Datasets:

Modalities:
Text
Formats:
json
Languages:
code
Size:
< 1K
Tags:
code
Libraries:
Datasets
pandas
License:
File size: 46,420 Bytes
4fb7874
1
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.## Licensed under the Apache License, Version 2.0 (the "License");# you may not use this file except in compliance with the License.# You may obtain a copy of the License at##     http://www.apache.org/licenses/LICENSE-2.0## Unless required by applicable law or agreed to in writing, software# distributed under the License is distributed on an "AS IS" BASIS,# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.# See the License for the specific language governing permissions and# limitations under the License.# =============================================================================="""Tests for Python ops defined in sparse_ops."""import numpy as npfrom tensorflow.python.framework import constant_opfrom tensorflow.python.framework import dtypesfrom tensorflow.python.framework import errorsfrom tensorflow.python.framework import opsfrom tensorflow.python.framework import sparse_tensorfrom tensorflow.python.framework import test_utilfrom tensorflow.python.ops import array_opsfrom tensorflow.python.ops import gradient_checkerfrom tensorflow.python.ops import nn_opsfrom tensorflow.python.ops import sparse_opsfrom tensorflow.python.ops import variablesimport tensorflow.python.ops.sparse_grad  # pylint: disable=unused-importfrom tensorflow.python.platform import googletestfrom tensorflow.python.platform import test# TODO(zongheng): it'd be great to factor out this function and various random# SparseTensor gen funcs.def _sparsify(x, thresh=0.5, index_dtype=np.int64):  x[x < thresh] = 0  non_zero = np.where(x)  x_indices = np.vstack(non_zero).astype(index_dtype).T  x_values = x[non_zero]  x_shape = x.shape  return sparse_tensor.SparseTensor(      indices=x_indices, values=x_values, dense_shape=x_shape), len(x_values)class SparseToIndicatorTest(test_util.TensorFlowTestCase):  def _SparseTensor_5x6(self, dtype):    ind = np.array([[0, 0], [1, 0], [1, 3], [1, 4], [3, 2], [3, 3]])    val = np.array([0, 10, 13, 14, 32, 33])    shape = np.array([5, 6])    return sparse_tensor.SparseTensor(        constant_op.constant(ind, dtypes.int64),        constant_op.constant(val, dtype),        constant_op.constant(shape, dtypes.int64))  def _SparseTensor_2x3x4(self, dtype):    # Includes two entries with the form [1, 1, x] : 150.    ind = np.array([[0, 0, 1], [0, 1, 0], [0, 1, 2], [1, 0, 3], [1, 1, 0],                    [1, 1, 1], [1, 1, 2], [1, 2, 2]])    val = np.array([1, 10, 12, 103, 150, 149, 150, 122])    shape = np.array([2, 3, 4])    return sparse_tensor.SparseTensor(        constant_op.constant(ind, dtypes.int64),        constant_op.constant(val, dtype),        constant_op.constant(shape, dtypes.int64))  def testInt32(self):    with test_util.force_cpu():      sp_input = self._SparseTensor_5x6(dtypes.int32)      output = sparse_ops.sparse_to_indicator(sp_input, 50)      expected_output = np.zeros((5, 50), dtype=np.bool_)      expected_trues = ((0, 0), (1, 10), (1, 13), (1, 14), (3, 32), (3, 33))      for expected_true in expected_trues:        expected_output[expected_true] = True      self.assertAllEqual(output, expected_output)  def testInt64(self):    with test_util.force_cpu():      sp_input = self._SparseTensor_5x6(dtypes.int64)      output = sparse_ops.sparse_to_indicator(sp_input, 50)      expected_output = np.zeros((5, 50), dtype=np.bool_)      expected_trues = [(0, 0), (1, 10), (1, 13), (1, 14), (3, 32), (3, 33)]      for expected_true in expected_trues:        expected_output[expected_true] = True      self.assertAllEqual(output, expected_output)  def testHigherRank(self):    with test_util.force_cpu():      sp_input = self._SparseTensor_2x3x4(dtypes.int64)      output = sparse_ops.sparse_to_indicator(sp_input, 200)      expected_output = np.zeros((2, 3, 200), dtype=np.bool_)      expected_trues = [(0, 0, 1), (0, 1, 10), (0, 1, 12), (1, 0, 103),                        (1, 1, 149), (1, 1, 150), (1, 2, 122)]      for expected_true in expected_trues:        expected_output[expected_true] = True      self.assertAllEqual(output, expected_output)class SparseMergeTest(test_util.TensorFlowTestCase):  def _SparseTensorValue_3x50(self, indices_dtype, values_dtype):    # NOTE: This input is intentionally not sorted to validate the    # already_sorted flag below.    ind = np.array([[0, 0], [1, 0], [1, 2], [2, 0], [2, 1], [1, 1]])    # NB: these are not sorted    indices = np.array([0, 13, 10, 33, 32, 14])    values = np.array([-3, 4, 1, 9, 5, 1])    shape = np.array([3, 3])    indices = sparse_tensor.SparseTensorValue(        np.array(ind, np.int64),        np.array(indices, indices_dtype), np.array(shape, np.int64))    values = sparse_tensor.SparseTensorValue(        np.array(ind, np.int64),        np.array(values, values_dtype), np.array(shape, np.int64))    return indices, values  def _SparseTensor_3x50(self, indices_dtype, values_dtype):    indices, values = self._SparseTensorValue_3x50(indices_dtype, values_dtype)    return (sparse_tensor.SparseTensor.from_value(indices),            sparse_tensor.SparseTensor.from_value(values))  def _AssertResultsSorted(self, output, vocab_size):    self.assertAllEqual(output.indices,                        [[0, 0], [1, 10], [1, 13], [1, 14], [2, 32], [2, 33]])    self.assertAllEqual(output.values, [-3, 1, 4, 1, 5, 9])    self.assertAllEqual(output.dense_shape, [3, vocab_size])  def _AssertResultsNotSorted(self, output, vocab_size):    self.assertAllEqual(output.indices,                        [[0, 0], [1, 13], [1, 10], [2, 33], [2, 32], [1, 14]])    self.assertAllEqual(output.values, [-3, 4, 1, 9, 5, 1])    self.assertAllEqual(output.dense_shape, [3, vocab_size])  def