Datasets:

Modalities:
Text
Formats:
json
Languages:
code
Size:
< 1K
Tags:
code
Libraries:
Datasets
pandas
License:
File size: 58,371 Bytes
eb67da4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
# pylint: disable=protected-access
"""A `Network` is way to compose layers: the topological form of a `Model`."""

import collections
import copy
import itertools
import warnings

from tensorflow.python.eager import context
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import ops
from tensorflow.python.keras import backend
from tensorflow.python.keras.engine import base_layer
from tensorflow.python.keras.engine import base_layer_utils
from tensorflow.python.keras.engine import input_layer as input_layer_module
from tensorflow.python.keras.engine import input_spec
from tensorflow.python.keras.engine import node as node_module
from tensorflow.python.keras.engine import training as training_lib
from tensorflow.python.keras.engine import training_utils
from tensorflow.python.keras.saving.saved_model import network_serialization
from tensorflow.python.keras.utils import generic_utils
from tensorflow.python.keras.utils import tf_inspect
from tensorflow.python.keras.utils import tf_utils
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import math_ops
from tensorflow.python.platform import tf_logging as logging
from tensorflow.python.training.tracking import base as trackable
from tensorflow.python.util import nest
from tensorflow.tools.docs import doc_controls


# pylint: disable=g-classes-have-attributes
class Functional(training_lib.Model):
  """A `Functional` model is a `Model` defined as a directed graph of layers.

  Three types of `Model` exist: subclassed `Model`, `Functional` model,
  and `Sequential` (a special case of `Functional`).
  In general, more Keras features are supported with `Functional`
  than with subclassed `Model`s, specifically:

  - Model cloning (`keras.models.clone`)
  - Serialization (`model.get_config()/from_config`, `model.to_json()`
  - Whole-model saving (`model.save()`)

  A `Functional` model can be instantiated by passing two arguments to
  `__init__`. The first argument is the `keras.Input` Tensors that represent
  the inputs to the model. The second argument specifies the output
  tensors that represent the outputs of this model. Both arguments can be a
  nested structure of tensors.

  Example:

  ```
  inputs = {'x1': keras.Input(shape=(10,)), 'x2': keras.Input(shape=(1,))}
  t = keras.layers.Dense(1, activation='relu')(inputs['x1'])
  outputs = keras.layers.Add()([t, inputs['x2'])
  model = keras.Model(inputs, outputs)
  ```

  A `Functional` model constructed using the Functional API can also include raw
  TensorFlow functions, with the exception of functions that create Variables
  or assign ops.

  Example:

  ```
  inputs = keras.Input(shape=(10,))
  x = keras.layers.Dense(1)(inputs)
  outputs = tf.nn.relu(x)
  model = keras.Model(inputs, outputs)
  ```

  Args:
    inputs: List of input tensors (must be created via `tf.keras.Input()`).
    outputs: List of output tensors.
    name: String, optional. Name of the model.
    trainable: Boolean, optional. If the model's variables should be trainable.
  """

  # See tf.Module for the usage of this property.
  # The key of _layer_call_argspecs is a layer. tf.Module._flatten will fail to
  # flatten the key since it is trying to convert Trackable/Layer to a string.
  _TF_MODULE_IGNORED_PROPERTIES = frozenset(itertools.chain(
      ('_layer_call_argspecs', '_compiled_trainable_state',
       '_output_mask_cache', '_output_tensor_cache', '_output_shape_cache'),
      training_lib.Model._TF_MODULE_IGNORED_PROPERTIES
  ))

  @trackable.no_automatic_dependency_tracking
  def __init__(self, inputs, outputs, name=None, trainable=True,
               **kwargs):
    # This is used by the Model class, since we have some logic to swap the
    # class in the __new__ method, which will lead to __init__ get invoked
    # twice. Using the skip_init to skip one of the invocation of __init__ to
    # avoid any side effects
    skip_init = kwargs.pop('skip_init', False)
    if skip_init:
      return
    generic_utils.validate_kwargs(kwargs, {})
    super(Functional, self).__init__(name=name, trainable=trainable)
    self._init_graph_network(inputs, outputs)

  @trackable.no_automatic_dependency_tracking
  def _init_graph_network(self, inputs, outputs):
    # This method is needed for Sequential to reinitialize graph network when
    # layer is added or removed.
    self._is_graph_network = True

    # Normalize and set self.inputs, self.outputs.
    if isinstance(inputs, list) and len(nest.flatten(inputs)) == 1:
      inputs = inputs[0]
    if isinstance(outputs, list) and len(nest.flatten(outputs)) == 1:
      outputs = outputs[0]
    self._nested_inputs = inputs
    self._nested_outputs = outputs
    self.inputs = nest.flatten(inputs)
    self.outputs = nest.flatten(outputs)

    # Models constructed with a single Tensor or list of Tensors can
    # be called with a dict, where the keys of the dict are the names
    # of the `Input` objects. Extra keys are ignored with warning.
    if not nest.is_nested(self._nested_inputs):
      self._enable_dict_to_input_mapping = True
    elif (isinstance(self._nested_inputs, (list, tuple)) and
          not any(nest.is_nested(t) for t in self._nested_inputs)):
      self._enable_dict_to_input_mapping = True
    elif (isinstance(self._nested_inputs, dict) and
          not any(nest.is_nested(t) for t in self._nested_inputs.values())):
      self._enable_dict_to_input_mapping = True
    else:
      self._enable_dict_to_input_mapping = False

    if not ops.executing_eagerly_outside_functions():
      if any(not hasattr(tensor, '_keras_history') for tensor in self.outputs):
        base_layer_utils.create_keras_history(self._nested_outputs)

    self._validate_graph_inputs_and_outputs()

    # A Network does not create weights of its own, thus it is already
    # built.
    self.built = True
    self._build_input_shape = nest.map_structure(lambda x: x.shape, inputs)
    self._compute_output_and_mask_jointly = True
    # `_expects_training_arg` is True since the `training` argument is always
    # present in the signature of the `call` method of a graph network.
    self._expects_training_arg = True
    self._expects_mask_arg = True
    # A graph network does not autocast inputs, as its layers will cast them
    # instead.
    self._autocast = False

    self._input_layers = []
    self._output_layers = []
    self._input_coordinates = []
    self._output_coordinates = []

    # This is for performance optimization when calling the Network on new
    # inputs. Every time the Network is called on a set on input tensors,
    # we compute the output tensors, output masks and output shapes in one pass,
    # then cache them here. When any of these outputs is queried later, we
    # retrieve it from there instead of recomputing it.
    self._output_mask_cache = {}
    self._output_tensor_cache = {}
    self._output_shape_cache = {}

    # Build self._output_layers:
    for x in self.outputs:
      layer, node_index, tensor_index = x._keras_history  # pylint: disable=protected-access
      self._output_layers.append(layer)
      self._output_coordinates.append((layer, node_index, tensor_index))

