Datasets:
ArXiv:
License:
_base_ = ["../_base_/default_runtime.py"] | |
# misc custom setting | |
batch_size = 24 # bs: total bs in all gpus | |
num_worker = 48 | |
mix_prob = 0.8 | |
empty_cache = False | |
enable_amp = True | |
find_unused_parameters = True | |
# trainer | |
train = dict( | |
type="MultiDatasetTrainer", | |
) | |
# model | |
model = dict( | |
type="PPT-v1m1", | |
backbone=dict( | |
type="PT-v3m1", | |
in_channels=6, | |
order=("z", "z-trans", "hilbert", "hilbert-trans"), | |
stride=(2, 2, 2, 2), | |
enc_depths=(3, 3, 3, 6, 3), | |
enc_channels=(48, 96, 192, 384, 512), | |
enc_num_head=(3, 6, 12, 24, 32), | |
enc_patch_size=(1024, 1024, 1024, 1024, 1024), | |
dec_depths=(3, 3, 3, 3), | |
dec_channels=(64, 96, 192, 384), | |
dec_num_head=(4, 6, 12, 24), | |
dec_patch_size=(1024, 1024, 1024, 1024), | |
mlp_ratio=4, | |
qkv_bias=True, | |
qk_scale=None, | |
attn_drop=0.0, | |
proj_drop=0.0, | |
drop_path=0.3, | |
shuffle_orders=True, | |
pre_norm=True, | |
enable_rpe=False, | |
enable_flash=True, | |
upcast_attention=False, | |
upcast_softmax=False, | |
cls_mode=False, | |
pdnorm_bn=True, | |
pdnorm_ln=True, | |
pdnorm_decouple=True, | |
pdnorm_adaptive=False, | |
pdnorm_affine=True, | |
pdnorm_conditions=( | |
"S3DIS", | |
"ScanNet", | |
"Structured3D", | |
"ALC", | |
# "ScanNet200" | |
), | |
), | |
criteria=[dict(type="CrossEntropyLoss", loss_weight=1.0, ignore_index=-1), dict(type="LovaszLoss", mode="multiclass", loss_weight=1.0, ignore_index=-1)], | |
backbone_out_channels=64, | |
context_channels=256, | |
conditions=( | |
"S3DIS", | |
"ScanNet", | |
"Structured3D", | |
"ALC", | |
# "ScanNet200" | |
), | |
template="[x]", | |
clip_model="ViT-B/16", | |
class_name=( | |
"wall", | |
"floor", | |
"cabinet", | |
"bed", | |
"chair", | |
"sofa", | |
"table", | |
"door", | |
"window", | |
"bookshelf", | |
"bookcase", | |
"picture", | |
"counter", | |
"desk", | |
"shelves", | |
"curtain", | |
"dresser", | |
"pillow", | |
"mirror", | |
"ceiling", | |
"refrigerator", | |
"television", | |
"shower curtain", | |
"nightstand", | |
"toilet", | |
"sink", | |
"lamp", | |
"bathtub", | |
"garbagebin", | |
"board", | |
"beam", | |
"column", | |
"clutter", | |
"otherstructure", | |
"otherfurniture", | |
"otherprop", | |
"book", | |
"ashcan", | |
"display", | |
"cushion", | |
"box", | |
"doorframe", | |
"swivel chair", | |
"towel", | |
"backpack", | |
"chest of drawers", | |
"apparel", | |
"armchair", | |
"plant", | |
"radiator", | |
"toilet tissue", | |
"shoe", | |
"bag", | |
"bottle", | |
"countertop", | |
"coffee table", | |
"computer keyboard", | |
"fridge", | |
"stool", | |
"computer", | |
"mug", | |
"telephone", | |
"light", | |
"jacket", | |
"microwave", | |
"footstool", | |
"baggage", | |
"laptop", | |
"printer", | |
"shower stall", | |
"soap dispenser", | |
"stove", | |
"fan", | |
"paper", | |
"stand", | |
"bench", | |
"wardrobe", | |
"blanket", | |
"booth", | |
"duplicator", | |
"bar", | |
"soap dish", | |
"switch", | |
"coffee maker", | |
"decoration", | |
"range hood", | |
"blackboard", | |
"clock", | |
"railing", | |