testInt32AndFloat32(self):    vocab_size = 50    indices_v, values_v = self._SparseTensorValue_3x50(np.int32, np.float32)    with test_util.force_cpu():      for indices in (indices_v,                      sparse_tensor.SparseTensor.from_value(indices_v)):        for values in (values_v,                       sparse_tensor.SparseTensor.from_value(values_v)):          sp_output = sparse_ops.sparse_merge(indices, values, vocab_size)          output = self.evaluate(sp_output)          self._AssertResultsSorted(output, vocab_size)  def testInt64AndFloat32(self):    vocab_size = 50    with test_util.force_cpu():      indices, values = self._SparseTensor_3x50(np.int64, np.float32)      sp_output = sparse_ops.sparse_merge(indices, values, vocab_size)      output = self.evaluate(sp_output)      self._AssertResultsSorted(output, vocab_size)  def testInt64AndFloat64(self):    vocab_size = 50    with test_util.force_cpu():      indices, values = self._SparseTensor_3x50(np.int64, np.float64)      sp_output = sparse_ops.sparse_merge(indices, values, vocab_size)      output = self.evaluate(sp_output)      self._AssertResultsSorted(output, vocab_size)  def testInt32AndFloat32NonCanonicalOrder(self):    vocab_size = 50    with test_util.force_cpu():      indices, values = self._SparseTensor_3x50(np.int32, np.float32)      sp_output = sparse_ops.sparse_merge(          indices, values, vocab_size, already_sorted=True)      output = self.evaluate(sp_output)      self._AssertResultsNotSorted(output, vocab_size)  def testInt64AndFloat32NonCanonicalOrder(self):    vocab_size = 50    with test_util.force_cpu():      indices, values = self._SparseTensor_3x50(np.int64, np.float32)      sp_output = sparse_ops.sparse_merge(          indices, values, vocab_size, already_sorted=True)      output = self.evaluate(sp_output)      self._AssertResultsNotSorted(output, vocab_size)  def testInt64AndFloat64NonCanonicalOrder(self):    vocab_size = 50    vocab_size_tensor = constant_op.constant(vocab_size, dtypes.int64)    with test_util.force_cpu():      indices, values = self._SparseTensor_3x50(np.int64, np.float64)      sp_output = sparse_ops.sparse_merge(          indices, values, vocab_size_tensor, already_sorted=True)      output = self.evaluate(sp_output)      self._AssertResultsNotSorted(output, vocab_size)  def testShouldSetLastDimensionInDynamicShape(self):    with ops.Graph().as_default():      shape = constant_op.constant([2, 2], dtype=dtypes.int64)      dynamic_shape = array_ops.placeholder_with_default(shape, shape=[2])      ids = sparse_tensor.SparseTensor(          indices=[[0, 0], [0, 1]],          values=[1, 3],          dense_shape=dynamic_shape)      values = sparse_tensor.SparseTensor(          indices=[[0, 0], [0, 1]],          values=[0.4, 0.7],          dense_shape=dynamic_shape)      merged = sparse_ops.sparse_merge(          sp_ids=ids, sp_values=values, vocab_size=5)      self.assertEqual(5, merged.get_shape()[1])class SparseMergeHighDimTest(test_util.TensorFlowTestCase):  def _SparseTensor_3x50(self, indices_dtype, values_dtype):    # NOTE: This input is intentionally not sorted to validate the    # already_sorted flag below.    ind = np.array([[0, 0], [1, 0], [1, 2], [2, 0], [2, 1], [1, 1]])    # NB: these are not sorted    indices0 = np.array([0, 13, 10, 33, 32, 14])    indices1 = np.array([12, 4, 0, 0, 1, 30])    values = np.array([-3, 4, 1, 9, 5, 1])    shape = np.array([3, 3])    indices0 = sparse_tensor.SparseTensorValue(        np.array(ind, np.int64),        np.array(indices0, indices_dtype), np.array(shape, np.int64))    indices1 = sparse_tensor.SparseTensorValue(        np.array(ind, np.int64),        np.array(indices1, indices_dtype), np.array(shape, np.int64))    values = sparse_tensor.SparseTensorValue(        np.array(ind, np.int64),        np.array(values, values_dtype), np.array(shape, np.int64))    return ([sparse_tensor.SparseTensor.from_value(indices0),             sparse_tensor.SparseTensor.from_value(indices1)],            sparse_tensor.SparseTensor.from_value(values))  def _AssertResultsSorted(self, output, vocab_size):    self.assertAllEqual(        output.indices,        [[0, 0, 12], [1, 10, 0], [1, 13, 4], [1, 14, 30], [2, 32, 1],         [2, 33, 0]])    self.assertAllEqual(output.values, [-3, 1, 4, 1, 5, 9])    self.assertAllEqual(output.dense_shape, [3] + vocab_size)  def testInt64AndFloat32(self):    vocab_size = [50, 31]    with test_util.force_cpu():      indices, values = self._SparseTensor_3x50(np.int64, np.float32)      sp_output = sparse_ops.sparse_merge(indices, values, vocab_size)      output = self.evaluate(sp_output)      self._AssertResultsSorted(output, vocab_size)  def testInt64AndFloat64(self):    vocab_size = [50, 31]    with test_util.force_cpu():      indices, values = self._SparseTensor_3x50(np.int64, np.float64)      sp_output = sparse_ops.sparse_merge(indices, values, vocab_size)      output = self.evaluate(sp_output)      self._AssertResultsSorted(output, vocab_size)  def testInt64AndFloat64Shape(self):    vocab_size = [50, 30]    with test_util.force_cpu():      indices, values = self._SparseTensor_3x50(np.int64, np.float64)      sp_output = sparse_ops.sparse_merge(indices, values, vocab_size)      output = self.evaluate(sp_output)      self._AssertResultsSorted(output, vocab_size)class SparseRetainTest(test_util.TensorFlowTestCase):  def _SparseTensorValue_5x6(self):    ind = np.array([[0, 0], [1, 0], [1, 3], [1, 4], [3, 2], [3, 3]])    val = np.array([0, 10, 13, 14, 32, 33])    shape = np.array([5, 6])    return sparse_tensor.SparseTensorValue(        np.array(ind, np.int64),        np.array(val, np.int32), np.array(shape, np.int64))  def _SparseTensor_5x6(self):    return sparse_tensor.SparseTensor.from_value(self._SparseTensorValue_5x6())  def testBasic(self):    with