code
stringlengths
1
13.8M
test_that("continuous ranges expand as expected", { r <- continuous_range() r$train(1) expect_equal(r$range, c(1, 1)) r$train(10) expect_equal(r$range, c(1, 10)) }) test_that("discrete ranges expand as expected", { r <- discrete_range() r$train("a") expect_equal(r$range, "a") r$train("b") expect_equal(r$range, c("a", "b")) r$train(letters) expect_equal(r$range, letters) })
downloadCivEDICCS <- function(years=c(1999, 2009, 2016)) { if(is.null(years)){ stop(paste0("The argument ", sQuote("years"), " must not be null.")) } if(any(!(years %in% c(1999, 2009, 2016)))){ stop(paste0("The argument ", sQuote("years"), " must have values of only ", sQuote("1999"), ", ", sQuote("2009"), ", or ", sQuote("2016"), ".")) } linkURL <- "https://www.iea.nl/data-tools/repository" txt <- c() txt <- c(txt, paste0("Please manually download and extract the SPSS (*.sav) formatted CivED 1999, ICCS 2009, or ICCS 2016 study data files from the IEA Data Repository to a folder on your local system or network. ", "After the following steps are completed, the ", dQuote("readCivEDICCS"), " function can be used to read in the data. ", "See help page (?readCivEDICCS) for more details.")) txt <- c(txt, "\n") txt <- c(txt, paste0("\t", "1) Launch the IEA Data Repository web URL (", linkURL ,") in your web browser.")) txt <- c(txt, paste0("\t", "2) Find your study (CivED or ICCS) and click the appropriate studies ", dQuote("year"), " link you wish to download.")) txt <- c(txt, paste0("\t", "3) Next, click on the link ", dQuote("SPSS Data & Documentation"), " to download the SPSS (*.sav) files, which are compatible with the ", dQuote("readCivEDICCS()"), " function in EdSurvey. ", "Follow your web browser's prompts to download the resulting *.zip file to a folder location you can find later.")) txt <- c(txt, paste0("\t", "4) Locate your downloaded zip file (*.zip) container and use an extraction program to extract the folder's file contents. ", "It is recommended to extract the SPSS (*.sav) files to an easy-to-remember folder path based on the study and year (e.g., for Microsoft Windows OS, ", pasteItems(sQuote(c("C:/EdSurveyData/CivED/1999/", "C:/EdSurveyData/ICCS/2009/"), "C:/EdSurveyData/ICCS/2016/")), ").")) txt <- c(txt, "\n") txt <- paste0(paste(paste(txt, collapse = "\n\n"),collapse="\n"),"\n\n") eout(txt) nav <- readline(prompt = paste0("Please enter 'Y' if you wish to launch this URL (", linkURL ,") in your browser: ")) if(tolower(trimws(nav))=="y"){ browseURL(linkURL) } return(invisible(NULL)) }
modulationSpectrum = function( x, samplingRate = NULL, scale = NULL, from = NULL, to = NULL, amRes = 5, maxDur = 5, logSpec = FALSE, windowLength = 15, step = NULL, overlap = 80, wn = 'hanning', zp = 0, power = 1, roughRange = c(30, 150), amRange = c(10, 200), returnMS = TRUE, returnComplex = FALSE, summaryFun = c('mean', 'median', 'sd'), averageMS = FALSE, reportEvery = NULL, cores = 1, plot = TRUE, savePlots = NULL, logWarp = NA, quantiles = c(.5, .8, .9), kernelSize = 5, kernelSD = .5, colorTheme = c('bw', 'seewave', 'heat.colors', '...')[1], main = NULL, xlab = 'Hz', ylab = '1/KHz', xlim = NULL, ylim = NULL, width = 900, height = 500, units = 'px', res = NA, ... ) { myPars = c(as.list(environment()), list(...)) myPars = myPars[!names(myPars) %in% c( 'x', 'samplingRate', 'scale', 'from', 'to', 'savePlots', 'reportEvery', 'cores', 'summaryFun', 'averageMS')] pa = processAudio( x, samplingRate = samplingRate, scale = scale, from = from, to = to, funToCall = '.modulationSpectrum', myPars = myPars, reportEvery = reportEvery, cores = cores, savePlots = savePlots ) if (!is.null(pa$input$savePlots) && pa$input$n > 1) { try(htmlPlots(pa$input, savePlots = savePlots, changesAudio = FALSE, suffix = "MS", width = paste0(width, units))) } if (!is.null(summaryFun) && any(!is.na(summaryFun))) { temp = vector('list', pa$input$n) for (i in 1:pa$input$n) { if (!pa$input$failed[i]) { temp[[i]] = summarizeAnalyze( data.frame(roughness = pa$result[[i]]$roughness, amFreq = pa$result[[i]]$amFreq, amDep = pa$result[[i]]$amDep), summaryFun = summaryFun, var_noSummary = NULL) } } idx_failed = which(pa$input$failed) idx_ok = which(!pa$input$failed) if (length(idx_failed) > 0) { idx_ok = which(!pa$input$failed) if (length(idx_ok) > 0) { filler = temp[[idx_ok[1]]] [1, ] filler[1, ] = NA } else { stop('Failed to analyze any input') } for (i in idx_failed) temp[[i]] = filler } mysum_all = cbind(data.frame(file = pa$input$filenames_base), do.call('rbind', temp)) } else { mysum_all = NULL } for (i in idx_failed) pa$result[[i]] = list( original = NULL, processed = NULL, complex = NULL, roughness = NULL, amFreq = NULL, amDep = NULL ) original = processed = complex = roughness = amFreq = amDep = NULL out_prep = c('original', 'processed', 'complex', 'roughness', 'amFreq', 'amDep') if (pa$input$n == 1) { for (op in out_prep) assign(noquote(op), pa$result[[1]] [[op]]) } else { for (op in out_prep) assign(noquote(op), lapply(pa$result, function(x) x[[op]])) } op_prep2 = c('original', 'processed') if (returnComplex) { op_prep2 = c(op_prep2, 'complex') } else { complex = NULL } if (averageMS & pa$input$n > 1) { for (op in op_prep2) { assign( noquote(op), averageMatrices( get(op) [idx_ok], rFun = 'max', cFun = 'median', reduceFun = '+') ) } } invisible(list(original = original, processed = processed, complex = complex, roughness = roughness, amFreq = amFreq, amDep = amDep, summary = mysum_all)) } .modulationSpectrum = function( audio, amRes = 5, maxDur = 5, logSpec = FALSE, windowLength = 15, step = NULL, overlap = 80, wn = 'hanning', zp = 0, power = 1, roughRange = c(30, 150), amRange = c(10, 200), returnMS = TRUE, returnComplex = FALSE, plot = TRUE, savePlots = NULL, logWarp = NA, quantiles = c(.5, .8, .9), kernelSize = 5, kernelSD = .5, colorTheme = c('bw', 'seewave', 'heat.colors', '...')[1], main = NULL, xlab = 'Hz', ylab = '1/KHz', xlim = NULL, ylim = NULL, width = 900, height = 500, units = 'px', res = NA, ... ) { if (is.null(step)) step = windowLength * (1 - overlap / 100) step_points = round(step / 1000 * audio$samplingRate) step = step_points / audio$samplingRate * 1000 windowLength_points = round(windowLength / 1000 * audio$samplingRate) windowLength = windowLength_points / audio$samplingRate * 1000 overlap = 100 * (1 - step_points / windowLength_points) max_am = 1000 / step / 2 if (max_am < roughRange[1]) { warning(paste( 'roughRange outside the analyzed range of temporal modulation frequencies;', 'increase overlap / decrease step to improve temporal resolution,', 'or else look for roughness in a lower range')) } if (is.numeric(amRes)) { nFrames = max(3, ceiling(max_am / amRes * 2)) } else { nFrames = NULL } if (is.numeric(nFrames)) { chunk_ms = windowLength + step * (nFrames - 1) splitInto = max(1, ceiling(audio$duration * 1000 / chunk_ms)) if (chunk_ms > (audio$duration * 1000)) { message(paste('The sound is too short to be analyzed with amRes =', amRes, 'Hz. Roughness is probably not measured correctly')) chunk_ms = audio$duration } } else { splitInto = max(1, ceiling(audio$duration / maxDur)) } if (splitInto > 1) { myseq = floor(seq(1, length(audio$sound), length.out = splitInto + 1)) myInput = vector('list', splitInto) for (i in 1:splitInto) { idx = myseq[i]:(myseq[i + 1]) myInput[[i]] = audio$sound[idx] } } else { myInput = list(audio$sound) } out = vector('list', splitInto) if (returnComplex) { out_complex = out } else { out_aggreg_complex = NULL } for (i in 1:splitInto) { ms_i = modulationSpectrumFragment( myInput[[i]], samplingRate = audio$samplingRate, windowLength = windowLength, windowLength_points = windowLength_points, step = step, step_points = step_points, wn = wn, zp = zp, logSpec = logSpec, power = power) out[[i]] = ms_i$ms_half if (returnComplex) { out_complex[[i]] = ms_i$ms_complex } } keep = which(unlist(lapply(out, function(x) !is.null(x)))) out = out[keep] if (length(out) < 1) { warning('The sound is too short or windowLength too long. Need at least 3 frames') return(list('original' = NA, 'processed' = NA, 'complex' = NA, 'roughness' = NA, 'amFreq' = NA, 'amDep' = NA)) } roughness = unlist(lapply(out, function(x) getRough(x, roughRange, colNames = as.numeric(colnames(out[[1]]))))) am_list = lapply(out, function(x) getAM(x, amRange = amRange, amRes = amRes)) amFreq = unlist(lapply(am_list, function(x) x$amFreq)) amDep = unlist(lapply(am_list, function(x) x$amDep)) if (!returnMS) { result = list('original' = NULL, 'processed' = NULL, 'complex' = NULL, 'roughness' = roughness, 'amFreq' = amFreq, 'amDep' = amDep) } else { out_aggreg = averageMatrices( out, rFun = 'max', cFun = 