Datasets:

ArXiv:
License:
ALC_pointcept / configs /scannet /semseg-pt-v3m1-1-ppt-extreme-alc.py
quantaji's picture
add preprocessing and dataset code
aee200a verified
_base_ = ["../_base_/default_runtime.py"]
# misc custom setting
batch_size = 24 # bs: total bs in all gpus
num_worker = 48
mix_prob = 0.8
empty_cache = False
enable_amp = True
find_unused_parameters = True
# trainer
train = dict(
type="MultiDatasetTrainer",
)
# model
model = dict(
type="PPT-v1m1",
backbone=dict(
type="PT-v3m1",
in_channels=6,
order=("z", "z-trans", "hilbert", "hilbert-trans"),
stride=(2, 2, 2, 2),
enc_depths=(3, 3, 3, 6, 3),
enc_channels=(48, 96, 192, 384, 512),
enc_num_head=(3, 6, 12, 24, 32),
enc_patch_size=(1024, 1024, 1024, 1024, 1024),
dec_depths=(3, 3, 3, 3),
dec_channels=(64, 96, 192, 384),
dec_num_head=(4, 6, 12, 24),
dec_patch_size=(1024, 1024, 1024, 1024),
mlp_ratio=4,
qkv_bias=True,
qk_scale=None,
attn_drop=0.0,
proj_drop=0.0,
drop_path=0.3,
shuffle_orders=True,
pre_norm=True,
enable_rpe=False,
enable_flash=True,
upcast_attention=False,
upcast_softmax=False,
cls_mode=False,
pdnorm_bn=True,
pdnorm_ln=True,
pdnorm_decouple=True,
pdnorm_adaptive=False,
pdnorm_affine=True,
pdnorm_conditions=(
"S3DIS",
"ScanNet",
"Structured3D",
"ALC",
# "ScanNet200"
),
),
criteria=[dict(type="CrossEntropyLoss", loss_weight=1.0, ignore_index=-1), dict(type="LovaszLoss", mode="multiclass", loss_weight=1.0, ignore_index=-1)],
backbone_out_channels=64,
context_channels=256,
conditions=(
"S3DIS",
"ScanNet",
"Structured3D",
"ALC",
# "ScanNet200"
),
template="[x]",
clip_model="ViT-B/16",
class_name=(
"wall",
"floor",
"cabinet",
"bed",
"chair",
"sofa",
"table",
"door",
"window",
"bookshelf",
"bookcase",
"picture",
"counter",
"desk",
"shelves",
"curtain",
"dresser",
"pillow",
"mirror",
"ceiling",
"refrigerator",
"television",
"shower curtain",
"nightstand",
"toilet",
"sink",
"lamp",
"bathtub",
"garbagebin",
"board",
"beam",
"column",
"clutter",
"otherstructure",
"otherfurniture",
"otherprop",
"book",
"ashcan",
"display",
"cushion",
"box",
"doorframe",
"swivel chair",
"towel",
"backpack",
"chest of drawers",
"apparel",
"armchair",
"plant",
"radiator",
"toilet tissue",
"shoe",
"bag",
"bottle",
"countertop",
"coffee table",
"computer keyboard",
"fridge",
"stool",
"computer",
"mug",
"telephone",
"light",
"jacket",
"microwave",
"footstool",
"baggage",
"laptop",
"printer",
"shower stall",
"soap dispenser",
"stove",
"fan",
"paper",
"stand",
"bench",
"wardrobe",
"blanket",
"booth",
"duplicator",
"bar",
"soap dish",
"switch",
"coffee maker",
"decoration",
"range hood",
"blackboard",
"clock",
"railing",
"mat",
"seat",
"bannister",
"container",
"mouse",
"person",
"stairway",
"basket",
"dumbbell",
"bucket",
"windowsill",
"signboard",
"dishwasher",
"loudspeaker",
"washer",
"paper towel",
"clothes hamper",
"piano",
"sack",
"handcart",
"blind",
"dish rack",
"mailbox",
"bicycle",
"ladder",
"rack",
"tray",
"toaster",
"paper cutter",
"plunger",
"dryer",
"guitar",
"fire extinguisher",
"pitcher",
"pipe",
"plate",
"vacuum",
"bowl",
"hat",
"rod",
"water cooler",
"kettle",
"oven",
"scale",
"broom",
"hand blower",
