File size: 49,986 Bytes
eb67da4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 |
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Command-line interface to inspect and execute a graph in a SavedModel.
For detailed usages and examples, please refer to:
https://www.tensorflow.org/guide/saved_model#cli_to_inspect_and_execute_savedmodel
"""
import argparse
import ast
import os
import re
import sys
from absl import app # pylint: disable=unused-import
import numpy as np
import six
from tensorflow.core.example import example_pb2
from tensorflow.core.framework import types_pb2
from tensorflow.core.protobuf import config_pb2
from tensorflow.python.client import session
from tensorflow.python.debug.wrappers import local_cli_wrapper
from tensorflow.python.eager import def_function
from tensorflow.python.eager import function as defun
from tensorflow.python.framework import meta_graph as meta_graph_lib
from tensorflow.python.framework import ops as ops_lib
from tensorflow.python.framework import tensor_spec
from tensorflow.python.lib.io import file_io
from tensorflow.python.platform import tf_logging as logging
from tensorflow.python.saved_model import load
from tensorflow.python.saved_model import loader
from tensorflow.python.saved_model import save
from tensorflow.python.saved_model import signature_constants
from tensorflow.python.tools import saved_model_aot_compile
from tensorflow.python.tools import saved_model_utils
from tensorflow.python.tpu import tpu
from tensorflow.python.util.compat import collections_abc
_XLA_DEBUG_OPTIONS_URL = (
'https://github.com/tensorflow/tensorflow/blob/master/'
'tensorflow/compiler/xla/debug_options_flags.cc')
# Set of ops to denylist.
_OP_DENYLIST = set(['WriteFile', 'ReadFile', 'PrintV2'])
def _show_tag_sets(saved_model_dir):
"""Prints the tag-sets stored in SavedModel directory.
Prints all the tag-sets for MetaGraphs stored in SavedModel directory.
Args:
saved_model_dir: Directory containing the SavedModel to inspect.
"""
tag_sets = saved_model_utils.get_saved_model_tag_sets(saved_model_dir)
print('The given SavedModel contains the following tag-sets:')
for tag_set in sorted(tag_sets):
print('%r' % ', '.join(sorted(tag_set)))
def _show_signature_def_map_keys(saved_model_dir, tag_set):
"""Prints the keys for each SignatureDef in the SignatureDef map.
Prints the list of SignatureDef keys from the SignatureDef map specified by
the given tag-set and SavedModel directory.
Args:
saved_model_dir: Directory containing the SavedModel to inspect.
tag_set: Group of tag(s) of the MetaGraphDef to get SignatureDef map from,
in string format, separated by ','. For tag-set contains multiple tags,
all tags must be passed in.
"""
signature_def_map = get_signature_def_map(saved_model_dir, tag_set)
print('The given SavedModel MetaGraphDef contains SignatureDefs with the '
'following keys:')
for signature_def_key in sorted(signature_def_map.keys()):
print('SignatureDef key: \"%s\"' % signature_def_key)
def _get_inputs_tensor_info_from_meta_graph_def(meta_graph_def,
signature_def_key):
"""Gets TensorInfo for all inputs of the SignatureDef.
Returns a dictionary that maps each input key to its TensorInfo for the given
signature_def_key in the meta_graph_def
Args:
meta_graph_def: MetaGraphDef protocol buffer with the SignatureDef map to
look up SignatureDef key.
signature_def_key: A SignatureDef key string.
Returns:
A dictionary that maps input tensor keys to TensorInfos.
Raises:
ValueError if `signature_def_key` is not found in the MetaGraphDef.
"""
if signature_def_key not in meta_graph_def.signature_def:
raise ValueError(
f'Could not find signature "{signature_def_key}". Please choose from: '
f'{", ".join(meta_graph_def.signature_def.keys())}')
return meta_graph_def.signature_def[signature_def_key].inputs
def _get_outputs_tensor_info_from_meta_graph_def(meta_graph_def,
signature_def_key):
"""Gets TensorInfos for all outputs of the SignatureDef.
Returns a dictionary that maps each output key to its TensorInfo for the given
signature_def_key in the meta_graph_def.
Args:
meta_graph_def: MetaGraphDef protocol buffer with the SignatureDefmap to
look up signature_def_key.
signature_def_key: A SignatureDef key string.
Returns:
A dictionary that maps output tensor keys to TensorInfos.
"""
return meta_graph_def.signature_def[signature_def_key].outputs
def _show_inputs_outputs(saved_model_dir, tag_set, signature_def_key, indent=0):
"""Prints input and output TensorInfos.
Prints the details of input and output TensorInfos for the SignatureDef mapped
by the given signature_def_key.
Args:
saved_model_dir: Directory containing the SavedModel to inspect.
tag_set: Group of tag(s) of the MetaGraphDef, in string format, separated by
','. For tag-set contains multiple tags, all tags must be passed in.
signature_def_key: A SignatureDef key string.
indent: How far (in increments of 2 spaces) to indent each line of output.
"""
meta_graph_def = saved_model_utils.get_meta_graph_def(saved_model_dir,
tag_set)
inputs_tensor_info = _get_inputs_tensor_info_from_meta_graph_def(
meta_graph_def, signature_def_key)
outputs_tensor_info = _get_outputs_tensor_info_from_meta_graph_def(
meta_graph_def, signature_def_key)
indent_str = ' ' * indent
def in_print(s):
print(indent_str + s)
in_print('The given SavedModel SignatureDef contains the following input(s):')
for input_key, input_tensor in sorted(inputs_tensor_info.items()):
in_print(' inputs[\'%s\'] tensor_info:' % input_key)
_print_tensor_info(input_tensor, indent+1)
in_print('The given SavedModel SignatureDef contains the following '
'output(s):')
for output_key, output_tensor in sorted(outputs_tensor_info.items()):
in_print(' outputs[\'%s\'] tensor_info:' % output_key)
_print_tensor_info(output_tensor, indent+1)
in_print('Method name is: %s' %
meta_graph_def.signature_def[signature_def_key].method_name)
def _show_defined_functions(saved_model_dir):
"""Prints the callable concrete and polymorphic functions of the Saved Model.
