|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Tests for Python ops defined in sparse_ops.""" |
|
|
|
import numpy as np |
|
|
|
from tensorflow.python.framework import constant_op |
|
from tensorflow.python.framework import dtypes |
|
from tensorflow.python.framework import errors |
|
from tensorflow.python.framework import ops |
|
from tensorflow.python.framework import sparse_tensor |
|
from tensorflow.python.framework import test_util |
|
from tensorflow.python.ops import array_ops |
|
from tensorflow.python.ops import gradient_checker |
|
from tensorflow.python.ops import nn_ops |
|
from tensorflow.python.ops import sparse_ops |
|
from tensorflow.python.ops import variables |
|
import tensorflow.python.ops.sparse_grad |
|
from tensorflow.python.platform import googletest |
|
from tensorflow.python.platform import test |
|
|
|
|
|
|
|
|
|
def _sparsify(x, thresh=0.5, index_dtype=np.int64): |
|
x[x < thresh] = 0 |
|
|
|
non_zero = np.where(x) |
|
x_indices = np.vstack(non_zero).astype(index_dtype).T |
|
x_values = x[non_zero] |
|
x_shape = x.shape |
|
|
|
return sparse_tensor.SparseTensor( |
|
indices=x_indices, values=x_values, dense_shape=x_shape), len(x_values) |
|
|
|
|
|
class SparseToIndicatorTest(test_util.TensorFlowTestCase): |
|
|
|
def _SparseTensor_5x6(self, dtype): |
|
ind = np.array([[0, 0], [1, 0], [1, 3], [1, 4], [3, 2], [3, 3]]) |
|
val = np.array([0, 10, 13, 14, 32, 33]) |
|
shape = np.array([5, 6]) |
|
return sparse_tensor.SparseTensor( |
|
constant_op.constant(ind, dtypes.int64), |
|
constant_op.constant(val, dtype), |
|
constant_op.constant(shape, dtypes.int64)) |
|
|
|
def _SparseTensor_2x3x4(self, dtype): |
|
|
|
ind = np.array([[0, 0, 1], [0, 1, 0], [0, 1, 2], [1, 0, 3], [1, 1, 0], |
|
[1, 1, 1], [1, 1, 2], [1, 2, 2]]) |
|
val = np.array([1, 10, 12, 103, 150, 149, 150, 122]) |
|
shape = np.array([2, 3, 4]) |
|
return sparse_tensor.SparseTensor( |
|
constant_op.constant(ind, dtypes.int64), |
|
constant_op.constant(val, dtype), |
|
constant_op.constant(shape, dtypes.int64)) |
|
|
|
def testInt32(self): |
|
with test_util.force_cpu(): |
|
sp_input = self._SparseTensor_5x6(dtypes.int32) |
|
output = sparse_ops.sparse_to_indicator(sp_input, 50) |
|
|
|
expected_output = np.zeros((5, 50), dtype=np.bool_) |
|
expected_trues = ((0, 0), (1, 10), (1, 13), (1, 14), (3, 32), (3, 33)) |
|
for expected_true in expected_trues: |
|
expected_output[expected_true] = True |
|
|
|
self.assertAllEqual(output, expected_output) |
|
|
|
def testInt64(self): |
|
with test_util.force_cpu(): |
|
sp_input = self._SparseTensor_5x6(dtypes.int64) |
|
output = sparse_ops.sparse_to_indicator(sp_input, 50) |
|
|
|
expected_output = np.zeros((5, 50), dtype=np.bool_) |
|
expected_trues = [(0, 0), (1, 10), (1, 13), (1, 14), (3, 32), (3, 33)] |
|
for expected_true in expected_trues: |
|
expected_output[expected_true] = True |
|
|
|
self.assertAllEqual(output, expected_output) |
|
|
|
def testHigherRank(self): |
|
with test_util.force_cpu(): |
|
sp_input = self._SparseTensor_2x3x4(dtypes.int64) |
|
output = sparse_ops.sparse_to_indicator(sp_input, 200) |
|
|
|
expected_output = np.zeros((2, 3, 200), dtype=np.bool_) |
|
expected_trues = [(0, 0, 1), (0, 1, 10), (0, 1, 12), (1, 0, 103), |
|
(1, 1, 149), (1, 1, 150), (1, 2, 122)] |
|
for expected_true in expected_trues: |
|
expected_output[expected_true] = True |
|
|
|
self.assertAllEqual(output, expected_output) |
|
|
|
|
|
class SparseMergeTest(test_util.TensorFlowTestCase): |
|
|
|
def _SparseTensorValue_3x50(self, indices_dtype, values_dtype): |
|
|
|
|
|
ind = np.array([[0, 0], [1, 0], [1, 2], [2, 0], [2, 1], [1, 1]]) |
|
|
|
indices = np.array([0, 13, 10, 33, 32, 14]) |
|
values = np.array([-3, 4, 1, 9, 5, 1]) |
|
shape = np.array([3, 3]) |
|
indices = sparse_tensor.SparseTensorValue( |
|
np.array(ind, np.int64), |
|
np.array(indices, indices_dtype), np.array(shape, np.int64)) |
|
values = sparse_tensor.SparseTensorValue( |
|
np.array(ind, np.int64), |
|
np.array(values, values_dtype), np.array(shape, np.int64)) |
|
return indices, values |
|
|
|
def _SparseTensor_3x50(self, indices_dtype, values_dtype): |
|
indices, values = self._SparseTensorValue_3x50(indices_dtype, values_dtype) |
|
return (sparse_tensor.SparseTensor.from_value(indices), |
|
sparse_tensor.SparseTensor.from_value(values)) |
|
|
|
def _AssertResultsSorted(self, output, vocab_size): |
|
self.assertAllEqual(output.indices, |
|
[[0, 0], [1, 10], [1, 13], [1, 14], [2, 32], [2, 33]]) |
|
self.assertAllEqual(output.values, [-3, 1, 4, 1, 5, 9]) |
|
self.assertAllEqual(output.dense_shape, [3, vocab_size]) |
|
|
|
def _AssertResultsNotSorted(self, output, vocab_size): |
|
self.assertAllEqual(output.indices, |
|
[[0, 0], [1, 13], [1, 10], [2, 33], [2, 32], [1, 14]]) |
|
self.assertAllEqual(output.values, [-3, 4, 1, 9, 5, 1]) |
|
self.assertAllEqual(output.dense_shape, [3, vocab_size]) |
|
|
|
def testInt32AndFloat32(self): |
|
vocab_size = 50 |
|
indices_v, values_v = self._SparseTensorValue_3x50(np.int32, np.float32) |
|
with test_util.force_cpu(): |
|
for indices in (indices_v, |
|
sparse_tensor.SparseTensor.from_value(indices_v)): |
|
for values in (values_v, |
|
sparse_tensor.SparseTensor.from_value(values_v)): |
|
sp_output = sparse_ops.sparse_merge(indices, values, vocab_size) |
|
|
|
output = self.evaluate(sp_output) |
|
self._AssertResultsSorted(output, vocab_size) |
|
|
|
