Datasets:

Modalities:
Text
Formats:
json
Languages:
code
Size:
< 1K
Tags:
code
Libraries:
Datasets
pandas
License:
File size: 3,409 Bytes
4fb7874
1
# -*- coding: utf-8 -*-from __future__ import unicode_literalsfrom future.utils import iteritemsimport yamlimport jsonfrom mlalchemy.errors import *from mlalchemy.structures import *from mlalchemy.constants import *from mlalchemy.utils import *import logginglogger = logging.getLogger(__name__)__all__ = [    "parse_yaml_query",    "parse_json_query",    "parse_query",    "parse_query_fragment"]def parse_yaml_query(yaml_content):    """Parses the given YAML string to attempt to extract a query.    Args:        yaml_content: A string containing YAML content.    Returns:        On success, the processed MLQuery object.    """    logger.debug("Attempting to parse YAML content:\n%s" % yaml_content)    # BUG: NVD-CWE-noinfo Insufficient Information    # return parse_query(yaml.load(yaml_content))    # FIXED:     return parse_query(yaml.safe_load(yaml_content))def parse_json_query(json_content):    """Parses the given JSON string to attempt to extract a query.    Args:        json_content: A string containing JSON content.    Returns:        On success, the processed MLQuery object.    """    logger.debug("Attempting to parse JSON content:\n%s" % json_content)    return parse_query(json.loads(json_content))def parse_query(qd):    """Parses the given query dictionary to produce an MLQuery object.    Args:        qd: A Python dictionary (pre-parsed from JSON/YAML) from which to extract the query.    Returns:        On success, the processed MLQuery object.    """    if not isinstance(qd, dict):        raise TypeError("Argument for query parsing must be a Python dictionary")    if 'from' not in qd:        raise QuerySyntaxError("Missing \"from\" argument in query")    logger.debug("Attempting to parse query dictionary:\n%s" % json_dumps(qd, indent=2))    qf = parse_query_fragment(qd['where']).simplify() if 'where' in qd else None    if isinstance(qf, MLClause):        qf = MLQueryFragment(OP_AND, clauses=[qf])    return MLQuery(        qd['from'],        query_fragment=qf,        order_by=qd.get('orderBy', qd.get('order-by', qd.get('order_by', None))),        offset=qd.get('offset', None),        limit=qd.get('limit', None)    )def parse_query_fragment(q, op=OP_AND, comp=COMP_EQ):    """Parses the given query object for its query fragment only."""    if not isinstance(q, list) and not isinstance(q, dict):        raise TypeError("\"Where\" clause in query fragment must either be a list or a dictionary")    # ensure we're always dealing with a list    if not isinstance(q, list):        q = [q]    clauses = []    sub_fragments = []    for sub_q in q:        if not isinstance(sub_q, dict):            raise TypeError("Sub-fragment must be a dictionary: %s" % sub_q)        for k, v in iteritems(sub_q):            # if v is a sub-fragment with a specific operator            if k in OPERATORS:                s = parse_query_fragment(v, op=k, comp=comp).simplify()            elif k in COMPARATORS:                # it's a sub-fragment, but its comparator is explicitly specified                s = parse_query_fragment(v, op=op, comp=k).simplify()            else:                # it must be a clause                s = MLClause(k, comp, v)            if isinstance(s, MLQueryFragment):                sub_fragments.append(s)            elif isinstance(s, MLClause):                clauses.append(s)    return MLQueryFragment(op, clauses=clauses, sub_fragments=sub_fragments)