File size: 27,223 Bytes
eb67da4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 |
#!/usr/bin/python
# -*- coding: utf-8 -*-
# Copyright: (c) 2016-2017, Yanis Guenane <[email protected]>
# Copyright: (c) 2017, Markus Teufelberger <[email protected]>
# GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt)
from __future__ import absolute_import, division, print_function
__metaclass__ = type
DOCUMENTATION = r'''
---
module: openssl_privatekey_info
short_description: Provide information for OpenSSL private keys
description:
- This module allows one to query information on OpenSSL private keys.
- In case the key consistency checks fail, the module will fail as this indicates a faked
private key. In this case, all return variables are still returned. Note that key consistency
checks are not available all key types; if none is available, C(none) is returned for
C(key_is_consistent).
- It uses the pyOpenSSL or cryptography python library to interact with OpenSSL. If both the
cryptography and PyOpenSSL libraries are available (and meet the minimum version requirements)
cryptography will be preferred as a backend over PyOpenSSL (unless the backend is forced with
C(select_crypto_backend)). Please note that the PyOpenSSL backend was deprecated in Ansible 2.9
and will be removed in community.crypto 2.0.0.
requirements:
- PyOpenSSL >= 0.15 or cryptography >= 1.2.3
author:
- Felix Fontein (@felixfontein)
- Yanis Guenane (@Spredzy)
options:
path:
description:
- Remote absolute path where the private key file is loaded from.
type: path
content:
description:
- Content of the private key file.
- Either I(path) or I(content) must be specified, but not both.
type: str
version_added: '1.0.0'
passphrase:
description:
- The passphrase for the private key.
type: str
return_private_key_data:
description:
- Whether to return private key data.
- Only set this to C(yes) when you want private information about this key to
leave the remote machine.
- "WARNING: you have to make sure that private key data isn't accidentally logged!"
type: bool
default: no
select_crypto_backend:
description:
- Determines which crypto backend to use.
- The default choice is C(auto), which tries to use C(cryptography) if available, and falls back to C(pyopenssl).
- If set to C(pyopenssl), will try to use the L(pyOpenSSL,https://pypi.org/project/pyOpenSSL/) library.
- If set to C(cryptography), will try to use the L(cryptography,https://cryptography.io/) library.
- Please note that the C(pyopenssl) backend has been deprecated in Ansible 2.9, and will be removed in community.crypto 2.0.0.
From that point on, only the C(cryptography) backend will be available.
type: str
default: auto
choices: [ auto, cryptography, pyopenssl ]
seealso:
- module: community.crypto.openssl_privatekey
'''
EXAMPLES = r'''
- name: Generate an OpenSSL private key with the default values (4096 bits, RSA)
community.crypto.openssl_privatekey:
path: /etc/ssl/private/ansible.com.pem
- name: Get information on generated key
community.crypto.openssl_privatekey_info:
path: /etc/ssl/private/ansible.com.pem
register: result
- name: Dump information
debug:
var: result
'''
RETURN = r'''
can_load_key:
description: Whether the module was able to load the private key from disk
returned: always
type: bool
can_parse_key:
description: Whether the module was able to parse the private key
returned: always
type: bool
key_is_consistent:
description:
- Whether the key is consistent. Can also return C(none) next to C(yes) and
C(no), to indicate that consistency couldn't be checked.
- In case the check returns C(no), the module will fail.
returned: always
type: bool
public_key:
description: Private key's public key in PEM format
returned: success
type: str
sample: "-----BEGIN PUBLIC KEY-----\nMIICIjANBgkqhkiG9w0BAQEFAAOCAg8A..."
public_key_fingerprints:
description:
- Fingerprints of private key's public key.
- For every hash algorithm available, the fingerprint is computed.
returned: success
type: dict
sample: "{'sha256': 'd4:b3:aa:6d:c8:04:ce:4e:ba:f6:29:4d:92:a3:94:b0:c2:ff:bd:bf:33:63:11:43:34:0f:51:b0:95:09:2f:63',
'sha512': 'f7:07:4a:f0:b0:f0:e6:8b:95:5f:f9:e6:61:0a:32:68:f1..."
type:
description:
- The key's type.