test_util.force_cpu():      for sp_input in (self._SparseTensorValue_5x6(), self._SparseTensor_5x6()):        to_retain = np.array([1, 0, 0, 1, 1, 0], dtype=np.bool_)        sp_output = sparse_ops.sparse_retain(sp_input, to_retain)        output = self.evaluate(sp_output)        self.assertAllEqual(output.indices, [[0, 0], [1, 4], [3, 2]])        self.assertAllEqual(output.values, [0, 14, 32])        self.assertAllEqual(output.dense_shape, [5, 6])  def testRetainNone(self):    with test_util.force_cpu():      sp_input = self._SparseTensor_5x6()      to_retain = np.zeros((6,), dtype=np.bool_)      sp_output = sparse_ops.sparse_retain(sp_input, to_retain)      output = self.evaluate(sp_output)      self.assertAllEqual(output.indices, np.array([]).reshape((0, 2)))      self.assertAllEqual(output.values, [])      self.assertAllEqual(output.dense_shape, [5, 6])  def testMismatchedRetainShape(self):    with test_util.force_cpu():      sp_input = self._SparseTensor_5x6()      to_retain = np.array([1, 0, 0, 1, 0], dtype=np.bool_)      with self.assertRaises(ValueError):        sparse_ops.sparse_retain(sp_input, to_retain)class SparseResetShapeTest(test_util.TensorFlowTestCase):  _IND_2_5_6 = np.array(      [[0, 0, 0], [0, 1, 0], [0, 1, 3], [1, 1, 4], [1, 3, 2], [1, 3, 3]],      dtype=np.int64)  _VAL_2_5_6 = np.array([0, 10, 13, 14, 32, 33], dtype=np.int32)  _SHP_2_5_6 = np.array([2, 5, 6], dtype=np.int64)  def _SparseTensor_2x5x6(self):    return sparse_tensor.SparseTensor(        constant_op.constant(self._IND_2_5_6, dtypes.int64),        constant_op.constant(self._VAL_2_5_6, dtypes.int32),        constant_op.constant(self._SHP_2_5_6, dtypes.int64))  def _SparseTensor_2x5x6_Empty(self):    return sparse_tensor.SparseTensor(        constant_op.constant(            np.empty(shape=[0, 3], dtype=np.int64), dtypes.int64),        constant_op.constant(np.empty(shape=[0], dtype=np.int32), dtypes.int32),        constant_op.constant(self._SHP_2_5_6, dtypes.int64))  def _SparseTensorValue_2x5x6(self):    return sparse_tensor.SparseTensorValue(self._IND_2_5_6, self._VAL_2_5_6,                                           self._SHP_2_5_6)  def testStaticShapeInfoPreservedWhenNewShapeIsProvidedAndStatic(self):    sp_input = self._SparseTensor_2x5x6()    new_shape = np.array([3, 6, 7], dtype=np.int64)    sp_output = sparse_ops.sparse_reset_shape(sp_input, new_shape)    self.assertAllEqual([3, 6, 7], sp_output.get_shape())  def testBasic(self):    with test_util.force_cpu():      sp_input = self._SparseTensor_2x5x6()      new_shape = np.array([3, 6, 7], dtype=np.int64)      sp_output = sparse_ops.sparse_reset_shape(sp_input, new_shape)      output = self.evaluate(sp_output)      self.assertAllEqual(output.indices, [[0, 0, 0], [0, 1, 0], [0, 1, 3],                                           [1, 1, 4], [1, 3, 2], [1, 3, 3]])      self.assertAllEqual(output.values, [0, 10, 13, 14, 32, 33])      self.assertAllEqual(output.dense_shape, [3, 6, 7])  def testInputUnavailableInGraphConstructionOk(self):    with test_util.force_cpu():      sp_input = self._SparseTensorValue_2x5x6()      new_shape = np.array([3, 6, 7], dtype=np.int64)      sp_output = sparse_ops.sparse_reset_shape(sp_input, new_shape)      output = self.evaluate(sp_output)      self.assertAllEqual(output.indices, [[0, 0, 0], [0, 1, 0], [0, 1, 3],                                           [1, 1, 4], [1, 3, 2], [1, 3, 3]])      self.assertAllEqual(output.values, [0, 10, 13, 14, 32, 33])      self.assertAllEqual(output.dense_shape, [3, 6, 7])  @test_util.run_deprecated_v1  def testFeedInputUnavailableInGraphConstructionOk(self):    with self.session(use_gpu=False) as sess:      sp_input = array_ops.sparse_placeholder(dtype=dtypes.int32)      new_shape = np.array([3, 6, 7], dtype=np.int64)      sp_output = sparse_ops.sparse_reset_shape(sp_input, new_shape)      output = sess.run(sp_output,                        feed_dict={sp_input: self._SparseTensorValue_2x5x6()})      self.assertAllEqual(output.indices, [[0, 0, 0], [0, 1, 0], [0, 1, 3],                                           [1, 1, 4], [1, 3, 2], [1, 3, 3]])      self.assertAllEqual(output.values, [0, 10, 13, 14, 32, 33])      self.assertAllEqual(output.dense_shape, [3, 6, 7])  def testTightBoundingBox(self):    with test_util.force_cpu():      sp_input = self._SparseTensor_2x5x6()      sp_output = sparse_ops.sparse_reset_shape(sp_input)      output = self.evaluate(sp_output)      self.assertAllEqual(output.indices, [[0, 0, 0], [0, 1, 0], [0, 1, 3],                                           [1, 1, 4], [1, 3, 2], [1, 3, 3]])      self.assertAllEqual(output.values, [0, 10, 13, 14, 32, 33])      self.assertAllEqual(output.dense_shape, [2, 4, 5])  def testTightBoundingBoxEmpty(self):    with test_util.force_cpu():      sp_input = self._SparseTensor_2x5x6_Empty()      sp_output = sparse_ops.sparse_reset_shape(sp_input)      output = self.evaluate(sp_output)      self.assertAllEqual(output.indices.shape, [0, 3])      self.assertAllEqual(output.values.shape, [0])      self.assertAllEqual(output.dense_shape, [0, 0, 0])  def testInvalidRank(self):    with test_util.force_cpu():      sp_input = self._SparseTensor_2x5x6()      new_shape = np.array([3, 7], dtype=np.int64)      with self.assertRaises(ValueError):        sparse_ops.sparse_reset_shape(sp_input, new_shape)  @test_util.run_deprecated_v1  def testInvalidRankNewShapeUnavailableInGraphConstruction(self):    with self.session(use_gpu=False) as sess:      new_shape = array_ops.placeholder(dtype=dtypes.int64)      sp_input = self._SparseTensor_2x5x6()      out = sparse_ops.sparse_reset_shape(sp_input, new_shape)      with self.assertRaisesOpError("x == y did not hold element-wise"):        sess.run(out, feed_dict={new_shape: np.array([3, 7], dtype=np.int64)})  def testInvalidDimensionSizeStatic(self):    