File size: 16,380 Bytes
eb67da4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 |
# Natural Language Toolkit: Transformation-based learning
#
# Copyright (C) 2001-2021 NLTK Project
# Author: Marcus Uneson <[email protected]>
# based on previous (nltk2) version by
# Christopher Maloof, Edward Loper, Steven Bird
# URL: <https://www.nltk.org/>
# For license information, see LICENSE.TXT
from collections import Counter, defaultdict
from nltk import jsontags
from nltk.tag import TaggerI
from nltk.tbl import Feature, Template
######################################################################
# Brill Templates
######################################################################
@jsontags.register_tag
class Word(Feature):
"""
Feature which examines the text (word) of nearby tokens.
"""
json_tag = "nltk.tag.brill.Word"
@staticmethod
def extract_property(tokens, index):
"""@return: The given token's text."""
return tokens[index][0]
@jsontags.register_tag
class Pos(Feature):
"""
Feature which examines the tags of nearby tokens.
"""
json_tag = "nltk.tag.brill.Pos"
@staticmethod
def extract_property(tokens, index):
"""@return: The given token's tag."""
return tokens[index][1]
def nltkdemo18():
"""
Return 18 templates, from the original nltk demo, in multi-feature syntax
"""
return [
Template(Pos([-1])),
Template(Pos([1])),
Template(Pos([-2])),
Template(Pos([2])),
Template(Pos([-2, -1])),
Template(Pos([1, 2])),
Template(Pos([-3, -2, -1])),
Template(Pos([1, 2, 3])),
Template(Pos([-1]), Pos([1])),
Template(Word([-1])),
Template(Word([1])),
Template(Word([-2])),
Template(Word([2])),
Template(Word([-2, -1])),
Template(Word([1, 2])),
Template(Word([-3, -2, -1])),
Template(Word([1, 2, 3])),
Template(Word([-1]), Word([1])),
]
def nltkdemo18plus():
"""
Return 18 templates, from the original nltk demo, and additionally a few
multi-feature ones (the motivation is easy comparison with nltkdemo18)
"""
return nltkdemo18() + [
Template(Word([-1]), Pos([1])),
Template(Pos([-1]), Word([1])),
Template(Word([-1]), Word([0]), Pos([1])),
Template(Pos([-1]), Word([0]), Word([1])),
Template(Pos([-1]), Word([0]), Pos([1])),
]
def fntbl37():
"""
Return 37 templates taken from the postagging task of the
fntbl distribution https://www.cs.jhu.edu/~rflorian/fntbl/
(37 is after excluding a handful which do not condition on Pos[0];
fntbl can do that but the current nltk implementation cannot.)
"""
return [
Template(Word([0]), Word([1]), Word([2])),
Template(Word([-1]), Word([0]), Word([1])),
Template(Word([0]), Word([-1])),
Template(Word([0]), Word([1])),
Template(Word([0]), Word([2])),
Template(Word([0]), Word([-2])),
Template(Word([1, 2])),
Template(Word([-2, -1])),
Template(Word([1, 2, 3])),
Template(Word([-3, -2, -1])),
Template(Word([0]), Pos([2])),
Template(Word([0]), Pos([-2])),
Template(Word([0]), Pos([1])),
Template(Word([0]), Pos([-1])),
Template(Word([0])),
Template(Word([-2])),
Template(Word([2])),
Template(Word([1])),
Template(Word([-1])),
Template(Pos([-1]), Pos([1])),
Template(Pos([1]), Pos([2])),
Template(Pos([-1]), Pos([-2])),
Template(Pos([1])),
Template(Pos([-1])),
Template(Pos([-2])),
Template(Pos([2])),
Template(Pos([1, 2, 3])),
Template(Pos([1, 2])),
Template(Pos([-3, -2, -1])),
Template(Pos([-2, -1])),
Template(Pos([1]), Word([0]), Word([1])),
Template(Pos([1]), Word([0]), Word([-1])),
Template(Pos([-1]), Word([-1]), Word([0])),
Template(Pos([-1]), Word([0]), Word([1])),
Template(Pos([-2]), Pos([-1])),
Template(Pos([1]), Pos([2])),
Template(Pos([1]), Pos([2]), Word([1])),
]
def brill24():
"""
Return 24 templates of the seminal TBL paper, Brill (1995)
"""
return [
Template(Pos([-1])),
Template(Pos([1])),
Template(Pos([-2])),
Template(Pos([2])),
Template(Pos([-2, -1])),
Template(Pos([1, 2])),
Template(Pos([-3, -2, -1])),
Template(Pos([1, 2, 3])),
Template(Pos([-1]), Pos([1])),
Template(Pos([-2]), Pos([-1])),
Template(Pos([1]), Pos([2])),
Template(Word([-1])),
Template(Word([1])),
Template(Word([-2])),
Template(Word([2])),
Template(Word([-2, -1])),
Template(Word([1, 2])),
Template(Word([-1, 0])),
Template(Word([0, 1])),
Template(Word([0])),
Template(Word([-1]), Pos([-1])),
Template(Word([1]), Pos([1])),
Template(Word([0]), Word([-1]), Pos([-1])),
Template(Word([0]), Word([1]), Pos([1])),
]
def describe_template_sets():
"""
Print the available template sets in this demo, with a short description"
"""
import inspect
import sys
# a bit of magic to get all functions in this module
templatesets = inspect.getmembers(sys.modules[__name__], inspect.isfunction)
for (name, obj) in templatesets:
if name == "describe_template_sets":
continue
print(name, obj.__doc__, "\n")
######################################################################
# The Brill Tagger
######################################################################
@jsontags.register_tag
class BrillTagger(TaggerI):
"""
Brill's transformational rule-based tagger. Brill taggers use an
initial tagger (such as ``tag.DefaultTagger``) to assign an initial
tag sequence to a text; and then apply an ordered list of
transformational rules to correct the tags of individual tokens.