Args:
saved_model_dir: Directory containing the SavedModel to inspect.
"""
meta_graphs = saved_model_utils.read_saved_model(saved_model_dir).meta_graphs
has_object_graph_def = False
for meta_graph_def in meta_graphs:
has_object_graph_def |= meta_graph_def.HasField('object_graph_def')
if not has_object_graph_def:
return
with ops_lib.Graph().as_default():
trackable_object = load.load(saved_model_dir)
print('\nConcrete Functions:', end='')
children = list(
save._AugmentedGraphView(trackable_object) # pylint: disable=protected-access
.list_children(trackable_object))
children = sorted(children, key=lambda x: x.name)
for name, child in children:
concrete_functions = []
if isinstance(child, defun.ConcreteFunction):
concrete_functions.append(child)
elif isinstance(child, def_function.Function):
concrete_functions.extend(
child._list_all_concrete_functions_for_serialization()) # pylint: disable=protected-access
else:
continue
print('\n Function Name: \'%s\'' % name)
concrete_functions = sorted(concrete_functions, key=lambda x: x.name)
for index, concrete_function in enumerate(concrete_functions, 1):
args, kwargs = None, None
if concrete_function.structured_input_signature:
args, kwargs = concrete_function.structured_input_signature
elif concrete_function._arg_keywords: # pylint: disable=protected-access
# For pure ConcreteFunctions we might have nothing better than
# _arg_keywords.
args = concrete_function._arg_keywords # pylint: disable=protected-access
if args:
print(' Option #%d' % index)
print(' Callable with:')
_print_args(args, indent=4)
if kwargs:
_print_args(kwargs, 'Named Argument', indent=4)
def _print_args(arguments, argument_type='Argument', indent=0):
"""Formats and prints the argument of the concrete functions defined in the model.
Args:
arguments: Arguments to format print.
argument_type: Type of arguments.
indent: How far (in increments of 2 spaces) to indent each line of
output.
"""
indent_str = ' ' * indent
def _maybe_add_quotes(value):
is_quotes = '\'' * isinstance(value, str)
return is_quotes + str(value) + is_quotes
def in_print(s, end='\n'):
print(indent_str + s, end=end)
for index, element in enumerate(arguments, 1):
if indent == 4:
in_print('%s #%d' % (argument_type, index))
if isinstance(element, six.string_types):
in_print(' %s' % element)
elif isinstance(element, tensor_spec.TensorSpec):
print((indent + 1) * ' ' + '%s: %s' % (element.name, repr(element)))
elif (isinstance(element, collections_abc.Iterable) and
not isinstance(element, dict)):
in_print(' DType: %s' % type(element).__name__)
in_print(' Value: [', end='')
for value in element:
print('%s' % _maybe_add_quotes(value), end=', ')
print('\b\b]')
elif isinstance(element, dict):
in_print(' DType: %s' % type(element).__name__)
in_print(' Value: {', end='')
for (key, value) in element.items():
print('\'%s\': %s' % (str(key), _maybe_add_quotes(value)), end=', ')
print('\b\b}')
else:
in_print(' DType: %s' % type(element).__name__)
in_print(' Value: %s' % str(element))
def _print_tensor_info(tensor_info, indent=0):
"""Prints details of the given tensor_info.
Args:
tensor_info: TensorInfo object to be printed.
indent: How far (in increments of 2 spaces) to indent each line output
"""
indent_str = ' ' * indent
def in_print(s):
print(indent_str + s)
in_print(' dtype: ' +
{value: key
for (key, value) in types_pb2.DataType.items()}[tensor_info.dtype])
# Display shape as tuple.
if tensor_info.tensor_shape.unknown_rank:
shape = 'unknown_rank'
else:
dims = [str(dim.size) for dim in tensor_info.tensor_shape.dim]
shape = ', '.join(dims)
shape = '(' + shape + ')'
in_print(' shape: ' + shape)
in_print(' name: ' + tensor_info.name)
def _show_all(saved_model_dir):
"""Prints tag-set, SignatureDef and Inputs/Outputs information in SavedModel.
Prints all tag-set, SignatureDef and Inputs/Outputs information stored in
SavedModel directory.
Args:
saved_model_dir: Directory containing the SavedModel to inspect.
"""
tag_sets = saved_model_utils.get_saved_model_tag_sets(saved_model_dir)
for tag_set in sorted(tag_sets):
print("\nMetaGraphDef with tag-set: '%s' "
"contains the following SignatureDefs:" % ', '.join(tag_set))
tag_set = ','.join(tag_set)
signature_def_map = get_signature_def_map(saved_model_dir, tag_set)
for signature_def_key in sorted(signature_def_map.keys()):
print('\nsignature_def[\'' + signature_def_key + '\']:')
_show_inputs_outputs(saved_model_dir, tag_set, signature_def_key,
indent=1)
_show_defined_functions(saved_model_dir)
def get_meta_graph_def(saved_model_dir, tag_set):
"""DEPRECATED: Use saved_model_utils.get_meta_graph_def instead.
Gets MetaGraphDef from SavedModel. Returns the MetaGraphDef for the given
tag-set and SavedModel directory.
