Datasets:

Modalities:
Text
Formats:
json
Languages:
code
Size:
< 1K
Tags:
code
Libraries:
Datasets
pandas
License:
File size: 28,752 Bytes
4fb7874
1
# Natural Language Toolkit: Glue Semantics## Author: Dan Garrette <[email protected]>## Copyright (C) 2001-2021 NLTK Project# URL: <https://www.nltk.org/># For license information, see LICENSE.TXTimport osfrom itertools import chainimport nltkfrom nltk.internals import Counterfrom nltk.sem import drt, linearlogicfrom nltk.sem.logic import (    AbstractVariableExpression,    Expression,    LambdaExpression,    Variable,    VariableExpression,)from nltk.tag import BigramTagger, RegexpTagger, TrigramTagger, UnigramTaggerSPEC_SEMTYPES = {    "a": "ex_quant",    "an": "ex_quant",    "every": "univ_quant",    "the": "def_art",    "no": "no_quant",    "default": "ex_quant",}OPTIONAL_RELATIONSHIPS = ["nmod", "vmod", "punct"]class GlueFormula:    def __init__(self, meaning, glue, indices=None):        if not indices:            indices = set()        if isinstance(meaning, str):            self.meaning = Expression.fromstring(meaning)        elif isinstance(meaning, Expression):            self.meaning = meaning        else:            raise RuntimeError(                "Meaning term neither string or expression: %s, %s"                % (meaning, meaning.__class__)            )        if isinstance(glue, str):            self.glue = linearlogic.LinearLogicParser().parse(glue)        elif isinstance(glue, linearlogic.Expression):            self.glue = glue        else:            raise RuntimeError(                "Glue term neither string or expression: %s, %s"                % (glue, glue.__class__)            )        self.indices = indices    def applyto(self, arg):        """self = (\\x.(walk x), (subj -o f))        arg  = (john        ,  subj)        returns ((walk john),          f)        """        if self.indices & arg.indices:  # if the sets are NOT disjoint            raise linearlogic.LinearLogicApplicationException(                f"'{self}' applied to '{arg}'.  Indices are not disjoint."            )        else:  # if the sets ARE disjoint            return_indices = self.indices | arg.indices        try:            return_glue = linearlogic.ApplicationExpression(                self.glue, arg.glue, arg.indices            )        except linearlogic.LinearLogicApplicationException as e:            raise linearlogic.LinearLogicApplicationException(                f"'{self.simplify()}' applied to '{arg.simplify()}'"            ) from e        arg_meaning_abstracted = arg.meaning        if return_indices:            for dep in self.glue.simplify().antecedent.dependencies[                ::-1            ]:  # if self.glue is (A -o B), dep is in A.dependencies                arg_meaning_abstracted = self.make_LambdaExpression(                    Variable("v%s" % dep), arg_meaning_abstracted                )        return_meaning = self.meaning.applyto(arg_meaning_abstracted)        return self.__class__(return_meaning, return_glue, return_indices)    def make_VariableExpression(self, name):        return VariableExpression(name)    def make_LambdaExpression(self, variable, term):        return LambdaExpression(variable, term)    def lambda_abstract(self, other):        assert isinstance(other, GlueFormula)        assert isinstance(other.meaning, AbstractVariableExpression)        return self.__class__(            self.make_LambdaExpression(other.meaning.variable, self.meaning),            linearlogic.ImpExpression(other.glue, self.glue),        )    def compile(self, counter=None):        """From Iddo Lev's PhD Dissertation p108-109"""        if not counter:            counter = Counter()        (compiled_glue, new_forms) = self.glue.simplify().compile_pos(            counter, self.__class__        )        return new_forms + [            self.__class__(self.meaning, compiled_glue, {counter.get()})        ]    def simplify(self):        return self.__class__(            self.meaning.simplify(), self.glue.simplify(), self.indices        )    def __eq__(self, other):        return (            self.__class__ == other.