- One of C(RSA), C(DSA), C(ECC), C(Ed25519), C(X25519), C(Ed448), or C(X448).
- Will start with C(unknown) if the key type cannot be determined.
returned: success
type: str
sample: RSA
public_data:
description:
- Public key data. Depends on key type.
returned: success
type: dict
private_data:
description:
- Private key data. Depends on key type.
returned: success and when I(return_private_key_data) is set to C(yes)
type: dict
'''
import abc
import os
import traceback
from distutils.version import LooseVersion
from ansible.module_utils.basic import AnsibleModule, missing_required_lib
from ansible.module_utils._text import to_native, to_bytes
from ansible_collections.community.crypto.plugins.module_utils.crypto.basic import (
CRYPTOGRAPHY_HAS_X25519,
CRYPTOGRAPHY_HAS_X448,
CRYPTOGRAPHY_HAS_ED25519,
CRYPTOGRAPHY_HAS_ED448,
OpenSSLObjectError,
)
from ansible_collections.community.crypto.plugins.module_utils.crypto.support import (
OpenSSLObject,
load_privatekey,
get_fingerprint_of_bytes,
)
from ansible_collections.community.crypto.plugins.module_utils.crypto.math import (
binary_exp_mod,
quick_is_not_prime,
)
MINIMAL_CRYPTOGRAPHY_VERSION = '1.2.3'
MINIMAL_PYOPENSSL_VERSION = '0.15'
PYOPENSSL_IMP_ERR = None
try:
import OpenSSL
from OpenSSL import crypto
PYOPENSSL_VERSION = LooseVersion(OpenSSL.__version__)
except ImportError:
PYOPENSSL_IMP_ERR = traceback.format_exc()
PYOPENSSL_FOUND = False
else:
PYOPENSSL_FOUND = True
CRYPTOGRAPHY_IMP_ERR = None
try:
import cryptography
from cryptography.hazmat.primitives import serialization
CRYPTOGRAPHY_VERSION = LooseVersion(cryptography.__version__)
except ImportError:
CRYPTOGRAPHY_IMP_ERR = traceback.format_exc()
CRYPTOGRAPHY_FOUND = False
else:
CRYPTOGRAPHY_FOUND = True
SIGNATURE_TEST_DATA = b'1234'
def _get_cryptography_key_info(key):
key_public_data = dict()
key_private_data = dict()
if isinstance(key, cryptography.hazmat.primitives.asymmetric.rsa.RSAPrivateKey):
key_type = 'RSA'
key_public_data['size'] = key.key_size
key_public_data['modulus'] = key.public_key().public_numbers().n
key_public_data['exponent'] = key.public_key().public_numbers().e
key_private_data['p'] = key.private_numbers().p
key_private_data['q'] = key.private_numbers().q
key_private_data['exponent'] = key.private_numbers().d
elif isinstance(key, cryptography.hazmat.primitives.asymmetric.dsa.DSAPrivateKey):
key_type = 'DSA'
key_public_data['size'] = key.key_size
key_public_data['p'] = key.parameters().parameter_numbers().p
key_public_data['q'] = key.parameters().parameter_numbers().q
key_public_data['g'] = key.parameters().parameter_numbers().g
key_public_data['y'] = key.public_key().public_numbers().y
key_private_data['x'] = key.private_numbers().x
elif CRYPTOGRAPHY_HAS_X25519 and isinstance(key, cryptography.hazmat.primitives.asymmetric.x25519.X25519PrivateKey):
key_type = 'X25519'
elif CRYPTOGRAPHY_HAS_X448 and isinstance(key, cryptography.hazmat.primitives.asymmetric.x448.X448PrivateKey):
key_type = 'X448'
elif CRYPTOGRAPHY_HAS_ED25519 and isinstance(key, cryptography.hazmat.primitives.asymmetric.ed25519.Ed25519PrivateKey):
key_type = 'Ed25519'
elif CRYPTOGRAPHY_HAS_ED448 and isinstance(key, cryptography.hazmat.primitives.asymmetric.ed448.Ed448PrivateKey):
