hN₁₂, smul_left_cancel_iff] at hN₃₄ theorem sameSpecLe_of_fixes (S : Support α) (hS : S.Strong) (T : Support γ) (ρ₁ ρ₂ : AllPerm β) (hγ : (γ : TypeIndex) < β) (hρ₁ : ρ₁ᵁ • (S ↘ LtLevel.elim : Support β) = S ↘ LtLevel.elim) (hρ₂ : ρ₂ᵁ • (S ↘ LtLevel.elim : Support β) = S ↘ LtLevel.elim) : SameSpecLE (S + (ρ₁ᵁ • ((T ↗ hγ).strong + (S ↘ LtLevel.elim + (T ↗ hγ).strong).interferenceSupport)) ↗ LtLevel.elim) (S + (ρ₂ᵁ • ((T ↗ hγ).strong + (S ↘ LtLevel.elim + (T ↗ hγ).strong).interferenceSupport)) ↗ LtLevel.elim) := by constructor case atoms_bound_eq => intro; rfl case nearLitters_bound_eq => intro; rfl case atoms_dom_subset => simp only [add_derivBot, BaseSupport.add_atoms, Enumeration.add_rel_dom, Set.union_subset_iff, Set.subset_union_left, true_and] rintro A _ ⟨i, ⟨a, ⟨A, a⟩, h₁, h₂⟩, rfl⟩ cases h₂ right apply Set.mem_image_of_mem refine ⟨ρ₂ᵁ A • (ρ₁ᵁ A)⁻¹ • a, ⟨A, ρ₂ᵁ A • (ρ₁ᵁ A)⁻¹ • a⟩, ?_, rfl⟩ rw [smul_atoms, Enumeration.smulPath_rel] at h₁ ⊢ simp only [inv_smul_smul] exact h₁ case nearLitters_dom_subset => simp only [add_derivBot, BaseSupport.add_nearLitters, Enumeration.add_rel_dom, Set.union_subset_iff, Set.subset_union_left, true_and] rintro A _ ⟨i, ⟨N, ⟨A, N⟩, h₁, h₂⟩, rfl⟩ cases h₂ right apply Set.mem_image_of_mem refine ⟨ρ₂ᵁ A • (ρ₁ᵁ A)⁻¹ • N, ⟨A, ρ₂ᵁ A • (ρ₁ᵁ A)⁻¹ • N⟩, ?_, rfl⟩ rw [smul_nearLitters, Enumeration.smulPath_rel] at h₁ ⊢ simp only [inv_smul_smul] exact h₁ case convAtoms_injective => exact convAtoms_injective_of_fixes hρ₁ hρ₂ case atomMemRel_le => exact atomMemRel_le_of_fixes hρ₁ hρ₂ case inflexible_of_inflexible => exact inflexible_of_inflexible_of_fixes hρ₁ hρ₂ case atoms_of_inflexible => exact atoms_of_inflexible_of_fixes hS hρ₁ hρ₂ case nearLitters_of_inflexible => exact nearLitters_of_inflexible_of_fixes hS hρ₁ hρ₂ case litter_eq_of_flexible => exact litter_eq_of_flexible_of_fixes hρ₁ hρ₂
theorem spec_same_of_fixes (S : Support α) (hS : S.Strong) (T : Support γ) (ρ : AllPerm β) (hρ : ρᵁ • (S ↘ LtLevel.elim : Support β) = S ↘ LtLevel.elim) : (S + ((T ↗ hγ).strong + (S ↘ LtLevel.elim + (T ↗ hγ).strong).interferenceSupport) ↗ LtLevel.elim).spec = (S + (ρᵁ • ((T ↗ hγ).strong + (S ↘ LtLevel.elim + (T ↗ hγ).strong).interferenceSupport)) ↗ LtLevel.elim).spec
ConNF.Support.spec_same_of_fixes
{ "commit": "abf71bc79c407ceb462cc2edd2d994cda9cdef05", "date": "2024-04-04T00:00:00" }
{ "commit": "6709914ae7f5cd3e2bb24b413e09aa844554d234", "date": "2024-11-30T00:00:00" }
ConNF/ConNF/Model/RaiseStrong.lean
ConNF.Model.RaiseStrong
ConNF.Model.RaiseStrong.jsonl
{ "lineInFile": 699, "tokenPositionInFile": 34619, "theoremPositionInFile": 13 }
{ "inFilePremises": true, "numInFilePremises": 1, "repositoryPremises": true, "numRepositoryPremises": 46, "numPremises": 83 }
{ "hasProof": true, "proof": ":= by\n rw [Support.spec_eq_spec_iff]\n apply sameSpec_antisymm\n · have := sameSpecLe_of_fixes S hS T 1 ρ hγ ?_ hρ\n · simp only [allPermForget_one, one_smul, smul_add] at this\n exact this\n · simp only [allPermForget_one, one_smul]\n · have := sameSpecLe_of_fixes S hS T ρ 1 hγ hρ ?_\n · simp only [allPermForget_one, one_smul, smul_add] at this\n exact this\n · simp only [allPermForget_one, one_smul]", "proofType": "tactic", "proofLengthLines": 10, "proofLengthTokens": 421 }
import ConNF.Model.Hailperin /-! # New file In this file... ## Main declarations * `ConNF.foo`: Something new. -/ noncomputable section universe u open Cardinal Ordinal ConNF.TSet namespace ConNF variable [Params.{u}] {α β γ δ ε ζ : Λ} (hβ : (β : TypeIndex) < α) (hγ : (γ : TypeIndex) < β) (hδ : (δ : TypeIndex) < γ) (hε : (ε : TypeIndex) < δ) (hζ : (ζ : TypeIndex) < ε) theorem ext (x y : TSet α) : (∀ z : TSet β, z ∈' x ↔ z ∈' y) → x = y := tSet_ext' hβ x y def inter (x y : TSet α) : TSet α := (TSet.exists_inter hβ x y).choose notation:69 x:69 " ⊓[" h "] " y:69 => _root_.ConNF.inter h x y notation:69 x:69 " ⊓' " y:69 => x ⊓[by assumption] y @[simp] theorem mem_inter_iff (x y : TSet α) : ∀ z : TSet β, z ∈' x ⊓' y ↔ z ∈' x ∧ z ∈' y := (TSet.exists_inter hβ x y).choose_spec def compl (x : TSet α) : TSet α := (TSet.exists_compl hβ x).choose notation:1024 x:1024 " ᶜ[" h "]" => _root_.ConNF.compl h x notation:1024 x:1024 " ᶜ'" => xᶜ[by assumption] @[simp] theorem mem_compl_iff (x : TSet α) : ∀ z : TSet β, z ∈' xᶜ' ↔ ¬z ∈' x := (TSet.exists_compl hβ x).choose_spec notation:1024 "{" x "}[" h "]" => _root_.ConNF.singleton h x notation:1024 "{" x "}'" => {x}[by assumption] @[simp] theorem mem_singleton_iff (x y : TSet β) : y ∈' {x}' ↔ y = x := typedMem_singleton_iff' hβ x y notation:1024 "{" x ", " y "}[" h "]" => _root_.ConNF.TSet.up h x y notation:1024 "{" x ", " y "}'" => {x, y}[by assumption] @[simp] theorem mem_up_iff (x y z : TSet β) : z ∈' {x, y}' ↔ z = x ∨ z = y := TSet.mem_up_iff hβ x y z notation:1024 "⟨" x ", " y "⟩[" h ", " h' "]" => _root_.ConNF.TSet.op h h' x y notation:1024 "⟨" x ", " y "⟩'" => ⟨x, y⟩[by assumption, by assumption] theorem op_def (x y : TSet γ) : (⟨x, y⟩' : TSet α) = { {x}', {x, y}' }' := rfl def singletonImage' (x : TSet β) : TSet α := (TSet.exists_singletonImage hβ hγ hδ hε x).choose @[simp] theorem singletonImage'_spec (x : TSet β) : ∀ z w, ⟨ {z}', {w}' ⟩' ∈' singletonImage' hβ hγ hδ hε x ↔ ⟨z, w⟩' ∈' x := (TSet.exists_singletonImage hβ hγ hδ hε x).choose_spec def insertion2' (x : TSet γ) : TSet α := (TSet.exists_insertion2 hβ hγ hδ hε hζ x).choose @[simp] theorem insertion2'_spec (x : TSet γ) : ∀ a b c, ⟨ { {a}' }', ⟨b, c⟩' ⟩' ∈' insertion2' hβ hγ hδ hε hζ x ↔ ⟨a, c⟩' ∈' x := (TSet.exists_insertion2 hβ hγ hδ hε hζ x).choose_spec def insertion3' (x : TSet γ) : TSet α := (TSet.exists_insertion3 hβ hγ hδ hε hζ x).choose theorem insertion3'_spec (x : TSet γ) : ∀ a b c, ⟨ { {a}' }', ⟨b, c⟩' ⟩' ∈' insertion3' hβ hγ hδ hε hζ x ↔ ⟨a, b⟩' ∈' x := (TSet.exists_insertion3 hβ hγ hδ hε hζ x).choose_spec def vCross (x : TSet γ) : TSet α := (TSet.exists_cross hβ hγ hδ x).choose
@[simp] theorem vCross_spec (x : TSet γ) : ∀ a, a ∈' vCross hβ hγ hδ x ↔ ∃ b c, a = ⟨b, c⟩' ∧ c ∈' x
ConNF.vCross_spec
{ "commit": "b12701769822aaf5451982e26d7b7d1c2f21b137", "date": "2024-04-11T00:00:00" }
{ "commit": "66f4e3291020d4198ca6ede816acae5cee584a07", "date": "2025-01-06T00:00:00" }
ConNF/ConNF/Model/Result.lean
ConNF.Model.Result
ConNF.Model.Result.jsonl
{ "lineInFile": 101, "tokenPositionInFile": 2742, "theoremPositionInFile": 25 }
{ "inFilePremises": true, "numInFilePremises": 1, "repositoryPremises": true, "numRepositoryPremises": 12, "numPremises": 27 }
{ "hasProof": true, "proof": ":=\n (TSet.exists_cross hβ hγ hδ x).choose_spec", "proofType": "term", "proofLengthLines": 1, "proofLengthTokens": 47 }
import ConNF.Model.Result /-! # New file In this file... ## Main declarations * `ConNF.foo`: Something new. -/ noncomputable section universe u open Cardinal Ordinal ConNF.TSet namespace ConNF variable [Params.{u}] {α β γ δ ε ζ : Λ} (hβ : (β : TypeIndex) < α) (hγ : (γ : TypeIndex) < β) (hδ : (δ : TypeIndex) < γ) (hε : (ε : TypeIndex) < δ) (hζ : (ζ : TypeIndex) < ε) def union (x y : TSet α) : TSet α := (xᶜ' ⊓' yᶜ')ᶜ' notation:68 x:68 " ⊔[" h "] " y:68 => _root_.ConNF.union h x y notation:68 x:68 " ⊔' " y:68 => x ⊔[by assumption] y @[simp] theorem mem_union_iff (x y : TSet α) : ∀ z : TSet β, z ∈' x ⊔' y ↔ z ∈' x ∨ z ∈' y := by rw [union] intro z rw [mem_compl_iff, mem_inter_iff, mem_compl_iff, mem_compl_iff, or_iff_not_and_not] def higherIndex (α : Λ) : Λ := (exists_gt α).choose theorem lt_higherIndex {α : Λ} : (α : TypeIndex) < higherIndex α := WithBot.coe_lt_coe.mpr (exists_gt α).choose_spec theorem tSet_nonempty (h : ∃ β : Λ, (β : TypeIndex) < α) : Nonempty (TSet α) := by obtain ⟨α', hα⟩ := h constructor apply typeLower lt_higherIndex lt_higherIndex lt_higherIndex hα apply cardinalOne lt_higherIndex lt_higherIndex def empty : TSet α := (tSet_nonempty ⟨β, hβ⟩).some ⊓' (tSet_nonempty ⟨β, hβ⟩).someᶜ' @[simp] theorem mem_empty_iff : ∀ x : TSet β, ¬x ∈' empty hβ := by intro x rw [empty, mem_inter_iff, mem_compl_iff] exact and_not_self def univ : TSet α := (empty hβ)ᶜ' @[simp] theorem mem_univ_iff : ∀ x : TSet β, x ∈' univ hβ := by intro x simp only [univ, mem_compl_iff, mem_empty_iff, not_false_eq_true] /-- The set of all ordered pairs. -/ def orderedPairs : TSet α := vCross hβ hγ hδ (univ hδ) @[simp] theorem mem_orderedPairs_iff (x : TSet β) : x ∈' orderedPairs hβ hγ hδ ↔ ∃ a b, x = ⟨a, b⟩' := by simp only [orderedPairs, vCross_spec, mem_univ_iff, and_true] def converse (x : TSet α) : TSet α := converse' hβ hγ hδ x ⊓' orderedPairs hβ hγ hδ @[simp] theorem op_mem_converse_iff (x : TSet α) : ∀ a b, ⟨a, b⟩' ∈' converse hβ hγ hδ x ↔ ⟨b, a⟩' ∈' x := by intro a b simp only [converse, mem_inter_iff, converse'_spec, mem_orderedPairs_iff, op_inj, exists_and_left, exists_eq', and_true] def cross (x y : TSet γ) : TSet α := converse hβ hγ hδ (vCross hβ hγ hδ x) ⊓' vCross hβ hγ hδ y @[simp] theorem mem_cross_iff (x y : TSet γ) : ∀ a, a ∈' cross hβ hγ hδ x y ↔ ∃ b c, a = ⟨b, c⟩' ∧ b ∈' x ∧ c ∈' y := by intro a rw [cross, mem_inter_iff, vCross_spec] constructor · rintro ⟨h₁, b, c, rfl, h₂⟩ simp only [op_mem_converse_iff, vCross_spec, op_inj] at h₁ obtain ⟨b', c', ⟨rfl, rfl⟩, h₁⟩ := h₁ exact ⟨b, c, rfl, h₁, h₂⟩ · rintro ⟨b, c, rfl, h₁, h₂⟩ simp only [op_mem_converse_iff, vCross_spec, op_inj] exact ⟨⟨c, b, ⟨rfl, rfl⟩, h₁⟩, ⟨b, c, ⟨rfl, rfl⟩, h₂⟩⟩ def singletonImage (x : TSet β) : TSet α := singletonImage' hβ hγ hδ hε x ⊓' (cross hβ hγ hδ (cardinalOne hδ hε) (cardinalOne hδ hε)) @[simp] theorem singletonImage_spec (x : TSet β) : ∀ z w, ⟨ {z}', {w}' ⟩' ∈' singletonImage hβ hγ hδ hε x ↔ ⟨z, w⟩' ∈' x := by intro z w rw [singletonImage, mem_inter_iff, singletonImage'_spec, and_iff_left_iff_imp] intro hzw rw [mem_cross_iff] refine ⟨{z}', {w}', rfl, ?_⟩ simp only [mem_cardinalOne_iff, singleton_inj, exists_eq', and_self] theorem exists_of_mem_singletonImage {x : TSet β} {z w : TSet δ} (h : ⟨z, w⟩' ∈' singletonImage hβ hγ hδ hε x) : ∃ a b, z = {a}' ∧ w = {b}' := by simp only [singletonImage, mem_inter_iff, mem_cross_iff, op_inj, mem_cardinalOne_iff] at h obtain ⟨-, _, _, ⟨rfl, rfl⟩, ⟨a, rfl⟩, ⟨b, rfl⟩⟩ := h exact ⟨a, b, rfl, rfl⟩ /-- Turn a model element encoding a relation into an actual relation. -/ def ExternalRel (r : TSet α) : Rel (TSet δ) (TSet δ) := λ x y ↦ ⟨x, y⟩' ∈' r @[simp] theorem externalRel_converse (r : TSet α) : ExternalRel hβ hγ hδ (converse hβ hγ hδ r) = (ExternalRel hβ hγ hδ r).inv := by ext simp only [ExternalRel, op_mem_converse_iff, Rel.inv_apply] /-- The codomain of a relation. -/ def codom (r : TSet α) : TSet γ := (typeLower lt_higherIndex hβ hγ hδ (singletonImage lt_higherIndex hβ hγ hδ r)ᶜ[lt_higherIndex])ᶜ' @[simp] theorem mem_codom_iff (r : TSet α) (x : TSet δ) : x ∈' codom hβ hγ hδ r ↔ x ∈ (ExternalRel hβ hγ hδ r).codom := by simp only [codom, mem_compl_iff, mem_typeLower_iff, not_forall, not_not] constructor · rintro ⟨y, hy⟩ obtain ⟨a, b, rfl, hb⟩ := exists_of_mem_singletonImage lt_higherIndex hβ hγ hδ hy rw [singleton_inj] at hb subst hb rw [singletonImage_spec] at hy exact ⟨a, hy⟩ · rintro ⟨a, ha⟩ use {a}' rw [singletonImage_spec] exact ha /-- The domain of a relation. -/ def dom (r : TSet α) : TSet γ := codom hβ hγ hδ (converse hβ hγ hδ r) @[simp] theorem mem_dom_iff (r : TSet α) (x : TSet δ) : x ∈' dom hβ hγ hδ r ↔ x ∈ (ExternalRel hβ hγ hδ r).dom := by rw [dom, mem_codom_iff, externalRel_converse, Rel.inv_codom] /-- The field of a relation. -/ def field (r : TSet α) : TSet γ := dom hβ hγ hδ r ⊔' codom hβ hγ hδ r @[simp] theorem mem_field_iff (r : TSet α) (x : TSet δ) : x ∈' field hβ hγ hδ r ↔ x ∈ (ExternalRel hβ hγ hδ r).field := by rw [field, mem_union_iff, mem_dom_iff, mem_codom_iff, Rel.field, Set.mem_union] def subset : TSet α := subset' hβ hγ hδ hε ⊓' orderedPairs hβ hγ hδ @[simp] theorem subset_spec : ∀ a b, ⟨a, b⟩' ∈' subset hβ hγ hδ hε ↔ a ⊆[TSet ε] b := by intro a b simp only [subset, mem_inter_iff, subset'_spec, mem_orderedPairs_iff, op_inj, exists_and_left, exists_eq', and_true] def membership : TSet α := subset hβ hγ hδ hε ⊓' cross hβ hγ hδ (cardinalOne hδ hε) (univ hδ)
@[simp] theorem membership_spec : ∀ a b, ⟨{a}', b⟩' ∈' membership hβ hγ hδ hε ↔ a ∈' b
ConNF.membership_spec
{ "commit": "66f4e3291020d4198ca6ede816acae5cee584a07", "date": "2025-01-06T00:00:00" }
{ "commit": "6dd8406a01cc28b071bb26965294469664a1b592", "date": "2025-01-07T00:00:00" }
ConNF/ConNF/External/Basic.lean
ConNF.External.Basic
ConNF.External.Basic.jsonl
{ "lineInFile": 186, "tokenPositionInFile": 5663, "theoremPositionInFile": 31 }
{ "inFilePremises": true, "numInFilePremises": 7, "repositoryPremises": true, "numRepositoryPremises": 26, "numPremises": 64 }
{ "hasProof": true, "proof": ":= by\n intro a b\n rw [membership, mem_inter_iff, subset_spec]\n simp only [mem_cross_iff, op_inj, mem_cardinalOne_iff, mem_univ_iff, and_true, exists_and_right,\n exists_and_left, exists_eq', exists_eq_left', singleton_inj]\n constructor\n · intro h\n exact h a ((typedMem_singleton_iff' hε a a).mpr rfl)\n · intro h c hc\n simp only [typedMem_singleton_iff'] at hc\n cases hc\n exact h", "proofType": "tactic", "proofLengthLines": 11, "proofLengthTokens": 398 }
import ConNF.ModelData.PathEnumeration /-! # Supports In this file, we define the notion of a support. ## Main declarations * `ConNF.BaseSupport`: The type of supports of atoms. * `ConNF.Support`: The type of supports of objects of arbitrary type indices. -/ universe u open Cardinal namespace ConNF variable [Params.{u}] /-! ## Base supports -/ structure BaseSupport where atoms : Enumeration Atom nearLitters : Enumeration NearLitter namespace BaseSupport instance : SuperA BaseSupport (Enumeration Atom) where superA := atoms instance : SuperN BaseSupport (Enumeration NearLitter) where superN := nearLitters @[simp] theorem mk_atoms {a : Enumeration Atom} {N : Enumeration NearLitter} : (BaseSupport.mk a N)ᴬ = a := rfl @[simp] theorem mk_nearLitters {a : Enumeration Atom} {N : Enumeration NearLitter} : (BaseSupport.mk a N)ᴺ = N := rfl theorem atoms_congr {S T : BaseSupport} (h : S = T) : Sᴬ = Tᴬ := h ▸ rfl theorem nearLitters_congr {S T : BaseSupport} (h : S = T) : Sᴺ = Tᴺ := h ▸ rfl @[ext] theorem ext {S T : BaseSupport} (h₁ : Sᴬ = Tᴬ) (h₂ : Sᴺ = Tᴺ) : S = T := by obtain ⟨SA, SN⟩ := S obtain ⟨TA, TN⟩ := T cases h₁ cases h₂ rfl instance : SMul BasePerm BaseSupport where smul π S := ⟨π • Sᴬ, π • Sᴺ⟩ @[simp] theorem smul_atoms (π : BasePerm) (S : BaseSupport) : (π • S)ᴬ = π • Sᴬ := rfl @[simp] theorem smul_nearLitters (π : BasePerm) (S : BaseSupport) : (π • S)ᴺ = π • Sᴺ := rfl @[simp] theorem smul_atoms_eq_of_smul_eq {π : BasePerm} {S : BaseSupport} (h : π • S = S) : π • Sᴬ = Sᴬ := by rw [← smul_atoms, h] @[simp] theorem smul_nearLitters_eq_of_smul_eq {π : BasePerm} {S : BaseSupport} (h : π • S = S) : π • Sᴺ = Sᴺ := by rw [← smul_nearLitters, h] instance : MulAction BasePerm BaseSupport where one_smul S := by apply ext · rw [smul_atoms, one_smul] · rw [smul_nearLitters, one_smul] mul_smul π₁ π₂ S := by apply ext · rw [smul_atoms, smul_atoms, smul_atoms, mul_smul] · rw [smul_nearLitters, smul_nearLitters, smul_nearLitters, mul_smul] theorem smul_eq_smul_iff (π₁ π₂ : BasePerm) (S : BaseSupport) : π₁ • S = π₂ • S ↔ (∀ a ∈ Sᴬ, π₁ • a = π₂ • a) ∧ (∀ N ∈ Sᴺ, π₁ • N = π₂ • N) := by constructor · intro h constructor · rintro a ⟨i, ha⟩ have := congr_arg (·ᴬ.rel i (π₁ • a)) h simp only [smul_atoms, Enumeration.smul_rel, inv_smul_smul, eq_iff_iff] at this have := Sᴬ.rel_coinjective.coinjective ha (this.mp ha) rw [eq_inv_smul_iff] at this rw [this] · rintro N ⟨i, hN⟩ have := congr_arg (·ᴺ.rel i (π₁ • N)) h simp only [smul_nearLitters, Enumeration.smul_rel, inv_smul_smul, eq_iff_iff] at this have := Sᴺ.rel_coinjective.coinjective hN (this.mp hN) rw [eq_inv_smul_iff] at this rw [this] · intro h ext : 2 · rfl · ext i a : 3 rw [smul_atoms, smul_atoms, Enumeration.smul_rel, Enumeration.smul_rel] constructor · intro ha have := h.1 _ ⟨i, ha⟩ rw [smul_inv_smul, ← inv_smul_eq_iff] at this rwa [this] · intro ha have := h.1 _ ⟨i, ha⟩ rw [smul_inv_smul, smul_eq_iff_eq_inv_smul] at this rwa [← this] · rfl · ext i a : 3 rw [smul_nearLitters, smul_nearLitters, Enumeration.smul_rel, Enumeration.smul_rel] constructor · intro hN have := h.2 _ ⟨i, hN⟩ rw [smul_inv_smul, ← inv_smul_eq_iff] at this rwa [this] · intro hN have := h.2 _ ⟨i, hN⟩ rw [smul_inv_smul, smul_eq_iff_eq_inv_smul] at this rwa [← this] theorem smul_eq_iff (π : BasePerm) (S : BaseSupport) : π • S = S ↔ (∀ a ∈ Sᴬ, π • a = a) ∧ (∀ N ∈ Sᴺ, π • N = N) := by have := smul_eq_smul_iff π 1 S simp only [one_smul] at this exact this noncomputable instance : Add BaseSupport where add S T := ⟨Sᴬ + Tᴬ, Sᴺ + Tᴺ⟩ @[simp] theorem add_atoms (S T : BaseSupport) : (S + T)ᴬ = Sᴬ + Tᴬ := rfl @[simp] theorem add_nearLitters (S T : BaseSupport) : (S + T)ᴺ = Sᴺ + Tᴺ := rfl end BaseSupport def baseSupportEquiv : BaseSupport ≃ Enumeration Atom × Enumeration NearLitter where toFun S := (Sᴬ, Sᴺ) invFun S := ⟨S.1, S.2⟩ left_inv _ := rfl right_inv _ := rfl theorem card_baseSupport : #BaseSupport = #μ := by rw [Cardinal.eq.mpr ⟨baseSupportEquiv⟩, mk_prod, lift_id, lift_id, card_enumeration_eq card_atom, card_enumeration_eq card_nearLitter, mul_eq_self aleph0_lt_μ.le] /-! ## Structural supports -/ structure Support (α : TypeIndex) where atoms : Enumeration (α ↝ ⊥ × Atom) nearLitters : Enumeration (α ↝ ⊥ × NearLitter) namespace Support variable {α β : TypeIndex} instance : SuperA (Support α) (Enumeration (α ↝ ⊥ × Atom)) where superA := atoms instance : SuperN (Support α) (Enumeration (α ↝ ⊥ × NearLitter)) where superN := nearLitters @[simp] theorem mk_atoms (E : Enumeration (α ↝ ⊥ × Atom)) (F : Enumeration (α ↝ ⊥ × NearLitter)) : (⟨E, F⟩ : Support α)ᴬ = E := rfl @[simp] theorem mk_nearLitters (E : Enumeration (α ↝ ⊥ × Atom)) (F : Enumeration (α ↝ ⊥ × NearLitter)) : (⟨E, F⟩ : Support α)ᴺ = F := rfl instance : Derivative (Support α) (Support β) α β where deriv S A := ⟨Sᴬ ⇘ A, Sᴺ ⇘ A⟩ instance : Coderivative (Support β) (Support α) α β where coderiv S A := ⟨Sᴬ ⇗ A, Sᴺ ⇗ A⟩ instance : BotDerivative (Support α) BaseSupport α where botDeriv S A := ⟨Sᴬ ⇘. A, Sᴺ ⇘. A⟩ botSderiv S := ⟨Sᴬ ↘., Sᴺ ↘.⟩ botDeriv_single S h := by dsimp only; rw [botDeriv_single, botDeriv_single] @[simp] theorem deriv_atoms {α β : TypeIndex} (S : Support α) (A : α ↝ β) : Sᴬ ⇘ A = (S ⇘ A)ᴬ := rfl @[simp] theorem deriv_nearLitters {α β : TypeIndex} (S : Support α) (A : α ↝ β) : Sᴺ ⇘ A = (S ⇘ A)ᴺ := rfl @[simp] theorem sderiv_atoms {α β : TypeIndex} (S : Support α) (h : β < α) : Sᴬ ↘ h = (S ↘ h)ᴬ := rfl @[simp] theorem sderiv_nearLitters {α β : TypeIndex} (S : Support α) (h : β < α) : Sᴺ ↘ h = (S ↘ h)ᴺ := rfl @[simp] theorem coderiv_atoms {α β : TypeIndex} (S : Support β) (A : α ↝ β) : Sᴬ ⇗ A = (S ⇗ A)ᴬ := rfl @[simp] theorem coderiv_nearLitters {α β : TypeIndex} (S : Support β) (A : α ↝ β) : Sᴺ ⇗ A = (S ⇗ A)ᴺ := rfl @[simp] theorem scoderiv_atoms {α β : TypeIndex} (S : Support β) (h : β < α) : Sᴬ ↗ h = (S ↗ h)ᴬ := rfl @[simp] theorem scoderiv_nearLitters {α β : TypeIndex} (S : Support β) (h : β < α) : Sᴺ ↗ h = (S ↗ h)ᴺ := rfl @[simp] theorem derivBot_atoms {α : TypeIndex} (S : Support α) (A : α ↝ ⊥) : Sᴬ ⇘. A = (S ⇘. A)ᴬ := rfl
@[simp] theorem derivBot_nearLitters {α : TypeIndex} (S : Support α) (A : α ↝ ⊥) : Sᴺ ⇘. A = (S ⇘. A)ᴺ
ConNF.Support.derivBot_nearLitters
{ "commit": "39c33b4a743bea62dbcc549548b712ffd38ca65c", "date": "2024-12-05T00:00:00" }
{ "commit": "d9f28df240ac4df047c3af0d236aed2e437e571f", "date": "2025-01-07T00:00:00" }
ConNF/ConNF/ModelData/Support.lean
ConNF.ModelData.Support
ConNF.ModelData.Support.jsonl
{ "lineInFile": 258, "tokenPositionInFile": 6529, "theoremPositionInFile": 25 }
{ "inFilePremises": true, "numInFilePremises": 5, "repositoryPremises": true, "numRepositoryPremises": 14, "numPremises": 19 }
{ "hasProof": true, "proof": ":=\n rfl", "proofType": "term", "proofLengthLines": 1, "proofLengthTokens": 8 }
import ConNF.ModelData.Enumeration import ConNF.Levels.StrPerm /-! # Enumerations over paths In this file, we provide extra features to `Enumeration`s that take values of the form `α ↝ ⊥ × X`. ## Main declarations * `ConNF.Enumeration.ext_path`: An extensionality principle for such `Enumeration`s. -/ noncomputable section universe u open Cardinal Ordinal namespace ConNF variable [Params.{u}] namespace Enumeration /-- A helper function for making relations with domain and codomain of the form `α ↝ ⊥ × X` by defining it on each branch. -/ def relWithPath {X Y : Type u} {α : TypeIndex} (f : α ↝ ⊥ → Rel X Y) : Rel (α ↝ ⊥ × X) (α ↝ ⊥ × Y) := λ x y ↦ x.1 = y.1 ∧ f x.1 x.2 y.2 theorem relWithPath_coinjective {X Y : Type u} {α : TypeIndex} {f : α ↝ ⊥ → Rel X Y} (hf : ∀ A, (f A).Coinjective) : (relWithPath f).Coinjective := by constructor rintro ⟨_, y₁⟩ ⟨_, y₂⟩ ⟨A, x⟩ ⟨rfl, h₁⟩ ⟨rfl, h₂⟩ cases (hf A).coinjective h₁ h₂ rfl instance (X : Type u) (α β : TypeIndex) : Derivative (Enumeration (α ↝ ⊥ × X)) (Enumeration (β ↝ ⊥ × X)) α β where deriv E A := E.invImage (λ x ↦ (x.1 ⇗ A, x.2)) (λ x y h ↦ Prod.ext (Path.deriv_right_injective ((Prod.mk.injEq _ _ _ _).mp h).1) ((Prod.mk.injEq _ _ _ _).mp h).2) theorem deriv_rel {X : Type _} {α β : TypeIndex} (E : Enumeration (α ↝ ⊥ × X)) (A : α ↝ β) (i : κ) (x : β ↝ ⊥ × X) : (E ⇘ A).rel i x ↔ E.rel i (x.1 ⇗ A, x.2) := Iff.rfl instance (X : Type u) (α β : TypeIndex) : Coderivative (Enumeration (β ↝ ⊥ × X)) (Enumeration (α ↝ ⊥ × X)) α β where coderiv E A := E.image (λ x ↦ (x.1 ⇗ A, x.2)) theorem coderiv_rel {X : Type _} {α β : TypeIndex} (E : Enumeration (β ↝ ⊥ × X)) (A : α ↝ β) (i : κ) (x : α ↝ ⊥ × X) : (E ⇗ A).rel i x ↔ ∃ B, x.1 = A ⇘ B ∧ E.rel i (B, x.2) := by constructor · rintro ⟨x, h, rfl⟩ exact ⟨_, rfl, h⟩ · rintro ⟨B, h₁, h₂⟩ refine ⟨(B, x.2), h₂, ?_⟩ apply Prod.ext · dsimp only exact h₁.symm · rfl theorem scoderiv_rel {X : Type _} {α β : TypeIndex} (E : Enumeration (β ↝ ⊥ × X)) (h : β < α) (i : κ) (x : α ↝ ⊥ × X) : (E ↗ h).rel i x ↔ ∃ B, x.1 = B ↗ h ∧ E.rel i (B, x.2) := coderiv_rel E (.single h) i x theorem eq_of_scoderiv_mem {X : Type _} {α β γ : TypeIndex} (E : Enumeration (β ↝ ⊥ × X)) (h : β < α) (h' : γ < α) (i : κ) (A : γ ↝ ⊥) (x : X) (h : (E ↗ h).rel i ⟨A ↗ h', x⟩) : β = γ := by rw [scoderiv_rel] at h obtain ⟨B, h₁, h₂⟩ := h exact Path.scoderiv_index_injective h₁.symm instance (X : Type u) (α : TypeIndex) : BotDerivative (Enumeration (α ↝ ⊥ × X)) (Enumeration X) α where botDeriv E A := E.invImage (λ x ↦ (A, x)) (Prod.mk.inj_left A) botSderiv E := E.invImage (λ x ↦ (Path.nil ↘., x)) (Prod.mk.inj_left (Path.nil ↘.)) botDeriv_single E h := by cases α using WithBot.recBotCoe with | bot => cases lt_irrefl ⊥ h | coe => rfl theorem derivBot_rel {X : Type _} {α : TypeIndex} (E : Enumeration (α ↝ ⊥ × X)) (A : α ↝ ⊥) (i : κ) (x : X) : (E ⇘. A).rel i x ↔ E.rel i (A, x) := Iff.rfl @[simp] theorem mem_path_iff {X : Type _} {α : TypeIndex} (E : Enumeration (α ↝ ⊥ × X)) (A : α ↝ ⊥) (x : X) : (A, x) ∈ E ↔ x ∈ E ⇘. A := Iff.rfl theorem ext_path {X : Type u} {α : TypeIndex} {E F : Enumeration (α ↝ ⊥ × X)} (h : ∀ A, E ⇘. A = F ⇘. A) : E = F := by ext i x · have := congr_arg bound (h (Path.nil ↘.)) exact this · have := congr_arg rel (h x.1) exact iff_of_eq (congr_fun₂ this i x.2) theorem deriv_derivBot {X : Type _} {α β : TypeIndex} (E : Enumeration (α ↝ ⊥ × X)) (A : α ↝ β) (B : β ↝ ⊥) : E ⇘ A ⇘. B = E ⇘. (A ⇘ B) := rfl @[simp] theorem coderiv_deriv_eq {X : Type _} {α β : TypeIndex} (E : Enumeration (β ↝ ⊥ × X)) (A : α ↝ β) : E ⇗ A ⇘ A = E := by apply ext_path intro B ext i x · rfl · simp only [derivBot_rel, deriv_rel, coderiv_rel, Path.coderiv_eq_deriv, Path.deriv_right_inj, exists_eq_left'] theorem eq_of_mem_scoderiv_botDeriv {X : Type _} {α β : TypeIndex} {S : Enumeration (β ↝ ⊥ × X)} {A : α ↝ ⊥} {h : β < α} {x : X} (hx : x ∈ S ↗ h ⇘. A) : ∃ B : β ↝ ⊥, A = B ↗ h := by obtain ⟨i, ⟨B, y⟩, hi₁, hi₂⟩ := hx cases hi₂ exact ⟨B, rfl⟩
@[simp] theorem scoderiv_botDeriv_eq {X : Type _} {α β : TypeIndex} (S : Enumeration (β ↝ ⊥ × X)) (A : β ↝ ⊥) (h : β < α) : S ↗ h ⇘. (A ↗ h) = S ⇘. A
ConNF.Enumeration.scoderiv_botDeriv_eq
{ "commit": "39c33b4a743bea62dbcc549548b712ffd38ca65c", "date": "2024-12-05T00:00:00" }
{ "commit": "ce890707e37ede74a2fcd66134d3f403335c5cc1", "date": "2024-11-30T00:00:00" }
ConNF/ConNF/ModelData/PathEnumeration.lean
ConNF.ModelData.PathEnumeration
ConNF.ModelData.PathEnumeration.jsonl
{ "lineInFile": 131, "tokenPositionInFile": 4177, "theoremPositionInFile": 12 }
{ "inFilePremises": true, "numInFilePremises": 4, "repositoryPremises": true, "numRepositoryPremises": 20, "numPremises": 49 }
{ "hasProof": true, "proof": ":= by\n ext i x\n · rfl\n · simp only [derivBot_rel, scoderiv_rel, Path.scoderiv_left_inj, exists_eq_left']", "proofType": "tactic", "proofLengthLines": 3, "proofLengthTokens": 107 }
import ConNF.Model.Hailperin /-! # New file In this file... ## Main declarations * `ConNF.foo`: Something new. -/ noncomputable section universe u open Cardinal Ordinal ConNF.TSet namespace ConNF variable [Params.{u}] {α β γ δ ε ζ : Λ} (hβ : (β : TypeIndex) < α) (hγ : (γ : TypeIndex) < β) (hδ : (δ : TypeIndex) < γ) (hε : (ε : TypeIndex) < δ) (hζ : (ζ : TypeIndex) < ε) theorem ext (x y : TSet α) : (∀ z : TSet β, z ∈' x ↔ z ∈' y) → x = y := tSet_ext' hβ x y def inter (x y : TSet α) : TSet α := (TSet.exists_inter hβ x y).choose notation:69 x:69 " ⊓[" h "] " y:69 => _root_.ConNF.inter h x y notation:69 x:69 " ⊓' " y:69 => x ⊓[by assumption] y @[simp] theorem mem_inter_iff (x y : TSet α) : ∀ z : TSet β, z ∈' x ⊓' y ↔ z ∈' x ∧ z ∈' y := (TSet.exists_inter hβ x y).choose_spec def compl (x : TSet α) : TSet α := (TSet.exists_compl hβ x).choose notation:1024 x:1024 " ᶜ[" h "]" => _root_.ConNF.compl h x notation:1024 x:1024 " ᶜ'" => xᶜ[by assumption] @[simp] theorem mem_compl_iff (x : TSet α) : ∀ z : TSet β, z ∈' xᶜ' ↔ ¬z ∈' x := (TSet.exists_compl hβ x).choose_spec notation:1024 "{" x "}[" h "]" => _root_.ConNF.singleton h x notation:1024 "{" x "}'" => {x}[by assumption] @[simp] theorem mem_singleton_iff (x y : TSet β) : y ∈' {x}' ↔ y = x := typedMem_singleton_iff' hβ x y notation:1024 "{" x ", " y "}[" h "]" => _root_.ConNF.TSet.up h x y notation:1024 "{" x ", " y "}'" => {x, y}[by assumption] @[simp] theorem mem_up_iff (x y z : TSet β) : z ∈' {x, y}' ↔ z = x ∨ z = y := TSet.mem_up_iff hβ x y z notation:1024 "⟨" x ", " y "⟩[" h ", " h' "]" => _root_.ConNF.TSet.op h h' x y notation:1024 "⟨" x ", " y "⟩'" => ⟨x, y⟩[by assumption, by assumption] theorem op_def (x y : TSet γ) : (⟨x, y⟩' : TSet α) = { {x}', {x, y}' }' := rfl def singletonImage' (x : TSet β) : TSet α := (TSet.exists_singletonImage hβ hγ hδ hε x).choose @[simp] theorem singletonImage'_spec (x : TSet β) : ∀ z w, ⟨ {z}', {w}' ⟩' ∈' singletonImage' hβ hγ hδ hε x ↔ ⟨z, w⟩' ∈' x := (TSet.exists_singletonImage hβ hγ hδ hε x).choose_spec def insertion2' (x : TSet γ) : TSet α := (TSet.exists_insertion2 hβ hγ hδ hε hζ x).choose
@[simp] theorem insertion2'_spec (x : TSet γ) : ∀ a b c, ⟨ { {a}' }', ⟨b, c⟩' ⟩' ∈' insertion2' hβ hγ hδ hε hζ x ↔ ⟨a, c⟩' ∈' x
ConNF.insertion2'_spec
{ "commit": "b12701769822aaf5451982e26d7b7d1c2f21b137", "date": "2024-04-11T00:00:00" }
{ "commit": "66f4e3291020d4198ca6ede816acae5cee584a07", "date": "2025-01-06T00:00:00" }
ConNF/ConNF/Model/Result.lean
ConNF.Model.Result
ConNF.Model.Result.jsonl
{ "lineInFile": 84, "tokenPositionInFile": 2188, "theoremPositionInFile": 21 }
{ "inFilePremises": true, "numInFilePremises": 1, "repositoryPremises": true, "numRepositoryPremises": 13, "numPremises": 25 }
{ "hasProof": true, "proof": ":=\n (TSet.exists_insertion2 hβ hγ hδ hε hζ x).choose_spec", "proofType": "term", "proofLengthLines": 1, "proofLengthTokens": 58 }
import ConNF.External.Basic /-! # New file In this file... ## Main declarations * `ConNF.foo`: Something new. -/ noncomputable section universe u open Cardinal Ordinal ConNF.TSet namespace ConNF variable [Params.{u}] {α β γ δ ε ζ : Λ} (hβ : (β : TypeIndex) < α) (hγ : (γ : TypeIndex) < β) (hδ : (δ : TypeIndex) < γ) (hε : (ε : TypeIndex) < δ) (hζ : (ζ : TypeIndex) < ε) /-- A set in our model that is a well-order. Internal well-orders are exactly external well-orders, so we externalise the definition for convenience. -/ def InternalWellOrder (r : TSet α) : Prop := IsWellOrder (ExternalRel hβ hγ hδ r).field (InvImage (ExternalRel hβ hγ hδ r) Subtype.val) def InternallyWellOrdered (x : TSet γ) : Prop := {y : TSet δ | y ∈' x}.Subsingleton ∨ (∃ r, InternalWellOrder hβ hγ hδ r ∧ x = field hβ hγ hδ r) @[simp] theorem externalRel_smul (r : TSet α) (ρ : AllPerm α) : ExternalRel hβ hγ hδ (ρ • r) = InvImage (ExternalRel hβ hγ hδ r) ((ρ ↘ hβ ↘ hγ ↘ hδ)⁻¹ • ·) := by ext a b simp only [ExternalRel, mem_smul_iff', allPerm_inv_sderiv', smul_op, InvImage] omit [Params] in /-- Well-orders are rigid. -/ theorem apply_eq_of_isWellOrder {X : Type _} {r : Rel X X} {f : X → X} (hr : IsWellOrder X r) (hf : Function.Bijective f) (hf' : ∀ x y, r x y ↔ r (f x) (f y)) : ∀ x, f x = x := by let emb : r ≼i r := ⟨⟨⟨f, hf.injective⟩, λ {a b} ↦ (hf' a b).symm⟩, ?_⟩ · have : emb = InitialSeg.refl r := Subsingleton.elim _ _ intro x exact congr_arg (λ f ↦ f x) this · intro a b h exact hf.surjective _ omit [Params] in theorem apply_eq_of_isWellOrder' {X : Type _} {r : Rel X X} {f : X → X} (hr : IsWellOrder r.field (InvImage r Subtype.val)) (hf : Function.Bijective f) (hf' : ∀ x y, r x y ↔ r (f x) (f y)) : ∀ x ∈ r.field, f x = x := by have : ∀ x ∈ r.field, f x ∈ r.field := by rintro x (⟨y, h⟩ | ⟨y, h⟩) · exact Or.inl ⟨f y, (hf' x y).mp h⟩ · exact Or.inr ⟨f y, (hf' y x).mp h⟩ have := apply_eq_of_isWellOrder (f := λ x ↦ ⟨f x.val, this x.val x.prop⟩) hr ⟨?_, ?_⟩ ?_ · intro x hx exact congr_arg Subtype.val (this ⟨x, hx⟩) · intro x y h rw [Subtype.mk.injEq] at h exact Subtype.val_injective (hf.injective h) · intro x obtain ⟨y, hy⟩ := hf.surjective x.val refine ⟨⟨y, ?_⟩, ?_⟩ · obtain (⟨z, h⟩ | ⟨z, h⟩) := x.prop <;> rw [← hy] at h <;> obtain ⟨z, rfl⟩ := hf.surjective z · exact Or.inl ⟨z, (hf' y z).mpr h⟩ · exact Or.inr ⟨z, (hf' z y).mpr h⟩ · simp only [hy] · intros apply hf' theorem exists_common_support_of_internallyWellOrdered' {x : TSet δ} (h : InternallyWellOrdered hγ hδ hε x) : ∃ S : Support β, ∀ y, y ∈' x → S.Supports { { {y}' }' }[hγ] := by obtain (h | ⟨r, h, rfl⟩) := h · obtain (h | ⟨y, hy⟩) := h.eq_empty_or_singleton · use ⟨Enumeration.empty, Enumeration.empty⟩ intro y hy rw [Set.eq_empty_iff_forall_not_mem] at h cases h y hy · obtain ⟨S, hS⟩ := TSet.exists_support y use S ↗ hε ↗ hδ ↗ hγ intro z hz rw [Set.eq_singleton_iff_unique_mem] at hy cases hy.2 z hz refine ⟨?_, λ h ↦ by cases h⟩ intro ρ hρ simp only [Support.smul_scoderiv, ← allPermSderiv_forget', Support.scoderiv_inj] at hρ simp only [smul_singleton, singleton_inj] exact hS _ hρ obtain ⟨S, hS⟩ := TSet.exists_support r use S intro a ha refine ⟨?_, λ h ↦ by cases h⟩ intro ρ hρ have := hS ρ hρ simp only [smul_singleton, singleton_inj] apply apply_eq_of_isWellOrder' (r := ExternalRel hγ hδ hε r) · exact h · exact MulAction.bijective (ρ ↘ hγ ↘ hδ ↘ hε) · intro x y conv_rhs => rw [← this] simp only [externalRel_smul, InvImage, inv_smul_smul] · rwa [mem_field_iff] at ha include hγ in theorem Support.Supports.ofSingleton {S : Support α} {x : TSet β} (h : S.Supports {x}') : letI : Level := ⟨α⟩ letI : LeLevel α := ⟨le_rfl⟩ (S.strong ↘ hβ).Supports x := by refine ⟨?_, λ h ↦ by cases h⟩ intro ρ hρ open scoped Pointwise in have := sUnion_singleton_symmetric_aux hγ hβ {y | y ∈' x} S ?_ ρ hρ · apply ConNF.ext hγ intro z simp only [Set.ext_iff, Set.mem_setOf_eq, Set.mem_smul_set_iff_inv_smul_mem] at this rw [mem_smul_iff', allPerm_inv_sderiv', this] · intro ρ hρ ext z simp only [Set.mem_smul_set_iff_inv_smul_mem, Set.mem_image, Set.mem_setOf_eq] have := h.supports ρ hρ simp only [smul_singleton, singleton_inj] at this constructor · rintro ⟨y, h₁, h₂⟩ rw [← smul_eq_iff_eq_inv_smul, smul_singleton] at h₂ refine ⟨_, ?_, h₂⟩ rw [← this] simp only [mem_smul_iff', allPerm_inv_sderiv', inv_smul_smul] exact h₁ · rintro ⟨y, h, rfl⟩ refine ⟨(ρ ↘ hβ ↘ hγ)⁻¹ • y, ?_, ?_⟩ · rwa [← allPerm_inv_sderiv', ← mem_smul_iff', this] · simp only [smul_singleton, allPerm_inv_sderiv'] include hγ in theorem supports_of_supports_singletons {S : Support α} {s : Set (TSet β)} (h : ∀ x ∈ s, S.Supports {x}') : ∃ S : Support β, ∀ x ∈ s, S.Supports x := ⟨_, λ x hx ↦ (h x hx).ofSingleton hβ hγ⟩
theorem exists_common_support_of_internallyWellOrdered {x : TSet δ} (h : InternallyWellOrdered hγ hδ hε x) : ∃ S : Support δ, ∀ y, y ∈' x → S.Supports {y}'
ConNF.exists_common_support_of_internallyWellOrdered
{ "commit": "66f4e3291020d4198ca6ede816acae5cee584a07", "date": "2025-01-06T00:00:00" }
{ "commit": "1c08486feb882444888c228ce1501e92bb85e0e2", "date": "2025-01-07T00:00:00" }
ConNF/ConNF/External/WellOrder.lean
ConNF.External.WellOrder
ConNF.External.WellOrder.jsonl
{ "lineInFile": 149, "tokenPositionInFile": 5069, "theoremPositionInFile": 8 }
{ "inFilePremises": true, "numInFilePremises": 3, "repositoryPremises": true, "numRepositoryPremises": 16, "numPremises": 52 }