__class__            and self.meaning == other.meaning            and self.glue == other.glue        )    def __ne__(self, other):        return not self == other    # sorting for use in doctests which must be deterministic    def __lt__(self, other):        return str(self) < str(other)    def __str__(self):        assert isinstance(self.indices, set)        accum = f"{self.meaning} : {self.glue}"        if self.indices:            accum += (                " : {" + ", ".join(str(index) for index in sorted(self.indices)) + "}"            )        return accum    def __repr__(self):        return "%s" % selfclass GlueDict(dict):    def __init__(self, filename, encoding=None):        self.filename = filename        self.file_encoding = encoding        self.read_file()    def read_file(self, empty_first=True):        if empty_first:            self.clear()        try:            contents = nltk.data.load(                self.filename, format="text", encoding=self.file_encoding            )            # TODO: the above can't handle zip files, but this should anyway be fixed in nltk.data.load()        except LookupError as e:            try:                contents = nltk.data.load(                    "file:" + self.filename, format="text", encoding=self.file_encoding                )            except LookupError:                raise e        lines = contents.splitlines()        for line in lines:  # example: 'n : (\\x.(<word> x), (v-or))'            #     lambdacalc -^  linear logic -^            line = line.strip()  # remove trailing newline            if not len(line):                continue  # skip empty lines            if line[0] == "#":                continue  # skip commented out lines            parts = line.split(                " : ", 2            )  # ['verb', '(\\x.(<word> x), ( subj -o f ))', '[subj]']            glue_formulas = []            paren_count = 0            tuple_start = 0            tuple_comma = 0            relationships = None            if len(parts) > 1:                for (i, c) in enumerate(parts[1]):                    if c == "(":                        if paren_count == 0:  # if it's the first '(' of a tuple                            tuple_start = i + 1  # then save the index                        paren_count += 1                    elif c == ")":                        paren_count -= 1                        if paren_count == 0:  # if it's the last ')' of a tuple                            meaning_term = parts[1][                                tuple_start:tuple_comma                            ]  # '\\x.(<word> x)'                            glue_term = parts[1][tuple_comma + 1 : i]  # '(v-r)'                            glue_formulas.append(                                [meaning_term, glue_term]                            )  # add the GlueFormula to the list                    elif c == ",":                        if (                            paren_count == 1                        ):  # if it's a comma separating the parts of the tuple                            tuple_comma = i  # then save the index                    elif c == "#":  # skip comments at the ends of lines                        if (                            paren_count != 0                        ):  # if the line hasn't parsed correctly so far                            raise RuntimeError(                                "Formula syntax is incorrect for entry " + line                            )                        break  # break to the next line            if len(parts) > 2:  # if there is a relationship entry at the end                rel_start = parts[2].index("[") + 1                rel_end = parts[2].index("]")                if rel_start == rel_end:                    relationships = frozenset()                else:                    relationships = frozenset(                        r.strip() for r in parts[2][rel_start:rel_end].split(",")                    )            try:                start_inheritance = parts[0].index("(")                end_inheritance = parts[0].index(")")                sem = parts[0][:start_inheritance].strip()                supertype = parts[0][start_inheritance + 1 : end_inheritance]            except:                sem = parts[0].strip()                supertype = None            if sem not in self:                self[sem] = {}            if (                relationships is None            ):  # if not specified for a specific relationship set                # add all relationship entries for parents                if supertype:                    for rels in self[supertype]:                        if rels not in self[sem]:                            self[sem][rels] = []                        glue = self[supertype][rels]                        self[sem][rels].extend(glue)                        self[sem][rels].extend(                            glue_formulas                        )  # add the glue formulas to every rel entry                else:                    if None not in self[sem]:                        self[sem][None] = []                    self[sem][None].extend(                        glue_formulas                    )  # add the glue formulas to every rel entry            else:                if relationships not in self[sem]:                    self[sem][relationships] = []                if supertype:                    self[sem][relationships].extend(self[supertype][relationships])                