"coatrack",
"teddy",
"alarm clock",
"ironing board",
"fire alarm",
"machine",
"music stand",
"fireplace",
"furniture",
"vase",
"vent",
"candle",
"crate",
"dustpan",
"earphone",
"jar",
"projector",
"gat",
"step",
"step stool",
"vending machine",
"coat",
"coat hanger",
"drinking fountain",
"hamper",
"thermostat",
"banner",
"iron",
"soap",
"chopping board",
"kitchen island",
"shirt",
"sleeping bag",
"tire",
"toothbrush",
"bathrobe",
"faucet",
"slipper",
"thermos",
"tripod",
"dispenser",
"heater",
"pool table",
"remote control",
"stapler",
"treadmill",
"beanbag",
"dartboard",
"metronome",
"rope",
"sewing machine",
"shredder",
"toolbox",
"water heater",
"brush",
"control",
"dais",
"dollhouse",
"envelope",
"food",
"frying pan",
"helmet",
"tennis racket",
"umbrella",
"couch",
"shelf",
"office chair",
"monitor",
"kitchen cabinet",
"clothes",
"tv",
"end table",
"dining table",
"keyboard",
"toilet paper",
"tv stand",
"whiteboard",
"trash can",
"closet",
"stairs",
"computer tower",
"bin",
"ottoman",
"washing machine",
"copier",
"sofa chair",
"file cabinet",
"shower",
"paper towel dispenser",
"blinds",
"suitcase",
"rail",
"recycling bin",
"laundry basket",
"clothes dryer",
"toilet paper holder",
"speaker",
"bathroom stall",
"shower wall",
"cup",
"storage bin",
"paper towel roll",
"bulletin board",
"kitchen counter",
"toilet paper dispenser",
"mini fridge",
"ball",
"shower curtain rod",
"shower door",
"pillar",
"ledge",
"toaster oven",
"toilet seat cover dispenser",
"cart",
"storage container",
"tissue box",
"light switch",
"power outlet",
"sign",
"closet door",
"vacuum cleaner",
"stuffed animal",
"headphones",
"guitar case",
"hair dryer",
"water bottle",
"handicap bar",
"purse",
"shower floor",
"water pitcher",
"paper bag",
"projector screen",
"divider",
"laundry detergent",
"bathroom counter",
"object",
"bathroom vanity",
"closet wall",
"laundry hamper",
"bathroom stall door",
"ceiling light",
"trash bin",
"stair rail",
"tube",
"bathroom cabinet",
"cd case",
"closet rod",
"coffee kettle",
"structure",
"shower head",
"keyboard piano",
"case of water bottles",
"coat rack",
"storage organizer",
"folded chair",
"power strip",
"calendar",
"poster",
"potted plant",
"luggage",
"mattress",
),
valid_index=(
(0, 1, 4, 5, 6, 7, 8, 10, 19, 29, 30, 31, 32),
(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 15, 20, 22, 24, 25, 27, 34),
(0, 1, 2, 3, 4, 5, 6, 7, 8, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 25, 26, 33, 34, 35),
(
0,
4,
36,
2,
7,
1,
37,
6,
8,
9,
38,
39,
40,
11,
19,
41,
13,
42,
43,
5,
25,
44,
26,
45,
46,
47,
3,
15,
18,
48,
49,
50,
51,
52,
53,
54,
55,
24,
56,
57,
58,
59,
60,
61,
62,
63,
27,
22,
64,
65,
66,
67,
68,
69,
70,
71,
72,
73,
74,
75,
76,
77,
78,
79,
80,
81,
82,
83,
84,
85,
86,
87,
88,
89,
90,
91,
92,
93,
94,
95,
96,
97,
31,
98,
99,
100,
101,
102,
103,
104,
105,
106,
107,
108,
109,
110,
111,
52,
112,
113,
114,
115,
116,
117,
118,
119,
120,
121,
122,
123,
124,
125,
126,
127,
128,
129,
130,
131,
132,
133,
134,
135,
136,
137,
138,
139,
140,
141,
142,
143,
144,
145,
146,
147,
148,
149,
150,
151,
152,
153,
154,
155,
156,
157,
158,
159,
160,
161,
162,
163,
