Datasets:

Modalities:
Text
Formats:
json
Languages:
code
Size:
< 1K
Tags:
code
Libraries:
Datasets
pandas
License:
File size: 27,223 Bytes
eb67da4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
#!/usr/bin/python
# -*- coding: utf-8 -*-

# Copyright: (c) 2016-2017, Yanis Guenane <[email protected]>
# Copyright: (c) 2017, Markus Teufelberger <[email protected]>
# GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt)

from __future__ import absolute_import, division, print_function
__metaclass__ = type


DOCUMENTATION = r'''
---
module: openssl_privatekey_info
short_description: Provide information for OpenSSL private keys
description:
    - This module allows one to query information on OpenSSL private keys.
    - In case the key consistency checks fail, the module will fail as this indicates a faked
      private key. In this case, all return variables are still returned. Note that key consistency
      checks are not available all key types; if none is available, C(none) is returned for
      C(key_is_consistent).
    - It uses the pyOpenSSL or cryptography python library to interact with OpenSSL. If both the
      cryptography and PyOpenSSL libraries are available (and meet the minimum version requirements)
      cryptography will be preferred as a backend over PyOpenSSL (unless the backend is forced with
      C(select_crypto_backend)). Please note that the PyOpenSSL backend was deprecated in Ansible 2.9
      and will be removed in community.crypto 2.0.0.
requirements:
    - PyOpenSSL >= 0.15 or cryptography >= 1.2.3
author:
  - Felix Fontein (@felixfontein)
  - Yanis Guenane (@Spredzy)
options:
    path:
        description:
            - Remote absolute path where the private key file is loaded from.
        type: path
    content:
        description:
            - Content of the private key file.
            - Either I(path) or I(content) must be specified, but not both.
        type: str
        version_added: '1.0.0'
    passphrase:
        description:
            - The passphrase for the private key.
        type: str
    return_private_key_data:
        description:
            - Whether to return private key data.
            - Only set this to C(yes) when you want private information about this key to
              leave the remote machine.
            - "WARNING: you have to make sure that private key data isn't accidentally logged!"
        type: bool
        default: no

    select_crypto_backend:
        description:
            - Determines which crypto backend to use.
            - The default choice is C(auto), which tries to use C(cryptography) if available, and falls back to C(pyopenssl).
            - If set to C(pyopenssl), will try to use the L(pyOpenSSL,https://pypi.org/project/pyOpenSSL/) library.
            - If set to C(cryptography), will try to use the L(cryptography,https://cryptography.io/) library.
            - Please note that the C(pyopenssl) backend has been deprecated in Ansible 2.9, and will be removed in community.crypto 2.0.0.
              From that point on, only the C(cryptography) backend will be available.
        type: str
        default: auto
        choices: [ auto, cryptography, pyopenssl ]

seealso:
- module: community.crypto.openssl_privatekey
'''

EXAMPLES = r'''
- name: Generate an OpenSSL private key with the default values (4096 bits, RSA)
  community.crypto.openssl_privatekey:
    path: /etc/ssl/private/ansible.com.pem

- name: Get information on generated key
  community.crypto.openssl_privatekey_info:
    path: /etc/ssl/private/ansible.com.pem
  register: result

- name: Dump information
  debug:
    var: result
'''

RETURN = r'''
can_load_key:
    description: Whether the module was able to load the private key from disk
    returned: always
    type: bool
can_parse_key:
    description: Whether the module was able to parse the private key
    returned: always
    type: bool
key_is_consistent:
    description:
        - Whether the key is consistent. Can also return C(none) next to C(yes) and
          C(no), to indicate that consistency couldn't be checked.
        - In case the check returns C(no), the module will fail.
    returned: always
    type: bool
public_key:
    description: Private key's public key in PEM format
    returned: success
    type: str
    sample: "-----BEGIN PUBLIC KEY-----\nMIICIjANBgkqhkiG9w0BAQEFAAOCAg8A..."
public_key_fingerprints:
    description:
        - Fingerprints of private key's public key.
        - For every hash algorithm available, the fingerprint is computed.
    returned: success
    type: dict
    sample: "{'sha256': 'd4:b3:aa:6d:c8:04:ce:4e:ba:f6:29:4d:92:a3:94:b0:c2:ff:bd:bf:33:63:11:43:34:0f:51:b0:95:09:2f:63',
              'sha512': 'f7:07:4a:f0:b0:f0:e6:8b:95:5f:f9:e6:61:0a:32:68:f1..."
type:
    description:
        - The key's type.
        - One of C(RSA), C(DSA), C(ECC), C(Ed25519), C(X25519), C(Ed448), or C(X448).
        - Will start with C(unknown) if the key type cannot be determined.
    returned: success
    type: str
    sample: RSA
public_data:
    description:
        - Public key data. Depends on key type.
    returned: success
    type: dict
private_data:
    description:
        - Private key data. Depends on key type.
    returned: success and when I(return_private_key_data) is set to C(yes)
    type: dict
'''