self[sem][relationships].extend(                    glue_formulas                )  # add the glue entry to the dictionary    def __str__(self):        accum = ""        for pos in self:            str_pos = "%s" % pos            for relset in self[pos]:                i = 1                for gf in self[pos][relset]:                    if i == 1:                        accum += str_pos + ": "                    else:                        accum += " " * (len(str_pos) + 2)                    accum += "%s" % gf                    if relset and i == len(self[pos][relset]):                        accum += " : %s" % relset                    accum += "\n"                    i += 1        return accum    def to_glueformula_list(self, depgraph, node=None, counter=None, verbose=False):        if node is None:            # TODO: should it be depgraph.root? Is this code tested?            top = depgraph.nodes[0]            depList = list(chain.from_iterable(top["deps"].values()))            root = depgraph.nodes[depList[0]]            return self.to_glueformula_list(depgraph, root, Counter(), verbose)        glueformulas = self.lookup(node, depgraph, counter)        for dep_idx in chain.from_iterable(node["deps"].values()):            dep = depgraph.nodes[dep_idx]            glueformulas.extend(                self.to_glueformula_list(depgraph, dep, counter, verbose)            )        return glueformulas    def lookup(self, node, depgraph, counter):        semtype_names = self.get_semtypes(node)        semtype = None        for name in semtype_names:            if name in self:                semtype = self[name]                break        if semtype is None:            # raise KeyError, "There is no GlueDict entry for sem type '%s' (for '%s')" % (sem, word)            return []        self.add_missing_dependencies(node, depgraph)        lookup = self._lookup_semtype_option(semtype, node, depgraph)        if not len(lookup):            raise KeyError(                "There is no GlueDict entry for sem type of '%s' "                "with tag '%s', and rel '%s'" % (node["word"], node["tag"], node["rel"])            )        return self.get_glueformulas_from_semtype_entry(            lookup, node["word"], node, depgraph, counter        )    def add_missing_dependencies(self, node, depgraph):        rel = node["rel"].lower()        if rel == "main":            headnode = depgraph.nodes[node["head"]]            subj = self.lookup_unique("subj", headnode, depgraph)            relation = subj["rel"]            node["deps"].setdefault(relation, [])            node["deps"][relation].append(subj["address"])            # node['deps'].append(subj['address'])    def _lookup_semtype_option(self, semtype, node, depgraph):        relationships = frozenset(            depgraph.nodes[dep]["rel"].lower()            for dep in chain.from_iterable(node["deps"].values())            if depgraph.nodes[dep]["rel"].lower() not in OPTIONAL_RELATIONSHIPS        )        try:            lookup = semtype[relationships]        except KeyError:            # An exact match is not found, so find the best match where            # 'best' is defined as the glue entry whose relationship set has the            # most relations of any possible relationship set that is a subset            # of the actual depgraph            best_match = frozenset()            for relset_option in set(semtype) - {None}:                if (                    len(relset_option) > len(best_match)                    and relset_option < relationships                ):                    best_match = relset_option            if not best_match:                if None in semtype:                    best_match = None                else:                    return None            lookup = semtype[best_match]        return lookup    def get_semtypes(self, node):        """        Based on the node, return a list of plausible semtypes in order of        plausibility.        """        rel = node["rel"].lower()        word = node["word"].lower()        if rel == "spec":            if word in SPEC_SEMTYPES:                return [SPEC_SEMTYPES[word]]            else:                return [SPEC_SEMTYPES["default"]]        elif rel in ["nmod", "vmod"]:            return [node["tag"], rel]        else:            return [node["tag"]]    def get_glueformulas_from_semtype_entry(        self, lookup, word, node, depgraph, counter    ):        glueformulas = []        glueFormulaFactory = self.get_GlueFormula_factory()        for meaning, glue in lookup:            gf = glueFormulaFactory(self.get_meaning_formula(meaning, word), glue)            if not len(glueformulas):                gf.word = word            else:                gf.word = f"{word}{len(glueformulas) + 1}"            gf.glue = self.initialize_labels(gf.glue, node, depgraph, counter.get())            glueformulas.append(gf)        return glueformulas    def get_meaning_formula(self, generic, word):        """        :param generic: A meaning formula string containing the            parameter "<word>"        :param word: The actual word to be replace "<word>"        """        word = word.replace(".", "")        return generic.replace("<word>", word)    def initialize_labels(self, expr, node, depgraph, unique_index):        if isinstance(expr, linearlogic.AtomicExpression):            name = self.find_label_name(expr.name.lower(), node, depgraph, unique_index)            if name[0].isupper():                return linearlogic.VariableExpression(name)            else:                return linearlogic.ConstantExpression(name)        else:            return linearlogic.ImpExpression(                self.initialize_labels(expr.antecedent, node, depgraph, unique_index),                self.initialize_labels(expr.consequent, node, depgraph, unique_index),            )    def find_label_name(self, name, node, depgraph, unique_index):        try:            dot = name.index(".")            before_dot = name[:dot]            after_dot = name[dot + 1 :]            if before_dot == "super":                return self.find_label_name(                    after_dot, depgraph.nodes[node["head"]], depgraph, unique_index                )            else:                return self.find_label_name(                    after_dot,                    self.lookup_unique(before_dot, node, depgraph),                    depgraph,                    unique_index,                )        except ValueError:            lbl = self.get_label(node)            if name == "f":                return lbl            elif name == "v":                return "%sv" % lbl            elif name == "r":                return "%sr" % lbl            elif name == "super":                return self.get_label(depgraph.nodes[node["head"]])            elif name == "var":                return f"{lbl.upper()}{unique_index}"            elif name == "a":                return self.get_label(self.lookup_unique("conja", node, depgraph))            elif name == "b":                return self.get_label(self.lookup_unique("conjb", node, depgraph))            else:                return self.get_label(self.lookup_unique(name, node, depgraph))    def get_label(self, node):        """        Pick an alphabetic character as identifier for an entity in the model.        :param value: where to index into the list of characters        :type value: int        """        value = node["address"]        letter = [            "f",            "g",            "h",            "i",            "j",            "k",            "l",            "m",            "n",            "o",            "p",            "q",            "r",            "s",            "t",            "u",            "v",            "w",            "x",            "y",            "z",            "a",            "b",            "c",            "d",            "e",        ][value - 1]        num = int(value) // 26        if num > 0:            return letter + str(num)        else:            return letter    def lookup_unique(self, rel, node, depgraph):        """        Lookup 'key'. There should be exactly one item in the associated relation.        """        deps = [            depgraph.nodes[dep]            for dep in chain.from_iterable(node["deps"].values())            if depgraph.nodes[dep]["rel"].lower() == rel.lower()        ]        if len(deps) == 0:            raise KeyError(                "'{}' doesn't contain a feature '{}'".format(node["word"], rel)            )        elif len(deps) > 1:            raise KeyError(                "'{}' should only have one feature '{}'".format(node["word"], rel)            )        else:            return deps[0]    def get_GlueFormula_factory(self):        return GlueFormulaclass Glue:    def __init__(        self, semtype_file=None, remove_duplicates=False, depparser=None, verbose=False    ):        self.verbose = verbose        self.remove_duplicates = remove_duplicates        self.depparser = depparser        from nltk import Prover9        self.prover = Prover9()        if semtype_file:            self.semtype_file = semtype_file        else:            self.semtype_file = os.path.join(                "grammars", "sample_grammars", "glue.semtype"            )    def train_depparser(self, depgraphs=None):        if depgraphs:            self.depparser.train(depgraphs)        else:            self.depparser.train_from_file(                nltk.data.find(                    os.path.join("grammars", "sample_grammars", "glue_train.conll")                )            )    def parse_to_meaning(self, sentence):        readings = []        for