Datasets:

Modalities:
Text
Formats:
json
Languages:
code
Size:
< 1K
Tags:
code
Libraries:
Datasets
pandas
License:
File size: 16,380 Bytes
eb67da4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
# Natural Language Toolkit: Transformation-based learning
#
# Copyright (C) 2001-2021 NLTK Project
# Author: Marcus Uneson <[email protected]>
#   based on previous (nltk2) version by
#   Christopher Maloof, Edward Loper, Steven Bird
# URL: <https://www.nltk.org/>
# For license information, see  LICENSE.TXT

from collections import Counter, defaultdict

from nltk import jsontags
from nltk.tag import TaggerI
from nltk.tbl import Feature, Template

######################################################################
# Brill Templates
######################################################################


@jsontags.register_tag
class Word(Feature):
    """
    Feature which examines the text (word) of nearby tokens.
    """

    json_tag = "nltk.tag.brill.Word"

    @staticmethod
    def extract_property(tokens, index):
        """@return: The given token's text."""
        return tokens[index][0]


@jsontags.register_tag
class Pos(Feature):
    """
    Feature which examines the tags of nearby tokens.
    """

    json_tag = "nltk.tag.brill.Pos"

    @staticmethod
    def extract_property(tokens, index):
        """@return: The given token's tag."""
        return tokens[index][1]


def nltkdemo18():
    """
    Return 18 templates, from the original nltk demo, in multi-feature syntax
    """
    return [
        Template(Pos([-1])),
        Template(Pos([1])),
        Template(Pos([-2])),
        Template(Pos([2])),
        Template(Pos([-2, -1])),
        Template(Pos([1, 2])),
        Template(Pos([-3, -2, -1])),
        Template(Pos([1, 2, 3])),
        Template(Pos([-1]), Pos([1])),
        Template(Word([-1])),
        Template(Word([1])),
        Template(Word([-2])),
        Template(Word([2])),
        Template(Word([-2, -1])),
        Template(Word([1, 2])),
        Template(Word([-3, -2, -1])),
        Template(Word([1, 2, 3])),
        Template(Word([-1]), Word([1])),
    ]


def nltkdemo18plus():
    """
    Return 18 templates, from the original nltk demo, and additionally a few
    multi-feature ones (the motivation is easy comparison with nltkdemo18)
    """
    return nltkdemo18() + [
        Template(Word([-1]), Pos([1])),
        Template(Pos([-1]), Word([1])),
        Template(Word([-1]), Word([0]), Pos([1])),
        Template(Pos([-1]), Word([0]), Word([1])),
        Template(Pos([-1]), Word([0]), Pos([1])),
    ]


def fntbl37():
    """
    Return 37 templates taken from the postagging task of the
    fntbl distribution https://www.cs.jhu.edu/~rflorian/fntbl/
    (37 is after excluding a handful which do not condition on Pos[0];
    fntbl can do that but the current nltk implementation cannot.)
    """
    return [
        Template(Word([0]), Word([1]), Word([2])),
        Template(Word([-1]), Word([0]), Word([1])),
        Template(Word([0]), Word([-1])),
        Template(Word([0]), Word([1])),
        Template(Word([0]), Word([2])),
        Template(Word([0]), Word([-2])),
        Template(Word([1, 2])),
        Template(Word([-2, -1])),
        Template(Word([1, 2, 3])),
        Template(Word([-3, -2, -1])),
        Template(Word([0]), Pos([2])),
        Template(Word([0]), Pos([-2])),
        Template(Word([0]), Pos([1])),
        Template(Word([0]), Pos([-1])),
        Template(Word([0])),
        Template(Word([-2])),
        Template(Word([2])),
        Template(Word([1])),
        Template(Word([-1])),
        Template(Pos([-1]), Pos([1])),
        Template(Pos([1]), Pos([2])),
        Template(Pos([-1]), Pos([-2])),
        Template(Pos([1])),
        Template(Pos([-1])),
        Template(Pos([-2])),
        Template(Pos([2])),
        Template(Pos([1, 2, 3])),
        Template(Pos([1, 2])),
        Template(Pos([-3, -2, -1])),
        Template(Pos([-2, -1])),
        Template(Pos([1]), Word([0]), Word([1])),
        Template(Pos([1]), Word([0]), Word([-1])),
        Template(Pos([-1]), Word([-1]), Word([0])),
        Template(Pos([-1]), Word([0]), Word([1])),
        Template(Pos([-2]), Pos([-1])),
        Template(Pos([1]), Pos([2])),
        Template(Pos([1]), Pos([2]), Word([1])),
    ]