sp_input = self._SparseTensor_2x5x6()    new_shape = np.array([3, 7, 5], dtype=np.int64)    with self.assertRaisesRegex(ValueError, "should have dimension sizes"):      sparse_ops.sparse_reset_shape(sp_input, new_shape)  @test_util.run_deprecated_v1  def testInvalidDimensionSizeDynamic(self):    with self.session(use_gpu=False) as sess:      sp_input = self._SparseTensor_2x5x6()      new_shape = array_ops.placeholder(dtype=dtypes.int32)      out = sparse_ops.sparse_reset_shape(sp_input, new_shape)      with self.assertRaisesOpError("x <= y did not hold element-wise"):        sess.run(out, feed_dict={new_shape: [3, 7, 5]})  @test_util.run_deprecated_v1  def testInvalidDimensionSizeInputUnavailableInGraphConstruction(self):    sp_input = array_ops.sparse_placeholder(dtype=dtypes.int32)    with self.session(use_gpu=False) as sess:      new_shape = np.array([3, 7, 5], dtype=np.int64)      out = sparse_ops.sparse_reset_shape(sp_input, new_shape)      with self.assertRaisesOpError("x <= y did not hold element-wise"):        sess.run(out, feed_dict={sp_input: self._SparseTensorValue_2x5x6()})class SparseFillEmptyRowsTest(test_util.TensorFlowTestCase):  def _SparseTensorValue_5x6(self, dtype=np.int32):    ind = np.array([[0, 0], [1, 0], [1, 3], [1, 4], [3, 2], [3, 3]])    val = np.array([0, 10, 13, 14, 32, 33])    shape = np.array([5, 6])    return sparse_tensor.SparseTensorValue(        np.array(ind, np.int64), np.array(val, dtype), np.array(            shape, np.int64))  def _SparseTensor_5x6(self):    return sparse_tensor.SparseTensor.from_value(self._SparseTensorValue_5x6())  def _SparseTensor_String5x6(self):    ind = np.array([[0, 0], [1, 0], [1, 3], [1, 4], [3, 2], [3, 3]])    val = np.array(["a", "b", "c", "d", "e", "f"])    shape = np.array([5, 6])    return sparse_tensor.SparseTensor(        constant_op.constant(ind, dtypes.int64),        constant_op.constant(val, dtypes.string),        constant_op.constant(shape, dtypes.int64))  def _SparseTensor_2x6(self):    ind = np.array([[0, 0], [1, 0], [1, 3], [1, 4]])    val = np.array([0, 10, 13, 14])    shape = np.array([2, 6])    return sparse_tensor.SparseTensor(        constant_op.constant(ind, dtypes.int64),        constant_op.constant(val, dtypes.int32),        constant_op.constant(shape, dtypes.int64))  def testFillNumber(self):    with test_util.use_gpu():      for sp_input in (self._SparseTensorValue_5x6(), self._SparseTensor_5x6()):        sp_output, empty_row_indicator = (            sparse_ops.sparse_fill_empty_rows(sp_input, -1))        output, empty_row_indicator_out = self.evaluate(            [sp_output, empty_row_indicator])        self.assertAllEqual(            output.indices,            [[0, 0], [1, 0], [1, 3], [1, 4], [2, 0], [3, 2], [3, 3], [4, 0]])        self.assertAllEqual(output.values, [0, 10, 13, 14, -1, 32, 33, -1])        self.assertAllEqual(output.dense_shape, [5, 6])        self.assertAllEqual(empty_row_indicator_out,                            np.array([0, 0, 1, 0, 1]).astype(np.bool_))  @test_util.run_deprecated_v1  def testFillFloat(self):    with self.session():      values = constant_op.constant(          [0.0, 10.0, 13.0, 14.0, 32.0, 33.0], dtype=dtypes.float64)      default_value = constant_op.constant(-1.0, dtype=dtypes.float64)      sp_input = sparse_tensor.SparseTensorValue(          indices=np.array([[0, 0], [1, 0], [1, 3], [1, 4], [3, 2], [3, 3]]),          values=values,          dense_shape=np.array([5, 6]))      sp_output, empty_row_indicator = (sparse_ops.sparse_fill_empty_rows(          sp_input, default_value))      output, empty_row_indicator_out = self.evaluate(          [sp_output, empty_row_indicator])      self.assertAllEqual(output.indices, [[0, 0], [1, 0], [1, 3], [1, 4],                                           [2, 0], [3, 2], [3, 3], [4, 0]])      self.assertAllClose(output.values, [0, 10, 13, 14, -1, 32, 33, -1])      self.assertAllEqual(output.dense_shape, [5, 6])      self.assertAllEqual(empty_row_indicator_out,                          np.array([0, 0, 1, 0, 1]).astype(np.bool_))      values_grad_err = gradient_checker.compute_gradient_error(          values, values.shape.as_list(), sp_output.values, [8], delta=1e-8)      self.assertGreater(values_grad_err, 0)      self.assertLess(values_grad_err, 1e-8)      default_value_grad_err = gradient_checker.compute_gradient_error(          default_value,          default_value.shape.as_list(),          sp_output.values, [8],          delta=1e-8)      self.assertGreater(default_value_grad_err, 0)      self.assertLess(default_value_grad_err, 1e-8)  def testFillString(self):    with test_util.force_cpu():      sp_input = self._SparseTensor_String5x6()      sp_output, empty_row_indicator = (          sparse_ops.sparse_fill_empty_rows(sp_input, ""))      output, empty_row_indicator_out = self.evaluate(          [sp_output, empty_row_indicator])      self.assertAllEqual(          output.indices,          [[0, 0], [1, 0], [1, 3], [1, 4], [2, 0], [3, 2], [3, 3], [4, 0]])      self.assertAllEqual(output.values,                          [b"a", b"b", b"c", b"d", b"", b"e", b"f", b""])      self.assertAllEqual(output.dense_shape, [5, 6])      self.assertAllEqual(empty_row_indicator_out,                          np.array([0, 0, 1, 0, 1]).astype(np.bool_))  def testNoEmptyRows(self):    with test_util.use_gpu():      sp_input = self._SparseTensor_2x6()      sp_output, empty_row_indicator = (          sparse_ops.sparse_fill_empty_rows(sp_input, -1))      output, empty_row_indicator_out = self.evaluate(          [sp_output, empty_row_indicator])      self.assertAllEqual(output.indices, [[0, 0], [1, 0], [1, 3], [1, 4]])      self.assertAllEqual(output.values, [0, 10, 13, 14])      self.assertAllEqual(output.dense_shape, [2, 6])      