164,
165,
166,
167,
168,
169,
170,
171,
172,
173,
174,
175,
176,
177,
178,
179,
180,
181,
182,
183,
184,
185,
186,
187,
188,
189,
190,
191,
192,
193,
194,
195,
196,
197,
198,
),
),
backbone_mode=False,
)
# optimizer
# epoch = 800
# eval_epoch = 800
epoch = 1000
eval_epoch = 1000
# epoch = 1600
# eval_epoch = 1600
optimizer = dict(type="AdamW", lr=0.005, weight_decay=0.05)
scheduler = dict(
type="OneCycleLR",
max_lr=[0.005, 0.0005],
pct_start=0.05,
anneal_strategy="cos",
div_factor=10.0,
final_div_factor=1000.0,
)
param_dicts = [dict(keyword="block", lr=0.0005)]
# datasets
data = dict(
num_classes=20,
ignore_index=-1,
names=["wall", "floor", "cabinet", "bed", "chair", "sofa", "table", "door", "window", "bookshelf", "picture", "counter", "desk", "curtain", "refridgerator", "shower curtain", "toilet", "sink", "bathtub", "otherfurniture"],
train=dict(
type="ConcatDataset",
datasets=[
# # Structured3DDataset
# dict(
# type="Structured3DDataset",
# split=["train", "val", "test"],
# data_root="data/structured3d",
# transform=[
# dict(type="CenterShift", apply_z=True),
# dict(type="RandomDropout", dropout_ratio=0.2, dropout_application_ratio=0.2),
# dict(type="RandomRotate", angle=[-1, 1], axis="z", center=[0, 0, 0], p=0.5),
# dict(type="RandomRotate", angle=[-0.015625, 0.015625], axis="x", p=0.5),
# dict(type="RandomRotate", angle=[-0.015625, 0.015625], axis="y", p=0.5),
# dict(type="RandomScale", scale=[0.9, 1.1]),
# dict(type="RandomFlip", p=0.5),
# dict(type="RandomJitter", sigma=0.005, clip=0.02),
# dict(type="ElasticDistortion", distortion_params=[[0.2, 0.4], [0.8, 1.6]]),
# dict(type="ChromaticAutoContrast", p=0.2, blend_factor=None),
# dict(type="ChromaticTranslation", p=0.95, ratio=0.05),
# dict(type="ChromaticJitter", p=0.95, std=0.05),
# dict(type="GridSample", grid_size=0.02, hash_type="fnv", mode="train", return_grid_coord=True),
# dict(type="SphereCrop", sample_rate=0.8, mode="random"),
# dict(type="SphereCrop", point_max=102400, mode="random"),
# dict(type="CenterShift", apply_z=False),
# dict(type="NormalizeColor"),
# dict(type="Add", keys_dict=dict(condition="Structured3D")),
# dict(type="ToTensor"),
# dict(type="Collect", keys=("coord", "grid_coord", "segment", "condition"), feat_keys=("color", "normal")),
# ],
# test_mode=False,
# loop=1,
# ),
# ScanNetDataset
dict(
type="ScanNetDataset",
split="train",
data_root="data/scannet",
transform=[
dict(type="CenterShift", apply_z=True),
dict(type="RandomDropout", dropout_ratio=0.2, dropout_application_ratio=0.2),
dict(type="RandomRotate", angle=[-1, 1], axis="z", center=[0, 0, 0], p=0.5),
dict(type="RandomRotate", angle=[-0.015625, 0.015625], axis="x", p=0.5),
dict(type="RandomRotate", angle=[-0.015625, 0.015625], axis="y", p=0.5),
dict(type="RandomScale", scale=[0.9, 1.1]),
dict(type="RandomFlip", p=0.5),
dict(type="RandomJitter", sigma=0.005, clip=0.02),
dict(type="ElasticDistortion", distortion_params=[[0.2, 0.4], [0.8, 1.6]]),
dict(type="ChromaticAutoContrast", p=0.2, blend_factor=None),
dict(type="ChromaticTranslation", p=0.95, ratio=0.05),
dict(type="ChromaticJitter", p=0.95, std=0.05),