"mat", | |
"seat", | |
"bannister", | |
"container", | |
"mouse", | |
"person", | |
"stairway", | |
"basket", | |
"dumbbell", | |
"bucket", | |
"windowsill", | |
"signboard", | |
"dishwasher", | |
"loudspeaker", | |
"washer", | |
"paper towel", | |
"clothes hamper", | |
"piano", | |
"sack", | |
"handcart", | |
"blind", | |
"dish rack", | |
"mailbox", | |
"bicycle", | |
"ladder", | |
"rack", | |
"tray", | |
"toaster", | |
"paper cutter", | |
"plunger", | |
"dryer", | |
"guitar", | |
"fire extinguisher", | |
"pitcher", | |
"pipe", | |
"plate", | |
"vacuum", | |
"bowl", | |
"hat", | |
"rod", | |
"water cooler", | |
"kettle", | |
"oven", | |
"scale", | |
"broom", | |
"hand blower", | |
"coatrack", | |
"teddy", | |
"alarm clock", | |
"ironing board", | |
"fire alarm", | |
"machine", | |
"music stand", | |
"fireplace", | |
"furniture", | |
"vase", | |
"vent", | |
"candle", | |
"crate", | |
"dustpan", | |
"earphone", | |
"jar", | |
"projector", | |
"gat", | |
"step", | |
"step stool", | |
"vending machine", | |
"coat", | |
"coat hanger", | |
"drinking fountain", | |
"hamper", | |
"thermostat", | |
"banner", | |
"iron", | |
"soap", | |
"chopping board", | |
"kitchen island", | |
"shirt", | |
"sleeping bag", | |
"tire", | |
"toothbrush", | |
"bathrobe", | |
"faucet", | |
"slipper", | |
"thermos", | |
"tripod", | |
"dispenser", | |
"heater", | |
"pool table", | |
"remote control", | |
"stapler", | |
"treadmill", | |
"beanbag", | |
"dartboard", | |
"metronome", | |
"rope", | |
"sewing machine", | |
"shredder", | |
"toolbox", | |
"water heater", | |
"brush", | |
"control", | |
"dais", | |
"dollhouse", | |
"envelope", | |
"food", | |
"frying pan", | |
"helmet", | |
"tennis racket", | |
"umbrella", | |
"couch", | |
"shelf", | |
"office chair", | |
"monitor", | |
"kitchen cabinet", | |
"clothes", | |
"tv", | |
"end table", | |
"dining table", | |
"keyboard", | |
"toilet paper", | |
"tv stand", | |
"whiteboard", | |
"trash can", | |
"closet", | |
"stairs", | |
"computer tower", | |
"bin", | |
"ottoman", | |
"washing machine", | |
"copier", | |
"sofa chair", | |
"file cabinet", | |
"shower", | |
"paper towel dispenser", | |
"blinds", | |
"suitcase", | |
"rail", | |
"recycling bin", | |
"laundry basket", | |
"clothes dryer", | |
"toilet paper holder", | |
"speaker", | |
"bathroom stall", | |
"shower wall", | |
"cup", | |
"storage bin", | |
"paper towel roll", | |
"bulletin board", | |
"kitchen counter", | |
"toilet paper dispenser", | |
"mini fridge", | |
"ball", | |
"shower curtain rod", | |
"shower door", | |
"pillar", | |
"ledge", | |
"toaster oven", | |
"toilet seat cover dispenser", | |
"cart", | |
"storage container", | |
"tissue box", | |
"light switch", | |
"power outlet", | |
"sign", | |
"closet door", | |
"vacuum cleaner", | |
"stuffed animal", | |
"headphones", | |
"guitar case", | |
"hair dryer", | |
"water bottle", | |
"handicap bar", | |
"purse", | |
"shower floor", | |
"water pitcher", | |
"paper bag", | |
"projector screen", | |
"divider", | |
"laundry detergent", | |
"bathroom counter", | |
"object", | |
"bathroom vanity", | |