def testInt64AndFloat32(self): |
|
vocab_size = 50 |
|
with test_util.force_cpu(): |
|
indices, values = self._SparseTensor_3x50(np.int64, np.float32) |
|
sp_output = sparse_ops.sparse_merge(indices, values, vocab_size) |
|
|
|
output = self.evaluate(sp_output) |
|
self._AssertResultsSorted(output, vocab_size) |
|
|
|
def testInt64AndFloat64(self): |
|
vocab_size = 50 |
|
with test_util.force_cpu(): |
|
indices, values = self._SparseTensor_3x50(np.int64, np.float64) |
|
sp_output = sparse_ops.sparse_merge(indices, values, vocab_size) |
|
|
|
output = self.evaluate(sp_output) |
|
self._AssertResultsSorted(output, vocab_size) |
|
|
|
def testInt32AndFloat32NonCanonicalOrder(self): |
|
vocab_size = 50 |
|
with test_util.force_cpu(): |
|
indices, values = self._SparseTensor_3x50(np.int32, np.float32) |
|
sp_output = sparse_ops.sparse_merge( |
|
indices, values, vocab_size, already_sorted=True) |
|
|
|
output = self.evaluate(sp_output) |
|
self._AssertResultsNotSorted(output, vocab_size) |
|
|
|
def testInt64AndFloat32NonCanonicalOrder(self): |
|
vocab_size = 50 |
|
with test_util.force_cpu(): |
|
indices, values = self._SparseTensor_3x50(np.int64, np.float32) |
|
sp_output = sparse_ops.sparse_merge( |
|
indices, values, vocab_size, already_sorted=True) |
|
|
|
output = self.evaluate(sp_output) |
|
self._AssertResultsNotSorted(output, vocab_size) |
|
|
|
def testInt64AndFloat64NonCanonicalOrder(self): |
|
vocab_size = 50 |
|
vocab_size_tensor = constant_op.constant(vocab_size, dtypes.int64) |
|
with test_util.force_cpu(): |
|
indices, values = self._SparseTensor_3x50(np.int64, np.float64) |
|
sp_output = sparse_ops.sparse_merge( |
|
indices, values, vocab_size_tensor, already_sorted=True) |
|
|
|
output = self.evaluate(sp_output) |
|
self._AssertResultsNotSorted(output, vocab_size) |
|
|
|
def testShouldSetLastDimensionInDynamicShape(self): |
|
with ops.Graph().as_default(): |
|
shape = constant_op.constant([2, 2], dtype=dtypes.int64) |
|
dynamic_shape = array_ops.placeholder_with_default(shape, shape=[2]) |
|
ids = sparse_tensor.SparseTensor( |
|
indices=[[0, 0], [0, 1]], |
|
values=[1, 3], |
|
dense_shape=dynamic_shape) |
|
values = sparse_tensor.SparseTensor( |
|
indices=[[0, 0], [0, 1]], |
|
values=[0.4, 0.7], |
|
dense_shape=dynamic_shape) |
|
merged = sparse_ops.sparse_merge( |
|
sp_ids=ids, sp_values=values, vocab_size=5) |
|
self.assertEqual(5, merged.get_shape()[1]) |
|
|
|
|
|
class SparseMergeHighDimTest(test_util.TensorFlowTestCase): |
|
|
|
def _SparseTensor_3x50(self, indices_dtype, values_dtype): |
|
|
|
|
|
ind = np.array([[0, 0], [1, 0], [1, 2], [2, 0], [2, 1], [1, 1]]) |
|
|
|
indices0 = np.array([0, 13, 10, 33, 32, 14]) |
|
indices1 = np.array([12, 4, 0, 0, 1, 30]) |
|
values = np.array([-3, 4, 1, 9, 5, 1]) |
|
shape = np.array([3, 3]) |
|
indices0 = sparse_tensor.SparseTensorValue( |
|
np.array(ind, np.int64), |
|
np.array(indices0, indices_dtype), np.array(shape, np.int64)) |
|
indices1 = sparse_tensor.SparseTensorValue( |
|
np.array(ind, np.int64), |
|
np.array(indices1, indices_dtype), np.array(shape, np.int64)) |
|
values = sparse_tensor.SparseTensorValue( |
|
np.array(ind, np.int64), |
|
np.array(values, values_dtype), np.array(shape, np.int64)) |
|
return ([sparse_tensor.SparseTensor.from_value(indices0), |
|
sparse_tensor.SparseTensor.from_value(indices1)], |
|
sparse_tensor.SparseTensor.from_value(values)) |
|
|
|
def _AssertResultsSorted(self, output, vocab_size): |
|
self.assertAllEqual( |
|
output.indices, |
|
[[0, 0, 12], [1, 10, 0], [1, 13, 4], [1, 14, 30], [2, 32, 1], |
|
[2, 33, 0]]) |
|
self.assertAllEqual(output.values, [-3, 1, 4, 1, 5, 9]) |
|
self.assertAllEqual(output.dense_shape, [3] + vocab_size) |
|
|
|
def testInt64AndFloat32(self): |
|
vocab_size = [50, 31] |
|
with test_util.force_cpu(): |
|
indices, values = self._SparseTensor_3x50(np.int64, np.float32) |
|
sp_output = sparse_ops.sparse_merge(indices, values, vocab_size) |
|
|
|
output = self.evaluate(sp_output) |
|
self._AssertResultsSorted(output, vocab_size) |
|
|
|
def testInt64AndFloat64(self): |
|
vocab_size = [50, 31] |
|
with test_util.force_cpu(): |
|
indices, values = self._SparseTensor_3x50(np.int64, np.float64) |
|
sp_output = sparse_ops.sparse_merge(indices, values, vocab_size) |
|
|
|
output = self.evaluate(sp_output) |
|
self._AssertResultsSorted(output, vocab_size) |
|
|
|
def testInt64AndFloat64Shape(self): |
|
vocab_size = [50, 30] |
|
with test_util.force_cpu(): |
|
indices, values = self._SparseTensor_3x50(np.int64, np.float64) |
|
sp_output = sparse_ops.sparse_merge(indices, values, vocab_size) |
|
|
|
output = self.evaluate(sp_output) |
|
self._AssertResultsSorted(output, vocab_size) |
|
|
|
|
|
class SparseRetainTest(test_util.TensorFlowTestCase): |
|
|
|
def _SparseTensorValue_5x6(self): |
|
ind = np.array([[0, 0], [1, 0], [1, 3], [1, 4], [3, 2], [3, 3]]) |
|
val = np.array([0, 10, 13, 14, 32, 33]) |
|
shape = np.array([5, 6]) |
|
return sparse_tensor.SparseTensorValue( |
|
np.array(ind, np.int64), |
|
np.array(val, np.int32), np.array(shape, np.int64)) |
|
|
|
def _SparseTensor_5x6(self): |
|
return sparse_tensor.SparseTensor.from_value(self._SparseTensorValue_5x6()) |
|
|
|
def testBasic(self): |
|
with test_util.force_cpu(): |
|
for sp_input in (self._SparseTensorValue_5x6(), self._SparseTensor_5x6()): |
|
to_retain = np.array([1, 0, 0, 1, 1, 0], dtype=np.bool_) |
|