self.assertAllEqual(empty_row_indicator_out, np.zeros(2).astype(np.bool_))  def testNoEmptyRowsAndUnordered(self):    with test_util.use_gpu():      sp_input = sparse_tensor.SparseTensor(          indices=np.array([[1, 2], [1, 3], [0, 1], [0, 3]]),          values=np.array([1, 3, 2, 4]),          dense_shape=np.array([2, 5]))      sp_output, empty_row_indicator = (          sparse_ops.sparse_fill_empty_rows(sp_input, -1))      output, empty_row_indicator_out = self.evaluate(          [sp_output, empty_row_indicator])      self.assertAllEqual(output.indices, [[0, 1], [0, 3], [1, 2], [1, 3]])      self.assertAllEqual(output.values, [2, 4, 1, 3])      self.assertAllEqual(output.dense_shape, [2, 5])      self.assertAllEqual(empty_row_indicator_out, np.zeros(2).astype(np.bool_))  def testUnordered(self):    with test_util.use_gpu():      sp_input = sparse_tensor.SparseTensor(          indices=np.array([[2, 3], [2, 2], [0, 1], [0, 3]]),          values=np.array([1, 3, 2, 4]),          dense_shape=np.array([3, 5]))      sp_output, empty_row_indicator = (          sparse_ops.sparse_fill_empty_rows(sp_input, -1))      output, empty_row_indicator_out = self.evaluate(          [sp_output, empty_row_indicator])      self.assertAllEqual(output.indices,                          [[0, 1], [0, 3], [1, 0], [2, 3], [2, 2]])      self.assertAllEqual(output.values, [2, 4, -1, 1, 3])      self.assertAllEqual(output.dense_shape, [3, 5])      self.assertAllEqual(empty_row_indicator_out, [False, True, False])  def testEmptyIndicesTensor(self):    with test_util.use_gpu():      sp_input = sparse_tensor.SparseTensor(          indices=np.ones([0, 2]),          values=np.ones([0]),          dense_shape=np.array([2, 5]))      sp_output, empty_row_indicator = (          sparse_ops.sparse_fill_empty_rows(sp_input, -1))      output, empty_row_indicator_out = self.evaluate(          [sp_output, empty_row_indicator])      self.assertAllEqual(output.indices, [[0, 0], [1, 0]])      self.assertAllEqual(output.values, [-1, -1])      self.assertAllEqual(output.dense_shape, [2, 5])      self.assertAllEqual(empty_row_indicator_out, np.ones(2).astype(np.bool_))  def testEmptyOutput(self):    with test_util.use_gpu():      sp_input = sparse_tensor.SparseTensor(          indices=np.ones([0, 2]),          values=np.ones([0]),          dense_shape=np.array([0, 3]))      sp_output, empty_row_indicator = (          sparse_ops.sparse_fill_empty_rows(sp_input, -1))      output, empty_row_indicator_out = self.evaluate(          [sp_output, empty_row_indicator])      self.assertAllEqual(output.indices, np.ones([0, 2]))      self.assertAllEqual(output.values, np.ones([0]))      self.assertAllEqual(output.dense_shape, [0, 3])      self.assertAllEqual(empty_row_indicator_out, [])  def testInvalidIndices(self):    with test_util.use_gpu():      sp_input = sparse_tensor.SparseTensor(          indices=np.array([[1, 2], [1, 3], [99, 1], [99, 3]]),          values=np.array([1, 3, 2, 4]),          dense_shape=np.array([2, 5]))      with self.assertRaisesRegex(errors.InvalidArgumentError,                                  r"indices\(2, 0\) is invalid"):        self.evaluate(sparse_ops.sparse_fill_empty_rows(sp_input, -1))class SparseAddTest(test_util.TensorFlowTestCase):  def testValuesInVariable(self):    # BUG: CWE-20 Improper Input Validation    # indices = constant_op.constant([[1]], dtype=dtypes.int64)    # FIXED:     indices = constant_op.constant([[0]], dtype=dtypes.int64)    values = variables.Variable([1], trainable=False, dtype=dtypes.float32)    shape = constant_op.constant([1], dtype=dtypes.int64)    sp_input = sparse_tensor.SparseTensor(indices, values, shape)    sp_output = sparse_ops.sparse_add(sp_input, sp_input)    with test_util.force_cpu():      self.evaluate(variables.global_variables_initializer())      output = self.evaluate(sp_output)      self.assertAllEqual(output.values, [2])class SparseReduceTest(test_util.TensorFlowTestCase):  # [[1, ?, 2]  #  [?, 3, ?]]  # where ? is implicitly-zero.  ind = np.array([[0, 0], [0, 2], [1, 1]]).astype(np.int64)  vals = np.array([1, 1, 1]).astype(np.int32)  dense_shape = np.array([2, 3]).astype(np.int64)  def _compare(self, sp_t, reduction_axes, ndims, keep_dims, do_sum):    densified = self.evaluate(sparse_ops.sparse_tensor_to_dense(sp_t))    np_ans = densified    if reduction_axes is None:      if do_sum:        np_ans = np.sum(np_ans, keepdims=keep_dims)      else:        np_ans = np.max(np_ans, keepdims=keep_dims)    else:      if not isinstance(reduction_axes, list):  # Single scalar.        reduction_axes = [reduction_axes]      reduction_axes = np.array(reduction_axes).astype(np.int32)      # Handles negative axes.      reduction_axes = (reduction_axes + ndims) % ndims      # Loop below depends on sorted.      reduction_axes.sort()      for ra in reduction_axes.ravel()[::-1]:        if do_sum:          np_ans = np.sum(np_ans, axis=ra, keepdims=keep_dims)        else:          np_ans = np.max(np_ans, axis=ra, keepdims=keep_dims)    with self.cached_session():      if do_sum:        tf_dense_ans = sparse_ops.sparse_reduce_sum(sp_t, reduction_axes,                                                    keep_dims)      else:        tf_dense_ans = sparse_ops.sparse_reduce_max(sp_t, reduction_axes,                                                    keep_dims)      out_dense = self.evaluate(tf_dense_ans)      if do_sum:        tf_sparse_ans = sparse_ops.sparse_reduce_sum_sparse(sp_t,                                                            reduction_axes,                                                            keep_dims)      else:        tf_sparse_ans = sparse_ops.sparse_reduce_max_sparse(sp_t,                                                            reduction_axes,                                                            keep_dims)      # Convert to dense for comparison purposes.      