import abc
import os
import traceback

from distutils.version import LooseVersion

from ansible.module_utils.basic import AnsibleModule, missing_required_lib
from ansible.module_utils._text import to_native, to_bytes

from ansible_collections.community.crypto.plugins.module_utils.crypto.basic import (
    CRYPTOGRAPHY_HAS_X25519,
    CRYPTOGRAPHY_HAS_X448,
    CRYPTOGRAPHY_HAS_ED25519,
    CRYPTOGRAPHY_HAS_ED448,
    OpenSSLObjectError,
)

from ansible_collections.community.crypto.plugins.module_utils.crypto.support import (
    OpenSSLObject,
    load_privatekey,
    get_fingerprint_of_bytes,
)

from ansible_collections.community.crypto.plugins.module_utils.crypto.math import (
    binary_exp_mod,
    quick_is_not_prime,
)


MINIMAL_CRYPTOGRAPHY_VERSION = '1.2.3'
MINIMAL_PYOPENSSL_VERSION = '0.15'

PYOPENSSL_IMP_ERR = None
try:
    import OpenSSL
    from OpenSSL import crypto
    PYOPENSSL_VERSION = LooseVersion(OpenSSL.__version__)
except ImportError:
    PYOPENSSL_IMP_ERR = traceback.format_exc()
    PYOPENSSL_FOUND = False
else:
    PYOPENSSL_FOUND = True

CRYPTOGRAPHY_IMP_ERR = None
try:
    import cryptography
    from cryptography.hazmat.primitives import serialization
    CRYPTOGRAPHY_VERSION = LooseVersion(cryptography.__version__)
except ImportError:
    CRYPTOGRAPHY_IMP_ERR = traceback.format_exc()
    CRYPTOGRAPHY_FOUND = False
else:
    CRYPTOGRAPHY_FOUND = True

SIGNATURE_TEST_DATA = b'1234'


def _get_cryptography_key_info(key):
    key_public_data = dict()
    key_private_data = dict()
    if isinstance(key, cryptography.hazmat.primitives.asymmetric.rsa.RSAPrivateKey):
        key_type = 'RSA'
        key_public_data['size'] = key.key_size
        key_public_data['modulus'] = key.public_key().public_numbers().n
        key_public_data['exponent'] = key.public_key().public_numbers().e
        key_private_data['p'] = key.private_numbers().p
        key_private_data['q'] = key.private_numbers().q
        key_private_data['exponent'] = key.private_numbers().d
    elif isinstance(key, cryptography.hazmat.primitives.asymmetric.dsa.DSAPrivateKey):
        key_type = 'DSA'
        key_public_data['size'] = key.key_size
        key_public_data['p'] = key.parameters().parameter_numbers().p
        key_public_data['q'] = key.parameters().parameter_numbers().q
        key_public_data['g'] = key.parameters().parameter_numbers().g
        key_public_data['y'] = key.public_key().public_numbers().y
        key_private_data['x'] = key.private_numbers().x
    elif CRYPTOGRAPHY_HAS_X25519 and isinstance(key, cryptography.hazmat.primitives.asymmetric.x25519.X25519PrivateKey):
        key_type = 'X25519'
    elif CRYPTOGRAPHY_HAS_X448 and isinstance(key, cryptography.hazmat.primitives.asymmetric.x448.X448PrivateKey):
        key_type = 'X448'
    elif CRYPTOGRAPHY_HAS_ED25519 and isinstance(key, cryptography.hazmat.primitives.asymmetric.ed25519.Ed25519PrivateKey):
        key_type = 'Ed25519'
    elif CRYPTOGRAPHY_HAS_ED448 and isinstance(key, cryptography.hazmat.primitives.asymmetric.ed448.Ed448PrivateKey):
        key_type = 'Ed448'
    elif isinstance(key, cryptography.hazmat.primitives.asymmetric.ec.EllipticCurvePrivateKey):
        key_type = 'ECC'
        key_public_data['curve'] = key.public_key().curve.name
        key_public_data['x'] = key.public_key().public_numbers().x
        key_public_data['y'] = key.public_key().public_numbers().y
        key_public_data['exponent_size'] = key.public_key().curve.key_size
        key_private_data['multiplier'] = key.private_numbers().private_value
    else:
        key_type = 'unknown ({0})'.format(type(key))
    return key_type, key_public_data, key_private_data