def brill24():
    """
    Return 24 templates of the seminal TBL paper, Brill (1995)
    """
    return [
        Template(Pos([-1])),
        Template(Pos([1])),
        Template(Pos([-2])),
        Template(Pos([2])),
        Template(Pos([-2, -1])),
        Template(Pos([1, 2])),
        Template(Pos([-3, -2, -1])),
        Template(Pos([1, 2, 3])),
        Template(Pos([-1]), Pos([1])),
        Template(Pos([-2]), Pos([-1])),
        Template(Pos([1]), Pos([2])),
        Template(Word([-1])),
        Template(Word([1])),
        Template(Word([-2])),
        Template(Word([2])),
        Template(Word([-2, -1])),
        Template(Word([1, 2])),
        Template(Word([-1, 0])),
        Template(Word([0, 1])),
        Template(Word([0])),
        Template(Word([-1]), Pos([-1])),
        Template(Word([1]), Pos([1])),
        Template(Word([0]), Word([-1]), Pos([-1])),
        Template(Word([0]), Word([1]), Pos([1])),
    ]


def describe_template_sets():
    """
    Print the available template sets in this demo, with a short description"
    """
    import inspect
    import sys

    # a bit of magic to get all functions in this module
    templatesets = inspect.getmembers(sys.modules[__name__], inspect.isfunction)
    for (name, obj) in templatesets:
        if name == "describe_template_sets":
            continue
        print(name, obj.__doc__, "\n")


######################################################################
# The Brill Tagger
######################################################################


@jsontags.register_tag
class BrillTagger(TaggerI):
    """
    Brill's transformational rule-based tagger.  Brill taggers use an
    initial tagger (such as ``tag.DefaultTagger``) to assign an initial
    tag sequence to a text; and then apply an ordered list of
    transformational rules to correct the tags of individual tokens.
    These transformation rules are specified by the ``TagRule``
    interface.

    Brill taggers can be created directly, from an initial tagger and
    a list of transformational rules; but more often, Brill taggers
    are created by learning rules from a training corpus, using one
    of the TaggerTrainers available.
    """

    json_tag = "nltk.tag.BrillTagger"

    def __init__(self, initial_tagger, rules, training_stats=None):
        """
        :param initial_tagger: The initial tagger
        :type initial_tagger: TaggerI

        :param rules: An ordered list of transformation rules that
            should be used to correct the initial tagging.
        :type rules: list(TagRule)

        :param training_stats: A dictionary of statistics collected
            during training, for possible later use
        :type training_stats: dict

        """
        self._initial_tagger = initial_tagger
        self._rules = tuple(rules)
        self._training_stats = training_stats

    def encode_json_obj(self):
        return self._initial_tagger, self._rules, self._training_stats

    @classmethod
    def decode_json_obj(cls, obj):
        _initial_tagger, _rules, _training_stats = obj
        return cls(_initial_tagger, _rules, _training_stats)

    def rules(self):
        """
        Return the ordered list of  transformation rules that this tagger has learnt

        :return: the ordered list of transformation rules that correct the initial tagging
        :rtype: list of Rules
        """
        return self._rules

    def train_stats(self, statistic=None):
        """
        Return a named statistic collected during training, or a dictionary of all
        available statistics if no name given