Args:
saved_model_dir: Directory containing the SavedModel to inspect or execute.
tag_set: Group of tag(s) of the MetaGraphDef to load, in string format,
separated by ','. For tag-set contains multiple tags, all tags must be
passed in.
Raises:
RuntimeError: An error when the given tag-set does not exist in the
SavedModel.
Returns:
A MetaGraphDef corresponding to the tag-set.
"""
return saved_model_utils.get_meta_graph_def(saved_model_dir, tag_set)
def get_signature_def_map(saved_model_dir, tag_set):
"""Gets SignatureDef map from a MetaGraphDef in a SavedModel.
Returns the SignatureDef map for the given tag-set in the SavedModel
directory.
Args:
saved_model_dir: Directory containing the SavedModel to inspect or execute.
tag_set: Group of tag(s) of the MetaGraphDef with the SignatureDef map, in
string format, separated by ','. For tag-set contains multiple tags, all
tags must be passed in.
Returns:
A SignatureDef map that maps from string keys to SignatureDefs.
"""
meta_graph = saved_model_utils.get_meta_graph_def(saved_model_dir, tag_set)
return meta_graph.signature_def
def scan_meta_graph_def(meta_graph_def):
"""Scans meta_graph_def and reports if there are ops on denylist.
Print ops if they are on black list, or print success if no denylisted ops
found.
Args:
meta_graph_def: MetaGraphDef protocol buffer.
"""
all_ops_set = set(
meta_graph_lib.ops_used_by_graph_def(meta_graph_def.graph_def))
denylisted_ops = _OP_DENYLIST & all_ops_set
if denylisted_ops:
# TODO(yifeif): print more warnings
print(
'MetaGraph with tag set %s contains the following denylisted ops:' %
meta_graph_def.meta_info_def.tags, denylisted_ops)
else:
print('MetaGraph with tag set %s does not contain denylisted ops.' %
meta_graph_def.meta_info_def.tags)
def run_saved_model_with_feed_dict(saved_model_dir,
tag_set,
signature_def_key,
input_tensor_key_feed_dict,
outdir,
overwrite_flag,
worker=None,
init_tpu=False,
use_tfrt=False,
tf_debug=False):
"""Runs SavedModel and fetch all outputs.
Runs the input dictionary through the MetaGraphDef within a SavedModel
specified by the given tag_set and SignatureDef. Also save the outputs to file
if outdir is not None.
Args:
saved_model_dir: Directory containing the SavedModel to execute.
tag_set: Group of tag(s) of the MetaGraphDef with the SignatureDef map, in
string format, separated by ','. For tag-set contains multiple tags, all
tags must be passed in.
signature_def_key: A SignatureDef key string.
input_tensor_key_feed_dict: A dictionary maps input keys to numpy ndarrays.
outdir: A directory to save the outputs to. If the directory doesn't exist,
it will be created.
overwrite_flag: A boolean flag to allow overwrite output file if file with
the same name exists.
worker: If provided, the session will be run on the worker. Valid worker
specification is a bns or gRPC path.
init_tpu: If true, the TPU system will be initialized after the session
is created.
use_tfrt: If true, TFRT session will be used.
tf_debug: A boolean flag to use TensorFlow Debugger (TFDBG) to observe the
intermediate Tensor values and runtime GraphDefs while running the
SavedModel.
Raises:
ValueError: When any of the input tensor keys is not valid.
RuntimeError: An error when output file already exists and overwrite is not
enabled.
"""
# Get a list of output tensor names.
meta_graph_def = saved_model_utils.get_meta_graph_def(saved_model_dir,
tag_set)
# Re-create feed_dict based on input tensor name instead of key as session.run
# uses tensor name.
inputs_tensor_info = _get_inputs_tensor_info_from_meta_graph_def(
meta_graph_def, signature_def_key)
# Check if input tensor keys are valid.
for input_key_name in input_tensor_key_feed_dict.keys():
if input_key_name not in inputs_tensor_info:
raise ValueError(
'"%s" is not a valid input key. Please choose from %s, or use '
'--show option.' %
(input_key_name, '"' + '", "'.join(inputs_tensor_info.keys()) + '"'))
inputs_feed_dict = {
inputs_tensor_info[key].name: tensor
for key, tensor in input_tensor_key_feed_dict.items()
}
# Get outputs
outputs_tensor_info = _get_outputs_tensor_info_from_meta_graph_def(
meta_graph_def, signature_def_key)
# Sort to preserve order because we need to go from value to key later.
output_tensor_keys_sorted = sorted(outputs_tensor_info.keys())
output_tensor_names_sorted = [
outputs_tensor_info[tensor_key].name
for tensor_key in output_tensor_keys_sorted
]
config = None
if use_tfrt:
logging.info('Using TFRT session.')
config = config_pb2.ConfigProto(
experimental=config_pb2.ConfigProto.Experimental(use_tfrt=True))
with session.Session(worker, graph=ops_lib.Graph(), config=config) as sess:
if init_tpu:
print('Initializing TPU System ...')
# This is needed for freshly started worker, or if the job
# restarts after a preemption.
sess.run(tpu.initialize_system())
loader.load(sess, tag_set.split(','), saved_model_dir)
if tf_debug:
sess = local_cli_wrapper.LocalCLIDebugWrapperSession(sess)
outputs = sess.run(output_tensor_names_sorted, feed_dict=inputs_feed_dict)
for i, output in enumerate(outputs):
output_tensor_key = output_tensor_keys_sorted[i]
print('Result for output key %s:\n%s' % (output_tensor_key, output))
# Only save if outdir is specified.
if outdir:
# Create directory if outdir does not exist
if not os.path.isdir(outdir):
os.makedirs(outdir)
output_full_path = os.path.join(outdir, output_tensor_key + '.npy')
# If overwrite not enabled and file already exist, error out
if not overwrite_flag and os.path.exists(output_full_path):
raise RuntimeError(
'Output file %s already exists. Add \"--overwrite\" to overwrite'
' the existing output files.' % output_full_path)
np.save(output_full_path, output)
print('Output %s is saved to %s' % (output_tensor_key,
output_full_path))
def preprocess_inputs_arg_string(inputs_str):
"""Parses input arg into dictionary that maps input to file/variable tuple.
