File size: 6,177 Bytes
ae19f42
d3a2e42
9b25bf9
d3a2e42
5a5c647
9b25bf9
 
5a5c647
 
9b25bf9
 
 
 
 
 
 
 
 
341d0fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c404013
341d0fc
19f779d
c7feec4
c404013
 
19f779d
c7feec4
c404013
 
19f779d
c7feec4
341d0fc
ae19f42
 
 
 
 
 
 
 
 
 
6900bf1
 
cefc818
b2a7c89
 
84673ac
2a0f2ca
b2a7c89
 
 
 
 
 
 
 
 
 
a3b75dd
b2a7c89
a3b75dd
 
b2a7c89
a3b75dd
b2a7c89
a3b75dd
b2a7c89
 
 
 
 
 
 
 
 
 
 
 
 
 
84673ac
b2a7c89
 
 
b94fb4f
 
d1c0453
b2a7c89
 
 
 
 
 
 
a0f43a0
a9b58b3
a0f43a0
c1669e4
919b37d
 
 
1999f53
a9b58b3
1999f53
 
a0f43a0
c1669e4
a9b58b3
1999f53
a9b58b3
6b5a8f4
 
1999f53
a9b58b3
1999f53
b2a7c89
18ba507
 
b2a7c89
6b5a8f4
b2a7c89
 
 
a3b75dd
b2a7c89
 
6b5a8f4
 
 
b2a7c89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
---
configs:
- config_name: idiom-detection-task
  data_files:
  - split: test
    path: "idiom_detection_task.csv"
- config_name: metaphor-detection-task
  data_files:
  - split: test
    path: "metaphor_detection_task.csv"
- config_name: simile-detection-task
  data_files:
  - split: test
    path: "simile_detection_task.csv"
- config_name: open-simile-detection-task
  data_files:
  - split: test
    path: "open_simile_detection_task.csv"
- config_name: idiom-retrieval-task
  data_files:
  - split: test
    path: "idiom_retrieval_task.csv"
- config_name: metaphor-retrieval-task
  data_files:
  - split: test
    path: "metaphor_retrieval_task.csv"
- config_name: simile-retrieval-task
  data_files:
  - split: test
    path: "simile_retrieval_task.csv"
- config_name: open-simile-retrieval-task
  data_files:
  - split: test
    path: "open_simile_retrieval_task.csv"
- config_name: idioms-dataset
  data_files:
  - split: dataset
    path: "idioms_dataset.csv"
- config_name: similes-dataset
  data_files:
  - split: dataset
    path: "similes_dataset.csv"
- config_name: metaphors-dataset
  data_files:
  - split: dataset
    path: "metaphors_dataset.csv"

license: cc-by-4.0
language:
- en
tags:
- figurative-language
- multimodal-figurative-language
- ' commonsense-reasoning'
- visual-reasoning
size_categories:
- 1K<n<10K
---

# Dataset Card for IRFL

- [Dataset Description](#dataset-description)
  - [Leaderboards](#leaderboards)
  - [Colab notebook code for IRFL evaluation](#colab-notebook-code-for-irfl-evaluation)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Fields](#data-fields)
- [Dataset Creation](#dataset-creation)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)

## Dataset Description

The IRFL dataset consists of idioms, similes, metaphors with matching figurative and literal images, and two novel tasks of multimodal figurative detection and retrieval.

Using human annotation and an automatic pipeline we created, we collected figurative and literal images for textual idioms, metaphors, and similes. 
We annotated the relations between these images and the figurative phrase they originated from. We created two novel tasks of figurative detection and retrieval using these images.

The figurative detection task evaluates Vision and Language Pre-Trained Models’ (VL-PTMs) ability to choose the image that best visualizes the meaning of a figurative expression. The task is to choose the image that best visualizes the figurative phrase out of X candidates. The retrieval task examines VL-PTMs' preference for figurative images. In this task, Given a set of figurative and partially literal images, the task is to rank the images using the model-matching score such that the figurative images are ranked higher, and calculate the precision at k, where k is the number of figurative images in the input.

We evaluated state-of-the-art VL models and found that the best models achieved 22%, 30%, and 66% accuracy vs. humans 97%, 99.7%, and 100% on our detection task for idioms, metaphors, and similes respectively. The best model achieved an F1 score of 61 on the retrieval task.



- **Homepage:** 
https://irfl-dataset.github.io/
- **Repository:**
https://github.com/irfl-dataset/IRFL
- **Paper:**
https://arxiv.org/abs/2303.15445
- **Leaderboard:**
https://irfl-dataset.github.io/leaderboard
- **Point of Contact:**
[email protected]; [email protected]

### Leaderboards

https://irfl-dataset.github.io/leaderboard 

### Colab notebook for IRFL evaluation
https://colab.research.google.com/drive/1RfcUhBTHvREx5X7TMY5UAgMYX8NMKy7u?usp=sharing

### Languages

English. 

## Dataset Structure

### Data Fields
★ - refers to idiom-only fields
⁺₊ - refers to metaphor-only fields

Multimodal Figurative Language Detection task
- query (★): the idiom definition the answer image originated from.
- distractors: the distractor images
- answer: the correct image 
- figurative_type: idiom | metaphor | simile
- type: the correct image type (Figurative or Figurative+Literal).
- definition (★): list of all the definitions of the idiom
- phrase: the figurative phrase.

Multimodal Figurative Language Retrieval task
- type: the rival categories FvsPL (Figurative images vs. Partial Literal) or FLvsPL (Figurative+Literal images vs. Partial Literal)
- figurative_type: idiom | metaphor | simile
- images_metadata: the metadata of the distractors and answer images. 
- first_category: the first category images (Figurative images if FvsPL, Figurative Literal images if FLvsPL)
- second_category: the second category images (Partial Literal)
- definition (★): list of all the definitions of the idiom
- theme (⁺₊): the theme of the partial literal distractor, for example, for the metaphor heart of gold, an image of a "gold bar" and an image of a "human heart" will have different theme value
- phrase: the figurative phrase.

The idioms, metaphor, and similes datasets contain all the figurative phrases, annotated images, and corresponding metadata. <br/>

## Dataset Collection
Using an automatic pipeline we created, we collected figurative and literal images for textual idioms, metaphors, and similes. We annotated the relations between these images and the figurative phrase they originated from.

#### Annotation process

We paid Amazon Mechanical Turk Workers to annotate the relation between each image and phrase (Figurative vs. Literal).  

## Considerations for Using the Data
- Idioms: Annotated by five crowdworkers with rigorous qualifications and training.
- Metaphors and Similes: Annotated by three expert team members.
- Detection and Ranking Tasks: Annotated by three crowdworkers not involved in prior IRFL annotations.

### Licensing Information

CC-By 4.0 

### Citation Information

@misc{yosef2023irfl,
      title={IRFL: Image Recognition of Figurative Language}, 
      author={Ron Yosef and Yonatan Bitton and Dafna Shahaf},
      year={2023},
      eprint={2303.15445},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}