agenda in self.parse_to_compiled(sentence):            readings.extend(self.get_readings(agenda))        return readings    def get_readings(self, agenda):        readings = []        agenda_length = len(agenda)        atomics = dict()        nonatomics = dict()        while agenda:  # is not empty            cur = agenda.pop()            glue_simp = cur.glue.simplify()            if isinstance(                glue_simp, linearlogic.ImpExpression            ):  # if cur.glue is non-atomic                for key in atomics:                    try:                        if isinstance(cur.glue, linearlogic.ApplicationExpression):                            bindings = cur.glue.bindings                        else:                            bindings = linearlogic.BindingDict()                        glue_simp.antecedent.unify(key, bindings)                        for atomic in atomics[key]:                            if not (                                cur.indices & atomic.indices                            ):  # if the sets of indices are disjoint                                try:                                    agenda.append(cur.applyto(atomic))                                except linearlogic.LinearLogicApplicationException:                                    pass                    except linearlogic.UnificationException:                        pass                try:                    nonatomics[glue_simp.antecedent].append(cur)                except KeyError:                    nonatomics[glue_simp.antecedent] = [cur]            else:  # else cur.glue is atomic                for key in nonatomics:                    for nonatomic in nonatomics[key]:                        try:                            if isinstance(                                nonatomic.glue, linearlogic.ApplicationExpression                            ):                                bindings = nonatomic.glue.bindings                            else:                                bindings = linearlogic.BindingDict()                            glue_simp.unify(key, bindings)                            if not (                                cur.indices & nonatomic.indices                            ):  # if the sets of indices are disjoint                                try:                                    agenda.append(nonatomic.applyto(cur))                                except linearlogic.LinearLogicApplicationException:                                    pass                        except linearlogic.UnificationException:                            pass                try:                    atomics[glue_simp].append(cur)                except KeyError:                    atomics[glue_simp] = [cur]        for entry in atomics:            for gf in atomics[entry]:                if len(gf.indices) == agenda_length:                    self._add_to_reading_list(gf, readings)        for entry in nonatomics:            for gf in nonatomics[entry]:                if len(gf.indices) == agenda_length:                    self._add_to_reading_list(gf, readings)        return readings    def _add_to_reading_list(self, glueformula, reading_list):        add_reading = True        if self.remove_duplicates:            for reading in reading_list:                try:                    if reading.equiv(glueformula.meaning, self.prover):                        add_reading = False                        break                except Exception as e:                    # if there is an exception, the syntax of the formula                    # may not be understandable by the prover, so don't                    # throw out the reading.                    print("Error when checking logical equality of statements", e)        if add_reading:            reading_list.append(glueformula.meaning)    def parse_to_compiled(self, sentence):        gfls = [self.depgraph_to_glue(dg) for dg in self.dep_parse(sentence)]        return [self.gfl_to_compiled(gfl) for gfl in gfls]    def dep_parse(self, sentence):        """        Return a dependency graph for the sentence.        :param sentence: the sentence to be parsed        :type sentence: list(str)        :rtype: DependencyGraph        """        # Lazy-initialize the depparser        if self.depparser is None:            from nltk.parse import MaltParser            self.depparser = MaltParser(tagger=self.get_pos_tagger())        if not self.depparser._trained:            self.train_depparser()        return self.depparser.parse(sentence, verbose=self.verbose)    def depgraph_to_glue(self, depgraph):        return self.get_glue_dict().to_glueformula_list(depgraph)    def get_glue_dict(self):        return GlueDict(self.semtype_file)    def gfl_to_compiled(self, gfl):        index_counter = Counter()        return_list = []        for gf in gfl:            return_list.extend(gf.compile(index_counter))        if self.verbose:            print("Compiled Glue Premises:")            for cgf in return_list:                print(cgf)        return return_list    def get_pos_tagger(self):        from nltk.corpus import brown        regexp_tagger = RegexpTagger(            [                # BUG: CWE-1333 Inefficient Regular Expression Complexity                # (r"^-?