dict(type="GridSample", grid_size=0.02, hash_type="fnv", mode="train", return_grid_coord=True),
dict(type="SphereCrop", point_max=102400, mode="random"),
dict(type="CenterShift", apply_z=False),
dict(type="NormalizeColor"),
dict(type="ShufflePoint"),
dict(type="Add", keys_dict=dict(condition="ScanNet")),
dict(type="ToTensor"),
dict(type="Collect", keys=("coord", "grid_coord", "segment", "condition"), feat_keys=("color", "normal")),
],
test_mode=False,
loop=1,
),
# S3DISDataset
dict(
type="S3DISDataset",
split=("Area_1", "Area_2", "Area_3", "Area_4", "Area_6"),
data_root="data/s3dis",
transform=[
dict(type="CenterShift", apply_z=True),
dict(type="RandomDropout", dropout_ratio=0.2, dropout_application_ratio=0.2),
dict(type="RandomRotate", angle=[-1, 1], axis="z", center=[0, 0, 0], p=0.5),
dict(type="RandomRotate", angle=[-0.015625, 0.015625], axis="x", p=0.5),
dict(type="RandomRotate", angle=[-0.015625, 0.015625], axis="y", p=0.5),
dict(type="RandomScale", scale=[0.9, 1.1]),
dict(type="RandomFlip", p=0.5),
dict(type="RandomJitter", sigma=0.005, clip=0.02),
dict(type="ChromaticAutoContrast", p=0.2, blend_factor=None),
dict(type="ChromaticTranslation", p=0.95, ratio=0.05),
dict(type="ChromaticJitter", p=0.95, std=0.05),
dict(type="GridSample", grid_size=0.02, hash_type="fnv", mode="train", return_grid_coord=True),
dict(type="SphereCrop", sample_rate=0.6, mode="random"),
dict(type="SphereCrop", point_max=204800, mode="random"),
dict(type="CenterShift", apply_z=False),
dict(type="NormalizeColor"),
dict(type="Add", keys_dict=dict(condition="S3DIS")),
dict(type="ToTensor"),
dict(type="Collect", keys=("coord", "grid_coord", "segment", "condition"), feat_keys=("color", "normal")),
],
test_mode=False,
loop=1,
),
# ALC
dict(
type="ARKitScenesLabelMakerConsensusDataset",
split=["train", "val"],
data_root="data/alc",
transform=[
dict(type="CenterShift", apply_z=True),
dict(type="RandomDropout", dropout_ratio=0.2, dropout_application_ratio=0.2),
# dict(type="RandomRotateTargetAngle", angle=(1/2, 1, 3/2), center=[0, 0, 0], axis="z", p=0.75),
dict(type="RandomRotate", angle=[-1, 1], axis="z", center=[0, 0, 0], p=0.5),
dict(type="RandomRotate", angle=[-1 / 64, 1 / 64], axis="x", p=0.5),
dict(type="RandomRotate", angle=[-1 / 64, 1 / 64], axis="y", p=0.5),
dict(type="RandomScale", scale=[0.9, 1.1]),
# dict(type="RandomShift", shift=[0.2, 0.2, 0.2]),
dict(type="RandomFlip", p=0.5),
dict(type="RandomJitter", sigma=0.005, clip=0.02),
dict(type="ElasticDistortion", distortion_params=[[0.2, 0.4], [0.8, 1.6]]),
dict(type="ChromaticAutoContrast", p=0.2, blend_factor=None),
dict(type="ChromaticTranslation", p=0.95, ratio=0.05),
dict(type="ChromaticJitter", p=0.95, std=0.05),
# dict(type="HueSaturationTranslation", hue_max=0.2, saturation_max=0.2),
# dict(type="RandomColorDrop", p=0.2, color_augment=0.0),
dict(
type="GridSample",
grid_size=0.02,
hash_type="fnv",
mode="train",
return_grid_coord=True,
),
dict(type="SphereCrop", point_max=102400, mode="random"),
dict(type="CenterShift", apply_z=False),
dict(type="NormalizeColor"),
# dict(type="ShufflePoint"),
dict(type="Add", keys_dict=dict(condition="ALC")),
