# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for array_ops.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import re import time import unittest from absl.testing import parameterized import numpy as np from tensorflow.python.client import session from tensorflow.python.eager import backprop from tensorflow.python.eager import context from tensorflow.python.eager import def_function from tensorflow.python.framework import config from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import errors from tensorflow.python.framework import errors_impl from tensorflow.python.framework import ops from tensorflow.python.framework import sparse_tensor from tensorflow.python.framework import tensor_shape from tensorflow.python.framework import tensor_spec from tensorflow.python.framework import test_ops from tensorflow.python.framework import test_util from tensorflow.python.ops import array_ops from tensorflow.python.ops import gen_array_ops from tensorflow.python.ops import gradient_checker_v2 from tensorflow.python.ops import init_ops from tensorflow.python.ops import list_ops from tensorflow.python.ops import map_fn from tensorflow.python.ops import math_ops from tensorflow.python.ops import resource_variable_ops from tensorflow.python.ops import state_ops from tensorflow.python.ops import variable_scope from tensorflow.python.ops import variables from tensorflow.python.platform import test as test_lib @test_util.run_all_in_graph_and_eager_modes class BatchMatrixTransposeTest(test_util.TensorFlowTestCase): def testNonBatchMatrix(self): matrix = [[1, 2, 3], [4, 5, 6]] # Shape (2, 3) expected_transposed = [[1, 4], [2, 5], [3, 6]] # Shape (3, 2) transposed = array_ops.matrix_transpose(matrix) self.assertEqual((3, 2), transposed.get_shape()) self.assertAllEqual(expected_transposed, transposed) def testConjugate(self): m = [[1 + 1j, 2 + 2j, 3 + 3j], [4 + 4j, 5 + 5j, 6 + 6j]] expected_transposed = [[1 - 1j, 4 - 4j], [2 - 2j, 5 - 5j], [3 - 3j, 6 - 6j]] matrix = ops.convert_to_tensor(m) transposed = array_ops.matrix_transpose(matrix, conjugate=True) self.assertEqual((3, 2), transposed.get_shape()) self.assertAllEqual(expected_transposed, transposed) def testBatchMatrix(self): matrix_0 = [[1, 2, 3], [4, 5, 6]] matrix_0_t = [[1, 4], [2, 5], [3, 6]] matrix_1 = [[11, 22, 33], [44, 55, 66]] matrix_1_t = [[11, 44], [22, 55], [33, 66]] batch_matrix = [matrix_0, matrix_1] # Shape (2, 2, 3) expected_transposed = [matrix_0_t, matrix_1_t] # Shape (2, 3, 2) transposed = array_ops.matrix_transpose(batch_matrix) self.assertEqual((2, 3, 2), transposed.get_shape()) self.assertAllEqual(expected_transposed, transposed) def testNonBatchMatrixDynamicallyDefined(self): # needs explicit `constant` because lists are not automatically # converted to sensors when applying `transpose` below matrix = constant_op.constant([[1, 2, 3], [4, 5, 6]]) # Shape (2, 3) expected_transposed = [[1, 4], [2, 5], [3, 6]] # Shape (3, 2) @def_function.function(input_signature=[ tensor_spec.TensorSpec(shape=None, dtype=dtypes.int32) ]) def transpose(matrix): self.assertIs(matrix.shape.ndims, None) return array_ops.matrix_transpose(matrix) self.assertAllEqual(expected_transposed, transpose(matrix)) def testBatchMatrixDynamicallyDefined(self): matrix_0 = [[1, 2, 3], [4, 5, 6]] matrix_0_t = [[1, 4], [2, 5], [3, 6]] matrix_1 = [[11, 22, 33], [44, 55, 66]] matrix_1_t = [[11, 44], [22, 55], [33, 66]] # needs explicit `constant` because lists are not automatically # converted to sensors when applying `transpose` below batch_matrix = constant_op.constant([matrix_0, matrix_1]) # Shape (2, 2, 3) expected_transposed = [matrix_0_t, matrix_1_t] # Shape (2, 3, 2) @def_function.function(input_signature=[ tensor_spec.TensorSpec(shape=None, dtype=dtypes.int32) ]) def transpose(matrix): self.assertIs(matrix.shape.ndims, None) return array_ops.matrix_transpose(matrix) self.assertAllEqual(expected_transposed, transpose(batch_matrix)) def testTensorWithStaticRankLessThanTwoRaisesBecauseNotAMatrix(self): vector = [1, 2, 3] with self.assertRaisesRegex(ValueError, "should be a "): array_ops.matrix_transpose(vector) def testNarrowMatrixConjugateTranspose(self): for dtype in (dtypes.float32, dtypes.float64): for conjugate in (True, False): with self.subTest(complex_type=dtype, conjugate=conjugate): vector = math_ops.complex( constant_op.constant(0, dtype=dtype), math_ops.range(96, dtype=dtype)) column_vector = array_ops.expand_dims(vector, axis=-1) row_vector = array_ops.expand_dims(vector, axis=0) narrow_matrix = array_ops.tile(column_vector, [1, 2]) # [96, 2] expected_transposed = array_ops.tile(row_vector, [2, 1]) # [2, 96] if conjugate: expected_transposed = -expected_transposed transposed = array_ops.matrix_transpose( narrow_matrix, conjugate=conjugate) self.assertEqual((2, 96), transposed.get_shape()) self.assertAllEqual(expected_transposed, transposed) class BooleanMaskTest(test_util.TensorFlowTestCase): def setUp(self): self.rng = np.random.RandomState(42) def CheckVersusNumpy(self, ndims_mask, arr_shape, make_mask=None, axis=None): """Check equivalence between boolean_mask and numpy masking.""" if make_mask is None: make_mask = lambda shape: self.rng.randint(0, 2, size=shape).astype(bool) arr = np.random.rand(*arr_shape) mask = make_mask(arr_shape[:ndims_mask]) if axis is not None: mask = make_mask(arr_shape[axis:ndims_mask + axis]) if axis is None or axis == 0: masked_arr = arr[mask] elif axis == 1: masked_arr = arr[:, mask] elif axis == 2: masked_arr = arr[:, :, mask] masked_tensor = array_ops.boolean_mask(arr, mask, axis=axis) # Leading dimension size of masked_tensor is always unknown until runtime # since we don't how many elements will be kept. leading = 1 if axis is None else axis + 1 self.assertAllEqual(masked_tensor.get_shape()[leading:], masked_arr.shape[leading:]) self.assertAllClose(masked_arr, masked_tensor) def testMaskDim1ArrDim2Axis1(self): ndims_mask = 1 for arr_shape in [(1, 1), (2, 2), (2, 5)]: with self.subTest(arr_shape=arr_shape): self.CheckVersusNumpy(ndims_mask, arr_shape, axis=1) def testMaskDim2ArrDim2Axis1(self): ndims_mask = 2 for arr_shape in [(1, 1), (2, 2), (2, 5)]: with self.subTest(arr_shape=arr_shape): self.CheckVersusNumpy(ndims_mask, arr_shape, axis=1) def testMaskDim1ArrDim1(self): ndims_mask = 1 for arr_shape in [(1,), (2,), (3,), (10,)]: with self.subTest(arr_shape=arr_shape): self.CheckVersusNumpy(ndims_mask, arr_shape) def testMaskDim1ArrDim2(self): ndims_mask = 1 for arr_shape in [(1, 1), (2, 2), (2, 5)]: with self.subTest(arr_shape=arr_shape): self.CheckVersusNumpy(ndims_mask, arr_shape) def testMaskDim2ArrDim2(self): ndims_mask = 2 for arr_shape in [(1, 1), (2, 2), (2, 5)]: with self.subTest(arr_shape=arr_shape): self.CheckVersusNumpy(ndims_mask, arr_shape) def testMaskDim2ArrDim3(self): ndims_mask = 2 for arr_shape in [(1, 1, 1), (1, 2, 2), (2, 2, 1)]: with self.subTest(arr_shape=arr_shape): self.CheckVersusNumpy(ndims_mask, arr_shape) def testEmptyInput2D(self): mask = np.array([True, False]) arr = np.array([[], []]).astype(np.float32) numpy_result = arr[mask] tf_result = array_ops.boolean_mask(arr, mask) self.assertAllEqual(numpy_result.shape[1:], tf_result.get_shape()[1:]) with self.cached_session(): self.assertAllClose(numpy_result, tf_result) def testEmptyInput1D(self): mask = np.array([]).astype(bool) arr = np.array([]).astype(np.float32) numpy_result = arr[mask] tf_result = array_ops.boolean_mask(arr, mask) self.assertAllEqual(numpy_result.shape[1:], tf_result.get_shape()[1:]) with self.cached_session(): self.assertAllClose(numpy_result, tf_result) def testEmptyOutput(self): make_mask = lambda shape: np.zeros(shape, dtype=bool) for ndims_mask in range(1, 4): for ndims_arr in range(ndims_mask, ndims_mask + 3): for _ in range(3): with self.subTest(ndims_mask=ndims_mask, ndims_arr=ndims_arr, _=_): arr_shape = np.random.randint(1, 5, size=ndims_arr) self.CheckVersusNumpy(ndims_mask, arr_shape, make_mask=make_mask) def testWorksWithDimensionsEqualToNoneDuringGraphBuild(self): # The rank of the mask tensor must be specified. This is explained # in the docstring as well. @def_function.function def func(ph_tensor, ph_mask): return array_ops.boolean_mask(ph_tensor, ph_mask) f = func.get_concrete_function( tensor_spec.TensorSpec(None, dtypes.int32), tensor_spec.TensorSpec([None], dtypes.bool)) arr = np.array([[1, 2], [3, 4]], np.int32) mask = np.array([False, True]) masked_tensor = f(arr, mask) self.assertAllEqual(masked_tensor, arr[mask]) def testMaskDimensionsSetToNoneRaises(self): # The rank of the mask tensor must be specified. This is explained # in the docstring as well. @def_function.function def func(tensor, mask): return array_ops.boolean_mask(tensor, mask) with self.assertRaisesRegex(ValueError, "dimensions must be specified"): _ = func.get_concrete_function( tensor_spec.TensorSpec([None, 2], dtypes.int32), tensor_spec.TensorSpec(None, dtypes.bool)) def testMaskHasMoreDimsThanTensorRaises(self): mask = [[True, True], [False, False]] tensor = [1, 2, 3, 4] with self.cached_session(): with self.assertRaisesRegex(ValueError, "incompatible"): self.evaluate(array_ops.boolean_mask(tensor, mask)) def testMaskIsScalarRaises(self): mask = True tensor = 1 with self.cached_session(): with self.assertRaisesRegex(ValueError, "mask.