[0-9]+(.[0-9]+)?$", "CD"),  # cardinal numbers                # FIXED:                 (r"^-?[0-9]+(\.[0-9]+)?$", "CD"),  # cardinal numbers                (r"(The|the|A|a|An|an)$", "AT"),  # articles                (r".*able$", "JJ"),  # adjectives                (r".*ness$", "NN"),  # nouns formed from adjectives                (r".*ly$", "RB"),  # adverbs                (r".*s$", "NNS"),  # plural nouns                (r".*ing$", "VBG"),  # gerunds                (r".*ed$", "VBD"),  # past tense verbs                (r".*", "NN"),  # nouns (default)            ]        )        brown_train = brown.tagged_sents(categories="news")        unigram_tagger = UnigramTagger(brown_train, backoff=regexp_tagger)        bigram_tagger = BigramTagger(brown_train, backoff=unigram_tagger)        trigram_tagger = TrigramTagger(brown_train, backoff=bigram_tagger)        # Override particular words        main_tagger = RegexpTagger(            [(r"(A|a|An|an)$", "ex_quant"), (r"(Every|every|All|all)$", "univ_quant")],            backoff=trigram_tagger,        )        return main_taggerclass DrtGlueFormula(GlueFormula):    def __init__(self, meaning, glue, indices=None):        if not indices:            indices = set()        if isinstance(meaning, str):            self.meaning = drt.DrtExpression.fromstring(meaning)        elif isinstance(meaning, drt.DrtExpression):            self.meaning = meaning        else:            raise RuntimeError(                "Meaning term neither string or expression: %s, %s"                % (meaning, meaning.__class__)            )        if isinstance(glue, str):            self.glue = linearlogic.LinearLogicParser().parse(glue)        elif isinstance(glue, linearlogic.Expression):            self.glue = glue        else:            raise RuntimeError(                "Glue term neither string or expression: %s, %s"                % (glue, glue.__class__)            )        self.indices = indices    def make_VariableExpression(self, name):        return drt.DrtVariableExpression(name)    def make_LambdaExpression(self, variable, term):        return drt.DrtLambdaExpression(variable, term)class DrtGlueDict(GlueDict):    def get_GlueFormula_factory(self):        return DrtGlueFormulaclass DrtGlue(Glue):    def __init__(        self, semtype_file=None, remove_duplicates=False, depparser=None, verbose=False    ):        if not semtype_file:            semtype_file = os.path.join(                "grammars", "sample_grammars", "drt_glue.semtype"            )        Glue.__init__(self, semtype_file, remove_duplicates, depparser, verbose)    def get_glue_dict(self):        return DrtGlueDict(self.semtype_file)def demo(show_example=-1):    from nltk.parse import MaltParser    examples = [        "David sees Mary",        "David eats a sandwich",        "every man chases a dog",        "every man believes a dog sleeps",        "John gives David a sandwich",        "John chases himself",    ]    #                'John persuades David to order a pizza',    #                'John tries to go',    #                'John tries to find a unicorn',    #                'John seems to vanish',    #                'a unicorn seems to approach',    #                'every big cat leaves',    #                'every gray cat leaves',    #                'every big gray cat leaves',    #                'a former senator leaves',    print("============== DEMO ==============")    tagger = RegexpTagger(        [            ("^(David|Mary|John)$", "NNP"),            (                "^(sees|eats|chases|believes|gives|sleeps|chases|persuades|tries|seems|leaves)$",                "VB",            ),            ("^(go|order|vanish|find|approach)$", "VB"),            ("^(a)$", "ex_quant"),            ("^(every)$", "univ_quant"),            ("^(sandwich|man|dog|pizza|unicorn|cat|senator)$", "NN"),            ("^(big|gray|former)$", "JJ"),            ("^(him|himself)$", "PRP"),        ]    )    depparser = MaltParser(tagger=tagger)    glue = Glue(depparser=depparser, verbose=False)    for (i, sentence) in enumerate(examples):        if i == show_example or show_example == -1:            print(f"[[[Example {i}]]]  {sentence}")            for reading in glue.parse_to_meaning(sentence.split()):                print(reading.simplify())            print("")if __name__ == "__main__":    demo()