Datasets:

Modalities:
Text
Formats:
json
Languages:
code
Size:
< 1K
Tags:
code
Libraries:
Datasets
pandas
License:
File size: 49,986 Bytes
eb67da4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Command-line interface to inspect and execute a graph in a SavedModel.

For detailed usages and examples, please refer to:
https://www.tensorflow.org/guide/saved_model#cli_to_inspect_and_execute_savedmodel

"""

import argparse
import ast
import os
import re
import sys

from absl import app  # pylint: disable=unused-import
import numpy as np
import six

from tensorflow.core.example import example_pb2
from tensorflow.core.framework import types_pb2
from tensorflow.core.protobuf import config_pb2
from tensorflow.python.client import session
from tensorflow.python.debug.wrappers import local_cli_wrapper
from tensorflow.python.eager import def_function
from tensorflow.python.eager import function as defun
from tensorflow.python.framework import meta_graph as meta_graph_lib
from tensorflow.python.framework import ops as ops_lib
from tensorflow.python.framework import tensor_spec
from tensorflow.python.lib.io import file_io
from tensorflow.python.platform import tf_logging as logging
from tensorflow.python.saved_model import load
from tensorflow.python.saved_model import loader
from tensorflow.python.saved_model import save
from tensorflow.python.saved_model import signature_constants
from tensorflow.python.tools import saved_model_aot_compile
from tensorflow.python.tools import saved_model_utils
from tensorflow.python.tpu import tpu
from tensorflow.python.util.compat import collections_abc


_XLA_DEBUG_OPTIONS_URL = (
    'https://github.com/tensorflow/tensorflow/blob/master/'
    'tensorflow/compiler/xla/debug_options_flags.cc')


# Set of ops to denylist.
_OP_DENYLIST = set(['WriteFile', 'ReadFile', 'PrintV2'])


def _show_tag_sets(saved_model_dir):
  """Prints the tag-sets stored in SavedModel directory.

  Prints all the tag-sets for MetaGraphs stored in SavedModel directory.

  Args:
    saved_model_dir: Directory containing the SavedModel to inspect.
  """
  tag_sets = saved_model_utils.get_saved_model_tag_sets(saved_model_dir)
  print('The given SavedModel contains the following tag-sets:')
  for tag_set in sorted(tag_sets):
    print('%r' % ', '.join(sorted(tag_set)))


def _show_signature_def_map_keys(saved_model_dir, tag_set):
  """Prints the keys for each SignatureDef in the SignatureDef map.

  Prints the list of SignatureDef keys from the SignatureDef map specified by
  the given tag-set and SavedModel directory.

  Args:
    saved_model_dir: Directory containing the SavedModel to inspect.
    tag_set: Group of tag(s) of the MetaGraphDef to get SignatureDef map from,
        in string format, separated by ','. For tag-set contains multiple tags,
        all tags must be passed in.
  """
  signature_def_map = get_signature_def_map(saved_model_dir, tag_set)
  print('The given SavedModel MetaGraphDef contains SignatureDefs with the '
        'following keys:')
  for signature_def_key in sorted(signature_def_map.keys()):
    print('SignatureDef key: \"%s\"' % signature_def_key)


def _get_inputs_tensor_info_from_meta_graph_def(meta_graph_def,
                                                signature_def_key):
  """Gets TensorInfo for all inputs of the SignatureDef.

  Returns a dictionary that maps each input key to its TensorInfo for the given
  signature_def_key in the meta_graph_def

  Args:
    meta_graph_def: MetaGraphDef protocol buffer with the SignatureDef map to
        look up SignatureDef key.
    signature_def_key: A SignatureDef key string.

  Returns:
    A dictionary that maps input tensor keys to TensorInfos.

  Raises:
    ValueError if `signature_def_key` is not found in the MetaGraphDef.
  """
  if signature_def_key not in meta_graph_def.signature_def:
    raise ValueError(
        f'Could not find signature "{signature_def_key}". Please choose from: '
        f'{", ".join(meta_graph_def.signature_def.keys())}')
  return meta_graph_def.signature_def[signature_def_key].inputs


def _get_outputs_tensor_info_from_meta_graph_def(meta_graph_def,
                                                 signature_def_key):
  """Gets TensorInfos for all outputs of the SignatureDef.

  Returns a dictionary that maps each output key to its TensorInfo for the given
  signature_def_key in the meta_graph_def.

  Args:
    meta_graph_def: MetaGraphDef protocol buffer with the SignatureDefmap to
    look up signature_def_key.
    signature_def_key: A SignatureDef key string.

  Returns:
    A dictionary that maps output tensor keys to TensorInfos.
  """
  return meta_graph_def.signature_def[signature_def_key].outputs


def _show_inputs_outputs(saved_model_dir, tag_set, signature_def_key, indent=0):
  """Prints input and output TensorInfos.

  Prints the details of input and output TensorInfos for the SignatureDef mapped
  by the given signature_def_key.

  Args:
    saved_model_dir: Directory containing the SavedModel to inspect.
    tag_set: Group of tag(s) of the MetaGraphDef, in string format, separated by
        ','. For tag-set contains multiple tags, all tags must be passed in.
    signature_def_key: A SignatureDef key string.
    indent: How far (in increments of 2 spaces) to indent each line of output.
  """
  meta_graph_def = saved_model_utils.get_meta_graph_def(saved_model_dir,
                                                        tag_set)
  inputs_tensor_info = _get_inputs_tensor_info_from_meta_graph_def(
      meta_graph_def, signature_def_key)
  outputs_tensor_info = _get_outputs_tensor_info_from_meta_graph_def(
      meta_graph_def, signature_def_key)

  indent_str = '  ' * indent
  def in_print(s):
    print(indent_str + s)

  in_print('The given SavedModel SignatureDef contains the following input(s):')
  for input_key, input_tensor in sorted(inputs_tensor_info.items()):
    in_print('  inputs[\'%s\'] tensor_info:' % input_key)
    _print_tensor_info(input_tensor, indent+1)

  in_print('The given SavedModel SignatureDef contains the following '
           'output(s):')
  for output_key, output_tensor in sorted(outputs_tensor_info.items()):
    in_print('  outputs[\'%s\'] tensor_info:' % output_key)
    _print_tensor_info(output_tensor, indent+1)

  in_print('Method name is: %s' %
           meta_graph_def.signature_def[signature_def_key].method_name)


def _show_defined_functions(saved_model_dir):
  """Prints the callable concrete and polymorphic functions of the Saved Model.