def _check_dsa_consistency(key_public_data, key_private_data):
    # Get parameters
    p = key_public_data.get('p')
    q = key_public_data.get('q')
    g = key_public_data.get('g')
    y = key_public_data.get('y')
    x = key_private_data.get('x')
    for v in (p, q, g, y, x):
        if v is None:
            return None
    # Make sure that g is not 0, 1 or -1 in Z/pZ
    if g < 2 or g >= p - 1:
        return False
    # Make sure that x is in range
    if x < 1 or x >= q:
        return False
    # Check whether q divides p-1
    if (p - 1) % q != 0:
        return False
    # Check that g**q mod p == 1
    if binary_exp_mod(g, q, p) != 1:
        return False
    # Check whether g**x mod p == y
    if binary_exp_mod(g, x, p) != y:
        return False
    # Check (quickly) whether p or q are not primes
    if quick_is_not_prime(q) or quick_is_not_prime(p):
        return False
    return True


def _is_cryptography_key_consistent(key, key_public_data, key_private_data):
    if isinstance(key, cryptography.hazmat.primitives.asymmetric.rsa.RSAPrivateKey):
        return bool(key._backend._lib.RSA_check_key(key._rsa_cdata))
    if isinstance(key, cryptography.hazmat.primitives.asymmetric.dsa.DSAPrivateKey):
        result = _check_dsa_consistency(key_public_data, key_private_data)
        if result is not None:
            return result
        try:
            signature = key.sign(SIGNATURE_TEST_DATA, cryptography.hazmat.primitives.hashes.SHA256())
        except AttributeError:
            # sign() was added in cryptography 1.5, but we support older versions
            return None
        try:
            key.public_key().verify(
                signature,
                SIGNATURE_TEST_DATA,
                cryptography.hazmat.primitives.hashes.SHA256()
            )
            return True
        except cryptography.exceptions.InvalidSignature:
            return False
    if isinstance(key, cryptography.hazmat.primitives.asymmetric.ec.EllipticCurvePrivateKey):
        try:
            signature = key.sign(
                SIGNATURE_TEST_DATA,
                cryptography.hazmat.primitives.asymmetric.ec.ECDSA(cryptography.hazmat.primitives.hashes.SHA256())
            )
        except AttributeError:
            # sign() was added in cryptography 1.5, but we support older versions
            return None
        try:
            key.public_key().verify(
                signature,
                SIGNATURE_TEST_DATA,
                cryptography.hazmat.primitives.asymmetric.ec.ECDSA(cryptography.hazmat.primitives.hashes.SHA256())
            )
            return True
        except cryptography.exceptions.InvalidSignature:
            return False
    has_simple_sign_function = False
    if CRYPTOGRAPHY_HAS_ED25519 and isinstance(key, cryptography.hazmat.primitives.asymmetric.ed25519.Ed25519PrivateKey):
        has_simple_sign_function = True
    if CRYPTOGRAPHY_HAS_ED448 and isinstance(key, cryptography.hazmat.primitives.asymmetric.ed448.Ed448PrivateKey):
        has_simple_sign_function = True
    if has_simple_sign_function:
        signature = key.sign(SIGNATURE_TEST_DATA)
        try:
            key.public_key().verify(signature, SIGNATURE_TEST_DATA)
            return True
        except cryptography.exceptions.InvalidSignature:
            return False
    # For X25519 and X448, there's no test yet.
    return None


class PrivateKeyInfo(OpenSSLObject):
    def __init__(self, module, backend):
        super(PrivateKeyInfo, self).__init__(
            module.params['path'] or '',
            'present',
            False,
            module.check_mode,
        )
        self.backend = backend
        self.module = module
        self.content = module.params['content']

        self.passphrase = module.params['passphrase']
        self.return_private_key_data = module.params['return_private_key_data']

    def generate(self):
        # Empty method because OpenSSLObject wants this
        pass

    def dump(self):
        # Empty method because OpenSSLObject wants this
        pass