Parses input string in the format of, for example,
"input1=filename1[variable_name1],input2=filename2" into a
dictionary looks like
{'input_key1': (filename1, variable_name1),
'input_key2': (file2, None)}
, which maps input keys to a tuple of file name and variable name(None if
empty).
Args:
inputs_str: A string that specified where to load inputs. Inputs are
separated by semicolons.
* For each input key:
'<input_key>=<filename>' or
'<input_key>=<filename>[<variable_name>]'
* The optional 'variable_name' key will be set to None if not specified.
Returns:
A dictionary that maps input keys to a tuple of file name and variable name.
Raises:
RuntimeError: An error when the given input string is in a bad format.
"""
input_dict = {}
inputs_raw = inputs_str.split(';')
for input_raw in filter(bool, inputs_raw): # skip empty strings
# Format of input=filename[variable_name]'
match = re.match(r'([^=]+)=([^\[\]]+)\[([^\[\]]+)\]$', input_raw)
if match:
input_dict[match.group(1)] = match.group(2), match.group(3)
else:
# Format of input=filename'
match = re.match(r'([^=]+)=([^\[\]]+)$', input_raw)
if match:
input_dict[match.group(1)] = match.group(2), None
else:
raise RuntimeError(
'--inputs "%s" format is incorrect. Please follow'
'"<input_key>=<filename>", or'
'"<input_key>=<filename>[<variable_name>]"' % input_raw)
return input_dict
def preprocess_input_exprs_arg_string(input_exprs_str, safe=True):
"""Parses input arg into dictionary that maps input key to python expression.
Parses input string in the format of 'input_key=<python expression>' into a
dictionary that maps each input_key to its python expression.
Args:
input_exprs_str: A string that specifies python expression for input keys.
Each input is separated by semicolon. For each input key:
'input_key=<python expression>'
safe: Whether to evaluate the python expression as literals or allow
arbitrary calls (e.g. numpy usage).
Returns:
A dictionary that maps input keys to their values.
Raises:
RuntimeError: An error when the given input string is in a bad format.
"""
input_dict = {}
for input_raw in filter(bool, input_exprs_str.split(';')):
if '=' not in input_exprs_str:
raise RuntimeError('--input_exprs "%s" format is incorrect. Please follow'
'"<input_key>=<python expression>"' % input_exprs_str)
input_key, expr = input_raw.split('=', 1)
if safe:
try:
input_dict[input_key] = ast.literal_eval(expr)
except:
raise RuntimeError(
f'Expression "{expr}" is not a valid python literal.')
else:
# ast.literal_eval does not work with numpy expressions
input_dict[input_key] = eval(expr) # pylint: disable=eval-used
return input_dict
def preprocess_input_examples_arg_string(input_examples_str):
"""Parses input into dict that maps input keys to lists of tf.Example.
Parses input string in the format of 'input_key1=[{feature_name:
feature_list}];input_key2=[{feature_name:feature_list}];' into a dictionary
that maps each input_key to its list of serialized tf.Example.
Args:
input_examples_str: A string that specifies a list of dictionaries of
feature_names and their feature_lists for each input.
Each input is separated by semicolon. For each input key:
'input=[{feature_name1: feature_list1, feature_name2:feature_list2}]'
items in feature_list can be the type of float, int, long or str.
Returns:
A dictionary that maps input keys to lists of serialized tf.Example.
Raises:
ValueError: An error when the given tf.Example is not a list.
"""
input_dict = preprocess_input_exprs_arg_string(input_examples_str)
for input_key, example_list in input_dict.items():
if not isinstance(example_list, list):
raise ValueError(
'tf.Example input must be a list of dictionaries, but "%s" is %s' %
(example_list, type(example_list)))
input_dict[input_key] = [
_create_example_string(example) for example in example_list
]
return input_dict
def _create_example_string(example_dict):
"""Create a serialized tf.example from feature dictionary."""
example = example_pb2.Example()
for feature_name, feature_list in example_dict.items():
if not isinstance(feature_list, list):
raise ValueError('feature value must be a list, but %s: "%s" is %s' %
(feature_name, feature_list, type(feature_list)))
if isinstance(feature_list[0], float):
example.features.feature[feature_name].float_list.value.extend(
feature_list)
elif isinstance(feature_list[0], str):
example.features.feature[feature_name].bytes_list.value.extend(
[f.encode('utf8') for f in feature_list])
elif isinstance(feature_list[0], bytes):
example.features.feature[feature_name].bytes_list.value.extend(
feature_list)
elif isinstance(feature_list[0], six.integer_types):
example.features.feature[feature_name].int64_list.value.extend(
feature_list)
else:
raise ValueError(
'Type %s for value %s is not supported for tf.train.Feature.' %
(type(feature_list[0]), feature_list[0]))
return example.SerializeToString()
def load_inputs_from_input_arg_string(inputs_str, input_exprs_str,
input_examples_str):
"""Parses input arg strings and create inputs feed_dict.
Parses '--inputs' string for inputs to be loaded from file, and parses
'--input_exprs' string for inputs to be evaluated from python expression.