  Args:
    saved_model_dir: Directory containing the SavedModel to inspect.
  """
  meta_graphs = saved_model_utils.read_saved_model(saved_model_dir).meta_graphs
  has_object_graph_def = False

  for meta_graph_def in meta_graphs:
    has_object_graph_def |= meta_graph_def.HasField('object_graph_def')
  if not has_object_graph_def:
    return
  with ops_lib.Graph().as_default():
    trackable_object = load.load(saved_model_dir)

  print('\nConcrete Functions:', end='')
  children = list(
      save._AugmentedGraphView(trackable_object)  # pylint: disable=protected-access
      .list_children(trackable_object))
  children = sorted(children, key=lambda x: x.name)
  for name, child in children:
    concrete_functions = []
    if isinstance(child, defun.ConcreteFunction):
      concrete_functions.append(child)
    elif isinstance(child, def_function.Function):
      concrete_functions.extend(
          child._list_all_concrete_functions_for_serialization())  # pylint: disable=protected-access
    else:
      continue
    print('\n  Function Name: \'%s\'' % name)
    concrete_functions = sorted(concrete_functions, key=lambda x: x.name)
    for index, concrete_function in enumerate(concrete_functions, 1):
      args, kwargs = None, None
      if concrete_function.structured_input_signature:
        args, kwargs = concrete_function.structured_input_signature
      elif concrete_function._arg_keywords:  # pylint: disable=protected-access
        # For pure ConcreteFunctions we might have nothing better than
        # _arg_keywords.
        args = concrete_function._arg_keywords  # pylint: disable=protected-access
      if args:
        print('    Option #%d' % index)
        print('      Callable with:')
        _print_args(args, indent=4)
      if kwargs:
        _print_args(kwargs, 'Named Argument', indent=4)


def _print_args(arguments, argument_type='Argument', indent=0):
  """Formats and prints the argument of the concrete functions defined in the model.

  Args:
    arguments: Arguments to format print.
    argument_type: Type of arguments.
    indent: How far (in increments of 2 spaces) to indent each line of
     output.
  """
  indent_str = '  ' * indent

  def _maybe_add_quotes(value):
    is_quotes = '\'' * isinstance(value, str)
    return is_quotes + str(value) + is_quotes

  def in_print(s, end='\n'):
    print(indent_str + s, end=end)

  for index, element in enumerate(arguments, 1):
    if indent == 4:
      in_print('%s #%d' % (argument_type, index))
    if isinstance(element, six.string_types):
      in_print('  %s' % element)
    elif isinstance(element, tensor_spec.TensorSpec):
      print((indent + 1) * '  ' + '%s: %s' % (element.name, repr(element)))
    elif (isinstance(element, collections_abc.Iterable) and
          not isinstance(element, dict)):
      in_print('  DType: %s' % type(element).__name__)
      in_print('  Value: [', end='')
      for value in element:
        print('%s' % _maybe_add_quotes(value), end=', ')
      print('\b\b]')
    elif isinstance(element, dict):
      in_print('  DType: %s' % type(element).__name__)
      in_print('  Value: {', end='')
      for (key, value) in element.items():
        print('\'%s\': %s' % (str(key), _maybe_add_quotes(value)), end=', ')
      print('\b\b}')
    else:
      in_print('  DType: %s' % type(element).__name__)
      in_print('  Value: %s' % str(element))


def _print_tensor_info(tensor_info, indent=0):
  """Prints details of the given tensor_info.

  Args:
    tensor_info: TensorInfo object to be printed.
    indent: How far (in increments of 2 spaces) to indent each line output
  """
  indent_str = '  ' * indent
  def in_print(s):
    print(indent_str + s)

  in_print('    dtype: ' +
           {value: key
            for (key, value) in types_pb2.DataType.items()}[tensor_info.dtype])
  # Display shape as tuple.
  if tensor_info.tensor_shape.unknown_rank:
    shape = 'unknown_rank'
  else:
    dims = [str(dim.size) for dim in tensor_info.tensor_shape.dim]
    shape = ', '.join(dims)
    shape = '(' + shape + ')'
  in_print('    shape: ' + shape)
  in_print('    name: ' + tensor_info.name)


def _show_all(saved_model_dir):
  """Prints tag-set, SignatureDef and Inputs/Outputs information in SavedModel.

  Prints all tag-set, SignatureDef and Inputs/Outputs information stored in
  SavedModel directory.

  Args:
    saved_model_dir: Directory containing the SavedModel to inspect.
  """
  tag_sets = saved_model_utils.get_saved_model_tag_sets(saved_model_dir)
  for tag_set in sorted(tag_sets):
    print("\nMetaGraphDef with tag-set: '%s' "
          "contains the following SignatureDefs:" % ', '.join(tag_set))

    tag_set = ','.join(tag_set)
    signature_def_map = get_signature_def_map(saved_model_dir, tag_set)
    for signature_def_key in sorted(signature_def_map.keys()):
      print('\nsignature_def[\'' + signature_def_key + '\']:')
      _show_inputs_outputs(saved_model_dir, tag_set, signature_def_key,
                           indent=1)
  _show_defined_functions(saved_model_dir)


def get_meta_graph_def(saved_model_dir, tag_set):
  """DEPRECATED: Use saved_model_utils.get_meta_graph_def instead.

  Gets MetaGraphDef from SavedModel. Returns the MetaGraphDef for the given
  tag-set and SavedModel directory.