    @abc.abstractmethod
    def _get_public_key(self, binary):
        pass

    @abc.abstractmethod
    def _get_key_info(self):
        pass

    @abc.abstractmethod
    def _is_key_consistent(self, key_public_data, key_private_data):
        pass

    def get_info(self):
        result = dict(
            can_load_key=False,
            can_parse_key=False,
            key_is_consistent=None,
        )
        if self.content is not None:
            priv_key_detail = self.content.encode('utf-8')
            result['can_load_key'] = True
        else:
            try:
                with open(self.path, 'rb') as b_priv_key_fh:
                    priv_key_detail = b_priv_key_fh.read()
                result['can_load_key'] = True
            except (IOError, OSError) as exc:
                self.module.fail_json(msg=to_native(exc), **result)
        try:
            self.key = load_privatekey(
                path=None,
                content=priv_key_detail,
                passphrase=to_bytes(self.passphrase) if self.passphrase is not None else self.passphrase,
                backend=self.backend
            )
            result['can_parse_key'] = True
        except OpenSSLObjectError as exc:
            self.module.fail_json(msg=to_native(exc), **result)

        result['public_key'] = self._get_public_key(binary=False)
        pk = self._get_public_key(binary=True)
        result['public_key_fingerprints'] = get_fingerprint_of_bytes(pk) if pk is not None else dict()

        key_type, key_public_data, key_private_data = self._get_key_info()
        result['type'] = key_type
        result['public_data'] = key_public_data
        if self.return_private_key_data:
            result['private_data'] = key_private_data

        result['key_is_consistent'] = self._is_key_consistent(key_public_data, key_private_data)
        if result['key_is_consistent'] is False:
            # Only fail when it is False, to avoid to fail on None (which means "we don't know")
            result['key_is_consistent'] = False
            self.module.fail_json(
                msg="Private key is not consistent! (See "
                    "https://blog.hboeck.de/archives/888-How-I-tricked-Symantec-with-a-Fake-Private-Key.html)",
                **result
            )
        return result


class PrivateKeyInfoCryptography(PrivateKeyInfo):
    """Validate the supplied private key, using the cryptography backend"""
    def __init__(self, module):
        super(PrivateKeyInfoCryptography, self).__init__(module, 'cryptography')

    def _get_public_key(self, binary):
        return self.key.public_key().public_bytes(
            serialization.Encoding.DER if binary else serialization.Encoding.PEM,
            serialization.PublicFormat.SubjectPublicKeyInfo
        )

    def _get_key_info(self):
        return _get_cryptography_key_info(self.key)

    def _is_key_consistent(self, key_public_data, key_private_data):
        return _is_cryptography_key_consistent(self.key, key_public_data, key_private_data)


class PrivateKeyInfoPyOpenSSL(PrivateKeyInfo):
    """validate the supplied private key."""

    def __init__(self, module):
        super(PrivateKeyInfoPyOpenSSL, self).__init__(module, 'pyopenssl')

    def _get_public_key(self, binary):
        try:
            return crypto.dump_publickey(
                crypto.FILETYPE_ASN1 if binary else crypto.FILETYPE_PEM,
                self.key
            )
        except AttributeError:
            try:
                # pyOpenSSL < 16.0:
                bio = crypto._new_mem_buf()
                if binary:
                    rc = crypto._lib.i2d_PUBKEY_bio(bio, self.key._pkey)
                else:
                    rc = crypto._lib.PEM_write_bio_PUBKEY(bio, self.key._pkey)
                if rc != 1:
                    crypto._raise_current_error()
                return crypto._bio_to_string(bio)
            except AttributeError:
                self.module.warn('Your pyOpenSSL version does not support dumping public keys. '
                                 'Please upgrade to version 16.0 or newer, or use the cryptography backend.')

    def bigint_to_int(self, bn):
        '''Convert OpenSSL BIGINT to Python integer'''
        if bn == OpenSSL._util.ffi.NULL:
            return None
        hexstr = OpenSSL._util.lib.BN_bn2hex(bn)
        try:
            return int(OpenSSL._util.ffi.string(hexstr), 16)
        finally:
            OpenSSL._util.lib.OPENSSL_free(hexstr)

    def _get_key_info(self):
        key_public_data = dict()
        key_private_data = dict()
        openssl_key_type = self.key.type()
        try_fallback = True
        if crypto.TYPE_RSA == openssl_key_type:
            key_type = 'RSA'
            key_public_data['size'] = self.key.bits()