sp_output = sparse_ops.sparse_retain(sp_input, to_retain) |
|
|
|
output = self.evaluate(sp_output) |
|
|
|
self.assertAllEqual(output.indices, [[0, 0], [1, 4], [3, 2]]) |
|
self.assertAllEqual(output.values, [0, 14, 32]) |
|
self.assertAllEqual(output.dense_shape, [5, 6]) |
|
|
|
def testRetainNone(self): |
|
with test_util.force_cpu(): |
|
sp_input = self._SparseTensor_5x6() |
|
to_retain = np.zeros((6,), dtype=np.bool_) |
|
sp_output = sparse_ops.sparse_retain(sp_input, to_retain) |
|
|
|
output = self.evaluate(sp_output) |
|
|
|
self.assertAllEqual(output.indices, np.array([]).reshape((0, 2))) |
|
self.assertAllEqual(output.values, []) |
|
self.assertAllEqual(output.dense_shape, [5, 6]) |
|
|
|
def testMismatchedRetainShape(self): |
|
with test_util.force_cpu(): |
|
sp_input = self._SparseTensor_5x6() |
|
to_retain = np.array([1, 0, 0, 1, 0], dtype=np.bool_) |
|
with self.assertRaises(ValueError): |
|
sparse_ops.sparse_retain(sp_input, to_retain) |
|
|
|
|
|
class SparseResetShapeTest(test_util.TensorFlowTestCase): |
|
|
|
_IND_2_5_6 = np.array( |
|
[[0, 0, 0], [0, 1, 0], [0, 1, 3], [1, 1, 4], [1, 3, 2], [1, 3, 3]], |
|
dtype=np.int64) |
|
_VAL_2_5_6 = np.array([0, 10, 13, 14, 32, 33], dtype=np.int32) |
|
_SHP_2_5_6 = np.array([2, 5, 6], dtype=np.int64) |
|
|
|
def _SparseTensor_2x5x6(self): |
|
return sparse_tensor.SparseTensor( |
|
constant_op.constant(self._IND_2_5_6, dtypes.int64), |
|
constant_op.constant(self._VAL_2_5_6, dtypes.int32), |
|
constant_op.constant(self._SHP_2_5_6, dtypes.int64)) |
|
|
|
def _SparseTensor_2x5x6_Empty(self): |
|
return sparse_tensor.SparseTensor( |
|
constant_op.constant( |
|
np.empty(shape=[0, 3], dtype=np.int64), dtypes.int64), |
|
constant_op.constant(np.empty(shape=[0], dtype=np.int32), dtypes.int32), |
|
constant_op.constant(self._SHP_2_5_6, dtypes.int64)) |
|
|
|
def _SparseTensorValue_2x5x6(self): |
|
return sparse_tensor.SparseTensorValue(self._IND_2_5_6, self._VAL_2_5_6, |
|
self._SHP_2_5_6) |
|
|
|
def testStaticShapeInfoPreservedWhenNewShapeIsProvidedAndStatic(self): |
|
sp_input = self._SparseTensor_2x5x6() |
|
new_shape = np.array([3, 6, 7], dtype=np.int64) |
|
sp_output = sparse_ops.sparse_reset_shape(sp_input, new_shape) |
|
self.assertAllEqual([3, 6, 7], sp_output.get_shape()) |
|
|
|
def testBasic(self): |
|
with test_util.force_cpu(): |
|
sp_input = self._SparseTensor_2x5x6() |
|
new_shape = np.array([3, 6, 7], dtype=np.int64) |
|
sp_output = sparse_ops.sparse_reset_shape(sp_input, new_shape) |
|
|
|
output = self.evaluate(sp_output) |
|
|
|
self.assertAllEqual(output.indices, [[0, 0, 0], [0, 1, 0], [0, 1, 3], |
|
[1, 1, 4], [1, 3, 2], [1, 3, 3]]) |
|
self.assertAllEqual(output.values, [0, 10, 13, 14, 32, 33]) |
|
self.assertAllEqual(output.dense_shape, [3, 6, 7]) |
|
|
|
def testInputUnavailableInGraphConstructionOk(self): |
|
with test_util.force_cpu(): |
|
sp_input = self._SparseTensorValue_2x5x6() |
|
new_shape = np.array([3, 6, 7], dtype=np.int64) |
|
sp_output = sparse_ops.sparse_reset_shape(sp_input, new_shape) |
|
|
|
output = self.evaluate(sp_output) |
|
|
|
self.assertAllEqual(output.indices, [[0, 0, 0], [0, 1, 0], [0, 1, 3], |
|
[1, 1, 4], [1, 3, 2], [1, 3, 3]]) |
|
self.assertAllEqual(output.values, [0, 10, 13, 14, 32, 33]) |
|
self.assertAllEqual(output.dense_shape, [3, 6, 7]) |
|
|
|
@test_util.run_deprecated_v1 |
|
def testFeedInputUnavailableInGraphConstructionOk(self): |
|
with self.session(use_gpu=False) as sess: |
|
sp_input = array_ops.sparse_placeholder(dtype=dtypes.int32) |
|
new_shape = np.array([3, 6, 7], dtype=np.int64) |
|
sp_output = sparse_ops.sparse_reset_shape(sp_input, new_shape) |
|
|
|
output = sess.run(sp_output, |
|
feed_dict={sp_input: self._SparseTensorValue_2x5x6()}) |
|
|
|
self.assertAllEqual(output.indices, [[0, 0, 0], [0, 1, 0], [0, 1, 3], |
|
[1, 1, 4], [1, 3, 2], [1, 3, 3]]) |
|
self.assertAllEqual(output.values, [0, 10, 13, 14, 32, 33]) |
|
self.assertAllEqual(output.dense_shape, [3, 6, 7]) |
|
|
|
def testTightBoundingBox(self): |
|
with test_util.force_cpu(): |
|
sp_input = self._SparseTensor_2x5x6() |
|
sp_output = sparse_ops.sparse_reset_shape(sp_input) |
|
|
|
output = self.evaluate(sp_output) |
|
|
|
self.assertAllEqual(output.indices, [[0, 0, 0], [0, 1, 0], [0, 1, 3], |
|
[1, 1, 4], [1, 3, 2], [1, 3, 3]]) |
|
self.assertAllEqual(output.values, [0, 10, 13, 14, 32, 33]) |
|
self.assertAllEqual(output.dense_shape, [2, 4, 5]) |
|
|
|
def testTightBoundingBoxEmpty(self): |
|
with test_util.force_cpu(): |
|
sp_input = self._SparseTensor_2x5x6_Empty() |
|
sp_output = sparse_ops.sparse_reset_shape(sp_input) |
|
|
|
output = self.evaluate(sp_output) |
|
|
|
self.assertAllEqual(output.indices.shape, [0, 3]) |
|
self.assertAllEqual(output.values.shape, [0]) |
|
self.assertAllEqual(output.dense_shape, [0, 0, 0]) |
|
|
|
def testInvalidRank(self): |
|
with test_util.force_cpu(): |
|
sp_input = self._SparseTensor_2x5x6() |
|
new_shape = np.array([3, 7], dtype=np.int64) |
|
|
|
with self.assertRaises(ValueError): |
|
sparse_ops.sparse_reset_shape(sp_input, new_shape) |
|
|
|
@test_util.run_deprecated_v1 |
|
def testInvalidRankNewShapeUnavailableInGraphConstruction(self): |
|
with self.session(use_gpu=False) as sess: |
|
new_shape = array_ops.placeholder(dtype=dtypes.int64) |
|
sp_input = self._SparseTensor_2x5x6() |
|
out = sparse_ops.sparse_reset_shape(sp_input, new_shape) |
|
|
|