{ "hasProof": true, "proof": ":= by\n obtain ⟨S, hS⟩ := exists_common_support_of_internallyWellOrdered' hγ hδ hε h\n have := supports_of_supports_singletons (S := S)\n (s := singleton hδ '' (singleton hε '' {y | y ∈' x})) hγ hδ ?_\n swap\n · simp only [Set.mem_image, Set.mem_setOf_eq, exists_exists_and_eq_and, forall_exists_index,\n and_imp, forall_apply_eq_imp_iff₂]\n exact hS\n obtain ⟨T, hT⟩ := this\n have := supports_of_supports_singletons (S := T)\n (s := singleton hε '' {y | y ∈' x}) hδ hε ?_\n swap\n · simp only [Set.mem_image, Set.mem_setOf_eq, forall_exists_index, and_imp,\n forall_apply_eq_imp_iff₂] at hT ⊢\n exact hT\n simp only [Set.mem_image, Set.mem_setOf_eq, forall_exists_index, and_imp,\n forall_apply_eq_imp_iff₂] at this\n exact this", "proofType": "tactic", "proofLengthLines": 17, "proofLengthTokens": 752 }
import ConNF.Model.Externalise /-! # New file In this file... ## Main declarations * `ConNF.foo`: Something new. -/ noncomputable section universe u open Cardinal Ordinal namespace ConNF variable [Params.{u}] {β γ : Λ} {hγ : (γ : TypeIndex) < β} namespace Support theorem not_mem_scoderiv_botDeriv (S : Support γ) (N : NearLitter) : N ∉ (S ↗ hγ ⇘. (Path.nil ↘.))ᴺ := by rintro ⟨i, ⟨A, N'⟩, h₁, h₂⟩ simp only [Prod.mk.injEq] at h₂ cases A case sderiv δ A hδ _ => simp only [Path.deriv_sderiv] at h₂ cases A case nil => cases h₂.1 case sderiv ζ A hζ _ => simp only [Path.deriv_sderiv] at h₂ cases h₂.1 variable [Level] [LtLevel β] theorem not_mem_strong_botDeriv (S : Support γ) (N : NearLitter) : N ∉ ((S ↗ hγ).strong ⇘. (Path.nil ↘.))ᴺ := by rintro h rw [strong, close_nearLitters, preStrong_nearLitters, Enumeration.mem_add_iff] at h obtain h | h := h · exact not_mem_scoderiv_botDeriv S N h · rw [mem_constrainsNearLitters_nearLitters] at h obtain ⟨B, N', hN', h⟩ := h cases h using Relation.ReflTransGen.head_induction_on case refl => exact not_mem_scoderiv_botDeriv S N hN' case head x hx₁ hx₂ _ => obtain ⟨⟨γ, δ, ε, hδ, hε, hδε, A⟩, t, B, hB, hN, ht⟩ := hx₂ simp only at hB cases B case nil => cases hB obtain ⟨C, N''⟩ := x simp only at ht cases ht.1 change _ ∈ t.supportᴺ at hN rw [t.support_supports.2 rfl] at hN obtain ⟨i, hN⟩ := hN cases hN case sderiv δ B hδ _ _ => cases B case nil => cases hB case sderiv ζ B hζ _ _ => cases hB theorem raise_preStrong' (S : Support α) (hS : S.Strong) (T : Support γ) (ρ : AllPerm β) (hγ : (γ : TypeIndex) < β) : (S + (ρᵁ • ((T ↗ hγ).strong + (S ↘ LtLevel.elim + (T ↗ hγ).strong).interferenceSupport)) ↗ LtLevel.elim).PreStrong := by apply hS.toPreStrong.add constructor intro A N hN P t hA ht obtain ⟨A, rfl⟩ := eq_of_nearLitter_mem_scoderiv_botDeriv hN simp only [scoderiv_botDeriv_eq, add_derivBot, smul_derivBot, BaseSupport.add_nearLitters, BaseSupport.smul_nearLitters, interferenceSupport_nearLitters, Enumeration.mem_add_iff, Enumeration.mem_smul, Enumeration.not_mem_empty, or_false] at hN obtain ⟨δ, ε, ζ, hε, hζ, hεζ, B⟩ := P dsimp only at * cases A case sderiv ζ' A hζ' _ => rw [← Path.coderiv_deriv] at hA cases Path.sderiv_index_injective hA apply Path.sderiv_left_inj.mp at hA cases A case nil => cases hA cases not_mem_strong_botDeriv T _ hN case sderiv ι A hι _ _ => rw [← Path.coderiv_deriv] at hA cases Path.sderiv_index_injective hA cases hA haveI : LtLevel δ := ⟨A.le.trans_lt LtLevel.elim⟩ haveI : LtLevel ε := ⟨hε.trans LtLevel.elim⟩ haveI : LtLevel ζ := ⟨hζ.trans LtLevel.elim⟩ have := (T ↗ hγ).strong_strong.support_le hN ⟨δ, ε, ζ, hε, hζ, hεζ, A⟩ (ρ⁻¹ ⇘ A ↘ hε • t) rfl ?_ · simp only [Tangle.smul_support, allPermSderiv_forget, allPermDeriv_forget, allPermForget_inv, Tree.inv_deriv, Tree.inv_sderiv] at this have := smul_le_smul this (ρᵁ ⇘ A ↘ hε) simp only [smul_inv_smul] at this apply le_trans this intro B constructor · intro a ha simp only [smul_derivBot, Tree.sderiv_apply, Tree.deriv_apply, Path.deriv_scoderiv, deriv_derivBot, Enumeration.mem_smul] at ha rw [deriv_derivBot, ← Path.deriv_scoderiv, Path.coderiv_deriv', scoderiv_botDeriv_eq,] simp only [Path.deriv_scoderiv, add_derivBot, smul_derivBot, BaseSupport.add_atoms, BaseSupport.smul_atoms, Enumeration.mem_add_iff, Enumeration.mem_smul] exact Or.inl ha · intro N hN simp only [smul_derivBot, Tree.sderiv_apply, Tree.deriv_apply, Path.deriv_scoderiv, deriv_derivBot, Enumeration.mem_smul] at hN rw [deriv_derivBot, ← Path.deriv_scoderiv, Path.coderiv_deriv', scoderiv_botDeriv_eq,] simp only [Path.deriv_scoderiv, add_derivBot, smul_derivBot, BaseSupport.add_nearLitters, BaseSupport.smul_nearLitters, Enumeration.mem_add_iff, Enumeration.mem_smul] exact Or.inl hN · rw [← smul_fuzz hε hζ hεζ, ← ht] simp only [Path.botSderiv_coe_eq, BasePerm.smul_nearLitter_litter, allPermDeriv_forget, allPermForget_inv, Tree.inv_deriv, Tree.inv_sderiv, Tree.inv_sderivBot] rfl theorem raise_closed' (S : Support α) (hS : S.Strong) (T : Support γ) (ρ : AllPerm β) (hγ : (γ : TypeIndex) < β) (hρ : ρᵁ • (S ↘ LtLevel.elim : Support β) = S ↘ LtLevel.elim) : (S + (ρᵁ • ((T ↗ hγ).strong + (S ↘ LtLevel.elim + (T ↗ hγ).strong).interferenceSupport)) ↗ LtLevel.elim).Closed := by constructor intro A constructor intro N₁ N₂ hN₁ hN₂ a ha simp only [add_derivBot, BaseSupport.add_nearLitters, Enumeration.mem_add_iff, BaseSupport.add_atoms] at hN₁ hN₂ ⊢ obtain hN₁ | hN₁ := hN₁ · obtain hN₂ | hN₂ := hN₂ · exact Or.inl ((hS.closed A).interference_subset hN₁ hN₂ a ha) · obtain ⟨B, rfl⟩ := eq_of_nearLitter_mem_scoderiv_botDeriv hN₂ simp only [smul_add, scoderiv_botDeriv_eq, add_derivBot, smul_derivBot, BaseSupport.add_nearLitters, BaseSupport.smul_nearLitters, Enumeration.mem_add_iff, Enumeration.mem_smul, BaseSupport.add_atoms, BaseSupport.smul_atoms] at hN₁ hN₂ ⊢ refine Or.inr (Or.inr ?_) rw [mem_interferenceSupport_atoms] refine ⟨(ρᵁ B)⁻¹ • N₁, ?_, (ρᵁ B)⁻¹ • N₂, ?_, ?_⟩ · simp only [add_derivBot, BaseSupport.add_nearLitters, Enumeration.mem_add_iff] rw [← Enumeration.mem_smul, ← BaseSupport.smul_nearLitters, ← smul_derivBot, hρ] exact Or.inl hN₁ · simp only [add_derivBot, BaseSupport.add_nearLitters, Enumeration.mem_add_iff] simp only [interferenceSupport_nearLitters, Enumeration.not_mem_empty, or_false] at hN₂ exact Or.inr hN₂ · rw [← BasePerm.smul_interference] exact Set.smul_mem_smul_set ha · obtain ⟨B, rfl⟩ := eq_of_nearLitter_mem_scoderiv_botDeriv hN₁ simp only [smul_add, scoderiv_botDeriv_eq, add_derivBot, smul_derivBot, BaseSupport.add_nearLitters, BaseSupport.smul_nearLitters, Enumeration.mem_add_iff, Enumeration.mem_smul, BaseSupport.add_atoms, BaseSupport.smul_atoms] at hN₁ hN₂ ⊢ refine Or.inr (Or.inr ?_) rw [mem_interferenceSupport_atoms] refine ⟨(ρᵁ B)⁻¹ • N₁, ?_, (ρᵁ B)⁻¹ • N₂, ?_, ?_⟩ · simp only [add_derivBot, BaseSupport.add_nearLitters, Enumeration.mem_add_iff] simp only [interferenceSupport_nearLitters, Enumeration.not_mem_empty, or_false] at hN₁ exact Or.inr hN₁ · simp only [add_derivBot, BaseSupport.add_nearLitters, Enumeration.mem_add_iff] simp only [interferenceSupport_nearLitters, Enumeration.not_mem_empty, or_false] at hN₂ obtain hN₂ | hN₂ := hN₂ · rw [← Enumeration.mem_smul, ← BaseSupport.smul_nearLitters, ← smul_derivBot, hρ] exact Or.inl hN₂ · exact Or.inr hN₂ · rw [← BasePerm.smul_interference] exact Set.smul_mem_smul_set ha
theorem raise_strong' (S : Support α) (hS : S.Strong) (T : Support γ) (ρ : AllPerm β) (hγ : (γ : TypeIndex) < β) (hρ : ρᵁ • (S ↘ LtLevel.elim : Support β) = S ↘ LtLevel.elim) : (S + (ρᵁ • ((T ↗ hγ).strong + (S ↘ LtLevel.elim + (T ↗ hγ).strong).interferenceSupport)) ↗ LtLevel.elim).Strong
ConNF.Support.raise_strong'
{ "commit": "abf71bc79c407ceb462cc2edd2d994cda9cdef05", "date": "2024-04-04T00:00:00" }
{ "commit": "6709914ae7f5cd3e2bb24b413e09aa844554d234", "date": "2024-11-30T00:00:00" }
ConNF/ConNF/Model/RaiseStrong.lean
ConNF.Model.RaiseStrong
ConNF.Model.RaiseStrong.jsonl
{ "lineInFile": 174, "tokenPositionInFile": 7129, "theoremPositionInFile": 4 }
{ "inFilePremises": true, "numInFilePremises": 2, "repositoryPremises": true, "numRepositoryPremises": 32, "numPremises": 47 }
{ "hasProof": true, "proof": ":=\n ⟨raise_preStrong' S hS T ρ hγ, raise_closed' S hS T ρ hγ hρ⟩", "proofType": "term", "proofLengthLines": 1, "proofLengthTokens": 65 }
import ConNF.Base.TypeIndex /-! # Paths of type indices In this file, we define the notion of a *path*, and the derivative and coderivative operations. ## Main declarations * `ConNF.Path`: A path of type indices. * `ConNF.Path.recSderiv`, `ConNF.Path.recSderivLe`, `ConNF.Path.recSderivGlobal`: Downwards induction principles for paths. * `ConNF.Path.recScoderiv`: An upwards induction principle for paths. -/ universe u open Cardinal WithBot namespace ConNF variable [Params.{u}] {α β γ δ : TypeIndex} /-- A path of type indices starting at `α` and ending at `β` is a finite sequence of type indices `α > ... > β`. -/ inductive Path (α : TypeIndex) : TypeIndex → Type u | nil : Path α α | cons {β γ : TypeIndex} : Path α β → γ < β → Path α γ @[inherit_doc] infix:70 " ↝ " => Path def Path.single {α β : TypeIndex} (h : β < α) : α ↝ β := .cons .nil h /-- Typeclass for the `↘` notation. -/ class SingleDerivative (X : Type _) (Y : outParam <| Type _) (β : outParam TypeIndex) (γ : TypeIndex) where sderiv : X → γ < β → Y /-- Typeclass for the `⇘` notation. -/ class Derivative (X : Type _) (Y : outParam <| Type _) (β : outParam TypeIndex) (γ : TypeIndex) extends SingleDerivative X Y β γ where deriv : X → β ↝ γ → Y sderiv x h := deriv x (.single h) deriv_single : ∀ x : X, ∀ h : γ < β, deriv x (.single h) = sderiv x h := by intros; rfl /-- Typeclass for the `↘.` notation. -/ class BotSingleDerivative (X : Type _) (Y : outParam <| Type _) where botSderiv : X → Y /-- Typeclass for the `⇘.` notation. -/ class BotDerivative (X : Type _) (Y : outParam <| Type _) (β : outParam TypeIndex) extends BotSingleDerivative X Y where botDeriv : X → β ↝ ⊥ → Y /-- We often need to do case analysis on `β` to show that it's a proper type index here. This case check doesn't need to be done in most actual use cases of the notation. -/ botDeriv_single : ∀ x : X, ∀ h : ⊥ < β, botDeriv x (.single h) = botSderiv x /-- Typeclass for the `↗` notation. -/ class SingleCoderivative (X : Type _) (Y : outParam <| Type _) (β : TypeIndex) (γ : outParam TypeIndex) where scoderiv : X → γ < β → Y /-- Typeclass for the `⇗` notation. -/ class Coderivative (X : Type _) (Y : outParam <| Type _) (β : TypeIndex) (γ : outParam TypeIndex) extends SingleCoderivative X Y β γ where coderiv : X → β ↝ γ → Y scoderiv x h := coderiv x (.single h) coderiv_single : ∀ x : X, ∀ h : γ < β, coderiv x (.single h) = scoderiv x h := by intros; rfl infixl:75 " ↘ " => SingleDerivative.sderiv infixl:75 " ⇘ " => Derivative.deriv postfix:75 " ↘." => BotSingleDerivative.botSderiv infixl:75 " ⇘. " => BotDerivative.botDeriv infixl:75 " ↗ " => SingleCoderivative.scoderiv infixl:75 " ⇗ " => Coderivative.coderiv @[simp] theorem deriv_single {X Y : Type _} [Derivative X Y β γ] (x : X) (h : γ < β) : x ⇘ .single h = x ↘ h := Derivative.deriv_single x h @[simp] theorem coderiv_single {X Y : Type _} [Coderivative X Y β γ] (x : X) (h : γ < β) : x ⇗ .single h = x ↗ h := Coderivative.coderiv_single x h @[simp] theorem botDeriv_single {X Y : Type _} [BotDerivative X Y β] (x : X) (h : ⊥ < β) : x ⇘. .single h = x ↘. := BotDerivative.botDeriv_single x h /-! ## Downwards recursion along paths -/ instance : SingleDerivative (α ↝ β) (α ↝ γ) β γ where sderiv := .cons /-- The downwards recursion principle for paths. -/ @[elab_as_elim, induction_eliminator, cases_eliminator] def Path.recSderiv {motive : ∀ β, α ↝ β → Sort _} (nil : motive α .nil) (sderiv : ∀ β γ (A : α ↝ β) (h : γ < β), motive β A → motive γ (A ↘ h)) : {β : TypeIndex} → (A : α ↝ β) → motive β A | _, .nil => nil | _, .cons A h => sderiv _ _ A h (recSderiv nil sderiv A) @[simp] theorem Path.recSderiv_nil {motive : ∀ β, α ↝ β → Sort _} (nil : motive α .nil) (sderiv : ∀ β γ (A : α ↝ β) (h : γ < β), motive β A → motive γ (A ↘ h)) : recSderiv (motive := motive) nil sderiv .nil = nil := rfl @[simp] theorem Path.recSderiv_sderiv {motive : ∀ β, α ↝ β → Sort _} (nil : motive α .nil) (sderiv : ∀ β γ (A : α ↝ β) (h : γ < β), motive β A → motive γ (A ↘ h)) {β γ : TypeIndex} (A : α ↝ β) (h : γ < β) : recSderiv (motive := motive) nil sderiv (A ↘ h) = sderiv β γ A h (recSderiv nil sderiv A) := rfl theorem Path.le (A : α ↝ β) : β ≤ α := by induction A with | nil => exact le_rfl | sderiv β γ _A h h' => exact h.le.trans h' /-- The downwards recursion principle for paths, specialised to the case where the motive at `β` only depends on the fact that `β ≤ α`. -/ def Path.recSderivLe {motive : ∀ β ≤ α, Sort _} (nil : motive α le_rfl) (sderiv : ∀ β γ, ∀ (A : α ↝ β) (h : γ < β), motive β A.le → motive γ (h.le.trans A.le)) : {β : TypeIndex} → (A : α ↝ β) → motive β A.le := Path.recSderiv (motive := λ β A ↦ motive β A.le) nil sderiv @[simp] theorem Path.recSderivLe_nil {motive : ∀ β ≤ α, Sort _} (nil : motive α le_rfl) (sderiv : ∀ β γ (A : α ↝ β) (h : γ < β), motive β A.le → motive γ (h.le.trans A.le)) : recSderivLe (motive := motive) nil sderiv .nil = nil := rfl @[simp] theorem Path.recSderivLe_sderiv {motive : ∀ β ≤ α, Sort _} (nil : motive α le_rfl) (sderiv : ∀ β γ (A : α ↝ β) (h : γ < β), motive β A.le → motive γ (h.le.trans A.le)) {β γ : TypeIndex} (A : α ↝ β) (h : γ < β) : recSderivLe (motive := motive) nil sderiv (A ↘ h) = sderiv β γ A h (recSderiv nil sderiv A) := rfl /-- The downwards recursion principle for paths, specialised to the case where the motive is not dependent on the relation of `β` to `α`. -/ @[elab_as_elim] def Path.recSderivGlobal {motive : TypeIndex → Sort _} (nil : motive α) (sderiv : ∀ β γ, α ↝ β → γ < β → motive β → motive γ) : {β : TypeIndex} → α ↝ β → motive β := Path.recSderiv (motive := λ β _ ↦ motive β) nil sderiv @[simp] theorem Path.recSderivGlobal_nil {motive : TypeIndex → Sort _} (nil : motive α) (sderiv : ∀ β γ, α ↝ β → γ < β → motive β → motive γ) : recSderivGlobal (motive := motive) nil sderiv .nil = nil := rfl @[simp] theorem Path.recSderivGlobal_sderiv {motive : TypeIndex → Sort _} (nil : motive α) (sderiv : ∀ β γ, α ↝ β → γ < β → motive β → motive γ) {β γ : TypeIndex} (A : α ↝ β) (h : γ < β) : recSderivGlobal (motive := motive) nil sderiv (A ↘ h) = sderiv β γ A h (recSderiv nil sderiv A) := rfl /-! ## Derivatives of paths -/ instance : Derivative (α ↝ β) (α ↝ γ) β γ where deriv A := Path.recSderivGlobal A (λ _ _ _ h B ↦ B ↘ h) instance : BotDerivative (α ↝ β) (α ↝ ⊥) β where botDeriv A B := A ⇘ B botSderiv A := match β with | ⊥ => A | (β : Λ) => A ↘ bot_lt_coe β botDeriv_single A h := by cases β using WithBot.recBotCoe with | bot => cases lt_irrefl ⊥ h | coe => rfl instance : Coderivative (β ↝ γ) (α ↝ γ) α β where coderiv A B := B ⇘ A @[simp] theorem Path.deriv_nil (A : α ↝ β) : A ⇘ .nil = A := rfl @[simp] theorem Path.deriv_sderiv (A : α ↝ β) (B : β ↝ γ) (h : δ < γ) : A ⇘ (B ↘ h) = A ⇘ B ↘ h := rfl @[simp] theorem Path.nil_deriv (A : α ↝ β) : (.nil : α ↝ α) ⇘ A = A := by induction A with | nil => rfl | sderiv γ δ A h ih => rw [deriv_sderiv, ih] @[simp] theorem Path.deriv_sderivBot (A : α ↝ β) (B : β ↝ γ) : A ⇘ (B ↘.) = A ⇘ B ↘. := by cases γ using WithBot.recBotCoe with | bot => rfl | coe => rfl @[simp] theorem Path.botSderiv_bot_eq (A : α ↝ ⊥) : A ↘. = A := rfl @[simp] theorem Path.botSderiv_coe_eq {β : Λ} (A : α ↝ β) : A ↘ bot_lt_coe β = A ↘. := rfl @[simp] theorem Path.deriv_assoc (A : α ↝ β) (B : β ↝ γ) (C : γ ↝ δ) : A ⇘ (B ⇘ C) = A ⇘ B ⇘ C := by induction C with | nil => rfl | sderiv ε ζ C h ih => simp only [deriv_sderiv, ih] @[simp] theorem Path.deriv_sderiv_assoc (A : α ↝ β) (B : β ↝ γ) (h : δ < γ) : A ⇘ (B ↘ h) = A ⇘ B ↘ h := rfl @[simp] theorem Path.deriv_scoderiv (A : α ↝ β) (B : γ ↝ δ) (h : γ < β) : A ⇘ (B ↗ h) = A ↘ h ⇘ B := by induction B with | nil => rfl | sderiv ε ζ B h' ih => rw [deriv_sderiv, ← ih] rfl @[simp] theorem Path.botDeriv_scoderiv (A : α ↝ β) (B : γ ↝ ⊥) (h : γ < β) : A ⇘. (B ↗ h) = A ↘ h ⇘. B := deriv_scoderiv A B h theorem Path.coderiv_eq_deriv (A : α ↝ β) (B : β ↝ γ) : B ⇗ A = A ⇘ B := rfl theorem Path.coderiv_deriv (A : β ↝ γ) (h₁ : β < α) (h₂ : δ < γ) : A ↗ h₁ ↘ h₂ = A ↘ h₂ ↗ h₁ := rfl theorem Path.coderiv_deriv' (A : β ↝ γ) (h : β < α) (B : γ ↝ δ) : A ↗ h ⇘ B = A ⇘ B ↗ h := by induction B with | nil => rfl | sderiv ε ζ B h' ih => rw [deriv_sderiv, ih] rfl theorem Path.eq_nil (A : β ↝ β) : A = .nil := by cases A with | nil => rfl | sderiv γ _ A h => cases A.le.not_lt h theorem Path.sderiv_index_injective {A : α ↝ β} {B : α ↝ γ} {hδβ : δ < β} {hδγ : δ < γ} (h : A ↘ hδβ = B ↘ hδγ) : β = γ := by cases h rfl theorem Path.sderivBot_index_injective {β γ : Λ} {A : α ↝ β} {B : α ↝ γ} (h : A ↘. = B ↘.) : β = γ := by cases h rfl theorem Path.sderiv_path_injective {A B : α ↝ β} {hγ : γ < β} (h : A ↘ hγ = B ↘ hγ) : A = B := by cases h rfl theorem Path.sderivBot_path_injective {β : Λ} {A B : α ↝ β} (h : A ↘. = B ↘.) : A = B := by cases h rfl theorem Path.deriv_left_injective {A B : α ↝ β} {C : β ↝ γ} (h : A ⇘ C = B ⇘ C) : A = B := by induction C with | nil => exact h | sderiv δ ε C hε ih => rw [deriv_sderiv_assoc, deriv_sderiv_assoc] at h exact ih (Path.sderiv_path_injective h) theorem Path.deriv_right_injective {A : α ↝ β} {B C : β ↝ γ} (h : A ⇘ B = A ⇘ C) : B = C := by induction C with | nil => exact B.eq_nil | sderiv δ ε C hε ih => cases B with | nil => cases C.le.not_lt hε | sderiv ζ η B hε' => cases Path.sderiv_index_injective h rw [deriv_sderiv_assoc, deriv_sderiv_assoc] at h rw [ih (Path.sderiv_path_injective h)] @[simp] theorem Path.sderiv_left_inj {A B : α ↝ β} {h : γ < β} : A ↘ h = B ↘ h ↔ A = B := ⟨Path.sderiv_path_injective, λ h ↦ h ▸ rfl⟩ @[simp] theorem Path.deriv_left_inj {A B : α ↝ β} {C : β ↝ γ} : A ⇘ C = B ⇘ C ↔ A = B := ⟨deriv_left_injective, λ h ↦ h ▸ rfl⟩ @[simp] theorem Path.deriv_right_inj {A : α ↝ β} {B C : β ↝ γ} : A ⇘ B = A ⇘ C ↔ B = C := ⟨deriv_right_injective, λ h ↦ h ▸ rfl⟩ @[simp] theorem Path.scoderiv_left_inj {A B : β ↝ γ} {h : β < α} : A ↗ h = B ↗ h ↔ A = B := deriv_right_inj @[simp] theorem Path.coderiv_left_inj {A B : β ↝ γ} {C : α ↝ β} : A ⇗ C = B ⇗ C ↔ A = B := deriv_right_inj @[simp] theorem Path.coderiv_right_inj {A : β ↝ γ} {B C : α ↝ β} : A ⇗ B = A ⇗ C ↔ B = C := deriv_left_inj /-! ## Upwards recursion along paths -/ /-- The same as `Path`, but the components of this path point "upwards" instead of "downwards". This type is only used for proving `revScoderiv`, and should be considered an implementation detail. -/ inductive RevPath (α : TypeIndex) : TypeIndex → Type u | nil : RevPath α α | cons {β γ : TypeIndex} : RevPath α β → β < γ → RevPath α γ /-- A computable statement of the recursion principle for `RevPath`. This needs to be written due to a current limitation in the Lean 4 kernel: it cannot generate code for the `.rec` functions. -/ def RevPath.rec' {motive : (β : TypeIndex) → RevPath α β → Sort _} (nil : motive α RevPath.nil) (cons : {β γ : TypeIndex} → (A : RevPath α β) → (h : β < γ) → motive β A → motive γ (A.cons h)) : {β : TypeIndex} → (A : RevPath α β) → motive β A | _, .nil => nil | _, .cons A h => cons A h (RevPath.rec' nil cons A) def RevPath.snoc (h : γ < β) : {α : TypeIndex} → RevPath β α → RevPath γ α | _, .nil => .cons .nil h | _, .cons A h' => (RevPath.snoc h A).cons h' def Path.rev : α ↝ β → RevPath β α := Path.recSderiv .nil (λ _ _ _ h ↦ RevPath.snoc h) @[simp] theorem Path.rev_nil : (.nil : α ↝ α).rev = .nil := rfl @[simp] theorem Path.rev_sderiv (A : α ↝ β) (h : γ < β) : (A ↘ h).rev = A.rev.snoc h := rfl def RevPath.rev : {α : TypeIndex} → RevPath β α → α ↝ β | _, .nil => .nil | _, .cons A h => RevPath.rev A ↗ h theorem Path.sderiv_rev (A : α ↝ β) (h : γ < β) : (A ↘ h).rev = A.rev.snoc h := rfl theorem Path.scoderiv_rev (A : β ↝ γ) (h : β < α) : (A ↗ h).rev = A.rev.cons h := by induction A with | nil => rfl | sderiv δ ε A h ih => rw [rev_sderiv, ← coderiv_deriv, rev_sderiv, ih, RevPath.snoc] theorem RevPath.snoc_rev (A : RevPath β α) (h : γ < β) : (A.snoc h).rev = A.rev ↘ h := by induction A with | nil => rfl | cons A h ih => rw [snoc, rev, ih, rev, Path.coderiv_deriv] theorem Path.rev_rev (A : α ↝ β) : A.rev.rev = A := by induction A with | nil => rfl | sderiv γ δ A h ih => rw [Path.sderiv_rev, RevPath.snoc_rev, ih] def Path.recScoderiv' {motive : ∀ β, β ↝ γ → Sort _} (nil : motive γ .nil) (scoderiv : ∀ α β (A : β ↝ γ) (h : β < α), motive β A → motive α (A ↗ h)) {β : TypeIndex} (A : RevPath γ β) : motive β A.rev := RevPath.rec' (motive := λ β A ↦ motive β A.rev) nil (λ A ↦ scoderiv _ _ A.rev) A @[simp] theorem Path.recScoderiv'_nil {motive : ∀ β, β ↝ γ → Sort _} (nil : motive γ .nil) (scoderiv : ∀ α β (A : β ↝ γ) (h : β < α), motive β A → motive α (A ↗ h)) : recScoderiv' (motive := motive) nil scoderiv .nil = nil := rfl @[simp] theorem Path.recScoderiv'_cons {motive : ∀ β, β ↝ γ → Sort _} (nil : motive γ .nil) (scoderiv : ∀ α β (A : β ↝ γ) (h : β < α), motive β A → motive α (A ↗ h)) (A : RevPath γ β) (h : β < α) : recScoderiv' (motive := motive) nil scoderiv (A.cons h) = scoderiv α β A.rev h (recScoderiv' nil scoderiv A) := rfl /-- The upwards recursion principle for paths. The `scoderiv` computation rule `recScoderiv_scoderiv` is not a definitional equality. -/ @[elab_as_elim] def Path.recScoderiv {motive : ∀ β, β ↝ γ → Sort _} (nil : motive γ .nil) (scoderiv : ∀ α β (A : β ↝ γ) (h : β < α), motive β A → motive α (A ↗ h)) {β : TypeIndex} (A : β ↝ γ) : motive β A := cast (by rw [A.rev_rev]) (recScoderiv' nil scoderiv A.rev) @[simp] theorem Path.recScoderiv_nil {motive : ∀ β, β ↝ γ → Sort _} (nil : motive γ .nil) (scoderiv : ∀ α β (A : β ↝ γ) (h : β < α), motive β A → motive α (A ↗ h)) : recScoderiv (motive := motive) nil scoderiv .nil = nil := rfl @[simp] theorem Path.recScoderiv_scoderiv {motive : ∀ β, β ↝ γ → Sort _} (nil : motive γ .nil) (scoderiv : ∀ α β (A : β ↝ γ) (h : β < α), motive β A → motive α (A ↗ h)) {α β : TypeIndex} (A : β ↝ γ) (h : β < α) : recScoderiv (motive := motive) nil scoderiv (A ↗ h) = scoderiv α β A h (recScoderiv nil scoderiv A) := by unfold recScoderiv rw [cast_eq_iff_heq, scoderiv_rev, recScoderiv'_cons] congr 1 · exact A.rev_rev · exact HEq.symm (cast_heq _ _)
theorem Path.scoderiv_index_injective {A : β ↝ δ} {B : γ ↝ δ} {hβα : β < α} {hγα : γ < α} (h : A ↗ hβα = B ↗ hγα) : β = γ
ConNF.Path.scoderiv_index_injective
{ "commit": "8896e416a16c39e1fe487b5fc7c78bc20c4e182b", "date": "2024-12-03T00:00:00" }
{ "commit": "ce890707e37ede74a2fcd66134d3f403335c5cc1", "date": "2024-11-30T00:00:00" }
ConNF/ConNF/Levels/Path.lean
ConNF.Levels.Path
ConNF.Levels.Path.jsonl
{ "lineInFile": 467, "tokenPositionInFile": 14717, "theoremPositionInFile": 59 }
{ "inFilePremises": true, "numInFilePremises": 9, "repositoryPremises": true, "numRepositoryPremises": 14, "numPremises": 30 }
{ "hasProof": true, "proof": ":= by\n have := congr_arg rev h\n rw [scoderiv_rev, scoderiv_rev, RevPath.cons.injEq] at this\n exact this.1", "proofType": "tactic", "proofLengthLines": 3, "proofLengthTokens": 108 }
import ConNF.ModelData.Enumeration import ConNF.Levels.StrPerm /-! # Enumerations over paths In this file, we provide extra features to `Enumeration`s that take values of the form `α ↝ ⊥ × X`. ## Main declarations * `ConNF.Enumeration.ext_path`: An extensionality principle for such `Enumeration`s. -/ noncomputable section universe u open Cardinal Ordinal namespace ConNF variable [Params.{u}] namespace Enumeration /-- A helper function for making relations with domain and codomain of the form `α ↝ ⊥ × X` by defining it on each branch. -/ def relWithPath {X Y : Type u} {α : TypeIndex} (f : α ↝ ⊥ → Rel X Y) : Rel (α ↝ ⊥ × X) (α ↝ ⊥ × Y) := λ x y ↦ x.1 = y.1 ∧ f x.1 x.2 y.2 theorem relWithPath_coinjective {X Y : Type u} {α : TypeIndex} {f : α ↝ ⊥ → Rel X Y} (hf : ∀ A, (f A).Coinjective) : (relWithPath f).Coinjective := by constructor rintro ⟨_, y₁⟩ ⟨_, y₂⟩ ⟨A, x⟩ ⟨rfl, h₁⟩ ⟨rfl, h₂⟩ cases (hf A).coinjective h₁ h₂ rfl instance (X : Type u) (α β : TypeIndex) : Derivative (Enumeration (α ↝ ⊥ × X)) (Enumeration (β ↝ ⊥ × X)) α β where deriv E A := E.invImage (λ x ↦ (x.1 ⇗ A, x.2)) (λ x y h ↦ Prod.ext (Path.deriv_right_injective ((Prod.mk.injEq _ _ _ _).mp h).1) ((Prod.mk.injEq _ _ _ _).mp h).2) theorem deriv_rel {X : Type _} {α β : TypeIndex} (E : Enumeration (α ↝ ⊥ × X)) (A : α ↝ β) (i : κ) (x : β ↝ ⊥ × X) : (E ⇘ A).rel i x ↔ E.rel i (x.1 ⇗ A, x.2) := Iff.rfl instance (X : Type u) (α β : TypeIndex) : Coderivative (Enumeration (β ↝ ⊥ × X)) (Enumeration (α ↝ ⊥ × X)) α β where coderiv E A := E.image (λ x ↦ (x.1 ⇗ A, x.2)) theorem coderiv_rel {X : Type _} {α β : TypeIndex} (E : Enumeration (β ↝ ⊥ × X)) (A : α ↝ β) (i : κ) (x : α ↝ ⊥ × X) : (E ⇗ A).rel i x ↔ ∃ B, x.1 = A ⇘ B ∧ E.rel i (B, x.2) := by constructor · rintro ⟨x, h, rfl⟩ exact ⟨_, rfl, h⟩ · rintro ⟨B, h₁, h₂⟩ refine ⟨(B, x.2), h₂, ?_⟩ apply Prod.ext · dsimp only exact h₁.symm · rfl
theorem scoderiv_rel {X : Type _} {α β : TypeIndex} (E : Enumeration (β ↝ ⊥ × X)) (h : β < α) (i : κ) (x : α ↝ ⊥ × X) : (E ↗ h).rel i x ↔ ∃ B, x.1 = B ↗ h ∧ E.rel i (B, x.2)
ConNF.Enumeration.scoderiv_rel
{ "commit": "39c33b4a743bea62dbcc549548b712ffd38ca65c", "date": "2024-12-05T00:00:00" }
{ "commit": "ce890707e37ede74a2fcd66134d3f403335c5cc1", "date": "2024-11-30T00:00:00" }
ConNF/ConNF/ModelData/PathEnumeration.lean
ConNF.ModelData.PathEnumeration
ConNF.ModelData.PathEnumeration.jsonl
{ "lineInFile": 67, "tokenPositionInFile": 1972, "theoremPositionInFile": 4 }
{ "inFilePremises": true, "numInFilePremises": 2, "repositoryPremises": true, "numRepositoryPremises": 15, "numPremises": 33 }
{ "hasProof": true, "proof": ":=\n coderiv_rel E (.single h) i x", "proofType": "term", "proofLengthLines": 1, "proofLengthTokens": 34 }
import ConNF.ModelData.PathEnumeration /-! # Supports In this file, we define the notion of a support. ## Main declarations * `ConNF.BaseSupport`: The type of supports of atoms. * `ConNF.Support`: The type of supports of objects of arbitrary type indices. -/ universe u open Cardinal namespace ConNF variable [Params.{u}] /-! ## Base supports -/ structure BaseSupport where atoms : Enumeration Atom nearLitters : Enumeration NearLitter namespace BaseSupport instance : SuperA BaseSupport (Enumeration Atom) where superA := atoms instance : SuperN BaseSupport (Enumeration NearLitter) where superN := nearLitters @[simp] theorem mk_atoms {a : Enumeration Atom} {N : Enumeration NearLitter} : (BaseSupport.mk a N)ᴬ = a := rfl @[simp] theorem mk_nearLitters {a : Enumeration Atom} {N : Enumeration NearLitter} : (BaseSupport.mk a N)ᴺ = N := rfl theorem atoms_congr {S T : BaseSupport} (h : S = T) : Sᴬ = Tᴬ := h ▸ rfl theorem nearLitters_congr {S T : BaseSupport} (h : S = T) : Sᴺ = Tᴺ := h ▸ rfl @[ext] theorem ext {S T : BaseSupport} (h₁ : Sᴬ = Tᴬ) (h₂ : Sᴺ = Tᴺ) : S = T := by obtain ⟨SA, SN⟩ := S obtain ⟨TA, TN⟩ := T cases h₁ cases h₂ rfl instance : SMul BasePerm BaseSupport where smul π S := ⟨π • Sᴬ, π • Sᴺ⟩ @[simp] theorem smul_atoms (π : BasePerm) (S : BaseSupport) : (π • S)ᴬ = π • Sᴬ := rfl @[simp] theorem smul_nearLitters (π : BasePerm) (S : BaseSupport) : (π • S)ᴺ = π • Sᴺ := rfl @[simp] theorem smul_atoms_eq_of_smul_eq {π : BasePerm} {S : BaseSupport} (h : π • S = S) : π • Sᴬ = Sᴬ := by rw [← smul_atoms, h] @[simp] theorem smul_nearLitters_eq_of_smul_eq {π : BasePerm} {S : BaseSupport} (h : π • S = S) : π • Sᴺ = Sᴺ := by rw [← smul_nearLitters, h] instance : MulAction BasePerm BaseSupport where one_smul S := by apply ext · rw [smul_atoms, one_smul] · rw [smul_nearLitters, one_smul] mul_smul π₁ π₂ S := by apply ext · rw [smul_atoms, smul_atoms, smul_atoms, mul_smul] · rw [smul_nearLitters, smul_nearLitters, smul_nearLitters, mul_smul] theorem smul_eq_smul_iff (π₁ π₂ : BasePerm) (S : BaseSupport) : π₁ • S = π₂ • S ↔ (∀ a ∈ Sᴬ, π₁ • a = π₂ • a) ∧ (∀ N ∈ Sᴺ, π₁ • N = π₂ • N) := by constructor · intro h constructor · rintro a ⟨i, ha⟩ have := congr_arg (·ᴬ.rel i (π₁ • a)) h simp only [smul_atoms, Enumeration.smul_rel, inv_smul_smul, eq_iff_iff] at this have := Sᴬ.rel_coinjective.coinjective ha (this.mp ha) rw [eq_inv_smul_iff] at this rw [this] · rintro N ⟨i, hN⟩ have := congr_arg (·ᴺ.rel i (π₁ • N)) h simp only [smul_nearLitters, Enumeration.smul_rel, inv_smul_smul, eq_iff_iff] at this have := Sᴺ.rel_coinjective.coinjective hN (this.mp hN) rw [eq_inv_smul_iff] at this rw [this] · intro h ext : 2 · rfl · ext i a : 3 rw [smul_atoms, smul_atoms, Enumeration.smul_rel, Enumeration.smul_rel] constructor · intro ha have := h.1 _ ⟨i, ha⟩ rw [smul_inv_smul, ← inv_smul_eq_iff] at this rwa [this] · intro ha have := h.1 _ ⟨i, ha⟩ rw [smul_inv_smul, smul_eq_iff_eq_inv_smul] at this rwa [← this] · rfl · ext i a : 3 rw [smul_nearLitters, smul_nearLitters, Enumeration.smul_rel, Enumeration.smul_rel] constructor · intro hN have := h.2 _ ⟨i, hN⟩ rw [smul_inv_smul, ← inv_smul_eq_iff] at this rwa [this] · intro hN have := h.2 _ ⟨i, hN⟩ rw [smul_inv_smul, smul_eq_iff_eq_inv_smul] at this rwa [← this] theorem smul_eq_iff (π : BasePerm) (S : BaseSupport) : π • S = S ↔ (∀ a ∈ Sᴬ, π • a = a) ∧ (∀ N ∈ Sᴺ, π • N = N) := by have := smul_eq_smul_iff π 1 S simp only [one_smul] at this exact this noncomputable instance : Add BaseSupport where add S T := ⟨Sᴬ + Tᴬ, Sᴺ + Tᴺ⟩ @[simp] theorem add_atoms (S T : BaseSupport) : (S + T)ᴬ = Sᴬ + Tᴬ := rfl @[simp] theorem add_nearLitters (S T : BaseSupport) : (S + T)ᴺ = Sᴺ + Tᴺ := rfl end BaseSupport def baseSupportEquiv : BaseSupport ≃ Enumeration Atom × Enumeration NearLitter where toFun S := (Sᴬ, Sᴺ) invFun S := ⟨S.1, S.2⟩ left_inv _ := rfl right_inv _ := rfl theorem card_baseSupport : #BaseSupport = #μ := by rw [Cardinal.eq.mpr ⟨baseSupportEquiv⟩, mk_prod, lift_id, lift_id, card_enumeration_eq card_atom, card_enumeration_eq card_nearLitter, mul_eq_self aleph0_lt_μ.le] /-! ## Structural supports -/ structure Support (α : TypeIndex) where atoms : Enumeration (α ↝ ⊥ × Atom) nearLitters : Enumeration (α ↝ ⊥ × NearLitter) namespace Support variable {α β : TypeIndex} instance : SuperA (Support α) (Enumeration (α ↝ ⊥ × Atom)) where superA := atoms instance : SuperN (Support α) (Enumeration (α ↝ ⊥ × NearLitter)) where superN := nearLitters @[simp] theorem mk_atoms (E : Enumeration (α ↝ ⊥ × Atom)) (F : Enumeration (α ↝ ⊥ × NearLitter)) : (⟨E, F⟩ : Support α)ᴬ = E := rfl @[simp] theorem mk_nearLitters (E : Enumeration (α ↝ ⊥ × Atom)) (F : Enumeration (α ↝ ⊥ × NearLitter)) : (⟨E, F⟩ : Support α)ᴺ = F := rfl instance : Derivative (Support α) (Support β) α β where deriv S A := ⟨Sᴬ ⇘ A, Sᴺ ⇘ A⟩ instance : Coderivative (Support β) (Support α) α β where coderiv S A := ⟨Sᴬ ⇗ A, Sᴺ ⇗ A⟩ instance : BotDerivative (Support α) BaseSupport α where botDeriv S A := ⟨Sᴬ ⇘. A, Sᴺ ⇘. A⟩ botSderiv S := ⟨Sᴬ ↘., Sᴺ ↘.