Datasets:

Modalities:
Text
Formats:
json
Languages:
code
Size:
< 1K
Tags:
code
Libraries:
Datasets
pandas
License:
File size: 15,931 Bytes
4fb7874
1
# Natural Language Toolkit: Transformation-based learning## Copyright (C) 2001-2021 NLTK Project# Author: Marcus Uneson <[email protected]>#   based on previous (nltk2) version by#   Christopher Maloof, Edward Loper, Steven Bird# URL: <https://www.nltk.org/># For license information, see  LICENSE.TXTfrom collections import Counter, defaultdictfrom nltk import jsontagsfrom nltk.tag import TaggerIfrom nltk.tbl import Feature, Template####################################################################### Brill Templates######################################################################@jsontags.register_tagclass Word(Feature):    """    Feature which examines the text (word) of nearby tokens.    """    json_tag = "nltk.tag.brill.Word"    @staticmethod    def extract_property(tokens, index):        """@return: The given token's text."""        return tokens[index][0]@jsontags.register_tagclass Pos(Feature):    """    Feature which examines the tags of nearby tokens.    """    json_tag = "nltk.tag.brill.Pos"    @staticmethod    def extract_property(tokens, index):        """@return: The given token's tag."""        return tokens[index][1]def nltkdemo18():    """    Return 18 templates, from the original nltk demo, in multi-feature syntax    """    return [        Template(Pos([-1])),        Template(Pos([1])),        Template(Pos([-2])),        Template(Pos([2])),        Template(Pos([-2, -1])),        Template(Pos([1, 2])),        Template(Pos([-3, -2, -1])),        Template(Pos([1, 2, 3])),        Template(Pos([-1]), Pos([1])),        Template(Word([-1])),        Template(Word([1])),        Template(Word([-2])),        Template(Word([2])),        Template(Word([-2, -1])),        Template(Word([1, 2])),        Template(Word([-3, -2, -1])),        Template(Word([1, 2, 3])),        Template(Word([-1]), Word([1])),    ]def nltkdemo18plus():    """    Return 18 templates, from the original nltk demo, and additionally a few    multi-feature ones (the motivation is easy comparison with nltkdemo18)    """    return nltkdemo18() + [        Template(Word([-1]), Pos([1])),        Template(Pos([-1]), Word([1])),        Template(Word([-1]), Word([0]), Pos([1])),        Template(Pos([-1]), Word([0]), Word([1])),        Template(Pos([-1]), Word([0]), Pos([1])),    ]def fntbl37():    """    Return 37 templates taken from the postagging task of the    fntbl distribution https://www.cs.jhu.edu/~rflorian/fntbl/    (37 is after excluding a handful which do not condition on Pos[0];    fntbl can do that but the current nltk implementation cannot.)    """    return [        Template(Word([0]), Word([1]), Word([2])),        Template(Word([-1]), Word([0]), Word([1])),        Template(Word([0]), Word([-1])),        Template(Word([0]), Word([1])),        Template(Word([0]), Word([2])),        Template(Word([0]), Word([-2])),        Template(Word([1, 2])),        Template(Word([-2, -1])),        Template(Word([1, 2, 3])),        Template(Word([-3, -2, -1])),        Template(Word([0]), Pos([2])),        Template(Word([0]), Pos([-2])),        Template(Word([0]), Pos([1])),        Template(Word([0]), Pos([-1])),        Template(Word([0])),        Template(Word([-2])),        Template(Word([2])),        Template(Word([1])),        Template(Word([-1])),        Template(Pos([-1]), Pos([1])),        Template(Pos([1]), Pos([2])),        Template(Pos([-1]), Pos([-2])),        Template(Pos([1])),        Template(Pos([-1])),        Template(Pos([-2])),        Template(Pos([2])),        Template(Pos([1, 2, 3])),        Template(Pos([1, 2])),        Template(Pos([-3, -2, -1])),        Template(Pos([-2, -1])),        Template(Pos([1]), Word([0]), Word([1])),        Template(Pos([1]), Word([0]), Word([-1])),        Template(Pos([-1]), Word([-1]), Word([0])),        Template(Pos([-1]), Word([0]), Word([1])),        Template(Pos([-2]), Pos([-1])),        Template(Pos([1]), Pos([2])),        Template(Pos([1]), Pos([2]), Word([1])),    ]def brill24():    """    Return 24 templates of the seminal TBL paper, Brill (1995)    """    return [        Template(Pos([-1])),        Template(Pos([1])),        Template(Pos([-2])),        Template(Pos([2])),        Template(Pos([-2, -1])),        Template(Pos([1, 2])),        Template(Pos([-3, -2, -1])),        Template(Pos([1, 2, 3])),        Template(Pos([-1]), Pos([1])),        Template(Pos([-2]), Pos([-1])),        Template(Pos([1]), Pos([2])),        Template(Word([-1])),        Template(Word([1])),        Template(Word([-2])),        Template(Word([2])),        Template(Word([-2, -1])),        Template(Word([1, 2])),        Template(Word([-1, 0])),        Template(Word([0, 1])),        Template(Word([0])),        Template(Word([-1]), Pos([-1])),        Template(Word([1]), Pos([1])),        Template(Word([0]), Word([-1]), Pos([-1])),        Template(Word([0]), Word([1]), Pos([1])),    ]def describe_template_sets():    """    Print the available template sets in this demo, with a short description"    """    import inspect    import sys    # a bit of magic to get all functions in this module    templatesets = inspect.getmembers(sys.modules[__name__], inspect.isfunction)    for (name, obj) in templatesets:        if name == "describe_template_sets":            continue        print(name, obj.