with self.assertRaisesOpError("x == y did not hold element-wise"): |
|
sess.run(out, feed_dict={new_shape: np.array([3, 7], dtype=np.int64)}) |
|
|
|
def testInvalidDimensionSizeStatic(self): |
|
sp_input = self._SparseTensor_2x5x6() |
|
new_shape = np.array([3, 7, 5], dtype=np.int64) |
|
|
|
with self.assertRaisesRegex(ValueError, "should have dimension sizes"): |
|
sparse_ops.sparse_reset_shape(sp_input, new_shape) |
|
|
|
@test_util.run_deprecated_v1 |
|
def testInvalidDimensionSizeDynamic(self): |
|
with self.session(use_gpu=False) as sess: |
|
sp_input = self._SparseTensor_2x5x6() |
|
new_shape = array_ops.placeholder(dtype=dtypes.int32) |
|
out = sparse_ops.sparse_reset_shape(sp_input, new_shape) |
|
|
|
with self.assertRaisesOpError("x <= y did not hold element-wise"): |
|
sess.run(out, feed_dict={new_shape: [3, 7, 5]}) |
|
|
|
@test_util.run_deprecated_v1 |
|
def testInvalidDimensionSizeInputUnavailableInGraphConstruction(self): |
|
sp_input = array_ops.sparse_placeholder(dtype=dtypes.int32) |
|
with self.session(use_gpu=False) as sess: |
|
new_shape = np.array([3, 7, 5], dtype=np.int64) |
|
out = sparse_ops.sparse_reset_shape(sp_input, new_shape) |
|
|
|
with self.assertRaisesOpError("x <= y did not hold element-wise"): |
|
sess.run(out, feed_dict={sp_input: self._SparseTensorValue_2x5x6()}) |
|
|
|
|
|
class SparseFillEmptyRowsTest(test_util.TensorFlowTestCase): |
|
|
|
def _SparseTensorValue_5x6(self, dtype=np.int32): |
|
ind = np.array([[0, 0], [1, 0], [1, 3], [1, 4], [3, 2], [3, 3]]) |
|
val = np.array([0, 10, 13, 14, 32, 33]) |
|
shape = np.array([5, 6]) |
|
return sparse_tensor.SparseTensorValue( |
|
np.array(ind, np.int64), np.array(val, dtype), np.array( |
|
shape, np.int64)) |
|
|
|
def _SparseTensor_5x6(self): |
|
return sparse_tensor.SparseTensor.from_value(self._SparseTensorValue_5x6()) |
|
|
|
def _SparseTensor_String5x6(self): |
|
ind = np.array([[0, 0], [1, 0], [1, 3], [1, 4], [3, 2], [3, 3]]) |
|
val = np.array(["a", "b", "c", "d", "e", "f"]) |
|
shape = np.array([5, 6]) |
|
return sparse_tensor.SparseTensor( |
|
constant_op.constant(ind, dtypes.int64), |
|
constant_op.constant(val, dtypes.string), |
|
constant_op.constant(shape, dtypes.int64)) |
|
|
|
def _SparseTensor_2x6(self): |
|
ind = np.array([[0, 0], [1, 0], [1, 3], [1, 4]]) |
|
val = np.array([0, 10, 13, 14]) |
|
shape = np.array([2, 6]) |
|
return sparse_tensor.SparseTensor( |
|
constant_op.constant(ind, dtypes.int64), |
|
constant_op.constant(val, dtypes.int32), |
|
constant_op.constant(shape, dtypes.int64)) |
|
|
|
def testFillNumber(self): |
|
with test_util.use_gpu(): |
|
for sp_input in (self._SparseTensorValue_5x6(), self._SparseTensor_5x6()): |
|
sp_output, empty_row_indicator = ( |
|
sparse_ops.sparse_fill_empty_rows(sp_input, -1)) |
|
|
|
output, empty_row_indicator_out = self.evaluate( |
|
[sp_output, empty_row_indicator]) |
|
|
|
self.assertAllEqual( |
|
output.indices, |
|
[[0, 0], [1, 0], [1, 3], [1, 4], [2, 0], [3, 2], [3, 3], [4, 0]]) |
|
self.assertAllEqual(output.values, [0, 10, 13, 14, -1, 32, 33, -1]) |
|
self.assertAllEqual(output.dense_shape, [5, 6]) |
|
self.assertAllEqual(empty_row_indicator_out, |
|
np.array([0, 0, 1, 0, 1]).astype(np.bool_)) |
|
|
|
@test_util.run_deprecated_v1 |
|
def testFillFloat(self): |
|
with self.session(): |
|
values = constant_op.constant( |
|
[0.0, 10.0, 13.0, 14.0, 32.0, 33.0], dtype=dtypes.float64) |
|
default_value = constant_op.constant(-1.0, dtype=dtypes.float64) |
|
sp_input = sparse_tensor.SparseTensorValue( |
|
indices=np.array([[0, 0], [1, 0], [1, 3], [1, 4], [3, 2], [3, 3]]), |
|
values=values, |
|
dense_shape=np.array([5, 6])) |
|
sp_output, empty_row_indicator = (sparse_ops.sparse_fill_empty_rows( |
|
sp_input, default_value)) |
|
output, empty_row_indicator_out = self.evaluate( |
|
[sp_output, empty_row_indicator]) |
|
|
|
self.assertAllEqual(output.indices, [[0, 0], [1, 0], [1, 3], [1, 4], |
|
[2, 0], [3, 2], [3, 3], [4, 0]]) |
|
self.assertAllClose(output.values, [0, 10, 13, 14, -1, 32, 33, -1]) |
|
self.assertAllEqual(output.dense_shape, [5, 6]) |
|
self.assertAllEqual(empty_row_indicator_out, |
|
np.array([0, 0, 1, 0, 1]).astype(np.bool_)) |
|
|
|
values_grad_err = gradient_checker.compute_gradient_error( |
|
values, values.shape.as_list(), sp_output.values, [8], delta=1e-8) |
|
self.assertGreater(values_grad_err, 0) |
|
self.assertLess(values_grad_err, 1e-8) |
|
|
|
default_value_grad_err = gradient_checker.compute_gradient_error( |
|
default_value, |
|
default_value.shape.as_list(), |
|
sp_output.values, [8], |
|
delta=1e-8) |
|
self.assertGreater(default_value_grad_err, 0) |
|
self.assertLess(default_value_grad_err, 1e-8) |
|
|
|
def testFillString(self): |
|
with test_util.force_cpu(): |
|
sp_input = self._SparseTensor_String5x6() |
|
sp_output, empty_row_indicator = ( |
|
sparse_ops.sparse_fill_empty_rows(sp_input, "")) |
|
|
|
output, empty_row_indicator_out = self.evaluate( |
|
[sp_output, empty_row_indicator]) |
|
|
|
self.assertAllEqual( |
|
output.indices, |
|
[[0, 0], [1, 0], [1, 3], [1, 4], [2, 0], [3, 2], [3, 3], [4, 0]]) |
|
self.assertAllEqual(output.values, |
|
[b"a", b"b", b"c", b"d", b"", b"e", b"f", b""]) |
|
self.assertAllEqual(output.dense_shape, [5, 6]) |
|
self.assertAllEqual(empty_row_indicator_out, |
|
np.array([0, 0, 1, 0, 1]).astype(np.bool_)) |
|
|
|
def testNoEmptyRows(self): |
|
with test_util.use_gpu(): |
|