  Args:
    saved_model_dir: Directory containing the SavedModel to inspect or execute.
    tag_set: Group of tag(s) of the MetaGraphDef to load, in string format,
        separated by ','. For tag-set contains multiple tags, all tags must be
        passed in.

  Raises:
    RuntimeError: An error when the given tag-set does not exist in the
        SavedModel.

  Returns:
    A MetaGraphDef corresponding to the tag-set.
  """
  return saved_model_utils.get_meta_graph_def(saved_model_dir, tag_set)


def get_signature_def_map(saved_model_dir, tag_set):
  """Gets SignatureDef map from a MetaGraphDef in a SavedModel.

  Returns the SignatureDef map for the given tag-set in the SavedModel
  directory.

  Args:
    saved_model_dir: Directory containing the SavedModel to inspect or execute.
    tag_set: Group of tag(s) of the MetaGraphDef with the SignatureDef map, in
        string format, separated by ','. For tag-set contains multiple tags, all
        tags must be passed in.

  Returns:
    A SignatureDef map that maps from string keys to SignatureDefs.
  """
  meta_graph = saved_model_utils.get_meta_graph_def(saved_model_dir, tag_set)
  return meta_graph.signature_def


def scan_meta_graph_def(meta_graph_def):
  """Scans meta_graph_def and reports if there are ops on denylist.

  Print ops if they are on black list, or print success if no denylisted ops
  found.

  Args:
    meta_graph_def: MetaGraphDef protocol buffer.
  """
  all_ops_set = set(
      meta_graph_lib.ops_used_by_graph_def(meta_graph_def.graph_def))
  denylisted_ops = _OP_DENYLIST & all_ops_set
  if denylisted_ops:
    # TODO(yifeif): print more warnings
    print(
        'MetaGraph with tag set %s contains the following denylisted ops:' %
        meta_graph_def.meta_info_def.tags, denylisted_ops)
  else:
    print('MetaGraph with tag set %s does not contain denylisted ops.' %
          meta_graph_def.meta_info_def.tags)


def run_saved_model_with_feed_dict(saved_model_dir,
                                   tag_set,
                                   signature_def_key,
                                   input_tensor_key_feed_dict,
                                   outdir,
                                   overwrite_flag,
                                   worker=None,
                                   init_tpu=False,
                                   use_tfrt=False,
                                   tf_debug=False):
  """Runs SavedModel and fetch all outputs.

  Runs the input dictionary through the MetaGraphDef within a SavedModel
  specified by the given tag_set and SignatureDef. Also save the outputs to file
  if outdir is not None.

  Args:
    saved_model_dir: Directory containing the SavedModel to execute.
    tag_set: Group of tag(s) of the MetaGraphDef with the SignatureDef map, in
        string format, separated by ','. For tag-set contains multiple tags, all
        tags must be passed in.
    signature_def_key: A SignatureDef key string.
    input_tensor_key_feed_dict: A dictionary maps input keys to numpy ndarrays.
    outdir: A directory to save the outputs to. If the directory doesn't exist,
        it will be created.
    overwrite_flag: A boolean flag to allow overwrite output file if file with
        the same name exists.
    worker: If provided, the session will be run on the worker.  Valid worker
        specification is a bns or gRPC path.
    init_tpu: If true, the TPU system will be initialized after the session
        is created.
    use_tfrt: If true, TFRT session will be used.
    tf_debug: A boolean flag to use TensorFlow Debugger (TFDBG) to observe the
        intermediate Tensor values and runtime GraphDefs while running the
        SavedModel.

  Raises:
    ValueError: When any of the input tensor keys is not valid.
    RuntimeError: An error when output file already exists and overwrite is not
    enabled.
  """
  # Get a list of output tensor names.
  meta_graph_def = saved_model_utils.get_meta_graph_def(saved_model_dir,
                                                        tag_set)

  # Re-create feed_dict based on input tensor name instead of key as session.run
  # uses tensor name.
  inputs_tensor_info = _get_inputs_tensor_info_from_meta_graph_def(
      meta_graph_def, signature_def_key)

  # Check if input tensor keys are valid.
  for input_key_name in input_tensor_key_feed_dict.keys():
    if input_key_name not in inputs_tensor_info:
      raise ValueError(
          '"%s" is not a valid input key. Please choose from %s, or use '
          '--show option.' %
          (input_key_name, '"' + '", "'.join(inputs_tensor_info.keys()) + '"'))

  inputs_feed_dict = {
      inputs_tensor_info[key].name: tensor
      for key, tensor in input_tensor_key_feed_dict.items()
  }
  # Get outputs
  outputs_tensor_info = _get_outputs_tensor_info_from_meta_graph_def(
      meta_graph_def, signature_def_key)
  # Sort to preserve order because we need to go from value to key later.
  output_tensor_keys_sorted = sorted(outputs_tensor_info.keys())
  output_tensor_names_sorted = [
      outputs_tensor_info[tensor_key].name
      for tensor_key in output_tensor_keys_sorted
  ]

  config = None
  if use_tfrt:
    logging.info('Using TFRT session.')
    config = config_pb2.ConfigProto(
        experimental=config_pb2.ConfigProto.Experimental(use_tfrt=True))
  with session.Session(worker, graph=ops_lib.Graph(), config=config) as sess:
    if init_tpu:
      print('Initializing TPU System ...')
      # This is needed for freshly started worker, or if the job
      # restarts after a preemption.
      sess.run(tpu.initialize_system())

    loader.load(sess, tag_set.split(','), saved_model_dir)

    if tf_debug:
      sess = local_cli_wrapper.LocalCLIDebugWrapperSession(sess)

    outputs = sess.run(output_tensor_names_sorted, feed_dict=inputs_feed_dict)

    for i, output in enumerate(outputs):
      output_tensor_key = output_tensor_keys_sorted[i]
      print('Result for output key %s:\n%s' % (output_tensor_key, output))

      # Only save if outdir is specified.
      if outdir:
        # Create directory if outdir does not exist
        if not os.path.isdir(outdir):
          os.makedirs(outdir)
        output_full_path = os.path.join(outdir, output_tensor_key + '.npy')

        # If overwrite not enabled and file already exist, error out
        if not overwrite_flag and os.path.exists(output_full_path):
          raise RuntimeError(
              'Output file %s already exists. Add \"--overwrite\" to overwrite'
              ' the existing output files.' % output_full_path)

        np.save(output_full_path, output)
        print('Output %s is saved to %s' % (output_tensor_key,
                                            output_full_path))


def preprocess_inputs_arg_string(inputs_str):
  """Parses input arg into dictionary that maps input to file/variable tuple.