    # Build self._input_layers:
    for x in self.inputs:
      layer, node_index, tensor_index = x._keras_history  # pylint: disable=protected-access
      # It's supposed to be an input layer, so only one node
      # and one tensor output.
      assert node_index == 0
      assert tensor_index == 0
      self._input_layers.append(layer)
      self._input_coordinates.append((layer, node_index, tensor_index))

    # Keep track of the network's nodes and layers.
    nodes, nodes_by_depth, layers, _ = _map_graph_network(
        self.inputs, self.outputs)
    self._network_nodes = nodes
    self._nodes_by_depth = nodes_by_depth
    self._self_tracked_trackables = layers
    self._layer_call_argspecs = {}
    for layer in self._self_tracked_trackables:
      self._layer_call_argspecs[layer] = tf_inspect.getfullargspec(layer.call)

    # Build self.input_names and self.output_names.
    self._set_output_names()
    self.input_names = []
    self._feed_input_names = []
    self._feed_inputs = []
    self._feed_input_shapes = []
    for layer in self._input_layers:
      self.input_names.append(layer.name)
      if layer.is_placeholder:
        self._feed_input_names.append(layer.name)
        # Use batch_input_shape here because non-eager composite tensors may not
        # have a shape attribute that's meaningful (sparse, for instance, has
        # a tensor that's non-constant and needs to be fed). This means that
        # input layers that create placeholders will need to have the
        # batch_input_shape attr to allow for input shape validation.
        self._feed_input_shapes.append(layer._batch_input_shape)
        self._feed_inputs.append(layer.input)

    self._compute_tensor_usage_count()
    self._set_save_spec(self._nested_inputs)
    tf_utils.assert_no_legacy_layers(self.layers)

  @property
  def input(self):
    """Retrieves the input tensor(s) of a layer.

    Only applicable if the layer has exactly one input,
    i.e. if it is connected to one incoming layer.

    Returns:
        Input tensor or list of input tensors.

    Raises:
      RuntimeError: If called in Eager mode.
      AttributeError: If no inbound nodes are found.
    """
    return self._nested_inputs

  @property
  def input_shape(self):
    """Retrieves the input shape(s) of a layer.

    Only applicable if the layer has exactly one input,
    i.e. if it is connected to one incoming layer, or if all inputs
    have the same shape.

    Returns:
        Input shape, as an integer shape tuple
        (or list of shape tuples, one tuple per input tensor).

    Raises:
        AttributeError: if the layer has no defined input_shape.
        RuntimeError: if called in Eager mode.
    """
    return nest.map_structure(backend.int_shape, self.input)

  @property
  def input_spec(self):
    if hasattr(self, '_manual_input_spec'):
      return self._manual_input_spec
    if (isinstance(self._nested_inputs, (dict, list, tuple)) and
        len(self._nested_inputs) != len(self.inputs)):
      # Case where we have a nested structure.
      # In such a case we can't safely run any checks.
      return None
    if isinstance(self._nested_inputs, dict):
      # Case where `_nested_inputs` is a plain dict of Inputs.
      names = sorted(self._nested_inputs.keys())
      return [input_spec.InputSpec(
          shape=shape_with_no_batch_size(self._nested_inputs[name]),
          allow_last_axis_squeeze=True, name=name) for name in names]
    else:
      # Single input, or list / tuple of inputs.
      # The data may be passed as a dict keyed by input name.
      return [input_spec.InputSpec(
          shape=shape_with_no_batch_size(x), allow_last_axis_squeeze=True,
          name=x._keras_history.layer.name) for x in self.inputs]

  @input_spec.setter
  def input_spec(self, value):
    self._manual_input_spec = value

  @property
  def output(self):
    """Retrieves the output tensor(s) of a layer.

    Only applicable if the layer has exactly one output,
    i.e. if it is connected to one incoming layer.

    Returns:
      Output tensor or list of output tensors.

    Raises:
      AttributeError: if the layer is connected to more than one incoming
        layers.
      RuntimeError: if called in Eager mode.
    """
    return self._nested_outputs

  @property
  def output_shape(self):
    """Retrieves the output shape(s) of a layer.

    Only applicable if the layer has one output,
    or if all outputs have the same shape.

    Returns:
        Output shape, as an integer shape tuple
        (or list of shape tuples, one tuple per output tensor).

    Raises:
        AttributeError: if the layer has no defined output shape.
        RuntimeError: if called in Eager mode.
    """
    return nest.map_structure(backend.int_shape, self.output)

  def _set_output_names(self):
    """Assigns unique names to the Network's outputs.

    Output layers with multiple output tensors would otherwise lead to duplicate
    names in self.output_names.
    """
    uniquified = []
    output_names = set()
    prefix_count = {}
    for layer in self._output_layers:
      proposal = layer.name
      while proposal in output_names:
        existing_count = prefix_count.get(layer.name, 1)
        proposal = '{}_{}'.format(layer.name, existing_count)
        prefix_count[layer.name] = existing_count + 1
      output_names.add(proposal)
      uniquified.append(proposal)
    self.output_names = uniquified

  @property
  def _layer_checkpoint_dependencies(self):
    """Dictionary of layer dependencies to be included in the checkpoint."""
    weight_layer_index = 0

    dependencies = collections.OrderedDict()
    for layer_index, layer in enumerate(self.layers):
      try:
        if layer.weights:
          # Keep a separate index for layers which have weights. This allows
          # users to insert Layers without weights anywhere in the network
          # without breaking checkpoints.
          dependencies['layer_with_weights-%d' % weight_layer_index] = layer
          weight_layer_index += 1
      except ValueError:
        # The layer might have weights, but may not be built yet. We just treat
        # it as layer without weight.
        pass

      # Even if it doesn't have weights, we should still track everything in
      # case it has/will have Trackable dependencies.
      dependencies['layer-%d' % layer_index] = layer
    return dependencies

  @property
  def _checkpoint_dependencies(self):
    dependencies = [
        trackable.TrackableReference(name=name, ref=layer)
        for name, layer in self._layer_checkpoint_dependencies.items()]
    dependencies.extend(super(Functional, self)._checkpoint_dependencies)
    return dependencies

  def _lookup_dependency(self, name):
    layer_dependencies = self._layer_checkpoint_dependencies
    if name in layer_dependencies:
      return layer_dependencies[name]
    return super(Functional, self)._lookup_dependency(name)

  def _handle_deferred_layer_dependencies(self, layers):
    """Handles layer checkpoint dependencies that are added after init."""
    layer_checkpoint_dependencies = self._layer_checkpoint_dependencies
    layer_to_name = {v: k for k, v in layer_checkpoint_dependencies.items()}
    for layer in layers:
      if layer in layer_to_name:
        self._handle_deferred_dependencies(name=layer_to_name[layer],
                                           trackable=layer)

  @property
  def _should_compute_mask(self):
    return True

  def compute_mask(self, inputs, mask):
    # TODO(omalleyt): b/123540974 This function is not really safe to call
    # by itself because it will duplicate any updates and losses in graph
    # mode by `call`ing the Layers again.
    output_tensors = self._run_internal_graph(inputs, mask=mask)
    return nest.map_structure(lambda t: getattr(t, '_keras_mask', None),
                              output_tensors)

  @doc_controls.do_not_doc_inheritable
  def call(self, inputs, training=None, mask=None):
    """Calls the model on new inputs.