⟩ botDeriv_single S h := by dsimp only; rw [botDeriv_single, botDeriv_single] @[simp] theorem deriv_atoms {α β : TypeIndex} (S : Support α) (A : α ↝ β) : Sᴬ ⇘ A = (S ⇘ A)ᴬ := rfl @[simp] theorem deriv_nearLitters {α β : TypeIndex} (S : Support α) (A : α ↝ β) : Sᴺ ⇘ A = (S ⇘ A)ᴺ := rfl @[simp] theorem sderiv_atoms {α β : TypeIndex} (S : Support α) (h : β < α) : Sᴬ ↘ h = (S ↘ h)ᴬ := rfl @[simp] theorem sderiv_nearLitters {α β : TypeIndex} (S : Support α) (h : β < α) : Sᴺ ↘ h = (S ↘ h)ᴺ := rfl @[simp] theorem coderiv_atoms {α β : TypeIndex} (S : Support β) (A : α ↝ β) : Sᴬ ⇗ A = (S ⇗ A)ᴬ := rfl @[simp] theorem coderiv_nearLitters {α β : TypeIndex} (S : Support β) (A : α ↝ β) : Sᴺ ⇗ A = (S ⇗ A)ᴺ := rfl @[simp] theorem scoderiv_atoms {α β : TypeIndex} (S : Support β) (h : β < α) : Sᴬ ↗ h = (S ↗ h)ᴬ := rfl @[simp] theorem scoderiv_nearLitters {α β : TypeIndex} (S : Support β) (h : β < α) : Sᴺ ↗ h = (S ↗ h)ᴺ := rfl @[simp] theorem derivBot_atoms {α : TypeIndex} (S : Support α) (A : α ↝ ⊥) : Sᴬ ⇘. A = (S ⇘. A)ᴬ := rfl @[simp] theorem derivBot_nearLitters {α : TypeIndex} (S : Support α) (A : α ↝ ⊥) : Sᴺ ⇘. A = (S ⇘. A)ᴺ := rfl theorem ext' {S T : Support α} (h₁ : Sᴬ = Tᴬ) (h₂ : Sᴺ = Tᴺ) : S = T := by obtain ⟨SA, SN⟩ := S obtain ⟨TA, TN⟩ := T cases h₁ cases h₂ rfl @[ext] theorem ext {S T : Support α} (h : ∀ A, S ⇘. A = T ⇘. A) : S = T := by obtain ⟨SA, SN⟩ := S obtain ⟨TA, TN⟩ := T rw [mk.injEq] constructor · apply Enumeration.ext_path intro A exact BaseSupport.atoms_congr (h A) · apply Enumeration.ext_path intro A exact BaseSupport.nearLitters_congr (h A) @[simp] theorem deriv_derivBot {α : TypeIndex} (S : Support α) (A : α ↝ β) (B : β ↝ ⊥) : S ⇘ A ⇘. B = S ⇘. (A ⇘ B) := rfl @[simp] theorem coderiv_deriv_eq {α β : TypeIndex} (S : Support β) (A : α ↝ β) : S ⇗ A ⇘ A = S := ext' (Sᴬ.coderiv_deriv_eq A) (Sᴺ.coderiv_deriv_eq A) theorem eq_of_atom_mem_scoderiv_botDeriv {α β : TypeIndex} {S : Support β} {A : α ↝ ⊥} {h : β < α} {a : Atom} (ha : a ∈ (S ↗ h ⇘. A)ᴬ) : ∃ B : β ↝ ⊥, A = B ↗ h := Enumeration.eq_of_mem_scoderiv_botDeriv ha theorem eq_of_nearLitter_mem_scoderiv_botDeriv {α β : TypeIndex} {S : Support β} {A : α ↝ ⊥} {h : β < α} {N : NearLitter} (hN : N ∈ (S ↗ h ⇘. A)ᴺ) : ∃ B : β ↝ ⊥, A = B ↗ h := Enumeration.eq_of_mem_scoderiv_botDeriv hN @[simp] theorem scoderiv_botDeriv_eq {α β : TypeIndex} (S : Support β) (A : β ↝ ⊥) (h : β < α) : S ↗ h ⇘. (A ↗ h) = S ⇘. A := BaseSupport.ext (Enumeration.scoderiv_botDeriv_eq _ _ _) (Enumeration.scoderiv_botDeriv_eq _ _ _) @[simp] theorem scoderiv_deriv_eq {α β γ : TypeIndex} (S : Support β) (A : β ↝ γ) (h : β < α) : S ↗ h ⇘ (A ↗ h) = S ⇘ A := by apply ext intro B simp only [deriv_derivBot, ← scoderiv_botDeriv_eq S (A ⇘ B) h, Path.coderiv_deriv'] @[simp] theorem coderiv_inj {α β : TypeIndex} (S T : Support β) (A : α ↝ β) : S ⇗ A = T ⇗ A ↔ S = T := by constructor swap · rintro rfl rfl intro h ext B : 1 have : S ⇗ A ⇘ A ⇘. B = T ⇗ A ⇘ A ⇘. B := by rw [h] rwa [coderiv_deriv_eq, coderiv_deriv_eq] at this @[simp] theorem scoderiv_inj {α β : TypeIndex} (S T : Support β) (h : β < α) : S ↗ h = T ↗ h ↔ S = T := coderiv_inj S T (.single h) instance {α : TypeIndex} : SMul (StrPerm α) (Support α) where smul π S := ⟨π • Sᴬ, π • Sᴺ⟩ @[simp] theorem smul_atoms {α : TypeIndex} (π : StrPerm α) (S : Support α) : (π • S)ᴬ = π • Sᴬ := rfl @[simp] theorem smul_nearLitters {α : TypeIndex} (π : StrPerm α) (S : Support α) : (π • S)ᴺ = π • Sᴺ := rfl theorem smul_atoms_eq_of_smul_eq {α : TypeIndex} {π : StrPerm α} {S : Support α} (h : π • S = S) : π • Sᴬ = Sᴬ := by rw [← smul_atoms, h] theorem smul_nearLitters_eq_of_smul_eq {α : TypeIndex} {π : StrPerm α} {S : Support α} (h : π • S = S) : π • Sᴺ = Sᴺ := by rw [← smul_nearLitters, h] instance {α : TypeIndex} : MulAction (StrPerm α) (Support α) where one_smul S := by apply ext' · rw [smul_atoms, one_smul] · rw [smul_nearLitters, one_smul] mul_smul π₁ π₂ S := by apply ext' · rw [smul_atoms, smul_atoms, smul_atoms, mul_smul] · rw [smul_nearLitters, smul_nearLitters, smul_nearLitters, mul_smul] @[simp] theorem smul_derivBot {α : TypeIndex} (π : StrPerm α) (S : Support α) (A : α ↝ ⊥) : (π • S) ⇘. A = π A • (S ⇘. A) := rfl theorem smul_coderiv {α : TypeIndex} (π : StrPerm α) (S : Support β) (A : α ↝ β) : π • S ⇗ A = (π ⇘ A • S) ⇗ A := by ext B i x · rfl · constructor · rintro ⟨⟨C, x⟩, hS, hx⟩ simp only [Prod.mk.injEq] at hx obtain ⟨rfl, rfl⟩ := hx exact ⟨⟨C, x⟩, hS, rfl⟩ · rintro ⟨⟨C, x⟩, hS, hx⟩ simp only [Prod.mk.injEq] at hx obtain ⟨rfl, rfl⟩ := hx exact ⟨⟨C, _⟩, hS, rfl⟩ · rfl · constructor · rintro ⟨⟨C, x⟩, hS, hx⟩ simp only [Prod.mk.injEq] at hx obtain ⟨rfl, rfl⟩ := hx exact ⟨⟨C, x⟩, hS, rfl⟩ · rintro ⟨⟨C, a⟩, hS, hx⟩ simp only [Prod.mk.injEq] at hx obtain ⟨rfl, rfl⟩ := hx exact ⟨⟨C, _⟩, hS, rfl⟩ theorem smul_scoderiv {α : TypeIndex} (π : StrPerm α) (S : Support β) (h : β < α) : π • S ↗ h = (π ↘ h • S) ↗ h := smul_coderiv π S (Path.single h) theorem smul_eq_smul_iff (π₁ π₂ : StrPerm β) (S : Support β) : π₁ • S = π₂ • S ↔ ∀ A, (∀ a ∈ (S ⇘. A)ᴬ, π₁ A • a = π₂ A • a) ∧ (∀ N ∈ (S ⇘. A)ᴺ, π₁ A • N = π₂ A • N) := by constructor · intro h A have := congr_arg (· ⇘. A) h simp only [smul_derivBot, BaseSupport.smul_eq_smul_iff] at this exact this · intro h apply ext intro A simp only [smul_derivBot, BaseSupport.smul_eq_smul_iff] exact h A theorem smul_eq_iff (π : StrPerm β) (S : Support β) : π • S = S ↔ ∀ A, (∀ a ∈ (S ⇘. A)ᴬ, π A • a = a) ∧ (∀ N ∈ (S ⇘. A)ᴺ, π A • N = N) := by have := smul_eq_smul_iff π 1 S simp only [one_smul, Tree.one_apply] at this exact this noncomputable instance : Add (Support α) where add S T := ⟨Sᴬ + Tᴬ, Sᴺ + Tᴺ⟩ @[simp] theorem add_derivBot (S T : Support α) (A : α ↝ ⊥) : (S + T) ⇘. A = (S ⇘. A) + (T ⇘. A) := rfl theorem smul_add (S T : Support α) (π : StrPerm α) : π • (S + T) = π • S + π • T := rfl theorem add_inj_of_bound_eq_bound {S T U V : Support α} (ha : Sᴬ.bound = Tᴬ.bound) (hN : Sᴺ.bound = Tᴺ.bound) (h' : S + U = T + V) : S = T ∧ U = V := by have ha' := Enumeration.add_inj_of_bound_eq_bound ha (congr_arg (·ᴬ) h') have hN' := Enumeration.add_inj_of_bound_eq_bound hN (congr_arg (·ᴺ) h') constructor · exact Support.ext' ha'.1 hN'.1 · exact Support.ext' ha'.2 hN'.2 end Support def supportEquiv {α : TypeIndex} : Support α ≃ Enumeration (α ↝ ⊥ × Atom) × Enumeration (α ↝ ⊥ × NearLitter) where toFun S := (Sᴬ, Sᴺ) invFun S := ⟨S.1, S.2⟩ left_inv _ := rfl right_inv _ := rfl theorem card_support {α : TypeIndex} : #(Support α) = #μ := by rw [Cardinal.eq.mpr ⟨supportEquiv⟩, mk_prod, lift_id, lift_id, card_enumeration_eq, card_enumeration_eq, mul_eq_self aleph0_lt_μ.le] · rw [mk_prod, lift_id, lift_id, card_nearLitter, mul_eq_right aleph0_lt_μ.le (card_path_lt' α ⊥).le (card_path_ne_zero α)] · rw [mk_prod, lift_id, lift_id, card_atom, mul_eq_right aleph0_lt_μ.le (card_path_lt' α ⊥).le (card_path_ne_zero α)] /-! ## Orders on supports -/ -- TODO: Is this order used? instance : LE BaseSupport where le S T := (∀ a ∈ Sᴬ, a ∈ Tᴬ) ∧ (∀ N ∈ Sᴺ, N ∈ Tᴺ) instance : Preorder BaseSupport where le_refl S := ⟨λ _ ↦ id, λ _ ↦ id⟩ le_trans S T U h₁ h₂ := ⟨λ a h ↦ h₂.1 _ (h₁.1 a h), λ N h ↦ h₂.2 _ (h₁.2 N h)⟩ theorem BaseSupport.smul_le_smul {S T : BaseSupport} (h : S ≤ T) (π : BasePerm) : π • S ≤ π • T := by constructor · intro a exact h.1 (π⁻¹ • a) · intro N exact h.2 (π⁻¹ • N) theorem BaseSupport.le_add_right {S T : BaseSupport} : S ≤ S + T := by constructor · intro a ha simp only [Support.add_derivBot, BaseSupport.add_atoms, Enumeration.mem_add_iff] exact Or.inl ha · intro N hN simp only [Support.add_derivBot, BaseSupport.add_nearLitters, Enumeration.mem_add_iff] exact Or.inl hN theorem BaseSupport.le_add_left {S T : BaseSupport} : S ≤ T + S := by constructor · intro a ha simp only [add_atoms, Enumeration.mem_add_iff] exact Or.inr ha · intro N hN simp only [add_nearLitters, Enumeration.mem_add_iff] exact Or.inr hN def BaseSupport.Subsupport (S T : BaseSupport) : Prop := Sᴬ.rel ≤ Tᴬ.rel ∧ Sᴺ.rel ≤ Tᴺ.rel theorem BaseSupport.Subsupport.le {S T : BaseSupport} (h : S.Subsupport T) : S ≤ T := by constructor · rintro a ⟨i, hi⟩ exact ⟨i, h.1 i a hi⟩ · rintro N ⟨i, hi⟩ exact ⟨i, h.2 i N hi⟩ theorem BaseSupport.Subsupport.trans {S T U : BaseSupport} (h₁ : S.Subsupport T) (h₂ : T.Subsupport U) : S.Subsupport U := ⟨h₁.1.trans h₂.1, h₁.2.trans h₂.2⟩ theorem BaseSupport.smul_subsupport_smul {S T : BaseSupport} (h : S.Subsupport T) (π : BasePerm) : (π • S).Subsupport (π • T) := by constructor · intro i a ha exact h.1 i _ ha · intro i N hN exact h.2 i _ hN instance {α : TypeIndex} : LE (Support α) where le S T := ∀ A, S ⇘. A ≤ T ⇘. A instance {α : TypeIndex} : Preorder (Support α) where le_refl S := λ A ↦ le_rfl le_trans S T U h₁ h₂ := λ A ↦ (h₁ A).trans (h₂ A) theorem Support.smul_le_smul {α : TypeIndex} {S T : Support α} (h : S ≤ T) (π : StrPerm α) : π • S ≤ π • T := λ A ↦ BaseSupport.smul_le_smul (h A) (π A) theorem Support.le_add_right {α : TypeIndex} {S T : Support α} : S ≤ S + T := by intro A rw [add_derivBot] exact BaseSupport.le_add_right
theorem Support.le_add_left {α : TypeIndex} {S T : Support α} : S ≤ T + S
ConNF.Support.le_add_left
{ "commit": "39c33b4a743bea62dbcc549548b712ffd38ca65c", "date": "2024-12-05T00:00:00" }
{ "commit": "251ac752f844dfde539ac2bd3ff112305ad59139", "date": "2024-11-30T00:00:00" }
ConNF/ConNF/ModelData/Support.lean
ConNF.ModelData.Support
ConNF.ModelData.Support.jsonl
{ "lineInFile": 538, "tokenPositionInFile": 15061, "theoremPositionInFile": 58 }
{ "inFilePremises": true, "numInFilePremises": 9, "repositoryPremises": true, "numRepositoryPremises": 14, "numPremises": 23 }
{ "hasProof": true, "proof": ":= by\n intro A\n rw [add_derivBot]\n exact BaseSupport.le_add_left", "proofType": "tactic", "proofLengthLines": 3, "proofLengthTokens": 67 }
import ConNF.Model.Result /-! # New file In this file... ## Main declarations * `ConNF.foo`: Something new. -/ noncomputable section universe u open Cardinal Ordinal ConNF.TSet namespace ConNF variable [Params.{u}] {α β γ δ ε ζ : Λ} (hβ : (β : TypeIndex) < α) (hγ : (γ : TypeIndex) < β) (hδ : (δ : TypeIndex) < γ) (hε : (ε : TypeIndex) < δ) (hζ : (ζ : TypeIndex) < ε) def union (x y : TSet α) : TSet α := (xᶜ' ⊓' yᶜ')ᶜ' notation:68 x:68 " ⊔[" h "] " y:68 => _root_.ConNF.union h x y notation:68 x:68 " ⊔' " y:68 => x ⊔[by assumption] y @[simp] theorem mem_union_iff (x y : TSet α) : ∀ z : TSet β, z ∈' x ⊔' y ↔ z ∈' x ∨ z ∈' y := by rw [union] intro z rw [mem_compl_iff, mem_inter_iff, mem_compl_iff, mem_compl_iff, or_iff_not_and_not] def higherIndex (α : Λ) : Λ := (exists_gt α).choose theorem lt_higherIndex {α : Λ} : (α : TypeIndex) < higherIndex α := WithBot.coe_lt_coe.mpr (exists_gt α).choose_spec theorem tSet_nonempty (h : ∃ β : Λ, (β : TypeIndex) < α) : Nonempty (TSet α) := by obtain ⟨α', hα⟩ := h constructor apply typeLower lt_higherIndex lt_higherIndex lt_higherIndex hα apply cardinalOne lt_higherIndex lt_higherIndex def empty : TSet α := (tSet_nonempty ⟨β, hβ⟩).some ⊓' (tSet_nonempty ⟨β, hβ⟩).someᶜ' @[simp] theorem mem_empty_iff : ∀ x : TSet β, ¬x ∈' empty hβ := by intro x rw [empty, mem_inter_iff, mem_compl_iff] exact and_not_self def univ : TSet α := (empty hβ)ᶜ' @[simp] theorem mem_univ_iff : ∀ x : TSet β, x ∈' univ hβ := by intro x simp only [univ, mem_compl_iff, mem_empty_iff, not_false_eq_true] /-- The set of all ordered pairs. -/ def orderedPairs : TSet α := vCross hβ hγ hδ (univ hδ) @[simp] theorem mem_orderedPairs_iff (x : TSet β) : x ∈' orderedPairs hβ hγ hδ ↔ ∃ a b, x = ⟨a, b⟩' := by simp only [orderedPairs, vCross_spec, mem_univ_iff, and_true] def converse (x : TSet α) : TSet α := converse' hβ hγ hδ x ⊓' orderedPairs hβ hγ hδ
@[simp] theorem op_mem_converse_iff (x : TSet α) : ∀ a b, ⟨a, b⟩' ∈' converse hβ hγ hδ x ↔ ⟨b, a⟩' ∈' x
ConNF.op_mem_converse_iff
{ "commit": "66f4e3291020d4198ca6ede816acae5cee584a07", "date": "2025-01-06T00:00:00" }
{ "commit": "66f4e3291020d4198ca6ede816acae5cee584a07", "date": "2025-01-06T00:00:00" }
ConNF/ConNF/External/Basic.lean
ConNF.External.Basic
ConNF.External.Basic.jsonl
{ "lineInFile": 80, "tokenPositionInFile": 1953, "theoremPositionInFile": 14 }
{ "inFilePremises": true, "numInFilePremises": 3, "repositoryPremises": true, "numRepositoryPremises": 18, "numPremises": 44 }
{ "hasProof": true, "proof": ":= by\n intro a b\n simp only [converse, mem_inter_iff, converse'_spec, mem_orderedPairs_iff, op_inj, exists_and_left,\n exists_eq', and_true]", "proofType": "tactic", "proofLengthLines": 3, "proofLengthTokens": 144 }
import ConNF.Model.Externalise /-! # New file In this file... ## Main declarations * `ConNF.foo`: Something new. -/ noncomputable section universe u open Cardinal Ordinal namespace ConNF variable [Params.{u}] {β γ : Λ} {hγ : (γ : TypeIndex) < β} namespace Support theorem not_mem_scoderiv_botDeriv (S : Support γ) (N : NearLitter) : N ∉ (S ↗ hγ ⇘. (Path.nil ↘.))ᴺ := by rintro ⟨i, ⟨A, N'⟩, h₁, h₂⟩ simp only [Prod.mk.injEq] at h₂ cases A case sderiv δ A hδ _ => simp only [Path.deriv_sderiv] at h₂ cases A case nil => cases h₂.1 case sderiv ζ A hζ _ => simp only [Path.deriv_sderiv] at h₂ cases h₂.1 variable [Level] [LtLevel β] theorem not_mem_strong_botDeriv (S : Support γ) (N : NearLitter) : N ∉ ((S ↗ hγ).strong ⇘. (Path.nil ↘.))ᴺ := by rintro h rw [strong, close_nearLitters, preStrong_nearLitters, Enumeration.mem_add_iff] at h obtain h | h := h · exact not_mem_scoderiv_botDeriv S N h · rw [mem_constrainsNearLitters_nearLitters] at h obtain ⟨B, N', hN', h⟩ := h cases h using Relation.ReflTransGen.head_induction_on case refl => exact not_mem_scoderiv_botDeriv S N hN' case head x hx₁ hx₂ _ => obtain ⟨⟨γ, δ, ε, hδ, hε, hδε, A⟩, t, B, hB, hN, ht⟩ := hx₂ simp only at hB cases B case nil => cases hB obtain ⟨C, N''⟩ := x simp only at ht cases ht.1 change _ ∈ t.supportᴺ at hN rw [t.support_supports.2 rfl] at hN obtain ⟨i, hN⟩ := hN cases hN case sderiv δ B hδ _ _ => cases B case nil => cases hB case sderiv ζ B hζ _ _ => cases hB theorem raise_preStrong' (S : Support α) (hS : S.Strong) (T : Support γ) (ρ : AllPerm β) (hγ : (γ : TypeIndex) < β) : (S + (ρᵁ • ((T ↗ hγ).strong + (S ↘ LtLevel.elim + (T ↗ hγ).strong).interferenceSupport)) ↗ LtLevel.elim).PreStrong := by apply hS.toPreStrong.add constructor intro A N hN P t hA ht obtain ⟨A, rfl⟩ := eq_of_nearLitter_mem_scoderiv_botDeriv hN simp only [scoderiv_botDeriv_eq, add_derivBot, smul_derivBot, BaseSupport.add_nearLitters, BaseSupport.smul_nearLitters, interferenceSupport_nearLitters, Enumeration.mem_add_iff, Enumeration.mem_smul, Enumeration.not_mem_empty, or_false] at hN obtain ⟨δ, ε, ζ, hε, hζ, hεζ, B⟩ := P dsimp only at * cases A case sderiv ζ' A hζ' _ => rw [← Path.coderiv_deriv] at hA cases Path.sderiv_index_injective hA apply Path.sderiv_left_inj.mp at hA cases A case nil => cases hA cases not_mem_strong_botDeriv T _ hN case sderiv ι A hι _ _ => rw [← Path.coderiv_deriv] at hA cases Path.sderiv_index_injective hA cases hA haveI : LtLevel δ := ⟨A.le.trans_lt LtLevel.elim⟩ haveI : LtLevel ε := ⟨hε.trans LtLevel.elim⟩ haveI : LtLevel ζ := ⟨hζ.trans LtLevel.elim⟩ have := (T ↗ hγ).strong_strong.support_le hN ⟨δ, ε, ζ, hε, hζ, hεζ, A⟩ (ρ⁻¹ ⇘ A ↘ hε • t) rfl ?_ · simp only [Tangle.smul_support, allPermSderiv_forget, allPermDeriv_forget, allPermForget_inv, Tree.inv_deriv, Tree.inv_sderiv] at this have := smul_le_smul this (ρᵁ ⇘ A ↘ hε) simp only [smul_inv_smul] at this apply le_trans this intro B constructor · intro a ha simp only [smul_derivBot, Tree.sderiv_apply, Tree.deriv_apply, Path.deriv_scoderiv, deriv_derivBot, Enumeration.mem_smul] at ha rw [deriv_derivBot, ← Path.deriv_scoderiv, Path.coderiv_deriv', scoderiv_botDeriv_eq,] simp only [Path.deriv_scoderiv, add_derivBot, smul_derivBot, BaseSupport.add_atoms, BaseSupport.smul_atoms, Enumeration.mem_add_iff, Enumeration.mem_smul] exact Or.inl ha · intro N hN simp only [smul_derivBot, Tree.sderiv_apply, Tree.deriv_apply, Path.deriv_scoderiv, deriv_derivBot, Enumeration.mem_smul] at hN rw [deriv_derivBot, ← Path.deriv_scoderiv, Path.coderiv_deriv', scoderiv_botDeriv_eq,] simp only [Path.deriv_scoderiv, add_derivBot, smul_derivBot, BaseSupport.add_nearLitters, BaseSupport.smul_nearLitters, Enumeration.mem_add_iff, Enumeration.mem_smul] exact Or.inl hN · rw [← smul_fuzz hε hζ hεζ, ← ht] simp only [Path.botSderiv_coe_eq, BasePerm.smul_nearLitter_litter, allPermDeriv_forget, allPermForget_inv, Tree.inv_deriv, Tree.inv_sderiv, Tree.inv_sderivBot] rfl theorem raise_closed' (S : Support α) (hS : S.Strong) (T : Support γ) (ρ : AllPerm β) (hγ : (γ : TypeIndex) < β) (hρ : ρᵁ • (S ↘ LtLevel.elim : Support β) = S ↘ LtLevel.elim) : (S + (ρᵁ • ((T ↗ hγ).strong + (S ↘ LtLevel.elim + (T ↗ hγ).strong).interferenceSupport)) ↗ LtLevel.elim).Closed := by constructor intro A constructor intro N₁ N₂ hN₁ hN₂ a ha simp only [add_derivBot, BaseSupport.add_nearLitters, Enumeration.mem_add_iff, BaseSupport.add_atoms] at hN₁ hN₂ ⊢ obtain hN₁ | hN₁ := hN₁ · obtain hN₂ | hN₂ := hN₂ · exact Or.inl ((hS.closed A).interference_subset hN₁ hN₂ a ha) · obtain ⟨B, rfl⟩ := eq_of_nearLitter_mem_scoderiv_botDeriv hN₂ simp only [smul_add, scoderiv_botDeriv_eq, add_derivBot, smul_derivBot, BaseSupport.add_nearLitters, BaseSupport.smul_nearLitters, Enumeration.mem_add_iff, Enumeration.mem_smul, BaseSupport.add_atoms, BaseSupport.smul_atoms] at hN₁ hN₂ ⊢ refine Or.inr (Or.inr ?_) rw [mem_interferenceSupport_atoms] refine ⟨(ρᵁ B)⁻¹ • N₁, ?_, (ρᵁ B)⁻¹ • N₂, ?_, ?_⟩ · simp only [add_derivBot, BaseSupport.add_nearLitters, Enumeration.mem_add_iff] rw [← Enumeration.mem_smul, ← BaseSupport.smul_nearLitters, ← smul_derivBot, hρ] exact Or.inl hN₁ · simp only [add_derivBot, BaseSupport.add_nearLitters, Enumeration.mem_add_iff] simp only [interferenceSupport_nearLitters, Enumeration.not_mem_empty, or_false] at hN₂ exact Or.inr hN₂ · rw [← BasePerm.smul_interference] exact Set.smul_mem_smul_set ha · obtain ⟨B, rfl⟩ := eq_of_nearLitter_mem_scoderiv_botDeriv hN₁ simp only [smul_add, scoderiv_botDeriv_eq, add_derivBot, smul_derivBot, BaseSupport.add_nearLitters, BaseSupport.smul_nearLitters, Enumeration.mem_add_iff, Enumeration.mem_smul, BaseSupport.add_atoms, BaseSupport.smul_atoms] at hN₁ hN₂ ⊢ refine Or.inr (Or.inr ?_) rw [mem_interferenceSupport_atoms] refine ⟨(ρᵁ B)⁻¹ • N₁, ?_, (ρᵁ B)⁻¹ • N₂, ?_, ?_⟩ · simp only [add_derivBot, BaseSupport.add_nearLitters, Enumeration.mem_add_iff] simp only [interferenceSupport_nearLitters, Enumeration.not_mem_empty, or_false] at hN₁ exact Or.inr hN₁ · simp only [add_derivBot, BaseSupport.add_nearLitters, Enumeration.mem_add_iff] simp only [interferenceSupport_nearLitters, Enumeration.not_mem_empty, or_false] at hN₂ obtain hN₂ | hN₂ := hN₂ · rw [← Enumeration.mem_smul, ← BaseSupport.smul_nearLitters, ← smul_derivBot, hρ] exact Or.inl hN₂ · exact Or.inr hN₂ · rw [← BasePerm.smul_interference] exact Set.smul_mem_smul_set ha theorem raise_strong' (S : Support α) (hS : S.Strong) (T : Support γ) (ρ : AllPerm β) (hγ : (γ : TypeIndex) < β) (hρ : ρᵁ • (S ↘ LtLevel.elim : Support β) = S ↘ LtLevel.elim) : (S + (ρᵁ • ((T ↗ hγ).strong + (S ↘ LtLevel.elim + (T ↗ hγ).strong).interferenceSupport)) ↗ LtLevel.elim).Strong := ⟨raise_preStrong' S hS T ρ hγ, raise_closed' S hS T ρ hγ hρ⟩ theorem convAtoms_injective_of_fixes {S : Support α} {T : Support γ} {ρ₁ ρ₂ : AllPerm β} {hγ : (γ : TypeIndex) < β} (hρ₁ : ρ₁ᵁ • (S ↘ LtLevel.elim : Support β) = S ↘ LtLevel.elim) (hρ₂ : ρ₂ᵁ • (S ↘ LtLevel.elim : Support β) = S ↘ LtLevel.elim) (A : ↑α ↝ ⊥) : (convAtoms (S + (ρ₁ᵁ • ((T ↗ hγ).strong + (S ↘ LtLevel.elim + (T ↗ hγ).strong).interferenceSupport)) ↗ LtLevel.elim) (S + (ρ₂ᵁ • ((T ↗ hγ).strong + (S ↘ LtLevel.elim + (T ↗ hγ).strong).interferenceSupport)) ↗ LtLevel.elim) A).Injective := by rw [Support.smul_eq_iff] at hρ₁ hρ₂ constructor rintro a₁ a₂ a₃ ⟨i, hi₁, hi₂⟩ ⟨j, hj₁, hj₂⟩ simp only [add_derivBot, BaseSupport.add_atoms, Rel.inv_apply, Enumeration.rel_add_iff] at hi₁ hi₂ hj₁ hj₂ obtain hi₁ | ⟨i, rfl, hi₁⟩ := hi₁ · obtain hi₂ | ⟨i', rfl, _⟩ := hi₂ swap · have := Enumeration.lt_bound _ _ ⟨_, hi₁⟩ simp only [add_lt_iff_neg_left] at this cases (κ_zero_le i').not_lt this cases (Enumeration.rel_coinjective _).coinjective hi₁ hi₂ obtain hj₁ | ⟨j, rfl, hj₁⟩ := hj₁ · obtain hj₂ | ⟨j', rfl, _⟩ := hj₂ · exact (Enumeration.rel_coinjective _).coinjective hj₂ hj₁ · have := Enumeration.lt_bound _ _ ⟨_, hj₁⟩ simp only [add_lt_iff_neg_left] at this cases (κ_zero_le j').not_lt this · obtain hj₂ | hj₂ := hj₂ · have := Enumeration.lt_bound _ _ ⟨_, hj₂⟩ simp only [add_lt_iff_neg_left] at this cases (κ_zero_le j).not_lt this · simp only [add_right_inj, exists_eq_left] at hj₂ obtain ⟨B, rfl⟩ := eq_of_atom_mem_scoderiv_botDeriv ⟨j, hj₁⟩ simp only [scoderiv_botDeriv_eq, smul_derivBot, add_derivBot, BaseSupport.smul_atoms, BaseSupport.add_atoms, Enumeration.smul_rel, add_right_inj, exists_eq_left] at hj₁ hj₂ have := (Enumeration.rel_coinjective _).coinjective hj₁ hj₂ rw [← (hρ₂ B).1 a₁ ⟨_, hi₁⟩, inv_smul_smul, inv_smul_eq_iff, (hρ₁ B).1 a₁ ⟨_, hi₁⟩] at this exact this.symm · obtain ⟨B, rfl⟩ := eq_of_atom_mem_scoderiv_botDeriv ⟨i, hi₁⟩ simp only [scoderiv_botDeriv_eq, smul_derivBot, add_derivBot, BaseSupport.smul_atoms, BaseSupport.add_atoms, Enumeration.smul_rel, add_right_inj, exists_eq_left] at hi₁ hi₂ hj₁ hj₂ obtain hi₂ | hi₂ := hi₂ · have := Enumeration.lt_bound _ _ ⟨_, hi₂⟩ simp only [add_lt_iff_neg_left] at this cases (κ_zero_le i).not_lt this have hi := (Enumeration.rel_coinjective _).coinjective hi₁ hi₂ suffices hj : (ρ₁ᵁ B)⁻¹ • a₂ = (ρ₂ᵁ B)⁻¹ • a₃ by rwa [← hj, smul_left_cancel_iff] at hi obtain hj₁ | ⟨j, rfl, hj₁⟩ := hj₁ · obtain hj₂ | ⟨j', rfl, _⟩ := hj₂ · rw [← (hρ₁ B).1 a₂ ⟨_, hj₁⟩, ← (hρ₂ B).1 a₃ ⟨_, hj₂⟩, inv_smul_smul, inv_smul_smul] exact (Enumeration.rel_coinjective _).coinjective hj₁ hj₂ · have := Enumeration.lt_bound _ _ ⟨_, hj₁⟩ simp only [add_lt_iff_neg_left] at this cases (κ_zero_le j').not_lt this · obtain hj₂ | hj₂ := hj₂ · have := Enumeration.lt_bound _ _ ⟨_, hj₂⟩ simp only [add_lt_iff_neg_left] at this cases (κ_zero_le j).not_lt this · simp only [add_right_inj, exists_eq_left] at hj₂ exact (Enumeration.rel_coinjective _).coinjective hj₁ hj₂
theorem atomMemRel_le_of_fixes {S : Support α} {T : Support γ} {ρ₁ ρ₂ : AllPerm β} {hγ : (γ : TypeIndex) < β} (hρ₁ : ρ₁ᵁ • (S ↘ LtLevel.elim : Support β) = S ↘ LtLevel.elim) (hρ₂ : ρ₂ᵁ • (S ↘ LtLevel.elim : Support β) = S ↘ LtLevel.elim) (A : ↑α ↝ ⊥) : atomMemRel (S + (ρ₁ᵁ • ((T ↗ hγ).strong + (S ↘ LtLevel.elim + (T ↗ hγ).strong).interferenceSupport)) ↗ LtLevel.elim) A ≤ atomMemRel (S + (ρ₂ᵁ • ((T ↗ hγ).strong + (S ↘ LtLevel.elim + (T ↗ hγ).strong).interferenceSupport)) ↗ LtLevel.elim) A
ConNF.Support.atomMemRel_le_of_fixes
{ "commit": "abf71bc79c407ceb462cc2edd2d994cda9cdef05", "date": "2024-04-04T00:00:00" }
{ "commit": "7965dba9f7fcbea5f6e2d5e3c622db5790f2f494", "date": "2024-11-30T00:00:00" }
ConNF/ConNF/Model/RaiseStrong.lean
ConNF.Model.RaiseStrong
ConNF.Model.RaiseStrong.jsonl
{ "lineInFile": 244, "tokenPositionInFile": 10746, "theoremPositionInFile": 6 }
{ "inFilePremises": false, "numInFilePremises": 0, "repositoryPremises": true, "numRepositoryPremises": 71, "numPremises": 146 }
{ "hasProof": true, "proof": ":= by\n rw [Support.smul_eq_iff] at hρ₁ hρ₂\n rintro i j ⟨N, hN, a, haN, ha⟩\n simp only [add_derivBot, BaseSupport.add_atoms, Rel.inv_apply, Enumeration.rel_add_iff,\n BaseSupport.add_nearLitters] at ha hN\n obtain hN | ⟨i, rfl, hi⟩ := hN\n · obtain ha | ⟨j, rfl, hj⟩ := ha\n · exact ⟨N, Or.inl hN, a, haN, Or.inl ha⟩\n · obtain ⟨B, rfl⟩ := eq_of_atom_mem_scoderiv_botDeriv ⟨j, hj⟩\n simp only [scoderiv_botDeriv_eq, smul_derivBot, add_derivBot, BaseSupport.smul_atoms,\n BaseSupport.add_atoms, Enumeration.smul_rel] at hj hN\n refine ⟨N, Or.inl hN, ρ₂ᵁ B • (ρ₁ᵁ B)⁻¹ • a, ?_, ?_⟩\n · dsimp only\n rw [← (hρ₂ B).2 N ⟨_, hN⟩, BasePerm.smul_nearLitter_atoms, Set.smul_mem_smul_set_iff]\n have := (hρ₁ B).2 N ⟨_, hN⟩\n rw [smul_eq_iff_eq_inv_smul] at this\n rwa [this, BasePerm.smul_nearLitter_atoms, Set.smul_mem_smul_set_iff]\n · rw [Rel.inv_apply, add_derivBot, BaseSupport.add_atoms, Enumeration.rel_add_iff]\n simp only [add_right_inj, scoderiv_botDeriv_eq, smul_derivBot, add_derivBot,\n BaseSupport.smul_atoms, BaseSupport.add_atoms, Enumeration.smul_rel, inv_smul_smul,\n exists_eq_left]\n exact Or.inr hj\n · obtain ⟨B, rfl⟩ := eq_of_nearLitter_mem_scoderiv_botDeriv ⟨i, hi⟩\n simp only [scoderiv_botDeriv_eq, smul_derivBot, add_derivBot, BaseSupport.smul_atoms,\n BaseSupport.add_atoms, Enumeration.smul_rel] at hi ha\n obtain ha | ⟨j, rfl, hj⟩ := ha\n · refine ⟨ρ₂ᵁ B • (ρ₁ᵁ B)⁻¹ • N, ?_, a, ?_, Or.inl ha⟩\n · rw [add_derivBot, BaseSupport.add_nearLitters, Enumeration.rel_add_iff]\n simp only [add_right_inj, scoderiv_botDeriv_eq, smul_derivBot, add_derivBot,\n BaseSupport.smul_nearLitters, BaseSupport.add_nearLitters, Enumeration.smul_rel,\n inv_smul_smul, exists_eq_left]\n exact Or.inr hi\n · dsimp only\n rw [← (hρ₂ B).1 a ⟨_, ha⟩, BasePerm.smul_nearLitter_atoms, Set.smul_mem_smul_set_iff]\n have := (hρ₁ B).1 a ⟨_, ha⟩\n rw [smul_eq_iff_eq_inv_smul] at this\n rwa [this, BasePerm.smul_nearLitter_atoms, Set.smul_mem_smul_set_iff]\n · refine ⟨ρ₂ᵁ B • (ρ₁ᵁ B)⁻¹ • N, ?_, ρ₂ᵁ B • (ρ₁ᵁ B)⁻¹ • a, ?_, ?_⟩\n · rw [add_derivBot, BaseSupport.add_nearLitters, Enumeration.rel_add_iff]\n simp only [add_right_inj, scoderiv_botDeriv_eq, smul_derivBot, add_derivBot,\n BaseSupport.smul_nearLitters, BaseSupport.add_nearLitters, Enumeration.smul_rel,\n inv_smul_smul, exists_eq_left]\n exact Or.inr hi\n · simp only [BasePerm.smul_nearLitter_atoms, Set.smul_mem_smul_set_iff]\n exact haN\n · rw [Rel.inv_apply, add_derivBot, BaseSupport.add_atoms, Enumeration.rel_add_iff]\n simp only [add_right_inj, scoderiv_botDeriv_eq, smul_derivBot, add_derivBot,\n BaseSupport.smul_atoms, BaseSupport.add_atoms, Enumeration.smul_rel, inv_smul_smul,\n exists_eq_left]\n exact Or.inr hj", "proofType": "tactic", "proofLengthLines": 49, "proofLengthTokens": 2905 }
import ConNF.Model.Result /-! # New file In this file... ## Main declarations * `ConNF.foo`: Something new. -/ noncomputable section universe u open Cardinal Ordinal ConNF.TSet namespace ConNF variable [Params.{u}] {α β γ δ ε ζ : Λ} (hβ : (β : TypeIndex) < α) (hγ : (γ : TypeIndex) < β) (hδ : (δ : TypeIndex) < γ) (hε : (ε : TypeIndex) < δ) (hζ : (ζ : TypeIndex) < ε) def union (x y : TSet α) : TSet α := (xᶜ' ⊓' yᶜ')ᶜ' notation:68 x:68 " ⊔[" h "] " y:68 => _root_.ConNF.union h x y notation:68 x:68 " ⊔' " y:68 => x ⊔[by assumption] y @[simp] theorem mem_union_iff (x y : TSet α) : ∀ z : TSet β, z ∈' x ⊔' y ↔ z ∈' x ∨ z ∈' y := by rw [union] intro z rw [mem_compl_iff, mem_inter_iff, mem_compl_iff, mem_compl_iff, or_iff_not_and_not] def higherIndex (α : Λ) : Λ := (exists_gt α).choose theorem lt_higherIndex {α : Λ} : (α : TypeIndex) < higherIndex α := WithBot.coe_lt_coe.mpr (exists_gt α).choose_spec theorem tSet_nonempty (h : ∃ β : Λ, (β : TypeIndex) < α) : Nonempty (TSet α) := by obtain ⟨α', hα⟩ := h constructor apply typeLower lt_higherIndex lt_higherIndex lt_higherIndex hα apply cardinalOne lt_higherIndex lt_higherIndex def empty : TSet α := (tSet_nonempty ⟨β, hβ⟩).some ⊓' (tSet_nonempty ⟨β, hβ⟩).someᶜ' @[simp] theorem mem_empty_iff : ∀ x : TSet β, ¬x ∈' empty hβ := by intro x rw [empty, mem_inter_iff, mem_compl_iff] exact and_not_self def univ : TSet α := (empty hβ)ᶜ' @[simp] theorem mem_univ_iff : ∀ x : TSet β, x ∈' univ hβ := by intro x simp only [univ, mem_compl_iff, mem_empty_iff, not_false_eq_true] /-- The set of all ordered pairs. -/ def orderedPairs : TSet α := vCross hβ hγ hδ (univ hδ) @[simp] theorem mem_orderedPairs_iff (x : TSet β) : x ∈' orderedPairs hβ hγ hδ ↔ ∃ a b, x = ⟨a, b⟩' := by simp only [orderedPairs, vCross_spec, mem_univ_iff, and_true] def converse (x : TSet α) : TSet α := converse' hβ hγ hδ x ⊓' orderedPairs hβ hγ hδ @[simp] theorem op_mem_converse_iff (x : TSet α) : ∀ a b, ⟨a, b⟩' ∈' converse hβ hγ hδ x ↔ ⟨b, a⟩' ∈' x := by intro a b simp only [converse, mem_inter_iff, converse'_spec, mem_orderedPairs_iff, op_inj, exists_and_left, exists_eq', and_true] def cross (x y : TSet γ) : TSet α := converse hβ hγ hδ (vCross hβ hγ hδ x) ⊓' vCross hβ hγ hδ y @[simp] theorem mem_cross_iff (x y : TSet γ) : ∀ a, a ∈' cross hβ hγ hδ x y ↔ ∃ b c, a = ⟨b, c⟩' ∧ b ∈' x ∧ c ∈' y := by intro a rw [cross, mem_inter_iff, vCross_spec] constructor · rintro ⟨h₁, b, c, rfl, h₂⟩ simp only [op_mem_converse_iff, vCross_spec, op_inj] at h₁ obtain ⟨b', c', ⟨rfl, rfl⟩, h₁⟩ := h₁ exact ⟨b, c, rfl, h₁, h₂⟩ · rintro ⟨b, c, rfl, h₁, h₂⟩ simp only [op_mem_converse_iff, vCross_spec, op_inj] exact ⟨⟨c, b, ⟨rfl, rfl⟩, h₁⟩, ⟨b, c, ⟨rfl, rfl⟩, h₂⟩⟩ def singletonImage (x : TSet β) : TSet α := singletonImage' hβ hγ hδ hε x ⊓' (cross hβ hγ hδ (cardinalOne hδ hε) (cardinalOne hδ hε)) @[simp] theorem singletonImage_spec (x : TSet β) : ∀ z w, ⟨ {z}', {w}' ⟩' ∈' singletonImage hβ hγ hδ hε x ↔ ⟨z, w⟩' ∈' x := by intro z w rw [singletonImage, mem_inter_iff, singletonImage'_spec, and_iff_left_iff_imp] intro hzw rw [mem_cross_iff] refine ⟨{z}', {w}', rfl, ?_⟩ simp only [mem_cardinalOne_iff, singleton_inj, exists_eq', and_self] theorem exists_of_mem_singletonImage {x : TSet β} {z w : TSet δ} (h : ⟨z, w⟩' ∈' singletonImage hβ hγ hδ hε x) : ∃ a b, z = {a}' ∧ w = {b}' := by simp only [singletonImage, mem_inter_iff, mem_cross_iff, op_inj, mem_cardinalOne_iff] at h obtain ⟨-, _, _, ⟨rfl, rfl⟩, ⟨a, rfl⟩, ⟨b, rfl⟩⟩ := h exact ⟨a, b, rfl, rfl⟩ /-- Turn a model element encoding a relation into an actual relation. -/ def ExternalRel (r : TSet α) : Rel (TSet δ) (TSet δ) := λ x y ↦ ⟨x, y⟩' ∈' r @[simp] theorem externalRel_converse (r : TSet α) : ExternalRel hβ hγ hδ (converse hβ hγ hδ r) = (ExternalRel hβ hγ hδ r).inv := by ext simp only [ExternalRel, op_mem_converse_iff, Rel.inv_apply] /-- The codomain of a relation. -/ def codom (r : TSet α) : TSet γ := (typeLower lt_higherIndex hβ hγ hδ (singletonImage lt_higherIndex hβ hγ hδ r)ᶜ[lt_higherIndex])ᶜ' @[simp] theorem mem_codom_iff (r : TSet α) (x : TSet δ) : x ∈' codom hβ hγ hδ r ↔ x ∈ (ExternalRel hβ hγ hδ r).codom := by simp only [codom, mem_compl_iff, mem_typeLower_iff, not_forall, not_not] constructor · rintro ⟨y, hy⟩ obtain ⟨a, b, rfl, hb⟩ := exists_of_mem_singletonImage lt_higherIndex hβ hγ hδ hy rw [singleton_inj] at hb subst hb rw [singletonImage_spec] at hy exact ⟨a, hy⟩ · rintro ⟨a, ha⟩ use {a}' rw [singletonImage_spec] exact ha /-- The domain of a relation. -/ def dom (r : TSet α) : TSet γ := codom hβ hγ hδ (converse hβ hγ hδ r) @[simp] theorem mem_dom_iff (r : TSet α) (x : TSet δ) : x ∈' dom hβ hγ hδ r ↔ x ∈ (ExternalRel hβ hγ hδ r).dom := by rw [dom, mem_codom_iff, externalRel_converse, Rel.inv_codom] /-- The field of a relation. -/ def field (r : TSet α) : TSet γ := dom hβ hγ hδ r ⊔' codom hβ hγ hδ r @[simp] theorem mem_field_iff (r : TSet α) (x : TSet δ) : x ∈' field hβ hγ hδ r ↔ x ∈ (ExternalRel hβ hγ hδ r).field := by rw [field, mem_union_iff, mem_dom_iff, mem_codom_iff, Rel.field, Set.mem_union] def subset : TSet α := subset' hβ hγ hδ hε ⊓' orderedPairs hβ hγ hδ @[simp] theorem subset_spec : ∀ a b, ⟨a, b⟩' ∈' subset hβ hγ hδ hε ↔ a ⊆[TSet ε] b := by intro a b simp only [subset, mem_inter_iff, subset'_spec, mem_orderedPairs_iff, op_inj, exists_and_left, exists_eq', and_true] def membership : TSet α := subset hβ hγ hδ hε ⊓' cross hβ hγ hδ (cardinalOne hδ hε) (univ hδ) @[simp] theorem membership_spec : ∀ a b, ⟨{a}', b⟩' ∈' membership hβ hγ hδ hε ↔ a ∈' b := by intro a b rw [membership, mem_inter_iff, subset_spec] simp only [mem_cross_iff, op_inj, mem_cardinalOne_iff, mem_univ_iff, and_true, exists_and_right, exists_and_left, exists_eq', exists_eq_left', singleton_inj] constructor · intro h exact h a ((typedMem_singleton_iff' hε a a).mpr rfl) · intro h c hc simp only [typedMem_singleton_iff'] at hc cases hc exact h def powerset (x : TSet β) : TSet α := dom lt_higherIndex lt_higherIndex hβ (subset lt_higherIndex lt_higherIndex hβ hγ ⊓[lt_higherIndex] vCross lt_higherIndex lt_higherIndex hβ {x}') @[simp] theorem mem_powerset_iff (x y : TSet β) : x ∈' powerset hβ hγ y ↔ x ⊆[TSet γ] y := by rw [powerset, mem_dom_iff] constructor · rintro ⟨z, h⟩ simp only [ExternalRel, mem_inter_iff, subset_spec, vCross_spec, op_inj, typedMem_singleton_iff', exists_eq_right, exists_and_right, exists_eq', true_and] at h cases h.2 exact h.1 · intro h refine ⟨y, ?_⟩ simp only [ExternalRel, mem_inter_iff, subset_spec, h, vCross_spec, op_inj, typedMem_singleton_iff', exists_eq_right, and_true, exists_eq', and_self] /-- The set `ι²''x = {{{a}} | a ∈ x}`. -/ def doubleSingleton (x : TSet γ) : TSet α := cross hβ hγ hδ x x ⊓' cardinalOne hβ hγ
@[simp] theorem mem_doubleSingleton_iff (x : TSet γ) : ∀ y : TSet β, y ∈' doubleSingleton hβ hγ hδ x ↔ ∃ z : TSet δ, z ∈' x ∧ y = { {z}' }'
ConNF.mem_doubleSingleton_iff
{ "commit": "66f4e3291020d4198ca6ede816acae5cee584a07", "date": "2025-01-06T00:00:00" }
{ "commit": "6dd8406a01cc28b071bb26965294469664a1b592", "date": "2025-01-07T00:00:00" }
ConNF/ConNF/External/Basic.lean
ConNF.External.Basic
ConNF.External.Basic.jsonl
{ "lineInFile": 225, "tokenPositionInFile": 7029, "theoremPositionInFile": 35 }
{ "inFilePremises": true, "numInFilePremises": 3, "repositoryPremises": true, "numRepositoryPremises": 19, "numPremises": 49 }
{ "hasProof": true, "proof": ":= by\n intro y\n rw [doubleSingleton, mem_inter_iff, mem_cross_iff, mem_cardinalOne_iff]\n constructor\n · rintro ⟨⟨b, c, h₁, h₂, h₃⟩, ⟨a, rfl⟩⟩\n obtain ⟨hbc, rfl⟩ := (op_eq_singleton_iff _ _ _ _ _).mp h₁.symm\n exact ⟨c, h₃, rfl⟩\n · rintro ⟨z, h, rfl⟩\n constructor\n · refine ⟨z, z, ?_⟩\n rw [eq_comm, op_eq_singleton_iff]\n tauto\n · exact ⟨_, rfl⟩", "proofType": "tactic", "proofLengthLines": 12, "proofLengthTokens": 372 }
import ConNF.Model.RunInduction /-! # Externalisation In this file, we convert many of our *internal* results (i.e. inside the induction) to *external* ones (i.e. defined using the global `TSet`/`AllPerm` definitions). ## Main declarations * `ConNF.foo`: Something new. -/ noncomputable section universe u open Cardinal Ordinal WithBot namespace ConNF variable [Params.{u}] instance globalModelData : {α : TypeIndex} → ModelData α | (α : Λ) => (motive α).data | ⊥ => botModelData instance globalPosition : {α : TypeIndex} → Position (Tangle α) | (α : Λ) => (motive α).pos | ⊥ => botPosition instance globalTypedNearLitters {α : Λ} : TypedNearLitters α := (motive α).typed instance globalLtData [Level] : LtData where instance globalLeData [Level] : LeData where omit [Params] in theorem heq_funext {α : Sort _} {β γ : α → Sort _} {f : (x : α) → β x} {g : (x : α) → γ x} (h : ∀ x, HEq (f x) (g x)) : HEq f g := by cases funext λ x ↦ type_eq_of_heq (h x) simp only [heq_eq_eq] at h ⊢ exact funext h theorem globalLtData_eq [Level] : globalLtData = ltData (λ β _ ↦ motive β) := by apply LtData.ext · ext β hβ induction β using recBotCoe case bot => rfl case coe β => rfl · apply heq_funext intro β induction β using recBotCoe case bot => rfl case coe β => rfl · rfl theorem globalLeData_eq [Level] : globalLeData = leData (λ β _ ↦ motive β) := by apply LeData.ext · ext β hβ induction β using recBotCoe case bot => rfl case coe β => by_cases h : (β : TypeIndex) = α · cases coe_injective h rw [leData_data_eq] unfold globalLeData globalModelData dsimp only rw [motive_eq] rfl · rw [leData_data_lt _ (hβ.elim.lt_of_ne h)] rfl · apply heq_funext intro β apply heq_funext intro hβ induction β using recBotCoe case bot => rfl case coe β => rw [leData] simp only [coe_inj, id_eq, eq_mpr_eq_cast, recBotCoe_bot, recBotCoe_coe, LtLevel.elim.ne] exact HEq.symm (cast_heq _ _) instance globalPreCoherentData [Level] : PreCoherentData where allPermSderiv h := cast (by rw [globalLeData_eq]) ((preCoherentData (λ β _ ↦ motive β) (λ β _ ↦ hypothesis β)).allPermSderiv h) singleton h := cast (by rw [globalLeData_eq]) ((preCoherentData (λ β _ ↦ motive β) (λ β _ ↦ hypothesis β)).singleton h) omit [Params] in
@[simp] theorem heq_cast_eq_iff {α β γ : Type _} {x : α} {y : β} {h : α = γ} : HEq (cast h x) y ↔ HEq x y
ConNF.heq_cast_eq_iff
{ "commit": "6fdc87c6b30b73931407a372f1430ecf0fef7601", "date": "2024-12-03T00:00:00" }