  Parses input string in the format of, for example,
  "input1=filename1[variable_name1],input2=filename2" into a
  dictionary looks like
  {'input_key1': (filename1, variable_name1),
   'input_key2': (file2, None)}
  , which maps input keys to a tuple of file name and variable name(None if
  empty).

  Args:
    inputs_str: A string that specified where to load inputs. Inputs are
    separated by semicolons.
        * For each input key:
            '<input_key>=<filename>' or
            '<input_key>=<filename>[<variable_name>]'
        * The optional 'variable_name' key will be set to None if not specified.

  Returns:
    A dictionary that maps input keys to a tuple of file name and variable name.

  Raises:
    RuntimeError: An error when the given input string is in a bad format.
  """
  input_dict = {}
  inputs_raw = inputs_str.split(';')
  for input_raw in filter(bool, inputs_raw):  # skip empty strings
    # Format of input=filename[variable_name]'
    match = re.match(r'([^=]+)=([^\[\]]+)\[([^\[\]]+)\]$', input_raw)

    if match:
      input_dict[match.group(1)] = match.group(2), match.group(3)
    else:
      # Format of input=filename'
      match = re.match(r'([^=]+)=([^\[\]]+)$', input_raw)
      if match:
        input_dict[match.group(1)] = match.group(2), None
      else:
        raise RuntimeError(
            '--inputs "%s" format is incorrect. Please follow'
            '"<input_key>=<filename>", or'
            '"<input_key>=<filename>[<variable_name>]"' % input_raw)

  return input_dict


def preprocess_input_exprs_arg_string(input_exprs_str, safe=True):
  """Parses input arg into dictionary that maps input key to python expression.

  Parses input string in the format of 'input_key=<python expression>' into a
  dictionary that maps each input_key to its python expression.

  Args:
    input_exprs_str: A string that specifies python expression for input keys.
      Each input is separated by semicolon. For each input key:
        'input_key=<python expression>'
    safe: Whether to evaluate the python expression as literals or allow
      arbitrary calls (e.g. numpy usage).

  Returns:
    A dictionary that maps input keys to their values.

  Raises:
    RuntimeError: An error when the given input string is in a bad format.
  """
  input_dict = {}

  for input_raw in filter(bool, input_exprs_str.split(';')):
    if '=' not in input_exprs_str:
      raise RuntimeError('--input_exprs "%s" format is incorrect. Please follow'
                         '"<input_key>=<python expression>"' % input_exprs_str)
    input_key, expr = input_raw.split('=', 1)
    if safe:
      try:
        input_dict[input_key] = ast.literal_eval(expr)
      except:
        raise RuntimeError(
            f'Expression "{expr}" is not a valid python literal.')
    else:
      # ast.literal_eval does not work with numpy expressions
      input_dict[input_key] = eval(expr)  # pylint: disable=eval-used
  return input_dict


def preprocess_input_examples_arg_string(input_examples_str):
  """Parses input into dict that maps input keys to lists of tf.Example.

  Parses input string in the format of 'input_key1=[{feature_name:
  feature_list}];input_key2=[{feature_name:feature_list}];' into a dictionary
  that maps each input_key to its list of serialized tf.Example.

  Args:
    input_examples_str: A string that specifies a list of dictionaries of
    feature_names and their feature_lists for each input.
    Each input is separated by semicolon. For each input key:
      'input=[{feature_name1: feature_list1, feature_name2:feature_list2}]'
      items in feature_list can be the type of float, int, long or str.

  Returns:
    A dictionary that maps input keys to lists of serialized tf.Example.

  Raises:
    ValueError: An error when the given tf.Example is not a list.
  """
  input_dict = preprocess_input_exprs_arg_string(input_examples_str)
  for input_key, example_list in input_dict.items():
    if not isinstance(example_list, list):
      raise ValueError(
          'tf.Example input must be a list of dictionaries, but "%s" is %s' %
          (example_list, type(example_list)))
    input_dict[input_key] = [
        _create_example_string(example) for example in example_list
    ]
  return input_dict


def _create_example_string(example_dict):
  """Create a serialized tf.example from feature dictionary."""
  example = example_pb2.Example()
  for feature_name, feature_list in example_dict.items():
    if not isinstance(feature_list, list):
      raise ValueError('feature value must be a list, but %s: "%s" is %s' %
                       (feature_name, feature_list, type(feature_list)))
    if isinstance(feature_list[0], float):
      example.features.feature[feature_name].float_list.value.extend(
          feature_list)
    elif isinstance(feature_list[0], str):
      example.features.feature[feature_name].bytes_list.value.extend(
          [f.encode('utf8') for f in feature_list])
    elif isinstance(feature_list[0], bytes):
      example.features.feature[feature_name].bytes_list.value.extend(
          feature_list)
    elif isinstance(feature_list[0], six.integer_types):
      example.features.feature[feature_name].int64_list.value.extend(
          feature_list)
    else:
      raise ValueError(
          'Type %s for value %s is not supported for tf.train.Feature.' %
          (type(feature_list[0]), feature_list[0]))
  return example.SerializeToString()


def load_inputs_from_input_arg_string(inputs_str, input_exprs_str,
                                      input_examples_str):
  """Parses input arg strings and create inputs feed_dict.

  Parses '--inputs' string for inputs to be loaded from file, and parses
  '--input_exprs' string for inputs to be evaluated from python expression.
  '--input_examples' string for inputs to be created from tf.example feature
  dictionary list.