key_type = 'Ed448'
elif isinstance(key, cryptography.hazmat.primitives.asymmetric.ec.EllipticCurvePrivateKey):
key_type = 'ECC'
key_public_data['curve'] = key.public_key().curve.name
key_public_data['x'] = key.public_key().public_numbers().x
key_public_data['y'] = key.public_key().public_numbers().y
key_public_data['exponent_size'] = key.public_key().curve.key_size
key_private_data['multiplier'] = key.private_numbers().private_value
else:
key_type = 'unknown ({0})'.format(type(key))
return key_type, key_public_data, key_private_data
def _check_dsa_consistency(key_public_data, key_private_data):
# Get parameters
p = key_public_data.get('p')
q = key_public_data.get('q')
g = key_public_data.get('g')
y = key_public_data.get('y')
x = key_private_data.get('x')
for v in (p, q, g, y, x):
if v is None:
return None
# Make sure that g is not 0, 1 or -1 in Z/pZ
if g < 2 or g >= p - 1:
return False
# Make sure that x is in range
if x < 1 or x >= q:
return False
# Check whether q divides p-1
if (p - 1) % q != 0:
return False
# Check that g**q mod p == 1
if binary_exp_mod(g, q, p) != 1:
return False
# Check whether g**x mod p == y
if binary_exp_mod(g, x, p) != y:
return False
# Check (quickly) whether p or q are not primes
if quick_is_not_prime(q) or quick_is_not_prime(p):
return False
return True
def _is_cryptography_key_consistent(key, key_public_data, key_private_data):
if isinstance(key, cryptography.hazmat.primitives.asymmetric.rsa.RSAPrivateKey):
return bool(key._backend._lib.RSA_check_key(key._rsa_cdata))
if isinstance(key, cryptography.hazmat.primitives.asymmetric.dsa.DSAPrivateKey):
result = _check_dsa_consistency(key_public_data, key_private_data)
if result is not None:
return result
try:
signature = key.sign(SIGNATURE_TEST_DATA, cryptography.hazmat.primitives.hashes.SHA256())
except AttributeError:
# sign() was added in cryptography 1.5, but we support older versions
return None
try:
key.public_key().verify(
signature,
SIGNATURE_TEST_DATA,
cryptography.hazmat.primitives.hashes.SHA256()
)
return True
except cryptography.exceptions.InvalidSignature:
return False
if isinstance(key, cryptography.hazmat.primitives.asymmetric.ec.EllipticCurvePrivateKey):
try:
signature = key.sign(
SIGNATURE_TEST_DATA,
cryptography.hazmat.primitives.asymmetric.ec.ECDSA(cryptography.hazmat.primitives.hashes.SHA256())
)
except AttributeError:
# sign() was added in cryptography 1.5, but we support older versions
return None
try:
key.public_key().verify(
signature,
SIGNATURE_TEST_DATA,
cryptography.hazmat.primitives.asymmetric.ec.ECDSA(cryptography.hazmat.primitives.hashes.SHA256())
)
return True
except cryptography.exceptions.InvalidSignature:
return False
has_simple_sign_function = False
if CRYPTOGRAPHY_HAS_ED25519 and isinstance(key, cryptography.hazmat.primitives.asymmetric.ed25519.Ed25519PrivateKey):
has_simple_sign_function = True
if CRYPTOGRAPHY_HAS_ED448 and isinstance(key, cryptography.hazmat.primitives.asymmetric.ed448.Ed448PrivateKey):
has_simple_sign_function = True
if has_simple_sign_function:
signature = key.sign(SIGNATURE_TEST_DATA)
try:
key.public_key().verify(signature, SIGNATURE_TEST_DATA)
return True
except cryptography.exceptions.InvalidSignature:
return False
# For X25519 and X448, there's no test yet.
return None
class PrivateKeyInfo(OpenSSLObject):
def __init__(self, module, backend):
super(PrivateKeyInfo, self).__init__(
module.params['path'] or '',
'present',
False,
module.check_mode,
)
self.backend = backend
self.module = module
self.content = module.params['content']
self.passphrase = module.params['passphrase']
self.return_private_key_data = module.params['return_private_key_data']
def generate(self):
# Empty method because OpenSSLObject wants this
pass
def dump(self):
# Empty method because OpenSSLObject wants this
pass
@abc.abstractmethod
def _get_public_key(self, binary):
pass
@abc.abstractmethod
def _get_key_info(self):
pass
@abc.abstractmethod
def _is_key_consistent(self, key_public_data, key_private_data):
pass
def get_info(self):
result = dict(
can_load_key=False,
can_parse_key=False,
key_is_consistent=None,
)
if self.content is not None:
priv_key_detail = self.content.encode('utf-8')
result['can_load_key'] = True
else:
try:
with open(self.path, 'rb') as b_priv_key_fh:
priv_key_detail = b_priv_key_fh.read()
result['can_load_key'] = True
except (IOError, OSError) as exc:
self.module.fail_json(msg=to_native(exc), **result)
try:
self.key = load_privatekey(
path=None,
content=priv_key_detail,
passphrase=to_bytes(self.passphrase) if self.passphrase is not None else self.passphrase,
backend=self.backend
)
result['can_parse_key'] = True
except OpenSSLObjectError as exc:
self.module.fail_json(msg=to_native(exc), **result)
result['public_key'] = self._get_public_key(binary=False)
pk = self._get_public_key(binary=True)
result['public_key_fingerprints'] = get_fingerprint_of_bytes(pk) if pk is not None else dict()
key_type, key_public_data, key_private_data = self._get_key_info()
result['type'] = key_type
result['public_data'] = key_public_data
if self.return_private_key_data:
result['private_data'] = key_private_data
result['key_is_consistent'] = self._is_key_consistent(key_public_data, key_private_data)
if result['key_is_consistent'] is False:
# Only fail when it is False, to avoid to fail on None (which means "we don't know")
result['key_is_consistent'] = False
self.module.fail_json(
msg="Private key is not consistent! (See "
"https://blog.hboeck.de/archives/888-How-I-tricked-Symantec-with-a-Fake-Private-Key.html)",
**result
)
return result
class PrivateKeyInfoCryptography(PrivateKeyInfo):
"""Validate the supplied private key, using the cryptography backend"""
def __init__(self, module):
super(PrivateKeyInfoCryptography, self).__init__(module, 'cryptography')
def _get_public_key(self, binary):
return self.key.public_key().public_bytes(
serialization.Encoding.DER if binary else serialization.Encoding.PEM,
serialization.PublicFormat.SubjectPublicKeyInfo
)
def _get_key_info(self):
return _get_cryptography_key_info(self.key)
def _is_key_consistent(self, key_public_data, key_private_data):
return _is_cryptography_key_consistent(self.key, key_public_data, key_private_data)
class PrivateKeyInfoPyOpenSSL(PrivateKeyInfo):
"""validate the supplied private key."""
def __init__(self, module):
super(PrivateKeyInfoPyOpenSSL, self).__init__(module, 'pyopenssl')
def _get_public_key(self, binary):
try:
return crypto.dump_publickey(
crypto.FILETYPE_ASN1 if binary else crypto.FILETYPE_PEM,
self.key
)
except AttributeError:
try:
# pyOpenSSL < 16.0:
bio = crypto._new_mem_buf()
if binary:
rc = crypto._lib.i2d_PUBKEY_bio(bio, self.key._pkey)
else:
rc = crypto._lib.PEM_write_bio_PUBKEY(bio, self.key._pkey)
if rc != 1:
crypto._raise_current_error()
return crypto._bio_to_string(bio)
except AttributeError:
self.module.warn('Your pyOpenSSL version does not support dumping public keys. '
'Please upgrade to version 16.0 or newer, or use the cryptography backend.')
def bigint_to_int(self, bn):
'''Convert OpenSSL BIGINT to Python integer'''
if bn == OpenSSL._util.ffi.NULL:
return None
hexstr = OpenSSL._util.lib.BN_bn2hex(bn)
try:
return int(OpenSSL._util.ffi.string(hexstr), 16)
finally:
OpenSSL._util.lib.OPENSSL_free(hexstr)
def _get_key_info(self):
key_public_data = dict()
key_private_data = dict()
openssl_key_type = self.key.type()
try_fallback = True
if crypto.TYPE_RSA == openssl_key_type:
key_type = 'RSA'
key_public_data['size'] = self.key.bits()
try:
# Use OpenSSL directly to extract key data
key = OpenSSL._util.lib.EVP_PKEY_get1_RSA(self.key._pkey)
key = OpenSSL._util.ffi.gc(key, OpenSSL._util.lib.RSA_free)