"closet wall", | |
"laundry hamper", | |
"bathroom stall door", | |
"ceiling light", | |
"trash bin", | |
"stair rail", | |
"tube", | |
"bathroom cabinet", | |
"cd case", | |
"closet rod", | |
"coffee kettle", | |
"structure", | |
"shower head", | |
"keyboard piano", | |
"case of water bottles", | |
"coat rack", | |
"storage organizer", | |
"folded chair", | |
"power strip", | |
"calendar", | |
"poster", | |
"potted plant", | |
"luggage", | |
"mattress", | |
), | |
valid_index=( | |
(0, 1, 4, 5, 6, 7, 8, 10, 19, 29, 30, 31, 32), | |
(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 15, 20, 22, 24, 25, 27, 34), | |
(0, 1, 2, 3, 4, 5, 6, 7, 8, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 25, 26, 33, 34, 35), | |
( | |
0, | |
4, | |
36, | |
2, | |
7, | |
1, | |
37, | |
6, | |
8, | |
9, | |
38, | |
39, | |
40, | |
11, | |
19, | |
41, | |
13, | |
42, | |
43, | |
5, | |
25, | |
44, | |
26, | |
45, | |
46, | |
47, | |
3, | |
15, | |
18, | |
48, | |
49, | |
50, | |
51, | |
52, | |
53, | |
54, | |
55, | |
24, | |
56, | |
57, | |
58, | |
59, | |
60, | |
61, | |
62, | |
63, | |
27, | |
22, | |
64, | |
65, | |
66, | |
67, | |
68, | |
69, | |
70, | |
71, | |
72, | |
73, | |
74, | |
75, | |
76, | |
77, | |
78, | |
79, | |
80, | |
81, | |
82, | |
83, | |
84, | |
85, | |
86, | |
87, | |
88, | |
89, | |
90, | |
91, | |
92, | |
93, | |
94, | |
95, | |
96, | |
97, | |
31, | |
98, | |
99, | |
100, | |
101, | |
102, | |
103, | |
104, | |
105, | |
106, | |
107, | |
108, | |
109, | |
110, | |
111, | |
52, | |
112, | |
113, | |
114, | |
115, | |
116, | |
117, | |
118, | |
119, | |
120, | |
121, | |
122, | |
123, | |
124, | |
125, | |
126, | |
127, | |
128, | |
129, | |
130, | |
131, | |
132, | |
133, | |
134, | |
135, | |
136, | |
137, | |
138, | |
139, | |
140, | |
141, | |
142, | |
143, | |
144, | |
145, | |
146, | |
147, | |
148, | |
149, | |
150, | |
151, | |
152, | |
153, | |
154, | |
155, | |
156, | |
157, | |
158, | |
159, | |
160, | |
161, | |
162, | |
163, | |
164, | |
165, | |
166, | |
167, | |
168, | |
169, | |
170, | |
171, | |
172, | |
173, | |
174, | |
175, | |
176, | |
177, | |
178, | |
179, | |
180, | |
181, | |
182, | |
183, | |
184, | |
185, | |
186, | |
187, | |
188, | |
189, | |
190, | |
191, | |
192, | |
193, | |
194, | |
195, | |
196, | |
197, | |
198, | |
), | |
), | |
backbone_mode=False, | |
) | |
# optimizer | |
# epoch = 800 | |
# eval_epoch = 800 | |
epoch = 1000 | |
eval_epoch = 1000 | |
# epoch = 1600 | |
# eval_epoch = 1600 | |
optimizer = dict(type="AdamW", lr=0.005, weight_decay=0.05) | |
scheduler = dict( | |
type="OneCycleLR", | |
max_lr=[0.005, 0.0005], | |
pct_start=0.05, | |
anneal_strategy="cos", | |
div_factor=10.0, | |
final_div_factor=1000.0, | |
) | |
param_dicts = [dict(keyword="block", lr=0.0005)] | |
# datasets | |
data = dict( | |
num_classes=20, | |
ignore_index=-1, | |
names=["wall", "floor", "cabinet", "bed", "chair", "sofa", "table", "door", "window", "bookshelf", "picture", "counter", "desk", "curtain", "refridgerator", "shower curtain", "toilet", "sink", "bathtub", "otherfurniture"], | |
train=dict( | |