{ "commit": "e409f3d0cd939e7218c3f39dcf3493c4b6e0b821", "date": "2024-11-29T00:00:00" }
ConNF/ConNF/Model/Externalise.lean
ConNF.Model.Externalise
ConNF.Model.Externalise.jsonl
{ "lineInFile": 93, "tokenPositionInFile": 2413, "theoremPositionInFile": 3 }
{ "inFilePremises": false, "numInFilePremises": 0, "repositoryPremises": false, "numRepositoryPremises": 0, "numPremises": 15 }
{ "hasProof": true, "proof": ":= by\n cases h\n rw [cast_eq]", "proofType": "tactic", "proofLengthLines": 2, "proofLengthTokens": 30 }
import ConNF.ModelData.Enumeration import ConNF.Levels.StrPerm /-! # Enumerations over paths In this file, we provide extra features to `Enumeration`s that take values of the form `α ↝ ⊥ × X`. ## Main declarations * `ConNF.Enumeration.ext_path`: An extensionality principle for such `Enumeration`s. -/ noncomputable section universe u open Cardinal Ordinal namespace ConNF variable [Params.{u}] namespace Enumeration /-- A helper function for making relations with domain and codomain of the form `α ↝ ⊥ × X` by defining it on each branch. -/ def relWithPath {X Y : Type u} {α : TypeIndex} (f : α ↝ ⊥ → Rel X Y) : Rel (α ↝ ⊥ × X) (α ↝ ⊥ × Y) := λ x y ↦ x.1 = y.1 ∧ f x.1 x.2 y.2 theorem relWithPath_coinjective {X Y : Type u} {α : TypeIndex} {f : α ↝ ⊥ → Rel X Y} (hf : ∀ A, (f A).Coinjective) : (relWithPath f).Coinjective := by constructor rintro ⟨_, y₁⟩ ⟨_, y₂⟩ ⟨A, x⟩ ⟨rfl, h₁⟩ ⟨rfl, h₂⟩ cases (hf A).coinjective h₁ h₂ rfl instance (X : Type u) (α β : TypeIndex) : Derivative (Enumeration (α ↝ ⊥ × X)) (Enumeration (β ↝ ⊥ × X)) α β where deriv E A := E.invImage (λ x ↦ (x.1 ⇗ A, x.2)) (λ x y h ↦ Prod.ext (Path.deriv_right_injective ((Prod.mk.injEq _ _ _ _).mp h).1) ((Prod.mk.injEq _ _ _ _).mp h).2) theorem deriv_rel {X : Type _} {α β : TypeIndex} (E : Enumeration (α ↝ ⊥ × X)) (A : α ↝ β) (i : κ) (x : β ↝ ⊥ × X) : (E ⇘ A).rel i x ↔ E.rel i (x.1 ⇗ A, x.2) := Iff.rfl instance (X : Type u) (α β : TypeIndex) : Coderivative (Enumeration (β ↝ ⊥ × X)) (Enumeration (α ↝ ⊥ × X)) α β where coderiv E A := E.image (λ x ↦ (x.1 ⇗ A, x.2)) theorem coderiv_rel {X : Type _} {α β : TypeIndex} (E : Enumeration (β ↝ ⊥ × X)) (A : α ↝ β) (i : κ) (x : α ↝ ⊥ × X) : (E ⇗ A).rel i x ↔ ∃ B, x.1 = A ⇘ B ∧ E.rel i (B, x.2) := by constructor · rintro ⟨x, h, rfl⟩ exact ⟨_, rfl, h⟩ · rintro ⟨B, h₁, h₂⟩ refine ⟨(B, x.2), h₂, ?_⟩ apply Prod.ext · dsimp only exact h₁.symm · rfl theorem scoderiv_rel {X : Type _} {α β : TypeIndex} (E : Enumeration (β ↝ ⊥ × X)) (h : β < α) (i : κ) (x : α ↝ ⊥ × X) : (E ↗ h).rel i x ↔ ∃ B, x.1 = B ↗ h ∧ E.rel i (B, x.2) := coderiv_rel E (.single h) i x theorem eq_of_scoderiv_mem {X : Type _} {α β γ : TypeIndex} (E : Enumeration (β ↝ ⊥ × X)) (h : β < α) (h' : γ < α) (i : κ) (A : γ ↝ ⊥) (x : X) (h : (E ↗ h).rel i ⟨A ↗ h', x⟩) : β = γ := by rw [scoderiv_rel] at h obtain ⟨B, h₁, h₂⟩ := h exact Path.scoderiv_index_injective h₁.symm instance (X : Type u) (α : TypeIndex) : BotDerivative (Enumeration (α ↝ ⊥ × X)) (Enumeration X) α where botDeriv E A := E.invImage (λ x ↦ (A, x)) (Prod.mk.inj_left A) botSderiv E := E.invImage (λ x ↦ (Path.nil ↘., x)) (Prod.mk.inj_left (Path.nil ↘.)) botDeriv_single E h := by cases α using WithBot.recBotCoe with | bot => cases lt_irrefl ⊥ h | coe => rfl theorem derivBot_rel {X : Type _} {α : TypeIndex} (E : Enumeration (α ↝ ⊥ × X)) (A : α ↝ ⊥) (i : κ) (x : X) : (E ⇘. A).rel i x ↔ E.rel i (A, x) := Iff.rfl @[simp] theorem mem_path_iff {X : Type _} {α : TypeIndex} (E : Enumeration (α ↝ ⊥ × X)) (A : α ↝ ⊥) (x : X) : (A, x) ∈ E ↔ x ∈ E ⇘. A := Iff.rfl theorem ext_path {X : Type u} {α : TypeIndex} {E F : Enumeration (α ↝ ⊥ × X)} (h : ∀ A, E ⇘. A = F ⇘. A) : E = F := by ext i x · have := congr_arg bound (h (Path.nil ↘.)) exact this · have := congr_arg rel (h x.1) exact iff_of_eq (congr_fun₂ this i x.2) theorem deriv_derivBot {X : Type _} {α β : TypeIndex} (E : Enumeration (α ↝ ⊥ × X)) (A : α ↝ β) (B : β ↝ ⊥) : E ⇘ A ⇘. B = E ⇘. (A ⇘ B) := rfl @[simp] theorem coderiv_deriv_eq {X : Type _} {α β : TypeIndex} (E : Enumeration (β ↝ ⊥ × X)) (A : α ↝ β) : E ⇗ A ⇘ A = E := by apply ext_path intro B ext i x · rfl · simp only [derivBot_rel, deriv_rel, coderiv_rel, Path.coderiv_eq_deriv, Path.deriv_right_inj, exists_eq_left'] theorem eq_of_mem_scoderiv_botDeriv {X : Type _} {α β : TypeIndex} {S : Enumeration (β ↝ ⊥ × X)} {A : α ↝ ⊥} {h : β < α} {x : X} (hx : x ∈ S ↗ h ⇘. A) : ∃ B : β ↝ ⊥, A = B ↗ h := by obtain ⟨i, ⟨B, y⟩, hi₁, hi₂⟩ := hx cases hi₂ exact ⟨B, rfl⟩ @[simp] theorem scoderiv_botDeriv_eq {X : Type _} {α β : TypeIndex} (S : Enumeration (β ↝ ⊥ × X)) (A : β ↝ ⊥) (h : β < α) : S ↗ h ⇘. (A ↗ h) = S ⇘. A := by ext i x · rfl · simp only [derivBot_rel, scoderiv_rel, Path.scoderiv_left_inj, exists_eq_left'] theorem mulAction_aux {X : Type _} {α : TypeIndex} [MulAction BasePerm X] (π : StrPerm α) : Function.Injective (λ x : α ↝ ⊥ × X ↦ (x.1, (π x.1)⁻¹ • x.2)) := by rintro ⟨A₁, x₁⟩ ⟨A₂, x₂⟩ h rw [Prod.mk.injEq] at h cases h.1 exact Prod.ext h.1 (smul_left_cancel _ h.2) instance {X : Type _} {α : TypeIndex} [MulAction BasePerm X] : SMul (StrPerm α) (Enumeration (α ↝ ⊥ × X)) where smul π E := E.invImage (λ x ↦ (x.1, (π x.1)⁻¹ • x.2)) (mulAction_aux π)
@[simp] theorem smulPath_rel {X : Type _} {α : TypeIndex} [MulAction BasePerm X] (π : StrPerm α) (E : Enumeration (α ↝ ⊥ × X)) (i : κ) (x : α ↝ ⊥ × X) : (π • E).rel i x ↔ E.rel i (x.1, (π x.1)⁻¹ • x.2)
ConNF.Enumeration.smulPath_rel
{ "commit": "39c33b4a743bea62dbcc549548b712ffd38ca65c", "date": "2024-12-05T00:00:00" }
{ "commit": "6709914ae7f5cd3e2bb24b413e09aa844554d234", "date": "2024-11-30T00:00:00" }
ConNF/ConNF/ModelData/PathEnumeration.lean
ConNF.ModelData.PathEnumeration
ConNF.ModelData.PathEnumeration.jsonl
{ "lineInFile": 150, "tokenPositionInFile": 4913, "theoremPositionInFile": 14 }
{ "inFilePremises": true, "numInFilePremises": 1, "repositoryPremises": true, "numRepositoryPremises": 12, "numPremises": 27 }
{ "hasProof": true, "proof": ":=\n Iff.rfl", "proofType": "term", "proofLengthLines": 1, "proofLengthTokens": 12 }
import ConNF.Model.Hailperin /-! # New file In this file... ## Main declarations * `ConNF.foo`: Something new. -/ noncomputable section universe u open Cardinal Ordinal ConNF.TSet namespace ConNF variable [Params.{u}] {α β γ δ ε ζ : Λ} (hβ : (β : TypeIndex) < α) (hγ : (γ : TypeIndex) < β) (hδ : (δ : TypeIndex) < γ) (hε : (ε : TypeIndex) < δ) (hζ : (ζ : TypeIndex) < ε) theorem ext (x y : TSet α) : (∀ z : TSet β, z ∈' x ↔ z ∈' y) → x = y := tSet_ext' hβ x y def inter (x y : TSet α) : TSet α := (TSet.exists_inter hβ x y).choose notation:69 x:69 " ⊓[" h "] " y:69 => _root_.ConNF.inter h x y notation:69 x:69 " ⊓' " y:69 => x ⊓[by assumption] y @[simp] theorem mem_inter_iff (x y : TSet α) : ∀ z : TSet β, z ∈' x ⊓' y ↔ z ∈' x ∧ z ∈' y := (TSet.exists_inter hβ x y).choose_spec def compl (x : TSet α) : TSet α := (TSet.exists_compl hβ x).choose notation:1024 x:1024 " ᶜ[" h "]" => _root_.ConNF.compl h x notation:1024 x:1024 " ᶜ'" => xᶜ[by assumption] @[simp] theorem mem_compl_iff (x : TSet α) : ∀ z : TSet β, z ∈' xᶜ' ↔ ¬z ∈' x := (TSet.exists_compl hβ x).choose_spec notation:1024 "{" x "}[" h "]" => _root_.ConNF.singleton h x notation:1024 "{" x "}'" => {x}[by assumption] @[simp] theorem mem_singleton_iff (x y : TSet β) : y ∈' {x}' ↔ y = x := typedMem_singleton_iff' hβ x y notation:1024 "{" x ", " y "}[" h "]" => _root_.ConNF.TSet.up h x y notation:1024 "{" x ", " y "}'" => {x, y}[by assumption] @[simp] theorem mem_up_iff (x y z : TSet β) : z ∈' {x, y}' ↔ z = x ∨ z = y := TSet.mem_up_iff hβ x y z notation:1024 "⟨" x ", " y "⟩[" h ", " h' "]" => _root_.ConNF.TSet.op h h' x y notation:1024 "⟨" x ", " y "⟩'" => ⟨x, y⟩[by assumption, by assumption] theorem op_def (x y : TSet γ) : (⟨x, y⟩' : TSet α) = { {x}', {x, y}' }' := rfl def singletonImage' (x : TSet β) : TSet α := (TSet.exists_singletonImage hβ hγ hδ hε x).choose @[simp] theorem singletonImage'_spec (x : TSet β) : ∀ z w, ⟨ {z}', {w}' ⟩' ∈' singletonImage' hβ hγ hδ hε x ↔ ⟨z, w⟩' ∈' x := (TSet.exists_singletonImage hβ hγ hδ hε x).choose_spec def insertion2' (x : TSet γ) : TSet α := (TSet.exists_insertion2 hβ hγ hδ hε hζ x).choose @[simp] theorem insertion2'_spec (x : TSet γ) : ∀ a b c, ⟨ { {a}' }', ⟨b, c⟩' ⟩' ∈' insertion2' hβ hγ hδ hε hζ x ↔ ⟨a, c⟩' ∈' x := (TSet.exists_insertion2 hβ hγ hδ hε hζ x).choose_spec def insertion3' (x : TSet γ) : TSet α := (TSet.exists_insertion3 hβ hγ hδ hε hζ x).choose theorem insertion3'_spec (x : TSet γ) : ∀ a b c, ⟨ { {a}' }', ⟨b, c⟩' ⟩' ∈' insertion3' hβ hγ hδ hε hζ x ↔ ⟨a, b⟩' ∈' x := (TSet.exists_insertion3 hβ hγ hδ hε hζ x).choose_spec def vCross (x : TSet γ) : TSet α := (TSet.exists_cross hβ hγ hδ x).choose @[simp] theorem vCross_spec (x : TSet γ) : ∀ a, a ∈' vCross hβ hγ hδ x ↔ ∃ b c, a = ⟨b, c⟩' ∧ c ∈' x := (TSet.exists_cross hβ hγ hδ x).choose_spec def typeLower (x : TSet α) : TSet δ := (TSet.exists_typeLower hβ hγ hδ hε x).choose @[simp] theorem mem_typeLower_iff (x : TSet α) : ∀ a, a ∈' typeLower hβ hγ hδ hε x ↔ ∀ b, ⟨ b, {a}' ⟩' ∈' x := (TSet.exists_typeLower hβ hγ hδ hε x).choose_spec def converse' (x : TSet α) : TSet α := (TSet.exists_converse hβ hγ hδ x).choose @[simp] theorem converse'_spec (x : TSet α) : ∀ a b, ⟨a, b⟩' ∈' converse' hβ hγ hδ x ↔ ⟨b, a⟩' ∈' x := (TSet.exists_converse hβ hγ hδ x).choose_spec def cardinalOne : TSet α := (TSet.exists_cardinalOne hβ hγ).choose
@[simp] theorem mem_cardinalOne_iff : ∀ a : TSet β, a ∈' cardinalOne hβ hγ ↔ ∃ b, a = {b}'
ConNF.mem_cardinalOne_iff
{ "commit": "b12701769822aaf5451982e26d7b7d1c2f21b137", "date": "2024-04-11T00:00:00" }
{ "commit": "66f4e3291020d4198ca6ede816acae5cee584a07", "date": "2025-01-06T00:00:00" }
ConNF/ConNF/Model/Result.lean
ConNF.Model.Result
ConNF.Model.Result.jsonl
{ "lineInFile": 125, "tokenPositionInFile": 3460, "theoremPositionInFile": 31 }
{ "inFilePremises": true, "numInFilePremises": 1, "repositoryPremises": true, "numRepositoryPremises": 12, "numPremises": 26 }
{ "hasProof": true, "proof": ":=\n (TSet.exists_cardinalOne hβ hγ).choose_spec", "proofType": "term", "proofLengthLines": 1, "proofLengthTokens": 48 }
import ConNF.Model.Result /-! # New file In this file... ## Main declarations * `ConNF.foo`: Something new. -/ noncomputable section universe u open Cardinal Ordinal ConNF.TSet namespace ConNF variable [Params.{u}] {α β γ δ ε ζ : Λ} (hβ : (β : TypeIndex) < α) (hγ : (γ : TypeIndex) < β) (hδ : (δ : TypeIndex) < γ) (hε : (ε : TypeIndex) < δ) (hζ : (ζ : TypeIndex) < ε) def union (x y : TSet α) : TSet α := (xᶜ' ⊓' yᶜ')ᶜ' notation:68 x:68 " ⊔[" h "] " y:68 => _root_.ConNF.union h x y notation:68 x:68 " ⊔' " y:68 => x ⊔[by assumption] y @[simp] theorem mem_union_iff (x y : TSet α) : ∀ z : TSet β, z ∈' x ⊔' y ↔ z ∈' x ∨ z ∈' y := by rw [union] intro z rw [mem_compl_iff, mem_inter_iff, mem_compl_iff, mem_compl_iff, or_iff_not_and_not] def higherIndex (α : Λ) : Λ := (exists_gt α).choose theorem lt_higherIndex {α : Λ} : (α : TypeIndex) < higherIndex α := WithBot.coe_lt_coe.mpr (exists_gt α).choose_spec theorem tSet_nonempty (h : ∃ β : Λ, (β : TypeIndex) < α) : Nonempty (TSet α) := by obtain ⟨α', hα⟩ := h constructor apply typeLower lt_higherIndex lt_higherIndex lt_higherIndex hα apply cardinalOne lt_higherIndex lt_higherIndex def empty : TSet α := (tSet_nonempty ⟨β, hβ⟩).some ⊓' (tSet_nonempty ⟨β, hβ⟩).someᶜ' @[simp] theorem mem_empty_iff : ∀ x : TSet β, ¬x ∈' empty hβ := by intro x rw [empty, mem_inter_iff, mem_compl_iff] exact and_not_self def univ : TSet α := (empty hβ)ᶜ' @[simp] theorem mem_univ_iff : ∀ x : TSet β, x ∈' univ hβ := by intro x simp only [univ, mem_compl_iff, mem_empty_iff, not_false_eq_true] /-- The set of all ordered pairs. -/ def orderedPairs : TSet α := vCross hβ hγ hδ (univ hδ) @[simp] theorem mem_orderedPairs_iff (x : TSet β) : x ∈' orderedPairs hβ hγ hδ ↔ ∃ a b, x = ⟨a, b⟩' := by simp only [orderedPairs, vCross_spec, mem_univ_iff, and_true] def converse (x : TSet α) : TSet α := converse' hβ hγ hδ x ⊓' orderedPairs hβ hγ hδ @[simp] theorem op_mem_converse_iff (x : TSet α) : ∀ a b, ⟨a, b⟩' ∈' converse hβ hγ hδ x ↔ ⟨b, a⟩' ∈' x := by intro a b simp only [converse, mem_inter_iff, converse'_spec, mem_orderedPairs_iff, op_inj, exists_and_left, exists_eq', and_true] def cross (x y : TSet γ) : TSet α := converse hβ hγ hδ (vCross hβ hγ hδ x) ⊓' vCross hβ hγ hδ y @[simp] theorem mem_cross_iff (x y : TSet γ) : ∀ a, a ∈' cross hβ hγ hδ x y ↔ ∃ b c, a = ⟨b, c⟩' ∧ b ∈' x ∧ c ∈' y := by intro a rw [cross, mem_inter_iff, vCross_spec] constructor · rintro ⟨h₁, b, c, rfl, h₂⟩ simp only [op_mem_converse_iff, vCross_spec, op_inj] at h₁ obtain ⟨b', c', ⟨rfl, rfl⟩, h₁⟩ := h₁ exact ⟨b, c, rfl, h₁, h₂⟩ · rintro ⟨b, c, rfl, h₁, h₂⟩ simp only [op_mem_converse_iff, vCross_spec, op_inj] exact ⟨⟨c, b, ⟨rfl, rfl⟩, h₁⟩, ⟨b, c, ⟨rfl, rfl⟩, h₂⟩⟩ def singletonImage (x : TSet β) : TSet α := singletonImage' hβ hγ hδ hε x ⊓' (cross hβ hγ hδ (cardinalOne hδ hε) (cardinalOne hδ hε)) @[simp] theorem singletonImage_spec (x : TSet β) : ∀ z w, ⟨ {z}', {w}' ⟩' ∈' singletonImage hβ hγ hδ hε x ↔ ⟨z, w⟩' ∈' x := by intro z w rw [singletonImage, mem_inter_iff, singletonImage'_spec, and_iff_left_iff_imp] intro hzw rw [mem_cross_iff] refine ⟨{z}', {w}', rfl, ?_⟩ simp only [mem_cardinalOne_iff, singleton_inj, exists_eq', and_self] theorem exists_of_mem_singletonImage {x : TSet β} {z w : TSet δ} (h : ⟨z, w⟩' ∈' singletonImage hβ hγ hδ hε x) : ∃ a b, z = {a}' ∧ w = {b}' := by simp only [singletonImage, mem_inter_iff, mem_cross_iff, op_inj, mem_cardinalOne_iff] at h obtain ⟨-, _, _, ⟨rfl, rfl⟩, ⟨a, rfl⟩, ⟨b, rfl⟩⟩ := h exact ⟨a, b, rfl, rfl⟩ /-- Turn a model element encoding a relation into an actual relation. -/ def ExternalRel (r : TSet α) : Rel (TSet δ) (TSet δ) := λ x y ↦ ⟨x, y⟩' ∈' r @[simp] theorem externalRel_converse (r : TSet α) : ExternalRel hβ hγ hδ (converse hβ hγ hδ r) = (ExternalRel hβ hγ hδ r).inv := by ext simp only [ExternalRel, op_mem_converse_iff, Rel.inv_apply] /-- The codomain of a relation. -/ def codom (r : TSet α) : TSet γ := (typeLower lt_higherIndex hβ hγ hδ (singletonImage lt_higherIndex hβ hγ hδ r)ᶜ[lt_higherIndex])ᶜ' @[simp] theorem mem_codom_iff (r : TSet α) (x : TSet δ) : x ∈' codom hβ hγ hδ r ↔ x ∈ (ExternalRel hβ hγ hδ r).codom := by simp only [codom, mem_compl_iff, mem_typeLower_iff, not_forall, not_not] constructor · rintro ⟨y, hy⟩ obtain ⟨a, b, rfl, hb⟩ := exists_of_mem_singletonImage lt_higherIndex hβ hγ hδ hy rw [singleton_inj] at hb subst hb rw [singletonImage_spec] at hy exact ⟨a, hy⟩ · rintro ⟨a, ha⟩ use {a}' rw [singletonImage_spec] exact ha /-- The domain of a relation. -/ def dom (r : TSet α) : TSet γ := codom hβ hγ hδ (converse hβ hγ hδ r) @[simp] theorem mem_dom_iff (r : TSet α) (x : TSet δ) : x ∈' dom hβ hγ hδ r ↔ x ∈ (ExternalRel hβ hγ hδ r).dom := by rw [dom, mem_codom_iff, externalRel_converse, Rel.inv_codom] /-- The field of a relation. -/ def field (r : TSet α) : TSet γ := dom hβ hγ hδ r ⊔' codom hβ hγ hδ r
@[simp] theorem mem_field_iff (r : TSet α) (x : TSet δ) : x ∈' field hβ hγ hδ r ↔ x ∈ (ExternalRel hβ hγ hδ r).field
ConNF.mem_field_iff
{ "commit": "66f4e3291020d4198ca6ede816acae5cee584a07", "date": "2025-01-06T00:00:00" }
{ "commit": "1c08486feb882444888c228ce1501e92bb85e0e2", "date": "2025-01-07T00:00:00" }
ConNF/ConNF/External/Basic.lean
ConNF.External.Basic
ConNF.External.Basic.jsonl
{ "lineInFile": 168, "tokenPositionInFile": 5056, "theoremPositionInFile": 27 }
{ "inFilePremises": true, "numInFilePremises": 8, "repositoryPremises": true, "numRepositoryPremises": 18, "numPremises": 46 }
{ "hasProof": true, "proof": ":= by\n rw [field, mem_union_iff, mem_dom_iff, mem_codom_iff, Rel.field, Set.mem_union]", "proofType": "tactic", "proofLengthLines": 1, "proofLengthTokens": 87 }
import ConNF.Model.Externalise /-! # New file In this file... ## Main declarations * `ConNF.foo`: Something new. -/ noncomputable section universe u open Cardinal Ordinal namespace ConNF variable [Params.{u}] {β γ : Λ} {hγ : (γ : TypeIndex) < β} namespace Support theorem not_mem_scoderiv_botDeriv (S : Support γ) (N : NearLitter) : N ∉ (S ↗ hγ ⇘. (Path.nil ↘.))ᴺ := by rintro ⟨i, ⟨A, N'⟩, h₁, h₂⟩ simp only [Prod.mk.injEq] at h₂ cases A case sderiv δ A hδ _ => simp only [Path.deriv_sderiv] at h₂ cases A case nil => cases h₂.1 case sderiv ζ A hζ _ => simp only [Path.deriv_sderiv] at h₂ cases h₂.1 variable [Level] [LtLevel β] theorem not_mem_strong_botDeriv (S : Support γ) (N : NearLitter) : N ∉ ((S ↗ hγ).strong ⇘. (Path.nil ↘.))ᴺ := by rintro h rw [strong, close_nearLitters, preStrong_nearLitters, Enumeration.mem_add_iff] at h obtain h | h := h · exact not_mem_scoderiv_botDeriv S N h · rw [mem_constrainsNearLitters_nearLitters] at h obtain ⟨B, N', hN', h⟩ := h cases h using Relation.ReflTransGen.head_induction_on case refl => exact not_mem_scoderiv_botDeriv S N hN' case head x hx₁ hx₂ _ => obtain ⟨⟨γ, δ, ε, hδ, hε, hδε, A⟩, t, B, hB, hN, ht⟩ := hx₂ simp only at hB cases B case nil => cases hB obtain ⟨C, N''⟩ := x simp only at ht cases ht.1 change _ ∈ t.supportᴺ at hN rw [t.support_supports.2 rfl] at hN obtain ⟨i, hN⟩ := hN cases hN case sderiv δ B hδ _ _ => cases B case nil => cases hB case sderiv ζ B hζ _ _ => cases hB theorem raise_preStrong' (S : Support α) (hS : S.Strong) (T : Support γ) (ρ : AllPerm β) (hγ : (γ : TypeIndex) < β) : (S + (ρᵁ • ((T ↗ hγ).strong + (S ↘ LtLevel.elim + (T ↗ hγ).strong).interferenceSupport)) ↗ LtLevel.elim).PreStrong := by apply hS.toPreStrong.add constructor intro A N hN P t hA ht obtain ⟨A, rfl⟩ := eq_of_nearLitter_mem_scoderiv_botDeriv hN simp only [scoderiv_botDeriv_eq, add_derivBot, smul_derivBot, BaseSupport.add_nearLitters, BaseSupport.smul_nearLitters, interferenceSupport_nearLitters, Enumeration.mem_add_iff, Enumeration.mem_smul, Enumeration.not_mem_empty, or_false] at hN obtain ⟨δ, ε, ζ, hε, hζ, hεζ, B⟩ := P dsimp only at * cases A case sderiv ζ' A hζ' _ => rw [← Path.coderiv_deriv] at hA cases Path.sderiv_index_injective hA apply Path.sderiv_left_inj.mp at hA cases A case nil => cases hA cases not_mem_strong_botDeriv T _ hN case sderiv ι A hι _ _ => rw [← Path.coderiv_deriv] at hA cases Path.sderiv_index_injective hA cases hA haveI : LtLevel δ := ⟨A.le.trans_lt LtLevel.elim⟩ haveI : LtLevel ε := ⟨hε.trans LtLevel.elim⟩ haveI : LtLevel ζ := ⟨hζ.trans LtLevel.elim⟩ have := (T ↗ hγ).strong_strong.support_le hN ⟨δ, ε, ζ, hε, hζ, hεζ, A⟩ (ρ⁻¹ ⇘ A ↘ hε • t) rfl ?_ · simp only [Tangle.smul_support, allPermSderiv_forget, allPermDeriv_forget, allPermForget_inv, Tree.inv_deriv, Tree.inv_sderiv] at this have := smul_le_smul this (ρᵁ ⇘ A ↘ hε) simp only [smul_inv_smul] at this apply le_trans this intro B constructor · intro a ha simp only [smul_derivBot, Tree.sderiv_apply, Tree.deriv_apply, Path.deriv_scoderiv, deriv_derivBot, Enumeration.mem_smul] at ha rw [deriv_derivBot, ← Path.deriv_scoderiv, Path.coderiv_deriv', scoderiv_botDeriv_eq,] simp only [Path.deriv_scoderiv, add_derivBot, smul_derivBot, BaseSupport.add_atoms, BaseSupport.smul_atoms, Enumeration.mem_add_iff, Enumeration.mem_smul] exact Or.inl ha · intro N hN simp only [smul_derivBot, Tree.sderiv_apply, Tree.deriv_apply, Path.deriv_scoderiv, deriv_derivBot, Enumeration.mem_smul] at hN rw [deriv_derivBot, ← Path.deriv_scoderiv, Path.coderiv_deriv', scoderiv_botDeriv_eq,] simp only [Path.deriv_scoderiv, add_derivBot, smul_derivBot, BaseSupport.add_nearLitters, BaseSupport.smul_nearLitters, Enumeration.mem_add_iff, Enumeration.mem_smul] exact Or.inl hN · rw [← smul_fuzz hε hζ hεζ, ← ht] simp only [Path.botSderiv_coe_eq, BasePerm.smul_nearLitter_litter, allPermDeriv_forget, allPermForget_inv, Tree.inv_deriv, Tree.inv_sderiv, Tree.inv_sderivBot] rfl theorem raise_closed' (S : Support α) (hS : S.Strong) (T : Support γ) (ρ : AllPerm β) (hγ : (γ : TypeIndex) < β) (hρ : ρᵁ • (S ↘ LtLevel.elim : Support β) = S ↘ LtLevel.elim) : (S + (ρᵁ • ((T ↗ hγ).strong + (S ↘ LtLevel.elim + (T ↗ hγ).strong).interferenceSupport)) ↗ LtLevel.elim).Closed := by constructor intro A constructor intro N₁ N₂ hN₁ hN₂ a ha simp only [add_derivBot, BaseSupport.add_nearLitters, Enumeration.mem_add_iff, BaseSupport.add_atoms] at hN₁ hN₂ ⊢ obtain hN₁ | hN₁ := hN₁ · obtain hN₂ | hN₂ := hN₂ · exact Or.inl ((hS.closed A).interference_subset hN₁ hN₂ a ha) · obtain ⟨B, rfl⟩ := eq_of_nearLitter_mem_scoderiv_botDeriv hN₂ simp only [smul_add, scoderiv_botDeriv_eq, add_derivBot, smul_derivBot, BaseSupport.add_nearLitters, BaseSupport.smul_nearLitters, Enumeration.mem_add_iff, Enumeration.mem_smul, BaseSupport.add_atoms, BaseSupport.smul_atoms] at hN₁ hN₂ ⊢ refine Or.inr (Or.inr ?_) rw [mem_interferenceSupport_atoms] refine ⟨(ρᵁ B)⁻¹ • N₁, ?_, (ρᵁ B)⁻¹ • N₂, ?_, ?_⟩ · simp only [add_derivBot, BaseSupport.add_nearLitters, Enumeration.mem_add_iff] rw [← Enumeration.mem_smul, ← BaseSupport.smul_nearLitters, ← smul_derivBot, hρ] exact Or.inl hN₁ · simp only [add_derivBot, BaseSupport.add_nearLitters, Enumeration.mem_add_iff] simp only [interferenceSupport_nearLitters, Enumeration.not_mem_empty, or_false] at hN₂ exact Or.inr hN₂ · rw [← BasePerm.smul_interference] exact Set.smul_mem_smul_set ha · obtain ⟨B, rfl⟩ := eq_of_nearLitter_mem_scoderiv_botDeriv hN₁ simp only [smul_add, scoderiv_botDeriv_eq, add_derivBot, smul_derivBot, BaseSupport.add_nearLitters, BaseSupport.smul_nearLitters, Enumeration.mem_add_iff, Enumeration.mem_smul, BaseSupport.add_atoms, BaseSupport.smul_atoms] at hN₁ hN₂ ⊢ refine Or.inr (Or.inr ?_) rw [mem_interferenceSupport_atoms] refine ⟨(ρᵁ B)⁻¹ • N₁, ?_, (ρᵁ B)⁻¹ • N₂, ?_, ?_⟩ · simp only [add_derivBot, BaseSupport.add_nearLitters, Enumeration.mem_add_iff] simp only [interferenceSupport_nearLitters, Enumeration.not_mem_empty, or_false] at hN₁ exact Or.inr hN₁ · simp only [add_derivBot, BaseSupport.add_nearLitters, Enumeration.mem_add_iff] simp only [interferenceSupport_nearLitters, Enumeration.not_mem_empty, or_false] at hN₂ obtain hN₂ | hN₂ := hN₂ · rw [← Enumeration.mem_smul, ← BaseSupport.smul_nearLitters, ← smul_derivBot, hρ] exact Or.inl hN₂ · exact Or.inr hN₂ · rw [← BasePerm.smul_interference] exact Set.smul_mem_smul_set ha theorem raise_strong' (S : Support α) (hS : S.Strong) (T : Support γ) (ρ : AllPerm β) (hγ : (γ : TypeIndex) < β) (hρ : ρᵁ • (S ↘ LtLevel.elim : Support β) = S ↘ LtLevel.elim) : (S + (ρᵁ • ((T ↗ hγ).strong + (S ↘ LtLevel.elim + (T ↗ hγ).strong).interferenceSupport)) ↗ LtLevel.elim).Strong := ⟨raise_preStrong' S hS T ρ hγ, raise_closed' S hS T ρ hγ hρ⟩ theorem convAtoms_injective_of_fixes {S : Support α} {T : Support γ} {ρ₁ ρ₂ : AllPerm β} {hγ : (γ : TypeIndex) < β} (hρ₁ : ρ₁ᵁ • (S ↘ LtLevel.elim : Support β) = S ↘ LtLevel.elim) (hρ₂ : ρ₂ᵁ • (S ↘ LtLevel.elim : Support β) = S ↘ LtLevel.elim) (A : ↑α ↝ ⊥) : (convAtoms (S + (ρ₁ᵁ • ((T ↗ hγ).strong + (S ↘ LtLevel.elim + (T ↗ hγ).strong).interferenceSupport)) ↗ LtLevel.elim) (S + (ρ₂ᵁ • ((T ↗ hγ).strong + (S ↘ LtLevel.elim + (T ↗ hγ).strong).interferenceSupport)) ↗ LtLevel.elim) A).Injective := by rw [Support.smul_eq_iff] at hρ₁ hρ₂ constructor rintro a₁ a₂ a₃ ⟨i, hi₁, hi₂⟩ ⟨j, hj₁, hj₂⟩ simp only [add_derivBot, BaseSupport.add_atoms, Rel.inv_apply, Enumeration.rel_add_iff] at hi₁ hi₂ hj₁ hj₂ obtain hi₁ | ⟨i, rfl, hi₁⟩ := hi₁ · obtain hi₂ | ⟨i', rfl, _⟩ := hi₂ swap · have := Enumeration.lt_bound _ _ ⟨_, hi₁⟩ simp only [add_lt_iff_neg_left] at this cases (κ_zero_le i').not_lt this cases (Enumeration.rel_coinjective _).coinjective hi₁ hi₂ obtain hj₁ | ⟨j, rfl, hj₁⟩ := hj₁ · obtain hj₂ | ⟨j', rfl, _⟩ := hj₂ · exact (Enumeration.rel_coinjective _).coinjective hj₂ hj₁ · have := Enumeration.lt_bound _ _ ⟨_, hj₁⟩ simp only [add_lt_iff_neg_left] at this cases (κ_zero_le j').not_lt this · obtain hj₂ | hj₂ := hj₂ · have := Enumeration.lt_bound _ _ ⟨_, hj₂⟩ simp only [add_lt_iff_neg_left] at this cases (κ_zero_le j).not_lt this · simp only [add_right_inj, exists_eq_left] at hj₂ obtain ⟨B, rfl⟩ := eq_of_atom_mem_scoderiv_botDeriv ⟨j, hj₁⟩ simp only [scoderiv_botDeriv_eq, smul_derivBot, add_derivBot, BaseSupport.smul_atoms, BaseSupport.add_atoms, Enumeration.smul_rel, add_right_inj, exists_eq_left] at hj₁ hj₂ have := (Enumeration.rel_coinjective _).coinjective hj₁ hj₂ rw [← (hρ₂ B).1 a₁ ⟨_, hi₁⟩, inv_smul_smul, inv_smul_eq_iff, (hρ₁ B).1 a₁ ⟨_, hi₁⟩] at this exact this.symm · obtain ⟨B, rfl⟩ := eq_of_atom_mem_scoderiv_botDeriv ⟨i, hi₁⟩ simp only [scoderiv_botDeriv_eq, smul_derivBot, add_derivBot, BaseSupport.smul_atoms, BaseSupport.add_atoms, Enumeration.smul_rel, add_right_inj, exists_eq_left] at hi₁ hi₂ hj₁ hj₂ obtain hi₂ | hi₂ := hi₂ · have := Enumeration.lt_bound _ _ ⟨_, hi₂⟩ simp only [add_lt_iff_neg_left] at this cases (κ_zero_le i).not_lt this have hi := (Enumeration.rel_coinjective _).coinjective hi₁ hi₂ suffices hj : (ρ₁ᵁ B)⁻¹ • a₂ = (ρ₂ᵁ B)⁻¹ • a₃ by rwa [← hj, smul_left_cancel_iff] at hi obtain hj₁ | ⟨j, rfl, hj₁⟩ := hj₁ · obtain hj₂ | ⟨j', rfl, _⟩ := hj₂ · rw [← (hρ₁ B).1 a₂ ⟨_, hj₁⟩, ← (hρ₂ B).1 a₃ ⟨_, hj₂⟩, inv_smul_smul, inv_smul_smul] exact (Enumeration.rel_coinjective _).coinjective hj₁ hj₂ · have := Enumeration.lt_bound _ _ ⟨_, hj₁⟩ simp only [add_lt_iff_neg_left] at this cases (κ_zero_le j').not_lt this · obtain hj₂ | hj₂ := hj₂ · have := Enumeration.lt_bound _ _ ⟨_, hj₂⟩ simp only [add_lt_iff_neg_left] at this cases (κ_zero_le j).not_lt this · simp only [add_right_inj, exists_eq_left] at hj₂ exact (Enumeration.rel_coinjective _).coinjective hj₁ hj₂ theorem atomMemRel_le_of_fixes {S : Support α} {T : Support γ} {ρ₁ ρ₂ : AllPerm β} {hγ : (γ : TypeIndex) < β} (hρ₁ : ρ₁ᵁ • (S ↘ LtLevel.elim : Support β) = S ↘ LtLevel.elim) (hρ₂ : ρ₂ᵁ • (S ↘ LtLevel.elim : Support β) = S ↘ LtLevel.elim) (A : ↑α ↝ ⊥) : atomMemRel (S + (ρ₁ᵁ • ((T ↗ hγ).strong + (S ↘ LtLevel.elim + (T ↗ hγ).strong).interferenceSupport)) ↗ LtLevel.elim) A ≤ atomMemRel (S + (ρ₂ᵁ • ((T ↗ hγ).strong + (S ↘ LtLevel.elim + (T ↗ hγ).strong).interferenceSupport)) ↗ LtLevel.elim) A := by rw [Support.smul_eq_iff] at hρ₁ hρ₂ rintro i j ⟨N, hN, a, haN, ha⟩ simp only [add_derivBot, BaseSupport.add_atoms, Rel.inv_apply, Enumeration.rel_add_iff, BaseSupport.add_nearLitters] at ha hN obtain hN | ⟨i, rfl, hi⟩ := hN · obtain ha | ⟨j, rfl, hj⟩ := ha · exact ⟨N, Or.inl hN, a, haN, Or.inl ha⟩ · obtain ⟨B, rfl⟩ := eq_of_atom_mem_scoderiv_botDeriv ⟨j, hj⟩ simp only [scoderiv_botDeriv_eq, smul_derivBot, add_derivBot, BaseSupport.smul_atoms, BaseSupport.add_atoms, Enumeration.smul_rel] at hj hN refine ⟨N, Or.inl hN, ρ₂ᵁ B • (ρ₁ᵁ B)⁻¹ • a, ?_, ?_⟩ · dsimp only rw [← (hρ₂ B).2 N ⟨_, hN⟩, BasePerm.smul_nearLitter_atoms, Set.smul_mem_smul_set_iff] have := (hρ₁ B).2 N ⟨_, hN⟩ rw [smul_eq_iff_eq_inv_smul] at this rwa [this, BasePerm.smul_nearLitter_atoms, Set.smul_mem_smul_set_iff] · rw [Rel.inv_apply, add_derivBot, BaseSupport.add_atoms, Enumeration.rel_add_iff] simp only [add_right_inj, scoderiv_botDeriv_eq, smul_derivBot, add_derivBot, BaseSupport.smul_atoms, BaseSupport.add_atoms, Enumeration.smul_rel, inv_smul_smul, exists_eq_left] exact Or.inr hj · obtain ⟨B, rfl⟩ := eq_of_nearLitter_mem_scoderiv_botDeriv ⟨i, hi⟩ simp only [scoderiv_botDeriv_eq, smul_derivBot, add_derivBot, BaseSupport.smul_atoms, BaseSupport.add_atoms, Enumeration.smul_rel] at hi ha obtain ha | ⟨j, rfl, hj⟩ := ha · refine ⟨ρ₂ᵁ B • (ρ₁ᵁ B)⁻¹ • N, ?_, a, ?_, Or.inl ha⟩ · rw [add_derivBot, BaseSupport.add_nearLitters, Enumeration.rel_add_iff] simp only [add_right_inj, scoderiv_botDeriv_eq, smul_derivBot, add_derivBot, BaseSupport.smul_nearLitters, BaseSupport.add_nearLitters, Enumeration.smul_rel, inv_smul_smul, exists_eq_left] exact Or.inr hi · dsimp only rw [← (hρ₂ B).1 a ⟨_, ha⟩, BasePerm.smul_nearLitter_atoms, Set.smul_mem_smul_set_iff] have := (hρ₁ B).1 a ⟨_, ha⟩ rw [smul_eq_iff_eq_inv_smul] at this rwa [this, BasePerm.smul_nearLitter_atoms, Set.smul_mem_smul_set_iff] · refine ⟨ρ₂ᵁ B • (ρ₁ᵁ B)⁻¹ • N, ?_, ρ₂ᵁ B • (ρ₁ᵁ B)⁻¹ • a, ?_, ?_⟩ · rw [add_derivBot, BaseSupport.add_nearLitters, Enumeration.rel_add_iff] simp only [add_right_inj, scoderiv_botDeriv_eq, smul_derivBot, add_derivBot, BaseSupport.smul_nearLitters, BaseSupport.add_nearLitters, Enumeration.smul_rel, inv_smul_smul, exists_eq_left] exact Or.inr hi · simp only [BasePerm.smul_nearLitter_atoms, Set.smul_mem_smul_set_iff] exact haN · rw [Rel.inv_apply, add_derivBot, BaseSupport.add_atoms, Enumeration.rel_add_iff] simp only [add_right_inj, scoderiv_botDeriv_eq, smul_derivBot, add_derivBot, BaseSupport.smul_atoms, BaseSupport.add_atoms, Enumeration.smul_rel, inv_smul_smul, exists_eq_left] exact Or.inr hj theorem convNearLitters_cases {S : Support α} {T : Support γ} {ρ₁ ρ₂ : AllPerm β} {hγ : (γ : TypeIndex) < β} {A : α ↝ ⊥} {N₁ N₂ : NearLitter} : convNearLitters (S + (ρ₁ᵁ • ((T ↗ hγ).strong + (S ↘ LtLevel.elim + (T ↗ hγ).strong).interferenceSupport)) ↗ LtLevel.elim) (S + (ρ₂ᵁ • ((T ↗ hγ).strong + (S ↘ LtLevel.elim + (T ↗ hγ).strong).interferenceSupport)) ↗ LtLevel.elim) A N₁ N₂ → N₁ = N₂ ∧ N₁ ∈ (S ⇘. A)ᴺ ∨ ∃ B : β ↝ ⊥, A = B ↗ LtLevel.elim ∧ (ρ₁ᵁ B)⁻¹ • N₁ = (ρ₂ᵁ B)⁻¹ • N₂ ∧ (ρ₁ᵁ B)⁻¹ • N₁ ∈ (((T ↗ hγ).strong + (S ↘ LtLevel.elim + (T ↗ hγ).strong).interferenceSupport) ⇘. B)ᴺ := by rintro ⟨i, hN₁, hN₂⟩ simp only [add_derivBot, BaseSupport.add_nearLitters, Rel.inv_apply, Enumeration.rel_add_iff] at hN₁ hN₂ obtain hN₁ | ⟨i, rfl, hN₁⟩ := hN₁ · obtain hN₂ | ⟨i, rfl, hN₂⟩ := hN₂ swap · have := Enumeration.lt_bound _ _ ⟨_, hN₁⟩ simp only [add_lt_iff_neg_left] at this cases (κ_zero_le i).not_lt this exact Or.inl ⟨(Enumeration.rel_coinjective _).coinjective hN₁ hN₂, _, hN₁⟩ · obtain ⟨B, rfl⟩ := eq_of_nearLitter_mem_scoderiv_botDeriv ⟨i, hN₁⟩ simp only [scoderiv_botDeriv_eq, smul_derivBot, add_derivBot, BaseSupport.smul_nearLitters, BaseSupport.add_nearLitters, Enumeration.smul_rel, add_right_inj, exists_eq_left] at hN₁ hN₂ obtain hN₂ | hN₂ := hN₂ · have := Enumeration.lt_bound _ _ ⟨_, hN₂⟩ simp only [add_lt_iff_neg_left] at this cases (κ_zero_le i).not_lt this exact Or.inr ⟨B, rfl, (Enumeration.rel_coinjective _).coinjective hN₁ hN₂, _, hN₁⟩ theorem inflexible_of_inflexible_of_fixes {S : Support α} {T : Support γ} {ρ₁ ρ₂ : AllPerm β} {hγ : (γ : TypeIndex) < β} (hρ₁ : ρ₁ᵁ • (S ↘ LtLevel.elim : Support β) = S ↘ LtLevel.elim) (hρ₂ : ρ₂ᵁ • (S ↘ LtLevel.elim : Support β) = S ↘ LtLevel.elim) {A : α ↝ ⊥} {N₁ N₂ : NearLitter} : convNearLitters (S + (ρ₁ᵁ • ((T ↗ hγ).strong + (S ↘ LtLevel.elim + (T ↗ hγ).strong).interferenceSupport)) ↗ LtLevel.elim) (S + (ρ₂ᵁ • ((T ↗ hγ).strong + (S ↘ LtLevel.elim + (T ↗ hγ).strong).interferenceSupport)) ↗ LtLevel.elim) A N₁ N₂ → ∀ (P : InflexiblePath ↑α) (t : Tangle P.δ), A = P.A ↘ P.hε ↘. → N₁ᴸ = fuzz P.hδε t → ∃ ρ : AllPerm P.δ, N₂ᴸ = fuzz P.hδε (ρ • t) := by rintro hN ⟨γ, δ, ε, hδ, hε, hδε, A⟩ t hA ht haveI : LeLevel γ := ⟨A.le⟩ haveI : LtLevel δ := ⟨hδ.trans_le LeLevel.elim⟩ haveI : LtLevel ε := ⟨hε.trans_le LeLevel.elim⟩ obtain ⟨rfl, _⟩ | ⟨B, rfl, hN'⟩ := convNearLitters_cases hN · use 1 rw [one_smul, ht] · clear hN cases B case sderiv ε B hε' _ => rw [← Path.coderiv_deriv] at hA cases Path.sderiv_index_injective hA apply Path.sderiv_path_injective at hA cases B case nil => simp only [Path.botSderiv_coe_eq, add_derivBot, BaseSupport.add_nearLitters, interferenceSupport_nearLitters, Enumeration.add_empty] at hN' cases not_mem_strong_botDeriv _ _ hN'.2 case sderiv ζ B hζ _ _ => rw [← Path.coderiv_deriv] at hA cases Path.sderiv_index_injective hA apply Path.sderiv_path_injective at hA dsimp only at hA hζ hε' B t cases hA use (ρ₂ * ρ₁⁻¹) ⇘ B ↘ hδ rw [inv_smul_eq_iff] at hN' rw [← smul_fuzz hδ hε hδε, ← ht, hN'.1] simp only [allPermDeriv_forget, allPermForget_mul, allPermForget_inv, Tree.mul_deriv, Tree.inv_deriv, Tree.mul_sderiv, Tree.inv_sderiv, Tree.mul_sderivBot, Tree.inv_sderivBot, Path.botSderiv_coe_eq, BasePerm.smul_nearLitter_litter, mul_smul] erw [inv_smul_smul, smul_inv_smul]
theorem atoms_of_inflexible_of_fixes {S : Support α} (hS : S.Strong) {T : Support γ} {ρ₁ ρ₂ : AllPerm β} {hγ : (γ : TypeIndex) < β} (hρ₁ : ρ₁ᵁ • (S ↘ LtLevel.elim : Support β) = S ↘ LtLevel.elim) (hρ₂ : ρ₂ᵁ • (S ↘ LtLevel.elim : Support β) = S ↘ LtLevel.elim) (A : α ↝ ⊥) (N₁ N₂ : NearLitter) (P : InflexiblePath ↑α) (t : Tangle P.δ) (ρ : AllPerm P.δ) : A = P.A ↘ P.hε ↘. → N₁ᴸ = fuzz P.hδε t → N₂ᴸ = fuzz P.hδε (ρ • t) → convNearLitters (S + (ρ₁ᵁ • ((T ↗ hγ).strong + (S ↘ LtLevel.elim + (T ↗ hγ).strong).interferenceSupport)) ↗ LtLevel.elim) (S + (ρ₂ᵁ • ((T ↗ hγ).strong + (S ↘ LtLevel.elim + (T ↗ hγ).strong).interferenceSupport)) ↗ LtLevel.elim) A N₁ N₂ → ∀ (B : P.δ ↝ ⊥), ∀ a ∈ (t.support ⇘. B)ᴬ, ∀ (i : κ), ((S + (ρ₁ᵁ • ((T ↗ hγ).strong + (S ↘ LtLevel.elim + (T ↗ hγ).strong).interferenceSupport)) ↗ LtLevel.elim) ⇘. (P.A ↘ P.hδ ⇘ B))ᴬ.rel i a → ((S + (ρ₂ᵁ • ((T ↗ hγ).strong + (S ↘ LtLevel.elim + (T ↗ hγ).strong).interferenceSupport)) ↗ LtLevel.elim) ⇘. (P.A ↘ P.hδ ⇘ B))ᴬ.rel i (ρᵁ B • a)
ConNF.Support.atoms_of_inflexible_of_fixes
{ "commit": "abf71bc79c407ceb462cc2edd2d994cda9cdef05", "date": "2024-04-04T00:00:00" }
{ "commit": "2dd04bc4e7c491b6023c78aea4cd613f00becfc4", "date": "2024-11-30T00:00:00" }
ConNF/ConNF/Model/RaiseStrong.lean
ConNF.Model.RaiseStrong
ConNF.Model.RaiseStrong.jsonl
{ "lineInFile": 378, "tokenPositionInFile": 17816, "theoremPositionInFile": 9 }
{ "inFilePremises": true, "numInFilePremises": 2, "repositoryPremises": true, "numRepositoryPremises": 138, "numPremises": 231 }