  Args:
    inputs_str: A string that specified where to load inputs. Each input is
        separated by semicolon.
        * For each input key:
            '<input_key>=<filename>' or
            '<input_key>=<filename>[<variable_name>]'
        * The optional 'variable_name' key will be set to None if not specified.
        * File specified by 'filename' will be loaded using numpy.load. Inputs
            can be loaded from only .npy, .npz or pickle files.
        * The "[variable_name]" key is optional depending on the input file type
            as descripted in more details below.
        When loading from a npy file, which always contains a numpy ndarray, the
        content will be directly assigned to the specified input tensor. If a
        variable_name is specified, it will be ignored and a warning will be
        issued.
        When loading from a npz zip file, user can specify which variable within
        the zip file to load for the input tensor inside the square brackets. If
        nothing is specified, this function will check that only one file is
        included in the zip and load it for the specified input tensor.
        When loading from a pickle file, if no variable_name is specified in the
        square brackets, whatever that is inside the pickle file will be passed
        to the specified input tensor, else SavedModel CLI will assume a
        dictionary is stored in the pickle file and the value corresponding to
        the variable_name will be used.
    input_exprs_str: A string that specifies python expressions for inputs.
        * In the format of: '<input_key>=<python expression>'.
        * numpy module is available as np.
    input_examples_str: A string that specifies tf.Example with dictionary.
        * In the format of: '<input_key>=<[{feature:value list}]>'

  Returns:
    A dictionary that maps input tensor keys to numpy ndarrays.

  Raises:
    RuntimeError: An error when a key is specified, but the input file contains
        multiple numpy ndarrays, none of which matches the given key.
    RuntimeError: An error when no key is specified, but the input file contains
        more than one numpy ndarrays.
  """
  tensor_key_feed_dict = {}

  inputs = preprocess_inputs_arg_string(inputs_str)
  # BUG: CWE-94 Improper Control of Generation of Code ('Code Injection')
  # input_exprs = preprocess_input_exprs_arg_string(input_exprs_str, safe=False)
  # FIXED: 
  input_exprs = preprocess_input_exprs_arg_string(input_exprs_str)
  input_examples = preprocess_input_examples_arg_string(input_examples_str)

  for input_tensor_key, (filename, variable_name) in inputs.items():
    data = np.load(file_io.FileIO(filename, mode='rb'), allow_pickle=True)  # pylint: disable=unexpected-keyword-arg

    # When a variable_name key is specified for the input file
    if variable_name:
      # if file contains a single ndarray, ignore the input name
      if isinstance(data, np.ndarray):
        logging.warn(
            'Input file %s contains a single ndarray. Name key \"%s\" ignored.'
            % (filename, variable_name))
        tensor_key_feed_dict[input_tensor_key] = data
      else:
        if variable_name in data:
          tensor_key_feed_dict[input_tensor_key] = data[variable_name]
        else:
          raise RuntimeError(
              'Input file %s does not contain variable with name \"%s\".' %
              (filename, variable_name))
    # When no key is specified for the input file.
    else:
      # Check if npz file only contains a single numpy ndarray.
      if isinstance(data, np.lib.npyio.NpzFile):
        variable_name_list = data.files
        if len(variable_name_list) != 1:
          raise RuntimeError(
              'Input file %s contains more than one ndarrays. Please specify '
              'the name of ndarray to use.' % filename)
        tensor_key_feed_dict[input_tensor_key] = data[variable_name_list[0]]
      else:
        tensor_key_feed_dict[input_tensor_key] = data

  # When input is a python expression:
  for input_tensor_key, py_expr_evaluated in input_exprs.items():
    if input_tensor_key in tensor_key_feed_dict:
      logging.warn(
          'input_key %s has been specified with both --inputs and --input_exprs'
          ' options. Value in --input_exprs will be used.' % input_tensor_key)
    tensor_key_feed_dict[input_tensor_key] = py_expr_evaluated

  # When input is a tf.Example:
  for input_tensor_key, example in input_examples.items():
    if input_tensor_key in tensor_key_feed_dict:
      logging.warn(
          'input_key %s has been specified in multiple options. Value in '
          '--input_examples will be used.' % input_tensor_key)
    tensor_key_feed_dict[input_tensor_key] = example
  return tensor_key_feed_dict


def show(args):
  """Function triggered by show command.

  Args:
    args: A namespace parsed from command line.
  """
  # If all tag is specified, display all information.
  if args.all:
    _show_all(args.dir)
  else:
    # If no tag is specified, display all tag_set, if no signature_def key is
    # specified, display all SignatureDef keys, else show input output tensor
    # information corresponding to the given SignatureDef key
    if args.tag_set is None:
      _show_tag_sets(args.dir)
    else:
      if args.signature_def is None:
        _show_signature_def_map_keys(args.dir, args.tag_set)
      else:
        _show_inputs_outputs(args.dir, args.tag_set, args.signature_def)


def run(args):
  """Function triggered by run command.

  Args:
    args: A namespace parsed from command line.

  Raises:
    AttributeError: An error when neither --inputs nor --input_exprs is passed
    to run command.
  """
  if not args.inputs and not args.input_exprs and not args.input_examples:
    raise AttributeError(
        'At least one of --inputs, --input_exprs or --input_examples must be '
        'required')
  tensor_key_feed_dict = load_inputs_from_input_arg_string(
      args.inputs, args.input_exprs, args.input_examples)
  run_saved_model_with_feed_dict(
      args.dir,
      args.tag_set,
      args.signature_def,
      tensor_key_feed_dict,
      args.outdir,
      args.overwrite,
      worker=args.worker,
      init_tpu=args.init_tpu,
      use_tfrt=args.use_tfrt,
      tf_debug=args.tf_debug)


def scan(args):
  """Function triggered by scan command.

  Args:
    args: A namespace parsed from command line.
  """
  if args.tag_set:
    scan_meta_graph_def(
        saved_model_utils.get_meta_graph_def(args.dir, args.tag_set))
  else:
    saved_model = saved_model_utils.read_saved_model(args.dir)
    for meta_graph_def in saved_model.meta_graphs:
      scan_meta_graph_def(meta_graph_def)


def convert_with_tensorrt(args):
  """Function triggered by 'convert tensorrt' command.