sp_input = self._SparseTensor_2x6() |
|
sp_output, empty_row_indicator = ( |
|
sparse_ops.sparse_fill_empty_rows(sp_input, -1)) |
|
|
|
output, empty_row_indicator_out = self.evaluate( |
|
[sp_output, empty_row_indicator]) |
|
|
|
self.assertAllEqual(output.indices, [[0, 0], [1, 0], [1, 3], [1, 4]]) |
|
self.assertAllEqual(output.values, [0, 10, 13, 14]) |
|
self.assertAllEqual(output.dense_shape, [2, 6]) |
|
self.assertAllEqual(empty_row_indicator_out, np.zeros(2).astype(np.bool_)) |
|
|
|
def testNoEmptyRowsAndUnordered(self): |
|
with test_util.use_gpu(): |
|
sp_input = sparse_tensor.SparseTensor( |
|
indices=np.array([[1, 2], [1, 3], [0, 1], [0, 3]]), |
|
values=np.array([1, 3, 2, 4]), |
|
dense_shape=np.array([2, 5])) |
|
sp_output, empty_row_indicator = ( |
|
sparse_ops.sparse_fill_empty_rows(sp_input, -1)) |
|
|
|
output, empty_row_indicator_out = self.evaluate( |
|
[sp_output, empty_row_indicator]) |
|
|
|
self.assertAllEqual(output.indices, [[0, 1], [0, 3], [1, 2], [1, 3]]) |
|
self.assertAllEqual(output.values, [2, 4, 1, 3]) |
|
self.assertAllEqual(output.dense_shape, [2, 5]) |
|
self.assertAllEqual(empty_row_indicator_out, np.zeros(2).astype(np.bool_)) |
|
|
|
def testUnordered(self): |
|
with test_util.use_gpu(): |
|
sp_input = sparse_tensor.SparseTensor( |
|
indices=np.array([[2, 3], [2, 2], [0, 1], [0, 3]]), |
|
values=np.array([1, 3, 2, 4]), |
|
dense_shape=np.array([3, 5])) |
|
sp_output, empty_row_indicator = ( |
|
sparse_ops.sparse_fill_empty_rows(sp_input, -1)) |
|
|
|
output, empty_row_indicator_out = self.evaluate( |
|
[sp_output, empty_row_indicator]) |
|
|
|
self.assertAllEqual(output.indices, |
|
[[0, 1], [0, 3], [1, 0], [2, 3], [2, 2]]) |
|
self.assertAllEqual(output.values, [2, 4, -1, 1, 3]) |
|
self.assertAllEqual(output.dense_shape, [3, 5]) |
|
self.assertAllEqual(empty_row_indicator_out, [False, True, False]) |
|
|
|
def testEmptyIndicesTensor(self): |
|
with test_util.use_gpu(): |
|
sp_input = sparse_tensor.SparseTensor( |
|
indices=np.ones([0, 2]), |
|
values=np.ones([0]), |
|
dense_shape=np.array([2, 5])) |
|
sp_output, empty_row_indicator = ( |
|
sparse_ops.sparse_fill_empty_rows(sp_input, -1)) |
|
|
|
output, empty_row_indicator_out = self.evaluate( |
|
[sp_output, empty_row_indicator]) |
|
|
|
self.assertAllEqual(output.indices, [[0, 0], [1, 0]]) |
|
self.assertAllEqual(output.values, [-1, -1]) |
|
self.assertAllEqual(output.dense_shape, [2, 5]) |
|
self.assertAllEqual(empty_row_indicator_out, np.ones(2).astype(np.bool_)) |
|
|
|
def testEmptyOutput(self): |
|
with test_util.use_gpu(): |
|
sp_input = sparse_tensor.SparseTensor( |
|
indices=np.ones([0, 2]), |
|
values=np.ones([0]), |
|
dense_shape=np.array([0, 3])) |
|
sp_output, empty_row_indicator = ( |
|
sparse_ops.sparse_fill_empty_rows(sp_input, -1)) |
|
|
|
output, empty_row_indicator_out = self.evaluate( |
|
[sp_output, empty_row_indicator]) |
|
|
|
self.assertAllEqual(output.indices, np.ones([0, 2])) |
|
self.assertAllEqual(output.values, np.ones([0])) |
|
self.assertAllEqual(output.dense_shape, [0, 3]) |
|
self.assertAllEqual(empty_row_indicator_out, []) |
|
|
|
def testInvalidIndices(self): |
|
with test_util.use_gpu(): |
|
sp_input = sparse_tensor.SparseTensor( |
|
indices=np.array([[1, 2], [1, 3], [99, 1], [99, 3]]), |
|
values=np.array([1, 3, 2, 4]), |
|
dense_shape=np.array([2, 5])) |
|
|
|
with self.assertRaisesRegex(errors.InvalidArgumentError, |
|
r"indices\(2, 0\) is invalid"): |
|
self.evaluate(sparse_ops.sparse_fill_empty_rows(sp_input, -1)) |
|
|
|
|
|
class SparseAddTest(test_util.TensorFlowTestCase): |
|
|
|
def testValuesInVariable(self): |
|
|
|
|
|
|
|
indices = constant_op.constant([[0]], dtype=dtypes.int64) |
|
values = variables.Variable([1], trainable=False, dtype=dtypes.float32) |
|
shape = constant_op.constant([1], dtype=dtypes.int64) |
|
|
|
sp_input = sparse_tensor.SparseTensor(indices, values, shape) |
|
sp_output = sparse_ops.sparse_add(sp_input, sp_input) |
|
|
|
with test_util.force_cpu(): |
|
self.evaluate(variables.global_variables_initializer()) |
|
output = self.evaluate(sp_output) |
|
self.assertAllEqual(output.values, [2]) |
|
|
|
|
|
class SparseReduceTest(test_util.TensorFlowTestCase): |
|
|
|
|
|
|
|
|
|
ind = np.array([[0, 0], [0, 2], [1, 1]]).astype(np.int64) |
|
vals = np.array([1, 1, 1]).astype(np.int32) |
|
dense_shape = np.array([2, 3]).astype(np.int64) |
|
|
|
def _compare(self, sp_t, reduction_axes, ndims, keep_dims, do_sum): |
|
densified = self.evaluate(sparse_ops.sparse_tensor_to_dense(sp_t)) |
|
|
|
np_ans = densified |
|
if reduction_axes is None: |
|
if do_sum: |
|
np_ans = np.sum(np_ans, keepdims=keep_dims) |
|
else: |
|
np_ans = np.max(np_ans, keepdims=keep_dims) |
|
else: |
|
if not isinstance(reduction_axes, list): |
|
reduction_axes = [reduction_axes] |
|
reduction_axes = np.array(reduction_axes).astype(np.int32) |
|
|
|
reduction_axes = (reduction_axes + ndims) % ndims |
|
|
|
reduction_axes.sort() |
|
for ra in reduction_axes.ravel()[::-1]: |
|
if do_sum: |
|
np_ans = np.sum(np_ans, axis=ra, keepdims=keep_dims) |
|
else: |
|
np_ans = np.max(np_ans, axis=ra, keepdims=keep_dims) |
|
|
|
with self.cached_session(): |
|
if do_sum: |
|
tf_dense_ans = sparse_ops.sparse_reduce_sum(sp_t, reduction_axes, |
|
keep_dims) |
|
else: |
|
tf_dense_ans = sparse_ops.sparse_reduce_max(sp_t, reduction_axes, |
|
keep_dims) |
|
out_dense = self.evaluate(tf_dense_ans) |
|
|
|