out_sparse = sparse_ops.sparse_tensor_to_dense(tf_sparse_ans)    self.assertAllClose(np_ans, out_dense)    self.assertAllClose(np_ans, out_sparse)  def _compare_all(self, sp_t, reduction_axes, ndims):    self._compare(sp_t, reduction_axes, ndims, False, False)    self._compare(sp_t, reduction_axes, ndims, False, True)    self._compare(sp_t, reduction_axes, ndims, True, False)    self._compare(sp_t, reduction_axes, ndims, True, True)  # (TODO:b/133851381): Re-enable this test.  def disabledtestSimpleAndRandomInputs(self):    if np.__version__ == "1.13.0":      self.skipTest("numpy 1.13.0 bug")    sp_t = sparse_tensor.SparseTensor(self.ind, self.vals, self.dense_shape)    with test_util.force_cpu():      self._compare_all(sp_t, None, ndims=2)      self._compare_all(sp_t, 0, ndims=2)      self._compare_all(sp_t, [1], ndims=2)      self._compare_all(sp_t, [0, 1], ndims=2)      self._compare_all(sp_t, [1, 0], ndims=2)      self._compare_all(sp_t, [-1], ndims=2)      self._compare_all(sp_t, [1, -2], ndims=2)    np.random.seed(1618)    test_dims = [(1618, 1, 11, 7, 1), (1,), (1, 1, 1)]    with test_util.force_cpu():      for dims in test_dims:        sp_t, unused_nnz = _sparsify(np.random.randn(*dims))        # reduce all using None        self._compare_all(sp_t, None, ndims=len(dims))        # reduce random axes from 1D to N-D        for d in range(1, len(dims) + 1):          axes = np.random.choice(len(dims), size=d, replace=False).tolist()          self._compare_all(sp_t, axes, ndims=len(dims))  def testInvalidAxes(self):    sp_t = sparse_tensor.SparseTensor(self.ind, self.vals, self.dense_shape)    with test_util.force_cpu():      with self.assertRaisesOpError("Invalid reduction dimension -3"):        self.evaluate(sparse_ops.sparse_reduce_sum(sp_t, -3))      with self.assertRaisesOpError("Invalid reduction dimension 2"):        self.evaluate(sparse_ops.sparse_reduce_sum(sp_t, 2))      with self.assertRaisesOpError("Invalid reduction dimension -3"):        self.evaluate(sparse_ops.sparse_reduce_max(sp_t, -3))      with self.assertRaisesOpError("Invalid reduction dimension 2"):        self.evaluate(sparse_ops.sparse_reduce_max(sp_t, 2))  @test_util.run_deprecated_v1  def testGradient(self):    np.random.seed(8161)    test_dims = [(11, 1, 5, 7, 1), (2, 2)]    with self.session(use_gpu=False):      for dims in test_dims:        sp_t, nnz = _sparsify(np.random.randn(*dims))        # reduce random axes from 1D to N-D        for d in range(1, len(dims) + 1):          axes = np.random.choice(len(dims), size=d, replace=False).tolist()          reduced = sparse_ops.sparse_reduce_sum(sp_t, axes)          err = gradient_checker.compute_gradient_error(              sp_t.values, (nnz,), reduced,              self.evaluate(reduced).shape)          self.assertLess(err, 1e-3)        # Tests for negative axes.        reduced = sparse_ops.sparse_reduce_sum(sp_t, -1)        err = gradient_checker.compute_gradient_error(            sp_t.values, (nnz,), reduced,            self.evaluate(reduced).shape)        self.assertLess(err, 1e-3)  def _testSparseReduceShape(self, sp_t, reduction_axes, ndims, keep_dims,                             do_sum):    densified = self.evaluate(sparse_ops.sparse_tensor_to_dense(sp_t))    np_op = np.sum    tf_op = sparse_ops.sparse_reduce_sum    if not do_sum:      np_op = np.max      tf_op = sparse_ops.sparse_reduce_max    np_ans = densified    if reduction_axes is None:      np_ans = np_op(np_ans, keepdims=keep_dims)    else:      if not isinstance(reduction_axes, list):  # Single scalar.        reduction_axes = [reduction_axes]      reduction_axes = np.array(reduction_axes).astype(np.int32)      # Handles negative axes.      reduction_axes = (reduction_axes + ndims) % ndims      # Loop below depends on sorted.      reduction_axes.sort()      for ra in reduction_axes.ravel()[::-1]:        np_ans = np_op(np_ans, axis=ra, keepdims=keep_dims)    tf_ans = tf_op(sp_t, reduction_axes, keep_dims)    self.assertAllEqual(np_ans.shape, tf_ans.get_shape().as_list())  # (TODO:b/133851381): Re-enable this test  def disabledtestSparseReduceSumOrMaxShape(self):    sp_t = sparse_tensor.SparseTensor(self.ind, self.vals, self.dense_shape)    with test_util.force_cpu():      for do_sum in [True, False]:        for keep_dims in [True, False]:          self._testSparseReduceShape(sp_t, None, 2, keep_dims, do_sum)          self._testSparseReduceShape(sp_t, 0, 2, keep_dims, do_sum)          self._testSparseReduceShape(sp_t, [1], 2, keep_dims, do_sum)          self._testSparseReduceShape(sp_t, [0, 1], 2, keep_dims, do_sum)          self._testSparseReduceShape(sp_t, [1, 0], 2, keep_dims, do_sum)          self._testSparseReduceShape(sp_t, [-1], 2, keep_dims, do_sum)          self._testSparseReduceShape(sp_t, [1, -2], 2, keep_dims, do_sum)  def testIntegerOverflow(self):    with self.cached_session(use_gpu=False):      with self.assertRaises(errors.InvalidArgumentError):        res = sparse_ops.gen_sparse_ops.sparse_reduce_max(            input_indices=[[1, 2], [3, 4]],            input_shape=[2**32, 2**31],            input_values=[1, 3],            reduction_axes=[0],            keep_dims=False,            name=None)        self.evaluate(res)      with self.assertRaises(errors.InvalidArgumentError):        res = sparse_ops.gen_sparse_ops.sparse_reduce_max_sparse(            input_indices=[[1, 2], [3, 4]],            input_shape=[2**32, 2**31],            input_values=[1, 3],            reduction_axes=[0],            keep_dims=False,            name=None)        self.evaluate(res)      with self.assertRaises(errors.InvalidArgumentError):        res = sparse_ops.gen_sparse_ops.sparse_reduce_sum(            input_indices=[[1, 2], [3, 4]],            input_shape=[2**32, 2**31],            