*scalar"): self.evaluate(array_ops.boolean_mask(tensor, mask)) def testMaskShapeDifferentThanFirstPartOfTensorShapeRaises(self): mask = [True, True, True] tensor = [[1, 2], [3, 4]] with self.cached_session(): with self.assertRaisesRegex(ValueError, "incompatible"): self.evaluate(array_ops.boolean_mask(tensor, mask)) def testStringMask(self): # Reproduces b/111171330, where the optimized boolean_mask graph would # be incorrectly placed on GPU. config.set_optimizer_experimental_options({"shape_optimization": True}) @def_function.function def func(tile_input): string_tensor = array_ops.tile([["hello"]], tile_input) bool_tensor = array_ops.tile([[True]], tile_input) masked_tensor = array_ops.boolean_mask(string_tensor, bool_tensor) return masked_tensor result = func([2, 2]) self.assertAllEqual([b"hello", b"hello", b"hello", b"hello"], result) def testMaskWithAxisTensor(self): @def_function.function(autograph=False) def f(): return array_ops.boolean_mask([1, 2, 3], [True, False, True], axis=constant_op.constant( 0, dtype=dtypes.int32)) self.assertAllEqual(self.evaluate(f()), [1, 3]) def testMaskWithAxisNonConstTensor(self): @def_function.function( autograph=False, input_signature=[ tensor_spec.TensorSpec(shape=None, dtype=dtypes.int32) ]) def f(axis): return array_ops.boolean_mask([1, 2, 3], [True, False, True], axis=axis) self.assertAllEqual( self.evaluate(f(constant_op.constant(0, dtype=dtypes.int32))), [1, 3]) @test_util.run_all_in_graph_and_eager_modes class OperatorShapeTest(test_util.TensorFlowTestCase): def testExpandScalar(self): scalar = "hello" scalar_expanded = array_ops.expand_dims(scalar, [0]) self.assertEqual(scalar_expanded.get_shape(), (1,)) def testSqueezeScalar(self): scalar = "hello" scalar_squeezed = array_ops.squeeze(scalar, ()) self.assertEqual(scalar_squeezed.get_shape(), ()) def testSqueezeMatrix(self): matrix = [[1, 2, 3]] matrix_squeezed = array_ops.squeeze(matrix, [0]) self.assertEqual(matrix_squeezed.get_shape(), (3)) with self.assertRaisesRegex( Exception, "Can not squeeze dim.1., expected a dimension of 1, got 3"): matrix_squeezed = array_ops.squeeze(matrix, [1]) def testSqueezeScalarDim(self): matrix = [[1, 2, 3]] matrix_squeezed = array_ops.squeeze(matrix, 0) self.assertEqual(matrix_squeezed.get_shape(), (3)) def testExpandDimsWithNonScalarDim(self): with self.assertRaisesRegex(Exception, "must be a tensor with a single value"): array_ops.expand_dims(1, axis=[0, 1]) class ReverseV2Test(test_util.TensorFlowTestCase): def testReverse0DimAuto(self): x_np = 4 for use_gpu in [False, True]: with self.subTest(use_gpu=use_gpu): with self.cached_session(use_gpu=use_gpu): x_tf = self.evaluate(array_ops.reverse_v2(x_np, [])) self.assertAllEqual(x_tf, x_np) def _reverse1DimAuto(self, np_dtype): x_np = np.array([1, 200, 3, 40, 5], dtype=np_dtype) for use_gpu in [False, True]: for axis_dtype in [dtypes.int32, dtypes.int64]: with self.subTest(use_gpu=use_gpu, axis_dtype=axis_dtype): x_tf = self.evaluate( array_ops.reverse_v2(x_np, constant_op.constant([0], dtype=axis_dtype))) self.assertAllEqual(x_tf, np.asarray(x_np)[::-1]) def _reverse2DimAuto(self, np_dtype): x_np = np.array([[1, 200, 3], [4, 5, 60]], dtype=np_dtype) for reverse_f in [array_ops.reverse_v2, array_ops.reverse]: for use_gpu in [False, True]: for axis_dtype in [dtypes.int32, dtypes.int64]: with self.subTest( reverse_f=reverse_f, use_gpu=use_gpu, axis_dtype=axis_dtype): x_tf_1 = self.evaluate( reverse_f(x_np, constant_op.constant([0], dtype=axis_dtype))) x_tf_2 = self.evaluate( reverse_f(x_np, constant_op.constant([-2], dtype=axis_dtype))) x_tf_3 = self.evaluate( reverse_f(x_np, constant_op.constant([1], dtype=axis_dtype))) x_tf_4 = self.evaluate( reverse_f(x_np, constant_op.constant([-1], dtype=axis_dtype))) x_tf_5 = self.evaluate( reverse_f(x_np, constant_op.constant([1, 0], dtype=axis_dtype))) self.assertAllEqual(x_tf_1, np.asarray(x_np)[::-1, :]) self.assertAllEqual(x_tf_2, np.asarray(x_np)[::-1, :]) self.assertAllEqual(x_tf_3, np.asarray(x_np)[:, ::-1]) self.assertAllEqual(x_tf_4, np.asarray(x_np)[:, ::-1]) self.assertAllEqual(x_tf_5, np.asarray(x_np)[::-1, ::-1]) # This test covers the axis validation in the shape function # (no eval()) def testInvalidAxis(self): x_np = np.array([[1, 2, 3], [4, 5, 6]], dtype=np.float32) with self.assertRaisesRegex((ValueError, errors.InvalidArgumentError), "is out of valid range"): array_ops.reverse_v2(x_np, [-30]) with self.assertRaisesRegex((ValueError, errors.InvalidArgumentError), "is out of valid range"): array_ops.reverse_v2(x_np, [2]) with self.assertRaisesRegex((ValueError, errors.InvalidArgumentError), "axis 0 specified more than once"): array_ops.reverse_v2(x_np, [0, -2]) # This is the version of reverse that uses axis indices rather than # bool tensors # TODO(b/32254538): Change this test to use array_ops.reverse # # Note: this test passes placeholder as constant axis is validated # in shape function (see testInvalidAxis) def testInvalid(self): x_np = np.array([[1, 2, 3], [4, 5, 6]], dtype=np.float32) @def_function.function def func(ax): return array_ops.reverse_v2(x_np, ax) with self.assertRaisesRegex((ValueError, errors_impl.InvalidArgumentError), "is out of.*range"): func([-30]) with self.assertRaisesRegex((ValueError, errors_impl.InvalidArgumentError), "is out of.*range"): func([2]) with self.assertRaisesRegex( (ValueError, errors_impl.InvalidArgumentError), "(axis 0 specified more than once|canonicalized axis 0 was repeated.)"): func([0, -2]) def testReverse1DimAuto(self): for dtype in [ np.uint8, np.int8, np.uint16, np.int16, np.uint32, np.int32, np.uint64, np.int64, np.bool, np.float16, np.float32, np.float64, np.complex64, np.complex128, np.array(b"").dtype.type ]: self._reverse1DimAuto(dtype) def testReverse2DimAuto(self): for dtype in [ np.uint8, np.int8, np.uint16, np.int16, np.uint32, np.int32, np.uint64, np.int64, np.bool, np.float16, np.float32, np.float64, np.complex64, np.complex128, np.array(b"").dtype.type ]: self._reverse2DimAuto(dtype) def testReverseRowsOf3Channels(self): """Tests optimized code for reversing rows with last dim size = 3.""" for reverse_f in [array_ops.reverse_v2, array_ops.reverse]: for outer_size in (1, 2): for middle_size in list(range(50)) + [100000]: with self.subTest( reverse_f=reverse_f, outer_size=outer_size, middle_size=middle_size, use_gpu=True): x_np = np.reshape( np.arange(outer_size * middle_size * 3, dtype=np.float32), newshape=(outer_size, middle_size, 3)) x_tf = self.evaluate(reverse_f(x_np, [1])) np_answer = x_np[:, ::-1, :] self.assertAllEqual(x_tf, np_answer) def testReverseRowsOf4Channels(self): for reverse_f in [array_ops.reverse_v2, array_ops.reverse]: for outer_size in (1, 2): for middle_size in list(range(50)) + [100000]: with self.subTest( reverse_f=reverse_f, outer_size=outer_size, middle_size=middle_size, use_gpu=True): x_np = np.reshape( np.arange(outer_size * middle_size * 4, dtype=np.float32), newshape=(outer_size, middle_size, 4)) x_tf = self.evaluate(reverse_f(x_np, [1])) np_answer = x_np[:, ::-1, :] self.assertAllEqual(x_tf, np_answer) def testReverseColumnsOf3Channels(self): for reverse_f in [array_ops.reverse_v2, array_ops.reverse]: for outer_size in list(range(50)) + [100000]: for middle_size in (1, 2): with self.subTest( reverse_f=reverse_f, outer_size=outer_size, middle_size=middle_size, use_gpu=True): x_np = np.reshape( np.arange(outer_size * middle_size * 3, dtype=np.float32), newshape=(outer_size, middle_size, 3)) x_tf = self.evaluate(reverse_f(x_np, [0])) np_answer = x_np[::-1, :, :] self.assertAllEqual(x_tf, np_answer) def testReverseInvalidShape(self): x = np.ndarray(shape=[0, 1, 1]) v = array_ops.reverse_v2(x, axis=[1]) self.assertAllEqual(self.evaluate(v), v) class MeshgridTest(test_util.TensorFlowTestCase): def _compareDiff(self, x, y, use_gpu): for index in ("ij", "xy"): numpy_out = np.meshgrid(x, y, indexing=index) tf_out = array_ops.meshgrid(x, y, indexing=index) with self.cached_session(use_gpu=use_gpu): for xx, yy in zip(numpy_out, tf_out): self.assertAllEqual(xx, yy) def _compareDiffType(self, n, np_dtype, use_gpu): inputs = [] for index in ("ij", "xy"): for _ in range(n): x = np.linspace(-10, 10, 5).astype(np_dtype) if np_dtype in (np.complex64, np.complex128): x += 1j inputs.append(x) numpy_out = np.meshgrid(*inputs, indexing=index) with test_util.device(use_gpu=use_gpu): tf_out = array_ops.meshgrid(*inputs, indexing=index) for x_np, x_tf in zip(numpy_out, tf_out): self.assertAllEqual(x_np, x_tf) def testCompare(self): for t in (np.float16, np.float32, np.float64, np.int32, np.int64, np.complex64, np.complex128): with self.subTest(t=t): self._compareDiffType(2, t, False) self._compareDiffType(3, t, False) x = [1, 2, 3] y = [4, 5] a = [[1, 1], [1, 1]] self._compareDiff(x, y, False) self._compareDiff(x, a, False) class StridedSliceChecker(object): """Check a given tensor against the numpy result.""" REF_TENSOR = np.arange(1, 19, dtype=np.float32).reshape(3, 2, 3) REF_TENSOR_ALIGNED = np.arange(1, 97, dtype=np.float32).reshape(3, 4, 8) def __init__(self, test, x, tensor_type=dtypes.int32, check_type_infer=True): self.x_np = np.array(x).astype(tensor_type.as_numpy_dtype) if tensor_type.is_bool: self.x_np = np.array(x % 3).astype(np.bool) # Give the value a non-zero imaginary component for complex types. if tensor_type.is_complex: self.x_np -= 1j * self.x_np self.test = test self.x = constant_op.constant(self.x_np, dtype=tensor_type) self.check_type_infer = check_type_infer def __getitem__(self, spec): op = self.x.