type="ConcatDataset", | |
datasets=[ | |
# # Structured3DDataset | |
# dict( | |
# type="Structured3DDataset", | |
# split=["train", "val", "test"], | |
# data_root="data/structured3d", | |
# transform=[ | |
# dict(type="CenterShift", apply_z=True), | |
# dict(type="RandomDropout", dropout_ratio=0.2, dropout_application_ratio=0.2), | |
# dict(type="RandomRotate", angle=[-1, 1], axis="z", center=[0, 0, 0], p=0.5), | |
# dict(type="RandomRotate", angle=[-0.015625, 0.015625], axis="x", p=0.5), | |
# dict(type="RandomRotate", angle=[-0.015625, 0.015625], axis="y", p=0.5), | |
# dict(type="RandomScale", scale=[0.9, 1.1]), | |
# dict(type="RandomFlip", p=0.5), | |
# dict(type="RandomJitter", sigma=0.005, clip=0.02), | |
# dict(type="ElasticDistortion", distortion_params=[[0.2, 0.4], [0.8, 1.6]]), | |
# dict(type="ChromaticAutoContrast", p=0.2, blend_factor=None), | |
# dict(type="ChromaticTranslation", p=0.95, ratio=0.05), | |
# dict(type="ChromaticJitter", p=0.95, std=0.05), | |
# dict(type="GridSample", grid_size=0.02, hash_type="fnv", mode="train", return_grid_coord=True), | |
# dict(type="SphereCrop", sample_rate=0.8, mode="random"), | |
# dict(type="SphereCrop", point_max=102400, mode="random"), | |
# dict(type="CenterShift", apply_z=False), | |
# dict(type="NormalizeColor"), | |
# dict(type="Add", keys_dict=dict(condition="Structured3D")), | |
# dict(type="ToTensor"), | |
# dict(type="Collect", keys=("coord", "grid_coord", "segment", "condition"), feat_keys=("color", "normal")), | |
# ], | |
# test_mode=False, | |
# loop=1, | |
# ), | |
# ScanNetDataset | |
dict( | |
type="ScanNetDataset", | |
split="train", | |
data_root="data/scannet", | |
transform=[ | |
dict(type="CenterShift", apply_z=True), | |
dict(type="RandomDropout", dropout_ratio=0.2, dropout_application_ratio=0.2), | |
dict(type="RandomRotate", angle=[-1, 1], axis="z", center=[0, 0, 0], p=0.5), | |
dict(type="RandomRotate", angle=[-0.015625, 0.015625], axis="x", p=0.5), | |
dict(type="RandomRotate", angle=[-0.015625, 0.015625], axis="y", p=0.5), | |
dict(type="RandomScale", scale=[0.9, 1.1]), | |
dict(type="RandomFlip", p=0.5), | |
dict(type="RandomJitter", sigma=0.005, clip=0.02), | |
dict(type="ElasticDistortion", distortion_params=[[0.2, 0.4], [0.8, 1.6]]), | |
dict(type="ChromaticAutoContrast", p=0.2, blend_factor=None), | |
dict(type="ChromaticTranslation", p=0.95, ratio=0.05), | |
dict(type="ChromaticJitter", p=0.95, std=0.05), | |
dict(type="GridSample", grid_size=0.02, hash_type="fnv", mode="train", return_grid_coord=True), | |
dict(type="SphereCrop", point_max=102400, mode="random"), | |
dict(type="CenterShift", apply_z=False), | |
dict(type="NormalizeColor"), | |
dict(type="ShufflePoint"), | |
dict(type="Add", keys_dict=dict(condition="ScanNet")), | |
dict(type="ToTensor"), | |
dict(type="Collect", keys=("coord", "grid_coord", "segment", "condition"), feat_keys=("color", "normal")), | |
], | |
test_mode=False, | |
loop=1, | |
), | |
# S3DISDataset | |
dict( | |
type="S3DISDataset", | |
split=("Area_1", "Area_2", "Area_3", "Area_4", "Area_6"), | |