{ "hasProof": true, "proof": ":= by\n rw [Support.smul_eq_iff] at hρ₁ hρ₂\n obtain ⟨γ, δ, ε, hδ, hε, hδε, B⟩ := P\n haveI : LeLevel γ := ⟨B.le⟩\n haveI : LtLevel δ := ⟨hδ.trans_le LeLevel.elim⟩\n haveI : LtLevel ε := ⟨hε.trans_le LeLevel.elim⟩\n dsimp only at t ρ ⊢\n intro hA hN₁ hN₂ hN C a ha i hi\n obtain ⟨rfl, hN'⟩ | ⟨A, rfl, hN₁', hN₂'⟩ := convNearLitters_cases hN\n · have haS := (hS.support_le hN' ⟨γ, δ, ε, hδ, hε, hδε, _⟩ t hA hN₁ _).1 a ha\n rw [hN₂] at hN₁\n have hρt := congr_arg Tangle.support (fuzz_injective hN₁)\n rw [Tangle.smul_support, Support.smul_eq_iff] at hρt\n simp only [add_derivBot, BaseSupport.add_atoms, Enumeration.rel_add_iff] at hi ⊢\n rw [(hρt C).1 a ha]\n obtain hi | ⟨i, rfl, hi⟩ := hi\n · exact Or.inl hi\n · simp only [add_right_inj, exists_eq_left]\n obtain ⟨D, hD⟩ := eq_of_atom_mem_scoderiv_botDeriv ⟨i, hi⟩\n cases B using Path.recScoderiv\n case nil =>\n cases Path.scoderiv_index_injective hD\n cases Path.scoderiv_left_inj.mp hD\n simp only [hD, Path.coderiv_deriv, Path.coderiv_deriv', scoderiv_botDeriv_eq, smul_derivBot,\n add_derivBot, BaseSupport.smul_atoms, BaseSupport.add_atoms, Enumeration.smul_rel] at hi ⊢\n rw [deriv_derivBot, hD] at haS\n rw [← (hρ₂ _).1 a haS, inv_smul_smul]\n rw [← (hρ₁ _).1 a haS, inv_smul_smul] at hi\n exact Or.inr hi\n case scoderiv ζ B hζ' _ =>\n rw [Path.coderiv_deriv, Path.coderiv_deriv'] at hD\n cases Path.scoderiv_index_injective hD\n rw [Path.scoderiv_left_inj] at hD\n cases hD\n simp only [Path.coderiv_deriv, Path.coderiv_deriv', scoderiv_botDeriv_eq, smul_derivBot,\n add_derivBot, BaseSupport.smul_atoms, BaseSupport.add_atoms, Enumeration.smul_rel] at hi ⊢\n rw [deriv_derivBot, Path.coderiv_deriv, Path.coderiv_deriv'] at haS\n rw [← (hρ₂ _).1 a haS, inv_smul_smul]\n rw [← (hρ₁ _).1 a haS, inv_smul_smul] at hi\n exact Or.inr hi\n · simp only [add_derivBot, BaseSupport.add_nearLitters, interferenceSupport_nearLitters,\n Enumeration.add_empty] at hN₂'\n cases A\n case sderiv ζ A hζ' _ =>\n rw [← Path.coderiv_deriv] at hA\n cases Path.sderiv_index_injective hA\n apply Path.sderiv_path_injective at hA\n cases A\n case nil =>\n cases hA\n cases not_mem_strong_botDeriv _ _ hN₂'\n case sderiv ζ A hζ _ _ =>\n rw [← Path.coderiv_deriv] at hA\n cases Path.sderiv_index_injective hA\n apply Path.sderiv_path_injective at hA\n cases hA\n simp only [Path.coderiv_deriv, Path.coderiv_deriv', add_derivBot, scoderiv_botDeriv_eq,\n smul_derivBot, BaseSupport.add_atoms, BaseSupport.smul_atoms] at hi ⊢\n have : N₂ᴸ = (ρ₂ ⇘ A)ᵁ ↘ hζ ↘. • (ρ₁⁻¹ ⇘ A)ᵁ ↘ hζ ↘. • fuzz hδε t := by\n rw [inv_smul_eq_iff] at hN₁'\n rw [hN₁', Path.botSderiv_coe_eq, BasePerm.smul_nearLitter_litter,\n BasePerm.smul_nearLitter_litter, smul_smul, smul_eq_iff_eq_inv_smul,\n mul_inv_rev, inv_inv, mul_smul, ← Tree.inv_apply, ← allPermForget_inv] at hN₁\n rw [hN₁]\n simp only [allPermForget_inv, Tree.inv_apply, allPermDeriv_forget, Tree.inv_deriv,\n Tree.inv_sderiv, Tree.inv_sderivBot]\n rfl\n rw [smul_fuzz hδ hε hδε, smul_fuzz hδ hε hδε] at this\n have := fuzz_injective (hN₂.symm.trans this)\n rw [smul_smul] at this\n rw [t.smul_atom_eq_of_mem_support this ha]\n rw [Enumeration.rel_add_iff] at hi ⊢\n obtain hi | ⟨i, rfl, hi⟩ := hi\n · left\n simp only [allPermForget_mul, allPermSderiv_forget, allPermDeriv_forget,\n allPermForget_inv, Tree.inv_deriv, Tree.inv_sderiv, Tree.mul_apply, Tree.sderiv_apply,\n Tree.deriv_apply, Path.deriv_scoderiv, Tree.inv_apply, mul_smul]\n rwa [← (hρ₁ _).1 a ⟨i, hi⟩, inv_smul_smul, (hρ₂ _).1 a ⟨i, hi⟩]\n · refine Or.inr ⟨i, rfl, ?_⟩\n simp only [allPermForget_mul, allPermSderiv_forget, allPermDeriv_forget,\n allPermForget_inv, Tree.inv_deriv, Tree.inv_sderiv, Tree.mul_apply, Tree.sderiv_apply,\n Tree.deriv_apply, Path.deriv_scoderiv, Tree.inv_apply, mul_smul, Enumeration.smul_rel,\n inv_smul_smul]\n exact hi", "proofType": "tactic", "proofLengthLines": 83, "proofLengthTokens": 4222 }
import ConNF.Model.RunInduction /-! # Externalisation In this file, we convert many of our *internal* results (i.e. inside the induction) to *external* ones (i.e. defined using the global `TSet`/`AllPerm` definitions). ## Main declarations * `ConNF.foo`: Something new. -/ noncomputable section universe u open Cardinal Ordinal WithBot namespace ConNF variable [Params.{u}] instance globalModelData : {α : TypeIndex} → ModelData α | (α : Λ) => (motive α).data | ⊥ => botModelData instance globalPosition : {α : TypeIndex} → Position (Tangle α) | (α : Λ) => (motive α).pos | ⊥ => botPosition instance globalTypedNearLitters {α : Λ} : TypedNearLitters α := (motive α).typed instance globalLtData [Level] : LtData where instance globalLeData [Level] : LeData where omit [Params] in
theorem heq_funext {α : Sort _} {β γ : α → Sort _} {f : (x : α) → β x} {g : (x : α) → γ x} (h : ∀ x, HEq (f x) (g x)) : HEq f g
ConNF.heq_funext
{ "commit": "6fdc87c6b30b73931407a372f1430ecf0fef7601", "date": "2024-12-03T00:00:00" }
{ "commit": "e409f3d0cd939e7218c3f39dcf3493c4b6e0b821", "date": "2024-11-29T00:00:00" }
ConNF/ConNF/Model/Externalise.lean
ConNF.Model.Externalise
ConNF.Model.Externalise.jsonl
{ "lineInFile": 39, "tokenPositionInFile": 803, "theoremPositionInFile": 0 }
{ "inFilePremises": false, "numInFilePremises": 0, "repositoryPremises": false, "numRepositoryPremises": 0, "numPremises": 14 }
{ "hasProof": true, "proof": ":= by\n cases funext λ x ↦ type_eq_of_heq (h x)\n simp only [heq_eq_eq] at h ⊢\n exact funext h", "proofType": "tactic", "proofLengthLines": 3, "proofLengthTokens": 95 }
import ConNF.Model.TTT /-! # New file In this file... ## Main declarations * `ConNF.foo`: Something new. -/ noncomputable section universe u open Cardinal Ordinal namespace ConNF variable [Params.{u}] {α β γ δ ε ζ : Λ} (hβ : (β : TypeIndex) < α) (hγ : (γ : TypeIndex) < β) (hδ : (δ : TypeIndex) < γ) (hε : (ε : TypeIndex) < δ) (hζ : (ζ : TypeIndex) < ε) namespace TSet theorem exists_inter (x y : TSet α) : ∃ w : TSet α, ∀ z : TSet β, z ∈[hβ] w ↔ z ∈[hβ] x ∧ z ∈[hβ] y := by refine exists_of_symmetric {z | z ∈[hβ] x ∧ z ∈[hβ] y} hβ ?_ obtain ⟨S, hS⟩ := symmetric x hβ obtain ⟨T, hT⟩ := symmetric y hβ use S + T intro ρ hρ specialize hS ρ (smul_eq_of_le Support.le_add_right hρ) specialize hT ρ (smul_eq_of_le Support.le_add_left hρ) simp [Set.ext_iff, Set.mem_smul_set_iff_inv_smul_mem] at hS hT ⊢ aesop theorem exists_compl (x : TSet α) : ∃ y : TSet α, ∀ z : TSet β, z ∈[hβ] y ↔ ¬z ∈[hβ] x := by refine exists_of_symmetric {z | ¬z ∈[hβ] x} hβ ?_ obtain ⟨S, hS⟩ := symmetric x hβ use S intro ρ hρ specialize hS ρ hρ simp [Set.ext_iff, Set.mem_smul_set_iff_inv_smul_mem] at hS ⊢ aesop theorem exists_up (x y : TSet β) : ∃ w : TSet α, ∀ z : TSet β, z ∈[hβ] w ↔ z = x ∨ z = y := by refine exists_of_symmetric {x, y} hβ ?_ obtain ⟨S, hS⟩ := exists_support x obtain ⟨T, hT⟩ := exists_support y use (S + T) ↗ hβ intro ρ hρ rw [Support.smul_scoderiv, Support.scoderiv_inj, ← allPermSderiv_forget'] at hρ specialize hS (ρ ↘ hβ) (smul_eq_of_le Support.le_add_right hρ) specialize hT (ρ ↘ hβ) (smul_eq_of_le Support.le_add_left hρ) simp only [Set.smul_set_def, Set.image, Set.mem_insert_iff, Set.mem_singleton_iff, exists_eq_or_imp, hS, exists_eq_left, hT] ext z rw [Set.mem_insert_iff, Set.mem_singleton_iff, Set.mem_setOf_eq] aesop /-- The unordered pair. -/ def up (x y : TSet β) : TSet α := (exists_up hβ x y).choose @[simp] theorem mem_up_iff (x y z : TSet β) : z ∈[hβ] up hβ x y ↔ z = x ∨ z = y := (exists_up hβ x y).choose_spec z /-- The Kuratowski ordered pair. -/ def op (x y : TSet γ) : TSet α := up hβ (singleton hγ x) (up hγ x y) theorem up_injective {x y z w : TSet β} (h : up hβ x y = up hβ z w) : (x = z ∧ y = w) ∨ (x = w ∧ y = z) := by have h₁ := mem_up_iff hβ x y z have h₂ := mem_up_iff hβ x y w have h₃ := mem_up_iff hβ z w x have h₄ := mem_up_iff hβ z w y rw [h, mem_up_iff] at h₁ h₂ rw [← h, mem_up_iff] at h₃ h₄ aesop @[simp] theorem up_inj (x y z w : TSet β) : up hβ x y = up hβ z w ↔ (x = z ∧ y = w) ∨ (x = w ∧ y = z) := by constructor · exact up_injective hβ · rintro (⟨rfl, rfl⟩ | ⟨rfl, rfl⟩) · rfl · apply tSet_ext' hβ aesop @[simp] theorem up_self {x : TSet β} : up hβ x x = singleton hβ x := by apply tSet_ext' hβ aesop @[simp] theorem up_eq_singleton_iff (x y z : TSet β) : up hβ x y = singleton hβ z ↔ x = z ∧ y = z := by constructor · intro h have h₁ := typedMem_singleton_iff' hβ z x have h₂ := typedMem_singleton_iff' hβ z y rw [← h, mem_up_iff] at h₁ h₂ aesop · rintro ⟨rfl, rfl⟩ rw [up_self] @[simp] theorem singleton_eq_up_iff (x y z : TSet β) : singleton hβ z = up hβ x y ↔ x = z ∧ y = z := by rw [← up_eq_singleton_iff hβ x y z, eq_comm] theorem op_injective {x y z w : TSet γ} (h : op hβ hγ x y = op hβ hγ z w) : x = z ∧ y = w := by rw [op, op] at h simp only [up_inj, singleton_inj, singleton_eq_up_iff, up_eq_singleton_iff] at h obtain (⟨rfl, ⟨h, rfl⟩ | ⟨rfl, rfl⟩⟩ | ⟨⟨rfl, rfl⟩, ⟨h, rfl⟩⟩) := h <;> simp only [and_self] @[simp] theorem op_inj (x y z w : TSet γ) : op hβ hγ x y = op hβ hγ z w ↔ x = z ∧ y = w := by constructor · exact op_injective hβ hγ · rintro ⟨rfl, rfl⟩ rfl @[simp] theorem op_eq_singleton_iff (x y : TSet γ) (z : TSet β) : op hβ hγ x y = singleton hβ z ↔ singleton hγ x = z ∧ singleton hγ y = z := by rw [op, up_eq_singleton_iff, and_congr_right_iff] rintro rfl simp only [up_eq_singleton_iff, true_and, singleton_inj] @[simp] theorem smul_up (x y : TSet β) (ρ : AllPerm α) : ρ • up hβ x y = up hβ (ρ ↘ hβ • x) (ρ ↘ hβ • y) := by apply tSet_ext' hβ aesop @[simp] theorem smul_op (x y : TSet γ) (ρ : AllPerm α) : ρ • op hβ hγ x y = op hβ hγ (ρ ↘ hβ ↘ hγ • x) (ρ ↘ hβ ↘ hγ • y) := by apply tSet_ext' hβ simp only [op, smul_up, smul_singleton, mem_up_iff, implies_true] theorem exists_singletonImage (x : TSet β) : ∃ y : TSet α, ∀ z w, op hγ hδ (singleton hε z) (singleton hε w) ∈[hβ] y ↔ op hδ hε z w ∈[hγ] x := by have := exists_of_symmetric {u | ∃ z w : TSet ε, op hδ hε z w ∈[hγ] x ∧ u = op hγ hδ (singleton hε z) (singleton hε w)} hβ ?_ · obtain ⟨y, hy⟩ := this use y intro z w rw [hy] simp only [Set.mem_setOf_eq, op_inj, singleton_inj, exists_eq_right_right', exists_eq_right'] · obtain ⟨S, hS⟩ := exists_support x use S ↗ hβ intro ρ hρ rw [Support.smul_scoderiv, Support.scoderiv_inj, ← allPermSderiv_forget'] at hρ specialize hS (ρ ↘ hβ) hρ ext z constructor · rintro ⟨_, ⟨z, w, hab, rfl⟩, rfl⟩ refine ⟨ρ ↘ hβ ↘ hγ ↘ hδ ↘ hε • z, ρ ↘ hβ ↘ hγ ↘ hδ ↘ hε • w, ?_, ?_⟩ · rwa [← hS, mem_smul_iff', smul_op, allPerm_inv_sderiv', allPerm_inv_sderiv', allPerm_inv_sderiv', inv_smul_smul, inv_smul_smul] · simp only [smul_op, smul_singleton] · rintro ⟨z, w, hab, rfl⟩ refine ⟨ρ⁻¹ ↘ hβ • op hγ hδ (singleton hε z) (singleton hε w), ?_, ?_⟩ · simp only [allPerm_inv_sderiv', smul_op, smul_singleton, Set.mem_setOf_eq, op_inj, singleton_inj, exists_eq_right_right', exists_eq_right'] rw [smul_eq_iff_eq_inv_smul] at hS rw [hS] simp only [mem_smul_iff', inv_inv, smul_op, smul_inv_smul] exact hab · simp only [allPerm_inv_sderiv', smul_inv_smul] theorem exists_insertion2 (x : TSet γ) : ∃ y : TSet α, ∀ a b c, op hγ hδ (singleton hε (singleton hζ a)) (op hε hζ b c) ∈[hβ] y ↔ op hε hζ a c ∈[hδ] x := by have := exists_of_symmetric {u | ∃ a b c : TSet ζ, op hε hζ a c ∈[hδ] x ∧ u = op hγ hδ (singleton hε (singleton hζ a)) (op hε hζ b c)} hβ ?_ · obtain ⟨y, hy⟩ := this use y intro a b c rw [hy] constructor · rintro ⟨a', b', c', h₁, h₂⟩ simp only [op_inj, singleton_inj] at h₂ obtain ⟨rfl, rfl, rfl⟩ := h₂ exact h₁ · intro h exact ⟨a, b, c, h, rfl⟩ · obtain ⟨S, hS⟩ := exists_support x use S ↗ hγ ↗ hβ intro ρ hρ simp only [Support.smul_scoderiv, Support.scoderiv_inj, ← allPermSderiv_forget'] at hρ specialize hS (ρ ↘ hβ ↘ hγ) hρ ext z constructor · rintro ⟨_, ⟨a, b, c, hx, rfl⟩, rfl⟩ refine ⟨ρ ↘ hβ ↘ hγ ↘ hδ ↘ hε ↘ hζ • a, ρ ↘ hβ ↘ hγ ↘ hδ ↘ hε ↘ hζ • b, ρ ↘ hβ ↘ hγ ↘ hδ ↘ hε ↘ hζ • c, ?_, ?_⟩ · rw [← hS] simp only [mem_smul_iff', allPerm_inv_sderiv', smul_op, inv_smul_smul] exact hx · simp only [smul_op, smul_singleton] · rintro ⟨a, b, c, hx, rfl⟩ rw [Set.mem_smul_set_iff_inv_smul_mem] refine ⟨ρ⁻¹ ↘ hβ ↘ hγ ↘ hδ ↘ hε ↘ hζ • a, ρ⁻¹ ↘ hβ ↘ hγ ↘ hδ ↘ hε ↘ hζ • b, ρ⁻¹ ↘ hβ ↘ hγ ↘ hδ ↘ hε ↘ hζ • c, ?_, ?_⟩ · rw [smul_eq_iff_eq_inv_smul] at hS rw [hS, mem_smul_iff'] simp only [inv_inv, allPerm_inv_sderiv', smul_op, smul_inv_smul] exact hx · simp only [smul_op, allPerm_inv_sderiv', smul_singleton]
theorem exists_insertion3 (x : TSet γ) : ∃ y : TSet α, ∀ a b c, op hγ hδ (singleton hε (singleton hζ a)) (op hε hζ b c) ∈[hβ] y ↔ op hε hζ a b ∈[hδ] x
ConNF.TSet.exists_insertion3
{ "commit": "f804f5c71cfaa98223fc227dd822801e8bf77004", "date": "2024-03-30T00:00:00" }
{ "commit": "f7c233c7f7fd9d8b74595bbfa2bbbd49d538ef59", "date": "2024-12-02T00:00:00" }
ConNF/ConNF/Model/Hailperin.lean
ConNF.Model.Hailperin
ConNF.Model.Hailperin.jsonl
{ "lineInFile": 224, "tokenPositionInFile": 7357, "theoremPositionInFile": 18 }
{ "inFilePremises": true, "numInFilePremises": 3, "repositoryPremises": true, "numRepositoryPremises": 44, "numPremises": 102 }
{ "hasProof": true, "proof": ":= by\n have := exists_of_symmetric {u | ∃ a b c : TSet ζ, op hε hζ a b ∈[hδ] x ∧\n u = op hγ hδ (singleton hε (singleton hζ a)) (op hε hζ b c)} hβ ?_\n · obtain ⟨y, hy⟩ := this\n use y\n intro a b c\n rw [hy]\n constructor\n · rintro ⟨a', b', c', h₁, h₂⟩\n simp only [op_inj, singleton_inj] at h₂\n obtain ⟨rfl, rfl, rfl⟩ := h₂\n exact h₁\n · intro h\n exact ⟨a, b, c, h, rfl⟩\n · obtain ⟨S, hS⟩ := exists_support x\n use S ↗ hγ ↗ hβ\n intro ρ hρ\n simp only [Support.smul_scoderiv, Support.scoderiv_inj, ← allPermSderiv_forget'] at hρ\n specialize hS (ρ ↘ hβ ↘ hγ) hρ\n ext z\n constructor\n · rintro ⟨_, ⟨a, b, c, hx, rfl⟩, rfl⟩\n refine ⟨ρ ↘ hβ ↘ hγ ↘ hδ ↘ hε ↘ hζ • a, ρ ↘ hβ ↘ hγ ↘ hδ ↘ hε ↘ hζ • b,\n ρ ↘ hβ ↘ hγ ↘ hδ ↘ hε ↘ hζ • c, ?_, ?_⟩\n · rw [← hS]\n simp only [mem_smul_iff', allPerm_inv_sderiv', smul_op, inv_smul_smul]\n exact hx\n · simp only [smul_op, smul_singleton]\n · rintro ⟨a, b, c, hx, rfl⟩\n rw [Set.mem_smul_set_iff_inv_smul_mem]\n refine ⟨ρ⁻¹ ↘ hβ ↘ hγ ↘ hδ ↘ hε ↘ hζ • a, ρ⁻¹ ↘ hβ ↘ hγ ↘ hδ ↘ hε ↘ hζ • b,\n ρ⁻¹ ↘ hβ ↘ hγ ↘ hδ ↘ hε ↘ hζ • c, ?_, ?_⟩\n · rw [smul_eq_iff_eq_inv_smul] at hS\n rw [hS, mem_smul_iff']\n simp only [inv_inv, allPerm_inv_sderiv', smul_op, smul_inv_smul]\n exact hx\n · simp only [smul_op, allPerm_inv_sderiv', smul_singleton]", "proofType": "tactic", "proofLengthLines": 36, "proofLengthTokens": 1399 }
import ConNF.Background.ReflTransGen import ConNF.FOA.Inflexible /-! # Strong supports In this file, we define strong supports. ## Main declarations * `ConNF.Support.Strong`: The property that a support is strong. -/ noncomputable section universe u open Cardinal Ordinal open scoped symmDiff namespace ConNF variable [Params.{u}] {β : TypeIndex} structure BaseSupport.Closed (S : BaseSupport) : Prop where interference_subset {N₁ N₂ : NearLitter} : N₁ ∈ Sᴺ → N₂ ∈ Sᴺ → ∀ a ∈ interference N₁ N₂, a ∈ Sᴬ namespace Support variable [Level] [CoherentData] [LeLevel β] structure PreStrong (S : Support β) : Prop where support_le {A : β ↝ ⊥} {N : NearLitter} (h : N ∈ (S ⇘. A)ᴺ) (P : InflexiblePath β) (t : Tangle P.δ) (hA : A = P.A ↘ P.hε ↘.) (ht : Nᴸ = fuzz P.hδε t) : t.support ≤ S ⇘ (P.A ↘ P.hδ) structure Closed (S : Support β) : Prop where closed : ∀ A, (S ⇘. A).Closed structure Strong (S : Support β) extends S.PreStrong, S.Closed : Prop theorem PreStrong.smul {S : Support β} (hS : S.PreStrong) (ρ : AllPerm β) : (ρᵁ • S).PreStrong := by constructor intro A N hN P t hA ht rw [smul_derivBot, BaseSupport.smul_nearLitters, Enumeration.mem_smul] at hN have := hS.support_le hN P (ρ⁻¹ ⇘ P.A ↘ P.hδ • t) hA ?_ · convert smul_le_smul this (ρᵁ ⇘ P.A ↘ P.hδ) using 1 · rw [Tangle.smul_support, smul_smul, allPermSderiv_forget, allPermDeriv_forget, allPermForget_inv, Tree.inv_deriv, Tree.inv_sderiv, mul_inv_cancel, one_smul] · ext B : 1 rw [smul_derivBot, Tree.sderiv_apply, Tree.deriv_apply, Path.deriv_scoderiv] rfl · rw [← smul_fuzz P.hδ P.hε P.hδε, allPermDeriv_forget, allPermForget_inv, BasePerm.smul_nearLitter_litter, ← Tree.inv_apply, hA, ht] rfl theorem Closed.smul {S : Support β} (hS : S.Closed) (ρ : AllPerm β) : (ρᵁ • S).Closed := by constructor intro A constructor intro N₁ N₂ h₁ h₂ simp only [smul_derivBot, BaseSupport.smul_nearLitters, BaseSupport.smul_atoms, Enumeration.mem_smul] at h₁ h₂ ⊢ intro a ha apply (hS.closed A).interference_subset h₁ h₂ rwa [← BasePerm.smul_interference, Set.smul_mem_smul_set_iff] theorem Strong.smul {S : Support β} (hS : S.Strong) (ρ : AllPerm β) : (ρᵁ • S).Strong := ⟨hS.toPreStrong.smul ρ, hS.toClosed.smul ρ⟩ theorem PreStrong.add {S T : Support β} (hS : S.PreStrong) (hT : T.PreStrong) : (S + T).PreStrong := by constructor intro A N hN P t hA ht simp only [add_derivBot, BaseSupport.add_nearLitters, Enumeration.mem_add_iff] at hN obtain hN | hN := hN · intro B simp only [deriv_derivBot, add_derivBot] exact (hS.support_le hN P t hA ht B).trans (BaseSupport.le_add_right) · intro B simp only [deriv_derivBot, add_derivBot] exact (hT.support_le hN P t hA ht B).trans (BaseSupport.le_add_left) omit [Level] [CoherentData] [LeLevel β] in
theorem Closed.scoderiv {γ : TypeIndex} {S : Support γ} (hS : S.Closed) (hγ : γ < β) : (S ↗ hγ).Closed
ConNF.Support.Closed.scoderiv
{ "commit": "8896e416a16c39e1fe487b5fc7c78bc20c4e182b", "date": "2024-12-03T00:00:00" }
{ "commit": "6709914ae7f5cd3e2bb24b413e09aa844554d234", "date": "2024-11-30T00:00:00" }
ConNF/ConNF/Strong/Strong.lean
ConNF.Strong.Strong
ConNF.Strong.Strong.jsonl
{ "lineInFile": 87, "tokenPositionInFile": 2843, "theoremPositionInFile": 4 }
{ "inFilePremises": true, "numInFilePremises": 5, "repositoryPremises": true, "numRepositoryPremises": 35, "numPremises": 75 }
{ "hasProof": true, "proof": ":= by\n constructor\n intro A\n constructor\n intro N₁ N₂ hN₁ hN₂ a ha\n obtain ⟨i, ⟨B, N₁⟩, hi, hi'⟩ := hN₁\n cases hi'\n obtain ⟨j, ⟨C, N₂⟩, hj, hj'⟩ := hN₂\n simp only [Prod.mk.injEq, Path.deriv_right_inj] at hj'\n cases hj'.1\n cases hj'.2\n simp only\n obtain ⟨k, hk⟩ := (hS.closed B).interference_subset ⟨i, hi⟩ ⟨j, hj⟩ a ha\n exact ⟨k, ⟨B, a⟩, hk, rfl⟩", "proofType": "tactic", "proofLengthLines": 13, "proofLengthTokens": 359 }
import ConNF.Model.Result /-! # New file In this file... ## Main declarations * `ConNF.foo`: Something new. -/ noncomputable section universe u open Cardinal Ordinal ConNF.TSet namespace ConNF variable [Params.{u}] {α β γ δ ε ζ : Λ} (hβ : (β : TypeIndex) < α) (hγ : (γ : TypeIndex) < β) (hδ : (δ : TypeIndex) < γ) (hε : (ε : TypeIndex) < δ) (hζ : (ζ : TypeIndex) < ε) def union (x y : TSet α) : TSet α := (xᶜ' ⊓' yᶜ')ᶜ' notation:68 x:68 " ⊔[" h "] " y:68 => _root_.ConNF.union h x y notation:68 x:68 " ⊔' " y:68 => x ⊔[by assumption] y @[simp] theorem mem_union_iff (x y : TSet α) : ∀ z : TSet β, z ∈' x ⊔' y ↔ z ∈' x ∨ z ∈' y := by rw [union] intro z rw [mem_compl_iff, mem_inter_iff, mem_compl_iff, mem_compl_iff, or_iff_not_and_not] def higherIndex (α : Λ) : Λ := (exists_gt α).choose theorem lt_higherIndex {α : Λ} : (α : TypeIndex) < higherIndex α := WithBot.coe_lt_coe.mpr (exists_gt α).choose_spec theorem tSet_nonempty (h : ∃ β : Λ, (β : TypeIndex) < α) : Nonempty (TSet α) := by obtain ⟨α', hα⟩ := h constructor apply typeLower lt_higherIndex lt_higherIndex lt_higherIndex hα apply cardinalOne lt_higherIndex lt_higherIndex def empty : TSet α := (tSet_nonempty ⟨β, hβ⟩).some ⊓' (tSet_nonempty ⟨β, hβ⟩).someᶜ' @[simp] theorem mem_empty_iff : ∀ x : TSet β, ¬x ∈' empty hβ := by intro x rw [empty, mem_inter_iff, mem_compl_iff] exact and_not_self def univ : TSet α := (empty hβ)ᶜ' @[simp] theorem mem_univ_iff : ∀ x : TSet β, x ∈' univ hβ := by intro x simp only [univ, mem_compl_iff, mem_empty_iff, not_false_eq_true] /-- The set of all ordered pairs. -/ def orderedPairs : TSet α := vCross hβ hγ hδ (univ hδ) @[simp] theorem mem_orderedPairs_iff (x : TSet β) : x ∈' orderedPairs hβ hγ hδ ↔ ∃ a b, x = ⟨a, b⟩' := by simp only [orderedPairs, vCross_spec, mem_univ_iff, and_true] def converse (x : TSet α) : TSet α := converse' hβ hγ hδ x ⊓' orderedPairs hβ hγ hδ @[simp] theorem op_mem_converse_iff (x : TSet α) : ∀ a b, ⟨a, b⟩' ∈' converse hβ hγ hδ x ↔ ⟨b, a⟩' ∈' x := by intro a b simp only [converse, mem_inter_iff, converse'_spec, mem_orderedPairs_iff, op_inj, exists_and_left, exists_eq', and_true] def cross (x y : TSet γ) : TSet α := converse hβ hγ hδ (vCross hβ hγ hδ x) ⊓' vCross hβ hγ hδ y @[simp] theorem mem_cross_iff (x y : TSet γ) : ∀ a, a ∈' cross hβ hγ hδ x y ↔ ∃ b c, a = ⟨b, c⟩' ∧ b ∈' x ∧ c ∈' y := by intro a rw [cross, mem_inter_iff, vCross_spec] constructor · rintro ⟨h₁, b, c, rfl, h₂⟩ simp only [op_mem_converse_iff, vCross_spec, op_inj] at h₁ obtain ⟨b', c', ⟨rfl, rfl⟩, h₁⟩ := h₁ exact ⟨b, c, rfl, h₁, h₂⟩ · rintro ⟨b, c, rfl, h₁, h₂⟩ simp only [op_mem_converse_iff, vCross_spec, op_inj] exact ⟨⟨c, b, ⟨rfl, rfl⟩, h₁⟩, ⟨b, c, ⟨rfl, rfl⟩, h₂⟩⟩ def singletonImage (x : TSet β) : TSet α := singletonImage' hβ hγ hδ hε x ⊓' (cross hβ hγ hδ (cardinalOne hδ hε) (cardinalOne hδ hε)) @[simp] theorem singletonImage_spec (x : TSet β) : ∀ z w, ⟨ {z}', {w}' ⟩' ∈' singletonImage hβ hγ hδ hε x ↔ ⟨z, w⟩' ∈' x := by intro z w rw [singletonImage, mem_inter_iff, singletonImage'_spec, and_iff_left_iff_imp] intro hzw rw [mem_cross_iff] refine ⟨{z}', {w}', rfl, ?_⟩ simp only [mem_cardinalOne_iff, singleton_inj, exists_eq', and_self] theorem exists_of_mem_singletonImage {x : TSet β} {z w : TSet δ} (h : ⟨z, w⟩' ∈' singletonImage hβ hγ hδ hε x) : ∃ a b, z = {a}' ∧ w = {b}' := by simp only [singletonImage, mem_inter_iff, mem_cross_iff, op_inj, mem_cardinalOne_iff] at h obtain ⟨-, _, _, ⟨rfl, rfl⟩, ⟨a, rfl⟩, ⟨b, rfl⟩⟩ := h exact ⟨a, b, rfl, rfl⟩ /-- Turn a model element encoding a relation into an actual relation. -/ def ExternalRel (r : TSet α) : Rel (TSet δ) (TSet δ) := λ x y ↦ ⟨x, y⟩' ∈' r @[simp] theorem externalRel_converse (r : TSet α) : ExternalRel hβ hγ hδ (converse hβ hγ hδ r) = (ExternalRel hβ hγ hδ r).inv := by ext simp only [ExternalRel, op_mem_converse_iff, Rel.inv_apply] /-- The codomain of a relation. -/ def codom (r : TSet α) : TSet γ := (typeLower lt_higherIndex hβ hγ hδ (singletonImage lt_higherIndex hβ hγ hδ r)ᶜ[lt_higherIndex])ᶜ' @[simp] theorem mem_codom_iff (r : TSet α) (x : TSet δ) : x ∈' codom hβ hγ hδ r ↔ x ∈ (ExternalRel hβ hγ hδ r).codom := by simp only [codom, mem_compl_iff, mem_typeLower_iff, not_forall, not_not] constructor · rintro ⟨y, hy⟩ obtain ⟨a, b, rfl, hb⟩ := exists_of_mem_singletonImage lt_higherIndex hβ hγ hδ hy rw [singleton_inj] at hb subst hb rw [singletonImage_spec] at hy exact ⟨a, hy⟩ · rintro ⟨a, ha⟩ use {a}' rw [singletonImage_spec] exact ha /-- The domain of a relation. -/ def dom (r : TSet α) : TSet γ := codom hβ hγ hδ (converse hβ hγ hδ r) @[simp] theorem mem_dom_iff (r : TSet α) (x : TSet δ) : x ∈' dom hβ hγ hδ r ↔ x ∈ (ExternalRel hβ hγ hδ r).dom := by rw [dom, mem_codom_iff, externalRel_converse, Rel.inv_codom] /-- The field of a relation. -/ def field (r : TSet α) : TSet γ := dom hβ hγ hδ r ⊔' codom hβ hγ hδ r @[simp] theorem mem_field_iff (r : TSet α) (x : TSet δ) : x ∈' field hβ hγ hδ r ↔ x ∈ (ExternalRel hβ hγ hδ r).field := by rw [field, mem_union_iff, mem_dom_iff, mem_codom_iff, Rel.field, Set.mem_union] def subset : TSet α := subset' hβ hγ hδ hε ⊓' orderedPairs hβ hγ hδ @[simp] theorem subset_spec : ∀ a b, ⟨a, b⟩' ∈' subset hβ hγ hδ hε ↔ a ⊆[TSet ε] b := by intro a b simp only [subset, mem_inter_iff, subset'_spec, mem_orderedPairs_iff, op_inj, exists_and_left, exists_eq', and_true] def membership : TSet α := subset hβ hγ hδ hε ⊓' cross hβ hγ hδ (cardinalOne hδ hε) (univ hδ) @[simp] theorem membership_spec : ∀ a b, ⟨{a}', b⟩' ∈' membership hβ hγ hδ hε ↔ a ∈' b := by intro a b rw [membership, mem_inter_iff, subset_spec] simp only [mem_cross_iff, op_inj, mem_cardinalOne_iff, mem_univ_iff, and_true, exists_and_right, exists_and_left, exists_eq', exists_eq_left', singleton_inj] constructor · intro h exact h a ((typedMem_singleton_iff' hε a a).mpr rfl) · intro h c hc simp only [typedMem_singleton_iff'] at hc cases hc exact h def powerset (x : TSet β) : TSet α := dom lt_higherIndex lt_higherIndex hβ (subset lt_higherIndex lt_higherIndex hβ hγ ⊓[lt_higherIndex] vCross lt_higherIndex lt_higherIndex hβ {x}') @[simp] theorem mem_powerset_iff (x y : TSet β) : x ∈' powerset hβ hγ y ↔ x ⊆[TSet γ] y := by rw [powerset, mem_dom_iff] constructor · rintro ⟨z, h⟩ simp only [ExternalRel, mem_inter_iff, subset_spec, vCross_spec, op_inj, typedMem_singleton_iff', exists_eq_right, exists_and_right, exists_eq', true_and] at h cases h.2 exact h.1 · intro h refine ⟨y, ?_⟩ simp only [ExternalRel, mem_inter_iff, subset_spec, h, vCross_spec, op_inj, typedMem_singleton_iff', exists_eq_right, and_true, exists_eq', and_self] /-- The set `ι²''x = {{{a}} | a ∈ x}`. -/ def doubleSingleton (x : TSet γ) : TSet α := cross hβ hγ hδ x x ⊓' cardinalOne hβ hγ @[simp] theorem mem_doubleSingleton_iff (x : TSet γ) : ∀ y : TSet β, y ∈' doubleSingleton hβ hγ hδ x ↔ ∃ z : TSet δ, z ∈' x ∧ y = { {z}' }' := by intro y rw [doubleSingleton, mem_inter_iff, mem_cross_iff, mem_cardinalOne_iff] constructor · rintro ⟨⟨b, c, h₁, h₂, h₃⟩, ⟨a, rfl⟩⟩ obtain ⟨hbc, rfl⟩ := (op_eq_singleton_iff _ _ _ _ _).mp h₁.symm exact ⟨c, h₃, rfl⟩ · rintro ⟨z, h, rfl⟩ constructor · refine ⟨z, z, ?_⟩ rw [eq_comm, op_eq_singleton_iff] tauto · exact ⟨_, rfl⟩ /-- The union of a set of *singletons*: `ι⁻¹''x = {a | {a} ∈ x}`. -/ def singletonUnion (x : TSet α) : TSet β := typeLower lt_higherIndex lt_higherIndex hβ hγ (vCross lt_higherIndex lt_higherIndex hβ x) @[simp] theorem mem_singletonUnion_iff (x : TSet α) : ∀ y : TSet γ, y ∈' singletonUnion hβ hγ x ↔ {y}' ∈' x := by intro y simp only [singletonUnion, mem_typeLower_iff, vCross_spec, op_inj] constructor · intro h obtain ⟨a, b, ⟨rfl, rfl⟩, hy⟩ := h {y}' exact hy · intro h b exact ⟨b, _, ⟨rfl, rfl⟩, h⟩ /-- The union of a set of sets. ``` singletonUnion dom {⟨{a}, b⟩ | a ∈ b} ∩ (1 × x) = singletonUnion dom {⟨{a}, b⟩ | a ∈ b ∧ b ∈ x} = singletonUnion {{a} | a ∈ b ∧ b ∈ x} = {a | a ∈ b ∧ b ∈ x} = ⋃ x ``` -/ def sUnion (x : TSet α) : TSet β := singletonUnion hβ hγ (dom lt_higherIndex lt_higherIndex hβ (membership lt_higherIndex lt_higherIndex hβ hγ ⊓[lt_higherIndex] cross lt_higherIndex lt_higherIndex hβ (cardinalOne hβ hγ) x))
@[simp] theorem mem_sUnion_iff (x : TSet α) : ∀ y : TSet γ, y ∈' sUnion hβ hγ x ↔ ∃ t : TSet β, t ∈' x ∧ y ∈' t
ConNF.mem_sUnion_iff
{ "commit": "66f4e3291020d4198ca6ede816acae5cee584a07", "date": "2025-01-06T00:00:00" }
{ "commit": "d9f28df240ac4df047c3af0d236aed2e437e571f", "date": "2025-01-07T00:00:00" }
ConNF/ConNF/External/Basic.lean
ConNF.External.Basic
ConNF.External.Basic.jsonl
{ "lineInFile": 276, "tokenPositionInFile": 8540, "theoremPositionInFile": 39 }
{ "inFilePremises": true, "numInFilePremises": 12, "repositoryPremises": true, "numRepositoryPremises": 29, "numPremises": 69 }
{ "hasProof": true, "proof": ":= by\n intro y\n simp only [sUnion, mem_singletonUnion_iff, mem_dom_iff, Rel.dom, ExternalRel, mem_inter_iff,\n mem_cross_iff, op_inj, mem_cardinalOne_iff, Set.mem_setOf_eq, membership_spec]\n constructor\n · rintro ⟨z, h₁, a, b, ⟨rfl, rfl⟩, ⟨c, h₂⟩, h₃⟩\n rw [singleton_inj] at h₂\n cases h₂\n exact ⟨z, h₃, h₁⟩\n · rintro ⟨z, h₂, h₃⟩\n exact ⟨z, h₃, _, _, ⟨rfl, rfl⟩, ⟨y, rfl⟩, h₂⟩", "proofType": "tactic", "proofLengthLines": 10, "proofLengthTokens": 394 }
import ConNF.ModelData.PathEnumeration /-! # Supports In this file, we define the notion of a support. ## Main declarations * `ConNF.BaseSupport`: The type of supports of atoms. * `ConNF.Support`: The type of supports of objects of arbitrary type indices. -/ universe u open Cardinal namespace ConNF variable [Params.{u}] /-! ## Base supports -/ structure BaseSupport where atoms : Enumeration Atom nearLitters : Enumeration NearLitter namespace BaseSupport instance : SuperA BaseSupport (Enumeration Atom) where superA := atoms instance : SuperN BaseSupport (Enumeration NearLitter) where superN := nearLitters @[simp] theorem mk_atoms {a : Enumeration Atom} {N : Enumeration NearLitter} : (BaseSupport.mk a N)ᴬ = a := rfl @[simp] theorem mk_nearLitters {a : Enumeration Atom} {N : Enumeration NearLitter} : (BaseSupport.mk a N)ᴺ = N := rfl theorem atoms_congr {S T : BaseSupport} (h : S = T) : Sᴬ = Tᴬ := h ▸ rfl theorem nearLitters_congr {S T : BaseSupport} (h : S = T) : Sᴺ = Tᴺ := h ▸ rfl @[ext] theorem ext {S T : BaseSupport} (h₁ : Sᴬ = Tᴬ) (h₂ : Sᴺ = Tᴺ) : S = T := by obtain ⟨SA, SN⟩ := S obtain ⟨TA, TN⟩ := T cases h₁ cases h₂ rfl instance : SMul BasePerm BaseSupport where smul π S := ⟨π • Sᴬ, π • Sᴺ⟩ @[simp] theorem smul_atoms (π : BasePerm) (S : BaseSupport) : (π • S)ᴬ = π • Sᴬ := rfl @[simp] theorem smul_nearLitters (π : BasePerm) (S : BaseSupport) : (π • S)ᴺ = π • Sᴺ := rfl @[simp] theorem smul_atoms_eq_of_smul_eq {π : BasePerm} {S : BaseSupport} (h : π • S = S) : π • Sᴬ = Sᴬ := by rw [← smul_atoms, h] @[simp] theorem smul_nearLitters_eq_of_smul_eq {π : BasePerm} {S : BaseSupport} (h : π • S = S) : π • Sᴺ = Sᴺ := by rw [← smul_nearLitters, h] instance : MulAction BasePerm BaseSupport where one_smul S := by apply ext · rw [smul_atoms, one_smul] · rw [smul_nearLitters, one_smul] mul_smul π₁ π₂ S := by apply ext · rw [smul_atoms, smul_atoms, smul_atoms, mul_smul] · rw [smul_nearLitters, smul_nearLitters, smul_nearLitters, mul_smul] theorem smul_eq_smul_iff (π₁ π₂ : BasePerm) (S : BaseSupport) : π₁ • S = π₂ • S ↔ (∀ a ∈ Sᴬ, π₁ • a = π₂ • a) ∧ (∀ N ∈ Sᴺ, π₁ • N = π₂ • N) := by constructor · intro h constructor · rintro a ⟨i, ha⟩ have := congr_arg (·ᴬ.rel i (π₁ • a)) h simp only [smul_atoms, Enumeration.smul_rel, inv_smul_smul, eq_iff_iff] at this have := Sᴬ.rel_coinjective.coinjective ha (this.mp ha) rw [eq_inv_smul_iff] at this rw [this] · rintro N ⟨i, hN⟩ have := congr_arg (·ᴺ.rel i (π₁ • N)) h simp only [smul_nearLitters, Enumeration.smul_rel, inv_smul_smul, eq_iff_iff] at this have := Sᴺ.rel_coinjective.coinjective hN (this.mp hN) rw [eq_inv_smul_iff] at this rw [this] · intro h ext : 2 · rfl · ext i a : 3 rw [smul_atoms, smul_atoms, Enumeration.smul_rel, Enumeration.smul_rel] constructor · intro ha have := h.1 _ ⟨i, ha⟩ rw [smul_inv_smul, ← inv_smul_eq_iff] at this rwa [this] · intro ha have := h.1 _ ⟨i, ha⟩ rw [smul_inv_smul, smul_eq_iff_eq_inv_smul] at this rwa [← this] · rfl · ext i a : 3 rw [smul_nearLitters, smul_nearLitters, Enumeration.smul_rel, Enumeration.smul_rel] constructor · intro hN have := h.2 _ ⟨i, hN⟩ rw [smul_inv_smul, ← inv_smul_eq_iff] at this rwa [this] · intro hN have := h.2 _ ⟨i, hN⟩ rw [smul_inv_smul, smul_eq_iff_eq_inv_smul] at this rwa [← this] theorem smul_eq_iff (π : BasePerm) (S : BaseSupport) : π • S = S ↔ (∀ a ∈ Sᴬ, π • a = a) ∧ (∀ N ∈ Sᴺ, π • N = N) := by have := smul_eq_smul_iff π 1 S simp only [one_smul] at this exact this noncomputable instance : Add BaseSupport where add S T := ⟨Sᴬ + Tᴬ, Sᴺ + Tᴺ⟩ @[simp] theorem add_atoms (S T : BaseSupport) : (S + T)ᴬ = Sᴬ + Tᴬ := rfl @[simp] theorem add_nearLitters (S T : BaseSupport) : (S + T)ᴺ = Sᴺ + Tᴺ := rfl end BaseSupport def baseSupportEquiv : BaseSupport ≃ Enumeration Atom × Enumeration NearLitter where toFun S := (Sᴬ, Sᴺ) invFun S := ⟨S.1, S.2⟩ left_inv _ := rfl right_inv _ := rfl theorem card_baseSupport : #BaseSupport = #μ := by rw [Cardinal.eq.mpr ⟨baseSupportEquiv⟩, mk_prod, lift_id, lift_id, card_enumeration_eq card_atom, card_enumeration_eq card_nearLitter, mul_eq_self aleph0_lt_μ.le] /-! ## Structural supports -/ structure Support (α : TypeIndex) where atoms : Enumeration (α ↝ ⊥ × Atom) nearLitters : Enumeration (α ↝ ⊥ × NearLitter) namespace Support variable {α β : TypeIndex} instance : SuperA (Support α) (Enumeration (α ↝ ⊥ × Atom)) where superA := atoms instance : SuperN (Support α) (Enumeration (α ↝ ⊥ × NearLitter)) where superN := nearLitters @[simp] theorem mk_atoms (E : Enumeration (α ↝ ⊥ × Atom)) (F : Enumeration (α ↝ ⊥ × NearLitter)) : (⟨E, F⟩ : Support α)ᴬ = E := rfl @[simp] theorem mk_nearLitters (E : Enumeration (α ↝ ⊥ × Atom)) (F : Enumeration (α ↝ ⊥ × NearLitter)) : (⟨E, F⟩ : Support α)ᴺ = F := rfl instance : Derivative (Support α) (Support β) α β where deriv S A := ⟨Sᴬ ⇘ A, Sᴺ ⇘ A⟩ instance : Coderivative (Support β) (Support α) α β where coderiv S A := ⟨Sᴬ ⇗ A, Sᴺ ⇗ A⟩ instance : BotDerivative (Support α) BaseSupport α where botDeriv S A := ⟨Sᴬ ⇘. A, Sᴺ ⇘. A⟩ botSderiv S := ⟨Sᴬ ↘., Sᴺ ↘.