__getitem__(spec) def eval_if_tensor(x): try: return self.test.evaluate(x) except (AttributeError, TypeError, ValueError): return x if isinstance(spec, bool) or \ (isinstance(spec, ops.Tensor) and spec.dtype == dtypes.bool) or \ (isinstance(spec, np.ndarray) and spec.dtype == bool) or \ (isinstance(spec, (list, tuple)) and np.asarray(spec).dtype == bool): tensor = self.test.evaluate(op) np_spec = eval_if_tensor(spec) self.test.assertAllEqual(self.x_np[np_spec], tensor) return tensor if not isinstance(spec, (list, tuple)): spec = [spec] tensor = self.test.evaluate(op) # Make a numpy spec that pre-evals the tensors np_specs = [] for s in spec: if isinstance(s, slice): start = eval_if_tensor(s.start) stop = eval_if_tensor(s.stop) step = eval_if_tensor(s.step) np_specs.append(slice(start, stop, step)) else: np_specs.append(eval_if_tensor(s)) self.test.assertAllEqual(self.x_np[tuple(np_specs)], tensor) if self.check_type_infer: self.test.assertAllEqual(tensor.shape, op.get_shape()) return tensor STRIDED_SLICE_TYPES = [ dtypes.int32, dtypes.int64, dtypes.int16, dtypes.int8, dtypes.uint8, dtypes.float32, dtypes.float64, dtypes.complex64, dtypes.complex128, dtypes.bool ] class StridedSliceTest(test_util.TensorFlowTestCase): """Test the strided slice operation with variants of slices.""" def test_basic_slice(self): for tensor_type in STRIDED_SLICE_TYPES: with self.subTest(tensor_type=tensor_type, use_gpu=True): checker = StridedSliceChecker( self, StridedSliceChecker.REF_TENSOR, tensor_type=tensor_type) _ = checker[:, :, :] # Various ways of representing identity slice _ = checker[:, :, :] _ = checker[::, ::, ::] _ = checker[::1, ::1, ::1] # Not zero slice _ = checker[::1, ::5, ::2] # Reverse in each dimension independently _ = checker[::-1, :, :] _ = checker[:, ::-1, :] _ = checker[:, :, ::-1] ## negative index tests i.e. n-2 in first component _ = checker[-2::-1, :, ::1] # negative index tests i.e. n-2 in first component, non-unit stride _ = checker[-2::-1, :, ::2] # Check rank-0 examples checker2 = StridedSliceChecker(self, 5, tensor_type=tensor_type) _ = checker2[None] _ = checker2[...] _ = checker2[tuple()] def testInt64GPU(self): if not test_util.is_gpu_available(): self.skipTest("No GPU available") with test_util.force_gpu(): x = constant_op.constant([1., 2., 3.]) begin = constant_op.constant([2], dtype=dtypes.int64) end = constant_op.constant([3], dtype=dtypes.int64) strides = constant_op.constant([1], dtype=dtypes.int64) s = array_ops.strided_slice(x, begin, end, strides) self.assertAllEqual([3.], self.evaluate(s)) @test_util.assert_no_new_pyobjects_executing_eagerly @test_util.assert_no_garbage_created def testTensorSliceEagerMemory(self): with context.eager_mode(): inputs = constant_op.constant([[[1], [2], [3], [4]]], dtype=dtypes.float32) # Tests that slicing an EagerTensor doesn't leak memory inputs[0] # pylint: disable=pointless-statement @test_util.assert_no_new_pyobjects_executing_eagerly @test_util.assert_no_garbage_created def testVariableSliceEagerMemory(self): with context.eager_mode(): v = variables.Variable([1., 2.]) v[0] # pylint: disable=pointless-statement def testDegenerateSlices(self): with test_util.device(use_gpu=True): checker = StridedSliceChecker(self, StridedSliceChecker.REF_TENSOR) # degenerate by offering a forward interval with a negative stride _ = checker[0:-1:-1, :, :] # degenerate with a reverse interval with a positive stride _ = checker[-1:0, :, :] # empty interval in every dimension _ = checker[-1:0, 2:2, 2:3:-1] # empty first dimension only (used to break for aligned tensors). checker = StridedSliceChecker(self, StridedSliceChecker.REF_TENSOR_ALIGNED) _ = checker[1:0] def testSliceWithUndefinedDimension(self): t = constant_op.constant([1, 2, 3]) d = tensor_shape.Dimension(None) self.assertAllEqual(t[d:d:d], t) def testEllipsis(self): with test_util.device(use_gpu=True): raw = [[[[[1, 2], [3, 4], [5, 6]]], [[[7, 8], [9, 10], [11, 12]]]]] checker = StridedSliceChecker(self, raw) _ = checker[0:] # implicit ellipsis _ = checker[0:, ...] # ellipsis alone _ = checker[...] # ellipsis at end _ = checker[0:1, ...] # ellipsis at begin _ = checker[..., 0:1] # ellipsis at middle _ = checker[0:1, ..., 0:1] # multiple ellipses not allowed with self.assertRaisesRegex((ValueError, errors.InvalidArgumentError), "Multiple ellipses"): _ = checker[..., :, ...].eval() def testShrink(self): with test_util.device(use_gpu=True): raw = [[[[[1, 2, 4, 5], [5, 6, 7, 8], [9, 10, 11, 12]]], [[[13, 14, 15, 16], [17, 18, 19, 20], [21, 22, 23, 24]]]]] checker = StridedSliceChecker(self, raw) _ = checker[:, :, :, :, 3] _ = checker[..., 3] _ = checker[:, 0] _ = checker[:, :, 0] def testBothNewAxisAndShrink(self): with test_util.device(use_gpu=True): @def_function.function def func(inp): return inp[array_ops.newaxis, :, 0] f = func.get_concrete_function( tensor_spec.TensorSpec([2, 2], dtypes.int16)) # TODO(b/190416665): Allow the constant to be eagerly copied/created on # the GPU. with ops.device("CPU"): ones = constant_op.constant([[1, 1], [1, 1]], dtypes.int16) self.assertAllEqual([[1, 1]], self.evaluate(f(ones))) def testTensorIndexing(self): with test_util.device(use_gpu=True): raw = [[[[[1, 2, 4, 5], [5, 6, 7, 8], [9, 10, 11, 12]]], [[[13, 14, 15, 16], [17, 18, 19, 20], [21, 22, 23, 24]]]]] checker = StridedSliceChecker(self, raw, check_type_infer=False) bar = constant_op.constant(2) bar2 = constant_op.constant(3) _ = checker[..., bar:bar2] _ = checker[..., bar] _ = checker[..., 3] _ = checker[..., 2**64 // 2**63] # Test longs in Python 2 def testTensorIndexingTypeError(self): with self.session(): checker = StridedSliceChecker(self, StridedSliceChecker.REF_TENSOR) expected = re.escape(array_ops._SLICE_TYPE_ERROR) with self.assertRaisesRegex(TypeError, expected): _ = checker["foo"] with self.assertRaisesRegex(TypeError, expected): _ = checker[constant_op.constant("foo")] with self.assertRaisesRegex(TypeError, expected): _ = checker[0.0] with self.assertRaisesRegex(TypeError, expected): _ = checker[constant_op.constant(0.0)] with self.assertRaisesRegex(TypeError, expected): _ = checker[constant_op.constant([1, 2, 3])] with self.assertRaisesRegex(TypeError, expected): _ = checker[[2.1, -0.7, 1.5]] def testExpand(self): with test_util.device(use_gpu=True): raw = [[[[[1, 2, 4, 5], [5, 6, 7, 8], [9, 10, 11, 12]]], [[[13, 14, 15, 16], [17, 18, 19, 20], [21, 22, 23, 24]]]]] checker = StridedSliceChecker(self, raw) # new axis (followed by implicit ellipsis) _ = checker[np.newaxis] # newaxis after ellipsis _ = checker[..., np.newaxis] # newaxis in between ellipsis and explicit range _ = checker[..., np.newaxis, :] _ = checker[:, ..., np.newaxis, :, :] # Reverse final dimension with new axis _ = checker[:, :, np.newaxis, :, 2::-1] # Ellipsis in middle of two newaxis _ = checker[np.newaxis, ..., np.newaxis] def testExpandVariable(self): with test_util.device(use_gpu=True): x = variables.Variable(7, dtype=dtypes.int32) self.evaluate(x.initializer) y = self.evaluate(x[None]) self.assertEqual(y.shape, (1,)) self.assertAllEqual(y, (7,)) def testOptimizedCases(self): with test_util.device(use_gpu=True): checker = StridedSliceChecker(self, StridedSliceChecker.REF_TENSOR_ALIGNED) # Identity _ = checker[:] # Identity _ = checker[...] # Identity _ = checker[np.newaxis, ..., np.newaxis] # First axis slice _ = checker[1:] # First axis slice _ = checker[np.newaxis, 1:] def testMasks(self): with test_util.device(use_gpu=True): scalar = np.array(0) # Test tensor type mask checker = StridedSliceChecker(self, StridedSliceChecker.REF_TENSOR) _ = checker[checker.x > 2] _ = checker[checker.x <= 5] _ = checker[ops.convert_to_tensor(scalar)] # Test