These transformation rules are specified by the ``TagRule``
interface.
Brill taggers can be created directly, from an initial tagger and
a list of transformational rules; but more often, Brill taggers
are created by learning rules from a training corpus, using one
of the TaggerTrainers available.
"""
json_tag = "nltk.tag.BrillTagger"
def __init__(self, initial_tagger, rules, training_stats=None):
"""
:param initial_tagger: The initial tagger
:type initial_tagger: TaggerI
:param rules: An ordered list of transformation rules that
should be used to correct the initial tagging.
:type rules: list(TagRule)
:param training_stats: A dictionary of statistics collected
during training, for possible later use
:type training_stats: dict
"""
self._initial_tagger = initial_tagger
self._rules = tuple(rules)
self._training_stats = training_stats
def encode_json_obj(self):
return self._initial_tagger, self._rules, self._training_stats
@classmethod
def decode_json_obj(cls, obj):
_initial_tagger, _rules, _training_stats = obj
return cls(_initial_tagger, _rules, _training_stats)
def rules(self):
"""
Return the ordered list of transformation rules that this tagger has learnt
:return: the ordered list of transformation rules that correct the initial tagging
:rtype: list of Rules
"""
return self._rules
def train_stats(self, statistic=None):
"""
Return a named statistic collected during training, or a dictionary of all
available statistics if no name given
:param statistic: name of statistic
:type statistic: str
:return: some statistic collected during training of this tagger
:rtype: any (but usually a number)
"""
if statistic is None:
return self._training_stats
else:
return self._training_stats.get(statistic)
def tag(self, tokens):
# Inherit documentation from TaggerI
# Run the initial tagger.
tagged_tokens = self._initial_tagger.tag(tokens)
# Create a dictionary that maps each tag to a list of the
# indices of tokens that have that tag.
tag_to_positions = defaultdict(set)
for i, (token, tag) in enumerate(tagged_tokens):
tag_to_positions[tag].add(i)
# Apply each rule, in order. Only try to apply rules at
# positions that have the desired original tag.
for rule in self._rules:
# Find the positions where it might apply
positions = tag_to_positions.get(rule.original_tag, [])
# Apply the rule at those positions.
changed = rule.apply(tagged_tokens, positions)
# Update tag_to_positions with the positions of tags that
# were modified.
for i in changed:
tag_to_positions[rule.original_tag].remove(i)
tag_to_positions[rule.replacement_tag].add(i)
return tagged_tokens
def print_template_statistics(self, test_stats=None, printunused=True):
"""
Print a list of all templates, ranked according to efficiency.
If test_stats is available, the templates are ranked according to their
relative contribution (summed for all rules created from a given template,
weighted by score) to the performance on the test set. If no test_stats, then
statistics collected during training are used instead. There is also
an unweighted measure (just counting the rules). This is less informative,
though, as many low-score rules will appear towards end of training.