data_root="data/s3dis", | |
transform=[ | |
dict(type="CenterShift", apply_z=True), | |
dict(type="RandomDropout", dropout_ratio=0.2, dropout_application_ratio=0.2), | |
dict(type="RandomRotate", angle=[-1, 1], axis="z", center=[0, 0, 0], p=0.5), | |
dict(type="RandomRotate", angle=[-0.015625, 0.015625], axis="x", p=0.5), | |
dict(type="RandomRotate", angle=[-0.015625, 0.015625], axis="y", p=0.5), | |
dict(type="RandomScale", scale=[0.9, 1.1]), | |
dict(type="RandomFlip", p=0.5), | |
dict(type="RandomJitter", sigma=0.005, clip=0.02), | |
dict(type="ChromaticAutoContrast", p=0.2, blend_factor=None), | |
dict(type="ChromaticTranslation", p=0.95, ratio=0.05), | |
dict(type="ChromaticJitter", p=0.95, std=0.05), | |
dict(type="GridSample", grid_size=0.02, hash_type="fnv", mode="train", return_grid_coord=True), | |
dict(type="SphereCrop", sample_rate=0.6, mode="random"), | |
dict(type="SphereCrop", point_max=204800, mode="random"), | |
dict(type="CenterShift", apply_z=False), | |
dict(type="NormalizeColor"), | |
dict(type="Add", keys_dict=dict(condition="S3DIS")), | |
dict(type="ToTensor"), | |
dict(type="Collect", keys=("coord", "grid_coord", "segment", "condition"), feat_keys=("color", "normal")), | |
], | |
test_mode=False, | |
loop=1, | |
), | |
# ALC | |
dict( | |
type="ARKitScenesLabelMakerConsensusDataset", | |
split=["train", "val"], | |
data_root="data/alc", | |
transform=[ | |
dict(type="CenterShift", apply_z=True), | |
dict(type="RandomDropout", dropout_ratio=0.2, dropout_application_ratio=0.2), | |
# dict(type="RandomRotateTargetAngle", angle=(1/2, 1, 3/2), center=[0, 0, 0], axis="z", p=0.75), | |
dict(type="RandomRotate", angle=[-1, 1], axis="z", center=[0, 0, 0], p=0.5), | |
dict(type="RandomRotate", angle=[-1 / 64, 1 / 64], axis="x", p=0.5), | |
dict(type="RandomRotate", angle=[-1 / 64, 1 / 64], axis="y", p=0.5), | |
dict(type="RandomScale", scale=[0.9, 1.1]), | |
# dict(type="RandomShift", shift=[0.2, 0.2, 0.2]), | |
dict(type="RandomFlip", p=0.5), | |
dict(type="RandomJitter", sigma=0.005, clip=0.02), | |
dict(type="ElasticDistortion", distortion_params=[[0.2, 0.4], [0.8, 1.6]]), | |
dict(type="ChromaticAutoContrast", p=0.2, blend_factor=None), | |
dict(type="ChromaticTranslation", p=0.95, ratio=0.05), | |
dict(type="ChromaticJitter", p=0.95, std=0.05), | |
# dict(type="HueSaturationTranslation", hue_max=0.2, saturation_max=0.2), | |
# dict(type="RandomColorDrop", p=0.2, color_augment=0.0), | |
dict( | |
type="GridSample", | |
grid_size=0.02, | |
hash_type="fnv", | |
mode="train", | |
return_grid_coord=True, | |
), | |
dict(type="SphereCrop", point_max=102400, mode="random"), | |
dict(type="CenterShift", apply_z=False), | |
dict(type="NormalizeColor"), | |
# dict(type="ShufflePoint"), | |
dict(type="Add", keys_dict=dict(condition="ALC")), | |
dict(type="ToTensor"), | |
dict( | |
type="Collect", | |
keys=("coord", "grid_coord", "segment", "condition"), | |
feat_keys=("color", "normal"), | |
), | |
], | |
test_mode=False, | |
loop=2, | |
), | |
], | |
loop=1, | |
), | |
val=dict( | |
type="ScanNetDataset", | |
split="val", | |