__doc__, "\n")####################################################################### The Brill Tagger######################################################################@jsontags.register_tagclass BrillTagger(TaggerI):    """    Brill's transformational rule-based tagger.  Brill taggers use an    initial tagger (such as ``tag.DefaultTagger``) to assign an initial    tag sequence to a text; and then apply an ordered list of    transformational rules to correct the tags of individual tokens.    These transformation rules are specified by the ``TagRule``    interface.    Brill taggers can be created directly, from an initial tagger and    a list of transformational rules; but more often, Brill taggers    are created by learning rules from a training corpus, using one    of the TaggerTrainers available.    """    json_tag = "nltk.tag.BrillTagger"    def __init__(self, initial_tagger, rules, training_stats=None):        """        :param initial_tagger: The initial tagger        :type initial_tagger: TaggerI        :param rules: An ordered list of transformation rules that            should be used to correct the initial tagging.        :type rules: list(TagRule)        :param training_stats: A dictionary of statistics collected            during training, for possible later use        :type training_stats: dict        """        self._initial_tagger = initial_tagger        self._rules = tuple(rules)        self._training_stats = training_stats    def encode_json_obj(self):        return self._initial_tagger, self._rules, self._training_stats    @classmethod    def decode_json_obj(cls, obj):        _initial_tagger, _rules, _training_stats = obj        return cls(_initial_tagger, _rules, _training_stats)    def rules(self):        """        Return the ordered list of  transformation rules that this tagger has learnt        :return: the ordered list of transformation rules that correct the initial tagging        :rtype: list of Rules        """        return self._rules    def train_stats(self, statistic=None):        """        Return a named statistic collected during training, or a dictionary of all        available statistics if no name given        :param statistic: name of statistic        :type statistic: str        :return: some statistic collected during training of this tagger        :rtype: any (but usually a number)        """        if statistic is None:            return self._training_stats        else:            return self._training_stats.get(statistic)    def tag(self, tokens):        # Inherit documentation from TaggerI        # Run the initial tagger.        tagged_tokens = self._initial_tagger.tag(tokens)        # Create a dictionary that maps each tag to a list of the        # indices of tokens that have that tag.        tag_to_positions = defaultdict(set)        for i, (token, tag) in enumerate(tagged_tokens):            tag_to_positions[tag].add(i)        # Apply each rule, in order.  Only try to apply rules at        # positions that have the desired original tag.        for rule in self._rules:            # Find the positions where it might apply            positions = tag_to_positions.get(rule.original_tag, [])            # Apply the rule at those positions.            changed = rule.apply(tagged_tokens, positions)            # Update tag_to_positions with the positions of tags that            # were modified.            for i in changed:                tag_to_positions[rule.original_tag].remove(i)                tag_to_positions[rule.replacement_tag].add(i)        return tagged_tokens    def print_template_statistics(self, test_stats=None, printunused=True):        """        Print a list of all templates, ranked according to efficiency.        If test_stats is available, the templates are ranked according to their        relative contribution (summed for all rules created from a given template,        weighted by score) to the performance on the test set. If no test_stats, then        statistics collected during training are used instead. There is also        an unweighted measure (just counting the rules). This is less informative,        though, as many low-score rules will appear towards end of training.        :param test_stats: dictionary of statistics collected during testing        :type test_stats: dict of str -> any (but usually numbers)        :param printunused: if True, print a list of all unused templates        :type printunused: bool        :return: None        :rtype: None        """        tids = [r.templateid for r in self._rules]        train_stats = self.train_stats()        trainscores = train_stats["rulescores"]        assert len(trainscores) == len(            tids        ), "corrupt statistics: " "{} train scores for {} rules".format(            trainscores, tids        )        template_counts = Counter(tids)        weighted_traincounts = Counter()        for (tid, score) in zip(tids, trainscores):            weighted_traincounts[tid] += score        tottrainscores = sum(trainscores)        # det_tplsort() is for deterministic sorting;        # the otherwise convenient Counter.most_common() unfortunately        # does not break ties deterministically        # between python versions and will break cross-version tests        def