  Args:
    args: A namespace parsed from command line.
  """
  # Import here instead of at top, because this will crash if TensorRT is
  # not installed
  from tensorflow.python.compiler.tensorrt import trt_convert as trt  # pylint: disable=g-import-not-at-top

  if not args.convert_tf1_model:
    params = trt.DEFAULT_TRT_CONVERSION_PARAMS._replace(
        max_workspace_size_bytes=args.max_workspace_size_bytes,
        precision_mode=args.precision_mode,
        minimum_segment_size=args.minimum_segment_size)
    converter = trt.TrtGraphConverterV2(
        input_saved_model_dir=args.dir,
        input_saved_model_tags=args.tag_set.split(','),
        **params._asdict())
    try:
      converter.convert()
    except Exception as e:
      raise RuntimeError(
          '{}. Try passing "--convert_tf1_model=True".'.format(e))
    converter.save(output_saved_model_dir=args.output_dir)
  else:
    trt.create_inference_graph(
        None,
        None,
        max_batch_size=1,
        max_workspace_size_bytes=args.max_workspace_size_bytes,
        precision_mode=args.precision_mode,
        minimum_segment_size=args.minimum_segment_size,
        is_dynamic_op=True,
        input_saved_model_dir=args.dir,
        input_saved_model_tags=args.tag_set.split(','),
        output_saved_model_dir=args.output_dir)


def freeze_model(args):
  """Function triggered by freeze_model command.

  Args:
    args: A namespace parsed from command line.
  """
  checkpoint_path = (
      args.checkpoint_path
      or os.path.join(args.dir, 'variables/variables'))
  if not args.variables_to_feed:
    variables_to_feed = []
  elif args.variables_to_feed.lower() == 'all':
    variables_to_feed = None  # We will identify them after.
  else:
    variables_to_feed = args.variables_to_feed.split(',')

  saved_model_aot_compile.freeze_model(
      checkpoint_path=checkpoint_path,
      meta_graph_def=saved_model_utils.get_meta_graph_def(
          args.dir, args.tag_set),
      signature_def_key=args.signature_def_key,
      variables_to_feed=variables_to_feed,
      output_prefix=args.output_prefix)


def aot_compile_cpu(args):
  """Function triggered by aot_compile_cpu command.

  Args:
    args: A namespace parsed from command line.
  """
  checkpoint_path = (
      args.checkpoint_path
      or os.path.join(args.dir, 'variables/variables'))
  if not args.variables_to_feed:
    variables_to_feed = []
  elif args.variables_to_feed.lower() == 'all':
    variables_to_feed = None  # We will identify them after.
  else:
    variables_to_feed = args.variables_to_feed.split(',')

  saved_model_aot_compile.aot_compile_cpu_meta_graph_def(
      checkpoint_path=checkpoint_path,
      meta_graph_def=saved_model_utils.get_meta_graph_def(
          args.dir, args.tag_set),
      signature_def_key=args.signature_def_key,
      variables_to_feed=variables_to_feed,
      output_prefix=args.output_prefix,
      target_triple=args.target_triple,
      target_cpu=args.target_cpu,
      cpp_class=args.cpp_class,
      multithreading=args.multithreading.lower() not in ('f', 'false', '0'))


def add_show_subparser(subparsers):
  """Add parser for `show`."""
  show_msg = (
      'Usage examples:\n'
      'To show all tag-sets in a SavedModel:\n'
      '$saved_model_cli show --dir /tmp/saved_model\n\n'
      'To show all available SignatureDef keys in a '
      'MetaGraphDef specified by its tag-set:\n'
      '$saved_model_cli show --dir /tmp/saved_model --tag_set serve\n\n'
      'For a MetaGraphDef with multiple tags in the tag-set, all tags must be '
      'passed in, separated by \';\':\n'
      '$saved_model_cli show --dir /tmp/saved_model --tag_set serve,gpu\n\n'
      'To show all inputs and outputs TensorInfo for a specific'
      ' SignatureDef specified by the SignatureDef key in a'
      ' MetaGraph.\n'
      '$saved_model_cli show --dir /tmp/saved_model --tag_set serve'
      ' --signature_def serving_default\n\n'
      'To show all available information in the SavedModel:\n'
      '$saved_model_cli show --dir /tmp/saved_model --all')
  parser_show = subparsers.add_parser(
      'show',
      description=show_msg,
      formatter_class=argparse.RawTextHelpFormatter)
  parser_show.add_argument(
      '--dir',
      type=str,
      required=True,
      help='directory containing the SavedModel to inspect')
  parser_show.add_argument(
      '--all',
      action='store_true',
      help='if set, will output all information in given SavedModel')
  parser_show.add_argument(
      '--tag_set',
      type=str,
      default=None,
      help='tag-set of graph in SavedModel to show, separated by \',\'')
  parser_show.add_argument(
      '--signature_def',
      type=str,
      default=None,
      metavar='SIGNATURE_DEF_KEY',
      help='key of SignatureDef to display input(s) and output(s) for')
  parser_show.set_defaults(func=show)