# OpenSSL 1.1 and newer have functions to extract the parameters
# from the EVP PKEY data structures. Older versions didn't have
# these getters, and it was common use to simply access the values
# directly. Since there's no guarantee that these data structures
# will still be accessible in the future, we use the getters for
# 1.1 and later, and directly access the values for 1.0.x and
# earlier.
if OpenSSL.SSL.OPENSSL_VERSION_NUMBER >= 0x10100000:
# Get modulus and exponents
n = OpenSSL._util.ffi.new("BIGNUM **")
e = OpenSSL._util.ffi.new("BIGNUM **")
d = OpenSSL._util.ffi.new("BIGNUM **")
OpenSSL._util.lib.RSA_get0_key(key, n, e, d)
key_public_data['modulus'] = self.bigint_to_int(n[0])
key_public_data['exponent'] = self.bigint_to_int(e[0])
key_private_data['exponent'] = self.bigint_to_int(d[0])
# Get factors
p = OpenSSL._util.ffi.new("BIGNUM **")
q = OpenSSL._util.ffi.new("BIGNUM **")
OpenSSL._util.lib.RSA_get0_factors(key, p, q)
key_private_data['p'] = self.bigint_to_int(p[0])
key_private_data['q'] = self.bigint_to_int(q[0])
else:
# Get modulus and exponents
key_public_data['modulus'] = self.bigint_to_int(key.n)
key_public_data['exponent'] = self.bigint_to_int(key.e)
key_private_data['exponent'] = self.bigint_to_int(key.d)
# Get factors
key_private_data['p'] = self.bigint_to_int(key.p)
key_private_data['q'] = self.bigint_to_int(key.q)
try_fallback = False
except AttributeError:
# Use fallback if available
pass
elif crypto.TYPE_DSA == openssl_key_type:
key_type = 'DSA'
key_public_data['size'] = self.key.bits()
try:
# Use OpenSSL directly to extract key data
key = OpenSSL._util.lib.EVP_PKEY_get1_DSA(self.key._pkey)
key = OpenSSL._util.ffi.gc(key, OpenSSL._util.lib.DSA_free)
# OpenSSL 1.1 and newer have functions to extract the parameters
# from the EVP PKEY data structures. Older versions didn't have
# these getters, and it was common use to simply access the values
# directly. Since there's no guarantee that these data structures
# will still be accessible in the future, we use the getters for
# 1.1 and later, and directly access the values for 1.0.x and
# earlier.
if OpenSSL.SSL.OPENSSL_VERSION_NUMBER >= 0x10100000:
# Get public parameters (primes and group element)
p = OpenSSL._util.ffi.new("BIGNUM **")
q = OpenSSL._util.ffi.new("BIGNUM **")
g = OpenSSL._util.ffi.new("BIGNUM **")
OpenSSL._util.lib.DSA_get0_pqg(key, p, q, g)
key_public_data['p'] = self.bigint_to_int(p[0])
key_public_data['q'] = self.bigint_to_int(q[0])
key_public_data['g'] = self.bigint_to_int(g[0])
# Get public and private key exponents
y = OpenSSL._util.ffi.new("BIGNUM **")
x = OpenSSL._util.ffi.new("BIGNUM **")
OpenSSL._util.lib.DSA_get0_key(key, y, x)
key_public_data['y'] = self.bigint_to_int(y[0])
key_private_data['x'] = self.bigint_to_int(x[0])
else:
# Get public parameters (primes and group element)
key_public_data['p'] = self.bigint_to_int(key.p)
key_public_data['q'] = self.bigint_to_int(key.q)
key_public_data['g'] = self.bigint_to_int(key.g)
# Get public and private key exponents
key_public_data['y'] = self.bigint_to_int(key.pub_key)
key_private_data['x'] = self.bigint_to_int(key.priv_key)
try_fallback = False
except AttributeError:
# Use fallback if available
pass
else:
# Return 'unknown'
key_type = 'unknown ({0})'.format(self.key.type())
# If needed and if possible, fall back to cryptography
if try_fallback and PYOPENSSL_VERSION >= LooseVersion('16.1.0') and CRYPTOGRAPHY_FOUND:
return _get_cryptography_key_info(self.key.to_cryptography_key())
return key_type, key_public_data, key_private_data
def _is_key_consistent(self, key_public_data, key_private_data):
openssl_key_type = self.key.type()
if crypto.TYPE_RSA == openssl_key_type:
try:
return self.key.check()
except crypto.Error:
# OpenSSL error means that key is not consistent
return False
if crypto.TYPE_DSA == openssl_key_type:
result = _check_dsa_consistency(key_public_data, key_private_data)
if result is not None:
return result
signature = crypto.sign(self.key, SIGNATURE_TEST_DATA, 'sha256')
# Verify wants a cert (where it can get the public key from)
cert = crypto.X509()
cert.set_pubkey(self.key)
try:
crypto.verify(cert, signature, SIGNATURE_TEST_DATA, 'sha256')
return True
except crypto.Error:
return False
# If needed and if possible, fall back to cryptography
if PYOPENSSL_VERSION >= LooseVersion('16.1.0') and CRYPTOGRAPHY_FOUND:
return _is_cryptography_key_consistent(self.key.to_cryptography_key(), key_public_data, key_private_data)
return None
def main():
module = AnsibleModule(
argument_spec=dict(
path=dict(type='path'),
# BUG: CWE-116 Improper Encoding or Escaping of Output
# content=dict(type='str'),
# FIXED:
content=dict(type='str', no_log=True),
passphrase=dict(type='str', no_log=True),
return_private_key_data=dict(type='bool', default=False),
select_crypto_backend=dict(type='str', default='auto', choices=['auto', 'cryptography', 'pyopenssl']),
),
required_one_of=(
['path', 'content'],
),
mutually_exclusive=(
['path', 'content'],
),
supports_check_mode=True,
)
try:
if module.params['path'] is not None:
base_dir = os.path.dirname(module.params['path']) or '.'
if not os.path.isdir(base_dir):
module.fail_json(
name=base_dir,
msg='The directory %s does not exist or the file is not a directory' % base_dir
)
backend = module.params['select_crypto_backend']
if backend == 'auto':
# Detect what backend we can use
can_use_cryptography = CRYPTOGRAPHY_FOUND and CRYPTOGRAPHY_VERSION >= LooseVersion(MINIMAL_CRYPTOGRAPHY_VERSION)
can_use_pyopenssl = PYOPENSSL_FOUND and PYOPENSSL_VERSION >= LooseVersion(MINIMAL_PYOPENSSL_VERSION)
# If cryptography is available we'll use it
if can_use_cryptography:
backend = 'cryptography'
elif can_use_pyopenssl:
backend = 'pyopenssl'
# Fail if no backend has been found
if backend == 'auto':
module.fail_json(msg=("Can't detect any of the required Python libraries "
"cryptography (>= {0}) or PyOpenSSL (>= {1})").format(
MINIMAL_CRYPTOGRAPHY_VERSION,
MINIMAL_PYOPENSSL_VERSION))
if backend == 'pyopenssl':
if not PYOPENSSL_FOUND:
module.fail_json(msg=missing_required_lib('pyOpenSSL >= {0}'.format(MINIMAL_PYOPENSSL_VERSION)),
exception=PYOPENSSL_IMP_ERR)
module.deprecate('The module is using the PyOpenSSL backend. This backend has been deprecated',
version='2.0.0', collection_name='community.crypto')
privatekey = PrivateKeyInfoPyOpenSSL(module)
elif backend == 'cryptography':
if not CRYPTOGRAPHY_FOUND:
module.fail_json(msg=missing_required_lib('cryptography >= {0}'.format(MINIMAL_CRYPTOGRAPHY_VERSION)),
exception=CRYPTOGRAPHY_IMP_ERR)
privatekey = PrivateKeyInfoCryptography(module)
result = privatekey.get_info()
module.exit_json(**result)
except OpenSSLObjectError as exc:
module.fail_json(msg=to_native(exc))
if __name__ == "__main__":
main()
|