input_values=[1, 3],            reduction_axes=[0],            keep_dims=False,            name=None)        self.evaluate(res)class SparseMathOpsTest(test_util.TensorFlowTestCase):  def _check(self, result_tensor, result_np, input_sp_t):    self.assertTrue(isinstance(result_tensor, sparse_tensor.SparseTensor))    self.assertTrue(isinstance(input_sp_t, sparse_tensor.SparseTensor))    self.assertAllCloseAccordingToType(input_sp_t.indices,                                       result_tensor.indices)    self.assertAllCloseAccordingToType(input_sp_t.dense_shape,                                       result_tensor.dense_shape)    res_densified = sparse_ops.sparse_to_dense(        result_tensor.indices, result_tensor.dense_shape, result_tensor.values)    self.assertAllCloseAccordingToType(result_np, res_densified)  @test_util.run_deprecated_v1  def testCwiseShapeValidation(self):    # Test case for GitHub 24072.    with test_util.force_cpu():      a = array_ops.ones([3, 4, 1], dtype=dtypes.int32)      b = sparse_tensor.SparseTensor([[0, 0, 1, 0], [0, 0, 3, 0]], [10, 20],                                     [1, 1, 4, 2])      c = a * b      with self.assertRaisesRegex(          errors.InvalidArgumentError,          "broadcasts dense to sparse only; got incompatible shapes"):        self.evaluate(c)  def testCwiseDivAndMul(self):    np.random.seed(1618)    sp_shapes = [(10, 10, 10), (5, 5), (1618,), (3, 3, 7)]    dense_shapes = [(10, 10, 1), (5, 5), (1,), (1, 7)]    with test_util.force_cpu():      for dtype in [np.float32, np.float64, np.int32, np.int64]:        for sp_shape, dense_shape in zip(sp_shapes, dense_shapes):          sp_vals_np = np.random.rand(*sp_shape).astype(dtype) + 1          dense_vals_np = np.random.rand(*dense_shape).astype(dtype) + 1          sp_t, unused_nnz = _sparsify(sp_vals_np, thresh=1.5)          sp_t_densified = sparse_ops.sparse_tensor_to_dense(sp_t)          dense_t = constant_op.constant(dense_vals_np)          self._check(sp_t / dense_t, sp_t_densified / dense_vals_np, sp_t)          # Check commutative.          self._check(sp_t * dense_t, sp_t_densified * dense_vals_np, sp_t)          self._check(dense_t * sp_t, sp_t_densified * dense_vals_np, sp_t)          if dtype in [np.int32, np.int64]:            res = sp_t / dense_t  # should invoke "__truediv__"            self.assertEqual(res.values.dtype, np.float64)  def testCwiseAdd(self):    with test_util.force_cpu():      # Identity(2) + AllOnes(2,2).  Should be equal to 2 * Identity(2).      indices = [[0, 0], [1, 1]]      vals = [1, 1]      shape = (2, 2)      sp_t = sparse_tensor.SparseTensor(indices, vals, shape)      dense_t = array_ops.ones(shape, dtype=dtypes.int32)      self._check(          sparse_ops.sparse_dense_cwise_add(sp_t, dense_t),          np.identity(2) * 2, sp_t)      # Variant of above, but broadcasts the dense side.      dense_t = array_ops.ones([1], dtype=dtypes.int32)      self._check(          sparse_ops.sparse_dense_cwise_add(sp_t, dense_t),          np.identity(2) * 2, sp_t)  @test_util.run_deprecated_v1  def testGradients(self):    np.random.seed(1618)    sp_shapes = [(10, 10, 10), (5, 5), (1618,), (3, 3, 7)]    dense_shapes = [(10, 10, 1), (5, 5), (1,), (1, 7)]    with self.session(use_gpu=False):      for dtype in [np.float32, np.float64]:        for sp_shape, dense_shape in zip(sp_shapes, dense_shapes):          sp_vals_np = np.random.rand(*sp_shape).astype(dtype) + 1          dense_vals_np = np.random.rand(*dense_shape).astype(dtype) + 1          sp_t, nnz = _sparsify(sp_vals_np, thresh=1.5)          dense_t = constant_op.constant(dense_vals_np)          cmul = sp_t * dense_t          err = gradient_checker.compute_gradient_error([sp_t.values, dense_t],                                                        [(nnz,), dense_shape],                                                        cmul.values, (nnz,))          self.assertLess(err, 1e-4)          cdiv = sp_t / dense_t          err = gradient_checker.compute_gradient_error(sp_t.values, (nnz,),                                                        cdiv.values, (nnz,))          self.assertLess(err, 1e-4)          err = gradient_checker.compute_gradient_error(              dense_t,              dense_shape,              cdiv.values, (nnz,),              x_init_value=dense_vals_np)          self.assertLess(err, 2e-4)class SparseSoftmaxTest(test_util.TensorFlowTestCase):  @test_util.run_deprecated_v1  def testEquivalentToDensified(self):    np.random.seed(1618)    n, m = np.random.choice(20, size=2)    for dtype in [np.float32, np.float64]:      sp_vals_np = np.random.rand(n, m).astype(dtype)      batched_sp_t, unused_nnz1 = _sparsify(          sp_vals_np.reshape((1, n, m)), thresh=0.)  # No masking.      with test_util.force_cpu():        densified = constant_op.constant(sp_vals_np)        sp_result = self.evaluate(            sparse_ops.sparse_softmax(batched_sp_t)).values.reshape((n, m))        dense_result = nn_ops.softmax(densified)        self.assertAllClose(dense_result, sp_result)  def testHigherRanks(self):    # For the first shape:    # First batch:    # [?   e.]    # [1.  ? ]    # Second batch:    # [e   ? ]    # [e   e ]    #    # The softmax results should be:    # [?   1.]     [1    ?]    # [1.  ? ] and [.5  .5]    # where ? means implicitly zero.    #    # The second shape: same input data, but with a higher-rank shape.    