det_tplsort(tpl_value):            return (tpl_value[1], repr(tpl_value[0]))        def print_train_stats():            print(                "TEMPLATE STATISTICS (TRAIN)  {} templates, {} rules)".format(                    len(template_counts), len(tids)                )            )            print(                "TRAIN ({tokencount:7d} tokens) initial {initialerrors:5d} {initialacc:.4f} "                "final: {finalerrors:5d} {finalacc:.4f}".format(**train_stats)            )            head = "#ID | Score (train) |  #Rules     | Template"            print(head, "\n", "-" * len(head), sep="")            train_tplscores = sorted(                weighted_traincounts.items(), key=det_tplsort, reverse=True            )            for (tid, trainscore) in train_tplscores:                s = "{} | {:5d}   {:5.3f} |{:4d}   {:.3f} | {}".format(                    tid,                    trainscore,                    trainscore / tottrainscores,                    template_counts[tid],                    template_counts[tid] / len(tids),                    Template.ALLTEMPLATES[int(tid)],                )                print(s)        def print_testtrain_stats():            testscores = test_stats["rulescores"]            print(                "TEMPLATE STATISTICS (TEST AND TRAIN) ({} templates, {} rules)".format(                    len(template_counts), len(tids)                )            )            print(                "TEST  ({tokencount:7d} tokens) initial {initialerrors:5d} {initialacc:.4f} "                "final: {finalerrors:5d} {finalacc:.4f} ".format(**test_stats)            )            print(                "TRAIN ({tokencount:7d} tokens) initial {initialerrors:5d} {initialacc:.4f} "                "final: {finalerrors:5d} {finalacc:.4f} ".format(**train_stats)            )            weighted_testcounts = Counter()            for (tid, score) in zip(tids, testscores):                weighted_testcounts[tid] += score            tottestscores = sum(testscores)            head = "#ID | Score (test) | Score (train) |  #Rules     | Template"            print(head, "\n", "-" * len(head), sep="")            test_tplscores = sorted(                weighted_testcounts.items(), key=det_tplsort, reverse=True            )            for (tid, testscore) in test_tplscores:                s = "{:s} |{:5d}  {:6.3f} |  {:4d}   {:.3f} |{:4d}   {:.3f} | {:s}".format(                    tid,                    testscore,                    testscore / tottestscores,                    weighted_traincounts[tid],                    weighted_traincounts[tid] / tottrainscores,                    template_counts[tid],                    template_counts[tid] / len(tids),                    Template.ALLTEMPLATES[int(tid)],                )                print(s)        def print_unused_templates():            usedtpls = {int(tid) for tid in tids}            unused = [                (tid, tpl)                for (tid, tpl) in enumerate(Template.ALLTEMPLATES)                if tid not in usedtpls            ]            print(f"UNUSED TEMPLATES ({len(unused)})")            for (tid, tpl) in unused:                print(f"{tid:03d} {str(tpl):s}")        if test_stats is None:            print_train_stats()        else:            print_testtrain_stats()        print()        if printunused:            print_unused_templates()        print()    def batch_tag_incremental(self, sequences, gold):        """        Tags by applying each rule to the entire corpus (rather than all rules to a        single sequence). The point is to collect statistics on the test set for        individual rules.        NOTE: This is inefficient (does not build any index, so will traverse the entire        corpus N times for N rules) -- usually you would not care about statistics for        individual rules and thus use batch_tag() instead        :param sequences: lists of token sequences (sentences, in some applications) to be tagged        :type sequences: list of list of strings        :param gold: the gold standard        :type gold: list of list of strings        :returns: tuple of (tagged_sequences, ordered list of rule scores (one for each rule))        """        def counterrors(xs):            return sum(t[1] != g[1] for pair in zip(xs, gold) for (t, g) in zip(*pair))        testing_stats = {}        testing_stats["tokencount"] = sum(len(t) for t in sequences)        testing_stats["sequencecount"] = len(sequences)        tagged_tokenses = [self._initial_tagger.tag(tokens) for tokens in sequences]        testing_stats["initialerrors"] = counterrors(tagged_tokenses)        testing_stats["initialacc"] = (            1 - testing_stats["initialerrors"] / testing_stats["tokencount"]        )        # Apply each rule to the entire corpus, in order        errors = [testing_stats["initialerrors"]]        for rule in self._rules:            for tagged_tokens in tagged_tokenses:                rule.apply(tagged_tokens)            errors.append(counterrors(tagged_tokenses))        testing_stats["rulescores"] = [            err0 - err1 for (err0, err1) in zip(errors, errors[1:])        ]        testing_stats["finalerrors"] = errors[-1]        testing_stats["finalacc"] = (            1 - testing_stats["finalerrors"] / testing_stats["tokencount"]        )        return (tagged_tokenses, testing_stats)