numpy array type mask raw = np.array([[[[[1, 2, 4, 5], [5, 6, 7, 8], [9, 10, 11, 12]]], [[[13, 14, 15, 16], [17, 18, 19, 20], [21, 22, 23, 24]]]]]) checker1 = StridedSliceChecker(self, raw) _ = checker1[raw >= 4] _ = checker1[raw < 19] _ = checker1[scalar] # Test boolean and non boolean cases mask = np.array([True, False, True]) raw1 = np.array([[1, 2, 4, 5], [5, 6, 7, 8], [9, 10, 11, 12]]) checker2 = StridedSliceChecker(self, raw1) _ = checker2[mask] _ = checker2[ops.convert_to_tensor(mask)] class StridedSliceShapeTest(test_util.TensorFlowTestCase): """Test the shape inference of StridedSliceShapes.""" def testUnknown(self): with test_util.device(use_gpu=True): @def_function.function def f(x): y = x[...] self.assertAllEqual(y.get_shape().ndims, None) _ = f.get_concrete_function(tensor_spec.TensorSpec(None, dtypes.float32)) def tensorShapeEqual(self, x, y): self.assertTrue(x is not None and y is not None or x is None and y is None) self.assertEqual(x.as_list(), y.as_list()) def testTensorShapeUncertain(self): with test_util.device(use_gpu=True): @def_function.function def f1(x): y = x[3:5] self.tensorShapeEqual(y.get_shape(), tensor_shape.TensorShape([2, None, 7])) _ = f1.get_concrete_function( tensor_spec.TensorSpec((5, None, 7), dtypes.float32)) @def_function.function def f2(x): y = x[3:5, :, 4] self.tensorShapeEqual(y.get_shape(), tensor_shape.TensorShape([2, None])) _ = f2.get_concrete_function( tensor_spec.TensorSpec((5, None, 7), dtypes.float32)) @def_function.function def f3(x): y = x[3:5, 3:4, 4] self.tensorShapeEqual(y.get_shape(), tensor_shape.TensorShape([2, None])) _ = f3.get_concrete_function( tensor_spec.TensorSpec((5, None, 7), dtypes.float32)) @def_function.function def f4(x): y = x[3:5, :, 5:10] self.tensorShapeEqual(y.get_shape(), tensor_shape.TensorShape([2, None, 2])) _ = f4.get_concrete_function( tensor_spec.TensorSpec((5, None, 7), dtypes.float32)) @def_function.function def f5(x): y = x[3:5, :, 50:3] self.tensorShapeEqual(y.get_shape(), tensor_shape.TensorShape([2, None, 0])) _ = f5.get_concrete_function( tensor_spec.TensorSpec((5, None, 7), dtypes.float32)) @def_function.function def f6(x): y = x[3:5, :, array_ops.newaxis, 50:3,] self.tensorShapeEqual(y.get_shape(), tensor_shape.TensorShape([2, None, 1, 0])) _ = f6.get_concrete_function( tensor_spec.TensorSpec((5, None, 7), dtypes.float32)) @def_function.function def f7(x): y = x[1:5:2, :, array_ops.newaxis, 50:3,] self.tensorShapeEqual(y.get_shape(), tensor_shape.TensorShape([2, None, 1, 0])) _ = f7.get_concrete_function( tensor_spec.TensorSpec((5, None, 7), dtypes.float32)) @def_function.function def f8(x): y = x[:5:3, :, array_ops.newaxis, 50:3,] self.tensorShapeEqual(y.get_shape(), tensor_shape.TensorShape([2, None, 1, 0])) _ = f8.get_concrete_function( tensor_spec.TensorSpec((5, None, 7), dtypes.float32)) @def_function.function def f9(x): y = x[:2:3, :, array_ops.newaxis, 50:3,] self.tensorShapeEqual(y.get_shape(), tensor_shape.TensorShape([1, None, 1, 0])) _ = f9.get_concrete_function( tensor_spec.TensorSpec((5, None, 7), dtypes.float32)) @def_function.function def f10(x): y = x[::-1, :, array_ops.newaxis, ::-2] self.tensorShapeEqual(y.get_shape(), tensor_shape.TensorShape([5, None, 1, 4])) _ = f10.get_concrete_function( tensor_spec.TensorSpec((5, None, 7), dtypes.float32)) def testTensorValuedIndexShape(self): with self.session(): @def_function.function def f1(x, y): z = x[y] self.tensorShapeEqual(z.get_shape(), tensor_shape.TensorShape([3, 7])) _ = f1.get_concrete_function( tensor_spec.TensorSpec((5, 3, 7)), tensor_spec.TensorSpec((), dtypes.int32)) @def_function.function def f2(x, y): z = x[y, ::-1] self.tensorShapeEqual(z.get_shape(), tensor_shape.TensorShape([3, 7])) _ = f2.get_concrete_function( tensor_spec.TensorSpec((5, 3, 7)), tensor_spec.TensorSpec((), dtypes.int32)) @def_function.function def f3(x, y): z = x[y, ::-2] self.tensorShapeEqual(z.get_shape(), tensor_shape.TensorShape([2, 7])) _ = f3.get_concrete_function( tensor_spec.TensorSpec((5, 3, 7)), tensor_spec.TensorSpec((), dtypes.int32)) @def_function.function def f4(x, y, s): z = x[y, s:2] self.tensorShapeEqual(z.get_shape(), tensor_shape.TensorShape([None, 7])) _ = f4.get_concrete_function( tensor_spec.TensorSpec((5, 3, 7)), tensor_spec.TensorSpec((), dtypes.int32), tensor_spec.TensorSpec((), dtypes.int32)) class GradSliceChecker(object): """Tests that we can compute a gradient for var^2.""" def __init__(self, test, var, varnp, use_tape): self.test = test self.var = var self.varnp = varnp self.use_tape = use_tape def __getitem__(self, spec): with test_util.AbstractGradientTape( use_tape=self.use_tape, persistent=True) as tape: tape.watch(self.var) val = self.var * self.var slice_var = self.var[spec] slice_val = val[spec] # compute analytic 2nd derivative analytic_grad2 = 2 * slice_val dy = variables.Variable( array_ops.ones_like(slice_var, dtype=dtypes.float32)) assign = dy.assign(slice_var) slice_val_grad = tape.gradient(slice_val, self.var, [dy]) slice_val_grad2 = tape.gradient(slice_val_grad, dy, [self.var]) self.test.evaluate(assign) slice_val_grad_evaled, slice_val_grad2_evaled = ( self.test.evaluate([slice_val_grad, slice_val_grad2])) analytic_grad2_evaled = self.test.evaluate(analytic_grad2) self.test.assertAllEqual(slice_val_grad2_evaled, analytic_grad2_evaled) # compute analytic gradient for slice np_val_grad = (2 * self.varnp * self.varnp) np_sliceval_grad = np.zeros(self.var.get_shape()) if isinstance(spec, ops.Tensor): spec = self.test.evaluate([spec]) np_sliceval_grad[spec] = np_val_grad[spec] # verify gradient self.test.assertAllEqual(slice_val_grad_evaled, np_sliceval_grad) class StridedSliceGradTest(test_util.TensorFlowTestCase, parameterized.TestCase): """Test that strided slice's custom gradient produces correct gradients.""" @parameterized.parameters(set((True, context.executing_eagerly()))) def testGradient(self, use_tape): with test_util.device(use_gpu=True): var = variables.Variable( array_ops.reshape( math_ops.range(1, 97, 1, dtype=dtypes.float32), shape=(6, 4, 4))) self.evaluate(var.initializer) raw = np.array(range(1, 97, 1)).reshape((6, 4, 4)) grad = GradSliceChecker(self, var, raw, use_tape) _ = grad[2:6:2, 1:3, 1:3] _ = grad[3:0:-2, 1:3, 1:3] _ = grad[3:0:-2, array_ops.newaxis, 1:3, 2, array_ops.newaxis] _ = grad[3:0:-2, 1:3, 2] _ = grad[:, -1, :] _ = grad[:, -2, :] with self.assertRaisesRegex((ValueError, errors.InvalidArgumentError), "out of bounds"): _ = grad[:, -200, :] with self.assertRaisesRegex((ValueError, errors.InvalidArgumentError), "out of bounds"): _ = grad[:, 200, :] # Test numpy array type mask _ = grad[raw > 51] # Test tensor type mask _ = grad[ops.convert_to_tensor(raw) <= 76] @parameterized.parameters(set((True, context.executing_eagerly()))) def testGradientZero(self, use_tape): with test_util.device(use_gpu=True): var = variables.Variable(8.) self.evaluate(var.initializer) grad = GradSliceChecker(self, var, np.array(8), use_tape) _ = grad[tuple()] @parameterized.parameters(set((True, context.executing_eagerly()))) def testInt64Indices(self, use_tape): with test_util.AbstractGradientTape(use_tape=use_tape) as tape: a = math_ops.range(3, dtype=dtypes.float32) tape.watch(a) index = constant_op.constant(1, dtype=dtypes.int64) b = 2. * a[index] grad = tape.gradient(b, a) self.assertAllEqual(self.evaluate(grad), [0., 2., 0.]) class StridedSliceGradTypeTest(test_util.TensorFlowTestCase): """Test varied index types and host located memory.""" def testHostVsDevice(self): var2 = variables.Variable( array_ops.reshape( math_ops.cast(math_ops.range(1, 5, 1), dtypes.float32), shape=(4, 1, 1))) varshape = variables.Variable([6, 4, 4], dtype=dtypes.int32) begin = constant_op.constant([0, 0, 0]) end = constant_op.constant([4, 1, 1]) strides = constant_op.constant([1, 1, 1]) foo = array_ops.strided_slice_grad(varshape, begin, end, strides, var2) self.evaluate(var2.initializer) self.evaluate(varshape.initializer) self.evaluate(foo) def testInt64Shape(self): original_dy = array_ops.reshape( math_ops.cast(math_ops.range(1, 5, 1), dtypes.float32), shape=(4, 1, 1)) original_shape = constant_op.constant([6, 4, 4], dtype=dtypes.int64) begin = constant_op.constant([0, 0, 0], dtype=dtypes.int64) end = constant_op.constant([4, 1, 1], dtype=dtypes.int64) strides = constant_op.constant([1, 1, 1], dtype=dtypes.int64) dx = array_ops.strided_slice_grad(original_shape, begin, end, strides, original_dy) self.evaluate(dx) def testMixedIndexTypes(self): original_dy = array_ops.reshape( math_ops.cast(math_ops.range(1, 5, 1), dtypes.float32), shape=(4, 1, 1)) original_shape = constant_op.constant([6, 4, 4], dtype=dtypes.int64) begin = constant_op.constant([0, 0, 0], dtype=dtypes.int32) end = constant_op.constant([4, 1, 1], dtype=dtypes.int64) strides = constant_op.constant([1, 