dict(type="ToTensor"),
dict(
type="Collect",
keys=("coord", "grid_coord", "segment", "condition"),
feat_keys=("color", "normal"),
),
],
test_mode=False,
loop=2,
),
],
loop=1,
),
val=dict(
type="ScanNetDataset",
split="val",
data_root="data/scannet",
transform=[
dict(type="CenterShift", apply_z=True),
dict(type="GridSample", grid_size=0.02, hash_type="fnv", mode="train", return_grid_coord=True),
dict(type="CenterShift", apply_z=False),
dict(type="NormalizeColor"),
dict(type="ToTensor"),
dict(type="Add", keys_dict=dict(condition="ScanNet")),
dict(type="Collect", keys=("coord", "grid_coord", "segment", "condition"), feat_keys=("color", "normal")),
],
test_mode=False,
),
test=dict(
type="ScanNetDataset",
split="val",
data_root="data/scannet",
transform=[dict(type="CenterShift", apply_z=True), dict(type="NormalizeColor")],
test_mode=True,
test_cfg=dict(
voxelize=dict(type="GridSample", grid_size=0.02, hash_type="fnv", mode="test", keys=("coord", "color", "normal"), return_grid_coord=True),
crop=None,
post_transform=[
dict(type="CenterShift", apply_z=False),
dict(type="Add", keys_dict=dict(condition="ScanNet")),
dict(type="ToTensor"),
dict(type="Collect", keys=("coord", "grid_coord", "index", "condition"), feat_keys=("color", "normal")),
],
aug_transform=[
[{"type": "RandomRotateTargetAngle", "angle": [0], "axis": "z", "center": [0, 0, 0], "p": 1}],
[{"type": "RandomRotateTargetAngle", "angle": [0.5], "axis": "z", "center": [0, 0, 0], "p": 1}],
[{"type": "RandomRotateTargetAngle", "angle": [1], "axis": "z", "center": [0, 0, 0], "p": 1}],
[{"type": "RandomRotateTargetAngle", "angle": [1.5], "axis": "z", "center": [0, 0, 0], "p": 1}],
[{"type": "RandomRotateTargetAngle", "angle": [0], "axis": "z", "center": [0, 0, 0], "p": 1}, {"type": "RandomScale", "scale": [0.95, 0.95]}],
[{"type": "RandomRotateTargetAngle", "angle": [0.5], "axis": "z", "center": [0, 0, 0], "p": 1}, {"type": "RandomScale", "scale": [0.95, 0.95]}],
[{"type": "RandomRotateTargetAngle", "angle": [1], "axis": "z", "center": [0, 0, 0], "p": 1}, {"type": "RandomScale", "scale": [0.95, 0.95]}],
[{"type": "RandomRotateTargetAngle", "angle": [1.5], "axis": "z", "center": [0, 0, 0], "p": 1}, {"type": "RandomScale", "scale": [0.95, 0.95]}],
[{"type": "RandomRotateTargetAngle", "angle": [0], "axis": "z", "center": [0, 0, 0], "p": 1}, {"type": "RandomScale", "scale": [1.05, 1.05]}],
[{"type": "RandomRotateTargetAngle", "angle": [0.5], "axis": "z", "center": [0, 0, 0], "p": 1}, {"type": "RandomScale", "scale": [1.05, 1.05]}],
[{"type": "RandomRotateTargetAngle", "angle": [1], "axis": "z", "center": [0, 0, 0], "p": 1}, {"type": "RandomScale", "scale": [1.05, 1.05]}],
[{"type": "RandomRotateTargetAngle", "angle": [1.5], "axis": "z", "center": [0, 0, 0], "p": 1}, {"type": "RandomScale", "scale": [1.05, 1.05]}],
[{"type": "RandomFlip", "p": 1}],
],
),
),
)
# hook
hooks = [
dict(type="CheckpointLoader"),
dict(type="IterationTimer", warmup_iter=2),
dict(type="InformationWriter"),
dict(type="SemSegEvaluator"),
dict(type="CheckpointSaver", save_freq=None),
dict(type="PreciseEvaluator", test_last=True),
]