    In this case `call` just reapplies
    all ops in the graph to the new inputs
    (e.g. build a new computational graph from the provided inputs).

    Args:
        inputs: A tensor or list of tensors.
        training: Boolean or boolean scalar tensor, indicating whether to run
          the `Network` in training mode or inference mode.
        mask: A mask or list of masks. A mask can be
            either a tensor or None (no mask).

    Returns:
        A tensor if there is a single output, or
        a list of tensors if there are more than one outputs.
    """
    return self._run_internal_graph(
        inputs, training=training, mask=mask)

  def compute_output_shape(self, input_shape):
    # Convert any shapes in tuple format to TensorShapes.
    input_shape = tf_utils.convert_shapes(input_shape, to_tuples=False)

    if len(nest.flatten(input_shape)) != len(nest.flatten(self._input_layers)):
      raise ValueError('Invalid input_shape argument ' + str(input_shape) +
                       ': model has ' + str(len(self._input_layers)) +
                       ' tensor inputs.')

    # Use the tuple of TensorShape as the cache key, since tuple is hashable
    # and can be used as hash key.
    try:
      cache_key = tuple(tf_utils.convert_shapes(input_shape, to_tuples=True))
      if cache_key in self._output_shape_cache:
        # Cache hit. Return shapes as TensorShapes.
        return self._output_shape_cache[cache_key]
    except ValueError:
      # In case there are unknown TensorShape, eg for sparse tensor input,
      # We skip the caching since the shape is unknown.
      pass

    layers_to_output_shapes = {}
    for layer, shape in zip(self._input_layers, nest.flatten(input_shape)):
      # It's an input layer: then `compute_output_shape` is identity,
      # and there is only one node and one tensor..
      shape_key = layer.name + '_0_0'
      layers_to_output_shapes[shape_key] = shape

    depth_keys = list(self._nodes_by_depth.keys())
    depth_keys.sort(reverse=True)
    # Iterate over nodes, by depth level.
    if len(depth_keys) > 1:
      for depth in depth_keys:
        nodes = self._nodes_by_depth[depth]
        for node in nodes:
          layer = node.layer
          if layer in self._input_layers:
            # We've already covered the input layers
            # a few lines above.
            continue
          # Get the input shapes for the first argument of the node
          layer_input_shapes = []
          layer_inputs = node.call_args[0]
          for layer_input in nest.flatten(layer_inputs):
            kh = layer_input._keras_history
            input_layer_key = kh.layer.name + '_%s_%s' % (kh.node_index,
                                                          kh.tensor_index)
            layer_input_shapes.append(layers_to_output_shapes[input_layer_key])
          layer_input_shapes = nest.pack_sequence_as(layer_inputs,
                                                     layer_input_shapes)
          # Layers expect shapes to be tuples for `compute_output_shape`.
          layer_input_shapes = tf_utils.convert_shapes(
              layer_input_shapes, to_tuples=True)
          layer_output_shapes = layer.compute_output_shape(layer_input_shapes)
          # Convert back to TensorShapes.
          layer_output_shapes = tf_utils.convert_shapes(
              layer_output_shapes, to_tuples=False)

          node_index = layer._inbound_nodes.index(node)  # pylint: disable=protected-access
          for j, shape in enumerate(nest.flatten(layer_output_shapes)):
            shape_key = layer.name + '_%s_%s' % (node_index, j)
            layers_to_output_shapes[shape_key] = shape

      # Read final output shapes from layers_to_output_shapes.
      output_shapes = []
      for i in range(len(self._output_layers)):
        layer, node_index, tensor_index = self._output_coordinates[i]
        shape_key = layer.name + '_%s_%s' % (node_index, tensor_index)
        output_shapes.append(layers_to_output_shapes[shape_key])
      output_shapes = nest.pack_sequence_as(self._nested_outputs, output_shapes)
      # Store in cache.
      self._output_shape_cache[cache_key] = output_shapes

    # Return shapes as TensorShapes.
    return output_shapes

  def _init_set_name(self, name, zero_based=True):
    if not name:
      cls_name = self.__class__.__name__
      if self.__class__ == Functional:
        # Hide the functional class name from user, since its not a public
        # visible class. Use "Model" instead,
        cls_name = 'Model'
      self._name = backend.unique_object_name(
          generic_utils.to_snake_case(cls_name),
          zero_based=zero_based)
    else:
      self._name = name

  def _run_internal_graph(self, inputs, training=None, mask=None):
    """Computes output tensors for new inputs.

    # Note:
        - Can be run on non-Keras tensors.

    Args:
        inputs: Tensor or nested structure of Tensors.
        training: Boolean learning phase.
        mask: (Optional) Tensor or nested structure of Tensors.

    Returns:
        output_tensors
    """
    inputs = self._flatten_to_reference_inputs(inputs)
    if mask is None:
      masks = [None] * len(inputs)
    else:
      masks = self._flatten_to_reference_inputs(mask)
    for input_t, mask in zip(inputs, masks):
      input_t._keras_mask = mask

    # Dictionary mapping reference tensors to computed tensors.
    tensor_dict = {}
    tensor_usage_count = self._tensor_usage_count
    for x, y in zip(self.inputs, inputs):
      y = self._conform_to_reference_input(y, ref_input=x)
      x_id = str(id(x))
      tensor_dict[x_id] = [y] * tensor_usage_count[x_id]

    nodes_by_depth = self._nodes_by_depth
    depth_keys = list(nodes_by_depth.keys())
    depth_keys.sort(reverse=True)

    for depth in depth_keys:
      nodes = nodes_by_depth[depth]
      for node in nodes:
        if node.is_input:
          continue  # Input tensors already exist.

        if any(t_id not in tensor_dict for t_id in node.flat_input_ids):
          continue  # Node is not computable, try skipping.

        args, kwargs = node.map_arguments(tensor_dict)
        outputs = node.layer(*args, **kwargs)

