--- configs: - config_name: idiom-detection-task data_files: - split: test path: "idiom_detection_task.csv" - config_name: metaphor-detection-task data_files: - split: test path: "metaphor_detection_task.csv" - config_name: simile-detection-task data_files: - split: test path: "simile_detection_task.csv" - config_name: open-simile-detection-task data_files: - split: test path: "open_simile_detection_task.csv" - config_name: idiom-retrieval-task data_files: - split: test path: "idiom_retrieval_task.csv" - config_name: metaphor-retrieval-task data_files: - split: test path: "metaphor_retrieval_task.csv" - config_name: simile-retrieval-task data_files: - split: test path: "simile_retrieval_task.csv" - config_name: open-simile-retrieval-task data_files: - split: test path: "open_simile_retrieval_task.csv" - config_name: idioms-dataset data_files: - split: dataset path: "idioms_dataset.csv" - config_name: similes-dataset data_files: - split: dataset path: "similes_dataset.csv" - config_name: metaphors-dataset data_files: - split: dataset path: "metaphors_dataset.csv" license: cc-by-4.0 language: - en tags: - figurative-language - multimodal-figurative-language - ' commonsense-reasoning' - visual-reasoning size_categories: - 1K ## Dataset Collection Using an automatic pipeline we created, we collected figurative and literal images for textual idioms, metaphors, and similes. We annotated the relations between these images and the figurative phrase they originated from. #### Annotation process We paid Amazon Mechanical Turk Workers to annotate the relation between each image and phrase (Figurative vs. Literal). ## Considerations for Using the Data - Idioms: Annotated by five crowdworkers with rigorous qualifications and training. - Metaphors and Similes: Annotated by three expert team members. - Detection and Ranking Tasks: Annotated by three crowdworkers not involved in prior IRFL annotations. ### Licensing Information CC-By 4.0 ### Citation Information @misc{yosef2023irfl, title={IRFL: Image Recognition of Figurative Language}, author={Ron Yosef and Yonatan Bitton and Dafna Shahaf}, year={2023}, eprint={2303.15445}, archivePrefix={arXiv}, primaryClass={cs.CL} }