if do_sum: |
|
tf_sparse_ans = sparse_ops.sparse_reduce_sum_sparse(sp_t, |
|
reduction_axes, |
|
keep_dims) |
|
else: |
|
tf_sparse_ans = sparse_ops.sparse_reduce_max_sparse(sp_t, |
|
reduction_axes, |
|
keep_dims) |
|
|
|
out_sparse = sparse_ops.sparse_tensor_to_dense(tf_sparse_ans) |
|
|
|
self.assertAllClose(np_ans, out_dense) |
|
self.assertAllClose(np_ans, out_sparse) |
|
|
|
def _compare_all(self, sp_t, reduction_axes, ndims): |
|
self._compare(sp_t, reduction_axes, ndims, False, False) |
|
self._compare(sp_t, reduction_axes, ndims, False, True) |
|
self._compare(sp_t, reduction_axes, ndims, True, False) |
|
self._compare(sp_t, reduction_axes, ndims, True, True) |
|
|
|
|
|
def disabledtestSimpleAndRandomInputs(self): |
|
if np.__version__ == "1.13.0": |
|
self.skipTest("numpy 1.13.0 bug") |
|
|
|
sp_t = sparse_tensor.SparseTensor(self.ind, self.vals, self.dense_shape) |
|
|
|
with test_util.force_cpu(): |
|
self._compare_all(sp_t, None, ndims=2) |
|
self._compare_all(sp_t, 0, ndims=2) |
|
self._compare_all(sp_t, [1], ndims=2) |
|
self._compare_all(sp_t, [0, 1], ndims=2) |
|
self._compare_all(sp_t, [1, 0], ndims=2) |
|
self._compare_all(sp_t, [-1], ndims=2) |
|
self._compare_all(sp_t, [1, -2], ndims=2) |
|
|
|
np.random.seed(1618) |
|
test_dims = [(1618, 1, 11, 7, 1), (1,), (1, 1, 1)] |
|
with test_util.force_cpu(): |
|
for dims in test_dims: |
|
sp_t, unused_nnz = _sparsify(np.random.randn(*dims)) |
|
|
|
self._compare_all(sp_t, None, ndims=len(dims)) |
|
|
|
for d in range(1, len(dims) + 1): |
|
axes = np.random.choice(len(dims), size=d, replace=False).tolist() |
|
self._compare_all(sp_t, axes, ndims=len(dims)) |
|
|
|
def testInvalidAxes(self): |
|
sp_t = sparse_tensor.SparseTensor(self.ind, self.vals, self.dense_shape) |
|
with test_util.force_cpu(): |
|
with self.assertRaisesOpError("Invalid reduction dimension -3"): |
|
self.evaluate(sparse_ops.sparse_reduce_sum(sp_t, -3)) |
|
with self.assertRaisesOpError("Invalid reduction dimension 2"): |
|
self.evaluate(sparse_ops.sparse_reduce_sum(sp_t, 2)) |
|
with self.assertRaisesOpError("Invalid reduction dimension -3"): |
|
self.evaluate(sparse_ops.sparse_reduce_max(sp_t, -3)) |
|
with self.assertRaisesOpError("Invalid reduction dimension 2"): |
|
self.evaluate(sparse_ops.sparse_reduce_max(sp_t, 2)) |
|
|
|
@test_util.run_deprecated_v1 |
|
def testGradient(self): |
|
np.random.seed(8161) |
|
test_dims = [(11, 1, 5, 7, 1), (2, 2)] |
|
with self.session(use_gpu=False): |
|
for dims in test_dims: |
|
sp_t, nnz = _sparsify(np.random.randn(*dims)) |
|
|
|
for d in range(1, len(dims) + 1): |
|
axes = np.random.choice(len(dims), size=d, replace=False).tolist() |
|
reduced = sparse_ops.sparse_reduce_sum(sp_t, axes) |
|
|
|
err = gradient_checker.compute_gradient_error( |
|
sp_t.values, (nnz,), reduced, |
|
self.evaluate(reduced).shape) |
|
self.assertLess(err, 1e-3) |
|
|
|
|
|
reduced = sparse_ops.sparse_reduce_sum(sp_t, -1) |
|
err = gradient_checker.compute_gradient_error( |
|
sp_t.values, (nnz,), reduced, |
|
self.evaluate(reduced).shape) |
|
self.assertLess(err, 1e-3) |
|
|
|
def _testSparseReduceShape(self, sp_t, reduction_axes, ndims, keep_dims, |
|
do_sum): |
|
densified = self.evaluate(sparse_ops.sparse_tensor_to_dense(sp_t)) |
|
|
|
np_op = np.sum |
|
tf_op = sparse_ops.sparse_reduce_sum |
|
if not do_sum: |
|
np_op = np.max |
|
tf_op = sparse_ops.sparse_reduce_max |
|
|
|
np_ans = densified |
|
if reduction_axes is None: |
|
np_ans = np_op(np_ans, keepdims=keep_dims) |
|
else: |
|
if not isinstance(reduction_axes, list): |
|
reduction_axes = [reduction_axes] |
|
reduction_axes = np.array(reduction_axes).astype(np.int32) |
|
|
|
reduction_axes = (reduction_axes + ndims) % ndims |
|
|
|
reduction_axes.sort() |
|
for ra in reduction_axes.ravel()[::-1]: |
|
np_ans = np_op(np_ans, axis=ra, keepdims=keep_dims) |
|
|
|
tf_ans = tf_op(sp_t, reduction_axes, keep_dims) |
|
self.assertAllEqual(np_ans.shape, tf_ans.get_shape().as_list()) |
|
|
|
|
|
def disabledtestSparseReduceSumOrMaxShape(self): |
|
sp_t = sparse_tensor.SparseTensor(self.ind, self.vals, self.dense_shape) |
|
|
|
with test_util.force_cpu(): |
|
for do_sum in [True, False]: |
|
for keep_dims in [True, False]: |
|
self._testSparseReduceShape(sp_t, None, 2, keep_dims, do_sum) |
|
self._testSparseReduceShape(sp_t, 0, 2, keep_dims, do_sum) |
|
self._testSparseReduceShape(sp_t, [1], 2, keep_dims, do_sum) |
|
self._testSparseReduceShape(sp_t, [0, 1], 2, keep_dims, do_sum) |
|
self._testSparseReduceShape(sp_t, [1, 0], 2, keep_dims, do_sum) |
|
self._testSparseReduceShape(sp_t, [-1], 2, keep_dims, do_sum) |
|
self._testSparseReduceShape(sp_t, [1, -2], 2, keep_dims, do_sum) |
|
|
|
def testIntegerOverflow(self): |
|
with self.cached_session(use_gpu=False): |
|
with self.assertRaises(errors.InvalidArgumentError): |
|
res = sparse_ops.gen_sparse_ops.sparse_reduce_max( |
|
input_indices=[[1, 2], [3, 4]], |
|
input_shape=[2**32, 2**31], |
|
input_values=[1, 3], |
|
reduction_axes=[0], |
|
keep_dims=False, |
|
name=None) |
|
|
|
self.evaluate(res) |
|
with self.assertRaises(errors.InvalidArgumentError): |
|
res = sparse_ops.gen_sparse_ops.sparse_reduce_max_sparse( |
|
input_indices=[[1, 2], [3, 4]], |
|
input_shape=[2**32, 2**31], |
|
input_values=[1, 3], |
|
reduction_axes=[0], |
|
keep_dims=False, |
|
name=None) |
|
|
|
self.evaluate(res) |
|
with self.assertRaises(errors.InvalidArgumentError): |