1, 1], dtype=dtypes.int64) with self.assertRaises((TypeError, errors_impl.InvalidArgumentError)): dx = array_ops.strided_slice_grad(original_shape, begin, end, strides, original_dy) self.evaluate(dx) class BenchmarkSlice(object): def __init__(self, tensor): self.tensor = tensor def __getitem__(self, x): return self.tensor[x] class StridedSliceBenchmark(test_lib.Benchmark): """Benchmark new strided slice operation on non-trivial case.""" def run_and_time(self, slice_op): self.evaluate(variables.global_variables_initializer()) for _ in range(10): _ = self.evaluate(slice_op) iters = 1000 t0 = time.time() for _ in range(iters): self.evaluate(slice_op) t1 = time.time() self.report_benchmark(iters=iters, wall_time=(t1 - t0) / 1000.0) def make_variable(self): n = 256 shape = (n, n, n) items = n**3 var = variables.Variable( array_ops.reshape(math_ops.linspace(1., float(items), items), shape), dtype=dtypes.float32) return var def benchmark_strided_slice_skip(self): with session.Session(): var = self.make_variable() helper = BenchmarkSlice(var) slice_op = helper[::2, ::1, ::2] self.run_and_time(slice_op) def benchmark_strided_slice_easy(self): with session.Session(): var = self.make_variable() helper = BenchmarkSlice(var) slice_op = helper[3::1, 3::1, 3::1] self.run_and_time(slice_op) def benchmark_slice_easy(self): with session.Session(): var = self.make_variable() slice_op = var[3::1, 3::1, 3::1] self.run_and_time(slice_op) class StridedSliceAssignChecker(object): def __init__(self, test, x, tensor_type=dtypes.float32, use_resource=False): self.tensor_type = tensor_type self.test = test self._use_resource = use_resource self.x_np = np.array(x).astype(tensor_type.as_numpy_dtype) # Give the value a non-zero imaginary component for complex types. if tensor_type.is_complex: self.x_np -= 1j * self.x_np self.x = constant_op.constant(self.x_np, dtype=tensor_type) def __setitem__(self, index, value): value = np.array(value).astype(self.tensor_type.as_numpy_dtype) # Give the value a non-zero imaginary component for complex types. if self.tensor_type.is_complex: value -= 1j * value with test_util.device(use_gpu=True): if self._use_resource: var = resource_variable_ops.ResourceVariable(self.x) else: var = variables.Variable(self.x) self.test.evaluate(var.initializer) val = self.test.evaluate(var[index].assign(value)) # val_copy is used to check that tf.compat.v1.assign works equivalently # to the assign method above. val_copy = self.test.evaluate(state_ops.assign(var[index], value)) valnp = np.copy(self.x_np) valnp[index] = np.array(value) self.test.assertAllEqual(val, valnp) self.test.assertAllEqual(val_copy, valnp) class SliceAssignTest(test_util.TensorFlowTestCase, parameterized.TestCase): def testInvalidSlice(self): foo = constant_op.constant([1, 2, 3]) with self.assertRaisesRegex(AttributeError, "no attribute 'assign'"): bar = foo[:2].assign(constant_op.constant([1, 2])) self.evaluate(bar) def doTestSliceAssign(self, use_resource): for dtype in STRIDED_SLICE_TYPES: with self.subTest(dtype=dtype): checker = StridedSliceAssignChecker( self, [[1, 2, 3], [4, 5, 6]], use_resource=use_resource, tensor_type=dtype) # Check if equal checker[:] = [[10, 20, 30], [40, 50, 60]] # Check trivial (1,1) shape tensor checker[1:2, 1:2] = [[66]] # shrinks shape changes checker[1:2, 1] = [66] checker[1, 1:2] = [66] checker[1, 1] = 66 # newaxis shape changes checker[:, None, :] = [[[10, 20, 30]], [[40, 50, 50]]] # shrink and newaxis checker[None, None, 0, 0:1] = [[[99]]] # Non unit strides checker[::1, ::-2] = [[3, 33], [4, 44]] # degenerate interval checker[8:10, 0] = [] checker[8:10, 8:10] = [[]] # Assign vector to scalar (rank-0) using newaxis checker2 = StridedSliceAssignChecker(self, 222) checker2[()] = 6 # no indices checker2[...] = 6 # ellipsis checker2[None] = [6] # new axis @test_util.disable_xla("b/123559667") def testSliceAssign(self): self.doTestSliceAssign(use_resource=False) @test_util.disable_xla("b/123559667") def testSliceAssignResource(self): self.doTestSliceAssign(use_resource=True) def testTypeError(self): init_val = constant_op.constant([1, 2], dtype=dtypes.int32) too_small_val = constant_op.constant([3, 4], dtype=dtypes.int8) too_large_val = constant_op.constant([3, 4], dtype=dtypes.int64) v = variables.VariableV1(init_val) with self.assertRaises((ValueError, TypeError)): self.evaluate(v[:].assign(too_small_val)) with self.assertRaises((ValueError, TypeError)): self.evaluate(v[:].assign(too_large_val)) def testTypeErrorResource(self): init_val = constant_op.constant([1, 2], dtype=dtypes.int32) too_small_val = constant_op.constant([3, 4], dtype=dtypes.int8) too_large_val = constant_op.constant([3, 4], dtype=dtypes.int64) v = resource_variable_ops.ResourceVariable(init_val) self.evaluate(v.initializer) with self.assertRaises(ValueError): self.evaluate(v[:].assign(too_large_val)) with self.assertRaises(ValueError): self.evaluate(v[:].assign(too_small_val)) @test_util.disable_xla("b/123559667") @test_util.run_in_graph_and_eager_modes def testTensorStridedSliceUpdateWithInputForward(self): """Tests tensor_strided_slice_update with input-forwarding taking effect.""" @def_function.function def assign(x): y = x + 1 return gen_array_ops.tensor_strided_slice_update(y, [0], [1], [1], [0]) self.assertAllEqual([0, 1], self.evaluate(assign(array_ops.zeros([2])))) @test_util.disable_xla("b/123559667") @test_util.run_in_graph_and_eager_modes def testTensorStridedSliceUpdateNoInputForward(self): """Tests tensor_strided_slice_update with no input-forwarding.""" x = constant_op.constant([0.2, 0.3]) y = x + 1 # y's buffer won't be forwarded to z because y and z will be alive at the # same time later. z = gen_array_ops.tensor_strided_slice_update(y, [0], [1], [1], [0.4]) ans = y + z self.assertAllClose([1.6, 2.6], self.evaluate(ans)) @test_util.disable_xla("b/123559667") def testTensorStridedSliceUpdateGradSimple(self): original = constant_op.constant([0.2, 0.3]) updates = constant_op.constant([0.4]) with backprop.GradientTape() as tape: tape.watch([original, updates]) updated = gen_array_ops.tensor_strided_slice_update( original, [0], [1], [1], updates) d1, d2 = tape.gradient(updated, [original, updates], output_gradients=constant_op.constant([2.0, 3.0])) self.assertAllClose([0.0, 3.0], d1) self.assertAllClose([2.0], d2) @parameterized.named_parameters( ("_%s" % i, *args) for i, args in enumerate([ # pylint:disable=g-complex-comprehension ([2, 5], [0, 1], [1, 0], [1, 2], [2], 0, 2, 0, 0, 1), ([4], [5], [3], [1], [3], 1, 0, 0, 0, 0), ([2, 2, 3, 2], [0, 0, 1], [1, 0, 2], [1, 0, 1], [2, 3], 0, 0, 2, 0, 5) ])) @test_util.disable_xla("b/123559667") def testTensorStridedSliceUpdateGrad( self, shape, begin, end, strides, updates_shape, *args): with self.cached_session(): def f(a, b): return gen_array_ops.tensor_strided_slice_update( a, begin, end, strides, b, *args) theoretical, numerical = gradient_checker_v2.compute_gradient( f, [array_ops.zeros(shape), array_ops.ones(updates_shape)], delta=1.0) self.assertAllClose(theoretical, numerical) class ShapeSizeRankTest(test_util.TensorFlowTestCase): @test_util.run_in_graph_and_eager_modes def testDenseShape(self): t_value = [[0, 42], [24, 0]] self.assertAllEqual((2, 2), self.evaluate(array_ops.shape(t_value))) self.assertEqual(4, self.evaluate(array_ops.size(t_value))) self.assertEqual(2, self.evaluate(array_ops.rank(t_value))) t = constant_op.constant(t_value) self.assertAllEqual((2, 2), self.evaluate(array_ops.shape(t))) self.assertEqual(4, self.evaluate(array_ops.size(t))) self.assertEqual(2, self.evaluate(array_ops.rank(t))) @test_util.run_in_graph_and_eager_modes def testSparseShape(self): sp_value = sparse_tensor.SparseTensorValue( indices=((0, 1), (1, 0)), values=(42, 24), dense_shape=(2, 2)) self.assertAllEqual((2, 2), self.evaluate(array_ops.shape(sp_value))) self.assertEqual(4, self.evaluate(array_ops.size(sp_value))) self.assertEqual(2, self.evaluate(array_ops.rank(sp_value))) sp = sparse_tensor.SparseTensor.from_value(sp_value) self.assertAllEqual((2, 2), self.evaluate(array_ops.shape(sp))) self.assertEqual(4, self.evaluate(array_ops.size(sp))) self.assertEqual(2, self.evaluate(array_ops.rank(sp))) @test_util.run_in_graph_and_eager_modes def testSizeDtype(self): tensor = [1] self.assertEqual(dtypes.int32, self.evaluate(array_ops.size(tensor)).dtype) self.assertEqual( dtypes.int64, self.evaluate(array_ops.size(tensor, out_type=dtypes.int64)).dtype) class SequenceMaskTest(test_util.TensorFlowTestCase): def testExceptions(self): with self.cached_session(): with self.assertRaisesRegex(ValueError, "maxlen must be scalar"): array_ops.sequence_mask([10, 20], [10, 20]) def testOneDimensionalWithMaxlen(self): res = array_ops.sequence_mask(constant_op.constant([1, 3, 2]), 5) self.assertAllEqual(res.get_shape(), [3, 