        # Update tensor_dict.
        for x_id, y in zip(node.flat_output_ids, nest.flatten(outputs)):
          tensor_dict[x_id] = [y] * tensor_usage_count[x_id]

    output_tensors = []
    for x in self.outputs:
      x_id = str(id(x))
      assert x_id in tensor_dict, 'Could not compute output ' + str(x)
      output_tensors.append(tensor_dict[x_id].pop())

    return nest.pack_sequence_as(self._nested_outputs, output_tensors)

  def _flatten_to_reference_inputs(self, tensors):
    """Maps `tensors` to their respective `keras.Input`."""
    if self._enable_dict_to_input_mapping and isinstance(tensors, dict):
      ref_inputs = self._nested_inputs
      if not nest.is_nested(ref_inputs):
        ref_inputs = [self._nested_inputs]
      if isinstance(ref_inputs, dict):
        # In the case that the graph is constructed with dict input tensors,
        # We will use the original dict key to map with the keys in the input
        # data. Note that the model.inputs is using nest.flatten to process the
        # input tensors, which means the dict input tensors are ordered by their
        # keys.
        ref_input_names = sorted(ref_inputs.keys())
      else:
        ref_input_names = [inp._keras_history.layer.name for inp in ref_inputs]

      # Raise an warning if there are more input data comparing to input tensor
      if len(tensors) > len(ref_input_names):
        warnings.warn(
            'Input dict contained keys {} which did not match any model input. '
            'They will be ignored by the model.'.format(
                [n for n in tensors.keys() if n not in ref_input_names])
            )

      try:
        # Flatten in the order `Input`s were passed during Model construction.
        return [tensors[n] for n in ref_input_names]
      except KeyError:
        # TODO(b/151582614)
        return nest.flatten(tensors)

    # Otherwise both self.inputs and tensors will already be in same order.
    return nest.flatten(tensors)

  def _conform_to_reference_input(self, tensor, ref_input):
    """Set shape and dtype based on `keras.Input`s."""
    if isinstance(tensor, ops.Tensor):
      # Allow (None,) and (None, 1) Tensors to be passed interchangeably. Use
      # the shape specified by the `keras.Input`.
      t_shape = tensor.shape
      t_rank = t_shape.rank
      ref_shape = ref_input.shape
      ref_rank = ref_shape.rank
      keras_history = getattr(tensor, '_keras_history', None)
      if t_rank is not None and ref_rank is not None:
        # Should squeeze last dimension.
        # True if tensor is (BATCH, ..., 1) and reference is (BATCH, ...).
        if (t_rank == ref_rank + 1 and t_shape[-1] == 1):
          tensor = array_ops.squeeze_v2(tensor, axis=-1)
        # Should expand last_dimension.
        # True if tensor is (BATCH, ...) and reference is (BATCH, ..., 1).
        elif (t_rank == ref_rank - 1 and ref_shape[-1] == 1):
          tensor = array_ops.expand_dims_v2(tensor, axis=-1)
      if keras_history is not None:  # Restore keras history.
        tensor._keras_history = keras_history

      # Add shape hints to Tensors that may have None shape dims but have shapes
      # defined by the `keras.Input` (not applicable in eager mode).
      if not context.executing_eagerly():
        try:
          tensor.set_shape(tensor.shape.merge_with(ref_input.shape))
        except ValueError:
          logging.warning(
              'Model was constructed with shape {} for input {}, but it was '
              'called on an input with incompatible shape {}.'.format(
                  ref_input.shape, ref_input, tensor.shape))

      # Dtype casting.
      tensor = math_ops.cast(tensor, dtype=ref_input.dtype)
    elif tf_utils.is_extension_type(tensor):
      # Dtype casting (If the extension type has a non-variant dtype and
      # supports being cast)
      ref_input_dtype = getattr(ref_input, 'dtype', None)
      if ref_input_dtype is not None and ref_input_dtype != dtypes.variant:
        tensor = math_ops.cast(tensor, dtype=ref_input_dtype)

    return tensor

  def get_config(self):
    return copy.deepcopy(get_network_config(self))

  @classmethod
  def from_config(cls, config, custom_objects=None):
    """Instantiates a Model from its config (output of `get_config()`).

    Args:
        config: Model config dictionary.
        custom_objects: Optional dictionary mapping names
            (strings) to custom classes or functions to be
            considered during deserialization.

    Returns:
        A model instance.

    Raises:
        ValueError: In case of improperly formatted config dict.
    """
    with generic_utils.SharedObjectLoadingScope():
      input_tensors, output_tensors, created_layers = reconstruct_from_config(
          config, custom_objects)
      model = cls(inputs=input_tensors, outputs=output_tensors,
                  name=config.get('name'))
      connect_ancillary_layers(model, created_layers)
      return model

  def _validate_graph_inputs_and_outputs(self):
    """Validates the inputs and outputs of a Graph Network."""
    # Check for redundancy in inputs.
    if len({id(i) for i in self.inputs}) != len(self.inputs):
      raise ValueError('The list of inputs passed to the model '
                       'is redundant. '
                       'All inputs should only appear once.'
                       ' Found: ' + str(self.inputs))

    for x in self.inputs:
      # Check that x has appropriate `_keras_history` metadata.
      if not hasattr(x, '_keras_history'):
        cls_name = self.__class__.__name__
        raise ValueError('Input tensors to a ' + cls_name + ' ' +
                         'must come from `tf.keras.Input`. '
                         'Received: ' + str(x) +
                         ' (missing previous layer metadata).')
      # Check that x is an input tensor.
      # pylint: disable=protected-access
      layer = x._keras_history.layer
      if len(layer._inbound_nodes) > 1 or (
          layer._inbound_nodes and not layer._inbound_nodes[0].is_input):
        cls_name = self.__class__.__name__
        logging.warning(cls_name + ' model inputs must come from '
                        '`tf.keras.Input` (thus holding past layer metadata), '
                        'they cannot be the output of '
                        'a previous non-Input layer. '
                        'Here, a tensor specified as '
                        'input to "' + self.name + '" was not an Input tensor, '
                        'it was generated by layer ' + layer.name + '.\n'
                        'Note that input tensors are '
                        'instantiated via `tensor = tf.keras.Input(shape)`.\n'
                        'The tensor that caused the issue was: ' + str(x.name))

    # Check compatibility of batch sizes of Input Layers.
    input_batch_sizes = [
        training_utils.get_static_batch_size(x._keras_history.layer)
        for x in self.inputs
    ]
    consistent_batch_size = None
    for batch_size in input_batch_sizes:
      if batch_size is not None:
        if (consistent_batch_size is not None and
            batch_size != consistent_batch_size):
          raise ValueError('The specified batch sizes of the Input Layers'
                           ' are incompatible. Found batch sizes: {}'.format(
                               input_batch_sizes))
        consistent_batch_size = batch_size

    for x in self.outputs:
      if not hasattr(x, '_keras_history'):
        cls_name = self.__class__.__name__
        raise ValueError('Output tensors of a ' + cls_name + ' model must be '
                         'the output of a TensorFlow `Layer` '
                         '(thus holding past layer metadata). Found: ' + str(x))

  def _insert_layers(self, layers, relevant_nodes=None):
    """Inserts Layers into the Network after Network creation.