        :param statistic: name of statistic
        :type statistic: str
        :return: some statistic collected during training of this tagger
        :rtype: any (but usually a number)
        """
        if statistic is None:
            return self._training_stats
        else:
            return self._training_stats.get(statistic)

    def tag(self, tokens):
        # Inherit documentation from TaggerI

        # Run the initial tagger.
        tagged_tokens = self._initial_tagger.tag(tokens)

        # Create a dictionary that maps each tag to a list of the
        # indices of tokens that have that tag.
        tag_to_positions = defaultdict(set)
        for i, (token, tag) in enumerate(tagged_tokens):
            tag_to_positions[tag].add(i)

        # Apply each rule, in order.  Only try to apply rules at
        # positions that have the desired original tag.
        for rule in self._rules:
            # Find the positions where it might apply
            positions = tag_to_positions.get(rule.original_tag, [])
            # Apply the rule at those positions.
            changed = rule.apply(tagged_tokens, positions)
            # Update tag_to_positions with the positions of tags that
            # were modified.
            for i in changed:
                tag_to_positions[rule.original_tag].remove(i)
                tag_to_positions[rule.replacement_tag].add(i)

        return tagged_tokens

    def print_template_statistics(self, test_stats=None, printunused=True):
        """
        Print a list of all templates, ranked according to efficiency.

        If test_stats is available, the templates are ranked according to their
        relative contribution (summed for all rules created from a given template,
        weighted by score) to the performance on the test set. If no test_stats, then
        statistics collected during training are used instead. There is also
        an unweighted measure (just counting the rules). This is less informative,
        though, as many low-score rules will appear towards end of training.

        :param test_stats: dictionary of statistics collected during testing
        :type test_stats: dict of str -> any (but usually numbers)
        :param printunused: if True, print a list of all unused templates
        :type printunused: bool
        :return: None
        :rtype: None
        """
        tids = [r.templateid for r in self._rules]
        train_stats = self.train_stats()

        trainscores = train_stats["rulescores"]
        assert len(trainscores) == len(
            tids
        ), "corrupt statistics: " "{} train scores for {} rules".format(
            trainscores, tids
        )
        template_counts = Counter(tids)
        weighted_traincounts = Counter()
        for (tid, score) in zip(tids, trainscores):
            weighted_traincounts[tid] += score
        tottrainscores = sum(trainscores)

        # det_tplsort() is for deterministic sorting;
        # the otherwise convenient Counter.most_common() unfortunately
        # does not break ties deterministically
        # between python versions and will break cross-version tests
        def det_tplsort(tpl_value):
            return (tpl_value[1], repr(tpl_value[0]))

        def print_train_stats():
            print(
                "TEMPLATE STATISTICS (TRAIN)  {} templates, {} rules)".format(
                    len(template_counts), len(tids)
                )
            )
            print(
                "TRAIN ({tokencount:7d} tokens) initial {initialerrors:5d} {initialacc:.4f} "
                "final: {finalerrors:5d} {finalacc:.4f}".format(**train_stats)
            )
            head = "#ID | Score (train) |  #Rules     | Template"
            print(head, "\n", "-" * len(head), sep="")
            train_tplscores = sorted(
                weighted_traincounts.items(), key=det_tplsort, reverse=True
            )
            for (tid, trainscore) in train_tplscores:
                s = "{} | {:5d}   {:5.3f} |{:4d}   {:.3f} | {}".format(
                    tid,
                    trainscore,
                    trainscore / tottrainscores,
                    template_counts[tid],
                    template_counts[tid] / len(tids),
                    Template.ALLTEMPLATES[int(tid)],
                )
                print(s)