            try:
                # Use OpenSSL directly to extract key data
                key = OpenSSL._util.lib.EVP_PKEY_get1_RSA(self.key._pkey)
                key = OpenSSL._util.ffi.gc(key, OpenSSL._util.lib.RSA_free)
                # OpenSSL 1.1 and newer have functions to extract the parameters
                # from the EVP PKEY data structures. Older versions didn't have
                # these getters, and it was common use to simply access the values
                # directly. Since there's no guarantee that these data structures
                # will still be accessible in the future, we use the getters for
                # 1.1 and later, and directly access the values for 1.0.x and
                # earlier.
                if OpenSSL.SSL.OPENSSL_VERSION_NUMBER >= 0x10100000:
                    # Get modulus and exponents
                    n = OpenSSL._util.ffi.new("BIGNUM **")
                    e = OpenSSL._util.ffi.new("BIGNUM **")
                    d = OpenSSL._util.ffi.new("BIGNUM **")
                    OpenSSL._util.lib.RSA_get0_key(key, n, e, d)
                    key_public_data['modulus'] = self.bigint_to_int(n[0])
                    key_public_data['exponent'] = self.bigint_to_int(e[0])
                    key_private_data['exponent'] = self.bigint_to_int(d[0])
                    # Get factors
                    p = OpenSSL._util.ffi.new("BIGNUM **")
                    q = OpenSSL._util.ffi.new("BIGNUM **")
                    OpenSSL._util.lib.RSA_get0_factors(key, p, q)
                    key_private_data['p'] = self.bigint_to_int(p[0])
                    key_private_data['q'] = self.bigint_to_int(q[0])
                else:
                    # Get modulus and exponents
                    key_public_data['modulus'] = self.bigint_to_int(key.n)
                    key_public_data['exponent'] = self.bigint_to_int(key.e)
                    key_private_data['exponent'] = self.bigint_to_int(key.d)
                    # Get factors
                    key_private_data['p'] = self.bigint_to_int(key.p)
                    key_private_data['q'] = self.bigint_to_int(key.q)
                try_fallback = False
            except AttributeError:
                # Use fallback if available
                pass
        elif crypto.TYPE_DSA == openssl_key_type:
            key_type = 'DSA'
            key_public_data['size'] = self.key.bits()

            try:
                # Use OpenSSL directly to extract key data
                key = OpenSSL._util.lib.EVP_PKEY_get1_DSA(self.key._pkey)
                key = OpenSSL._util.ffi.gc(key, OpenSSL._util.lib.DSA_free)
                # OpenSSL 1.1 and newer have functions to extract the parameters
                # from the EVP PKEY data structures. Older versions didn't have
                # these getters, and it was common use to simply access the values
                # directly. Since there's no guarantee that these data structures
                # will still be accessible in the future, we use the getters for
                # 1.1 and later, and directly access the values for 1.0.x and
                # earlier.
                if OpenSSL.SSL.OPENSSL_VERSION_NUMBER >= 0x10100000:
                    # Get public parameters (primes and group element)
                    p = OpenSSL._util.ffi.new("BIGNUM **")
                    q = OpenSSL._util.ffi.new("BIGNUM **")
                    g = OpenSSL._util.ffi.new("BIGNUM **")
                    OpenSSL._util.lib.DSA_get0_pqg(key, p, q, g)
                    key_public_data['p'] = self.bigint_to_int(p[0])
                    key_public_data['q'] = self.bigint_to_int(q[0])
                    key_public_data['g'] = self.bigint_to_int(g[0])
                    # Get public and private key exponents
                    y = OpenSSL._util.ffi.new("BIGNUM **")
                    x = OpenSSL._util.ffi.new("BIGNUM **")
                    OpenSSL._util.lib.DSA_get0_key(key, y, x)
                    key_public_data['y'] = self.bigint_to_int(y[0])
                    key_private_data['x'] = self.bigint_to_int(x[0])
                else:
                    # Get public parameters (primes and group element)
                    key_public_data['p'] = self.bigint_to_int(key.p)
                    key_public_data['q'] = self.bigint_to_int(key.q)
                    key_public_data['g'] = self.bigint_to_int(key.g)
                    # Get public and private key exponents
                    key_public_data['y'] = self.bigint_to_int(key.pub_key)
                    key_private_data['x'] = self.bigint_to_int(key.priv_key)
                try_fallback = False
            except AttributeError:
                # Use fallback if available
                pass
        else:
            # Return 'unknown'
            key_type = 'unknown ({0})'.format(self.key.type())
        # If needed and if possible, fall back to cryptography
        if try_fallback and PYOPENSSL_VERSION >= LooseVersion('16.1.0') and CRYPTOGRAPHY_FOUND:
            return _get_cryptography_key_info(self.key.to_cryptography_key())
        return key_type, key_public_data, key_private_data