    This is only valid for Keras Graph Networks.  Layers added via this function
    will be included in the `call` computation and `get_config` of this Network.
    They will not be added to the Network's outputs.


    Args:
      layers: Arbitrary nested structure of Layers. Layers must be reachable
        from one or more of the `keras.Input` Tensors that correspond to this
        Network's inputs.
      relevant_nodes: Nodes from the Layers that should be considered part of
        this Network. If `None`, all Nodes will be considered part of this
        Network.

    Raises:
      ValueError: If the layers depend on `Input`s not found in this Model.
    """
    layers = nest.flatten(layers)
    tf_utils.assert_no_legacy_layers(layers)
    node_to_depth = {}
    for depth, nodes in self._nodes_by_depth.items():
      node_to_depth.update({node: depth for node in nodes})
    # The nodes of these Layers that are relevant to this Network. If not
    # provided, assume all Nodes are relevant
    if not relevant_nodes:
      relevant_nodes = nest.flatten([layer._inbound_nodes for layer in layers])
    network_nodes = set(relevant_nodes + list(node_to_depth.keys()))

    def _get_min_depth(node):
      """Gets the minimum depth at which node can be computed."""
      min_depth = 0
      for layer, node_id, _, _ in node.iterate_inbound():
        inbound_node = layer._inbound_nodes[node_id]
        if inbound_node in node_to_depth:
          min_depth = min(min_depth, node_to_depth[inbound_node])
        elif inbound_node not in network_nodes:
          continue
        else:
          # Previous relevant nodes haven't been processed yet.
          return None
      # New node is one shallower than its shallowest input.
      return min_depth - 1

    # Insert nodes into `_nodes_by_depth` and other node attrs.
    unprocessed_nodes = copy.copy(relevant_nodes)
    i = 0
    while unprocessed_nodes:
      i += 1
      # Do a sanity check. This can occur if `Input`s from outside this Model
      # are being relied on.
      if i > 10000:
        raise ValueError('Layers could not be added due to missing '
                         'dependencies.')

      node = unprocessed_nodes.pop(0)
      depth = _get_min_depth(node)
      if depth is None:  # Defer until inbound nodes are processed.
        unprocessed_nodes.append(node)
        continue
      node_key = _make_node_key(node.layer.name,
                                node.layer._inbound_nodes.index(node))
      if node_key not in self._network_nodes:
        node_to_depth[node] = depth
        self._network_nodes.add(node_key)
        self._nodes_by_depth[depth].append(node)

    # Insert layers and update other layer attrs.
    layer_set = set(self._self_tracked_trackables)
    deferred_layers = []
    for layer in layers:
      if layer not in layer_set:
        self._self_tracked_trackables.append(layer)
        deferred_layers.append(layer)
        self._layer_call_argspecs[layer] = tf_inspect.getfullargspec(layer.call)
        layer_set.add(layer)
    self._handle_deferred_layer_dependencies(deferred_layers)

    self._compute_tensor_usage_count()

  def _compute_tensor_usage_count(self):
    """Compute the #. of tensor usages for all the output tensors of layers.

    The computed tensor usage count is saved as `self._tensor_usage_count`. This
    is later used for saving memory in eager computation by releasing
    no-longer-needed tensors as early as possible.
    """
    tensor_usage_count = collections.Counter()
    available_tensors = set(str(id(tensor)) for tensor in self.inputs)

    depth_keys = list(self._nodes_by_depth.keys())
    depth_keys.sort(reverse=True)
    depth_keys = depth_keys[1:]

    for depth in depth_keys:
      for node in self._nodes_by_depth[depth]:
        input_tensors = {
            str(id(tensor)) for tensor in nest.flatten(node.keras_inputs)
        }
        if input_tensors.issubset(available_tensors):
          for tensor in nest.flatten(node.keras_inputs):
            tensor_usage_count[str(id(tensor))] += 1

          for output_tensor in nest.flatten(node.outputs):
            available_tensors.add(str(id(output_tensor)))

    for tensor in self.outputs:
      tensor_usage_count[str(id(tensor))] += 1

    self._tensor_usage_count = tensor_usage_count

  def _assert_weights_created(self):
    # Override the implementation in Model.
    # The Functional model should always have weight created already.
    return

  def _graph_network_add_loss(self, symbolic_loss):
    new_nodes, new_layers = _map_subgraph_network(self.inputs, [symbolic_loss])
    # Losses must be keyed on inputs no matter what in order to be supported in
    # DistributionStrategy.
    add_loss_layer = base_layer.AddLoss(
        unconditional=False, dtype=symbolic_loss.dtype)
    add_loss_layer(symbolic_loss)
    new_nodes.extend(add_loss_layer.inbound_nodes)
    new_layers.append(add_loss_layer)
    self._insert_layers(new_layers, new_nodes)

  def _graph_network_add_metric(self, value, aggregation, name):
    new_nodes, new_layers = _map_subgraph_network(self.inputs, [value])
    add_metric_layer = base_layer.AddMetric(
        aggregation, name, dtype=value.dtype)
    add_metric_layer(value)
    new_nodes.extend(add_metric_layer.inbound_nodes)
    new_layers.append(add_metric_layer)
    self._insert_layers(new_layers, new_nodes)

  @property
  def _trackable_saved_model_saver(self):
    return network_serialization.NetworkSavedModelSaver(self)

  def _get_save_spec(self, dynamic_batch=True):
    if getattr(self, '_has_explicit_input_shape', True):
      # Functional models and Sequential models that have an explicit input
      # shape should use the batch size set by the input layer.
      dynamic_batch = False
    return super(Functional, self)._get_save_spec(dynamic_batch)


def _make_node_key(layer_name, node_index):
  return layer_name + '_ib-' + str(node_index)


def _map_graph_network(inputs, outputs):
  """Validates a network's topology and gather its layers and nodes.

  Args:
    inputs: List of input tensors.
    outputs: List of outputs tensors.

  Returns:
    A tuple `(nodes, nodes_by_depth, layers, layers_by_depth)`.
    - nodes: list of Node instances.
    - nodes_by_depth: dict mapping ints (depth) to lists of node instances.
    - layers: list of Layer instances.
    - layers_by_depth: dict mapping ints (depth) to lists of layer instances.