        def print_testtrain_stats():
            testscores = test_stats["rulescores"]
            print(
                "TEMPLATE STATISTICS (TEST AND TRAIN) ({} templates, {} rules)".format(
                    len(template_counts), len(tids)
                )
            )
            print(
                "TEST  ({tokencount:7d} tokens) initial {initialerrors:5d} {initialacc:.4f} "
                "final: {finalerrors:5d} {finalacc:.4f} ".format(**test_stats)
            )
            print(
                "TRAIN ({tokencount:7d} tokens) initial {initialerrors:5d} {initialacc:.4f} "
                "final: {finalerrors:5d} {finalacc:.4f} ".format(**train_stats)
            )
            weighted_testcounts = Counter()
            for (tid, score) in zip(tids, testscores):
                weighted_testcounts[tid] += score
            tottestscores = sum(testscores)
            head = "#ID | Score (test) | Score (train) |  #Rules     | Template"
            print(head, "\n", "-" * len(head), sep="")
            test_tplscores = sorted(
                weighted_testcounts.items(), key=det_tplsort, reverse=True
            )
            for (tid, testscore) in test_tplscores:
                s = "{:s} |{:5d}  {:6.3f} |  {:4d}   {:.3f} |{:4d}   {:.3f} | {:s}".format(
                    tid,
                    testscore,
                    testscore / tottestscores,
                    weighted_traincounts[tid],
                    weighted_traincounts[tid] / tottrainscores,
                    template_counts[tid],
                    template_counts[tid] / len(tids),
                    Template.ALLTEMPLATES[int(tid)],
                )
                print(s)

        def print_unused_templates():
            usedtpls = {int(tid) for tid in tids}
            unused = [
                (tid, tpl)
                for (tid, tpl) in enumerate(Template.ALLTEMPLATES)
                if tid not in usedtpls
            ]
            print(f"UNUSED TEMPLATES ({len(unused)})")

            for (tid, tpl) in unused:
                print(f"{tid:03d} {str(tpl):s}")

        if test_stats is None:
            print_train_stats()
        else:
            print_testtrain_stats()
        print()
        if printunused:
            print_unused_templates()
        print()

    def batch_tag_incremental(self, sequences, gold):
        """
        Tags by applying each rule to the entire corpus (rather than all rules to a
        single sequence). The point is to collect statistics on the test set for
        individual rules.

        NOTE: This is inefficient (does not build any index, so will traverse the entire
        corpus N times for N rules) -- usually you would not care about statistics for
        individual rules and thus use batch_tag() instead

        :param sequences: lists of token sequences (sentences, in some applications) to be tagged
        :type sequences: list of list of strings
        :param gold: the gold standard
        :type gold: list of list of strings
        :returns: tuple of (tagged_sequences, ordered list of rule scores (one for each rule))
        """

        def counterrors(xs):
            return sum(t[1] != g[1] for pair in zip(xs, gold) for (t, g) in zip(*pair))

        testing_stats = {}
        testing_stats["tokencount"] = sum(len(t) for t in sequences)
        testing_stats["sequencecount"] = len(sequences)
        tagged_tokenses = [self._initial_tagger.tag(tokens) for tokens in sequences]
        testing_stats["initialerrors"] = counterrors(tagged_tokenses)
        testing_stats["initialacc"] = (
            1 - testing_stats["initialerrors"] / testing_stats["tokencount"]
        )
        # Apply each rule to the entire corpus, in order
        errors = [testing_stats["initialerrors"]]
        for rule in self._rules:
            for tagged_tokens in tagged_tokenses:
                rule.apply(tagged_tokens)
            errors.append(counterrors(tagged_tokenses))
        testing_stats["rulescores"] = [
            err0 - err1 for (err0, err1) in zip(errors, errors[1:])
        ]
        testing_stats["finalerrors"] = errors[-1]
        testing_stats["finalacc"] = (
            1 - testing_stats["finalerrors"] / testing_stats["tokencount"]
        )
        return (tagged_tokenses, testing_stats)