⟩ botDeriv_single S h := by dsimp only; rw [botDeriv_single, botDeriv_single] @[simp] theorem deriv_atoms {α β : TypeIndex} (S : Support α) (A : α ↝ β) : Sᴬ ⇘ A = (S ⇘ A)ᴬ := rfl @[simp] theorem deriv_nearLitters {α β : TypeIndex} (S : Support α) (A : α ↝ β) : Sᴺ ⇘ A = (S ⇘ A)ᴺ := rfl @[simp] theorem sderiv_atoms {α β : TypeIndex} (S : Support α) (h : β < α) : Sᴬ ↘ h = (S ↘ h)ᴬ := rfl @[simp] theorem sderiv_nearLitters {α β : TypeIndex} (S : Support α) (h : β < α) : Sᴺ ↘ h = (S ↘ h)ᴺ := rfl @[simp] theorem coderiv_atoms {α β : TypeIndex} (S : Support β) (A : α ↝ β) : Sᴬ ⇗ A = (S ⇗ A)ᴬ := rfl @[simp] theorem coderiv_nearLitters {α β : TypeIndex} (S : Support β) (A : α ↝ β) : Sᴺ ⇗ A = (S ⇗ A)ᴺ := rfl @[simp] theorem scoderiv_atoms {α β : TypeIndex} (S : Support β) (h : β < α) : Sᴬ ↗ h = (S ↗ h)ᴬ := rfl @[simp] theorem scoderiv_nearLitters {α β : TypeIndex} (S : Support β) (h : β < α) : Sᴺ ↗ h = (S ↗ h)ᴺ := rfl @[simp] theorem derivBot_atoms {α : TypeIndex} (S : Support α) (A : α ↝ ⊥) : Sᴬ ⇘. A = (S ⇘. A)ᴬ := rfl @[simp] theorem derivBot_nearLitters {α : TypeIndex} (S : Support α) (A : α ↝ ⊥) : Sᴺ ⇘. A = (S ⇘. A)ᴺ := rfl theorem ext' {S T : Support α} (h₁ : Sᴬ = Tᴬ) (h₂ : Sᴺ = Tᴺ) : S = T := by obtain ⟨SA, SN⟩ := S obtain ⟨TA, TN⟩ := T cases h₁ cases h₂ rfl @[ext] theorem ext {S T : Support α} (h : ∀ A, S ⇘. A = T ⇘. A) : S = T := by obtain ⟨SA, SN⟩ := S obtain ⟨TA, TN⟩ := T rw [mk.injEq] constructor · apply Enumeration.ext_path intro A exact BaseSupport.atoms_congr (h A) · apply Enumeration.ext_path intro A exact BaseSupport.nearLitters_congr (h A) @[simp] theorem deriv_derivBot {α : TypeIndex} (S : Support α) (A : α ↝ β) (B : β ↝ ⊥) : S ⇘ A ⇘. B = S ⇘. (A ⇘ B) := rfl @[simp] theorem coderiv_deriv_eq {α β : TypeIndex} (S : Support β) (A : α ↝ β) : S ⇗ A ⇘ A = S := ext' (Sᴬ.coderiv_deriv_eq A) (Sᴺ.coderiv_deriv_eq A) theorem eq_of_atom_mem_scoderiv_botDeriv {α β : TypeIndex} {S : Support β} {A : α ↝ ⊥} {h : β < α} {a : Atom} (ha : a ∈ (S ↗ h ⇘. A)ᴬ) : ∃ B : β ↝ ⊥, A = B ↗ h := Enumeration.eq_of_mem_scoderiv_botDeriv ha theorem eq_of_nearLitter_mem_scoderiv_botDeriv {α β : TypeIndex} {S : Support β} {A : α ↝ ⊥} {h : β < α} {N : NearLitter} (hN : N ∈ (S ↗ h ⇘. A)ᴺ) : ∃ B : β ↝ ⊥, A = B ↗ h := Enumeration.eq_of_mem_scoderiv_botDeriv hN @[simp] theorem scoderiv_botDeriv_eq {α β : TypeIndex} (S : Support β) (A : β ↝ ⊥) (h : β < α) : S ↗ h ⇘. (A ↗ h) = S ⇘. A := BaseSupport.ext (Enumeration.scoderiv_botDeriv_eq _ _ _) (Enumeration.scoderiv_botDeriv_eq _ _ _) @[simp] theorem scoderiv_deriv_eq {α β γ : TypeIndex} (S : Support β) (A : β ↝ γ) (h : β < α) : S ↗ h ⇘ (A ↗ h) = S ⇘ A := by apply ext intro B simp only [deriv_derivBot, ← scoderiv_botDeriv_eq S (A ⇘ B) h, Path.coderiv_deriv'] @[simp] theorem coderiv_inj {α β : TypeIndex} (S T : Support β) (A : α ↝ β) : S ⇗ A = T ⇗ A ↔ S = T := by constructor swap · rintro rfl rfl intro h ext B : 1 have : S ⇗ A ⇘ A ⇘. B = T ⇗ A ⇘ A ⇘. B := by rw [h] rwa [coderiv_deriv_eq, coderiv_deriv_eq] at this @[simp] theorem scoderiv_inj {α β : TypeIndex} (S T : Support β) (h : β < α) : S ↗ h = T ↗ h ↔ S = T := coderiv_inj S T (.single h) instance {α : TypeIndex} : SMul (StrPerm α) (Support α) where smul π S := ⟨π • Sᴬ, π • Sᴺ⟩ @[simp] theorem smul_atoms {α : TypeIndex} (π : StrPerm α) (S : Support α) : (π • S)ᴬ = π • Sᴬ := rfl @[simp] theorem smul_nearLitters {α : TypeIndex} (π : StrPerm α) (S : Support α) : (π • S)ᴺ = π • Sᴺ := rfl theorem smul_atoms_eq_of_smul_eq {α : TypeIndex} {π : StrPerm α} {S : Support α} (h : π • S = S) : π • Sᴬ = Sᴬ := by rw [← smul_atoms, h] theorem smul_nearLitters_eq_of_smul_eq {α : TypeIndex} {π : StrPerm α} {S : Support α} (h : π • S = S) : π • Sᴺ = Sᴺ := by rw [← smul_nearLitters, h] instance {α : TypeIndex} : MulAction (StrPerm α) (Support α) where one_smul S := by apply ext' · rw [smul_atoms, one_smul] · rw [smul_nearLitters, one_smul] mul_smul π₁ π₂ S := by apply ext' · rw [smul_atoms, smul_atoms, smul_atoms, mul_smul] · rw [smul_nearLitters, smul_nearLitters, smul_nearLitters, mul_smul] @[simp] theorem smul_derivBot {α : TypeIndex} (π : StrPerm α) (S : Support α) (A : α ↝ ⊥) : (π • S) ⇘. A = π A • (S ⇘. A) := rfl theorem smul_coderiv {α : TypeIndex} (π : StrPerm α) (S : Support β) (A : α ↝ β) : π • S ⇗ A = (π ⇘ A • S) ⇗ A := by ext B i x · rfl · constructor · rintro ⟨⟨C, x⟩, hS, hx⟩ simp only [Prod.mk.injEq] at hx obtain ⟨rfl, rfl⟩ := hx exact ⟨⟨C, x⟩, hS, rfl⟩ · rintro ⟨⟨C, x⟩, hS, hx⟩ simp only [Prod.mk.injEq] at hx obtain ⟨rfl, rfl⟩ := hx exact ⟨⟨C, _⟩, hS, rfl⟩ · rfl · constructor · rintro ⟨⟨C, x⟩, hS, hx⟩ simp only [Prod.mk.injEq] at hx obtain ⟨rfl, rfl⟩ := hx exact ⟨⟨C, x⟩, hS, rfl⟩ · rintro ⟨⟨C, a⟩, hS, hx⟩ simp only [Prod.mk.injEq] at hx obtain ⟨rfl, rfl⟩ := hx exact ⟨⟨C, _⟩, hS, rfl⟩ theorem smul_scoderiv {α : TypeIndex} (π : StrPerm α) (S : Support β) (h : β < α) : π • S ↗ h = (π ↘ h • S) ↗ h := smul_coderiv π S (Path.single h) theorem smul_eq_smul_iff (π₁ π₂ : StrPerm β) (S : Support β) : π₁ • S = π₂ • S ↔ ∀ A, (∀ a ∈ (S ⇘. A)ᴬ, π₁ A • a = π₂ A • a) ∧ (∀ N ∈ (S ⇘. A)ᴺ, π₁ A • N = π₂ A • N) := by constructor · intro h A have := congr_arg (· ⇘. A) h simp only [smul_derivBot, BaseSupport.smul_eq_smul_iff] at this exact this · intro h apply ext intro A simp only [smul_derivBot, BaseSupport.smul_eq_smul_iff] exact h A theorem smul_eq_iff (π : StrPerm β) (S : Support β) : π • S = S ↔ ∀ A, (∀ a ∈ (S ⇘. A)ᴬ, π A • a = a) ∧ (∀ N ∈ (S ⇘. A)ᴺ, π A • N = N) := by have := smul_eq_smul_iff π 1 S simp only [one_smul, Tree.one_apply] at this exact this noncomputable instance : Add (Support α) where add S T := ⟨Sᴬ + Tᴬ, Sᴺ + Tᴺ⟩ @[simp] theorem add_derivBot (S T : Support α) (A : α ↝ ⊥) : (S + T) ⇘. A = (S ⇘. A) + (T ⇘. A) := rfl theorem smul_add (S T : Support α) (π : StrPerm α) : π • (S + T) = π • S + π • T := rfl theorem add_inj_of_bound_eq_bound {S T U V : Support α} (ha : Sᴬ.bound = Tᴬ.bound) (hN : Sᴺ.bound = Tᴺ.bound) (h' : S + U = T + V) : S = T ∧ U = V := by have ha' := Enumeration.add_inj_of_bound_eq_bound ha (congr_arg (·ᴬ) h') have hN' := Enumeration.add_inj_of_bound_eq_bound hN (congr_arg (·ᴺ) h') constructor · exact Support.ext' ha'.1 hN'.1 · exact Support.ext' ha'.2 hN'.2 end Support def supportEquiv {α : TypeIndex} : Support α ≃ Enumeration (α ↝ ⊥ × Atom) × Enumeration (α ↝ ⊥ × NearLitter) where toFun S := (Sᴬ, Sᴺ) invFun S := ⟨S.1, S.2⟩ left_inv _ := rfl right_inv _ := rfl theorem card_support {α : TypeIndex} : #(Support α) = #μ := by rw [Cardinal.eq.mpr ⟨supportEquiv⟩, mk_prod, lift_id, lift_id, card_enumeration_eq, card_enumeration_eq, mul_eq_self aleph0_lt_μ.le] · rw [mk_prod, lift_id, lift_id, card_nearLitter, mul_eq_right aleph0_lt_μ.le (card_path_lt' α ⊥).le (card_path_ne_zero α)] · rw [mk_prod, lift_id, lift_id, card_atom, mul_eq_right aleph0_lt_μ.le (card_path_lt' α ⊥).le (card_path_ne_zero α)] /-! ## Orders on supports -/ -- TODO: Is this order used? instance : LE BaseSupport where le S T := (∀ a ∈ Sᴬ, a ∈ Tᴬ) ∧ (∀ N ∈ Sᴺ, N ∈ Tᴺ) instance : Preorder BaseSupport where le_refl S := ⟨λ _ ↦ id, λ _ ↦ id⟩ le_trans S T U h₁ h₂ := ⟨λ a h ↦ h₂.1 _ (h₁.1 a h), λ N h ↦ h₂.2 _ (h₁.2 N h)⟩ theorem BaseSupport.smul_le_smul {S T : BaseSupport} (h : S ≤ T) (π : BasePerm) : π • S ≤ π • T := by constructor · intro a exact h.1 (π⁻¹ • a) · intro N exact h.2 (π⁻¹ • N) theorem BaseSupport.le_add_right {S T : BaseSupport} : S ≤ S + T := by constructor · intro a ha simp only [Support.add_derivBot, BaseSupport.add_atoms, Enumeration.mem_add_iff] exact Or.inl ha · intro N hN simp only [Support.add_derivBot, BaseSupport.add_nearLitters, Enumeration.mem_add_iff] exact Or.inl hN theorem BaseSupport.le_add_left {S T : BaseSupport} : S ≤ T + S := by constructor · intro a ha simp only [add_atoms, Enumeration.mem_add_iff] exact Or.inr ha · intro N hN simp only [add_nearLitters, Enumeration.mem_add_iff] exact Or.inr hN def BaseSupport.Subsupport (S T : BaseSupport) : Prop := Sᴬ.rel ≤ Tᴬ.rel ∧ Sᴺ.rel ≤ Tᴺ.rel theorem BaseSupport.Subsupport.le {S T : BaseSupport} (h : S.Subsupport T) : S ≤ T := by constructor · rintro a ⟨i, hi⟩ exact ⟨i, h.1 i a hi⟩ · rintro N ⟨i, hi⟩ exact ⟨i, h.2 i N hi⟩ theorem BaseSupport.Subsupport.trans {S T U : BaseSupport} (h₁ : S.Subsupport T) (h₂ : T.Subsupport U) : S.Subsupport U := ⟨h₁.1.trans h₂.1, h₁.2.trans h₂.2⟩ theorem BaseSupport.smul_subsupport_smul {S T : BaseSupport} (h : S.Subsupport T) (π : BasePerm) : (π • S).Subsupport (π • T) := by constructor · intro i a ha exact h.1 i _ ha · intro i N hN exact h.2 i _ hN instance {α : TypeIndex} : LE (Support α) where le S T := ∀ A, S ⇘. A ≤ T ⇘. A instance {α : TypeIndex} : Preorder (Support α) where le_refl S := λ A ↦ le_rfl le_trans S T U h₁ h₂ := λ A ↦ (h₁ A).trans (h₂ A) theorem Support.smul_le_smul {α : TypeIndex} {S T : Support α} (h : S ≤ T) (π : StrPerm α) : π • S ≤ π • T := λ A ↦ BaseSupport.smul_le_smul (h A) (π A) theorem Support.le_add_right {α : TypeIndex} {S T : Support α} : S ≤ S + T := by intro A rw [add_derivBot] exact BaseSupport.le_add_right theorem Support.le_add_left {α : TypeIndex} {S T : Support α} : S ≤ T + S := by intro A rw [add_derivBot] exact BaseSupport.le_add_left def Support.Subsupport {α : TypeIndex} (S T : Support α) : Prop := ∀ A, (S ⇘. A).Subsupport (T ⇘. A) theorem Support.Subsupport.le {α : TypeIndex} {S T : Support α} (h : S.Subsupport T) : S ≤ T := λ A ↦ (h A).le theorem Support.Subsupport.trans {α : TypeIndex} {S T U : Support α} (h₁ : S.Subsupport T) (h₂ : T.Subsupport U) : S.Subsupport U := λ A ↦ (h₁ A).trans (h₂ A) theorem Support.smul_subsupport_smul {α : TypeIndex} {S T : Support α} (h : S.Subsupport T) (π : StrPerm α) : (π • S).Subsupport (π • T) := λ A ↦ BaseSupport.smul_subsupport_smul (h A) (π A) theorem subsupport_add {α : TypeIndex} {S T : Support α} : S.Subsupport (S + T) := by intro A constructor · intro i a ha simp only [Support.add_derivBot, BaseSupport.add_atoms, Enumeration.rel_add_iff] exact Or.inl ha · intro i N hN simp only [Support.add_derivBot, BaseSupport.add_atoms, Enumeration.rel_add_iff] exact Or.inl hN theorem smul_eq_of_subsupport {α : TypeIndex} {S T : Support α} {π : StrPerm α} (h₁ : S.Subsupport T) (h₂ : S.Subsupport (π • T)) : π • S = S := by rw [Support.smul_eq_iff] intro A constructor · rintro a ⟨i, hi⟩ have hi₁ := (h₁ A).1 i a hi have hi₂ := (h₂ A).1 i a hi have := (T ⇘. A)ᴬ.rel_coinjective.coinjective hi₁ hi₂ dsimp only at this rwa [smul_eq_iff_eq_inv_smul] · rintro N ⟨i, hi⟩ have hi₁ := (h₁ A).2 i N hi have hi₂ := (h₂ A).2 i N hi have := (T ⇘. A)ᴺ.rel_coinjective.coinjective hi₁ hi₂ dsimp only at this rwa [smul_eq_iff_eq_inv_smul]
theorem smul_eq_smul_of_le {α : TypeIndex} {S T : Support α} {π₁ π₂ : StrPerm α} (h : S ≤ T) (h₂ : π₁ • T = π₂ • T) : π₁ • S = π₂ • S
ConNF.smul_eq_smul_of_le
{ "commit": "39c33b4a743bea62dbcc549548b712ffd38ca65c", "date": "2024-12-05T00:00:00" }
{ "commit": "6709914ae7f5cd3e2bb24b413e09aa844554d234", "date": "2024-11-30T00:00:00" }
ConNF/ConNF/ModelData/Support.lean
ConNF.ModelData.Support
ConNF.ModelData.Support.jsonl
{ "lineInFile": 591, "tokenPositionInFile": 16769, "theoremPositionInFile": 65 }
{ "inFilePremises": true, "numInFilePremises": 8, "repositoryPremises": true, "numRepositoryPremises": 23, "numPremises": 39 }
{ "hasProof": true, "proof": ":= by\n rw [Support.smul_eq_smul_iff] at h₂ ⊢\n intro A\n constructor\n · intro a ha\n exact (h₂ A).1 a ((h A).1 a ha)\n · intro N hN\n exact (h₂ A).2 N ((h A).2 N hN)", "proofType": "tactic", "proofLengthLines": 7, "proofLengthTokens": 171 }
import ConNF.Model.Result /-! # New file In this file... ## Main declarations * `ConNF.foo`: Something new. -/ noncomputable section universe u open Cardinal Ordinal ConNF.TSet namespace ConNF variable [Params.{u}] {α β γ δ ε ζ : Λ} (hβ : (β : TypeIndex) < α) (hγ : (γ : TypeIndex) < β) (hδ : (δ : TypeIndex) < γ) (hε : (ε : TypeIndex) < δ) (hζ : (ζ : TypeIndex) < ε) def union (x y : TSet α) : TSet α := (xᶜ' ⊓' yᶜ')ᶜ' notation:68 x:68 " ⊔[" h "] " y:68 => _root_.ConNF.union h x y notation:68 x:68 " ⊔' " y:68 => x ⊔[by assumption] y @[simp] theorem mem_union_iff (x y : TSet α) : ∀ z : TSet β, z ∈' x ⊔' y ↔ z ∈' x ∨ z ∈' y := by rw [union] intro z rw [mem_compl_iff, mem_inter_iff, mem_compl_iff, mem_compl_iff, or_iff_not_and_not] def higherIndex (α : Λ) : Λ := (exists_gt α).choose theorem lt_higherIndex {α : Λ} : (α : TypeIndex) < higherIndex α := WithBot.coe_lt_coe.mpr (exists_gt α).choose_spec theorem tSet_nonempty (h : ∃ β : Λ, (β : TypeIndex) < α) : Nonempty (TSet α) := by obtain ⟨α', hα⟩ := h constructor apply typeLower lt_higherIndex lt_higherIndex lt_higherIndex hα apply cardinalOne lt_higherIndex lt_higherIndex def empty : TSet α := (tSet_nonempty ⟨β, hβ⟩).some ⊓' (tSet_nonempty ⟨β, hβ⟩).someᶜ' @[simp] theorem mem_empty_iff : ∀ x : TSet β, ¬x ∈' empty hβ := by intro x rw [empty, mem_inter_iff, mem_compl_iff] exact and_not_self def univ : TSet α := (empty hβ)ᶜ' @[simp] theorem mem_univ_iff : ∀ x : TSet β, x ∈' univ hβ := by intro x simp only [univ, mem_compl_iff, mem_empty_iff, not_false_eq_true] /-- The set of all ordered pairs. -/ def orderedPairs : TSet α := vCross hβ hγ hδ (univ hδ) @[simp] theorem mem_orderedPairs_iff (x : TSet β) : x ∈' orderedPairs hβ hγ hδ ↔ ∃ a b, x = ⟨a, b⟩' := by simp only [orderedPairs, vCross_spec, mem_univ_iff, and_true] def converse (x : TSet α) : TSet α := converse' hβ hγ hδ x ⊓' orderedPairs hβ hγ hδ @[simp] theorem op_mem_converse_iff (x : TSet α) : ∀ a b, ⟨a, b⟩' ∈' converse hβ hγ hδ x ↔ ⟨b, a⟩' ∈' x := by intro a b simp only [converse, mem_inter_iff, converse'_spec, mem_orderedPairs_iff, op_inj, exists_and_left, exists_eq', and_true] def cross (x y : TSet γ) : TSet α := converse hβ hγ hδ (vCross hβ hγ hδ x) ⊓' vCross hβ hγ hδ y @[simp] theorem mem_cross_iff (x y : TSet γ) : ∀ a, a ∈' cross hβ hγ hδ x y ↔ ∃ b c, a = ⟨b, c⟩' ∧ b ∈' x ∧ c ∈' y := by intro a rw [cross, mem_inter_iff, vCross_spec] constructor · rintro ⟨h₁, b, c, rfl, h₂⟩ simp only [op_mem_converse_iff, vCross_spec, op_inj] at h₁ obtain ⟨b', c', ⟨rfl, rfl⟩, h₁⟩ := h₁ exact ⟨b, c, rfl, h₁, h₂⟩ · rintro ⟨b, c, rfl, h₁, h₂⟩ simp only [op_mem_converse_iff, vCross_spec, op_inj] exact ⟨⟨c, b, ⟨rfl, rfl⟩, h₁⟩, ⟨b, c, ⟨rfl, rfl⟩, h₂⟩⟩ def singletonImage (x : TSet β) : TSet α := singletonImage' hβ hγ hδ hε x ⊓' (cross hβ hγ hδ (cardinalOne hδ hε) (cardinalOne hδ hε))
@[simp] theorem singletonImage_spec (x : TSet β) : ∀ z w, ⟨ {z}', {w}' ⟩' ∈' singletonImage hβ hγ hδ hε x ↔ ⟨z, w⟩' ∈' x
ConNF.singletonImage_spec
{ "commit": "66f4e3291020d4198ca6ede816acae5cee584a07", "date": "2025-01-06T00:00:00" }
{ "commit": "66f4e3291020d4198ca6ede816acae5cee584a07", "date": "2025-01-06T00:00:00" }
ConNF/ConNF/External/Basic.lean
ConNF.External.Basic
ConNF.External.Basic.jsonl
{ "lineInFile": 107, "tokenPositionInFile": 2947, "theoremPositionInFile": 18 }
{ "inFilePremises": true, "numInFilePremises": 3, "repositoryPremises": true, "numRepositoryPremises": 21, "numPremises": 52 }
{ "hasProof": true, "proof": ":= by\n intro z w\n rw [singletonImage, mem_inter_iff, singletonImage'_spec, and_iff_left_iff_imp]\n intro hzw\n rw [mem_cross_iff]\n refine ⟨{z}', {w}', rfl, ?_⟩\n simp only [mem_cardinalOne_iff, singleton_inj, exists_eq', and_self]", "proofType": "tactic", "proofLengthLines": 6, "proofLengthTokens": 233 }
import ConNF.ModelData.Enumeration import ConNF.Levels.StrPerm /-! # Enumerations over paths In this file, we provide extra features to `Enumeration`s that take values of the form `α ↝ ⊥ × X`. ## Main declarations * `ConNF.Enumeration.ext_path`: An extensionality principle for such `Enumeration`s. -/ noncomputable section universe u open Cardinal Ordinal namespace ConNF variable [Params.{u}] namespace Enumeration /-- A helper function for making relations with domain and codomain of the form `α ↝ ⊥ × X` by defining it on each branch. -/ def relWithPath {X Y : Type u} {α : TypeIndex} (f : α ↝ ⊥ → Rel X Y) : Rel (α ↝ ⊥ × X) (α ↝ ⊥ × Y) := λ x y ↦ x.1 = y.1 ∧ f x.1 x.2 y.2 theorem relWithPath_coinjective {X Y : Type u} {α : TypeIndex} {f : α ↝ ⊥ → Rel X Y} (hf : ∀ A, (f A).Coinjective) : (relWithPath f).Coinjective := by constructor rintro ⟨_, y₁⟩ ⟨_, y₂⟩ ⟨A, x⟩ ⟨rfl, h₁⟩ ⟨rfl, h₂⟩ cases (hf A).coinjective h₁ h₂ rfl instance (X : Type u) (α β : TypeIndex) : Derivative (Enumeration (α ↝ ⊥ × X)) (Enumeration (β ↝ ⊥ × X)) α β where deriv E A := E.invImage (λ x ↦ (x.1 ⇗ A, x.2)) (λ x y h ↦ Prod.ext (Path.deriv_right_injective ((Prod.mk.injEq _ _ _ _).mp h).1) ((Prod.mk.injEq _ _ _ _).mp h).2) theorem deriv_rel {X : Type _} {α β : TypeIndex} (E : Enumeration (α ↝ ⊥ × X)) (A : α ↝ β) (i : κ) (x : β ↝ ⊥ × X) : (E ⇘ A).rel i x ↔ E.rel i (x.1 ⇗ A, x.2) := Iff.rfl instance (X : Type u) (α β : TypeIndex) : Coderivative (Enumeration (β ↝ ⊥ × X)) (Enumeration (α ↝ ⊥ × X)) α β where coderiv E A := E.image (λ x ↦ (x.1 ⇗ A, x.2)) theorem coderiv_rel {X : Type _} {α β : TypeIndex} (E : Enumeration (β ↝ ⊥ × X)) (A : α ↝ β) (i : κ) (x : α ↝ ⊥ × X) : (E ⇗ A).rel i x ↔ ∃ B, x.1 = A ⇘ B ∧ E.rel i (B, x.2) := by constructor · rintro ⟨x, h, rfl⟩ exact ⟨_, rfl, h⟩ · rintro ⟨B, h₁, h₂⟩ refine ⟨(B, x.2), h₂, ?_⟩ apply Prod.ext · dsimp only exact h₁.symm · rfl theorem scoderiv_rel {X : Type _} {α β : TypeIndex} (E : Enumeration (β ↝ ⊥ × X)) (h : β < α) (i : κ) (x : α ↝ ⊥ × X) : (E ↗ h).rel i x ↔ ∃ B, x.1 = B ↗ h ∧ E.rel i (B, x.2) := coderiv_rel E (.single h) i x theorem eq_of_scoderiv_mem {X : Type _} {α β γ : TypeIndex} (E : Enumeration (β ↝ ⊥ × X)) (h : β < α) (h' : γ < α) (i : κ) (A : γ ↝ ⊥) (x : X) (h : (E ↗ h).rel i ⟨A ↗ h', x⟩) : β = γ := by rw [scoderiv_rel] at h obtain ⟨B, h₁, h₂⟩ := h exact Path.scoderiv_index_injective h₁.symm instance (X : Type u) (α : TypeIndex) : BotDerivative (Enumeration (α ↝ ⊥ × X)) (Enumeration X) α where botDeriv E A := E.invImage (λ x ↦ (A, x)) (Prod.mk.inj_left A) botSderiv E := E.invImage (λ x ↦ (Path.nil ↘., x)) (Prod.mk.inj_left (Path.nil ↘.)) botDeriv_single E h := by cases α using WithBot.recBotCoe with | bot => cases lt_irrefl ⊥ h | coe => rfl
theorem derivBot_rel {X : Type _} {α : TypeIndex} (E : Enumeration (α ↝ ⊥ × X)) (A : α ↝ ⊥) (i : κ) (x : X) : (E ⇘. A).rel i x ↔ E.rel i (A, x)
ConNF.Enumeration.derivBot_rel
{ "commit": "39c33b4a743bea62dbcc549548b712ffd38ca65c", "date": "2024-12-05T00:00:00" }
{ "commit": "ce890707e37ede74a2fcd66134d3f403335c5cc1", "date": "2024-11-30T00:00:00" }
ConNF/ConNF/ModelData/PathEnumeration.lean
ConNF.ModelData.PathEnumeration
ConNF.ModelData.PathEnumeration.jsonl
{ "lineInFile": 89, "tokenPositionInFile": 2868, "theoremPositionInFile": 6 }
{ "inFilePremises": true, "numInFilePremises": 1, "repositoryPremises": true, "numRepositoryPremises": 9, "numPremises": 15 }
{ "hasProof": true, "proof": ":=\n Iff.rfl", "proofType": "term", "proofLengthLines": 1, "proofLengthTokens": 12 }
import ConNF.Model.RaiseStrong /-! # New file In this file... ## Main declarations * `ConNF.foo`: Something new. -/ noncomputable section universe u open Cardinal Ordinal open scoped Pointwise namespace ConNF variable [Params.{u}] /-- A redefinition of the derivative of allowable permutations that is invariant of level, but still has nice definitional properties. -/ @[default_instance 200] instance {β γ : TypeIndex} : Derivative (AllPerm β) (AllPerm γ) β γ where deriv ρ A := A.recSderiv (motive := λ (δ : TypeIndex) (A : β ↝ δ) ↦ letI : Level := ⟨δ.recBotCoe (Nonempty.some inferInstance) id⟩ letI : LeLevel δ := ⟨δ.recBotCoe (λ _ ↦ bot_le) (λ _ h ↦ WithBot.coe_le_coe.mpr h.le) (show δ.recBotCoe (Nonempty.some inferInstance) id = Level.α from rfl)⟩ AllPerm δ) ρ (λ δ ε A h ρ ↦ letI : Level := ⟨δ.recBotCoe (Nonempty.some inferInstance) id⟩ letI : LeLevel δ := ⟨δ.recBotCoe (λ _ ↦ bot_le) (λ _ h ↦ WithBot.coe_le_coe.mpr h.le) (show δ.recBotCoe (Nonempty.some inferInstance) id = Level.α from rfl)⟩ letI : LeLevel ε := ⟨h.le.trans LeLevel.elim⟩ PreCoherentData.allPermSderiv h ρ) @[simp] theorem allPerm_deriv_nil' {β : TypeIndex} (ρ : AllPerm β) : ρ ⇘ (.nil : β ↝ β) = ρ := rfl @[simp] theorem allPerm_deriv_sderiv' {β γ δ : TypeIndex} (ρ : AllPerm β) (A : β ↝ γ) (h : δ < γ) : ρ ⇘ (A ↘ h) = ρ ⇘ A ↘ h := rfl @[simp] theorem allPermSderiv_forget' {β γ : TypeIndex} (h : γ < β) (ρ : AllPerm β) : (ρ ↘ h)ᵁ = ρᵁ ↘ h := letI : Level := ⟨β.recBotCoe (Nonempty.some inferInstance) id⟩ letI : LeLevel β := ⟨β.recBotCoe (λ _ ↦ bot_le) (λ _ h ↦ WithBot.coe_le_coe.mpr h.le) (show β.recBotCoe (Nonempty.some inferInstance) id = Level.α from rfl)⟩ letI : LeLevel γ := ⟨h.le.trans LeLevel.elim⟩ allPermSderiv_forget h ρ @[simp] theorem allPerm_inv_sderiv' {β γ : TypeIndex} (h : γ < β) (ρ : AllPerm β) : ρ⁻¹ ↘ h = (ρ ↘ h)⁻¹ := by apply allPermForget_injective rw [allPermSderiv_forget', allPermForget_inv, Tree.inv_sderiv, allPermForget_inv, allPermSderiv_forget'] def Symmetric {α β : Λ} (s : Set (TSet β)) (hβ : (β : TypeIndex) < α) : Prop := ∃ S : Support α, ∀ ρ : AllPerm α, ρᵁ • S = S → ρ ↘ hβ • s = s def newSetEquiv {α : Λ} : letI : Level := ⟨α⟩ @TSet _ α newModelData.toPreModelData ≃ TSet α := letI : Level := ⟨α⟩ castTSet (D₁ := newModelData) (D₂ := globalModelData) rfl (by rw [globalModelData, motive_eq, constructMotive, globalLtData_eq]) @[simp] theorem newSetEquiv_forget {α : Λ} (x : letI : Level := ⟨α⟩; @TSet _ α newModelData.toPreModelData) : (newSetEquiv x)ᵁ = xᵁ := letI : Level := ⟨α⟩ castTSet_forget (D₁ := newModelData) (D₂ := globalModelData) _ x def allPermEquiv {α : Λ} : letI : Level := ⟨α⟩ NewPerm ≃ AllPerm α := letI : Level := ⟨α⟩ castAllPerm (D₁ := newModelData) (D₂ := globalModelData) rfl (by rw [globalModelData, motive_eq, constructMotive, globalLtData_eq]) @[simp] theorem allPermEquiv_forget {α : Λ} (ρ : letI : Level := ⟨α⟩; NewPerm) : (allPermEquiv ρ)ᵁ = ρᵁ := letI : Level := ⟨α⟩ castAllPerm_forget (D₁ := newModelData) (D₂ := globalModelData) _ ρ theorem allPermEquiv_sderiv {α β : Λ} (ρ : letI : Level := ⟨α⟩; NewPerm) (hβ : (β : TypeIndex) < α) : letI : Level := ⟨α⟩ letI : LtLevel β := ⟨hβ⟩ allPermEquiv ρ ↘ hβ = ρ.sderiv β := by letI : Level := ⟨α⟩ letI : LeLevel α := ⟨le_rfl⟩ letI : LtLevel β := ⟨hβ⟩ apply allPermForget_injective rw [allPermSderiv_forget, allPermEquiv_forget, NewPerm.forget_sderiv] theorem TSet.exists_of_symmetric {α β : Λ} (s : Set (TSet β)) (hβ : (β : TypeIndex) < α) (hs : Symmetric s hβ) : ∃ x : TSet α, ∀ y : TSet β, y ∈[hβ] x ↔ y ∈ s := by letI : Level := ⟨α⟩ letI : LtLevel β := ⟨hβ⟩ suffices ∃ x : (@TSet _ α newModelData.toPreModelData), ∀ y : TSet β, yᵁ ∈[hβ] xᵁ ↔ y ∈ s by obtain ⟨x, hx⟩ := this use newSetEquiv x intro y rw [← hx, ← TSet.forget_mem_forget, newSetEquiv_forget] obtain rfl | hs' := s.eq_empty_or_nonempty · use none intro y simp only [Set.mem_empty_iff_false, iff_false] exact not_mem_none y · use some (Code.toSet ⟨β, s, hs'⟩ ?_) · intro y erw [mem_some_iff] exact Code.mem_toSet _ · obtain ⟨S, hS⟩ := hs use S intro ρ hρS have := hS (allPermEquiv ρ) ?_ · simp only [NewPerm.smul_mk, Code.mk.injEq, heq_eq_eq, true_and] rwa [allPermEquiv_sderiv] at this · rwa [allPermEquiv_forget] theorem TSet.exists_support {α : Λ} (x : TSet α) : ∃ S : Support α, ∀ ρ : AllPerm α, ρᵁ • S = S → ρ • x = x := by letI : Level := ⟨α⟩ obtain ⟨S, hS⟩ := NewSet.exists_support (newSetEquiv.symm x) use S intro ρ hρ have := @Support.Supports.supports _ _ _ newPreModelData _ _ _ hS (allPermEquiv.symm ρ) ?_ · apply tSetForget_injective have := congr_arg (·ᵁ) this simp only at this erw [@smul_forget _ _ newModelData (allPermEquiv.symm ρ) (newSetEquiv.symm x), ← allPermEquiv_forget, ← newSetEquiv_forget, Equiv.apply_symm_apply, Equiv.apply_symm_apply] at this rwa [smul_forget] · rwa [← allPermEquiv_forget, Equiv.apply_symm_apply] theorem TSet.symmetric {α β : Λ} (x : TSet α) (hβ : (β : TypeIndex) < α) : Symmetric {y : TSet β | y ∈[hβ] x} hβ := by obtain ⟨S, hS⟩ := exists_support x use S intro ρ hρ conv_rhs => rw [← hS ρ hρ] simp only [← forget_mem_forget, smul_forget, StrSet.mem_smul_iff] ext y rw [Set.mem_smul_set_iff_inv_smul_mem, Set.mem_setOf_eq, Set.mem_setOf_eq, smul_forget, allPermForget_inv, allPermSderiv_forget'] theorem tSet_ext' {α β : Λ} (hβ : (β : TypeIndex) < α) (x y : TSet α) (h : ∀ z : TSet β, z ∈[hβ] x ↔ z ∈[hβ] y) : x = y := letI : Level := ⟨α⟩ letI : LeLevel α := ⟨le_rfl⟩ letI : LtLevel β := ⟨hβ⟩ tSet_ext hβ x y h @[simp] theorem TSet.mem_smul_iff' {α β : TypeIndex} {x : TSet β} {y : TSet α} (h : β < α) (ρ : AllPerm α) : x ∈[h] ρ • y ↔ ρ⁻¹ ↘ h • x ∈[h] y := by letI : Level := ⟨α.recBotCoe (Nonempty.some inferInstance) id⟩ letI : LeLevel α := ⟨α.recBotCoe (λ _ ↦ bot_le) (λ _ h ↦ WithBot.coe_le_coe.mpr h.le) (show α.recBotCoe (Nonempty.some inferInstance) id = Level.α from rfl)⟩ letI : LtLevel β := ⟨h.trans_le LeLevel.elim⟩ exact mem_smul_iff h ρ -- For some reason, using `exact` instead of term mode speeds this up! def singleton {α β : Λ} (hβ : (β : TypeIndex) < α) (x : TSet β) : TSet α := letI : Level := ⟨α⟩ letI : LeLevel α := ⟨le_rfl⟩ letI : LtLevel β := ⟨hβ⟩ PreCoherentData.singleton hβ x @[simp] theorem typedMem_singleton_iff' {α β : Λ} (hβ : (β : TypeIndex) < α) (x y : TSet β) : y ∈[hβ] singleton hβ x ↔ y = x := letI : Level := ⟨α⟩ letI : LeLevel α := ⟨le_rfl⟩ letI : LtLevel β := ⟨hβ⟩ typedMem_singleton_iff hβ x y @[simp] theorem smul_singleton {α β : Λ} (hβ : (β : TypeIndex) < α) (x : TSet β) (ρ : AllPerm α) : ρ • singleton hβ x = singleton hβ (ρ ↘ hβ • x) := by apply tSet_ext' hβ intro z rw [TSet.mem_smul_iff', allPerm_inv_sderiv', typedMem_singleton_iff', typedMem_singleton_iff', inv_smul_eq_iff] theorem singleton_injective {α β : Λ} (hβ : (β : TypeIndex) < α) : Function.Injective (singleton hβ) := by intro x y hxy have := typedMem_singleton_iff' hβ x y rw [hxy, typedMem_singleton_iff'] at this exact (this.mp rfl).symm @[simp] theorem singleton_inj {α β : Λ} {hβ : (β : TypeIndex) < α} {x y : TSet β} : singleton hβ x = singleton hβ y ↔ x = y := (singleton_injective hβ).eq_iff theorem sUnion_singleton_symmetric_aux' {α β γ : Λ} (hγ : (γ : TypeIndex) < β) (hβ : (β : TypeIndex) < α) (s : Set (TSet γ)) (S : Support α) (hS : ∀ ρ : AllPerm α, ρᵁ • S = S → ρ ↘ hβ • singleton hγ '' s = singleton hγ '' s) : letI : Level := ⟨α⟩ letI : LeLevel α := ⟨le_rfl⟩ ∀ (ρ : AllPerm β), ρᵁ • S.strong ↘ hβ = S.strong ↘ hβ → ρ ↘ hγ • s ⊆ s := by letI : Level := ⟨α⟩ letI : LeLevel α := ⟨le_rfl⟩ letI : LtLevel β := ⟨hβ⟩ rintro ρ hρ _ ⟨x, hx, rfl⟩ obtain ⟨T, hT⟩ := exists_support x obtain ⟨ρ', hρ'₁, hρ'₂⟩ := Support.exists_allowable_of_fixes S.strong S.strong_strong T ρ hγ hρ have hρ's := hS ρ' (smul_eq_of_le (S.subsupport_strong.le) hρ'₁) have hρ'x : ρ' ↘ hβ ↘ hγ • x = ρ ↘ hγ • x := by apply hT.smul_eq_smul simp only [allPermSderiv_forget', allPermSderiv_forget, WithBot.recBotCoe_coe, id_eq, hρ'₂] dsimp only rw [← hρ'x] have := (Set.ext_iff.mp hρ's (ρ' ↘ hβ • singleton hγ x)).mp ⟨_, Set.mem_image_of_mem _ hx, rfl⟩ rw [smul_singleton] at this rwa [(singleton_injective hγ).mem_set_image] at this theorem sUnion_singleton_symmetric_aux {α β γ : Λ} (hγ : (γ : TypeIndex) < β) (hβ : (β : TypeIndex) < α) (s : Set (TSet γ)) (S : Support α) (hS : ∀ ρ : AllPerm α, ρᵁ • S = S → ρ ↘ hβ • singleton hγ '' s = singleton hγ '' s) : letI : Level := ⟨α⟩ letI : LeLevel α := ⟨le_rfl⟩ ∀ (ρ : AllPerm β), ρᵁ • S.strong ↘ hβ = S.strong ↘ hβ → ρ ↘ hγ • s = s := by intro ρ hρ apply subset_antisymm · exact sUnion_singleton_symmetric_aux' hγ hβ s S hS ρ hρ · have := sUnion_singleton_symmetric_aux' hγ hβ s S hS ρ⁻¹ ?_ · rwa [allPerm_inv_sderiv', Set.set_smul_subset_iff, inv_inv] at this · rw [allPermForget_inv, inv_smul_eq_iff, hρ]
theorem sUnion_singleton_symmetric {α β γ : Λ} (hγ : (γ : TypeIndex) < β) (hβ : (β : TypeIndex) < α) (s : Set (TSet γ)) (hs : Symmetric (singleton hγ '' s) hβ) : Symmetric s hγ
ConNF.sUnion_singleton_symmetric
{ "commit": "6fdc87c6b30b73931407a372f1430ecf0fef7601", "date": "2024-12-03T00:00:00" }
{ "commit": "2e25ffbc94af48261308cea0d8c55205cc388ef0", "date": "2024-12-01T00:00:00" }
ConNF/ConNF/Model/TTT.lean
ConNF.Model.TTT
ConNF.Model.TTT.jsonl
{ "lineInFile": 251, "tokenPositionInFile": 9233, "theoremPositionInFile": 22 }
{ "inFilePremises": true, "numInFilePremises": 4, "repositoryPremises": true, "numRepositoryPremises": 27, "numPremises": 49 }
{ "hasProof": true, "proof": ":= by\n letI : Level := ⟨α⟩\n letI : LeLevel α := ⟨le_rfl⟩\n obtain ⟨S, hS⟩ := hs\n use S.strong ↘ hβ\n exact sUnion_singleton_symmetric_aux hγ hβ s S hS", "proofType": "tactic", "proofLengthLines": 5, "proofLengthTokens": 153 }
import ConNF.Model.TTT /-! # New file In this file... ## Main declarations * `ConNF.foo`: Something new. -/ noncomputable section universe u open Cardinal Ordinal namespace ConNF variable [Params.{u}] {α β γ δ ε ζ : Λ} (hβ : (β : TypeIndex) < α) (hγ : (γ : TypeIndex) < β) (hδ : (δ : TypeIndex) < γ) (hε : (ε : TypeIndex) < δ) (hζ : (ζ : TypeIndex) < ε) namespace TSet theorem exists_inter (x y : TSet α) : ∃ w : TSet α, ∀ z : TSet β, z ∈[hβ] w ↔ z ∈[hβ] x ∧ z ∈[hβ] y := by refine exists_of_symmetric {z | z ∈[hβ] x ∧ z ∈[hβ] y} hβ ?_ obtain ⟨S, hS⟩ := symmetric x hβ obtain ⟨T, hT⟩ := symmetric y hβ use S + T intro ρ hρ specialize hS ρ (smul_eq_of_le Support.le_add_right hρ) specialize hT ρ (smul_eq_of_le Support.le_add_left hρ) simp [Set.ext_iff, Set.mem_smul_set_iff_inv_smul_mem] at hS hT ⊢ aesop theorem exists_compl (x : TSet α) : ∃ y : TSet α, ∀ z : TSet β, z ∈[hβ] y ↔ ¬z ∈[hβ] x := by refine exists_of_symmetric {z | ¬z ∈[hβ] x} hβ ?_ obtain ⟨S, hS⟩ := symmetric x hβ use S intro ρ hρ specialize hS ρ hρ simp [Set.ext_iff, Set.mem_smul_set_iff_inv_smul_mem] at hS ⊢ aesop theorem exists_up (x y : TSet β) : ∃ w : TSet α, ∀ z : TSet β, z ∈[hβ] w ↔ z = x ∨ z = y := by refine exists_of_symmetric {x, y} hβ ?_ obtain ⟨S, hS⟩ := exists_support x obtain ⟨T, hT⟩ := exists_support y use (S + T) ↗ hβ intro ρ hρ rw [Support.smul_scoderiv, Support.scoderiv_inj, ← allPermSderiv_forget'] at hρ specialize hS (ρ ↘ hβ) (smul_eq_of_le Support.le_add_right hρ) specialize hT (ρ ↘ hβ) (smul_eq_of_le Support.le_add_left hρ) simp only [Set.smul_set_def, Set.image, Set.mem_insert_iff, Set.mem_singleton_iff, exists_eq_or_imp, hS, exists_eq_left, hT] ext z rw [Set.mem_insert_iff, Set.mem_singleton_iff, Set.mem_setOf_eq] aesop /-- The unordered pair. -/ def up (x y : TSet β) : TSet α := (exists_up hβ x y).choose @[simp] theorem mem_up_iff (x y z : TSet β) : z ∈[hβ] up hβ x y ↔ z = x ∨ z = y := (exists_up hβ x y).choose_spec z /-- The Kuratowski ordered pair. -/ def op (x y : TSet γ) : TSet α := up hβ (singleton hγ x) (up hγ x y) theorem up_injective {x y z w : TSet β} (h : up hβ x y = up hβ z w) : (x = z ∧ y = w) ∨ (x = w ∧ y = z) := by have h₁ := mem_up_iff hβ x y z have h₂ := mem_up_iff hβ x y w have h₃ := mem_up_iff hβ z w x have h₄ := mem_up_iff hβ z w y rw [h, mem_up_iff] at h₁ h₂ rw [← h, mem_up_iff] at h₃ h₄ aesop @[simp] theorem up_inj (x y z w : TSet β) : up hβ x y = up hβ z w ↔ (x = z ∧ y = w) ∨ (x = w ∧ y = z) := by constructor · exact up_injective hβ · rintro (⟨rfl, rfl⟩ | ⟨rfl, rfl⟩) · rfl · apply tSet_ext' hβ aesop @[simp] theorem up_self {x : TSet β} : up hβ x x = singleton hβ x := by apply tSet_ext' hβ aesop @[simp] theorem up_eq_singleton_iff (x y z : TSet β) : up hβ x y = singleton hβ z ↔ x = z ∧ y = z := by constructor · intro h have h₁ := typedMem_singleton_iff' hβ z x have h₂ := typedMem_singleton_iff' hβ z y rw [← h, mem_up_iff] at h₁ h₂ aesop · rintro ⟨rfl, rfl⟩ rw [up_self] @[simp] theorem singleton_eq_up_iff (x y z : TSet β) : singleton hβ z = up hβ x y ↔ x = z ∧ y = z := by rw [← up_eq_singleton_iff hβ x y z, eq_comm] theorem op_injective {x y z w : TSet γ} (h : op hβ hγ x y = op hβ hγ z w) : x = z ∧ y = w := by rw [op, op] at h simp only [up_inj, singleton_inj, singleton_eq_up_iff, up_eq_singleton_iff] at h obtain (⟨rfl, ⟨h, rfl⟩ | ⟨rfl, rfl⟩⟩ | ⟨⟨rfl, rfl⟩, ⟨h, rfl⟩⟩) := h <;> simp only [and_self] @[simp] theorem op_inj (x y z w : TSet γ) : op hβ hγ x y = op hβ hγ z w ↔ x = z ∧ y = w := by constructor · exact op_injective hβ hγ · rintro ⟨rfl, rfl⟩ rfl @[simp] theorem op_eq_singleton_iff (x y : TSet γ) (z : TSet β) : op hβ hγ x y = singleton hβ z ↔ singleton hγ x = z ∧ singleton hγ y = z := by rw [op, up_eq_singleton_iff, and_congr_right_iff] rintro rfl simp only [up_eq_singleton_iff, true_and, singleton_inj] @[simp] theorem smul_up (x y : TSet β) (ρ : AllPerm α) : ρ • up hβ x y = up hβ (ρ ↘ hβ • x) (ρ ↘ hβ • y) := by apply tSet_ext' hβ aesop @[simp] theorem smul_op (x y : TSet γ) (ρ : AllPerm α) : ρ • op hβ hγ x y = op hβ hγ (ρ ↘ hβ ↘ hγ • x) (ρ ↘ hβ ↘ hγ • y) := by apply tSet_ext' hβ simp only [op, smul_up, smul_singleton, mem_up_iff, implies_true] theorem exists_singletonImage (x : TSet β) : ∃ y : TSet α, ∀ z w, op hγ hδ (singleton hε z) (singleton hε w) ∈[hβ] y ↔ op hδ hε z w ∈[hγ] x := by have := exists_of_symmetric {u | ∃ z w : TSet ε, op hδ hε z w ∈[hγ] x ∧ u = op hγ hδ (singleton hε z) (singleton hε w)} hβ ?_ · obtain ⟨y, hy⟩ := this use y intro z w rw [hy] simp only [Set.mem_setOf_eq, op_inj, singleton_inj, exists_eq_right_right', exists_eq_right'] · obtain ⟨S, hS⟩ := exists_support x use S ↗ hβ intro ρ hρ rw [Support.smul_scoderiv, Support.scoderiv_inj, ← allPermSderiv_forget'] at hρ specialize hS (ρ ↘ hβ) hρ ext z constructor · rintro ⟨_, ⟨z, w, hab, rfl⟩, rfl⟩ refine ⟨ρ ↘ hβ ↘ hγ ↘ hδ ↘ hε • z, ρ ↘ hβ ↘ hγ ↘ hδ ↘ hε • w, ?_, ?_⟩ · rwa [← hS, mem_smul_iff', smul_op, allPerm_inv_sderiv', allPerm_inv_sderiv', allPerm_inv_sderiv', inv_smul_smul, inv_smul_smul] · simp only [smul_op, smul_singleton] · rintro ⟨z, w, hab, rfl⟩ refine ⟨ρ⁻¹ ↘ hβ • op hγ hδ (singleton hε z) (singleton hε w), ?_, ?_⟩ · simp only [allPerm_inv_sderiv', smul_op, smul_singleton, Set.mem_setOf_eq, op_inj, singleton_inj, exists_eq_right_right', exists_eq_right'] rw [smul_eq_iff_eq_inv_smul] at hS rw [hS] simp only [mem_smul_iff', inv_inv, smul_op, smul_inv_smul] exact hab · simp only [allPerm_inv_sderiv', smul_inv_smul] theorem exists_insertion2 (x : TSet γ) : ∃ y : TSet α, ∀ a b c, op hγ hδ (singleton hε (singleton hζ a)) (op hε hζ b c) ∈[hβ] y ↔ op hε hζ a c ∈[hδ] x := by have := exists_of_symmetric {u | ∃ a b c : TSet ζ, op hε hζ a c ∈[hδ] x ∧ u = op hγ hδ (singleton hε (singleton hζ a)) (op hε hζ b c)} hβ ?