'--input_examples' string for inputs to be created from tf.example feature
dictionary list.
Args:
inputs_str: A string that specified where to load inputs. Each input is
separated by semicolon.
* For each input key:
'<input_key>=<filename>' or
'<input_key>=<filename>[<variable_name>]'
* The optional 'variable_name' key will be set to None if not specified.
* File specified by 'filename' will be loaded using numpy.load. Inputs
can be loaded from only .npy, .npz or pickle files.
* The "[variable_name]" key is optional depending on the input file type
as descripted in more details below.
When loading from a npy file, which always contains a numpy ndarray, the
content will be directly assigned to the specified input tensor. If a
variable_name is specified, it will be ignored and a warning will be
issued.
When loading from a npz zip file, user can specify which variable within
the zip file to load for the input tensor inside the square brackets. If
nothing is specified, this function will check that only one file is
included in the zip and load it for the specified input tensor.
When loading from a pickle file, if no variable_name is specified in the
square brackets, whatever that is inside the pickle file will be passed
to the specified input tensor, else SavedModel CLI will assume a
dictionary is stored in the pickle file and the value corresponding to
the variable_name will be used.
input_exprs_str: A string that specifies python expressions for inputs.
* In the format of: '<input_key>=<python expression>'.
* numpy module is available as np.
input_examples_str: A string that specifies tf.Example with dictionary.
* In the format of: '<input_key>=<[{feature:value list}]>'
Returns:
A dictionary that maps input tensor keys to numpy ndarrays.
Raises:
RuntimeError: An error when a key is specified, but the input file contains
multiple numpy ndarrays, none of which matches the given key.
RuntimeError: An error when no key is specified, but the input file contains
more than one numpy ndarrays.
"""
tensor_key_feed_dict = {}
inputs = preprocess_inputs_arg_string(inputs_str)
# BUG: CWE-94 Improper Control of Generation of Code ('Code Injection')
# input_exprs = preprocess_input_exprs_arg_string(input_exprs_str, safe=False)
# FIXED:
input_exprs = preprocess_input_exprs_arg_string(input_exprs_str)
input_examples = preprocess_input_examples_arg_string(input_examples_str)
for input_tensor_key, (filename, variable_name) in inputs.items():
data = np.load(file_io.FileIO(filename, mode='rb'), allow_pickle=True) # pylint: disable=unexpected-keyword-arg
# When a variable_name key is specified for the input file
if variable_name:
# if file contains a single ndarray, ignore the input name
if isinstance(data, np.ndarray):
logging.warn(
'Input file %s contains a single ndarray. Name key \"%s\" ignored.'
% (filename, variable_name))
tensor_key_feed_dict[input_tensor_key] = data
else:
if variable_name in data:
tensor_key_feed_dict[input_tensor_key] = data[variable_name]
else:
raise RuntimeError(
'Input file %s does not contain variable with name \"%s\".' %
(filename, variable_name))
# When no key is specified for the input file.
else:
# Check if npz file only contains a single numpy ndarray.
if isinstance(data, np.lib.npyio.NpzFile):
variable_name_list = data.files
if len(variable_name_list) != 1:
raise RuntimeError(
'Input file %s contains more than one ndarrays. Please specify '
'the name of ndarray to use.' % filename)
tensor_key_feed_dict[input_tensor_key] = data[variable_name_list[0]]
else:
tensor_key_feed_dict[input_tensor_key] = data
# When input is a python expression:
for input_tensor_key, py_expr_evaluated in input_exprs.items():
if input_tensor_key in tensor_key_feed_dict:
logging.warn(
'input_key %s has been specified with both --inputs and --input_exprs'
' options. Value in --input_exprs will be used.' % input_tensor_key)
tensor_key_feed_dict[input_tensor_key] = py_expr_evaluated
# When input is a tf.Example:
for input_tensor_key, example in input_examples.items():
if input_tensor_key in tensor_key_feed_dict:
logging.warn(
'input_key %s has been specified in multiple options. Value in '
'--input_examples will be used.' % input_tensor_key)
tensor_key_feed_dict[input_tensor_key] = example
return tensor_key_feed_dict
def show(args):
"""Function triggered by show command.
Args:
args: A namespace parsed from command line.
"""
# If all tag is specified, display all information.
if args.all:
_show_all(args.dir)
else:
# If no tag is specified, display all tag_set, if no signature_def key is
# specified, display all SignatureDef keys, else show input output tensor
# information corresponding to the given SignatureDef key
if args.tag_set is None:
_show_tag_sets(args.dir)
else:
if args.signature_def is None:
_show_signature_def_map_keys(args.dir, args.tag_set)
else:
_show_inputs_outputs(args.dir, args.tag_set, args.signature_def)
def run(args):
"""Function triggered by run command.
Args:
args: A namespace parsed from command line.
Raises:
AttributeError: An error when neither --inputs nor --input_exprs is passed
to run command.
"""
if not args.inputs and not args.input_exprs and not args.input_examples:
raise AttributeError(
'At least one of --inputs, --input_exprs or --input_examples must be '
'required')
tensor_key_feed_dict = load_inputs_from_input_arg_string(
args.inputs, args.input_exprs, args.input_examples)
run_saved_model_with_feed_dict(
args.dir,
args.tag_set,
args.signature_def,
tensor_key_feed_dict,
args.outdir,
args.overwrite,
worker=args.worker,
init_tpu=args.init_tpu,
use_tfrt=args.use_tfrt,
tf_debug=args.tf_debug)
def scan(args):
"""Function triggered by scan command.
Args:
args: A namespace parsed from command line.