data_root="data/scannet", | |
transform=[ | |
dict(type="CenterShift", apply_z=True), | |
dict(type="GridSample", grid_size=0.02, hash_type="fnv", mode="train", return_grid_coord=True), | |
dict(type="CenterShift", apply_z=False), | |
dict(type="NormalizeColor"), | |
dict(type="ToTensor"), | |
dict(type="Add", keys_dict=dict(condition="ScanNet")), | |
dict(type="Collect", keys=("coord", "grid_coord", "segment", "condition"), feat_keys=("color", "normal")), | |
], | |
test_mode=False, | |
), | |
test=dict( | |
type="ScanNetDataset", | |
split="val", | |
data_root="data/scannet", | |
transform=[dict(type="CenterShift", apply_z=True), dict(type="NormalizeColor")], | |
test_mode=True, | |
test_cfg=dict( | |
voxelize=dict(type="GridSample", grid_size=0.02, hash_type="fnv", mode="test", keys=("coord", "color", "normal"), return_grid_coord=True), | |
crop=None, | |
post_transform=[ | |
dict(type="CenterShift", apply_z=False), | |
dict(type="Add", keys_dict=dict(condition="ScanNet")), | |
dict(type="ToTensor"), | |
dict(type="Collect", keys=("coord", "grid_coord", "index", "condition"), feat_keys=("color", "normal")), | |
], | |
aug_transform=[ | |
[{"type": "RandomRotateTargetAngle", "angle": [0], "axis": "z", "center": [0, 0, 0], "p": 1}], | |
[{"type": "RandomRotateTargetAngle", "angle": [0.5], "axis": "z", "center": [0, 0, 0], "p": 1}], | |
[{"type": "RandomRotateTargetAngle", "angle": [1], "axis": "z", "center": [0, 0, 0], "p": 1}], | |
[{"type": "RandomRotateTargetAngle", "angle": [1.5], "axis": "z", "center": [0, 0, 0], "p": 1}], | |
[{"type": "RandomRotateTargetAngle", "angle": [0], "axis": "z", "center": [0, 0, 0], "p": 1}, {"type": "RandomScale", "scale": [0.95, 0.95]}], | |
[{"type": "RandomRotateTargetAngle", "angle": [0.5], "axis": "z", "center": [0, 0, 0], "p": 1}, {"type": "RandomScale", "scale": [0.95, 0.95]}], | |
[{"type": "RandomRotateTargetAngle", "angle": [1], "axis": "z", "center": [0, 0, 0], "p": 1}, {"type": "RandomScale", "scale": [0.95, 0.95]}], | |
[{"type": "RandomRotateTargetAngle", "angle": [1.5], "axis": "z", "center": [0, 0, 0], "p": 1}, {"type": "RandomScale", "scale": [0.95, 0.95]}], | |
[{"type": "RandomRotateTargetAngle", "angle": [0], "axis": "z", "center": [0, 0, 0], "p": 1}, {"type": "RandomScale", "scale": [1.05, 1.05]}], | |
[{"type": "RandomRotateTargetAngle", "angle": [0.5], "axis": "z", "center": [0, 0, 0], "p": 1}, {"type": "RandomScale", "scale": [1.05, 1.05]}], | |
[{"type": "RandomRotateTargetAngle", "angle": [1], "axis": "z", "center": [0, 0, 0], "p": 1}, {"type": "RandomScale", "scale": [1.05, 1.05]}], | |
[{"type": "RandomRotateTargetAngle", "angle": [1.5], "axis": "z", "center": [0, 0, 0], "p": 1}, {"type": "RandomScale", "scale": [1.05, 1.05]}], | |
[{"type": "RandomFlip", "p": 1}], | |
], | |
), | |
), | |
) | |
# hook | |
hooks = [ | |
dict(type="CheckpointLoader"), | |
dict(type="IterationTimer", warmup_iter=2), | |
dict(type="InformationWriter"), | |
dict(type="SemSegEvaluator"), | |
dict(type="CheckpointSaver", save_freq=None), | |
dict(type="PreciseEvaluator", test_last=True), | |
] | |