_ · obtain ⟨y, hy⟩ := this use y intro a b c rw [hy] constructor · rintro ⟨a', b', c', h₁, h₂⟩ simp only [op_inj, singleton_inj] at h₂ obtain ⟨rfl, rfl, rfl⟩ := h₂ exact h₁ · intro h exact ⟨a, b, c, h, rfl⟩ · obtain ⟨S, hS⟩ := exists_support x use S ↗ hγ ↗ hβ intro ρ hρ simp only [Support.smul_scoderiv, Support.scoderiv_inj, ← allPermSderiv_forget'] at hρ specialize hS (ρ ↘ hβ ↘ hγ) hρ ext z constructor · rintro ⟨_, ⟨a, b, c, hx, rfl⟩, rfl⟩ refine ⟨ρ ↘ hβ ↘ hγ ↘ hδ ↘ hε ↘ hζ • a, ρ ↘ hβ ↘ hγ ↘ hδ ↘ hε ↘ hζ • b, ρ ↘ hβ ↘ hγ ↘ hδ ↘ hε ↘ hζ • c, ?_, ?_⟩ · rw [← hS] simp only [mem_smul_iff', allPerm_inv_sderiv', smul_op, inv_smul_smul] exact hx · simp only [smul_op, smul_singleton] · rintro ⟨a, b, c, hx, rfl⟩ rw [Set.mem_smul_set_iff_inv_smul_mem] refine ⟨ρ⁻¹ ↘ hβ ↘ hγ ↘ hδ ↘ hε ↘ hζ • a, ρ⁻¹ ↘ hβ ↘ hγ ↘ hδ ↘ hε ↘ hζ • b, ρ⁻¹ ↘ hβ ↘ hγ ↘ hδ ↘ hε ↘ hζ • c, ?_, ?_⟩ · rw [smul_eq_iff_eq_inv_smul] at hS rw [hS, mem_smul_iff'] simp only [inv_inv, allPerm_inv_sderiv', smul_op, smul_inv_smul] exact hx · simp only [smul_op, allPerm_inv_sderiv', smul_singleton] theorem exists_insertion3 (x : TSet γ) : ∃ y : TSet α, ∀ a b c, op hγ hδ (singleton hε (singleton hζ a)) (op hε hζ b c) ∈[hβ] y ↔ op hε hζ a b ∈[hδ] x := by have := exists_of_symmetric {u | ∃ a b c : TSet ζ, op hε hζ a b ∈[hδ] x ∧ u = op hγ hδ (singleton hε (singleton hζ a)) (op hε hζ b c)} hβ ?_ · obtain ⟨y, hy⟩ := this use y intro a b c rw [hy] constructor · rintro ⟨a', b', c', h₁, h₂⟩ simp only [op_inj, singleton_inj] at h₂ obtain ⟨rfl, rfl, rfl⟩ := h₂ exact h₁ · intro h exact ⟨a, b, c, h, rfl⟩ · obtain ⟨S, hS⟩ := exists_support x use S ↗ hγ ↗ hβ intro ρ hρ simp only [Support.smul_scoderiv, Support.scoderiv_inj, ← allPermSderiv_forget'] at hρ specialize hS (ρ ↘ hβ ↘ hγ) hρ ext z constructor · rintro ⟨_, ⟨a, b, c, hx, rfl⟩, rfl⟩ refine ⟨ρ ↘ hβ ↘ hγ ↘ hδ ↘ hε ↘ hζ • a, ρ ↘ hβ ↘ hγ ↘ hδ ↘ hε ↘ hζ • b, ρ ↘ hβ ↘ hγ ↘ hδ ↘ hε ↘ hζ • c, ?_, ?_⟩ · rw [← hS] simp only [mem_smul_iff', allPerm_inv_sderiv', smul_op, inv_smul_smul] exact hx · simp only [smul_op, smul_singleton] · rintro ⟨a, b, c, hx, rfl⟩ rw [Set.mem_smul_set_iff_inv_smul_mem] refine ⟨ρ⁻¹ ↘ hβ ↘ hγ ↘ hδ ↘ hε ↘ hζ • a, ρ⁻¹ ↘ hβ ↘ hγ ↘ hδ ↘ hε ↘ hζ • b, ρ⁻¹ ↘ hβ ↘ hγ ↘ hδ ↘ hε ↘ hζ • c, ?_, ?_⟩ · rw [smul_eq_iff_eq_inv_smul] at hS rw [hS, mem_smul_iff'] simp only [inv_inv, allPerm_inv_sderiv', smul_op, smul_inv_smul] exact hx · simp only [smul_op, allPerm_inv_sderiv', smul_singleton] theorem exists_cross (x : TSet γ) : ∃ y : TSet α, ∀ a, a ∈[hβ] y ↔ ∃ b c, a = op hγ hδ b c ∧ c ∈[hδ] x := by have := exists_of_symmetric {a | ∃ b c, a = op hγ hδ b c ∧ c ∈[hδ] x} hβ ?_ · obtain ⟨y, hy⟩ := this use y intro a rw [hy] rfl · obtain ⟨S, hS⟩ := exists_support x use S ↗ hγ ↗ hβ intro ρ hρ simp only [Support.smul_scoderiv, Support.scoderiv_inj, ← allPermSderiv_forget'] at hρ specialize hS (ρ ↘ hβ ↘ hγ) hρ ext z constructor · rintro ⟨_, ⟨a, b, rfl, hab⟩, rfl⟩ refine ⟨ρ ↘ hβ ↘ hγ ↘ hδ • a, ρ ↘ hβ ↘ hγ ↘ hδ • b, ?_, ?_⟩ · simp only [smul_op] · rw [← hS] simp only [mem_smul_iff', allPerm_inv_sderiv', inv_smul_smul] exact hab · rintro ⟨a, b, rfl, hab⟩ rw [Set.mem_smul_set_iff_inv_smul_mem] refine ⟨ρ⁻¹ ↘ hβ ↘ hγ ↘ hδ • a, ρ⁻¹ ↘ hβ ↘ hγ ↘ hδ • b, ?_, ?_⟩ · simp only [smul_op, allPerm_inv_sderiv'] · rw [smul_eq_iff_eq_inv_smul] at hS rw [hS] simp only [allPerm_inv_sderiv', mem_smul_iff', inv_inv, smul_inv_smul] exact hab theorem exists_typeLower (x : TSet α) : ∃ y : TSet δ, ∀ a, a ∈[hε] y ↔ ∀ b, op hγ hδ b (singleton hε a) ∈[hβ] x := by have := exists_of_symmetric {a | ∀ b, op hγ hδ b (singleton hε a) ∈[hβ] x} hε ?_ · obtain ⟨y, hy⟩ := this use y intro a rw [hy] rfl · apply sUnion_singleton_symmetric hε hδ apply sUnion_singleton_symmetric hδ hγ apply sUnion_singleton_symmetric hγ hβ obtain ⟨S, hS⟩ := exists_support x use S intro ρ hρ specialize hS ρ hρ ext z constructor · rintro ⟨_, ⟨_, ⟨a, ⟨b, hb, rfl⟩, rfl⟩, rfl⟩, rfl⟩ simp only [smul_singleton, Set.mem_image, Set.mem_setOf_eq, exists_exists_and_eq_and, singleton_inj, exists_eq_right] intro c have := hb (ρ⁻¹ ↘ hβ ↘ hγ ↘ hδ • c) rw [smul_eq_iff_eq_inv_smul] at hS rw [hS] at this simp only [allPerm_inv_sderiv', mem_smul_iff', inv_inv, smul_op, smul_inv_smul, smul_singleton] at this exact this · rintro ⟨_, ⟨a, ⟨b, hb, rfl⟩, rfl⟩, rfl⟩ rw [Set.mem_smul_set_iff_inv_smul_mem] simp only [smul_singleton, allPerm_inv_sderiv', Set.mem_image, Set.mem_setOf_eq, exists_exists_and_eq_and, singleton_inj, exists_eq_right] intro c have := hb (ρ ↘ hβ ↘ hγ ↘ hδ • c) rw [← hS] at this simp only [mem_smul_iff', allPerm_inv_sderiv', smul_op, inv_smul_smul, smul_singleton] at this exact this theorem exists_converse (x : TSet α) : ∃ y : TSet α, ∀ a b, op hγ hδ a b ∈[hβ] y ↔ op hγ hδ b a ∈[hβ] x := by have := exists_of_symmetric {a | ∃ b c, a = op hγ hδ b c ∧ op hγ hδ c b ∈[hβ] x} hβ ?_ · obtain ⟨y, hy⟩ := this use y intro a b rw [hy] simp only [Set.mem_setOf_eq, op_inj] constructor · rintro ⟨a', b', ⟨rfl, rfl⟩, h⟩ exact h · intro h exact ⟨a, b, ⟨rfl, rfl⟩, h⟩ · obtain ⟨S, hS⟩ := exists_support x use S intro ρ hρ specialize hS ρ hρ ext z constructor · rintro ⟨_, ⟨a, b, rfl, hab⟩, rfl⟩ refine ⟨ρ ↘ hβ ↘ hγ ↘ hδ • a, ρ ↘ hβ ↘ hγ ↘ hδ • b, ?_, ?_⟩ · simp only [smul_op] · rw [← hS] simp only [mem_smul_iff', allPerm_inv_sderiv', smul_op, inv_smul_smul] exact hab · rintro ⟨a, b, rfl, hab⟩ rw [Set.mem_smul_set_iff_inv_smul_mem] refine ⟨ρ⁻¹ ↘ hβ ↘ hγ ↘ hδ • a, ρ⁻¹ ↘ hβ ↘ hγ ↘ hδ • b, ?_, ?_⟩ · simp only [smul_op, allPerm_inv_sderiv'] · rw [smul_eq_iff_eq_inv_smul] at hS rw [hS] simp only [allPerm_inv_sderiv', mem_smul_iff', inv_inv, smul_op, smul_inv_smul] exact hab
theorem exists_cardinalOne : ∃ x : TSet α, ∀ a : TSet β, a ∈[hβ] x ↔ ∃ b, a = singleton hγ b
ConNF.TSet.exists_cardinalOne
{ "commit": "f804f5c71cfaa98223fc227dd822801e8bf77004", "date": "2024-03-30T00:00:00" }
{ "commit": "f7c233c7f7fd9d8b74595bbfa2bbbd49d538ef59", "date": "2024-12-02T00:00:00" }
ConNF/ConNF/Model/Hailperin.lean
ConNF.Model.Hailperin
ConNF.Model.Hailperin.jsonl
{ "lineInFile": 365, "tokenPositionInFile": 12537, "theoremPositionInFile": 22 }
{ "inFilePremises": false, "numInFilePremises": 0, "repositoryPremises": true, "numRepositoryPremises": 31, "numPremises": 83 }
{ "hasProof": true, "proof": ":= by\n have := exists_of_symmetric {a | ∃ b, a = singleton hγ b} hβ ?_\n · obtain ⟨y, hy⟩ := this\n use y\n intro a\n rw [hy]\n rfl\n · use ⟨.empty, .empty⟩\n intro ρ hρ\n ext z\n constructor\n · rintro ⟨z, ⟨a, ha⟩, rfl⟩\n refine ⟨ρ ↘ hβ ↘ hγ • a, ?_⟩\n simp only [ha, smul_singleton]\n · rintro ⟨a, ha⟩\n rw [Set.mem_smul_set_iff_inv_smul_mem]\n refine ⟨ρ⁻¹ ↘ hβ ↘ hγ • a, ?_⟩\n simp only [ha, smul_singleton, allPerm_inv_sderiv']", "proofType": "tactic", "proofLengthLines": 17, "proofLengthTokens": 470 }
import ConNF.Model.Result /-! # New file In this file... ## Main declarations * `ConNF.foo`: Something new. -/ noncomputable section universe u open Cardinal Ordinal ConNF.TSet namespace ConNF variable [Params.{u}] {α β γ δ ε ζ : Λ} (hβ : (β : TypeIndex) < α) (hγ : (γ : TypeIndex) < β) (hδ : (δ : TypeIndex) < γ) (hε : (ε : TypeIndex) < δ) (hζ : (ζ : TypeIndex) < ε) def union (x y : TSet α) : TSet α := (xᶜ' ⊓' yᶜ')ᶜ' notation:68 x:68 " ⊔[" h "] " y:68 => _root_.ConNF.union h x y notation:68 x:68 " ⊔' " y:68 => x ⊔[by assumption] y @[simp] theorem mem_union_iff (x y : TSet α) : ∀ z : TSet β, z ∈' x ⊔' y ↔ z ∈' x ∨ z ∈' y := by rw [union] intro z rw [mem_compl_iff, mem_inter_iff, mem_compl_iff, mem_compl_iff, or_iff_not_and_not] def higherIndex (α : Λ) : Λ := (exists_gt α).choose
theorem lt_higherIndex {α : Λ} : (α : TypeIndex) < higherIndex α
ConNF.lt_higherIndex
{ "commit": "66f4e3291020d4198ca6ede816acae5cee584a07", "date": "2025-01-06T00:00:00" }
{ "commit": "66f4e3291020d4198ca6ede816acae5cee584a07", "date": "2025-01-06T00:00:00" }
ConNF/ConNF/External/Basic.lean
ConNF.External.Basic
ConNF.External.Basic.jsonl
{ "lineInFile": 39, "tokenPositionInFile": 817, "theoremPositionInFile": 5 }
{ "inFilePremises": true, "numInFilePremises": 1, "repositoryPremises": true, "numRepositoryPremises": 6, "numPremises": 21 }
{ "hasProof": true, "proof": ":=\n WithBot.coe_lt_coe.mpr (exists_gt α).choose_spec", "proofType": "term", "proofLengthLines": 1, "proofLengthTokens": 53 }
import ConNF.External.Basic /-! # New file In this file... ## Main declarations * `ConNF.foo`: Something new. -/ noncomputable section universe u open Cardinal Ordinal ConNF.TSet namespace ConNF variable [Params.{u}] {α β γ δ ε ζ : Λ} (hβ : (β : TypeIndex) < α) (hγ : (γ : TypeIndex) < β) (hδ : (δ : TypeIndex) < γ) (hε : (ε : TypeIndex) < δ) (hζ : (ζ : TypeIndex) < ε) /-- A set in our model that is a well-order. Internal well-orders are exactly external well-orders, so we externalise the definition for convenience. -/ def InternalWellOrder (r : TSet α) : Prop := IsWellOrder (ExternalRel hβ hγ hδ r).field (InvImage (ExternalRel hβ hγ hδ r) Subtype.val) def InternallyWellOrdered (x : TSet γ) : Prop := {y : TSet δ | y ∈' x}.Subsingleton ∨ (∃ r, InternalWellOrder hβ hγ hδ r ∧ x = field hβ hγ hδ r) @[simp] theorem externalRel_smul (r : TSet α) (ρ : AllPerm α) : ExternalRel hβ hγ hδ (ρ • r) = InvImage (ExternalRel hβ hγ hδ r) ((ρ ↘ hβ ↘ hγ ↘ hδ)⁻¹ • ·) := by ext a b simp only [ExternalRel, mem_smul_iff', allPerm_inv_sderiv', smul_op, InvImage] omit [Params] in /-- Well-orders are rigid. -/ theorem apply_eq_of_isWellOrder {X : Type _} {r : Rel X X} {f : X → X} (hr : IsWellOrder X r) (hf : Function.Bijective f) (hf' : ∀ x y, r x y ↔ r (f x) (f y)) : ∀ x, f x = x := by let emb : r ≼i r := ⟨⟨⟨f, hf.injective⟩, λ {a b} ↦ (hf' a b).symm⟩, ?_⟩ · have : emb = InitialSeg.refl r := Subsingleton.elim _ _ intro x exact congr_arg (λ f ↦ f x) this · intro a b h exact hf.surjective _ omit [Params] in theorem apply_eq_of_isWellOrder' {X : Type _} {r : Rel X X} {f : X → X} (hr : IsWellOrder r.field (InvImage r Subtype.val)) (hf : Function.Bijective f) (hf' : ∀ x y, r x y ↔ r (f x) (f y)) : ∀ x ∈ r.field, f x = x := by have : ∀ x ∈ r.field, f x ∈ r.field := by rintro x (⟨y, h⟩ | ⟨y, h⟩) · exact Or.inl ⟨f y, (hf' x y).mp h⟩ · exact Or.inr ⟨f y, (hf' y x).mp h⟩ have := apply_eq_of_isWellOrder (f := λ x ↦ ⟨f x.val, this x.val x.prop⟩) hr ⟨?_, ?_⟩ ?_ · intro x hx exact congr_arg Subtype.val (this ⟨x, hx⟩) · intro x y h rw [Subtype.mk.injEq] at h exact Subtype.val_injective (hf.injective h) · intro x obtain ⟨y, hy⟩ := hf.surjective x.val refine ⟨⟨y, ?_⟩, ?_⟩ · obtain (⟨z, h⟩ | ⟨z, h⟩) := x.prop <;> rw [← hy] at h <;> obtain ⟨z, rfl⟩ := hf.surjective z · exact Or.inl ⟨z, (hf' y z).mpr h⟩ · exact Or.inr ⟨z, (hf' z y).mpr h⟩ · simp only [hy] · intros apply hf' theorem exists_common_support_of_internallyWellOrdered' {x : TSet δ} (h : InternallyWellOrdered hγ hδ hε x) : ∃ S : Support β, ∀ y, y ∈' x → S.Supports { { {y}' }' }[hγ] := by obtain (h | ⟨r, h, rfl⟩) := h · obtain (h | ⟨y, hy⟩) := h.eq_empty_or_singleton · use ⟨Enumeration.empty, Enumeration.empty⟩ intro y hy rw [Set.eq_empty_iff_forall_not_mem] at h cases h y hy · obtain ⟨S, hS⟩ := TSet.exists_support y use S ↗ hε ↗ hδ ↗ hγ intro z hz rw [Set.eq_singleton_iff_unique_mem] at hy cases hy.2 z hz refine ⟨?_, λ h ↦ by cases h⟩ intro ρ hρ simp only [Support.smul_scoderiv, ← allPermSderiv_forget', Support.scoderiv_inj] at hρ simp only [smul_singleton, singleton_inj] exact hS _ hρ obtain ⟨S, hS⟩ := TSet.exists_support r use S intro a ha refine ⟨?_, λ h ↦ by cases h⟩ intro ρ hρ have := hS ρ hρ simp only [smul_singleton, singleton_inj] apply apply_eq_of_isWellOrder' (r := ExternalRel hγ hδ hε r) · exact h · exact MulAction.bijective (ρ ↘ hγ ↘ hδ ↘ hε) · intro x y conv_rhs => rw [← this] simp only [externalRel_smul, InvImage, inv_smul_smul] · rwa [mem_field_iff] at ha include hγ in theorem Support.Supports.ofSingleton {S : Support α} {x : TSet β} (h : S.Supports {x}') : letI : Level := ⟨α⟩ letI : LeLevel α := ⟨le_rfl⟩ (S.strong ↘ hβ).Supports x := by refine ⟨?_, λ h ↦ by cases h⟩ intro ρ hρ open scoped Pointwise in have := sUnion_singleton_symmetric_aux hγ hβ {y | y ∈' x} S ?_ ρ hρ · apply ConNF.ext hγ intro z simp only [Set.ext_iff, Set.mem_setOf_eq, Set.mem_smul_set_iff_inv_smul_mem] at this rw [mem_smul_iff', allPerm_inv_sderiv', this] · intro ρ hρ ext z simp only [Set.mem_smul_set_iff_inv_smul_mem, Set.mem_image, Set.mem_setOf_eq] have := h.supports ρ hρ simp only [smul_singleton, singleton_inj] at this constructor · rintro ⟨y, h₁, h₂⟩ rw [← smul_eq_iff_eq_inv_smul, smul_singleton] at h₂ refine ⟨_, ?_, h₂⟩ rw [← this] simp only [mem_smul_iff', allPerm_inv_sderiv', inv_smul_smul] exact h₁ · rintro ⟨y, h, rfl⟩ refine ⟨(ρ ↘ hβ ↘ hγ)⁻¹ • y, ?_, ?_⟩ · rwa [← allPerm_inv_sderiv', ← mem_smul_iff', this] · simp only [smul_singleton, allPerm_inv_sderiv'] include hγ in theorem supports_of_supports_singletons {S : Support α} {s : Set (TSet β)} (h : ∀ x ∈ s, S.Supports {x}') : ∃ S : Support β, ∀ x ∈ s, S.Supports x := ⟨_, λ x hx ↦ (h x hx).ofSingleton hβ hγ⟩ theorem exists_common_support_of_internallyWellOrdered {x : TSet δ} (h : InternallyWellOrdered hγ hδ hε x) : ∃ S : Support δ, ∀ y, y ∈' x → S.Supports {y}' := by obtain ⟨S, hS⟩ := exists_common_support_of_internallyWellOrdered' hγ hδ hε h have := supports_of_supports_singletons (S := S) (s := singleton hδ '' (singleton hε '' {y | y ∈' x})) hγ hδ ?_ swap · simp only [Set.mem_image, Set.mem_setOf_eq, exists_exists_and_eq_and, forall_exists_index, and_imp, forall_apply_eq_imp_iff₂] exact hS obtain ⟨T, hT⟩ := this have := supports_of_supports_singletons (S := T) (s := singleton hε '' {y | y ∈' x}) hδ hε ?_ swap · simp only [Set.mem_image, Set.mem_setOf_eq, forall_exists_index, and_imp, forall_apply_eq_imp_iff₂] at hT ⊢ exact hT simp only [Set.mem_image, Set.mem_setOf_eq, forall_exists_index, and_imp, forall_apply_eq_imp_iff₂] at this exact this theorem internallyWellOrdered_of_common_support_of_nontrivial {x : TSet γ} (hx : {y : TSet δ | y ∈' x}.Nontrivial) (S : Support δ) (hS : ∀ y : TSet δ, y ∈' x → S.Supports y) : InternallyWellOrdered hβ hγ hδ x := by have := exists_of_symmetric {p : TSet β | ∃ a b : TSet δ, p = ⟨a, b⟩' ∧ a ∈' x ∧ b ∈' x ∧ WellOrderingRel a b} hβ ?_ swap · use S ↗ hδ ↗ hγ ↗ hβ intro ρ hρ ext z simp only [Support.smul_scoderiv, ← allPermSderiv_forget', Support.scoderiv_inj] at hρ simp only [Set.mem_smul_set_iff_inv_smul_mem, Set.mem_setOf_eq] constructor · rintro ⟨a, b, h₁, h₂, h₃, h₄⟩ refine ⟨a, b, ?_, h₂, h₃, h₄⟩ rw [inv_smul_eq_iff] at h₁ rw [h₁, smul_op, op_inj] exact ⟨(hS a h₂).supports _ hρ, (hS b h₃).supports _ hρ⟩ · rintro ⟨a, b, h₁, h₂, h₃, h₄⟩ refine ⟨a, b, ?_, h₂, h₃, h₄⟩ rw [h₁, smul_op, op_inj] simp only [allPerm_inv_sderiv', inv_smul_eq_iff] rw [(hS a h₂).supports _ hρ, (hS b h₃).supports _ hρ] exact ⟨rfl, rfl⟩ obtain ⟨r, hr⟩ := this right use r have hr' : ∀ a b, ExternalRel hβ hγ hδ r a b ↔ a ∈' x ∧ b ∈' x ∧ WellOrderingRel a b := by intro a b rw [ExternalRel, hr] simp only [Set.mem_setOf_eq, op_inj] constructor · rintro ⟨a, b, ⟨rfl, rfl⟩, h⟩ exact h · intro h exact ⟨a, b, ⟨rfl, rfl⟩, h⟩ have hrx : ∀ a, a ∈ (ExternalRel hβ hγ hδ r).field ↔ a ∈' x := by intro a constructor · rintro (⟨b, h⟩ | ⟨b, h⟩) · rw [hr'] at h exact h.1 · rw [hr'] at h exact h.2.1 · intro h obtain ⟨b, h₁, h₂⟩ := hx.exists_ne a obtain (h₃ | h₃ | h₃) := WellOrderingRel.isWellOrder.trichotomous a b · refine Or.inl ⟨b, ?_⟩ rw [hr'] exact ⟨h, h₁, h₃⟩ · cases h₂ h₃.symm · refine Or.inr ⟨b, ?_⟩ rw [hr'] exact ⟨h₁, h, h₃⟩ refine ⟨?_, ?_⟩ swap · apply ext hδ intro z rw [mem_field_iff, hrx] refine @IsWellOrder.mk _ _ ?_ ?_ ?_ · constructor intro a b obtain (h | h | h) := WellOrderingRel.isWellOrder.trichotomous a.val b.val · apply Or.inl rw [InvImage, hr'] exact ⟨(hrx a).mp a.prop, (hrx b).mp b.prop, h⟩ · exact Or.inr (Or.inl (Subtype.val_injective h)) · apply Or.inr ∘ Or.inr rw [InvImage, hr'] exact ⟨(hrx b).mp b.prop, (hrx a).mp a.prop, h⟩ · constructor intro a b c h₁ h₂ rw [InvImage, hr'] at h₁ h₂ ⊢ exact ⟨h₁.1, h₂.2.1, WellOrderingRel.isWellOrder.trans _ _ _ h₁.2.2 h₂.2.2⟩ · constructor apply InvImage.wf refine Subrelation.wf ?_ WellOrderingRel.isWellOrder.wf intro a b h rw [hr'] at h exact h.2.2
theorem internallyWellOrdered_of_common_support {x : TSet γ} (S : Support δ) (hS : ∀ y : TSet δ, y ∈' x → S.Supports y) : InternallyWellOrdered hβ hγ hδ x
ConNF.internallyWellOrdered_of_common_support
{ "commit": "66f4e3291020d4198ca6ede816acae5cee584a07", "date": "2025-01-06T00:00:00" }
{ "commit": "1c08486feb882444888c228ce1501e92bb85e0e2", "date": "2025-01-07T00:00:00" }
ConNF/ConNF/External/WellOrder.lean
ConNF.External.WellOrder
ConNF.External.WellOrder.jsonl
{ "lineInFile": 251, "tokenPositionInFile": 8640, "theoremPositionInFile": 10 }
{ "inFilePremises": true, "numInFilePremises": 3, "repositoryPremises": true, "numRepositoryPremises": 16, "numPremises": 36 }
{ "hasProof": true, "proof": ":= by\n obtain (hx | hx) := Set.subsingleton_or_nontrivial {y : TSet δ | y ∈' x}\n · exact Or.inl hx\n · exact internallyWellOrdered_of_common_support_of_nontrivial hβ hγ hδ hx S hS", "proofType": "tactic", "proofLengthLines": 3, "proofLengthTokens": 181 }
import ConNF.Model.Result /-! # New file In this file... ## Main declarations * `ConNF.foo`: Something new. -/ noncomputable section universe u open Cardinal Ordinal ConNF.TSet namespace ConNF variable [Params.{u}] {α β γ δ ε ζ : Λ} (hβ : (β : TypeIndex) < α) (hγ : (γ : TypeIndex) < β) (hδ : (δ : TypeIndex) < γ) (hε : (ε : TypeIndex) < δ) (hζ : (ζ : TypeIndex) < ε) def union (x y : TSet α) : TSet α := (xᶜ' ⊓' yᶜ')ᶜ' notation:68 x:68 " ⊔[" h "] " y:68 => _root_.ConNF.union h x y notation:68 x:68 " ⊔' " y:68 => x ⊔[by assumption] y @[simp] theorem mem_union_iff (x y : TSet α) : ∀ z : TSet β, z ∈' x ⊔' y ↔ z ∈' x ∨ z ∈' y := by rw [union] intro z rw [mem_compl_iff, mem_inter_iff, mem_compl_iff, mem_compl_iff, or_iff_not_and_not] def higherIndex (α : Λ) : Λ := (exists_gt α).choose theorem lt_higherIndex {α : Λ} : (α : TypeIndex) < higherIndex α := WithBot.coe_lt_coe.mpr (exists_gt α).choose_spec theorem tSet_nonempty (h : ∃ β : Λ, (β : TypeIndex) < α) : Nonempty (TSet α) := by obtain ⟨α', hα⟩ := h constructor apply typeLower lt_higherIndex lt_higherIndex lt_higherIndex hα apply cardinalOne lt_higherIndex lt_higherIndex def empty : TSet α := (tSet_nonempty ⟨β, hβ⟩).some ⊓' (tSet_nonempty ⟨β, hβ⟩).someᶜ' @[simp] theorem mem_empty_iff : ∀ x : TSet β, ¬x ∈' empty hβ := by intro x rw [empty, mem_inter_iff, mem_compl_iff] exact and_not_self def univ : TSet α := (empty hβ)ᶜ' @[simp] theorem mem_univ_iff : ∀ x : TSet β, x ∈' univ hβ := by intro x simp only [univ, mem_compl_iff, mem_empty_iff, not_false_eq_true] /-- The set of all ordered pairs. -/ def orderedPairs : TSet α := vCross hβ hγ hδ (univ hδ) @[simp] theorem mem_orderedPairs_iff (x : TSet β) : x ∈' orderedPairs hβ hγ hδ ↔ ∃ a b, x = ⟨a, b⟩' := by simp only [orderedPairs, vCross_spec, mem_univ_iff, and_true] def converse (x : TSet α) : TSet α := converse' hβ hγ hδ x ⊓' orderedPairs hβ hγ hδ @[simp] theorem op_mem_converse_iff (x : TSet α) : ∀ a b, ⟨a, b⟩' ∈' converse hβ hγ hδ x ↔ ⟨b, a⟩' ∈' x := by intro a b simp only [converse, mem_inter_iff, converse'_spec, mem_orderedPairs_iff, op_inj, exists_and_left, exists_eq', and_true] def cross (x y : TSet γ) : TSet α := converse hβ hγ hδ (vCross hβ hγ hδ x) ⊓' vCross hβ hγ hδ y @[simp] theorem mem_cross_iff (x y : TSet γ) : ∀ a, a ∈' cross hβ hγ hδ x y ↔ ∃ b c, a = ⟨b, c⟩' ∧ b ∈' x ∧ c ∈' y := by intro a rw [cross, mem_inter_iff, vCross_spec] constructor · rintro ⟨h₁, b, c, rfl, h₂⟩ simp only [op_mem_converse_iff, vCross_spec, op_inj] at h₁ obtain ⟨b', c', ⟨rfl, rfl⟩, h₁⟩ := h₁ exact ⟨b, c, rfl, h₁, h₂⟩ · rintro ⟨b, c, rfl, h₁, h₂⟩ simp only [op_mem_converse_iff, vCross_spec, op_inj] exact ⟨⟨c, b, ⟨rfl, rfl⟩, h₁⟩, ⟨b, c, ⟨rfl, rfl⟩, h₂⟩⟩ def singletonImage (x : TSet β) : TSet α := singletonImage' hβ hγ hδ hε x ⊓' (cross hβ hγ hδ (cardinalOne hδ hε) (cardinalOne hδ hε)) @[simp] theorem singletonImage_spec (x : TSet β) : ∀ z w, ⟨ {z}', {w}' ⟩' ∈' singletonImage hβ hγ hδ hε x ↔ ⟨z, w⟩' ∈' x := by intro z w rw [singletonImage, mem_inter_iff, singletonImage'_spec, and_iff_left_iff_imp] intro hzw rw [mem_cross_iff] refine ⟨{z}', {w}', rfl, ?_⟩ simp only [mem_cardinalOne_iff, singleton_inj, exists_eq', and_self] theorem exists_of_mem_singletonImage {x : TSet β} {z w : TSet δ} (h : ⟨z, w⟩' ∈' singletonImage hβ hγ hδ hε x) : ∃ a b, z = {a}' ∧ w = {b}' := by simp only [singletonImage, mem_inter_iff, mem_cross_iff, op_inj, mem_cardinalOne_iff] at h obtain ⟨-, _, _, ⟨rfl, rfl⟩, ⟨a, rfl⟩, ⟨b, rfl⟩⟩ := h exact ⟨a, b, rfl, rfl⟩ /-- Turn a model element encoding a relation into an actual relation. -/ def ExternalRel (r : TSet α) : Rel (TSet δ) (TSet δ) := λ x y ↦ ⟨x, y⟩' ∈' r @[simp] theorem externalRel_converse (r : TSet α) : ExternalRel hβ hγ hδ (converse hβ hγ hδ r) = (ExternalRel hβ hγ hδ r).inv := by ext simp only [ExternalRel, op_mem_converse_iff, Rel.inv_apply] /-- The codomain of a relation. -/ def codom (r : TSet α) : TSet γ := (typeLower lt_higherIndex hβ hγ hδ (singletonImage lt_higherIndex hβ hγ hδ r)ᶜ[lt_higherIndex])ᶜ' @[simp] theorem mem_codom_iff (r : TSet α) (x : TSet δ) : x ∈' codom hβ hγ hδ r ↔ x ∈ (ExternalRel hβ hγ hδ r).codom := by simp only [codom, mem_compl_iff, mem_typeLower_iff, not_forall, not_not] constructor · rintro ⟨y, hy⟩ obtain ⟨a, b, rfl, hb⟩ := exists_of_mem_singletonImage lt_higherIndex hβ hγ hδ hy rw [singleton_inj] at hb subst hb rw [singletonImage_spec] at hy exact ⟨a, hy⟩ · rintro ⟨a, ha⟩ use {a}' rw [singletonImage_spec] exact ha /-- The domain of a relation. -/ def dom (r : TSet α) : TSet γ := codom hβ hγ hδ (converse hβ hγ hδ r) @[simp] theorem mem_dom_iff (r : TSet α) (x : TSet δ) : x ∈' dom hβ hγ hδ r ↔ x ∈ (ExternalRel hβ hγ hδ r).dom := by rw [dom, mem_codom_iff, externalRel_converse, Rel.inv_codom] /-- The field of a relation. -/ def field (r : TSet α) : TSet γ := dom hβ hγ hδ r ⊔' codom hβ hγ hδ r @[simp] theorem mem_field_iff (r : TSet α) (x : TSet δ) : x ∈' field hβ hγ hδ r ↔ x ∈ (ExternalRel hβ hγ hδ r).field := by rw [field, mem_union_iff, mem_dom_iff, mem_codom_iff, Rel.field, Set.mem_union] def subset : TSet α := subset' hβ hγ hδ hε ⊓' orderedPairs hβ hγ hδ @[simp] theorem subset_spec : ∀ a b, ⟨a, b⟩' ∈' subset hβ hγ hδ hε ↔ a ⊆[TSet ε] b := by intro a b simp only [subset, mem_inter_iff, subset'_spec, mem_orderedPairs_iff, op_inj, exists_and_left, exists_eq', and_true] def membership : TSet α := subset hβ hγ hδ hε ⊓' cross hβ hγ hδ (cardinalOne hδ hε) (univ hδ) @[simp] theorem membership_spec : ∀ a b, ⟨{a}', b⟩' ∈' membership hβ hγ hδ hε ↔ a ∈' b := by intro a b rw [membership, mem_inter_iff, subset_spec] simp only [mem_cross_iff, op_inj, mem_cardinalOne_iff, mem_univ_iff, and_true, exists_and_right, exists_and_left, exists_eq', exists_eq_left', singleton_inj] constructor · intro h exact h a ((typedMem_singleton_iff' hε a a).mpr rfl) · intro h c hc simp only [typedMem_singleton_iff'] at hc cases hc exact h def powerset (x : TSet β) : TSet α := dom lt_higherIndex lt_higherIndex hβ (subset lt_higherIndex lt_higherIndex hβ hγ ⊓[lt_higherIndex] vCross lt_higherIndex lt_higherIndex hβ {x}') @[simp] theorem mem_powerset_iff (x y : TSet β) : x ∈' powerset hβ hγ y ↔ x ⊆[TSet γ] y := by rw [powerset, mem_dom_iff] constructor · rintro ⟨z, h⟩ simp only [ExternalRel, mem_inter_iff, subset_spec, vCross_spec, op_inj, typedMem_singleton_iff', exists_eq_right, exists_and_right, exists_eq', true_and] at h cases h.2 exact h.1 · intro h refine ⟨y, ?_⟩ simp only [ExternalRel, mem_inter_iff, subset_spec, h, vCross_spec, op_inj, typedMem_singleton_iff', exists_eq_right, and_true, exists_eq', and_self] /-- The set `ι²''x = {{{a}} | a ∈ x}`. -/ def doubleSingleton (x : TSet γ) : TSet α := cross hβ hγ hδ x x ⊓' cardinalOne hβ hγ @[simp] theorem mem_doubleSingleton_iff (x : TSet γ) : ∀ y : TSet β, y ∈' doubleSingleton hβ hγ hδ x ↔ ∃ z : TSet δ, z ∈' x ∧ y = { {z}' }' := by intro y rw [doubleSingleton, mem_inter_iff, mem_cross_iff, mem_cardinalOne_iff] constructor · rintro ⟨⟨b, c, h₁, h₂, h₃⟩, ⟨a, rfl⟩⟩ obtain ⟨hbc, rfl⟩ := (op_eq_singleton_iff _ _ _ _ _).mp h₁.symm exact ⟨c, h₃, rfl⟩ · rintro ⟨z, h, rfl⟩ constructor · refine ⟨z, z, ?_⟩ rw [eq_comm, op_eq_singleton_iff] tauto · exact ⟨_, rfl⟩ /-- The union of a set of *singletons*: `ι⁻¹''x = {a | {a} ∈ x}`. -/ def singletonUnion (x : TSet α) : TSet β := typeLower lt_higherIndex lt_higherIndex hβ hγ (vCross lt_higherIndex lt_higherIndex hβ x) @[simp] theorem mem_singletonUnion_iff (x : TSet α) : ∀ y : TSet γ, y ∈' singletonUnion hβ hγ x ↔ {y}' ∈' x := by intro y simp only [singletonUnion, mem_typeLower_iff, vCross_spec, op_inj] constructor · intro h obtain ⟨a, b, ⟨rfl, rfl⟩, hy⟩ := h {y}' exact hy · intro h b exact ⟨b, _, ⟨rfl, rfl⟩, h⟩ /-- The union of a set of sets. ``` singletonUnion dom {⟨{a}, b⟩ | a ∈ b} ∩ (1 × x) = singletonUnion dom {⟨{a}, b⟩ | a ∈ b ∧ b ∈ x} = singletonUnion {{a} | a ∈ b ∧ b ∈ x} = {a | a ∈ b ∧ b ∈ x} = ⋃ x ``` -/ def sUnion (x : TSet α) : TSet β := singletonUnion hβ hγ (dom lt_higherIndex lt_higherIndex hβ (membership lt_higherIndex lt_higherIndex hβ hγ ⊓[lt_higherIndex] cross lt_higherIndex lt_higherIndex hβ (cardinalOne hβ hγ) x)) @[simp] theorem mem_sUnion_iff (x : TSet α) : ∀ y : TSet γ, y ∈' sUnion hβ hγ x ↔ ∃ t : TSet β, t ∈' x ∧ y ∈' t := by intro y simp only [sUnion, mem_singletonUnion_iff, mem_dom_iff, Rel.dom, ExternalRel, mem_inter_iff, mem_cross_iff, op_inj, mem_cardinalOne_iff, Set.mem_setOf_eq, membership_spec] constructor · rintro ⟨z, h₁, a, b, ⟨rfl, rfl⟩, ⟨c, h₂⟩, h₃⟩ rw [singleton_inj] at h₂ cases h₂ exact ⟨z, h₃, h₁⟩ · rintro ⟨z, h₂, h₃⟩ exact ⟨z, h₃, _, _, ⟨rfl, rfl⟩, ⟨y, rfl⟩, h₂⟩ theorem exists_smallUnion (s : Set (TSet α)) (hs : Small s) : ∃ x : TSet α, ∀ y : TSet β, y ∈' x ↔ ∃ t ∈ s, y ∈' t := by apply exists_of_symmetric have := exists_support (α := α) choose S hS using this refine ⟨⟨Enumeration.ofSet (⋃ t ∈ s, (S t)ᴬ) ?_, Enumeration.ofSet (⋃ t ∈ s, (S t)ᴺ) ?_⟩, ?_⟩ · apply small_biUnion hs intros exact (S _)ᴬ.coe_small · apply small_biUnion hs intros exact (S _)ᴺ.coe_small intro ρ hρ suffices ∀ t ∈ s, ρ • t = t by ext y rw [Set.mem_smul_set_iff_inv_smul_mem] constructor · rintro ⟨t, h₁, h₂⟩ refine ⟨t, h₁, ?_⟩ rw [← this t h₁] rwa [mem_smul_iff', allPerm_inv_sderiv'] · rintro ⟨t, h₁, h₂⟩ refine ⟨t, h₁, ?_⟩ have := this t h₁ rw [smul_eq_iff_eq_inv_smul] at this rwa [this, mem_smul_iff', inv_inv, smul_inv_smul] intro t ht apply (hS t).supports ρ refine smul_eq_of_le ?_ hρ intro A constructor · intro a ha rw [← Support.derivBot_atoms, Support.mk_atoms, ← Enumeration.mem_path_iff, Enumeration.mem_ofSet_iff, Set.mem_iUnion] use t rw [Set.mem_iUnion] use ht exact ha · intro a ha rw [← Support.derivBot_nearLitters, Support.mk_nearLitters, ← Enumeration.mem_path_iff, Enumeration.mem_ofSet_iff, Set.mem_iUnion] use t rw [Set.mem_iUnion] use ht exact ha /-- Our model is `κ`-complete; small unions exist. In particular, the model knows the correct natural numbers. -/ def smallUnion (s : Set (TSet α)) (hs : Small s) : TSet α := (exists_smallUnion hβ s hs).choose
@[simp] theorem mem_smallUnion_iff (s : Set (TSet α)) (hs : Small s) : ∀ x : TSet β, x ∈' smallUnion hβ s hs ↔ ∃ t ∈ s, x ∈' t
ConNF.mem_smallUnion_iff
{ "commit": "66f4e3291020d4198ca6ede816acae5cee584a07", "date": "2025-01-06T00:00:00" }
{ "commit": "6dd8406a01cc28b071bb26965294469664a1b592", "date": "2025-01-07T00:00:00" }
ConNF/ConNF/External/Basic.lean
ConNF.External.Basic
ConNF.External.Basic.jsonl
{ "lineInFile": 341, "tokenPositionInFile": 10620, "theoremPositionInFile": 42 }
{ "inFilePremises": true, "numInFilePremises": 2, "repositoryPremises": true, "numRepositoryPremises": 12, "numPremises": 29 }
{ "hasProof": true, "proof": ":=\n (exists_smallUnion hβ s hs).choose_spec", "proofType": "term", "proofLengthLines": 1, "proofLengthTokens": 44 }
import ConNF.External.Basic /-! # New file In this file... ## Main declarations * `ConNF.foo`: Something new. -/ noncomputable section universe u open Cardinal Ordinal ConNF.TSet namespace ConNF variable [Params.{u}] {α β γ δ ε ζ : Λ} (hβ : (β : TypeIndex) < α) (hγ : (γ : TypeIndex) < β) (hδ : (δ : TypeIndex) < γ) (hε : (ε : TypeIndex) < δ) (hζ : (ζ : TypeIndex) < ε) /-- A set in our model that is a well-order. Internal well-orders are exactly external well-orders, so we externalise the definition for convenience. -/ def InternalWellOrder (r : TSet α) : Prop := IsWellOrder (ExternalRel hβ hγ hδ r).field (InvImage (ExternalRel hβ hγ hδ r) Subtype.val) def InternallyWellOrdered (x : TSet γ) : Prop := {y : TSet δ | y ∈' x}.Subsingleton ∨ (∃ r, InternalWellOrder hβ hγ hδ r ∧ x = field hβ hγ hδ r) @[simp] theorem externalRel_smul (r : TSet α) (ρ : AllPerm α) : ExternalRel hβ hγ hδ (ρ • r) = InvImage (ExternalRel hβ hγ hδ r) ((ρ ↘ hβ ↘ hγ ↘ hδ)⁻¹ • ·) := by ext a b simp only [ExternalRel, mem_smul_iff', allPerm_inv_sderiv', smul_op, InvImage] omit [Params] in /-- Well-orders are rigid. -/ theorem apply_eq_of_isWellOrder {X : Type _} {r : Rel X X} {f : X → X} (hr : IsWellOrder X r) (hf : Function.Bijective f) (hf' : ∀ x y, r x y ↔ r (f x) (f y)) : ∀ x, f x = x := by let emb : r ≼i r := ⟨⟨⟨f, hf.injective⟩, λ {a b} ↦ (hf' a b).symm⟩, ?_⟩ · have : emb = InitialSeg.refl r := Subsingleton.elim _ _ intro x exact congr_arg (λ f ↦ f x) this · intro a b h exact hf.surjective _ omit [Params] in
theorem apply_eq_of_isWellOrder' {X : Type _} {r : Rel X X} {f : X → X} (hr : IsWellOrder r.field (InvImage r Subtype.val)) (hf : Function.Bijective f) (hf' : ∀ x y, r x y ↔ r (f x) (f y)) : ∀ x ∈ r.field, f x = x
ConNF.apply_eq_of_isWellOrder'
{ "commit": "66f4e3291020d4198ca6ede816acae5cee584a07", "date": "2025-01-06T00:00:00" }
{ "commit": "1c08486feb882444888c228ce1501e92bb85e0e2", "date": "2025-01-07T00:00:00" }
ConNF/ConNF/External/WellOrder.lean
ConNF.External.WellOrder
ConNF.External.WellOrder.jsonl
{ "lineInFile": 52, "tokenPositionInFile": 1567, "theoremPositionInFile": 4 }
{ "inFilePremises": true, "numInFilePremises": 1, "repositoryPremises": true, "numRepositoryPremises": 2, "numPremises": 45 }
{ "hasProof": true, "proof": ":= by\n have : ∀ x ∈ r.field, f x ∈ r.field := by\n rintro x (⟨y, h⟩ | ⟨y, h⟩)\n · exact Or.inl ⟨f y, (hf' x y).mp h⟩\n · exact Or.inr ⟨f y, (hf' y x).mp h⟩\n have := apply_eq_of_isWellOrder (f := λ x ↦ ⟨f x.val, this x.val x.prop⟩) hr ⟨?_, ?_⟩ ?_\n · intro x hx\n exact congr_arg Subtype.val (this ⟨x, hx⟩)\n · intro x y h\n rw [Subtype.mk.injEq] at h\n exact Subtype.val_injective (hf.injective h)\n · intro x\n obtain ⟨y, hy⟩ := hf.surjective x.val\n refine ⟨⟨y, ?_⟩, ?_⟩\n · obtain (⟨z, h⟩ | ⟨z, h⟩) := x.prop <;>\n rw [← hy] at h <;>\n obtain ⟨z, rfl⟩ := hf.surjective z\n · exact Or.inl ⟨z, (hf' y z).mpr h⟩\n · exact Or.inr ⟨z, (hf' z y).mpr h⟩\n · simp only [hy]\n · intros\n apply hf'", "proofType": "tactic", "proofLengthLines": 21, "proofLengthTokens": 739 }