"""
if args.tag_set:
scan_meta_graph_def(
saved_model_utils.get_meta_graph_def(args.dir, args.tag_set))
else:
saved_model = saved_model_utils.read_saved_model(args.dir)
for meta_graph_def in saved_model.meta_graphs:
scan_meta_graph_def(meta_graph_def)
def convert_with_tensorrt(args):
"""Function triggered by 'convert tensorrt' command.
Args:
args: A namespace parsed from command line.
"""
# Import here instead of at top, because this will crash if TensorRT is
# not installed
from tensorflow.python.compiler.tensorrt import trt_convert as trt # pylint: disable=g-import-not-at-top
if not args.convert_tf1_model:
params = trt.DEFAULT_TRT_CONVERSION_PARAMS._replace(
max_workspace_size_bytes=args.max_workspace_size_bytes,
precision_mode=args.precision_mode,
minimum_segment_size=args.minimum_segment_size)
converter = trt.TrtGraphConverterV2(
input_saved_model_dir=args.dir,
input_saved_model_tags=args.tag_set.split(','),
**params._asdict())
try:
converter.convert()
except Exception as e:
raise RuntimeError(
'{}. Try passing "--convert_tf1_model=True".'.format(e))
converter.save(output_saved_model_dir=args.output_dir)
else:
trt.create_inference_graph(
None,
None,
max_batch_size=1,
max_workspace_size_bytes=args.max_workspace_size_bytes,
precision_mode=args.precision_mode,
minimum_segment_size=args.minimum_segment_size,
is_dynamic_op=True,
input_saved_model_dir=args.dir,
input_saved_model_tags=args.tag_set.split(','),
output_saved_model_dir=args.output_dir)
def freeze_model(args):
"""Function triggered by freeze_model command.
Args:
args: A namespace parsed from command line.
"""
checkpoint_path = (
args.checkpoint_path
or os.path.join(args.dir, 'variables/variables'))
if not args.variables_to_feed:
variables_to_feed = []
elif args.variables_to_feed.lower() == 'all':
variables_to_feed = None # We will identify them after.
else:
variables_to_feed = args.variables_to_feed.split(',')
saved_model_aot_compile.freeze_model(
checkpoint_path=checkpoint_path,
meta_graph_def=saved_model_utils.get_meta_graph_def(
args.dir, args.tag_set),
signature_def_key=args.signature_def_key,
variables_to_feed=variables_to_feed,
output_prefix=args.output_prefix)
def aot_compile_cpu(args):
"""Function triggered by aot_compile_cpu command.
Args:
args: A namespace parsed from command line.
"""
checkpoint_path = (
args.checkpoint_path
or os.path.join(args.dir, 'variables/variables'))
if not args.variables_to_feed:
variables_to_feed = []
elif args.variables_to_feed.lower() == 'all':
variables_to_feed = None # We will identify them after.
else:
variables_to_feed = args.variables_to_feed.split(',')
saved_model_aot_compile.aot_compile_cpu_meta_graph_def(
checkpoint_path=checkpoint_path,
meta_graph_def=saved_model_utils.get_meta_graph_def(
args.dir, args.tag_set),
signature_def_key=args.signature_def_key,
variables_to_feed=variables_to_feed,
output_prefix=args.output_prefix,
target_triple=args.target_triple,
target_cpu=args.target_cpu,
cpp_class=args.cpp_class,
multithreading=args.multithreading.lower() not in ('f', 'false', '0'))
def add_show_subparser(subparsers):
"""Add parser for `show`."""
show_msg = (
'Usage examples:\n'
'To show all tag-sets in a SavedModel:\n'
'$saved_model_cli show --dir /tmp/saved_model\n\n'
'To show all available SignatureDef keys in a '
'MetaGraphDef specified by its tag-set:\n'
'$saved_model_cli show --dir /tmp/saved_model --tag_set serve\n\n'
'For a MetaGraphDef with multiple tags in the tag-set, all tags must be '
'passed in, separated by \';\':\n'
'$saved_model_cli show --dir /tmp/saved_model --tag_set serve,gpu\n\n'
'To show all inputs and outputs TensorInfo for a specific'
' SignatureDef specified by the SignatureDef key in a'
' MetaGraph.\n'
'$saved_model_cli show --dir /tmp/saved_model --tag_set serve'
' --signature_def serving_default\n\n'
'To show all available information in the SavedModel:\n'
'$saved_model_cli show --dir /tmp/saved_model --all')
parser_show = subparsers.add_parser(
'show',
description=show_msg,
formatter_class=argparse.RawTextHelpFormatter)
parser_show.add_argument(
'--dir',
type=str,
required=True,
help='directory containing the SavedModel to inspect')
parser_show.add_argument(
'--all',
action='store_true',
help='if set, will output all information in given SavedModel')
parser_show.add_argument(
'--tag_set',
type=str,
default=None,
help='tag-set of graph in SavedModel to show, separated by \',\'')
parser_show.add_argument(
'--signature_def',
type=str,
default=None,
metavar='SIGNATURE_DEF_KEY',
help='key of SignatureDef to display input(s) and output(s) for')
parser_show.set_defaults(func=show)
def add_run_subparser(subparsers):
"""Add parser for `run`."""