def add_run_subparser(subparsers):
  """Add parser for `run`."""
  run_msg = ('Usage example:\n'
             'To run input tensors from files through a MetaGraphDef and save'
             ' the output tensors to files:\n'
             '$saved_model_cli show --dir /tmp/saved_model --tag_set serve \\\n'
             '   --signature_def serving_default \\\n'
             '   --inputs input1_key=/tmp/124.npz[x],input2_key=/tmp/123.npy '
             '\\\n'
             '   --input_exprs \'input3_key=np.ones(2)\' \\\n'
             '   --input_examples '
             '\'input4_key=[{"id":[26],"weights":[0.5, 0.5]}]\' \\\n'
             '   --outdir=/out\n\n'
             'For more information about input file format, please see:\n'
             'https://www.tensorflow.org/guide/saved_model_cli\n')
  parser_run = subparsers.add_parser(
      'run', description=run_msg, formatter_class=argparse.RawTextHelpFormatter)
  parser_run.add_argument(
      '--dir',
      type=str,
      required=True,
      help='directory containing the SavedModel to execute')
  parser_run.add_argument(
      '--tag_set',
      type=str,
      required=True,
      help='tag-set of graph in SavedModel to load, separated by \',\'')
  parser_run.add_argument(
      '--signature_def',
      type=str,
      required=True,
      metavar='SIGNATURE_DEF_KEY',
      help='key of SignatureDef to run')
  msg = ('Loading inputs from files, in the format of \'<input_key>=<filename>,'
         ' or \'<input_key>=<filename>[<variable_name>]\', separated by \';\'.'
         ' The file format can only be from .npy, .npz or pickle.')
  parser_run.add_argument('--inputs', type=str, default='', help=msg)
  msg = ('Specifying inputs by python expressions, in the format of'
         ' "<input_key>=\'<python expression>\'", separated by \';\'. '
         'numpy module is available as \'np\'. Please note that the expression '
         'will be evaluated as-is, and is susceptible to code injection. '
         'When this is set, the value will override duplicate input keys from '
         '--inputs option.')
  parser_run.add_argument('--input_exprs', type=str, default='', help=msg)
  msg = (
      'Specifying tf.Example inputs as list of dictionaries. For example: '
      '<input_key>=[{feature0:value_list,feature1:value_list}]. Use ";" to '
      'separate input keys. Will override duplicate input keys from --inputs '
      'and --input_exprs option.')
  parser_run.add_argument('--input_examples', type=str, default='', help=msg)
  parser_run.add_argument(
      '--outdir',
      type=str,
      default=None,
      help='if specified, output tensor(s) will be saved to given directory')
  parser_run.add_argument(
      '--overwrite',
      action='store_true',
      help='if set, output file will be overwritten if it already exists.')
  parser_run.add_argument(
      '--tf_debug',
      action='store_true',
      help='if set, will use TensorFlow Debugger (tfdbg) to watch the '
           'intermediate Tensors and runtime GraphDefs while running the '
           'SavedModel.')
  parser_run.add_argument(
      '--worker',
      type=str,
      default=None,
      help='if specified, a Session will be run on the worker. '
           'Valid worker specification is a bns or gRPC path.')
  parser_run.add_argument(
      '--init_tpu',
      action='store_true',
      default=None,
      help='if specified, tpu.initialize_system will be called on the Session. '
           'This option should be only used if the worker is a TPU job.')
  parser_run.add_argument(
      '--use_tfrt',
      action='store_true',
      default=None,
      help='if specified, TFRT session will be used, instead of TF1 session.')
  parser_run.set_defaults(func=run)


def add_scan_subparser(subparsers):
  """Add parser for `scan`."""
  scan_msg = ('Usage example:\n'
              'To scan for denylisted ops in SavedModel:\n'
              '$saved_model_cli scan --dir /tmp/saved_model\n'
              'To scan a specific MetaGraph, pass in --tag_set\n')
  parser_scan = subparsers.add_parser(
      'scan',
      description=scan_msg,
      formatter_class=argparse.RawTextHelpFormatter)
  parser_scan.add_argument(
      '--dir',
      type=str,
      required=True,
      help='directory containing the SavedModel to execute')
  parser_scan.add_argument(
      '--tag_set',
      type=str,
      help='tag-set of graph in SavedModel to scan, separated by \',\'')
  parser_scan.set_defaults(func=scan)


def add_convert_subparser(subparsers):
  """Add parser for `convert`."""
  convert_msg = ('Usage example:\n'
                 'To convert the SavedModel to one that have TensorRT ops:\n'
                 '$saved_model_cli convert \\\n'
                 '   --dir /tmp/saved_model \\\n'
                 '   --tag_set serve \\\n'
                 '   --output_dir /tmp/saved_model_trt \\\n'
                 '   tensorrt \n')
  parser_convert = subparsers.add_parser(
      'convert',
      description=convert_msg,
      formatter_class=argparse.RawTextHelpFormatter)
  parser_convert.add_argument(
      '--dir',
      type=str,
      required=True,
      help='directory containing the SavedModel to convert')
  parser_convert.add_argument(
      '--output_dir',
      type=str,
      required=True,
      help='output directory for the converted SavedModel')
  parser_convert.add_argument(
      '--tag_set',
      type=str,
      required=True,
      help='tag-set of graph in SavedModel to convert, separated by \',\'')
  convert_subparsers = parser_convert.add_subparsers(
      title='conversion methods',
      description='valid conversion methods',
      help='the conversion to run with the SavedModel')
  parser_convert_with_tensorrt = convert_subparsers.add_parser(
      'tensorrt',
      description='Convert the SavedModel with Tensorflow-TensorRT integration',
      formatter_class=argparse.RawTextHelpFormatter)
  parser_convert_with_tensorrt.add_argument(
      '--max_workspace_size_bytes',
      type=int,
      default=2 << 20,
      help=('the maximum GPU temporary memory which the TRT engine can use at '
            'execution time'))
  parser_convert_with_tensorrt.add_argument(
      '--precision_mode',
      type=str,
      default='FP32',
      help='one of FP32, FP16 and INT8')
  parser_convert_with_tensorrt.add_argument(
      '--minimum_segment_size',
      type=int,
      default=3,
      help=('the minimum number of nodes required for a subgraph to be replaced'
            'in a TensorRT node'))
  parser_convert_with_tensorrt.add_argument(
      '--convert_tf1_model',
      type=bool,
      default=False,
      help='support TRT conversion for TF1 models')
  parser_convert_with_tensorrt.set_defaults(func=convert_with_tensorrt)