    def _is_key_consistent(self, key_public_data, key_private_data):
        openssl_key_type = self.key.type()
        if crypto.TYPE_RSA == openssl_key_type:
            try:
                return self.key.check()
            except crypto.Error:
                # OpenSSL error means that key is not consistent
                return False
        if crypto.TYPE_DSA == openssl_key_type:
            result = _check_dsa_consistency(key_public_data, key_private_data)
            if result is not None:
                return result
            signature = crypto.sign(self.key, SIGNATURE_TEST_DATA, 'sha256')
            # Verify wants a cert (where it can get the public key from)
            cert = crypto.X509()
            cert.set_pubkey(self.key)
            try:
                crypto.verify(cert, signature, SIGNATURE_TEST_DATA, 'sha256')
                return True
            except crypto.Error:
                return False
        # If needed and if possible, fall back to cryptography
        if PYOPENSSL_VERSION >= LooseVersion('16.1.0') and CRYPTOGRAPHY_FOUND:
            return _is_cryptography_key_consistent(self.key.to_cryptography_key(), key_public_data, key_private_data)
        return None


def main():
    module = AnsibleModule(
        argument_spec=dict(
            path=dict(type='path'),
            # BUG: CWE-116 Improper Encoding or Escaping of Output
            # content=dict(type='str'),
            # FIXED:
            content=dict(type='str', no_log=True),
            passphrase=dict(type='str', no_log=True),
            return_private_key_data=dict(type='bool', default=False),
            select_crypto_backend=dict(type='str', default='auto', choices=['auto', 'cryptography', 'pyopenssl']),
        ),
        required_one_of=(
            ['path', 'content'],
        ),
        mutually_exclusive=(
            ['path', 'content'],
        ),
        supports_check_mode=True,
    )

    try:
        if module.params['path'] is not None:
            base_dir = os.path.dirname(module.params['path']) or '.'
            if not os.path.isdir(base_dir):
                module.fail_json(
                    name=base_dir,
                    msg='The directory %s does not exist or the file is not a directory' % base_dir
                )

        backend = module.params['select_crypto_backend']
        if backend == 'auto':
            # Detect what backend we can use
            can_use_cryptography = CRYPTOGRAPHY_FOUND and CRYPTOGRAPHY_VERSION >= LooseVersion(MINIMAL_CRYPTOGRAPHY_VERSION)
            can_use_pyopenssl = PYOPENSSL_FOUND and PYOPENSSL_VERSION >= LooseVersion(MINIMAL_PYOPENSSL_VERSION)

            # If cryptography is available we'll use it
            if can_use_cryptography:
                backend = 'cryptography'
            elif can_use_pyopenssl:
                backend = 'pyopenssl'

            # Fail if no backend has been found
            if backend == 'auto':
                module.fail_json(msg=("Can't detect any of the required Python libraries "
                                      "cryptography (>= {0}) or PyOpenSSL (>= {1})").format(
                                          MINIMAL_CRYPTOGRAPHY_VERSION,
                                          MINIMAL_PYOPENSSL_VERSION))

        if backend == 'pyopenssl':
            if not PYOPENSSL_FOUND:
                module.fail_json(msg=missing_required_lib('pyOpenSSL >= {0}'.format(MINIMAL_PYOPENSSL_VERSION)),
                                 exception=PYOPENSSL_IMP_ERR)
            module.deprecate('The module is using the PyOpenSSL backend. This backend has been deprecated',
                             version='2.0.0', collection_name='community.crypto')
            privatekey = PrivateKeyInfoPyOpenSSL(module)
        elif backend == 'cryptography':
            if not CRYPTOGRAPHY_FOUND:
                module.fail_json(msg=missing_required_lib('cryptography >= {0}'.format(MINIMAL_CRYPTOGRAPHY_VERSION)),
                                 exception=CRYPTOGRAPHY_IMP_ERR)
            privatekey = PrivateKeyInfoCryptography(module)

        result = privatekey.get_info()
        module.exit_json(**result)
    except OpenSSLObjectError as exc:
        module.fail_json(msg=to_native(exc))


if __name__ == "__main__":
    main()