5]) self.assertAllEqual( res, [[True, False, False, False, False], [True, True, True, False, False], [True, True, False, False, False]]) def testOneDimensionalDtypeWithoutMaxlen(self): # test dtype and default maxlen: res = array_ops.sequence_mask( constant_op.constant([0, 1, 4]), dtype=dtypes.float32) self.assertAllEqual(res.get_shape().as_list(), [3, 4]) self.assertAllEqual( res, [[0.0, 0.0, 0.0, 0.0], [1.0, 0.0, 0.0, 0.0], [1.0, 1.0, 1.0, 1.0]]) def testOneDimensionalWithoutMaxlen(self): res = array_ops.sequence_mask(constant_op.constant([0, 1, 4])) self.assertAllEqual(res.get_shape().as_list(), [3, 4]) self.assertAllEqual(res, [[False, False, False, False], [True, False, False, False], [True, True, True, True]]) def testTwoDimensional(self): res = array_ops.sequence_mask(constant_op.constant([[1, 3, 2]]), 5) self.assertAllEqual(res.get_shape(), [1, 3, 5]) self.assertAllEqual( res, [[[True, False, False, False, False], [True, True, True, False, False], [True, True, False, False, False]]]) # test dtype and default maxlen: res = array_ops.sequence_mask( constant_op.constant([[0, 1, 4], [1, 2, 3]]), dtype=dtypes.float32) self.assertAllEqual(res.get_shape().as_list(), [2, 3, 4]) self.assertAllEqual( res, [[[0.0, 0.0, 0.0, 0.0], [1.0, 0.0, 0.0, 0.0], [1.0, 1.0, 1.0, 1.0]], [[1.0, 0.0, 0.0, 0.0], [1.0, 1.0, 0.0, 0.0], [1.0, 1.0, 1.0, 0.0]]]) def testDtypes(self): def check_dtypes(lengths_dtype, maxlen_dtype): res = array_ops.sequence_mask( constant_op.constant([1, 3, 2], dtype=lengths_dtype), constant_op.constant(5, dtype=maxlen_dtype)) self.assertAllEqual(res.get_shape(), [3, 5]) self.assertAllEqual( res, [[True, False, False, False, False], [True, True, True, False, False], [True, True, False, False, False]]) check_dtypes(dtypes.int32, dtypes.int32) check_dtypes(dtypes.int32, dtypes.int64) check_dtypes(dtypes.int64, dtypes.int32) check_dtypes(dtypes.int64, dtypes.int64) def testOutputDtype(self): def check_output_dtype(output_dtype): res = self.evaluate( array_ops.sequence_mask( constant_op.constant([1, 3, 2], dtype=dtypes.int32), constant_op.constant(5, dtype=dtypes.int32), dtype=output_dtype)) self.assertAllEqual( res, self.evaluate( math_ops.cast([[True, False, False, False, False], [True, True, True, False, False], [True, True, False, False, False]], output_dtype))) check_output_dtype(dtypes.bool) check_output_dtype("bool") check_output_dtype(np.bool) check_output_dtype(dtypes.int32) check_output_dtype("int32") check_output_dtype(np.int32) check_output_dtype(dtypes.float32) check_output_dtype("float32") check_output_dtype(np.float32) check_output_dtype(dtypes.int64) check_output_dtype("float64") check_output_dtype(np.float64) class ConcatSliceResourceTest(test_util.TensorFlowTestCase): @test_util.run_in_graph_and_eager_modes def testConcatSlice(self): r1 = test_ops.stub_resource_handle_op(container="a", shared_name="b") r2 = test_ops.stub_resource_handle_op(container="a", shared_name="c") c = array_ops.stack([r1, r2]) s = array_ops.strided_slice(c, [1], [2]) self.evaluate(test_ops.resource_create_op(s)) with self.assertRaises(errors.AlreadyExistsError): self.evaluate(test_ops.resource_create_op(r2)) class IdentityTest(test_util.TensorFlowTestCase): @test_util.run_gpu_only def testEagerIdentity(self): with context.eager_mode(): def _test(x, y, device): self.assertAllEqual(x.numpy(), y.numpy()) self.assertTrue(device in y.device.lower()) with test_util.force_gpu(): a = constant_op.constant([[2], [3]], dtype=dtypes.float32) with test_util.force_gpu(): b = array_ops.identity(a) _test(a, b, "gpu") with test_util.force_cpu(): c = array_ops.identity(b) _test(b, c, "cpu") with test_util.force_cpu(): d = array_ops.identity(c) _test(c, d, "cpu") with test_util.force_gpu(): e = array_ops.identity(d) _test(d, e, "gpu") class PadTest(test_util.TensorFlowTestCase): def testEager(self): with context.eager_mode(): t = constant_op.constant([[1, 2, 3], [4, 5, 6]]) paddings = constant_op.constant([[ 1, 1, ], [2, 2]]) padded = array_ops.pad(t, paddings, "CONSTANT") self.assertAllEqual(padded.numpy(), [[0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 2, 3, 0, 0], [0, 0, 4, 5, 6, 0, 0], [0, 0, 0, 0, 0, 0, 0]]) def testSymmetricMirrorPadGrad(self): t = np.broadcast_to(np.arange(0, 7), (3, 2, 1, 7)) paddings = constant_op.constant([ [1, 1], [0, 0], [0, 0], [2, 2], ]) expected = np.broadcast_to(np.array([9, 27, 27]), (1, 2, 1, 3)) result = gen_array_ops.mirror_pad_grad(t, paddings, "SYMMETRIC") self.assertAllEqual(result, expected) def testReflectMirrorPadGrad(self): t = np.broadcast_to(np.reshape(np.arange(0, 7), (7, 1)), (1, 4, 7, 1)) paddings = constant_op.constant([ [0, 0], [1, 1], [2, 2], [0, 0], ]) expected = np.broadcast_to( np.reshape(np.array([16, 18, 8]), (3, 1)), (1, 2, 3, 1)) result = gen_array_ops.mirror_pad_grad(t, paddings, "REFLECT") self.assertAllEqual(result, expected) class InvertPermutationTest(test_util.TensorFlowTestCase): def testInvertPermutation(self): for dtype in [dtypes.int32, dtypes.int64]: with self.subTest(dtype=dtype, use_gpu=True): x = constant_op.constant([3, 4, 0, 2, 1], dtype=dtype) y = array_ops.invert_permutation(x) self.assertAllEqual(y.get_shape(), [5]) self.assertAllEqual(y, [2, 4, 3, 0, 1]) class UnravelIndexTest(test_util.TensorFlowTestCase): # TODO(b/73086570): Reenable test. @unittest.skip("Test does not pass internally.") def testUnravelIndex(self): with self.cached_session(): for dtype in [dtypes.int32, dtypes.int64]: with self.subTest(dtype=dtype): indices_1 = constant_op.constant(1621, dtype=dtype) dims_1 = constant_op.constant([6, 7, 8, 9], dtype=dtype) out_1 = array_ops.unravel_index(indices_1, dims_1) self.assertAllEqual(out_1, [3, 1, 4, 1]) indices_2 = constant_op.constant([1621], dtype=dtype) dims_2 = constant_op.constant([6, 7, 8, 9], dtype=dtype) out_2 = array_ops.unravel_index(indices_2, dims_2) self.assertAllEqual(out_2, [[3], [1], [4], [1]]) indices_3 = constant_op.constant([22, 41, 37], dtype=dtype) dims_3 = constant_op.constant([7, 6], dtype=dtype) out_3 = array_ops.unravel_index(indices_3, dims_3) self.assertAllEqual(out_3, [[3, 6, 6], [4, 5, 1]]) # Test case for GitHub issue 40204. def testUnravelIndexZeroDim(self): with self.cached_session(): for dtype in [dtypes.int32, dtypes.int64]: with self.assertRaisesRegex(errors.InvalidArgumentError, "dims cannot contain a dim of zero"): indices = constant_op.constant([2, 5, 7], dtype=dtype) dims = constant_op.constant([3, 0], dtype=dtype) self.evaluate(array_ops.unravel_index(indices=indices, dims=dims)) class GuaranteeConstOpTest(test_util.TensorFlowTestCase): def testSimple(self): a = array_ops.constant(10) guarantee_a = array_ops.guarantee_const(a) self.assertEqual(10, self.evaluate(guarantee_a)) def testVariables(self): for use_resource in [False, True]: with self.subTest(use_resource=use_resource): a = variable_scope.get_variable( "var_{}".format(use_resource), [], initializer=init_ops.constant_initializer(10.0), use_resource=use_resource) guarantee_a = array_ops.guarantee_const(a) self.evaluate(a.initializer) self.assertEqual(10.0, self.evaluate(guarantee_a)) def testResourceRejection(self): with ops.device("/cpu:0"): a = variable_scope.get_variable( "resource_var", [], initializer=init_ops.constant_initializer(10.0), use_resource=True) with self.assertRaisesWithPredicateMatch(errors.InvalidArgumentError, "cannot be a resource variable"): guarantee_a = array_ops.guarantee_const(a.handle) self.evaluate(a.initializer) self.evaluate(guarantee_a) class SnapshotOpTest(test_util.TensorFlowTestCase): def testInvertPermutation(self): for dtype in [dtypes.int32, dtypes.int64, dtypes.float32, dtypes.float64]: with self.subTest(dtype=dtype, use_gpu=True): x = constant_op.constant([0, 1, 2, 3], dtype=dtype) y = gen_array_ops.snapshot(x) self.assertAllEqual(y, [0, 1, 2, 3]) @test_util.run_all_in_graph_and_eager_modes class QuantizeAndDequantizeTest(test_util.TensorFlowTestCase): # Generates a tensor of the specified `shape` using values from `values` # scaled by (slice_idx + 1) along `axis` dimension. def _scale_per_slice(self, shape, axis, values): # Note: repeats the values if the shape is larger than values. out = np.take(values, np.remainder(np.arange(np.prod(shape)), len(values))).reshape(shape) if axis is not None: scale_shape = [1] * len(shape) scale_shape[axis] = shape[axis] out *= np.arange(1, shape[axis] + 1).reshape(scale_shape) return out def testAxis(self): shape = np.array([2, 3, 4, 5]) values = np.array([-1, -0.5, 0, 0.3, 0.8, 0.555, 0.5], dtype=np.float32) quant_values = np.array( [-1, -0.5, 0, 38.0 / 128, 102.0 / 128, 71.0 / 128, 0.5], dtype=np.float32) for axis in [None, 0, 1, 2, 3]: with self.subTest(axis=axis): inputs = constant_op.constant( self._scale_per_slice(shape, axis, values)) expected = self._scale_per_slice(shape, axis, quant_values) unused_minmax_value = 0 if