def _parse_common_freeze_and_aot(parser_compile):
  """Parse arguments shared by freeze model and aot_compile."""
  parser_compile.add_argument(
      '--dir',
      type=str,
      required=True,
      help='directory containing the SavedModel to convert')
  parser_compile.add_argument(
      '--output_prefix',
      type=str,
      required=True,
      help=('output directory + filename prefix for the resulting header(s) '
            'and object file(s)'))
  parser_compile.add_argument(
      '--tag_set',
      type=str,
      required=True,
      help='tag-set of graph in SavedModel to convert, separated by \',\'')
  parser_compile.add_argument(
      '--signature_def_key',
      type=str,
      default=signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY,
      help=('signature_def key to use.  '
            'default: DEFAULT_SERVING_SIGNATURE_DEF_KEY'))
  parser_compile.add_argument(
      '--checkpoint_path',
      type=str,
      default=None,
      help='Custom checkpoint to use (default: use the SavedModel variables)')
  parser_compile.add_argument(
      '--variables_to_feed',
      type=str,
      default='',
      help=('The names of variables that will be fed into the network.  '
            'Options are: empty (default; all variables are frozen, none may '
            'be fed), \'all\' (all variables may be fed), or a '
            'comma-delimited list of names of variables that may be fed.  In '
            'the last case, the non-fed variables will be frozen in the graph.'
            '**NOTE** Any variables passed to `variables_to_feed` *must be set '
            'by the user*.  These variables will NOT be frozen and their '
            'values will be uninitialized in the compiled object '
            '(this applies to all input arguments from the signature as '
            'well).'))


def add_freeze_model_subparser(subparsers):
  """Add parser for `freeze_model`."""
  compile_msg = '\n'.join(
      ['Usage example:',
       'To freeze a SavedModel in preparation for tfcompile:',
       '$saved_model_cli freeze_model \\',
       '   --dir /tmp/saved_model \\',
       '   --tag_set serve \\',
       '   --output_prefix /tmp/saved_model_xla_aot',
      ])

  parser_compile = subparsers.add_parser(
      'freeze_model',
      description=compile_msg,
      formatter_class=argparse.RawTextHelpFormatter)
  _parse_common_freeze_and_aot(parser_compile)
  parser_compile.set_defaults(func=freeze_model)


def add_aot_compile_cpu_subparser(subparsers):
  """Add parser for `aot_compile_cpu`."""
  compile_msg = '\n'.join(
      ['Usage example:',
       'To compile a SavedModel signature via (CPU) XLA AOT:',
       '$saved_model_cli aot_compile_cpu \\',
       '   --dir /tmp/saved_model \\',
       '   --tag_set serve \\',
       '   --output_dir /tmp/saved_model_xla_aot',
       '', '',
       'Note: Additional XLA compilation options are available by setting the ',
       'XLA_FLAGS environment variable.  See the XLA debug options flags for ',
       'all the options: ',
       '  {}'.format(_XLA_DEBUG_OPTIONS_URL),
       '',
       'For example, to disable XLA fast math when compiling:',
       '',
       'XLA_FLAGS="--xla_cpu_enable_fast_math=false" $saved_model_cli '
       'aot_compile_cpu ...',
       '',
       'Some possibly useful flags:',
       '  --xla_cpu_enable_fast_math=false',
       '  --xla_force_host_platform_device_count=<num threads>',
       '    (useful in conjunction with disabling multi threading)'
      ])

  parser_compile = subparsers.add_parser(
      'aot_compile_cpu',
      description=compile_msg,
      formatter_class=argparse.RawTextHelpFormatter)
  _parse_common_freeze_and_aot(parser_compile)
  parser_compile.add_argument(
      '--target_triple',
      type=str,
      default='x86_64-pc-linux',
      help=('Target triple for LLVM during AOT compilation.  Examples: '
            'x86_64-none-darwin, x86_64-apple-ios, arm64-none-ios, '
            'armv7-none-android.  More examples are available in tfcompile.bzl '
            'in the tensorflow codebase.'))
  parser_compile.add_argument(
      '--target_cpu',
      type=str,
      default='',
      help=('Target cpu name for LLVM during AOT compilation.  Examples: '
            'x86_64, skylake, haswell, westmere, <empty> (unknown).  For '
            'a complete list of options, run (for x86 targets): '
            '`llc -march=x86 -mcpu=help`'))
  parser_compile.add_argument(
      '--cpp_class',
      type=str,
      required=True,
      help=('The name of the generated C++ class, wrapping the generated '
            'function.  The syntax of this flag is '
            '[[<optional_namespace>::],...]<class_name>.  This mirrors the '
            'C++ syntax for referring to a class, where multiple namespaces '
            'may precede the class name, separated by double-colons.  '
            'The class will be generated in the given namespace(s), or if no '
            'namespaces are given, within the global namespace.'))
  parser_compile.add_argument(
      '--multithreading',
      type=str,
      default='False',
      help=('Enable multithreading in the compiled computation.  '
            'Note that if using this option, the resulting object files '
            'may have external dependencies on multithreading libraries '
            'like nsync.'))

  parser_compile.set_defaults(func=aot_compile_cpu)


def create_parser():
  """Creates a parser that parse the command line arguments.

  Returns:
    A namespace parsed from command line arguments.
  """
  parser = argparse.ArgumentParser(
      description='saved_model_cli: Command-line interface for SavedModel')
  parser.add_argument('-v', '--version', action='version', version='0.1.0')

  subparsers = parser.add_subparsers(
      title='commands', description='valid commands', help='additional help')

  # show command
  add_show_subparser(subparsers)

  # run command
  add_run_subparser(subparsers)

  # scan command
  add_scan_subparser(subparsers)

  # tensorrt convert command
  add_convert_subparser(subparsers)

  # aot_compile_cpu command
  add_aot_compile_cpu_subparser(subparsers)

  # freeze_model command
  add_freeze_model_subparser(subparsers)
  return parser


def main():
  logging.set_verbosity(logging.INFO)
  parser = create_parser()
  args = parser.parse_args()
  if not hasattr(args, 'func'):
    parser.error('too few arguments')
  args.func(args)


if __name__ == '__main__':
  sys.exit(main())