|
res = sparse_ops.gen_sparse_ops.sparse_reduce_sum( |
|
input_indices=[[1, 2], [3, 4]], |
|
input_shape=[2**32, 2**31], |
|
input_values=[1, 3], |
|
reduction_axes=[0], |
|
keep_dims=False, |
|
name=None) |
|
|
|
self.evaluate(res) |
|
|
|
|
|
class SparseMathOpsTest(test_util.TensorFlowTestCase): |
|
|
|
def _check(self, result_tensor, result_np, input_sp_t): |
|
self.assertTrue(isinstance(result_tensor, sparse_tensor.SparseTensor)) |
|
self.assertTrue(isinstance(input_sp_t, sparse_tensor.SparseTensor)) |
|
self.assertAllCloseAccordingToType(input_sp_t.indices, |
|
result_tensor.indices) |
|
self.assertAllCloseAccordingToType(input_sp_t.dense_shape, |
|
result_tensor.dense_shape) |
|
|
|
res_densified = sparse_ops.sparse_to_dense( |
|
result_tensor.indices, result_tensor.dense_shape, result_tensor.values) |
|
self.assertAllCloseAccordingToType(result_np, res_densified) |
|
|
|
@test_util.run_deprecated_v1 |
|
def testCwiseShapeValidation(self): |
|
|
|
with test_util.force_cpu(): |
|
a = array_ops.ones([3, 4, 1], dtype=dtypes.int32) |
|
b = sparse_tensor.SparseTensor([[0, 0, 1, 0], [0, 0, 3, 0]], [10, 20], |
|
[1, 1, 4, 2]) |
|
c = a * b |
|
with self.assertRaisesRegex( |
|
errors.InvalidArgumentError, |
|
"broadcasts dense to sparse only; got incompatible shapes"): |
|
self.evaluate(c) |
|
|
|
def testCwiseDivAndMul(self): |
|
np.random.seed(1618) |
|
sp_shapes = [(10, 10, 10), (5, 5), (1618,), (3, 3, 7)] |
|
dense_shapes = [(10, 10, 1), (5, 5), (1,), (1, 7)] |
|
|
|
with test_util.force_cpu(): |
|
for dtype in [np.float32, np.float64, np.int32, np.int64]: |
|
for sp_shape, dense_shape in zip(sp_shapes, dense_shapes): |
|
sp_vals_np = np.random.rand(*sp_shape).astype(dtype) + 1 |
|
dense_vals_np = np.random.rand(*dense_shape).astype(dtype) + 1 |
|
sp_t, unused_nnz = _sparsify(sp_vals_np, thresh=1.5) |
|
sp_t_densified = sparse_ops.sparse_tensor_to_dense(sp_t) |
|
dense_t = constant_op.constant(dense_vals_np) |
|
|
|
self._check(sp_t / dense_t, sp_t_densified / dense_vals_np, sp_t) |
|
|
|
self._check(sp_t * dense_t, sp_t_densified * dense_vals_np, sp_t) |
|
self._check(dense_t * sp_t, sp_t_densified * dense_vals_np, sp_t) |
|
|
|
if dtype in [np.int32, np.int64]: |
|
res = sp_t / dense_t |
|
self.assertEqual(res.values.dtype, np.float64) |
|
|
|
def testCwiseAdd(self): |
|
with test_util.force_cpu(): |
|
|
|
indices = [[0, 0], [1, 1]] |
|
vals = [1, 1] |
|
shape = (2, 2) |
|
|
|
sp_t = sparse_tensor.SparseTensor(indices, vals, shape) |
|
dense_t = array_ops.ones(shape, dtype=dtypes.int32) |
|
self._check( |
|
sparse_ops.sparse_dense_cwise_add(sp_t, dense_t), |
|
np.identity(2) * 2, sp_t) |
|
|
|
|
|
dense_t = array_ops.ones([1], dtype=dtypes.int32) |
|
self._check( |
|
sparse_ops.sparse_dense_cwise_add(sp_t, dense_t), |
|
np.identity(2) * 2, sp_t) |
|
|
|
@test_util.run_deprecated_v1 |
|
def testGradients(self): |
|
np.random.seed(1618) |
|
sp_shapes = [(10, 10, 10), (5, 5), (1618,), (3, 3, 7)] |
|
dense_shapes = [(10, 10, 1), (5, 5), (1,), (1, 7)] |
|
|
|
with self.session(use_gpu=False): |
|
for dtype in [np.float32, np.float64]: |
|
for sp_shape, dense_shape in zip(sp_shapes, dense_shapes): |
|
sp_vals_np = np.random.rand(*sp_shape).astype(dtype) + 1 |
|
dense_vals_np = np.random.rand(*dense_shape).astype(dtype) + 1 |
|
sp_t, nnz = _sparsify(sp_vals_np, thresh=1.5) |
|
dense_t = constant_op.constant(dense_vals_np) |
|
|
|
cmul = sp_t * dense_t |
|
err = gradient_checker.compute_gradient_error([sp_t.values, dense_t], |
|
[(nnz,), dense_shape], |
|
cmul.values, (nnz,)) |
|
self.assertLess(err, 1e-4) |
|
|
|
cdiv = sp_t / dense_t |
|
err = gradient_checker.compute_gradient_error(sp_t.values, (nnz,), |
|
cdiv.values, (nnz,)) |
|
self.assertLess(err, 1e-4) |
|
err = gradient_checker.compute_gradient_error( |
|
dense_t, |
|
dense_shape, |
|
cdiv.values, (nnz,), |
|
x_init_value=dense_vals_np) |
|
self.assertLess(err, 2e-4) |
|
|
|
|
|
class SparseSoftmaxTest(test_util.TensorFlowTestCase): |
|
|
|
@test_util.run_deprecated_v1 |
|
def testEquivalentToDensified(self): |
|
np.random.seed(1618) |
|
n, m = np.random.choice(20, size=2) |
|
|
|
for dtype in [np.float32, np.float64]: |
|
sp_vals_np = np.random.rand(n, m).astype(dtype) |
|
|
|
batched_sp_t, unused_nnz1 = _sparsify( |
|
sp_vals_np.reshape((1, n, m)), thresh=0.) |
|
|
|
with test_util.force_cpu(): |
|
densified = constant_op.constant(sp_vals_np) |
|
|
|
sp_result = self.evaluate( |
|
sparse_ops.sparse_softmax(batched_sp_t)).values.reshape((n, m)) |
|
dense_result = nn_ops.softmax(densified) |
|
|
|
self.assertAllClose(dense_result, sp_result) |
|
|
|
def testHigherRanks(self): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
shapes = [[2, 2, 2], [2, 1, 2, 2]] |
|
for shape in shapes: |
|
values = np.asarray( |
|
[0., np.e, 1., 0., np.e, 0., np.e, np.e]).reshape(shape) |
|
sp_t, unused_nnz = _sparsify(values, thresh=1e-2) |
|
expected_values = [1., 1., 1., .5, .5] |
|
|
|
with test_util.force_cpu(): |
|
result = sparse_ops.sparse_softmax(sp_t) |
|
|
|
self.assertAllEqual(expected_values, result.values) |
|
self.assertAllEqual(sp_t.indices, result.indices) |
|
self.assertAllEqual(shape, result.dense_shape) |
|
|
|
@test_util.run_deprecated_v1 |
|
def testGradient(self): |
|
x_shape = [2, 5, 10] |
|
with self.cached_session(use_gpu=False): |
|
for dtype in [np.float32, np.float64]: |
|
x_np = np.random.randn(*x_shape).astype(dtype) |