  Raises:
    ValueError: In case the network is not valid (e.g. disconnected graph).
  """
  # "depth" is number of layers between output Node and the Node.
  # Nodes are ordered from inputs -> outputs.
  nodes_in_decreasing_depth, layer_indices = _build_map(outputs)
  network_nodes = {
      _make_node_key(node.layer.name, node.layer._inbound_nodes.index(node))
      for node in nodes_in_decreasing_depth
  }

  nodes_depths = {}  # dict {node: depth value}
  layers_depths = {}  # dict {layer: depth value}

  for node in reversed(nodes_in_decreasing_depth):
    # If the depth is not set, the node has no outbound nodes (depth 0).
    depth = nodes_depths.setdefault(node, 0)

    # Update the depth of the corresponding layer
    previous_depth = layers_depths.get(node.layer, 0)
    # If we've seen this layer before at a higher depth,
    # we should use that depth instead of the node depth.
    # This is necessary for shared layers that have inputs at different
    # depth levels in the graph.
    depth = max(depth, previous_depth)
    layers_depths[node.layer] = depth
    nodes_depths[node] = depth

    # Update the depth of inbound nodes.
    # The "depth" of a node is the max of the depths
    # of all nodes it is connected to + 1.
    for node_dep in node.parent_nodes:
      previous_depth = nodes_depths.get(node_dep, 0)
      nodes_depths[node_dep] = max(depth + 1, previous_depth)

  # Handle inputs that are not connected to outputs.
  # We do not error out here because the inputs may be used to compute losses
  # and metrics.
  for input_t in inputs:
    input_layer = input_t._keras_history[0]
    if input_layer not in layers_depths:
      layers_depths[input_layer] = 0
      layer_indices[input_layer] = -1
      nodes_depths[input_layer._inbound_nodes[0]] = 0
      network_nodes.add(_make_node_key(input_layer.name, 0))

  # Build a dict {depth: list of nodes with this depth}
  nodes_by_depth = collections.defaultdict(list)
  for node, depth in nodes_depths.items():
    nodes_by_depth[depth].append(node)

  # Build a dict {depth: list of layers with this depth}
  layers_by_depth = collections.defaultdict(list)
  for layer, depth in layers_depths.items():
    layers_by_depth[depth].append(layer)

  # Get sorted list of layer depths.
  depth_keys = list(layers_by_depth.keys())
  depth_keys.sort(reverse=True)

  # Set self.layers ordered by depth.
  layers = []
  for depth in depth_keys:
    layers_for_depth = layers_by_depth[depth]
    # Network.layers needs to have a deterministic order:
    # here we order them by traversal order.
    layers_for_depth.sort(key=lambda x: layer_indices[x])
    layers.extend(layers_for_depth)

  # Get sorted list of node depths.
  depth_keys = list(nodes_by_depth.keys())
  depth_keys.sort(reverse=True)

  # Check that all tensors required are computable.
  # computable_tensors: all tensors in the graph
  # that can be computed from the inputs provided.
  computable_tensors = set()
  for x in inputs:
    computable_tensors.add(id(x))

  layers_with_complete_input = []  # To provide a better error msg.
  for depth in depth_keys:
    for node in nodes_by_depth[depth]:
      layer = node.layer
      if layer and not node.is_input:
        for x in nest.flatten(node.keras_inputs):
          if id(x) not in computable_tensors:
            raise ValueError('Graph disconnected: '
                             'cannot obtain value for tensor ' + str(x) +
                             ' at layer "' + layer.name + '". '
                             'The following previous layers '
                             'were accessed without issue: ' +
                             str(layers_with_complete_input))
        for x in nest.flatten(node.outputs):
          computable_tensors.add(id(x))
        layers_with_complete_input.append(layer.name)

  # Ensure name unicity, which will be crucial for serialization
  # (since serialized nodes refer to layers by their name).
  all_names = [layer.name for layer in layers]
  for name in all_names:
    if all_names.count(name) != 1:
      raise ValueError('The name "' + name + '" is used ' +
                       str(all_names.count(name)) + ' times in the model. '
                       'All layer names should be unique.')
  return network_nodes, nodes_by_depth, layers, layers_by_depth


def _build_map(outputs):
  """This method topologically sorts nodes in order from inputs to outputs.

  It uses a depth-first search to topologically sort nodes that appear in the
  _keras_history connectivity metadata of `outputs`.

  Args:
    outputs: the output tensors whose _keras_history metadata should be walked.
    This may be an arbitrary nested structure.

  Returns:
    A tuple like (ordered_nodes, layer_to_first_traversal_index)
    ordered_nodes: list of nodes appearing in the keras history, topologically
      sorted from original inputs to the `outputs`.
      (If outputs have different sets of ancestors, the inputs to one output
      may appear after a different output).
    layer_to_first_traversal_index:
      A dict mapping layer to the traversal index in the DFS where it is
      seen. Note: if a layer is shared by several nodes, the dict will only
      store the index corresponding to the *first* time the layer seen.
  """
  finished_nodes = set()
  nodes_in_progress = set()
  nodes_in_decreasing_depth = []  # nodes from inputs -> outputs.
  layer_indices = {}  # layer -> in traversal order.
  for output in nest.flatten(outputs):
    _build_map_helper(output, finished_nodes, nodes_in_progress,
                      nodes_in_decreasing_depth, layer_indices)
  return nodes_in_decreasing_depth, layer_indices


def _build_map_helper(tensor, finished_nodes, nodes_in_progress,
                      nodes_in_decreasing_depth, layer_indices):
  """Recursive helper for `_build_map`."""
  layer, node_index, _ = tensor._keras_history  # pylint: disable=protected-access
  node = layer._inbound_nodes[node_index]  # pylint: disable=protected-access

  # Don't repeat work for shared subgraphs
  if node in finished_nodes:
    return

  # Prevent cycles.
  if node in nodes_in_progress:
    raise ValueError('The tensor ' + str(tensor) + ' at layer "' + layer.name +
                     '" is part of a cycle.')

  # Store the traversal order for layer sorting.
  if layer not in layer_indices:
    layer_indices[layer] = len(layer_indices)

  # Propagate to all previous tensors connected to this node.
  nodes_in_progress.add(node)
  if not node.is_input:
    for tensor in node.keras_inputs:
      _build_map_helper(tensor, finished_nodes, nodes_in_progress,
                        nodes_in_decreasing_depth, layer_indices)

  finished_nodes.add(node)
  nodes_in_progress.remove(node)
  nodes_in_decreasing_depth.append(node)


def _map_subgraph_network(inputs, outputs):
  """Returns the nodes and layers in the topology from `inputs` to `outputs`.

  Args:
    inputs: List of input tensors.
    outputs: List of output tensors.