run_msg = ('Usage example:\n'
'To run input tensors from files through a MetaGraphDef and save'
' the output tensors to files:\n'
'$saved_model_cli show --dir /tmp/saved_model --tag_set serve \\\n'
' --signature_def serving_default \\\n'
' --inputs input1_key=/tmp/124.npz[x],input2_key=/tmp/123.npy '
'\\\n'
' --input_exprs \'input3_key=np.ones(2)\' \\\n'
' --input_examples '
'\'input4_key=[{"id":[26],"weights":[0.5, 0.5]}]\' \\\n'
' --outdir=/out\n\n'
'For more information about input file format, please see:\n'
'https://www.tensorflow.org/guide/saved_model_cli\n')
parser_run = subparsers.add_parser(
'run', description=run_msg, formatter_class=argparse.RawTextHelpFormatter)
parser_run.add_argument(
'--dir',
type=str,
required=True,
help='directory containing the SavedModel to execute')
parser_run.add_argument(
'--tag_set',
type=str,
required=True,
help='tag-set of graph in SavedModel to load, separated by \',\'')
parser_run.add_argument(
'--signature_def',
type=str,
required=True,
metavar='SIGNATURE_DEF_KEY',
help='key of SignatureDef to run')
msg = ('Loading inputs from files, in the format of \'<input_key>=<filename>,'
' or \'<input_key>=<filename>[<variable_name>]\', separated by \';\'.'
' The file format can only be from .npy, .npz or pickle.')
parser_run.add_argument('--inputs', type=str, default='', help=msg)
msg = ('Specifying inputs by python expressions, in the format of'
' "<input_key>=\'<python expression>\'", separated by \';\'. '
'numpy module is available as \'np\'. Please note that the expression '
'will be evaluated as-is, and is susceptible to code injection. '
'When this is set, the value will override duplicate input keys from '
'--inputs option.')
parser_run.add_argument('--input_exprs', type=str, default='', help=msg)
msg = (
'Specifying tf.Example inputs as list of dictionaries. For example: '
'<input_key>=[{feature0:value_list,feature1:value_list}]. Use ";" to '
'separate input keys. Will override duplicate input keys from --inputs '
'and --input_exprs option.')
parser_run.add_argument('--input_examples', type=str, default='', help=msg)
parser_run.add_argument(
'--outdir',
type=str,
default=None,
help='if specified, output tensor(s) will be saved to given directory')
parser_run.add_argument(
'--overwrite',
action='store_true',
help='if set, output file will be overwritten if it already exists.')
parser_run.add_argument(
'--tf_debug',
action='store_true',
help='if set, will use TensorFlow Debugger (tfdbg) to watch the '
'intermediate Tensors and runtime GraphDefs while running the '
'SavedModel.')
parser_run.add_argument(
'--worker',
type=str,
default=None,
help='if specified, a Session will be run on the worker. '
'Valid worker specification is a bns or gRPC path.')
parser_run.add_argument(
'--init_tpu',
action='store_true',
default=None,
help='if specified, tpu.initialize_system will be called on the Session. '
'This option should be only used if the worker is a TPU job.')
parser_run.add_argument(
'--use_tfrt',
action='store_true',
default=None,
help='if specified, TFRT session will be used, instead of TF1 session.')
parser_run.set_defaults(func=run)
def add_scan_subparser(subparsers):
"""Add parser for `scan`."""
scan_msg = ('Usage example:\n'
'To scan for denylisted ops in SavedModel:\n'
'$saved_model_cli scan --dir /tmp/saved_model\n'
'To scan a specific MetaGraph, pass in --tag_set\n')
parser_scan = subparsers.add_parser(
'scan',
description=scan_msg,
formatter_class=argparse.RawTextHelpFormatter)
parser_scan.add_argument(
'--dir',
type=str,
required=True,
help='directory containing the SavedModel to execute')
parser_scan.add_argument(
'--tag_set',
type=str,
help='tag-set of graph in SavedModel to scan, separated by \',\'')
parser_scan.set_defaults(func=scan)
def add_convert_subparser(subparsers):
"""Add parser for `convert`."""
convert_msg = ('Usage example:\n'
'To convert the SavedModel to one that have TensorRT ops:\n'
'$saved_model_cli convert \\\n'
' --dir /tmp/saved_model \\\n'
' --tag_set serve \\\n'
' --output_dir /tmp/saved_model_trt \\\n'
' tensorrt \n')
parser_convert = subparsers.add_parser(
'convert',
description=convert_msg,
formatter_class=argparse.RawTextHelpFormatter)
parser_convert.add_argument(
'--dir',
type=str,
required=True,
help='directory containing the SavedModel to convert')
parser_convert.add_argument(
'--output_dir',
type=str,
required=True,
help='output directory for the converted SavedModel')
parser_convert.add_argument(
'--tag_set',
type=str,
required=True,
help='tag-set of graph in SavedModel to convert, separated by \',\'')
convert_subparsers = parser_convert.add_subparsers(
title='conversion methods',
description='valid conversion methods',
help='the conversion to run with the SavedModel')
parser_convert_with_tensorrt = convert_subparsers.add_parser(
'tensorrt',
description='Convert the SavedModel with Tensorflow-TensorRT integration',
formatter_class=argparse.RawTextHelpFormatter)
parser_convert_with_tensorrt.add_argument(
'--max_workspace_size_bytes',
type=int,
default=2 << 20,
help=('the maximum GPU temporary memory which the TRT engine can use at '
'execution time'))
parser_convert_with_tensorrt.add_argument(
'--precision_mode',
type=str,
default='FP32',
help='one of FP32, FP16 and INT8')
parser_convert_with_tensorrt.add_argument(
'--minimum_segment_size',
type=int,
default=3,
help=('the minimum number of nodes required for a subgraph to be replaced'
'in a TensorRT node'))
parser_convert_with_tensorrt.add_argument(
'--convert_tf1_model',
type=bool,
default=False,
help='support TRT conversion for TF1 models')
parser_convert_with_tensorrt.set_defaults(func=convert_with_tensorrt)
def _parse_common_freeze_and_aot(parser_compile):
"""Parse arguments shared by freeze model and aot_compile."""