|
x_tf, nnz = _sparsify(x_np) |
|
y_tf = sparse_ops.sparse_softmax(x_tf) |
|
err = gradient_checker.compute_gradient_error(x_tf.values, (nnz,), |
|
y_tf.values, (nnz,)) |
|
self.assertLess(err, 1e-4) |
|
|
|
def testIntegerOverflow(self): |
|
with self.cached_session(use_gpu=False): |
|
with self.assertRaises(errors.InvalidArgumentError): |
|
res = sparse_ops.gen_sparse_ops.sparse_softmax( |
|
sp_indices=[[1, 1]], |
|
sp_values=[2.0], |
|
sp_shape=[2**32, 2**31], |
|
name=None) |
|
|
|
self.evaluate(res) |
|
|
|
def testReshapeNegativeShape(self): |
|
with self.cached_session(use_gpu=False): |
|
with self.assertRaises(errors.InvalidArgumentError): |
|
res = sparse_ops.gen_sparse_ops.sparse_softmax( |
|
sp_indices=[[1, 1]], sp_values=[2.0], sp_shape=[-1, 1], name=None) |
|
|
|
self.evaluate(res) |
|
|
|
|
|
class SparseMinimumMaximumTest(test_util.TensorFlowTestCase): |
|
|
|
def _assertSparseTensorValueEqual(self, a, b): |
|
self.assertAllEqual(a.indices, b.indices) |
|
self.assertAllEqual(a.values, b.values) |
|
self.assertAllEqual(a.dense_shape, b.dense_shape) |
|
|
|
def testBasic(self): |
|
with test_util.force_cpu(): |
|
|
|
sp_zero = sparse_tensor.SparseTensor([[0]], [0], [7]) |
|
sp_one = sparse_tensor.SparseTensor([[0]], [1], [7]) |
|
max_tf = sparse_ops.sparse_maximum(sp_zero, sp_one) |
|
min_tf = sparse_ops.sparse_minimum(sp_zero, sp_one) |
|
self._assertSparseTensorValueEqual(sp_one, max_tf) |
|
self._assertSparseTensorValueEqual(sp_zero, min_tf) |
|
|
|
|
|
sp_zero = sparse_tensor.SparseTensor([[0]], [0], [7]) |
|
sp_zero_2 = sparse_tensor.SparseTensor([[1]], [0], [7]) |
|
expected = sparse_tensor.SparseTensor([[0], [1]], [0, 0], [7]) |
|
max_tf = sparse_ops.sparse_maximum(sp_zero, sp_zero_2) |
|
min_tf = sparse_ops.sparse_minimum(sp_zero, sp_zero_2) |
|
self._assertSparseTensorValueEqual(expected, max_tf) |
|
self._assertSparseTensorValueEqual(expected, min_tf) |
|
|
|
@test_util.run_deprecated_v1 |
|
def testRandom(self): |
|
np.random.seed(1618) |
|
shapes = [(13,), (6, 8), (1, 7, 1)] |
|
for shape in shapes: |
|
for dtype in [np.int32, np.int64, np.float16, np.float32, np.float64]: |
|
a_np = np.random.randn(*shape).astype(dtype) |
|
b_np = np.random.randn(*shape).astype(dtype) |
|
sp_a, unused_a_nnz = _sparsify(a_np, thresh=-.5) |
|
sp_b, unused_b_nnz = _sparsify(b_np, thresh=-.5) |
|
|
|
with self.cached_session(use_gpu=False): |
|
maximum_tf = sparse_ops.sparse_maximum(sp_a, sp_b) |
|
maximum_tf_densified = sparse_ops.sparse_tensor_to_dense( |
|
maximum_tf).eval() |
|
minimum_tf = sparse_ops.sparse_minimum(sp_a, sp_b) |
|
minimum_tf_densified = sparse_ops.sparse_tensor_to_dense( |
|
minimum_tf).eval() |
|
|
|
a_densified = sparse_ops.sparse_tensor_to_dense(sp_a).eval() |
|
b_densified = sparse_ops.sparse_tensor_to_dense(sp_b).eval() |
|
|
|
self.assertAllEqual( |
|
np.maximum(a_densified, b_densified), maximum_tf_densified) |
|
self.assertAllEqual( |
|
np.minimum(a_densified, b_densified), minimum_tf_densified) |
|
|
|
def testMismatchedShapes(self): |
|
with test_util.force_cpu(): |
|
sp_zero = sparse_tensor.SparseTensor([[0, 0]], [0], [1, 1]) |
|
sp_one = sparse_tensor.SparseTensor([[0]], [1], [2]) |
|
with self.assertRaisesOpError("Operands do not have the same ranks"): |
|
self.evaluate(sparse_ops.sparse_maximum(sp_zero, sp_one)) |
|
|
|
sp_zero = sparse_tensor.SparseTensor([[0]], [0], [1]) |
|
sp_one = sparse_tensor.SparseTensor([[0]], [1], [2]) |
|
with self.assertRaisesOpError("Operands' shapes do not match"): |
|
self.evaluate(sparse_ops.sparse_maximum(sp_zero, sp_one)) |
|
|
|
|
|
class SparseTransposeTest(test.TestCase): |
|
|
|
def testTranspose(self): |
|
if np.__version__ == "1.13.0": |
|
self.skipTest("numpy 1.13.0 bug") |
|
|
|
with test_util.force_cpu(): |
|
np.random.seed(1618) |
|
shapes = [np.random.randint(1, 10, size=rank) for rank in range(1, 6)] |
|
for shape in shapes: |
|
for dtype in [np.int32, np.int64, np.float32, np.float64]: |
|
dn_input = np.random.randn(*shape).astype(dtype) |
|
rank = self.evaluate(array_ops.rank(dn_input)) |
|
perm = np.random.choice(rank, rank, False) |
|
sp_input, unused_a_nnz = _sparsify(dn_input) |
|
sp_trans = sparse_ops.sparse_transpose(sp_input, perm=perm) |
|
dn_trans = sparse_ops.sparse_tensor_to_dense(sp_trans) |
|
expected_trans = array_ops.transpose(dn_input, perm=perm) |
|
self.assertAllEqual(expected_trans.shape, sp_trans.get_shape()) |
|
self.assertAllEqual(dn_trans, expected_trans) |
|
|
|
|
|
class SparsePlaceholderTest(test.TestCase): |
|
|
|
@test_util.run_deprecated_v1 |
|
def testPlaceholder(self): |
|
foo = array_ops.sparse_placeholder(dtypes.float32, shape=(10, 47)) |
|
self.assertAllEqual([10, 47], foo.get_shape()) |
|
self.assertAllEqual([None, 2], foo.indices.get_shape().as_list()) |
|
|
|
@test_util.run_deprecated_v1 |
|
def testPartialShapePlaceholder(self): |
|
foo = array_ops.sparse_placeholder(dtypes.float32, shape=(None, 47)) |
|
self.assertAllEqual([None, 47], foo.get_shape().as_list()) |
|
self.assertAllEqual([None, 2], foo.indices.get_shape().as_list()) |
|
|
|
@test_util.run_deprecated_v1 |
|
def testNoShapePlaceholder(self): |
|
foo = array_ops.sparse_placeholder(dtypes.float32, shape=None) |
|
self.assertAllEqual(None, foo.get_shape()) |
|
self.assertAllEqual([None, None], foo.indices.get_shape().as_list()) |
|
|
|
|
|
if __name__ == "__main__": |
|
googletest.main() |
|
|