  Returns:
    A tuple of List{Node] and List[Layer].
  """
  if not ops.executing_eagerly_outside_functions():
    base_layer_utils.create_keras_history(outputs)
  # Keep only nodes and layers in the topology between inputs and outputs.
  _, nodes_by_depth, layers, _ = _map_graph_network(inputs, outputs)
  return nest.flatten([nodes for nodes in nodes_by_depth.values()]), layers


def _should_skip_first_node(layer):
  """Returns True if the first layer node should not be saved or loaded."""
  # Networks that are constructed with an Input layer/shape start with a
  # pre-existing node linking their input to output. This node is excluded from
  # the network config.
  if layer._self_tracked_trackables:
    return (isinstance(layer, Functional) and
            # Filter out Sequential models without an input shape.
            isinstance(layer._self_tracked_trackables[0],
                       input_layer_module.InputLayer))
  else:
    return isinstance(layer, Functional)


def connect_ancillary_layers(model, created_layers):
  """Adds layers that are not connected to the outputs to the model."""
  # Layers not connected to outputs, such as those added in `add_loss`.
  ancillary_layers = [
      layer for layer in created_layers.values() if layer not in model.layers
  ]
  if ancillary_layers:
    relevant_nodes = nest.flatten([
        layer.inbound_nodes[1:]
        if _should_skip_first_node(layer) else layer.inbound_nodes
        for layer in created_layers.values()
    ])
    model._insert_layers(ancillary_layers, relevant_nodes)
  return model


def reconstruct_from_config(config, custom_objects=None, created_layers=None):
  """Reconstructs graph from config object.

  Args:
    config: Dictionary returned from Network.get_config()
    custom_objects: Optional dictionary mapping names (strings) to custom
      classes or functions to be considered during deserialization.
    created_layers: Optional dictionary mapping names to Layer objects. Any
      layer not in this dictionary will be created and added to the dict.
      This function will add new nodes to all layers (excluding InputLayers),
      instead of re-using pre-existing nodes in the layers.

  Returns:
    Tuple of (input tensors, output tensors, dictionary of created layers)
  """
  # Layer instances created during the graph reconstruction process.
  created_layers = created_layers or collections.OrderedDict()

  # Maps input data (tuple of inbound layer name, node index) from the config
  # to node indices in the newly generated model. The node indices may be
  # different if the layers have already been called previously.
  node_index_map = {}
  node_count_by_layer = {}

  # Dictionary mapping layer instances to
  # node data that specifies a layer call.
  # It acts as a queue that maintains any unprocessed
  # layer call until it becomes possible to process it
  # (i.e. until the input tensors to the call all exist).
  unprocessed_nodes = {}

  def add_unprocessed_node(layer, node_data):
    if layer not in unprocessed_nodes:
      unprocessed_nodes[layer] = [node_data]
    else:
      unprocessed_nodes[layer].append(node_data)

  def get_node_index(layer, config_node_index):
    """Returns node index in layer (might differ from config_node_index)."""
    if isinstance(layer, input_layer_module.InputLayer):
      return 0
    return node_index_map.get((layer.name, config_node_index), None)

  def _deserialize_keras_tensors(kwargs, layer_map):
    """Deserializes Keras Tensors passed to `call`.."""

    def _deserialize_keras_tensor(t):
      """Deserializes a single Keras Tensor passed to `call`."""
      if isinstance(t, tf_utils.ListWrapper):
        t = t.as_list()
        layer_name = t[0]
        node_index = t[1]
        tensor_index = t[2]

        layer = layer_map[layer_name]
        new_node_index = get_node_index(layer, node_index)
        if new_node_index is None:
          # The inbound node may not have been processed yet,
          # (This can happen e.g. if it depends on a different set
          # of inputs than those that have been processed already).
          # raise an IndexError so that the current node puts itself
          # back on the unprocessed queue.
          # Caution: This may lead to infinite loops for malformed
          # network configurations! (or when there is a bug in
          # the network config loading code).
          raise IndexError
        node = layer._inbound_nodes[new_node_index]
        return nest.flatten(node.outputs)[tensor_index]
      return t

    kwargs = tf_utils.convert_inner_node_data(kwargs, wrap=True)
    return nest.map_structure(_deserialize_keras_tensor, kwargs)

  def process_node(layer, node_data):
    """Deserialize a node.

    Args:
        layer: layer instance.
        node_data: Nested structure of `ListWrapper`.

    Raises:
        ValueError: In case of improperly formatted `node_data`.
    """
    input_tensors = []
    for input_data in nest.flatten(node_data):
      input_data = input_data.as_list()
      inbound_layer_name = input_data[0]
      inbound_node_index = input_data[1]
      inbound_tensor_index = input_data[2]
      if len(input_data) == 3:
        kwargs = {}
      elif len(input_data) == 4:
        kwargs = input_data[3]
        try:
          kwargs = _deserialize_keras_tensors(kwargs, created_layers)
        except IndexError:
          # Happens if keras tensors in kwargs are still unprocessed
          add_unprocessed_node(layer, node_data)
          return
      else:
        raise ValueError('Improperly formatted model config.')

      if inbound_layer_name != node_module._CONSTANT_VALUE:
        inbound_layer = created_layers[inbound_layer_name]
        inbound_node_index = get_node_index(inbound_layer, inbound_node_index)

        if inbound_node_index is None:
          add_unprocessed_node(layer, node_data)
          return
        inbound_node = inbound_layer._inbound_nodes[inbound_node_index]
        input_tensors.append(
            nest.flatten(inbound_node.outputs)[inbound_tensor_index])
      else:
        # We received a constant w/ no Keras history attached
        input_tensors.append(inbound_tensor_index)
    input_tensors = nest.pack_sequence_as(node_data, input_tensors)
    # Call layer on its inputs, thus creating the node
    # and building the layer if needed.
    if input_tensors is not None:
      if not layer._preserve_input_structure_in_config:
        input_tensors = (
            base_layer_utils.unnest_if_single_tensor(input_tensors))
      output_tensors = layer(input_tensors, **kwargs)

      # Update node index map.
      output_index = nest.flatten(output_tensors)[0]._keras_history.node_index
      node_index_map[(layer.name, node_count_by_layer[layer])] = output_index
      node_count_by_layer[layer] += 1

  def process_layer(layer_data):
    """Deserializes a layer, then call it on appropriate inputs.

    Args:
        layer_data: layer config dict.