axis is None else [0] * shape[axis] fake_quantized = self.evaluate( array_ops.quantize_and_dequantize_v2( inputs, unused_minmax_value, unused_minmax_value, range_given=False, round_mode="HALF_UP", axis=axis)) self.assertAllEqual(fake_quantized, expected) if axis is not None: fake_quantized = self.evaluate( array_ops.quantize_and_dequantize_v2( inputs, unused_minmax_value, unused_minmax_value, range_given=False, axis=(axis - 4))) self.assertAllClose(fake_quantized, expected) def testBadAxis(self): input_tensor = [2.5, 2.5] input_min = [0, 0] input_max = [1, 1] error_message_pattern = "Shape must be at least rank 11 but is rank 1" # TODO(b/171260356): Eager mode and graph mode throw different error types error = errors.InvalidArgumentError if context.executing_eagerly( ) else ValueError with self.assertRaisesRegex(error, error_message_pattern): self.evaluate( array_ops.quantize_and_dequantize_v2( input=input_tensor, input_min=input_min, input_max=input_max, axis=10)) def testQuantizeDequantizeGrad(self): shape = (2, 2) max_threshold = 0 min_threshold = -10 input_value = np.random.rand(2, 2) * 40.0 - 20.0 input_tensor = constant_op.constant(input_value, shape=shape, name="input_tensor") with self.cached_session(): def f(a): return array_ops.quantize_and_dequantize_v2( a, input_min=min_threshold, input_max=max_threshold, range_given=True) output_grad = gradient_checker_v2.compute_gradient(f, [input_tensor]) self.assertAllClose(output_grad[0], np.zeros([1, 4, 4])) @test_util.run_all_in_graph_and_eager_modes class SortedSearchTest(test_util.TensorFlowTestCase): def testUpperBoundFloatHandCoded(self): cdf = np.array([0, .2, .5, .6, .8, 1.], dtype=np.float32) arr = np.array([.04, .99, .53, .58, .31, .01, .79, .8, .21], dtype=np.float32) result = np.searchsorted(cdf, arr, side="right") tf_result = self.evaluate(array_ops.searchsorted(cdf, arr, side="right")) self.assertAllEqual(result, tf_result) def testUpperBoundFloatRandomNd(self): dim_size = 7 for d in range(1, 5): shape = [dim_size] * d cdf = np.cumsum( np.random.uniform(size=shape).astype(np.float32), axis=(d - 1)) arr = np.random.uniform(size=shape).astype(np.float32) * dim_size tf_result = self.evaluate(array_ops.searchsorted(cdf, arr, side="right")) cdf = cdf.reshape([-1, dim_size]) arr = arr.reshape([-1, dim_size]) result = np.zeros(arr.shape, dtype=np.int32) for i in range(dim_size**(d - 1)): result[i, :] = np.searchsorted(cdf[i, :], arr[i, :], side="right") result = result.reshape(shape) self.assertAllEqual(result, tf_result) def testUpperBoundFloatUneven(self): batch_size = 7 size_search_array = 1000 size_values = 47 cdf = np.cumsum( np.random.uniform(size=[batch_size, size_search_array]).astype( np.float32), axis=1) arr = np.random.uniform(size=[batch_size, size_values]).astype( np.float32) * size_search_array tf_result = self.evaluate(array_ops.searchsorted(cdf, arr, side="right")) result = np.zeros(arr.shape, dtype=np.int32) for i in range(batch_size): result[i, :] = np.searchsorted(cdf[i, :], arr[i, :], side="right") self.assertAllEqual(result, tf_result) def testLowerBoundFloatHandCoded(self): cdf = np.array([0, .2, .5, .6, .8, 1.], dtype=np.float32) arr = np.array([.04, .99, .53, .58, .31, .01, .79, .8, .21], dtype=np.float32) result = np.searchsorted(cdf, arr, side="left") tf_result = self.evaluate(array_ops.searchsorted(cdf, arr, side="left")) self.assertAllEqual(result, tf_result) def testLowerBoundFloatRandomNd(self): dim_size = 7 for d in range(1, 5): shape = [dim_size] * d cdf = np.cumsum( np.random.uniform(size=shape).astype(np.float32), axis=(d - 1)) arr = np.random.uniform(size=shape).astype(np.float32) * dim_size tf_result = self.evaluate(array_ops.searchsorted(cdf, arr, side="left")) cdf = cdf.reshape([-1, dim_size]) arr = arr.reshape([-1, dim_size]) result = np.zeros(arr.shape, dtype=np.int32) for i in range(dim_size**(d - 1)): result[i, :] = np.searchsorted(cdf[i, :], arr[i, :], side="left") result = result.reshape(shape) self.assertAllEqual(result, tf_result) def testLowerBoundFloatUneven(self): batch_size = 7 size_search_array = 1000 size_values = 47 cdf = np.cumsum( np.random.uniform(size=[batch_size, size_search_array]).astype( np.float32), axis=1) arr = np.random.uniform(size=[batch_size, size_values]).astype( np.float32) * size_search_array tf_result = self.evaluate(array_ops.searchsorted(cdf, arr, side="left")) result = np.zeros(arr.shape, dtype=np.int32) for i in range(batch_size): result[i, :] = np.searchsorted(cdf[i, :], arr[i, :], side="left") self.assertAllEqual(result, tf_result) def testUpperBoundIntHandCoded(self): cdf = np.array([0, 20, 50, 60, 80, 100], dtype=np.int64) arr = np.array([4, 99, 53, 58, 31, 1, 79, 8, 21], dtype=np.int64) result = np.searchsorted(cdf, arr, side="right") tf_result = self.evaluate(array_ops.searchsorted(cdf, arr, side="right")) self.assertAllEqual(result, tf_result) def testUpperBoundIntRandomNd(self): dim_size = 7 for d in range(1, 5): shape = [dim_size] * d cdf = np.cumsum( np.random.randint(low=0, high=10, size=shape).astype(np.int64), axis=(d - 1)) arr = np.random.randint( low=0, high=10 * dim_size, size=shape).astype(np.int64) tf_result = self.evaluate(array_ops.searchsorted(cdf, arr, side="right")) cdf = cdf.reshape([-1, dim_size]) arr = arr.reshape([-1, dim_size]) result = np.zeros(arr.shape, dtype=np.int32) for i in range(dim_size**(d - 1)): result[i, :] = np.searchsorted(cdf[i, :], arr[i, :], side="right") result = result.reshape(shape) self.assertAllEqual(result, tf_result) def testUpperBoundIntUneven(self): batch_size = 7 size_search_array = 1000 size_values = 47 cdf = np.cumsum( np.random.randint(low=0, high=10, size=[batch_size, size_search_array]).astype(np.int64), axis=1) arr = np.random.randint( low=0, high=10 * size_search_array, size=[batch_size, size_values]).astype(np.int64) tf_result = self.evaluate(array_ops.searchsorted(cdf, arr, side="right")) result = np.zeros(arr.shape, dtype=np.int32) for i in range(batch_size): result[i, :] = np.searchsorted(cdf[i, :], arr[i, :], side="right") self.assertAllEqual(result, tf_result) def testLowerBoundIntHandCoded(self): cdf = np.array([0, 20, 50, 60, 80, 100], dtype=np.int64) arr = np.array([4, 99, 53, 58, 31, 1, 79, 8, 21], dtype=np.int64) result = np.searchsorted(cdf, arr, side="left") tf_result = self.evaluate(array_ops.searchsorted(cdf, arr, side="left")) self.assertAllEqual(result, tf_result) def testLowerBoundIntRandomNd(self): dim_size = 7 for d in range(1, 5): shape = [dim_size] * d cdf = np.cumsum( np.random.randint(low=0, high=10, size=shape).astype(np.int64), axis=(d - 1)) arr = np.random.randint( low=0, high=10 * dim_size, size=shape).astype(np.int64) tf_result = self.evaluate(array_ops.searchsorted(cdf, arr, side="left")) cdf = cdf.reshape([-1, dim_size]) arr = arr.reshape([-1, dim_size]) result = np.zeros(arr.shape, dtype=np.int32) for i in range(dim_size**(d - 1)): result[i, :] = np.searchsorted(cdf[i, :], arr[i, :], side="left") result = result.reshape(shape) self.assertAllEqual(result, tf_result) def testLowerBoundIntUneven(self): batch_size = 7 size_search_array = 1000 size_values = 47 cdf = np.cumsum( np.random.randint(low=0, high=10, size=[batch_size, size_search_array]).astype(np.int64), axis=1) arr = np.random.randint( low=0, high=10 * size_search_array, size=[batch_size, size_values]).astype(np.int64) tf_result = self.evaluate(array_ops.searchsorted(cdf, arr, side="left")) result = np.zeros(arr.shape, dtype=np.int32) for i in range(batch_size): result[i, :] = np.searchsorted(cdf[i, :], arr[i, :], side="left") self.assertAllEqual(result, tf_result) def testZeroSequenceSize(self): dtype = dtypes.int32 for side in ("left", "right"): with self.subTest(side=side): self.assertAllEqual( array_ops.searchsorted( array_ops.ones([2, 0]), array_ops.ones([2, 3]), side=side, out_type=dtype), array_ops.zeros([2, 3], dtype)) def testZeroValueSize(self): dtype = dtypes.int32 for side in ("left", "right"): with self.subTest(side=side): self.assertAllEqual( array_ops.searchsorted( array_ops.ones([2, 3]), array_ops.ones([2, 0]), side=side, out_type=dtype), array_ops.zeros([2, 0], dtype)) class BatchGatherNdTest(test_util.TensorFlowTestCase): def testShapesMatch(self): """Tests for various different shape combinations.""" shapes = [] # params_shape, indices_shape, batch_dims shapes.append(((2, 2, 2), (2, 1), 1),) shapes.append(((2, 2, 2), (2, 2), 1),) shapes.append(((2, 2, 2), (2, 3), 0),) shapes.append(((2, 2, 2), (3,), 0),) shapes.append(((2, 2, 2), (1,), 0),) shapes.append(((2, 2, 3, 2), (2, 3), 1),) shapes.append(((2, 2, 3, 2), (2, 2), 1),) shapes.append(((2, 2, 3, 2), (2, 1), 1),) shapes.append(((2, 2, 3, 2), (2, 1, 3), 1),) shapes.append(((2, 2, 3, 2), (2, 2, 2), 1),) shapes.append(((2, 2, 3, 2), (2, 3, 1), 1),) shapes.append(((3, 2, 2, 3, 4), (3, 2, 3), 