shapes = [[2, 2, 2], [2, 1, 2, 2]]    for shape in shapes:      values = np.asarray(          [0., np.e, 1., 0., np.e, 0., np.e, np.e]).reshape(shape)      sp_t, unused_nnz = _sparsify(values, thresh=1e-2)      expected_values = [1., 1., 1., .5, .5]      with test_util.force_cpu():        result = sparse_ops.sparse_softmax(sp_t)        self.assertAllEqual(expected_values, result.values)        self.assertAllEqual(sp_t.indices, result.indices)        self.assertAllEqual(shape, result.dense_shape)  @test_util.run_deprecated_v1  def testGradient(self):    x_shape = [2, 5, 10]    with self.cached_session(use_gpu=False):      for dtype in [np.float32, np.float64]:        x_np = np.random.randn(*x_shape).astype(dtype)        x_tf, nnz = _sparsify(x_np)        y_tf = sparse_ops.sparse_softmax(x_tf)        err = gradient_checker.compute_gradient_error(x_tf.values, (nnz,),                                                      y_tf.values, (nnz,))        self.assertLess(err, 1e-4)  def testIntegerOverflow(self):    with self.cached_session(use_gpu=False):      with self.assertRaises(errors.InvalidArgumentError):        res = sparse_ops.gen_sparse_ops.sparse_softmax(            sp_indices=[[1, 1]],            sp_values=[2.0],            sp_shape=[2**32, 2**31],            name=None)        self.evaluate(res)  def testReshapeNegativeShape(self):    with self.cached_session(use_gpu=False):      with self.assertRaises(errors.InvalidArgumentError):        res = sparse_ops.gen_sparse_ops.sparse_softmax(            sp_indices=[[1, 1]], sp_values=[2.0], sp_shape=[-1, 1], name=None)        self.evaluate(res)class SparseMinimumMaximumTest(test_util.TensorFlowTestCase):  def _assertSparseTensorValueEqual(self, a, b):    self.assertAllEqual(a.indices, b.indices)    self.assertAllEqual(a.values, b.values)    self.assertAllEqual(a.dense_shape, b.dense_shape)  def testBasic(self):    with test_util.force_cpu():      # 1-D, values at index 0.      sp_zero = sparse_tensor.SparseTensor([[0]], [0], [7])      sp_one = sparse_tensor.SparseTensor([[0]], [1], [7])      max_tf = sparse_ops.sparse_maximum(sp_zero, sp_one)      min_tf = sparse_ops.sparse_minimum(sp_zero, sp_one)      self._assertSparseTensorValueEqual(sp_one, max_tf)      self._assertSparseTensorValueEqual(sp_zero, min_tf)      # Values at different indices.      sp_zero = sparse_tensor.SparseTensor([[0]], [0], [7])      sp_zero_2 = sparse_tensor.SparseTensor([[1]], [0], [7])      expected = sparse_tensor.SparseTensor([[0], [1]], [0, 0], [7])      max_tf = sparse_ops.sparse_maximum(sp_zero, sp_zero_2)      min_tf = sparse_ops.sparse_minimum(sp_zero, sp_zero_2)      self._assertSparseTensorValueEqual(expected, max_tf)      self._assertSparseTensorValueEqual(expected, min_tf)  @test_util.run_deprecated_v1  def testRandom(self):    np.random.seed(1618)    shapes = [(13,), (6, 8), (1, 7, 1)]    for shape in shapes:      for dtype in [np.int32, np.int64, np.float16, np.float32, np.float64]:        a_np = np.random.randn(*shape).astype(dtype)        b_np = np.random.randn(*shape).astype(dtype)        sp_a, unused_a_nnz = _sparsify(a_np, thresh=-.5)        sp_b, unused_b_nnz = _sparsify(b_np, thresh=-.5)        with self.cached_session(use_gpu=False):          maximum_tf = sparse_ops.sparse_maximum(sp_a, sp_b)          maximum_tf_densified = sparse_ops.sparse_tensor_to_dense(              maximum_tf).eval()          minimum_tf = sparse_ops.sparse_minimum(sp_a, sp_b)          minimum_tf_densified = sparse_ops.sparse_tensor_to_dense(              minimum_tf).eval()          a_densified = sparse_ops.sparse_tensor_to_dense(sp_a).eval()          b_densified = sparse_ops.sparse_tensor_to_dense(sp_b).eval()        self.assertAllEqual(            np.maximum(a_densified, b_densified), maximum_tf_densified)        self.assertAllEqual(            np.minimum(a_densified, b_densified), minimum_tf_densified)  def testMismatchedShapes(self):    with test_util.force_cpu():      sp_zero = sparse_tensor.SparseTensor([[0, 0]], [0], [1, 1])      sp_one = sparse_tensor.SparseTensor([[0]], [1], [2])      with self.assertRaisesOpError("Operands do not have the same ranks"):        self.evaluate(sparse_ops.sparse_maximum(sp_zero, sp_one))      sp_zero = sparse_tensor.SparseTensor([[0]], [0], [1])      sp_one = sparse_tensor.SparseTensor([[0]], [1], [2])      with self.assertRaisesOpError("Operands' shapes do not match"):        self.evaluate(sparse_ops.sparse_maximum(sp_zero, sp_one))class SparseTransposeTest(test.TestCase):  def testTranspose(self):    if np.__version__ == "1.13.0":      self.skipTest("numpy 1.13.0 bug")    with test_util.force_cpu():      np.random.seed(1618)      shapes = [np.random.randint(1, 10, size=rank) for rank in range(1, 6)]      for shape in shapes:        for dtype in [np.int32, np.int64, np.float32, np.float64]:          dn_input = np.random.randn(*shape).astype(dtype)          rank = self.evaluate(array_ops.rank(dn_input))          perm = np.random.choice(rank, rank, False)          sp_input, unused_a_nnz = _sparsify(dn_input)          sp_trans = sparse_ops.sparse_transpose(sp_input, perm=perm)          dn_trans = sparse_ops.sparse_tensor_to_dense(sp_trans)          expected_trans = array_ops.transpose(dn_input, perm=perm)          self.assertAllEqual(expected_trans.shape, sp_trans.get_shape())          self.assertAllEqual(dn_trans, expected_trans)class SparsePlaceholderTest(test.TestCase):  @test_util.run_deprecated_v1  def testPlaceholder(self):    foo = array_ops.sparse_placeholder(dtypes.float32, shape=(10, 47))    self.assertAllEqual([10, 47], foo.get_shape())    self.assertAllEqual([None, 2], foo.indices.get_shape().as_list())  @test_util.run_deprecated_v1  def testPartialShapePlaceholder(self):    foo = array_ops.sparse_placeholder(dtypes.float32, shape=(None, 47))    self.assertAllEqual([None, 47], foo.get_shape().as_list())    self.assertAllEqual([None, 2], foo.indices.get_shape().as_list())  @test_util.run_deprecated_v1  def testNoShapePlaceholder(self):    foo = array_ops.sparse_placeholder(dtypes.float32, shape=None)    self.assertAllEqual(None, foo.get_shape())    self.assertAllEqual([None, None], foo.indices.get_shape().as_list())if __name__ == "__main__":  googletest.main()