    Raises:
        ValueError: In case of improperly formatted `layer_data` dict.
    """
    layer_name = layer_data['name']

    if layer_name in created_layers:
      layer = created_layers[layer_name]
    else:
      # Instantiate layer.
      from tensorflow.python.keras.layers import deserialize as deserialize_layer  # pylint: disable=g-import-not-at-top

      layer = deserialize_layer(layer_data, custom_objects=custom_objects)
      created_layers[layer_name] = layer

    node_count_by_layer[layer] = int(_should_skip_first_node(layer))

    # Gather layer inputs and convert to `ListWrapper` objects.
    inbound_nodes_data = layer_data['inbound_nodes']
    inbound_nodes_data = tf_utils.convert_inner_node_data(
        inbound_nodes_data, wrap=True)
    for node_data in inbound_nodes_data:
      # We don't process nodes (i.e. make layer calls)
      # on the fly because the inbound node may not yet exist,
      # in case of layer shared at different topological depths
      # (e.g. a model such as A(B(A(B(x)))))
      add_unprocessed_node(layer, node_data)

  # First, we create all layers and enqueue nodes to be processed
  for layer_data in config['layers']:
    process_layer(layer_data)
  # Then we process nodes in order of layer depth.
  # Nodes that cannot yet be processed (if the inbound node
  # does not yet exist) are re-enqueued, and the process
  # is repeated until all nodes are processed.
  while unprocessed_nodes:
    for layer_data in config['layers']:
      layer = created_layers[layer_data['name']]
      if layer in unprocessed_nodes:
        for node_data in unprocessed_nodes.pop(layer):
          process_node(layer, node_data)

  input_tensors = []
  output_tensors = []

  input_layers = tf_utils.convert_inner_node_data(
      config['input_layers'], wrap=True)
  for layer_data in nest.flatten(input_layers):
    layer_name, node_index, tensor_index = layer_data.as_list()
    assert layer_name in created_layers
    layer = created_layers[layer_name]
    node_index = get_node_index(layer, node_index)
    layer_output_tensors = layer._inbound_nodes[node_index].output_tensors
    input_tensors.append(nest.flatten(layer_output_tensors)[tensor_index])

  output_layers = tf_utils.convert_inner_node_data(
      config['output_layers'], wrap=True)
  for layer_data in nest.flatten(output_layers):
    layer_name, node_index, tensor_index = layer_data.as_list()
    assert layer_name in created_layers
    layer = created_layers[layer_name]
    node_index = get_node_index(layer, node_index)
    layer_output_tensors = layer._inbound_nodes[node_index].output_tensors
    output_tensors.append(nest.flatten(layer_output_tensors)[tensor_index])

  input_tensors = nest.pack_sequence_as(input_layers, input_tensors)
  output_tensors = nest.pack_sequence_as(output_layers, output_tensors)
  return input_tensors, output_tensors, created_layers


def get_network_config(network, serialize_layer_fn=None):
  """Builds the config, which consists of the node graph and serialized layers.

  Args:
    network: A Network object.
    serialize_layer_fn: Function used to serialize layers.

  Returns:
    Config dictionary.
  """
  serialize_layer_fn = (
      serialize_layer_fn or generic_utils.serialize_keras_object)
  config = {
      'name': network.name,
  }
  node_conversion_map = {}
  for layer in network.layers:
    kept_nodes = 1 if _should_skip_first_node(layer) else 0
    for original_node_index, node in enumerate(layer._inbound_nodes):
      node_key = _make_node_key(layer.name, original_node_index)
      if node_key in network._network_nodes:
        node_conversion_map[node_key] = kept_nodes
        kept_nodes += 1
  layer_configs = []

  with generic_utils.SharedObjectSavingScope():
    for layer in network.layers:  # From the earliest layers on.
      filtered_inbound_nodes = []
      for original_node_index, node in enumerate(layer._inbound_nodes):
        node_key = _make_node_key(layer.name, original_node_index)
        if node_key in network._network_nodes and not node.is_input:
          # The node is relevant to the model:
          # add to filtered_inbound_nodes.
          node_data = node.serialize(_make_node_key, node_conversion_map)
          filtered_inbound_nodes.append(node_data)

      layer_config = serialize_layer_fn(layer)
      layer_config['name'] = layer.name
      layer_config['inbound_nodes'] = filtered_inbound_nodes
      layer_configs.append(layer_config)
    config['layers'] = layer_configs

  # Gather info about inputs and outputs.
  model_inputs = []
  for i in range(len(network._input_layers)):
    layer, node_index, tensor_index = network._input_coordinates[i]
    node_key = _make_node_key(layer.name, node_index)
    if node_key not in network._network_nodes:
      continue
    new_node_index = node_conversion_map[node_key]
    model_inputs.append(
        tf_utils.ListWrapper([layer.name, new_node_index, tensor_index]))
  model_inputs = nest.pack_sequence_as(network._nested_inputs, model_inputs)
  # Preserve external Keras compat for Models with single input.
  if not nest.is_nested(model_inputs):
    model_inputs = [model_inputs]
  model_inputs = tf_utils.convert_inner_node_data(model_inputs)
  config['input_layers'] = model_inputs

  model_outputs = []
  for i in range(len(network._output_layers)):
    layer, node_index, tensor_index = network._output_coordinates[i]
    node_key = _make_node_key(layer.name, node_index)
    if node_key not in network._network_nodes:
      continue
    new_node_index = node_conversion_map[node_key]
    model_outputs.append(
        tf_utils.ListWrapper([layer.name, new_node_index, tensor_index]))
  model_outputs = nest.pack_sequence_as(network._nested_outputs, model_outputs)
  # Preserve external Keras compat for Models with single output.
  if not nest.is_nested(model_outputs):
    model_outputs = [model_outputs]
  model_outputs = tf_utils.convert_inner_node_data(model_outputs)
  config['output_layers'] = model_outputs
  return config


def shape_with_no_batch_size(x):
  if x.shape.rank is None:
    return None
  shape = x.shape.as_list()
  if shape:
    shape[0] = None
  return shape


class ModuleWrapper(base_layer.Layer):
  """Wrapper for `tf.Module`s to support the Functional and Sequential API."""

  def __init__(self, module, method_name=None, **kwargs):
    """Initializes the wrapper Layer for this module.

    Args:
      module: The `tf.Module` instance to be wrapped.
      method_name: (Optional) str. The name of the method to use as the forward
        pass of the module. If not set, defaults to '__call__' if defined, or
        'call'.
      **kwargs: Additional keywrod arguments. See `tf.keras.layers.Layer`.

    Raises:
      ValueError: If `method` is not defined on `module`.
    """
    super(ModuleWrapper, self).__init__(**kwargs)
    if method_name is None:
      if hasattr(module, '__call__'):
        method_name = '__call__'
      elif hasattr(module, 'call'):
        method_name = 'call'
    if method_name is None or not hasattr(module, method_name):
      raise ValueError('{} is not defined on object {}'.format(
          method_name, module))

    self._module = module
    self._method_name = method_name

    # Check if module.__call__ has a `training` arg or accepts `**kwargs`.
    method = getattr(module, method_name)
    method_arg_spec = tf_inspect.getfullargspec(method)
    self._expects_training_arg = ('training' in method_arg_spec.args or
                                  method_arg_spec.varkw is not None)
    self._expects_mask_arg = ('mask' in method_arg_spec.args or
                              method_arg_spec.varkw is not None)

  def call(self, *args, **kwargs):
    if 'training' in kwargs and not self._expects_training_arg:
      kwargs.pop('training')
    if 'mask' in kwargs and not self._expects_mask_arg:
      kwargs.pop('mask')
    return getattr(self._module, self._method_name)(*args, **kwargs)