import ConNF.Model.Externalise /-! # New file In this file... ## Main declarations * `ConNF.foo`: Something new. -/ noncomputable section universe u open Cardinal Ordinal namespace ConNF variable [Params.{u}] {β γ : Λ} {hγ : (γ : TypeIndex) < β} namespace Support theorem not_mem_scoderiv_botDeriv (S : Support γ) (N : NearLitter) : N ∉ (S ↗ hγ ⇘. (Path.nil ↘.))ᴺ := by rintro ⟨i, ⟨A, N'⟩, h₁, h₂⟩ simp only [Prod.mk.injEq] at h₂ cases A case sderiv δ A hδ _ => simp only [Path.deriv_sderiv] at h₂ cases A case nil => cases h₂.1 case sderiv ζ A hζ _ => simp only [Path.deriv_sderiv] at h₂ cases h₂.1 variable [Level] [LtLevel β] theorem not_mem_strong_botDeriv (S : Support γ) (N : NearLitter) : N ∉ ((S ↗ hγ).strong ⇘. (Path.nil ↘.))ᴺ := by rintro h rw [strong, close_nearLitters, preStrong_nearLitters, Enumeration.mem_add_iff] at h obtain h | h := h · exact not_mem_scoderiv_botDeriv S N h · rw [mem_constrainsNearLitters_nearLitters] at h obtain ⟨B, N', hN', h⟩ := h cases h using Relation.ReflTransGen.head_induction_on case refl => exact not_mem_scoderiv_botDeriv S N hN' case head x hx₁ hx₂ _ => obtain ⟨⟨γ, δ, ε, hδ, hε, hδε, A⟩, t, B, hB, hN, ht⟩ := hx₂ simp only at hB cases B case nil => cases hB obtain ⟨C, N''⟩ := x simp only at ht cases ht.1 change _ ∈ t.supportᴺ at hN rw [t.support_supports.2 rfl] at hN obtain ⟨i, hN⟩ := hN cases hN case sderiv δ B hδ _ _ => cases B case nil => cases hB case sderiv ζ B hζ _ _ => cases hB theorem raise_preStrong' (S : Support α) (hS : S.Strong) (T : Support γ) (ρ : AllPerm β) (hγ : (γ : TypeIndex) < β) : (S + (ρᵁ • ((T ↗ hγ).strong + (S ↘ LtLevel.elim + (T ↗ hγ).strong).interferenceSupport)) ↗ LtLevel.elim).PreStrong := by apply hS.toPreStrong.add constructor intro A N hN P t hA ht obtain ⟨A, rfl⟩ := eq_of_nearLitter_mem_scoderiv_botDeriv hN simp only [scoderiv_botDeriv_eq, add_derivBot, smul_derivBot, BaseSupport.add_nearLitters, BaseSupport.smul_nearLitters, interferenceSupport_nearLitters, Enumeration.mem_add_iff, Enumeration.mem_smul, Enumeration.not_mem_empty, or_false] at hN obtain ⟨δ, ε, ζ, hε, hζ, hεζ, B⟩ := P dsimp only at * cases A case sderiv ζ' A hζ' _ => rw [← Path.coderiv_deriv] at hA cases Path.sderiv_index_injective hA apply Path.sderiv_left_inj.mp at hA cases A case nil => cases hA cases not_mem_strong_botDeriv T _ hN case sderiv ι A hι _ _ => rw [← Path.coderiv_deriv] at hA cases Path.sderiv_index_injective hA cases hA haveI : LtLevel δ := ⟨A.le.trans_lt LtLevel.elim⟩ haveI : LtLevel ε := ⟨hε.trans LtLevel.elim⟩ haveI : LtLevel ζ := ⟨hζ.trans LtLevel.elim⟩ have := (T ↗ hγ).strong_strong.support_le hN ⟨δ, ε, ζ, hε, hζ, hεζ, A⟩ (ρ⁻¹ ⇘ A ↘ hε • t) rfl ?_ · simp only [Tangle.smul_support, allPermSderiv_forget, allPermDeriv_forget, allPermForget_inv, Tree.inv_deriv, Tree.inv_sderiv] at this have := smul_le_smul this (ρᵁ ⇘ A ↘ hε) simp only [smul_inv_smul] at this apply le_trans this intro B constructor · intro a ha simp only [smul_derivBot, Tree.sderiv_apply, Tree.deriv_apply, Path.deriv_scoderiv, deriv_derivBot, Enumeration.mem_smul] at ha rw [deriv_derivBot, ← Path.deriv_scoderiv, Path.coderiv_deriv', scoderiv_botDeriv_eq,] simp only [Path.deriv_scoderiv, add_derivBot, smul_derivBot, BaseSupport.add_atoms, BaseSupport.smul_atoms, Enumeration.mem_add_iff, Enumeration.mem_smul] exact Or.inl ha · intro N hN simp only [smul_derivBot, Tree.sderiv_apply, Tree.deriv_apply, Path.deriv_scoderiv, deriv_derivBot, Enumeration.mem_smul] at hN rw [deriv_derivBot, ← Path.deriv_scoderiv, Path.coderiv_deriv', scoderiv_botDeriv_eq,] simp only [Path.deriv_scoderiv, add_derivBot, smul_derivBot, BaseSupport.add_nearLitters, BaseSupport.smul_nearLitters, Enumeration.mem_add_iff, Enumeration.mem_smul] exact Or.inl hN · rw [← smul_fuzz hε hζ hεζ, ← ht] simp only [Path.botSderiv_coe_eq, BasePerm.smul_nearLitter_litter, allPermDeriv_forget, allPermForget_inv, Tree.inv_deriv, Tree.inv_sderiv, Tree.inv_sderivBot] rfl theorem raise_closed' (S : Support α) (hS : S.Strong) (T : Support γ) (ρ : AllPerm β) (hγ : (γ : TypeIndex) < β) (hρ : ρᵁ • (S ↘ LtLevel.elim : Support β) = S ↘ LtLevel.elim) : (S + (ρᵁ • ((T ↗ hγ).strong + (S ↘ LtLevel.elim + (T ↗ hγ).strong).interferenceSupport)) ↗ LtLevel.elim).Closed := by constructor intro A constructor intro N₁ N₂ hN₁ hN₂ a ha simp only [add_derivBot, BaseSupport.add_nearLitters, Enumeration.mem_add_iff, BaseSupport.add_atoms] at hN₁ hN₂ ⊢ obtain hN₁ | hN₁ := hN₁ · obtain hN₂ | hN₂ := hN₂ · exact Or.inl ((hS.closed A).interference_subset hN₁ hN₂ a ha) · obtain ⟨B, rfl⟩ := eq_of_nearLitter_mem_scoderiv_botDeriv hN₂ simp only [smul_add, scoderiv_botDeriv_eq, add_derivBot, smul_derivBot, BaseSupport.add_nearLitters, BaseSupport.smul_nearLitters, Enumeration.mem_add_iff, Enumeration.mem_smul, BaseSupport.add_atoms, BaseSupport.smul_atoms] at hN₁ hN₂ ⊢ refine Or.inr (Or.inr ?_) rw [mem_interferenceSupport_atoms] refine ⟨(ρᵁ B)⁻¹ • N₁, ?_, (ρᵁ B)⁻¹ • N₂, ?_, ?_⟩ · simp only [add_derivBot, BaseSupport.add_nearLitters, Enumeration.mem_add_iff] rw [← Enumeration.mem_smul, ← BaseSupport.smul_nearLitters, ← smul_derivBot, hρ] exact Or.inl hN₁ · simp only [add_derivBot, BaseSupport.add_nearLitters, Enumeration.mem_add_iff] simp only [interferenceSupport_nearLitters, Enumeration.not_mem_empty, or_false] at hN₂ exact Or.inr hN₂ · rw [← BasePerm.smul_interference] exact Set.smul_mem_smul_set ha · obtain ⟨B, rfl⟩ := eq_of_nearLitter_mem_scoderiv_botDeriv hN₁ simp only [smul_add, scoderiv_botDeriv_eq, add_derivBot, smul_derivBot, BaseSupport.add_nearLitters, BaseSupport.smul_nearLitters, Enumeration.mem_add_iff, Enumeration.mem_smul, BaseSupport.add_atoms, BaseSupport.smul_atoms] at hN₁ hN₂ ⊢ refine Or.inr (Or.inr ?_) rw [mem_interferenceSupport_atoms] refine ⟨(ρᵁ B)⁻¹ • N₁, ?_, (ρᵁ B)⁻¹ • N₂, ?_, ?_⟩ · simp only [add_derivBot, BaseSupport.add_nearLitters, Enumeration.mem_add_iff] simp only [interferenceSupport_nearLitters, Enumeration.not_mem_empty, or_false] at hN₁ exact Or.inr hN₁ · simp only [add_derivBot, BaseSupport.add_nearLitters, Enumeration.mem_add_iff] simp only [interferenceSupport_nearLitters, Enumeration.not_mem_empty, or_false] at hN₂ obtain hN₂ | hN₂ := hN₂ · rw [← Enumeration.mem_smul, ← BaseSupport.smul_nearLitters, ← smul_derivBot, hρ] exact Or.inl hN₂ · exact Or.inr hN₂ · rw [← BasePerm.smul_interference] exact Set.smul_mem_smul_set ha theorem raise_strong' (S : Support α) (hS : S.Strong) (T : Support γ) (ρ : AllPerm β) (hγ : (γ : TypeIndex) < β) (hρ : ρᵁ • (S ↘ LtLevel.elim : Support β) = S ↘ LtLevel.elim) : (S + (ρᵁ • ((T ↗ hγ).strong + (S ↘ LtLevel.elim + (T ↗ hγ).strong).interferenceSupport)) ↗ LtLevel.elim).Strong := ⟨raise_preStrong' S hS T ρ hγ, raise_closed' S hS T ρ hγ hρ⟩ theorem convAtoms_injective_of_fixes {S : Support α} {T : Support γ} {ρ₁ ρ₂ : AllPerm β} {hγ : (γ : TypeIndex) < β} (hρ₁ : ρ₁ᵁ • (S ↘ LtLevel.elim : Support β) = S ↘ LtLevel.elim) (hρ₂ : ρ₂ᵁ • (S ↘ LtLevel.elim : Support β) = S ↘ LtLevel.elim) (A : ↑α ↝ ⊥) : (convAtoms (S + (ρ₁ᵁ • ((T ↗ hγ).strong + (S ↘ LtLevel.elim + (T ↗ hγ).strong).interferenceSupport)) ↗ LtLevel.elim) (S + (ρ₂ᵁ • ((T ↗ hγ).strong + (S ↘ LtLevel.elim + (T ↗ hγ).strong).interferenceSupport)) ↗ LtLevel.elim) A).Injective := by rw [Support.smul_eq_iff] at hρ₁ hρ₂ constructor rintro a₁ a₂ a₃ ⟨i, hi₁, hi₂⟩ ⟨j, hj₁, hj₂⟩ simp only [add_derivBot, BaseSupport.add_atoms, Rel.inv_apply, Enumeration.rel_add_iff] at hi₁ hi₂ hj₁ hj₂ obtain hi₁ | ⟨i, rfl, hi₁⟩ := hi₁ · obtain hi₂ | ⟨i', rfl, _⟩ := hi₂ swap · have := Enumeration.lt_bound _ _ ⟨_, hi₁⟩ simp only [add_lt_iff_neg_left] at this cases (κ_zero_le i').not_lt this cases (Enumeration.rel_coinjective _).coinjective hi₁ hi₂ obtain hj₁ | ⟨j, rfl, hj₁⟩ := hj₁ · obtain hj₂ | ⟨j', rfl, _⟩ := hj₂ · exact (Enumeration.rel_coinjective _).coinjective hj₂ hj₁ · have := Enumeration.lt_bound _ _ ⟨_, hj₁⟩ simp only [add_lt_iff_neg_left] at this cases (κ_zero_le j').not_lt this · obtain hj₂ | hj₂ := hj₂ · have := Enumeration.lt_bound _ _ ⟨_, hj₂⟩ simp only [add_lt_iff_neg_left] at this cases (κ_zero_le j).not_lt this · simp only [add_right_inj, exists_eq_left] at hj₂ obtain ⟨B, rfl⟩ := eq_of_atom_mem_scoderiv_botDeriv ⟨j, hj₁⟩ simp only [scoderiv_botDeriv_eq, smul_derivBot, add_derivBot, BaseSupport.smul_atoms, BaseSupport.add_atoms, Enumeration.smul_rel, add_right_inj, exists_eq_left] at hj₁ hj₂ have := (Enumeration.rel_coinjective _).coinjective hj₁ hj₂ rw [← (hρ₂ B).1 a₁ ⟨_, hi₁⟩, inv_smul_smul, inv_smul_eq_iff, (hρ₁ B).1 a₁ ⟨_, hi₁⟩] at this exact this.symm · obtain ⟨B, rfl⟩ := eq_of_atom_mem_scoderiv_botDeriv ⟨i, hi₁⟩ simp only [scoderiv_botDeriv_eq, smul_derivBot, add_derivBot, BaseSupport.smul_atoms, BaseSupport.add_atoms, Enumeration.smul_rel, add_right_inj, exists_eq_left] at hi₁ hi₂ hj₁ hj₂ obtain hi₂ | hi₂ := hi₂ · have := Enumeration.lt_bound _ _ ⟨_, hi₂⟩ simp only [add_lt_iff_neg_left] at this cases (κ_zero_le i).not_lt this have hi := (Enumeration.rel_coinjective _).coinjective hi₁ hi₂ suffices hj : (ρ₁ᵁ B)⁻¹ • a₂ = (ρ₂ᵁ B)⁻¹ • a₃ by rwa [← hj, smul_left_cancel_iff] at hi obtain hj₁ | ⟨j, rfl, hj₁⟩ := hj₁ · obtain hj₂ | ⟨j', rfl, _⟩ := hj₂ · rw [← (hρ₁ B).1 a₂ ⟨_, hj₁⟩, ← (hρ₂ B).1 a₃ ⟨_, hj₂⟩, inv_smul_smul, inv_smul_smul] exact (Enumeration.rel_coinjective _).coinjective hj₁ hj₂ · have := Enumeration.lt_bound _ _ ⟨_, hj₁⟩ simp only [add_lt_iff_neg_left] at this cases (κ_zero_le j').not_lt this · obtain hj₂ | hj₂ := hj₂ · have := Enumeration.lt_bound _ _ ⟨_, hj₂⟩ simp only [add_lt_iff_neg_left] at this cases (κ_zero_le j).not_lt this · simp only [add_right_inj, exists_eq_left] at hj₂ exact (Enumeration.rel_coinjective _).coinjective hj₁ hj₂ theorem atomMemRel_le_of_fixes {S : Support α} {T : Support γ} {ρ₁ ρ₂ : AllPerm β} {hγ : (γ : TypeIndex) < β} (hρ₁ : ρ₁ᵁ • (S ↘ LtLevel.elim : Support β) = S ↘ LtLevel.elim) (hρ₂ : ρ₂ᵁ • (S ↘ LtLevel.elim : Support β) = S ↘ LtLevel.elim) (A : ↑α ↝ ⊥) : atomMemRel (S + (ρ₁ᵁ • ((T ↗ hγ).strong + (S ↘ LtLevel.elim + (T ↗ hγ).strong).interferenceSupport)) ↗ LtLevel.elim) A ≤ atomMemRel (S + (ρ₂ᵁ • ((T ↗ hγ).strong + (S ↘ LtLevel.elim + (T ↗ hγ).strong).interferenceSupport)) ↗ LtLevel.elim) A := by rw [Support.smul_eq_iff] at hρ₁ hρ₂ rintro i j ⟨N, hN, a, haN, ha⟩ simp only [add_derivBot, BaseSupport.add_atoms, Rel.inv_apply, Enumeration.rel_add_iff, BaseSupport.add_nearLitters] at ha hN obtain hN | ⟨i, rfl, hi⟩ := hN · obtain ha | ⟨j, rfl, hj⟩ := ha · exact ⟨N, Or.inl hN, a, haN, Or.inl ha⟩ · obtain ⟨B, rfl⟩ := eq_of_atom_mem_scoderiv_botDeriv ⟨j, hj⟩ simp only [scoderiv_botDeriv_eq, smul_derivBot, add_derivBot, BaseSupport.smul_atoms, BaseSupport.add_atoms, Enumeration.smul_rel] at hj hN refine ⟨N, Or.inl hN, ρ₂ᵁ B • (ρ₁ᵁ B)⁻¹ • a, ?_, ?_⟩ · dsimp only rw [← (hρ₂ B).2 N ⟨_, hN⟩, BasePerm.smul_nearLitter_atoms, Set.smul_mem_smul_set_iff] have := (hρ₁ B).2 N ⟨_, hN⟩ rw [smul_eq_iff_eq_inv_smul] at this rwa [this, BasePerm.smul_nearLitter_atoms, Set.smul_mem_smul_set_iff] · rw [Rel.inv_apply, add_derivBot, BaseSupport.add_atoms, Enumeration.rel_add_iff] simp only [add_right_inj, scoderiv_botDeriv_eq, smul_derivBot, add_derivBot, BaseSupport.smul_atoms, BaseSupport.add_atoms, Enumeration.smul_rel, inv_smul_smul, exists_eq_left] exact Or.inr hj · obtain ⟨B, rfl⟩ := eq_of_nearLitter_mem_scoderiv_botDeriv ⟨i, hi⟩ simp only [scoderiv_botDeriv_eq, smul_derivBot, add_derivBot, BaseSupport.smul_atoms, BaseSupport.add_atoms, Enumeration.smul_rel] at hi ha obtain ha | ⟨j, rfl, hj⟩ := ha · refine ⟨ρ₂ᵁ B • (ρ₁ᵁ B)⁻¹ • N, ?_, a, ?_, Or.inl ha⟩ · rw [add_derivBot, BaseSupport.add_nearLitters, Enumeration.rel_add_iff] simp only [add_right_inj, scoderiv_botDeriv_eq, smul_derivBot, add_derivBot, BaseSupport.smul_nearLitters, BaseSupport.add_nearLitters, Enumeration.smul_rel, inv_smul_smul, exists_eq_left] exact Or.inr hi · dsimp only rw [← (hρ₂ B).1 a ⟨_, ha⟩, BasePerm.smul_nearLitter_atoms, Set.smul_mem_smul_set_iff] have := (hρ₁ B).1 a ⟨_, ha⟩ rw [smul_eq_iff_eq_inv_smul] at this rwa [this, BasePerm.smul_nearLitter_atoms, Set.smul_mem_smul_set_iff] · refine ⟨ρ₂ᵁ B • (ρ₁ᵁ B)⁻¹ • N, ?_, ρ₂ᵁ B • (ρ₁ᵁ B)⁻¹ • a, ?_, ?_⟩ · rw [add_derivBot, BaseSupport.add_nearLitters, Enumeration.rel_add_iff] simp only [add_right_inj, scoderiv_botDeriv_eq, smul_derivBot, add_derivBot, BaseSupport.smul_nearLitters, BaseSupport.add_nearLitters, Enumeration.smul_rel, inv_smul_smul, exists_eq_left] exact Or.inr hi · simp only [BasePerm.smul_nearLitter_atoms, Set.smul_mem_smul_set_iff] exact haN · rw [Rel.inv_apply, add_derivBot, BaseSupport.add_atoms, Enumeration.rel_add_iff] simp only [add_right_inj, scoderiv_botDeriv_eq, smul_derivBot, add_derivBot, BaseSupport.smul_atoms, BaseSupport.add_atoms, Enumeration.smul_rel, inv_smul_smul, exists_eq_left] exact Or.inr hj theorem convNearLitters_cases {S : Support α} {T : Support γ} {ρ₁ ρ₂ : AllPerm β} {hγ : (γ : TypeIndex) < β} {A : α ↝ ⊥} {N₁ N₂ : NearLitter} : convNearLitters (S + (ρ₁ᵁ • ((T ↗ hγ).strong + (S ↘ LtLevel.elim + (T ↗ hγ).strong).interferenceSupport)) ↗ LtLevel.elim) (S + (ρ₂ᵁ • ((T ↗ hγ).strong + (S ↘ LtLevel.elim + (T ↗ hγ).strong).interferenceSupport)) ↗ LtLevel.elim) A N₁ N₂ → N₁ = N₂ ∧ N₁ ∈ (S ⇘. A)ᴺ ∨ ∃ B : β ↝ ⊥, A = B ↗ LtLevel.elim ∧ (ρ₁ᵁ B)⁻¹ • N₁ = (ρ₂ᵁ B)⁻¹ • N₂ ∧ (ρ₁ᵁ B)⁻¹ • N₁ ∈ (((T ↗ hγ).strong + (S ↘ LtLevel.elim + (T ↗ hγ).strong).interferenceSupport) ⇘. B)ᴺ := by rintro ⟨i, hN₁, hN₂⟩ simp only [add_derivBot, BaseSupport.add_nearLitters, Rel.inv_apply, Enumeration.rel_add_iff] at hN₁ hN₂ obtain hN₁ | ⟨i, rfl, hN₁⟩ := hN₁ · obtain hN₂ | ⟨i, rfl, hN₂⟩ := hN₂ swap · have := Enumeration.lt_bound _ _ ⟨_, hN₁⟩ simp only [add_lt_iff_neg_left] at this cases (κ_zero_le i).not_lt this exact Or.inl ⟨(Enumeration.rel_coinjective _).coinjective hN₁ hN₂, _, hN₁⟩ · obtain ⟨B, rfl⟩ := eq_of_nearLitter_mem_scoderiv_botDeriv ⟨i, hN₁⟩ simp only [scoderiv_botDeriv_eq, smul_derivBot, add_derivBot, BaseSupport.smul_nearLitters, BaseSupport.add_nearLitters, Enumeration.smul_rel, add_right_inj, exists_eq_left] at hN₁ hN₂ obtain hN₂ | hN₂ := hN₂ · have := Enumeration.lt_bound _ _ ⟨_, hN₂⟩ simp only [add_lt_iff_neg_left] at this cases (κ_zero_le i).not_lt this exact Or.inr ⟨B, rfl, (Enumeration.rel_coinjective _).coinjective hN₁ hN₂, _, hN₁⟩ theorem inflexible_of_inflexible_of_fixes {S : Support α} {T : Support γ} {ρ₁ ρ₂ : AllPerm β} {hγ : (γ : TypeIndex) < β} (hρ₁ : ρ₁ᵁ • (S ↘ LtLevel.elim : Support β) = S ↘ LtLevel.elim) (hρ₂ : ρ₂ᵁ • (S ↘ LtLevel.elim : Support β) = S ↘ LtLevel.elim) {A : α ↝ ⊥} {N₁ N₂ : NearLitter} : convNearLitters (S + (ρ₁ᵁ • ((T ↗ hγ).strong + (S ↘ LtLevel.elim + (T ↗ hγ).strong).interferenceSupport)) ↗ LtLevel.elim) (S + (ρ₂ᵁ • ((T ↗ hγ).strong + (S ↘ LtLevel.elim + (T ↗ hγ).strong).interferenceSupport)) ↗ LtLevel.elim) A N₁ N₂ → ∀ (P : InflexiblePath ↑α) (t : Tangle P.δ), A = P.A ↘ P.hε ↘. → N₁ᴸ = fuzz P.hδε t → ∃ ρ : AllPerm P.δ, N₂ᴸ = fuzz P.hδε (ρ • t) := by rintro hN ⟨γ, δ, ε, hδ, hε, hδε, A⟩ t hA ht haveI : LeLevel γ := ⟨A.le⟩ haveI : LtLevel δ := ⟨hδ.trans_le LeLevel.elim⟩ haveI : LtLevel ε := ⟨hε.trans_le LeLevel.elim⟩ obtain ⟨rfl, _⟩ | ⟨B, rfl, hN'⟩ := convNearLitters_cases hN · use 1 rw [one_smul, ht] · clear hN cases B case sderiv ε B hε' _ => rw [← Path.coderiv_deriv] at hA cases Path.sderiv_index_injective hA apply Path.sderiv_path_injective at hA cases B case nil => simp only [Path.botSderiv_coe_eq, add_derivBot, BaseSupport.add_nearLitters, interferenceSupport_nearLitters, Enumeration.add_empty] at hN' cases not_mem_strong_botDeriv _ _ hN'.2 case sderiv ζ B hζ _ _ => rw [← Path.coderiv_deriv] at hA cases Path.sderiv_index_injective hA apply Path.sderiv_path_injective at hA dsimp only at hA hζ hε' B t cases hA use (ρ₂ * ρ₁⁻¹) ⇘ B ↘ hδ rw [inv_smul_eq_iff] at hN' rw [← smul_fuzz hδ hε hδε, ← ht, hN'.1] simp only [allPermDeriv_forget, allPermForget_mul, allPermForget_inv, Tree.mul_deriv, Tree.inv_deriv, Tree.mul_sderiv, Tree.inv_sderiv, Tree.mul_sderivBot, Tree.inv_sderivBot, Path.botSderiv_coe_eq, BasePerm.smul_nearLitter_litter, mul_smul] erw [inv_smul_smul, smul_inv_smul] theorem atoms_of_inflexible_of_fixes {S : Support α} (hS : S.Strong) {T : Support γ} {ρ₁ ρ₂ : AllPerm β} {hγ : (γ : TypeIndex) < β} (hρ₁ : ρ₁ᵁ • (S ↘ LtLevel.elim : Support β) = S ↘ LtLevel.elim) (hρ₂ : ρ₂ᵁ • (S ↘ LtLevel.elim : Support β) = S ↘ LtLevel.elim) (A : α ↝ ⊥) (N₁ N₂ : NearLitter) (P : InflexiblePath ↑α) (t : Tangle P.δ) (ρ : AllPerm P.δ) : A = P.A ↘ P.hε ↘. → N₁ᴸ = fuzz P.hδε t → N₂ᴸ = fuzz P.hδε (ρ • t) → convNearLitters (S + (ρ₁ᵁ • ((T ↗ hγ).strong + (S ↘ LtLevel.elim + (T ↗ hγ).strong).interferenceSupport)) ↗ LtLevel.elim) (S + (ρ₂ᵁ • ((T ↗ hγ).strong + (S ↘ LtLevel.elim + (T ↗ hγ).strong).interferenceSupport)) ↗ LtLevel.elim) A N₁ N₂ → ∀ (B : P.δ ↝ ⊥), ∀ a ∈ (t.support ⇘. B)ᴬ, ∀ (i : κ), ((S + (ρ₁ᵁ • ((T ↗ hγ).strong + (S ↘ LtLevel.elim + (T ↗ hγ).strong).interferenceSupport)) ↗ LtLevel.elim) ⇘. (P.A ↘ P.hδ ⇘ B))ᴬ.rel i a → ((S + (ρ₂ᵁ • ((T ↗ hγ).strong + (S ↘ LtLevel.elim + (T ↗ hγ).strong).interferenceSupport)) ↗ LtLevel.elim) ⇘. (P.A ↘ P.hδ ⇘ B))ᴬ.rel i (ρᵁ B • a) := by rw [Support.smul_eq_iff] at hρ₁ hρ₂ obtain ⟨γ, δ, ε, hδ, hε, hδε, B⟩ := P haveI : LeLevel γ := ⟨B.le⟩ haveI : LtLevel δ := ⟨hδ.trans_le LeLevel.elim⟩ haveI : LtLevel ε := ⟨hε.trans_le LeLevel.elim⟩ dsimp only at t ρ ⊢ intro hA hN₁ hN₂ hN C a ha i hi obtain ⟨rfl, hN'⟩ | ⟨A, rfl, hN₁', hN₂'⟩ := convNearLitters_cases hN · have haS := (hS.support_le hN' ⟨γ, δ, ε, hδ, hε, hδε, _⟩ t hA hN₁ _).1 a ha rw [hN₂] at hN₁ have hρt := congr_arg Tangle.support (fuzz_injective hN₁) rw [Tangle.smul_support, Support.smul_eq_iff] at hρt simp only [add_derivBot, BaseSupport.add_atoms, Enumeration.rel_add_iff] at hi ⊢ rw [(hρt C).1 a ha] obtain hi | ⟨i, rfl, hi⟩ := hi · exact Or.inl hi · simp only [add_right_inj, exists_eq_left] obtain ⟨D, hD⟩ := eq_of_atom_mem_scoderiv_botDeriv ⟨i, hi⟩ cases B using Path.recScoderiv case nil => cases Path.scoderiv_index_injective hD cases Path.scoderiv_left_inj.mp hD simp only [hD, Path.coderiv_deriv, Path.coderiv_deriv', scoderiv_botDeriv_eq, smul_derivBot, add_derivBot, BaseSupport.smul_atoms, BaseSupport.add_atoms, Enumeration.smul_rel] at hi ⊢ rw [deriv_derivBot, hD] at haS rw [← (hρ₂ _).1 a haS, inv_smul_smul] rw [← (hρ₁ _).1 a haS, inv_smul_smul] at hi exact Or.inr hi case scoderiv ζ B hζ' _ => rw [Path.coderiv_deriv, Path.coderiv_deriv'] at hD cases Path.scoderiv_index_injective hD rw [Path.scoderiv_left_inj] at hD cases hD simp only [Path.coderiv_deriv, Path.coderiv_deriv', scoderiv_botDeriv_eq, smul_derivBot, add_derivBot, BaseSupport.smul_atoms, BaseSupport.add_atoms, Enumeration.smul_rel] at hi ⊢ rw [deriv_derivBot, Path.coderiv_deriv, Path.coderiv_deriv'] at haS rw [← (hρ₂ _).1 a haS, inv_smul_smul] rw [← (hρ₁ _).1 a haS, inv_smul_smul] at hi exact Or.inr hi · simp only [add_derivBot, BaseSupport.add_nearLitters, interferenceSupport_nearLitters, Enumeration.add_empty] at hN₂' cases A case sderiv ζ A hζ' _ => rw [← Path.coderiv_deriv] at hA cases Path.sderiv_index_injective hA apply Path.sderiv_path_injective at hA cases A case nil => cases hA cases not_mem_strong_botDeriv _ _ hN₂' case sderiv ζ A hζ _ _ => rw [← Path.coderiv_deriv] at hA cases Path.sderiv_index_injective hA apply Path.sderiv_path_injective at hA cases hA simp only [Path.coderiv_deriv, Path.coderiv_deriv', add_derivBot, scoderiv_botDeriv_eq, smul_derivBot, BaseSupport.add_atoms, BaseSupport.smul_atoms] at hi ⊢ have : N₂ᴸ = (ρ₂ ⇘ A)ᵁ ↘ hζ ↘. • (ρ₁⁻¹ ⇘ A)ᵁ ↘ hζ ↘. • fuzz hδε t := by rw [inv_smul_eq_iff] at hN₁' rw [hN₁', Path.botSderiv_coe_eq, BasePerm.smul_nearLitter_litter, BasePerm.smul_nearLitter_litter, smul_smul, smul_eq_iff_eq_inv_smul, mul_inv_rev, inv_inv, mul_smul, ← Tree.inv_apply, ← allPermForget_inv] at hN₁ rw [hN₁] simp only [allPermForget_inv, Tree.inv_apply, allPermDeriv_forget, Tree.inv_deriv, Tree.inv_sderiv, Tree.inv_sderivBot] rfl rw [smul_fuzz hδ hε hδε, smul_fuzz hδ hε hδε] at this have := fuzz_injective (hN₂.symm.trans this) rw [smul_smul] at this rw [t.smul_atom_eq_of_mem_support this ha] rw [Enumeration.rel_add_iff] at hi ⊢ obtain hi | ⟨i, rfl, hi⟩ := hi · left simp only [allPermForget_mul, allPermSderiv_forget, allPermDeriv_forget, allPermForget_inv, Tree.inv_deriv, Tree.inv_sderiv, Tree.mul_apply, Tree.sderiv_apply, Tree.deriv_apply, Path.deriv_scoderiv, Tree.inv_apply, mul_smul] rwa [← (hρ₁ _).1 a ⟨i, hi⟩, inv_smul_smul, (hρ₂ _).1 a ⟨i, hi⟩] · refine Or.inr ⟨i, rfl, ?_⟩ simp only [allPermForget_mul, allPermSderiv_forget, allPermDeriv_forget, allPermForget_inv, Tree.inv_deriv, Tree.inv_sderiv, Tree.mul_apply, Tree.sderiv_apply, Tree.deriv_apply, Path.deriv_scoderiv, Tree.inv_apply, mul_smul, Enumeration.smul_rel, inv_smul_smul] exact hi theorem nearLitters_of_inflexible_of_fixes {S : Support α} (hS : S.Strong) {T : Support γ} {ρ₁ ρ₂ : AllPerm β} {hγ : (γ : TypeIndex) < β} (hρ₁ : ρ₁ᵁ • (S ↘ LtLevel.elim : Support β) = S ↘ LtLevel.elim) (hρ₂ : ρ₂ᵁ • (S ↘ LtLevel.elim : Support β) = S ↘ LtLevel.elim) (A : α ↝ ⊥) (N₁ N₂ : NearLitter) (P : InflexiblePath ↑α) (t : Tangle P.δ) (ρ : AllPerm P.δ) : A = P.A ↘ P.hε ↘. → N₁ᴸ = fuzz P.hδε t → N₂ᴸ = fuzz P.hδε (ρ • t) → convNearLitters (S + (ρ₁ᵁ • ((T ↗ hγ).strong + (S ↘ LtLevel.elim + (T ↗ hγ).strong).interferenceSupport)) ↗ LtLevel.elim) (S + (ρ₂ᵁ • ((T ↗ hγ).strong + (S ↘ LtLevel.elim + (T ↗ hγ).strong).interferenceSupport)) ↗ LtLevel.elim) A N₁ N₂ → ∀ (B : P.δ ↝ ⊥), ∀ N ∈ (t.support ⇘. B)ᴺ, ∀ (i : κ), ((S + (ρ₁ᵁ • ((T ↗ hγ).strong + (S ↘ LtLevel.elim + (T ↗ hγ).strong).interferenceSupport)) ↗ LtLevel.elim) ⇘. (P.A ↘ P.hδ ⇘ B))ᴺ.rel i N → ((S + (ρ₂ᵁ • ((T ↗ hγ).strong + (S ↘ LtLevel.elim + (T ↗ hγ).strong).interferenceSupport)) ↗ LtLevel.elim) ⇘. (P.A ↘ P.hδ ⇘ B))ᴺ.rel i (ρᵁ B • N) := by rw [Support.smul_eq_iff] at hρ₁ hρ₂ obtain ⟨γ, δ, ε, hδ, hε, hδε, B⟩ := P haveI : LeLevel γ := ⟨B.le⟩ haveI : LtLevel δ := ⟨hδ.trans_le LeLevel.elim⟩ haveI : LtLevel ε := ⟨hε.trans_le LeLevel.elim⟩ dsimp only at t ρ ⊢ intro hA hN₁ hN₂ hN C N₀ hN₀ i hi obtain ⟨rfl, hN'⟩ | ⟨A, rfl, hN₁', hN₂'⟩ := convNearLitters_cases hN · have haS := (hS.support_le hN' ⟨γ, δ, ε, hδ, hε, hδε, _⟩ t hA hN₁ _).2 N₀ hN₀ rw [hN₂] at hN₁ have hρt := congr_arg Tangle.support (fuzz_injective hN₁) rw [Tangle.smul_support, Support.smul_eq_iff] at hρt simp only [add_derivBot, BaseSupport.add_nearLitters, Enumeration.rel_add_iff] at hi ⊢ rw [(hρt C).2 N₀ hN₀] obtain hi | ⟨i, rfl, hi⟩ := hi · exact Or.inl hi · simp only [add_right_inj, exists_eq_left] obtain ⟨D, hD⟩ := eq_of_nearLitter_mem_scoderiv_botDeriv ⟨i, hi⟩ cases B using Path.recScoderiv case nil => cases Path.scoderiv_index_injective hD cases Path.scoderiv_left_inj.mp hD simp only [hD, Path.coderiv_deriv, Path.coderiv_deriv', scoderiv_botDeriv_eq, smul_derivBot, add_derivBot, BaseSupport.smul_nearLitters, BaseSupport.add_nearLitters, Enumeration.smul_rel] at hi ⊢ rw [deriv_derivBot, hD] at haS rw [← (hρ₂ _).2 N₀ haS, inv_smul_smul] rw [← (hρ₁ _).2 N₀ haS, inv_smul_smul] at hi exact Or.inr hi case scoderiv ζ B hζ' _ => rw [Path.coderiv_deriv, Path.coderiv_deriv'] at hD cases Path.scoderiv_index_injective hD rw [Path.scoderiv_left_inj] at hD cases hD simp only [Path.coderiv_deriv, Path.coderiv_deriv', scoderiv_botDeriv_eq, smul_derivBot, add_derivBot, BaseSupport.smul_nearLitters, BaseSupport.add_nearLitters, Enumeration.smul_rel] at hi ⊢ rw [deriv_derivBot, Path.coderiv_deriv, Path.coderiv_deriv'] at haS rw [← (hρ₂ _).2 N₀ haS, inv_smul_smul] rw [← (hρ₁ _).2 N₀ haS, inv_smul_smul] at hi exact Or.inr hi · simp only [add_derivBot, BaseSupport.add_nearLitters, interferenceSupport_nearLitters, Enumeration.add_empty] at hN₂' cases A case sderiv ζ A hζ' _ => rw [← Path.coderiv_deriv] at hA cases Path.sderiv_index_injective hA apply Path.sderiv_path_injective at hA cases A case nil => cases hA cases not_mem_strong_botDeriv _ _ hN₂' case sderiv ζ A hζ _ _ => rw [← Path.coderiv_deriv] at hA cases Path.sderiv_index_injective hA apply Path.sderiv_path_injective at hA cases hA simp only [Path.coderiv_deriv, Path.coderiv_deriv', add_derivBot, scoderiv_botDeriv_eq, smul_derivBot, BaseSupport.add_nearLitters, BaseSupport.smul_nearLitters] at hi ⊢ have : N₂ᴸ = (ρ₂ ⇘ A)ᵁ ↘ hζ ↘. • (ρ₁⁻¹ ⇘ A)ᵁ ↘ hζ ↘. • fuzz hδε t := by rw [inv_smul_eq_iff] at hN₁' rw [hN₁', Path.botSderiv_coe_eq, BasePerm.smul_nearLitter_litter, BasePerm.smul_nearLitter_litter, smul_smul, smul_eq_iff_eq_inv_smul, mul_inv_rev, inv_inv, mul_smul, ← Tree.inv_apply, ← allPermForget_inv] at hN₁ rw [hN₁] simp only [allPermForget_inv, Tree.inv_apply, allPermDeriv_forget, Tree.inv_deriv, Tree.inv_sderiv, Tree.inv_sderivBot] rfl rw [smul_fuzz hδ hε hδε, smul_fuzz hδ hε hδε] at this have := fuzz_injective (hN₂.symm.trans this) rw [smul_smul] at this rw [t.smul_nearLitter_eq_of_mem_support this hN₀] rw [Enumeration.rel_add_iff] at hi ⊢ obtain hi | ⟨i, rfl, hi⟩ := hi · left simp only [allPermForget_mul, allPermSderiv_forget, allPermDeriv_forget, allPermForget_inv, Tree.inv_deriv, Tree.inv_sderiv, Tree.mul_apply, Tree.sderiv_apply, Tree.deriv_apply, Path.deriv_scoderiv, Tree.inv_apply, mul_smul] rwa [← (hρ₁ _).2 N₀ ⟨i, hi⟩, inv_smul_smul, (hρ₂ _).2 N₀ ⟨i, hi⟩] · refine Or.inr ⟨i, rfl, ?_⟩ simp only [allPermForget_mul, allPermSderiv_forget, allPermDeriv_forget, allPermForget_inv, Tree.inv_deriv, Tree.inv_sderiv, Tree.mul_apply, Tree.sderiv_apply, Tree.deriv_apply, Path.deriv_scoderiv, Tree.inv_apply, mul_smul, Enumeration.smul_rel, inv_smul_smul] exact hi theorem litter_eq_of_flexible_of_fixes {S : Support α} {T : Support γ} {ρ₁ ρ₂ : AllPerm β} {hγ : (γ : TypeIndex) < β} (hρ₁ : ρ₁ᵁ • (S ↘ LtLevel.elim : Support β) = S ↘ LtLevel.elim) (hρ₂ : ρ₂ᵁ • (S ↘ LtLevel.elim : Support β) = S ↘ LtLevel.elim) {A : ↑α ↝ ⊥} {N₁ N₂ N₃ N₄ : NearLitter} : convNearLitters (S + (ρ₁ᵁ • ((T ↗ hγ).strong + (S ↘ LtLevel.elim + (T ↗ hγ).strong).interferenceSupport)) ↗ LtLevel.elim) (S + (ρ₂ᵁ • ((T ↗ hγ).strong + (S ↘ LtLevel.elim + (T ↗ hγ).strong).interferenceSupport)) ↗ LtLevel.elim) A N₁ N₂ → convNearLitters (S + (ρ₁ᵁ • ((T ↗ hγ).strong + (S ↘ LtLevel.elim + (T ↗ hγ).strong).interferenceSupport)) ↗ LtLevel.elim) (S + (ρ₂ᵁ • ((T ↗ hγ).strong + (S ↘ LtLevel.elim + (T ↗ hγ).strong).interferenceSupport)) ↗ LtLevel.elim) A N₃ N₄ → ¬Inflexible A N₁ᴸ → ¬Inflexible A N₂ᴸ → ¬Inflexible A N₃ᴸ → ¬Inflexible A N₄ᴸ → N₁ᴸ = N₃ᴸ → N₂ᴸ = N₄ᴸ := by rw [Support.smul_eq_iff] at hρ₁ hρ₂ rintro ⟨i, hi₁, hi₂⟩ ⟨j, hj₁, hj₂⟩ hN₁ hN₂ hN₃ hN₄ hN₁₃ simp only [add_derivBot, BaseSupport.add_nearLitters, Rel.inv_apply, Enumeration.rel_add_iff] at hi₁ hi₂ hj₁ hj₂ obtain hi₁ | ⟨i, rfl, hi₁⟩ := hi₁ · obtain hi₂ | ⟨i, rfl, hi₂⟩ := hi₂ swap · have := Enumeration.lt_bound _ _ ⟨_, hi₁⟩ simp only [add_lt_iff_neg_left] at this cases (κ_zero_le i).not_lt this cases (Enumeration.rel_coinjective _).coinjective hi₁ hi₂ obtain hj₁ | ⟨j, rfl, hj₁⟩ := hj₁ · obtain hj₂ | ⟨j, rfl, hj₂⟩ := hj₂ swap · have := Enumeration.lt_bound _ _ ⟨_, hj₁⟩ simp only [add_lt_iff_neg_left] at this cases (κ_zero_le j).not_lt this cases (Enumeration.rel_coinjective _).coinjective hj₁ hj₂ exact hN₁₃ · simp only [add_right_inj, exists_eq_left] at hj₂ obtain hj₂ | hj₂ := hj₂ · have := Enumeration.lt_bound _ _ ⟨_, hj₂⟩ simp only [add_lt_iff_neg_left] at this cases (κ_zero_le j).not_lt this obtain ⟨A, rfl⟩ := eq_of_nearLitter_mem_scoderiv_botDeriv ⟨j, hj₁⟩ simp only [scoderiv_botDeriv_eq, smul_derivBot, add_derivBot, BaseSupport.smul_nearLitters, BaseSupport.add_nearLitters, Enumeration.smul_rel] at hj₁ hj₂ have := congr_arg (·ᴸ) ((Enumeration.rel_coinjective _).coinjective hj₁ hj₂) simp only [BasePerm.smul_nearLitter_litter] at this rw [← hN₁₃, ← (hρ₁ A).2 N₁ ⟨i, hi₁⟩, BasePerm.smul_nearLitter_litter, inv_smul_smul] at this have hN₁' := (hρ₂ A).2 N₁ ⟨i, hi₁⟩ rw [smul_eq_iff_eq_inv_smul] at hN₁' rwa [hN₁', BasePerm.smul_nearLitter_litter, smul_left_cancel_iff] at this · obtain hi₂ | hi₂ := hi₂ · have := Enumeration.lt_bound _ _ ⟨_, hi₂⟩ simp only [add_lt_iff_neg_left] at this cases (κ_zero_le i).not_lt this simp only [add_right_inj, exists_eq_left] at hi₂ obtain ⟨A, rfl⟩ := eq_of_nearLitter_mem_scoderiv_botDeriv ⟨i, hi₁⟩ simp only [scoderiv_botDeriv_eq, smul_derivBot, add_derivBot, BaseSupport.smul_nearLitters, BaseSupport.add_nearLitters, Enumeration.smul_rel] at hi₁ hi₂ hj₁ hj₂ have hN₁₂ := congr_arg (·ᴸ) ((Enumeration.rel_coinjective _).coinjective hi₁ hi₂) obtain hj₁ | ⟨j, rfl, hj₁⟩ := hj₁ · obtain hj₂ | ⟨j, rfl, hj₂⟩ := hj₂ swap · have := Enumeration.lt_bound _ _ ⟨_, hj₁⟩ simp only [add_lt_iff_neg_left] at this cases (κ_zero_le j).not_lt this cases (Enumeration.rel_coinjective _).coinjective hj₁ hj₂ simp only [BasePerm.smul_nearLitter_litter] at hN₁₂ rw [hN₁₃, ← (hρ₁ A).2 N₃ ⟨j, hj₁⟩, BasePerm.smul_nearLitter_litter, inv_smul_smul, eq_inv_smul_iff, ← BasePerm.smul_nearLitter_litter, (hρ₂ A).2 N₃ ⟨j, hj₁⟩] at hN₁₂ rw [hN₁₂] · simp only [add_right_inj, exists_eq_left] at hj₂ obtain hj₂ | hj₂ := hj₂ · have := Enumeration.lt_bound _ _ ⟨_, hj₂⟩ simp only [add_lt_iff_neg_left] at this cases (κ_zero_le j).not_lt this have hN₃₄ := congr_arg (·ᴸ) ((Enumeration.rel_coinjective _).coinjective hj₁ hj₂) simp only [BasePerm.smul_nearLitter_litter] at hN₁₂ hN₃₄ rw [hN₁₃] at hN₁₂ rwa [hN₁₂, smul_left_cancel_iff] at hN₃₄ theorem sameSpecLe_of_fixes (S : Support α) (hS : S.Strong) (T : Support γ) (ρ₁ ρ₂ : AllPerm β) (hγ : (γ : TypeIndex) < β) (hρ₁ : ρ₁ᵁ • (S ↘ LtLevel.elim : Support β) = S ↘ LtLevel.elim) (hρ₂ : ρ₂ᵁ • (S ↘ LtLevel.elim : Support β) = S ↘ LtLevel.elim) : SameSpecLE (S + (ρ₁ᵁ • ((T ↗ hγ).strong + (S ↘ LtLevel.elim + (T ↗ hγ).strong).interferenceSupport)) ↗ LtLevel.elim) (S + (ρ₂ᵁ • ((T ↗ hγ).strong + (S ↘ LtLevel.elim + (T ↗ hγ).strong).interferenceSupport)) ↗ LtLevel.elim) := by constructor case atoms_bound_eq => intro; rfl case nearLitters_bound_eq => intro; rfl case atoms_dom_subset => simp only [add_derivBot, BaseSupport.add_atoms, Enumeration.add_rel_dom, Set.union_subset_iff, Set.subset_union_left, true_and] rintro A _ ⟨i, ⟨a, ⟨A, a⟩, h₁, h₂⟩, rfl⟩ cases h₂ right apply Set.mem_image_of_mem refine ⟨ρ₂ᵁ A • (ρ₁ᵁ A)⁻¹ • a, ⟨A, ρ₂ᵁ A • (ρ₁ᵁ A)⁻¹ • a⟩, ?_, rfl⟩ rw [smul_atoms, Enumeration.smulPath_rel] at h₁ ⊢ simp only [inv_smul_smul] exact h₁ case nearLitters_dom_subset => simp only [add_derivBot, BaseSupport.add_nearLitters, Enumeration.add_rel_dom, Set.union_subset_iff, Set.subset_union_left, true_and] rintro A _ ⟨i, ⟨N, ⟨A, N⟩, h₁, h₂⟩, rfl⟩ cases h₂ right apply Set.mem_image_of_mem refine ⟨ρ₂ᵁ A • (ρ₁ᵁ A)⁻¹ • N, ⟨A, ρ₂ᵁ A • (ρ₁ᵁ A)⁻¹ • N⟩, ?_, rfl⟩ rw [smul_nearLitters, Enumeration.smulPath_rel] at h₁ ⊢ simp only [inv_smul_smul] exact h₁ case convAtoms_injective => exact convAtoms_injective_of_fixes hρ₁ hρ₂ case atomMemRel_le => exact atomMemRel_le_of_fixes hρ₁ hρ₂ case inflexible_of_inflexible => exact inflexible_of_inflexible_of_fixes hρ₁ hρ₂ case atoms_of_inflexible => exact atoms_of_inflexible_of_fixes hS hρ₁ hρ₂ case nearLitters_of_inflexible => exact nearLitters_of_inflexible_of_fixes hS hρ₁ hρ₂ case litter_eq_of_flexible => exact litter_eq_of_flexible_of_fixes hρ₁ hρ₂ theorem spec_same_of_fixes (S : Support α) (hS : S.Strong) (T : Support γ) (ρ : AllPerm β) (hρ : ρᵁ • (S ↘ LtLevel.elim : Support β) = S ↘ LtLevel.elim) : (S + ((T ↗ hγ).strong + (S ↘ LtLevel.elim + (T ↗ hγ).strong).interferenceSupport) ↗ LtLevel.elim).spec = (S + (ρᵁ • ((T ↗ hγ).strong + (S ↘ LtLevel.elim + (T ↗ hγ).strong).interferenceSupport)) ↗ LtLevel.elim).spec := by rw [Support.spec_eq_spec_iff] apply sameSpec_antisymm · have := sameSpecLe_of_fixes S hS T 1 ρ hγ ?_ hρ · simp only [allPermForget_one, one_smul, smul_add] at this exact this · simp only [allPermForget_one, one_smul] · have := sameSpecLe_of_fixes S hS T ρ 1 hγ hρ ?_ · simp only [allPermForget_one, one_smul, smul_add] at this exact this · simp only [allPermForget_one, one_smul]
theorem exists_allowable_of_fixes (S : Support α) (hS : S.Strong) (T : Support γ) (ρ : AllPerm β) (hγ : (γ : TypeIndex) < β) (hρ : ρᵁ • (S ↘ LtLevel.elim : Support β) = S ↘ LtLevel.elim) : ∃ ρ' : AllPerm α, ρ'ᵁ • S = S ∧ ρ'ᵁ ↘ LtLevel.elim ↘ hγ • T = ρᵁ ↘ hγ • T
ConNF.Support.exists_allowable_of_fixes
{ "commit": "abf71bc79c407ceb462cc2edd2d994cda9cdef05", "date": "2024-04-04T00:00:00" }
{ "commit": "2e25ffbc94af48261308cea0d8c55205cc388ef0", "date": "2024-12-01T00:00:00" }
ConNF/ConNF/Model/RaiseStrong.lean
ConNF.Model.RaiseStrong
ConNF.Model.RaiseStrong.jsonl
{ "lineInFile": 716, "tokenPositionInFile": 35436, "theoremPositionInFile": 14 }
{ "inFilePremises": true, "numInFilePremises": 2, "repositoryPremises": true, "numRepositoryPremises": 66, "numPremises": 110 }
{ "hasProof": true, "proof": ":= by\n have := spec_same_of_fixes (hγ := hγ) S hS T ρ hρ\n have := exists_conv this ?_ ?_\n · obtain ⟨ρ', hρ'⟩ := this\n use ρ'\n simp only [Support.smul_add] at hρ'\n obtain ⟨hρ'₁, hρ'₂⟩ := add_inj_of_bound_eq_bound (by rfl) (by rfl) hρ'\n rw [Support.smul_scoderiv, scoderiv_inj, smul_add] at hρ'₂\n obtain ⟨hρ'₃, -⟩ := add_inj_of_bound_eq_bound (by rfl) (by rfl) hρ'₂\n have := smul_eq_smul_of_le (T ↗ hγ).subsupport_strong.le hρ'₃\n rw [Support.smul_scoderiv, smul_scoderiv, scoderiv_inj] at this\n exact ⟨hρ'₁, this⟩\n · have := raise_strong' S hS T 1 hγ (by simp only [allPermForget_one, one_smul])\n simp only [allPermForget_one, one_smul] at this\n exact this\n · exact raise_strong' S hS T ρ hγ hρ", "proofType": "tactic", "proofLengthLines": 15, "proofLengthTokens": 727 }
import ConNF.Model.RaiseStrong /-! # New file In this file... ## Main declarations * `ConNF.foo`: Something new. -/ noncomputable section universe u open Cardinal Ordinal open scoped Pointwise namespace ConNF variable [Params.{u}] /-- A redefinition of the derivative of allowable permutations that is invariant of level, but still has nice definitional properties. -/ @[default_instance 200] instance {β γ : TypeIndex} : Derivative (AllPerm β) (AllPerm γ) β γ where deriv ρ A := A.recSderiv (motive := λ (δ : TypeIndex) (A : β ↝ δ) ↦ letI : Level := ⟨δ.recBotCoe (Nonempty.some inferInstance) id⟩ letI : LeLevel δ := ⟨δ.recBotCoe (λ _ ↦ bot_le) (λ _ h ↦ WithBot.coe_le_coe.mpr h.le) (show δ.recBotCoe (Nonempty.some inferInstance) id = Level.α from rfl)⟩ AllPerm δ) ρ (λ δ ε A h ρ ↦ letI : Level := ⟨δ.recBotCoe (Nonempty.some inferInstance) id⟩ letI : LeLevel δ := ⟨δ.recBotCoe (λ _ ↦ bot_le) (λ _ h ↦ WithBot.coe_le_coe.mpr h.le) (show δ.recBotCoe (Nonempty.some inferInstance) id = Level.α from rfl)⟩ letI : LeLevel ε := ⟨h.le.trans LeLevel.elim⟩ PreCoherentData.allPermSderiv h ρ) @[simp] theorem allPerm_deriv_nil' {β : TypeIndex} (ρ : AllPerm β) : ρ ⇘ (.nil : β ↝ β) = ρ := rfl @[simp] theorem allPerm_deriv_sderiv' {β γ δ : TypeIndex} (ρ : AllPerm β) (A : β ↝ γ) (h : δ < γ) : ρ ⇘ (A ↘ h) = ρ ⇘ A ↘ h := rfl @[simp] theorem allPermSderiv_forget' {β γ : TypeIndex} (h : γ < β) (ρ : AllPerm β) : (ρ ↘ h)ᵁ = ρᵁ ↘ h := letI : Level := ⟨β.recBotCoe (Nonempty.some inferInstance) id⟩ letI : LeLevel β := ⟨β.recBotCoe (λ _ ↦ bot_le) (λ _ h ↦ WithBot.coe_le_coe.mpr h.le) (show β.recBotCoe (Nonempty.some inferInstance) id = Level.α from rfl)⟩ letI : LeLevel γ := ⟨h.le.trans LeLevel.elim⟩ allPermSderiv_forget h ρ
@[simp] theorem allPerm_inv_sderiv' {β γ : TypeIndex} (h : γ < β) (ρ : AllPerm β) : ρ⁻¹ ↘ h = (ρ ↘ h)⁻¹
ConNF.allPerm_inv_sderiv'
{ "commit": "6fdc87c6b30b73931407a372f1430ecf0fef7601", "date": "2024-12-03T00:00:00" }
{ "commit": "2e25ffbc94af48261308cea0d8c55205cc388ef0", "date": "2024-12-01T00:00:00" }
ConNF/ConNF/Model/TTT.lean
ConNF.Model.TTT
ConNF.Model.TTT.jsonl
{ "lineInFile": 63, "tokenPositionInFile": 1837, "theoremPositionInFile": 3 }
{ "inFilePremises": true, "numInFilePremises": 2, "repositoryPremises": true, "numRepositoryPremises": 24, "numPremises": 42 }
{ "hasProof": true, "proof": ":= by\n apply allPermForget_injective\n rw [allPermSderiv_forget', allPermForget_inv, Tree.inv_sderiv, allPermForget_inv,\n allPermSderiv_forget']", "proofType": "tactic", "proofLengthLines": 3, "proofLengthTokens": 148 }