2),) shapes.append(((3, 2, 2, 3, 4), (3, 2, 2), 2),) shapes.append(((3, 2, 2, 3, 4), (3, 2, 1), 2),) shapes.append(((3, 2, 2, 3, 4), (3, 2, 1, 3), 2),) shapes.append(((3, 2, 2, 3, 4), (3, 2, 2, 2), 2),) shapes.append(((3, 2, 2, 3, 4), (3, 2, 3, 1), 2),) for params_shape, indices_shape, batch_dims in shapes: with self.subTest( params_shape=params_shape, indices_shape=indices_shape, batch_dims=batch_dims): params = constant_op.constant(1.0, shape=(params_shape)) indices = constant_op.constant( 1, shape=(indices_shape), dtype=dtypes.int32) out = array_ops.batch_gather_nd( params=params, indices=indices, batch_dims=batch_dims) ndims_params = len(params_shape) - batch_dims ndims_rows = ndims_params - indices_shape[-1] expected_out_shape = indices_shape[:-1] if ndims_rows > 0: expected_out_shape += params_shape[-ndims_rows:] self.assertSequenceEqual(out.shape, expected_out_shape) def testReducesToGatherNDWhenBatchDimIsZero(self): """Confirms setting batch_dims to zero reduces to tf.gather_nd.""" params = constant_op.constant(np.random.uniform(0.0, 1.0, size=(7, 8, 9))) indices_shapes = [] indices_shapes.append((1,)) indices_shapes.append((3, 1)) indices_shapes.append((3, 3, 1)) indices_shapes.append((2,)) indices_shapes.append((3, 2)) indices_shapes.append((3, 3, 2)) indices_shapes.append((3,)) indices_shapes.append((3, 3)) indices_shapes.append((3, 3, 3)) for indices_shape in indices_shapes: with self.subTest(indices_shape=indices_shape): indices = np.random.randint(0, 7, size=indices_shape) gather_nd_result = gen_array_ops.gather_nd(params, indices) batch_gather_nd_result = array_ops.batch_gather_nd( params=params, indices=indices, batch_dims=0) self.assertAllEqual(gather_nd_result, batch_gather_nd_result) def testSameResultAsMapFn(self): """Compares results with gather_nd called on every element with map_fn.""" shapes = [] # params_shape, indices_shape, batch_dims shapes.append(((2, 2, 2), (2, 1), 1),) shapes.append(((2, 2, 2), (2, 2), 1),) shapes.append(((2, 2, 3, 2), (2, 3), 1),) shapes.append(((2, 2, 3, 2), (2, 2), 1),) shapes.append(((2, 2, 3, 2), (2, 1), 1),) shapes.append(((2, 2, 3, 2), (2, 1, 3), 1),) shapes.append(((2, 2, 3, 2), (2, 2, 2), 1),) shapes.append(((2, 2, 3, 2), (2, 3, 1), 1),) shapes.append(((3, 2, 2, 3, 4), (3, 2, 3), 2),) shapes.append(((3, 2, 2, 3, 4), (3, 2, 2), 2),) shapes.append(((3, 2, 2, 3, 4), (3, 2, 1), 2),) shapes.append(((3, 2, 2, 3, 4), (3, 2, 1, 3), 2),) shapes.append(((3, 2, 2, 3, 4), (3, 2, 2, 2), 2),) shapes.append(((3, 2, 2, 3, 4), (3, 2, 3, 1), 2),) for params_shape, indices_shape, batch_dims in shapes: with self.subTest( params_shape=params_shape, indices_shape=indices_shape, batch_dims=batch_dims): params = constant_op.constant( np.random.uniform(0.0, 1.0, size=(params_shape))) indices = np.random.randint(0, 2, size=indices_shape) batch_gather_nd_result = array_ops.batch_gather_nd( params=params, indices=indices, batch_dims=batch_dims) if batch_dims > 1: params = array_ops.reshape( params, shape=[-1] + list(params_shape[batch_dims:])) indices = array_ops.reshape( indices, shape=[-1] + list(indices_shape[batch_dims:])) map_fn_gather_nd_result = map_fn.map_fn( fn=self._map_fn_body, elems=(params, indices), dtype=dtypes.float64) if batch_dims > 1: out_shape = map_fn_gather_nd_result.shape.as_list() out_shape = list(params_shape[:batch_dims]) + out_shape[1:] map_fn_gather_nd_result = array_ops.reshape( map_fn_gather_nd_result, shape=out_shape) self.assertAllEqual(map_fn_gather_nd_result, batch_gather_nd_result) def _map_fn_body(self, elems): return gen_array_ops.gather_nd(elems[0], elems[1]) def testBatchDimsAsTensor(self): """Tests Tensor batch_dims as input works as intended.""" shapes = [] # params_shape, indices_shape, batch_dims shapes.append(((3, 2, 2, 3, 4), (3, 2, 3, 1), 0),) shapes.append(((3, 2, 2, 3, 4), (3, 2, 3, 1), 1),) shapes.append(((3, 2, 2, 3, 4), (3, 2, 3, 1), 2),) for params_shape, indices_shape, batch_dims in shapes: with self.subTest( params_shape=params_shape, indices_shape=indices_shape, batch_dims=batch_dims): params = constant_op.constant( np.random.uniform(0.0, 1.0, size=(params_shape))) indices = np.random.randint(0, 2, size=indices_shape) batch_gather_nd_result = array_ops.gather_nd( params=params, indices=indices, batch_dims=batch_dims) batch_dims_tensor = constant_op.constant([batch_dims]) batch_gather_nd_tensor_batch_dims_result = array_ops.gather_nd( params=params, indices=indices, batch_dims=batch_dims_tensor) self.assertAllEqual(batch_gather_nd_tensor_batch_dims_result, batch_gather_nd_result) def testInvalidBatchDimsRaisesException(self): """Tests whether invalid batch_dims raise expected exceptions.""" params = constant_op.constant( np.random.uniform(0.0, 1.0, size=(3, 2, 2, 3, 4))) indices = np.random.randint(0, 2, size=(3, 2, 3)) with self.assertRaises(TypeError): array_ops.batch_gather_nd( params=params, indices=indices, batch_dims=constant_op.constant((0, 1))) with self.assertRaises(ValueError): array_ops.batch_gather_nd(params=params, indices=indices, batch_dims=-1) with self.assertRaises(ValueError): array_ops.batch_gather_nd(params=params, indices=indices, batch_dims=4) def testNoneBatchDimensions(self): """Tests gather_nd works with None dimensions.""" shapes = [] # params_shape, indices_shape, batch_dims shapes.append(((2, 2, 2), (2, 1), 1),) shapes.append(((2, 2, 2), (2, 2), 1),) shapes.append(((2, 2, 3, 2), (2, 3), 1),) shapes.append(((2, 2, 3, 2), (2, 2), 1),) shapes.append(((2, 2, 3, 2), (2, 1), 1),) shapes.append(((2, 2, 3, 2), (2, 1, 3), 1),) shapes.append(((2, 2, 3, 2), (2, 2, 2), 1),) shapes.append(((2, 2, 3, 2), (2, 3, 1), 1),) shapes.append(((3, 2, 2, 3, 4), (3, 2, 3), 2),) shapes.append(((3, 2, 2, 3, 4), (3, 2, 2), 2),) shapes.append(((3, 2, 2, 3, 4), (3, 2, 1), 2),) shapes.append(((3, 2, 2, 3, 4), (3, 2, 1, 3), 2),) shapes.append(((3, 2, 2, 3, 4), (3, 2, 2, 2), 2),) shapes.append(((3, 2, 2, 3, 4), (3, 2, 3, 1), 2),) for params_shape, indices_shape, batch_dims in shapes: params_ph_shape = list(params_shape) indices_ph_shape = list(indices_shape) for i in range(batch_dims): params_ph_shape[i] = None indices_ph_shape[i] = None @def_function.function def func(params, indices): return array_ops.batch_gather_nd( params=params, indices=indices, batch_dims=batch_dims) # pylint: disable=cell-var-from-loop f = func.get_concrete_function( tensor_spec.TensorSpec(params_ph_shape, dtypes.float32), tensor_spec.TensorSpec(indices_ph_shape, dtypes.int32)) params_val = np.ones(dtype=np.float32, shape=params_shape) indices_val = np.ones(dtype=np.int32, shape=indices_shape) res = f(params_val, indices_val) row_ndims = len(params_shape) - batch_dims - indices_shape[-1] expected_out_shape = indices_shape[:-1] if row_ndims > 0: expected_out_shape += params_shape[-row_ndims:] self.assertSequenceEqual(res.shape, expected_out_shape) @test_util.run_all_in_graph_and_eager_modes class RepeatTest(test_util.TensorFlowTestCase, parameterized.TestCase): @parameterized.parameters( (3, 4, None), ([[1, 2], [3, 4]], 2, None), ([[1, 2], [3, 4]], [1, 2], 0), ([[1, 2], [3, 4]], [1, 2], 1), ([[1, 2], [3, 4]], 3, 1), ([[1, 2], [3, 4]], [1, 2, 3, 4], None), (np.ones([0, 4]), 0, 1), (np.ones([1, 2]), [2], None), ) def testRepeat(self, array, repeats, axis): array = np.array(array) @def_function.function( input_signature=[tensor_spec.TensorSpec(None, dtypes.int32)] * 2) def repeat_fn(array, repeats): return array_ops.repeat(array, repeats, axis) v_tf = array_ops.repeat(constant_op.constant(array), repeats, axis) v_tf_fn = repeat_fn( constant_op.constant(array, dtype=dtypes.int32), repeats) v_np = np.repeat(array, repeats, axis) self.assertAllEqual(v_tf, v_np) self.assertAllEqual(v_tf_fn, v_np) @test_util.run_all_in_graph_and_eager_modes class TileVariantTest(test_util.TensorFlowTestCase): def test_tile_tensor_list(self): t = constant_op.constant(np.random.uniform(size=[2, 3, 4])) handle = list_ops.tensor_list_from_tensor(t, element_shape=None) with ops.device("CPU:0"): tiled_handles = array_ops.tile(array_ops.reshape(handle, [1]), [2]) tiled_tensor_0 = list_ops.tensor_list_stack(tiled_handles[0], t.dtype, 2, [3, 4]) tiled_tensor_1 = list_ops.tensor_list_stack(tiled_handles[1], t.dtype, 2, [3, 4]) self.assertAllEqual(t, tiled_tensor_0) self.assertAllEqual(t, tiled_tensor_1) # Now mutate some of the lists and make sure the changes are not reflected # in the tiled handles. with ops.control_dependencies([ list_ops.tensor_list_scatter([t[0] + 1], [0], input_handle=handle), list_ops.tensor_list_set_item(tiled_handles[0], 0, t[0] + 2)]): tiled_tensor_0 = list_ops.tensor_list_stack(tiled_handles[0], t.dtype, 2, [3, 4]) tiled_tensor_1 = list_ops.tensor_list_stack(tiled_handles[1], t.dtype, 2, [3, 4]) self.assertAllEqual(t, tiled_tensor_0) self.assertAllEqual(t, tiled_tensor_1) if __name__ == "__main__": test_lib.main()