parser_compile.add_argument(
'--dir',
type=str,
required=True,
help='directory containing the SavedModel to convert')
parser_compile.add_argument(
'--output_prefix',
type=str,
required=True,
help=('output directory + filename prefix for the resulting header(s) '
'and object file(s)'))
parser_compile.add_argument(
'--tag_set',
type=str,
required=True,
help='tag-set of graph in SavedModel to convert, separated by \',\'')
parser_compile.add_argument(
'--signature_def_key',
type=str,
default=signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY,
help=('signature_def key to use. '
'default: DEFAULT_SERVING_SIGNATURE_DEF_KEY'))
parser_compile.add_argument(
'--checkpoint_path',
type=str,
default=None,
help='Custom checkpoint to use (default: use the SavedModel variables)')
parser_compile.add_argument(
'--variables_to_feed',
type=str,
default='',
help=('The names of variables that will be fed into the network. '
'Options are: empty (default; all variables are frozen, none may '
'be fed), \'all\' (all variables may be fed), or a '
'comma-delimited list of names of variables that may be fed. In '
'the last case, the non-fed variables will be frozen in the graph.'
'**NOTE** Any variables passed to `variables_to_feed` *must be set '
'by the user*. These variables will NOT be frozen and their '
'values will be uninitialized in the compiled object '
'(this applies to all input arguments from the signature as '
'well).'))
def add_freeze_model_subparser(subparsers):
"""Add parser for `freeze_model`."""
compile_msg = '\n'.join(
['Usage example:',
'To freeze a SavedModel in preparation for tfcompile:',
'$saved_model_cli freeze_model \\',
' --dir /tmp/saved_model \\',
' --tag_set serve \\',
' --output_prefix /tmp/saved_model_xla_aot',
])
parser_compile = subparsers.add_parser(
'freeze_model',
description=compile_msg,
formatter_class=argparse.RawTextHelpFormatter)
_parse_common_freeze_and_aot(parser_compile)
parser_compile.set_defaults(func=freeze_model)
def add_aot_compile_cpu_subparser(subparsers):
"""Add parser for `aot_compile_cpu`."""
compile_msg = '\n'.join(
['Usage example:',
'To compile a SavedModel signature via (CPU) XLA AOT:',
'$saved_model_cli aot_compile_cpu \\',
' --dir /tmp/saved_model \\',
' --tag_set serve \\',
' --output_dir /tmp/saved_model_xla_aot',
'', '',
'Note: Additional XLA compilation options are available by setting the ',
'XLA_FLAGS environment variable. See the XLA debug options flags for ',
'all the options: ',
' {}'.format(_XLA_DEBUG_OPTIONS_URL),
'',
'For example, to disable XLA fast math when compiling:',
'',
'XLA_FLAGS="--xla_cpu_enable_fast_math=false" $saved_model_cli '
'aot_compile_cpu ...',
'',
'Some possibly useful flags:',
' --xla_cpu_enable_fast_math=false',
' --xla_force_host_platform_device_count=<num threads>',
' (useful in conjunction with disabling multi threading)'
])
parser_compile = subparsers.add_parser(
'aot_compile_cpu',
description=compile_msg,
formatter_class=argparse.RawTextHelpFormatter)
_parse_common_freeze_and_aot(parser_compile)
parser_compile.add_argument(
'--target_triple',
type=str,
default='x86_64-pc-linux',
help=('Target triple for LLVM during AOT compilation. Examples: '
'x86_64-none-darwin, x86_64-apple-ios, arm64-none-ios, '
'armv7-none-android. More examples are available in tfcompile.bzl '
'in the tensorflow codebase.'))
parser_compile.add_argument(
'--target_cpu',
type=str,
default='',
help=('Target cpu name for LLVM during AOT compilation. Examples: '
'x86_64, skylake, haswell, westmere, <empty> (unknown). For '
'a complete list of options, run (for x86 targets): '
'`llc -march=x86 -mcpu=help`'))
parser_compile.add_argument(
'--cpp_class',
type=str,
required=True,
help=('The name of the generated C++ class, wrapping the generated '
'function. The syntax of this flag is '
'[[<optional_namespace>::],...]<class_name>. This mirrors the '
'C++ syntax for referring to a class, where multiple namespaces '
'may precede the class name, separated by double-colons. '
'The class will be generated in the given namespace(s), or if no '
'namespaces are given, within the global namespace.'))
parser_compile.add_argument(
'--multithreading',
type=str,
default='False',
help=('Enable multithreading in the compiled computation. '
'Note that if using this option, the resulting object files '
'may have external dependencies on multithreading libraries '
'like nsync.'))
parser_compile.set_defaults(func=aot_compile_cpu)
def create_parser():
"""Creates a parser that parse the command line arguments.
Returns:
A namespace parsed from command line arguments.
"""
parser = argparse.ArgumentParser(
description='saved_model_cli: Command-line interface for SavedModel')
parser.add_argument('-v', '--version', action='version', version='0.1.0')
subparsers = parser.add_subparsers(
title='commands', description='valid commands', help='additional help')
# show command
add_show_subparser(subparsers)
# run command
add_run_subparser(subparsers)
# scan command
add_scan_subparser(subparsers)
# tensorrt convert command
add_convert_subparser(subparsers)
# aot_compile_cpu command
add_aot_compile_cpu_subparser(subparsers)
# freeze_model command
add_freeze_model_subparser(subparsers)
return parser
def main():
logging.set_verbosity(logging.INFO)
parser = create_parser()
args = parser.parse_args()
if not hasattr(args, 'func'):
parser.error('too few arguments')
args.func(args)
if __name__ == '__main__':
sys.exit(main())
|