:param test_stats: dictionary of statistics collected during testing
:type test_stats: dict of str -> any (but usually numbers)
:param printunused: if True, print a list of all unused templates
:type printunused: bool
:return: None
:rtype: None
"""
tids = [r.templateid for r in self._rules]
train_stats = self.train_stats()
trainscores = train_stats["rulescores"]
assert len(trainscores) == len(
tids
), "corrupt statistics: " "{} train scores for {} rules".format(
trainscores, tids
)
template_counts = Counter(tids)
weighted_traincounts = Counter()
for (tid, score) in zip(tids, trainscores):
weighted_traincounts[tid] += score
tottrainscores = sum(trainscores)
# det_tplsort() is for deterministic sorting;
# the otherwise convenient Counter.most_common() unfortunately
# does not break ties deterministically
# between python versions and will break cross-version tests
def det_tplsort(tpl_value):
return (tpl_value[1], repr(tpl_value[0]))
def print_train_stats():
print(
"TEMPLATE STATISTICS (TRAIN) {} templates, {} rules)".format(
len(template_counts), len(tids)
)
)
print(
"TRAIN ({tokencount:7d} tokens) initial {initialerrors:5d} {initialacc:.4f} "
"final: {finalerrors:5d} {finalacc:.4f}".format(**train_stats)
)
head = "#ID | Score (train) | #Rules | Template"
print(head, "\n", "-" * len(head), sep="")
train_tplscores = sorted(
weighted_traincounts.items(), key=det_tplsort, reverse=True
)
for (tid, trainscore) in train_tplscores:
s = "{} | {:5d} {:5.3f} |{:4d} {:.3f} | {}".format(
tid,
trainscore,
trainscore / tottrainscores,
template_counts[tid],
template_counts[tid] / len(tids),
Template.ALLTEMPLATES[int(tid)],
)
print(s)
def print_testtrain_stats():
testscores = test_stats["rulescores"]
print(
"TEMPLATE STATISTICS (TEST AND TRAIN) ({} templates, {} rules)".format(
len(template_counts), len(tids)
)
)
print(
"TEST ({tokencount:7d} tokens) initial {initialerrors:5d} {initialacc:.4f} "
"final: {finalerrors:5d} {finalacc:.4f} ".format(**test_stats)
)
print(
"TRAIN ({tokencount:7d} tokens) initial {initialerrors:5d} {initialacc:.4f} "
"final: {finalerrors:5d} {finalacc:.4f} ".format(**train_stats)
)
weighted_testcounts = Counter()
for (tid, score) in zip(tids, testscores):
weighted_testcounts[tid] += score
tottestscores = sum(testscores)
head = "#ID | Score (test) | Score (train) | #Rules | Template"
print(head, "\n", "-" * len(head), sep="")
test_tplscores = sorted(
weighted_testcounts.items(), key=det_tplsort, reverse=True
)
for (tid, testscore) in test_tplscores:
s = "{:s} |{:5d} {:6.3f} | {:4d} {:.3f} |{:4d} {:.3f} | {:s}".format(
tid,
testscore,
testscore / tottestscores,
weighted_traincounts[tid],
weighted_traincounts[tid] / tottrainscores,
template_counts[tid],
template_counts[tid] / len(tids),
Template.ALLTEMPLATES[int(tid)],
)
print(s)
def print_unused_templates():
usedtpls = {int(tid) for tid in tids}
unused = [
(tid, tpl)
for (tid, tpl) in enumerate(Template.ALLTEMPLATES)
if tid not in usedtpls
]
print(f"UNUSED TEMPLATES ({len(unused)})")
for (tid, tpl) in unused:
print(f"{tid:03d} {str(tpl):s}")
if test_stats is None:
print_train_stats()
else:
print_testtrain_stats()
print()
if printunused:
print_unused_templates()
print()
def batch_tag_incremental(self, sequences, gold):
"""
Tags by applying each rule to the entire corpus (rather than all rules to a
single sequence). The point is to collect statistics on the test set for
individual rules.
NOTE: This is inefficient (does not build any index, so will traverse the entire
corpus N times for N rules) -- usually you would not care about statistics for
individual rules and thus use batch_tag() instead
:param sequences: lists of token sequences (sentences, in some applications) to be tagged
:type sequences: list of list of strings
:param gold: the gold standard
:type gold: list of list of strings
:returns: tuple of (tagged_sequences, ordered list of rule scores (one for each rule))
"""
def counterrors(xs):
return sum(t[1] != g[1] for pair in zip(xs, gold) for (t, g) in zip(*pair))
testing_stats = {}
testing_stats["tokencount"] = sum(len(t) for t in sequences)
testing_stats["sequencecount"] = len(sequences)
tagged_tokenses = [self._initial_tagger.tag(tokens) for tokens in sequences]
testing_stats["initialerrors"] = counterrors(tagged_tokenses)
testing_stats["initialacc"] = (
1 - testing_stats["initialerrors"] / testing_stats["tokencount"]
)
# Apply each rule to the entire corpus, in order
errors = [testing_stats["initialerrors"]]
for rule in self._rules:
for tagged_tokens in tagged_tokenses:
rule.apply(tagged_tokens)
errors.append(counterrors(tagged_tokenses))
testing_stats["rulescores"] = [
err0 - err1 for (err0, err1) in zip(errors, errors[1:])
]
testing_stats["finalerrors"] = errors[-1]
testing_stats["finalacc"] = (
1 - testing_stats["finalerrors"] / testing_stats["tokencount"]
)
return (tagged_tokenses, testing_stats)
|