'median', reduceFun = '+') X = as.numeric(colnames(out_aggreg)) Y = as.numeric(rownames(out_aggreg)) if (returnComplex) { out_aggreg_complex = averageMatrices( out_complex, rFun = 'max', cFun = 'median', reduceFun = '+') } if (is.numeric(logWarp)) { neg_col = which(X < 0) zero_col = which(X == 0) pos_col = which(X > 0) m_left = logMatrix(out_aggreg[, rev(neg_col)], base = logWarp) m_right = logMatrix(out_aggreg[, pos_col], base = logWarp) out_transf = cbind(m_left[, ncol(m_left):1], out_aggreg[, zero_col, drop = FALSE], m_right) X1 = as.numeric(colnames(out_transf)) Y1 = as.numeric(rownames(out_transf)) } else { out_transf = out_aggreg } out_transf = gaussianSmooth2D(out_transf, kernelSize = kernelSize, kernelSD = kernelSD) result = list('original' = out_aggreg, 'processed' = out_transf, 'complex' = out_aggreg_complex, 'roughness' = roughness, 'amFreq' = amFreq, 'amDep' = amDep) } if (is.character(audio$savePlots)) { plot = TRUE png(filename = paste0(audio$savePlots, audio$filename_noExt, "_MS.png"), width = width, height = height, units = units, res = res) } if (plot) { color.palette = switchColorTheme(colorTheme) if (is.null(xlim)) xlim = c(X[1], -X[1]) if (is.null(ylim)) ylim = range(Y) if (is.null(main)) { if (audio$filename_noExt == 'sound') { main = '' } else { main = audio$filename_noExt } } if (is.numeric(logWarp)) { filled.contour.mod( x = X, y = Y, z = t(out_transf), levels = seq(0, 1, length = 30), color.palette = color.palette, xlab = xlab, ylab = ylab, bty = 'n', axisX = FALSE, axisY = FALSE, main = main, xlim = xlim, ylim = ylim, ... ) max_tm = log(-X[1], logWarp) xl = unique(round(logWarp ^ pretty(c(1, max_tm), n = 4))) xl = c(-rev(xl), 0, xl) xl = xl[abs(xl) < -X1[1]] pos = apply(matrix(xl), 1, function(x) which.min(abs(x - X1))) axis(side = 1, at = X[pos], labels = xl) yseq = seq(1, length(Y), length.out = 7) digits = 0 ry = round(Y1[yseq], digits = digits) while (length(ry) > length(unique(ry))) { digits = digits + 1 ry = round(Y1[yseq], digits = digits) } axis(side = 2, at = round(Y[yseq]), labels = ry) } else { filled.contour.mod( x = X, y = Y, z = t(out_transf), levels = seq(0, 1, length = 30), color.palette = color.palette, xlab = xlab, ylab = ylab, main = main, bty = 'n', xlim = xlim, ylim = ylim, ... ) } abline(v = 0, lty = 3) qntls = pDistr(as.numeric(out_transf), quantiles = quantiles) par(new = TRUE) contour(x = X, y = Y, z = t(out_transf), levels = qntls, labels = quantiles * 100, xaxs = 'i', yaxs = 'i', axes = FALSE, frame.plot = FALSE, xlim = xlim, ylim = ylim, ...) par(new = FALSE) if (is.character(audio$savePlots)) dev.off() } invisible(result) } modulationSpectrumFragment = function(sound, samplingRate, windowLength, windowLength_points, step, step_points, wn = 'hanning', zp = 0, logSpec = FALSE, power = 1) { step_seq = seq(1, length(sound) + 1 - windowLength_points, step_points) if (length(step_seq) < 3) return(NULL) s1 = seewave::stdft( wave = as.matrix(sound), wn = wn, wl = windowLength_points, f = samplingRate, zp = zp, step = step_seq, scale = FALSE, norm = FALSE, complex = FALSE ) if (logSpec) { positives = which(s1 > 0) nonpositives = which(s1 <= 0) s1[positives] = log(s1[positives]) if (length(positives) > 0 & length(nonpositives) > 0) { s1[nonpositives] = min(s1[positives]) } s1 = s1 - min(s1) + 1e-16 } ms_complex = specToMS(s1, windowLength = windowLength, step = step) ms = abs(ms_complex) symAxis = floor(nrow(ms) / 2) + 1 ms_half = ms[symAxis:nrow(ms),, drop = FALSE] if (is.numeric(power) && power != 1) ms_half = ms_half ^ power if (any(s1 != 0)) { ms_half = ms_half - min(ms_half) ms_half = ms_half / max(ms_half) } return(list( ms_half = ms_half, ms_complex = ms_complex )) } getRough = function(m, roughRange, colNames = NULL) { if (is.null(colNames)) colNames = abs(as.numeric(colnames(m))) rough_cols = which(colNames > roughRange[1] & colNames < roughRange[2]) if (length(rough_cols) > 0) { roughness = sum(m[, rough_cols]) / sum(m) * 100 } else { roughness = 0 } return(roughness) } averageMatrices = function(mat_list, rFun = 'max', cFun = 'median', reduceFun = '+') { nr = round(do.call(rFun, list(unlist(lapply(mat_list, nrow))))) nc = round(do.call(cFun, list(unlist(lapply(mat_list, ncol))))) mat_list_sameDim = lapply(mat_list, function(x) interpolMatrix(x, nr = nr, nc = nc)) agg = Reduce(reduceFun, mat_list_sameDim) / length(mat_list) return(agg) } getAM = function(m, amRange = c(10, 100), amRes = NULL) { if (is.null(amRes)) amRes = 0 colNames = abs(as.numeric(colnames(m))) out = list(amFreq = NA, amDep = NA) am = data.frame(freq = abs(colNames), amp = colSums(m)) am = am[order(am$freq), ] am_sm = am i = 1 while(i < nrow(am_sm)) { if (abs(am_sm$freq[i] - am_sm$freq[i + 1]) < .1) { am_sm$amp[i] = (am_sm$amp[i] + am_sm$amp[i + 1]) / 2 am_sm$amp[i + 1] = NA i = i + 2 } else { i = i + 1 } } am_sm = na.omit(am_sm) am_smRan = am_sm[am_sm$freq >= amRange[1] & am_sm$freq <= amRange[2], ] wl = max(3, round(amRes / (colNames[2] - colNames[1]))) temp = zoo::rollapply( zoo::as.zoo(am_smRan$amp), width = wl, align = 'center', function(x) { middle = ceiling(length(x) / 2) return(which.max(x) == middle) }) idx = zoo::index(temp)[zoo::coredata(temp)] if (length(idx) > 0) { peaks = am_smRan[idx, ] peaks = peaks[which.max(peaks$amp), ] if (nrow(peaks) > 0) { out$amFreq = peaks$freq out$amDep = log10(peaks$amp / max(am_sm$amp)) * 20 } } return(out) }
summary_DD_TMB <- function(Assessment, state_space = FALSE) { assign_Assessment_slots() if(conv) current_status <- c(F_FMSY[length(F_FMSY)], B_BMSY[length(B_BMSY)], B_B0[length(B_B0)]) else current_status <- c(NA, NA, B_B0[length(B_B0)]) current_status <- data.frame(Value = current_status) rownames(current_status) <- c("F/FMSY", "B/BMSY", "B/B0") Value <- c(unlist(info$data[c(2,3,5,6)])) Description <- c("alpha = Winf * (1-rho)", "rho = (W_k+2 - Winf)/(W_k+1 - Winf)", "Age of knife-edge selectivity", "Weight at age k") rownam <- c("alpha", "rho", "k", "w_k") if(Assessment@obj$env$data$condition == "effort" && "log_omega" %in% names(obj$env$map)) { Value <- c(Value, TMB_report$omega) Description <- c(Description, "Catch SD (log-space)") rownam <- c(rownam, "omega") } if(state_space && "log_tau" %in% names(obj$env$map)) { Value <- c(Value, TMB_report$tau) Description <- c(Description, "log-Recruitment deviation SD") rownam <- c(rownam, "tau") } if("transformed_h" %in% names(obj$env$map)) { Value <- c(Value, h) Description <- c(Description, "Stock-recruit steepness") rownam <- c(rownam, "h") } if("log_M" %in% names(obj$env$map)) { Value <- c(Value, TMB_report$M) Description <- c(Description, "Natural mortality") rownam <- c(rownam, "M") } if(any(info$data$MW_hist > 0, na.rm = TRUE) && "log_sigma_W" %in% names(obj$env$map)) { Value <- c(Value, TMB_report$sigma_W) Description <- c(Description, "Mean weight SD") rownam <- c(rownam, "sigma_W") } input_parameters <- data.frame(Value = Value, Description = Description, stringsAsFactors = FALSE) rownames(input_parameters) <- rownam if(conv) derived <- c(B0, N0, MSY, FMSY, BMSY, BMSY/B0) else derived <- rep(NA, 6) derived <- data.frame(Value = derived, Description = c("Unfished biomass", "Unfished abundance", "Maximum sustainable yield (MSY)", "Fishing mortality at MSY", "Biomass at MSY", "Depletion at MSY"), stringsAsFactors = FALSE) rownames(derived) <- c("B0", "N0", "MSY", "FMSY", "BMSY", "BMSY/B0") model_estimates <- sdreport_int(SD) if(!is.character(model_estimates)) { rownames(model_estimates)[rownames(model_estimates) == "log_rec_dev"] <- paste0("log_rec_dev_", names(Dev)) } model_name <- "Delay-Difference" if(state_space) model_name <- paste(model_name, "(State-Space)") output <- list(model = model_name, current_status = current_status, input_parameters = input_parameters, derived_quantities = derived, model_estimates = model_estimates, log_likelihood = matrix(NLL, ncol = 1, dimnames = list(names(NLL), "Neg.LL"))) return(output) } rmd_DD_TMB <- function(Assessment, state_space = FALSE, ...) { if(state_space) { ss <- rmd_summary("Delay-Difference (State-Space)") } else ss <- rmd_summary("Delay-Difference") LH_section <- c(rmd_LAA(age = "1:info$LH$maxage", header = " rmd_WAA(age = "1:info$LH$maxage"), rmd_LW(), rmd_mat(age = "1:info$LH$maxage", mat = "ifelse(1:info$LH$maxage < info$data$k, 0, 1)", fig.cap = "Assumed knife-edge maturity at age corresponding to length of 50% maturity.")) if(any(Assessment@obj$env$data$MW_hist > 0, na.rm = TRUE)) { data_MW <- rmd_data_MW() } else { data_MW <- "" } data_section <- c(rmd_data_timeseries("Catch", header = " rmd_data_timeseries("Index", is_matrix = is.matrix(Assessment@Obs_Index), nsets = ncol(Assessment@Obs_Index)), data_MW) assess_all <- c(rmd_R0(header = " rmd_sel(age = "1:info$LH$maxage", sel = "ifelse(1:info$LH$maxage < info$data$k, 0, 1)", fig.cap = "Knife-edge selectivity set to the age corresponding to the length of 50% maturity.")) if(Assessment@obj$env$data$condition == "effort") { assess_data <- c(rmd_assess_fit("Catch", "catch"), rmd_assess_resid("Catch"), rmd_assess_qq("Catch", "catch")) } else { assess_data <- c(rmd_assess_fit("Catch", "catch", match = TRUE), rmd_assess_fit_series(nsets = ncol(Assessment@Index))) } if(any(Assessment@obj$env$data$MW_hist > 0, na.rm = TRUE)) { fit_MW <- rmd_assess_fit_MW() } else { fit_MW <- "" } assess_fit <- c(assess_all, assess_data, fit_MW) if(state_space) { assess_fit2 <- c(rmd_residual("Dev", fig.cap = "Time series of recruitment deviations.", label = Assessment@Dev_type), rmd_residual("Dev", "SE_Dev", fig.cap = "Time series of recruitment deviations with 95% confidence intervals.", label = Assessment@Dev_type, conv_check = TRUE)) assess_fit <- c(assess_fit, assess_fit2) } ts_output <- c(rmd_F(header = " rmd_SSB_SSB0(), rmd_dynamic_SSB0("TMB_report$dynamic_SSB0"), rmd_Kobe(), rmd_R(), rmd_N()) SR_calc <- c("SSB_SR <- SSB[1:info$data$ny]", "if(info$data$SR_type == \"BH\") {", " R_SR <- TMB_report$Arec * SSB_SR / (1 + TMB_report$Brec * SSB_SR)", "} else {", " R_SR <- TMB_report$Arec * SSB_SR * exp(-TMB_report$Brec * SSB_SR)", "}", "Rest <- R[1:info$data$ny + info$data$k]") productivity <- c(rmd_SR(header = " rmd_SR(fig.cap = "Stock-recruit relationship (trajectory plot).", trajectory = TRUE), rmd_yield_F("DD"), rmd_yield_depletion("DD"), rmd_sp(), rmd_SPR(), rmd_YPR()) return(c(ss, LH_section, data_section, assess_fit, ts_output, productivity)) } profile_likelihood_DD_TMB <- function(Assessment, ...) { dots <- list(...) if(!"R0" %in% names(dots) && !"h" %in% names(dots)) stop("Sequence of neither R0 nor h was not found. See help file.") if(!is.null(dots$R0)) R0 <- dots$R0 else { R0 <- Assessment@R0 profile_par <- "h" } if(!is.null(dots$h)) h <- dots$h else { h <- Assessment@h profile_par <- "R0" } map <- Assessment@obj$env$map params <- Assessment@info$params profile_grid <- expand.grid(R0 = R0, h = h) joint_profile <- !exists("profile_par") profile_fn <- function(i, Assessment, params, map) { params$R0x <- log(profile_grid[i, 1] * Assessment@obj$env$data$rescale) if(Assessment@info$data$SR_type == "BH") { params$transformed_h <- logit((profile_grid[i, 2] - 0.2)/0.8) } else { params$transformed_h <- log(profile_grid[i, 2] - 0.2) } if(joint_profile) { map$R0x <- map$transformed_h <- factor(NA) } else { if(profile_par == "R0") map$R0x <- factor(NA) else map$transformed_h <- factor(NA) } obj2 <- MakeADFun(data = Assessment@info$data, parameters = params, map = map, random = Assessment@obj$env$random, DLL = "SAMtool", silent = TRUE) opt2 <- optimize_TMB_model(obj2, Assessment@info$control)[[1]] if(!is.character(opt2)) nll <- opt2$objective else nll <- NA return(nll) } nll <- vapply(1:nrow(profile_grid), profile_fn, numeric(1), Assessment = Assessment, params = params, map = map) - Assessment@opt$objective profile_grid$nll <- nll if(joint_profile) { pars <- c("R0", "h") MLE <- vapply(pars, function(x, y) slot(y, x), y = Assessment, numeric(1)) } else { pars <- profile_par MLE <- slot(Assessment, pars) } output <- new("prof", Model = Assessment@Model, Name = Assessment@Name, Par = pars, MLE = MLE, grid = profile_grid) return(output) } retrospective_DD_TMB <- function(Assessment, nyr, state_space = FALSE) { assign_Assessment_slots(Assessment) ny <- info$data$ny k <- info$data$k Year <- info$Year moreRecruitYears <- max(Year) + 1:k Year <- c(Year, moreRecruitYears) retro_ts <- array(NA, dim = c(nyr+1, ny+k, 7)) TS_var <- c("F", "F_FMSY", "B", "B_BMSY", "B_B0", "R", "VB") dimnames(retro_ts) <- list(Peel = 0:nyr, Year = Year, Var = TS_var) retro_est <- array(NA, dim = c(nyr+1, length(SD$par.fixed[names(SD$par.fixed) != "log_rec_dev"]), 2)) dimnames(retro_est) <- list(Peel = 0:nyr, Var = names(SD$par.fixed)[names(SD$par.fixed) != "log_rec_dev"], Value = c("Estimate", "Std. Error")) lapply_fn <- function(i, info, obj, state_space) { ny_ret <- ny - i info$data$ny <- ny_ret info$data$C_hist <- info$data$C_hist[1:ny_ret] info$data$E_hist <- info$data$E_hist[1:ny_ret] info$data$I_hist <- info$data$I_hist[1:ny_ret, , drop = FALSE] info$data$I_sd <- info$data$I_sd[1:ny_ret, , drop = FALSE] info$data$MW_hist <- info$data$MW_hist[1:ny_ret] if(state_space) info$params$log_rec_dev <- rep(0, ny_ret) obj2 <- MakeADFun(data = info$data, parameters = info$params, random = obj$env$random, map = obj$env$map, inner.control = info$inner.control, DLL = "SAMtool", silent = TRUE) mod <- optimize_TMB_model(obj2, info$control) opt2 <- mod[[1]] SD <- mod[[2]] if(!is.character(opt2)) { report <- obj2$report(obj2$env$last.par.best) ref_pt <- ref_pt_DD(info$data, report$Arec, report$Brec, report$M) report <- c(report, ref_pt) FF <- c(report$F, rep(NA, k + i)) F_FMSY <- FF/report$FMSY B <- c(report$B, rep(NA, k - 1 + i)) B_BMSY <- B/report$BMSY B_B0 <- B/B0 R <- c(report$R, rep(NA, i)) VB <- B retro_ts[i+1, , ] <<- cbind(FF, F_FMSY, B, B_BMSY, B_B0, R, VB) sumry <- summary(SD, "fixed") sumry <- sumry[rownames(sumry) != "log_rec_dev", drop = FALSE] retro_est[i+1, , ] <<- sumry return(SD$pdHess) } return(FALSE) } conv <- vapply(0:nyr, lapply_fn, logical(1), info = info, obj = obj, state_space = state_space) if(any(!conv)) warning("Peels that did not converge: ", paste0(which(!conv) - 1, collapse = " ")) retro <- new("retro", Model = Assessment@Model, Name = Assessment@Name, TS_var = TS_var, TS = retro_ts, Est_var = dimnames(retro_est)[[2]], Est = retro_est) attr(retro, "TS_lab") <- c("Fishing mortality", expression(F/F[MSY]), "Biomass", expression(B/B[MSY]), expression(B/B[0]), "Recruitment", "Vulnerable biomass") return(retro) } summary_DD_SS <- function(Assessment) summary_DD_TMB(Assessment, TRUE) rmd_DD_SS <- function(Assessment, ...) rmd_DD_TMB(Assessment, TRUE, ...) profile_likelihood_DD_SS <- profile_likelihood_DD_TMB retrospective_DD_SS <- function(Assessment, nyr) retrospective_DD_TMB(Assessment, nyr, TRUE) plot_yield_DD <- function(data, report, fmsy, msy, xaxis = c("F", "Biomass", "Depletion")) { xaxis <- match.arg(xaxis) F.vector <- seq(0, 2.5 * fmsy, length.out = 1e2) yield <- lapply(F.vector, yield_fn_DD, M = report$M, Alpha = data$Alpha, Rho = data$Rho, wk = data$wk, SR = data$SR_type, Arec = report$Arec, Brec = report$Brec, opt = FALSE) Biomass <- vapply(yield, getElement, numeric(1), "B") Yield <- vapply(yield, getElement, numeric(1), "Yield") R <- vapply(yield, getElement, numeric(1), "R") ind <- R >= 0 if(xaxis == "F") { plot(F.vector[ind], Yield[ind], typ = 'l', xlab = "Fishing mortality", ylab = "Equilibrium yield") segments(x0 = fmsy, y0 = 0, y1 = msy, lty = 2) segments(x0 = 0, y0 = msy, x1 = fmsy, lty = 2) abline(h = 0, col = 'grey') } if(xaxis == "Biomass") { plot(Biomass[ind], Yield[ind], typ = 'l', xlab = "Biomass", ylab = "Equilibrium yield") segments(x0 = report$BMSY, y0 = 0, y1 = msy, lty = 2) segments(x0 = 0, y0 = msy, x1 = report$BMSY, lty = 2) abline(h = 0, col = 'grey') } if(xaxis == "Depletion") { plot(Biomass[ind]/report$B0, Yield[ind], typ = 'l', xlab = expression(B/B[0]), ylab = "Equilibrium yield") segments(x0 = report$BMSY/report$B0, y0 = 0, y1 = msy, lty = 2) segments(x0 = 0, y0 = msy, x1 = report$BMSY/report$B0, lty = 2) abline(h = 0, col = 'grey') } invisible(data.frame(F = F.vector[ind], Yield = Yield[ind], B = Biomass[ind], B_B0 = Biomass[ind]/report$B0)) }
options(continue=" ", width=60) options(SweaveHooks=list(fig=function() par(mar=c(4.1, 4.1, .3, 1.1)))) pdf.options(pointsize=8) library(survival, quietly=TRUE) getOption("SweaveHooks")[["fig"]]() ksurv <- survfit(Surv(time, status) ~1, data=kidney) plot(ksurv, fun="cumhaz", conf.int=FALSE, lwd=2, xlab="Time since catheter insertion", ylab="Cumulative Hazard") lines(c(0, 45, 500, 560), c(0, .55, 2.7, 4), col=2, lwd=2) kdata2 <- survSplit(Surv(time, status) ~., data=kidney, cut=c(45, 500), episode="interval") kfit1 <- coxph(Surv(time, status) ~ age + sex, kidney, ties='breslow') kfit2 <- glm(status ~ age + sex + factor(interval) -1 + offset(log(time-tstart)), family=poisson, data=kdata2) cbind(Cox= summary(kfit1)$coefficients[,c(1,3)], poisson = summary(kfit2)$coefficients[1:2, 1:2]) utime <- sort(unique(kidney$time[kidney$status==1])) kdata3 <- survSplit(Surv(time, status) ~., data=kidney, cut=utime, episode="interval") kdata3 <- subset(kdata3, time == c(utime,0)[interval]) kfit3 <- glm(status ~ age + sex + factor(interval) -1, family=poisson, data=kdata3) kfit4 <- glm(status ~ age + sex + factor(interval) -1, family=binomial, data=kdata3) rbind(poisson= coef(kfit3)[1:2], binomial = coef(kfit4)[1:2]) getOption("SweaveHooks")[["fig"]]() counts <- c(table(kdata3$interval)) xmat <- as.matrix(kdata3[,c('age', 'sex')]) centers <- rowsum(xmat, kdata3$interval) / counts xmat2 <- xmat - centers[kdata3$interval,] kfit4a <- glm(status ~ xmat2 + factor(interval) -1, poisson, kdata3) temp <- coef(kfit4a)[-(1:2)] phat <- with(kdata3, tapply(status, interval, sum)) /counts matplot(1:length(counts), cbind(phat, exp(temp)), log='y', xlab="Interval", ylab="Simple event rate") legend(5, .5, c("Rate", "Poisson intercept"), pch="12", col=1:2) kdata3$phat <- phat[kdata3$interval] logit <- function(x) log(x/(1-x)) kfit4b <- glm(status ~ xmat2 + offset(log(phat)), poisson, kdata3) kfit4c <- glm(status ~ xmat2, poisson, kdata3) kfit4d <- glm(status ~ xmat2 + offset(logit(phat)), binomial, kdata3, subset=(phat<1)) kfit4e <- glm(status ~ xmat2, binomial, kdata3, subset=(phat<1)) rbind(Cox= coef(kfit1), poisson=coef(kfit4a)[1:2], poisson2 = coef(kfit4b)[2:3], poisson3 = coef(kfit4c)[2:3], binomial2 = coef(kfit4d)[2:3], binomial3 = coef(kfit4e)[2:3])
financial_cof_hv_switchgear_distribution <- function(hv_asset_category, access_factor_criteria){ `Asset Register Category` = `Health Index Asset Category` = `Asset Category` = NULL asset_category <- gb_ref$categorisation_of_assets %>% dplyr::filter(`Asset Register Category` == hv_asset_category) %>% dplyr::select(`Health Index Asset Category`) %>% dplyr::pull() reference_costs_of_failure_tf <- dplyr::filter(gb_ref$reference_costs_of_failure, `Asset Register Category` == hv_asset_category) fcost <- reference_costs_of_failure_tf$`Financial - (GBP)` type_financial_factor <- 1 access_financial_factors <- gb_ref$access_factor_swg_tf_asset access_financial_factors_tf <- dplyr::filter(access_financial_factors, `Asset Category` == "HV Switchgear (GM) - Distribution") if (access_factor_criteria == "Type A") { access_finacial_factor <- access_financial_factors_tf$ `Access Factor: Type A Criteria - Normal Access ( & Default Value)` } else if (access_factor_criteria == "Type B") { access_finacial_factor <- access_financial_factors_tf$ `Access Factor: Type B Criteria - Constrained Access or Confined Working Space` } else if (access_factor_criteria == "Type C") { access_finacial_factor <- access_financial_factors_tf$ `Access Factor: Type C Criteria - Underground substation` } fc_factor <- type_financial_factor * access_finacial_factor return(fc_factor * fcost) } safety_cof_hv_switchgear_distribution <- function(hv_asset_category, location_risk, type_risk){ `Asset Register Category` = `Health Index Asset Category` = `Asset Category` = NULL asset_category <- gb_ref$categorisation_of_assets %>% dplyr::filter(`Asset Register Category` == hv_asset_category) %>% dplyr::select(`Health Index Asset Category`) %>% dplyr::pull() reference_costs_of_failure_tf <- dplyr::filter(gb_ref$reference_costs_of_failure, `Asset Register Category` == hv_asset_category) scost <- reference_costs_of_failure_tf$`Safety - (GBP)` if (location_risk == "Default") location_risk <- "Medium (Default)" if (location_risk == "Medium") location_risk <- "Medium (Default)" if (type_risk == "Default") type_risk <- "Medium" safety_conseq_factor_sg_tf_oh <- gb_ref$safety_conseq_factor_sg_tf_oh row_no <- which(safety_conseq_factor_sg_tf_oh$ `Safety Consequence Factor - Switchgear, Transformers & Overhead Lines...2` == location_risk) col_no <- grep(type_risk, colnames(safety_conseq_factor_sg_tf_oh)) safety_consequence_factor <- safety_conseq_factor_sg_tf_oh[row_no, col_no] safety_cof <- safety_consequence_factor * scost return(safety_cof) } environmental_cof_hv_switchgear_distribution <- function(hv_asset_category, type_env_factor, prox_water, bunded){ `Asset Register Category` = `Health Index Asset Category` = `Asset Category` = `Type environment factor` = NULL asset_category <- gb_ref$categorisation_of_assets %>% dplyr::filter(`Asset Register Category` == hv_asset_category) %>% dplyr::select(`Health Index Asset Category`) %>% dplyr::pull() reference_costs_of_failure_tf <- dplyr::filter(gb_ref$reference_costs_of_failure, `Asset Register Category` == hv_asset_category) ecost <- reference_costs_of_failure_tf$`Environmental - (GBP)` asset_type_env_factor <- gb_ref$type_enviromental_factor %>% dplyr::filter(`Type environment factor` == asset_category) type_environmental_factor <- asset_type_env_factor[[type_env_factor]] size_environmental_factor <- 1 location_environ_al_factor <- gb_ref$location_environ_al_factor location_environ_al_factor_tf <- dplyr::filter(location_environ_al_factor, `Asset Register Category` == asset_category) if (bunded == "Default") { bunding_factor <- 1 } else if (bunded == "Yes") { bunding_factor <- location_environ_al_factor_tf$`Bunding Factor: Bunded` } else if (bunded == "No") { bunding_factor <- location_environ_al_factor_tf$`Bunding Factor: Not bunded` } if(prox_water == "Default") { prox_factor <- 1 } else if (prox_water >= 40 && prox_water < 80) { prox_factor <- location_environ_al_factor_tf$ `Proximity Factor: Close to Water Course (between 40m and 80m)` } else if (prox_water >= 80 && prox_water < 120) { prox_factor <- location_environ_al_factor_tf$ `Proximity Factor: Moderately Close to Water Course (between 80m and 120m)` } else if (prox_water > 120) { prox_factor <- location_environ_al_factor_tf$ `Proximity Factor: Not Close to Water Course (>120m) or No Oil` } else if (prox_water < 40) { prox_factor <- location_environ_al_factor_tf$ `Proximity Factor: Very Close to Water Course (<40m)` } location_environmental_factor <- prox_factor * bunding_factor environmental_consequences_factor <- (type_environmental_factor * size_environmental_factor * location_environmental_factor) environmental_cof <- environmental_consequences_factor * ecost return(environmental_cof) } network_cof_hv_switchgear_distribution <- function(hv_asset_category, no_customers, kva_per_customer = "Default") { `Asset Register Category` = `Health Index Asset Category` = `Asset Category` = NULL asset_category <- gb_ref$categorisation_of_assets %>% dplyr::filter(`Asset Register Category` == hv_asset_category) %>% dplyr::select(`Health Index Asset Category`) %>% dplyr::pull() reference_costs_of_failure_tf <- dplyr::filter(gb_ref$reference_costs_of_failure, `Asset Register Category` == hv_asset_category) ncost <- reference_costs_of_failure_tf$`Network Performance - (GBP)` ref_nw_perf_cost_fail_lv_hv <- gb_ref$ref_nw_perf_cost_fail_lv_hv ref_nw_perf_cost_fail_lv_hv_tf <- dplyr::filter(ref_nw_perf_cost_fail_lv_hv, `Asset Category` == asset_category) ref_no_cust <- ref_nw_perf_cost_fail_lv_hv_tf$`Reference Number of Connected Customers` customer_no_adjust_lv_hv_asset <- gb_ref$customer_no_adjust_lv_hv_asset for (n in 1:nrow(customer_no_adjust_lv_hv_asset)){ if (kva_per_customer == 'Default'){ adj_cust_no <- 1 break } else if (kva_per_customer >= as.numeric( customer_no_adjust_lv_hv_asset$Lower[n]) & kva_per_customer < as.numeric( customer_no_adjust_lv_hv_asset$Upper[n])){ adj_cust_no <- customer_no_adjust_lv_hv_asset$ `No. of Customers to be used in the derivation of Customer Factor`[n] break } } adj_cust_no <- adj_cust_no %>% stringr::str_match_all("[0-9]+") %>% unlist %>% as.numeric customer_factor <- (adj_cust_no * no_customers) / ref_no_cust customer_sensitivity_factor <- 1 network_performance_consequence_factor <- customer_factor * customer_sensitivity_factor network_cof <- network_performance_consequence_factor * ncost return(network_cof) }
ScaleKernel <- function(x, X, h=NULL, K='epan',supp=NULL){ N <- length(x) n <- length(X) if (K!='epan') { message('Epanechnikov kernel is only supported currently. It uses Epanechnikov kernel automatically') } if (is.null(supp)==TRUE) { supp <- c(0,1) } if (is.null(h)==TRUE) { h <- 0.25*n^(-1/5)*(supp[2]-supp[1]) } xTmp <- matrix(rep(x,n),nrow=N) XTmp <- matrix(rep(X,N),ncol=n,byrow=TRUE) Tmp <- xTmp-XTmp KhTmp <- (3/4)*(1-(Tmp/h)^2)*dunif(Tmp/h,-1,1)*2/h return(KhTmp) }
"bisection.search" <- function(x1, x2, f, tol = 1e-07, niter = 25, f.extra = NA, upcross.level = 0) { f1 <- f(x1, f.extra) - upcross.level f2 <- f(x2, f.extra) - upcross.level if (f1 > f2) stop(" f1 must be < f2 ") iter <- niter for (k in 1:niter) { xm <- (x1 + x2)/2 fm <- f(xm, f.extra) - upcross.level if (fm < 0) { x1 <- xm f1 <- fm } else { x2 <- xm f2 <- fm } if (abs(fm) < tol) { iter <- k break } } xm <- (x1 + x2)/2 fm <- f(xm, f.extra) - upcross.level list(x = xm, fm = fm, iter = iter) }
NULL option <- function(arg) { if (missing(arg)) return(none) if (is.null(arg)) return(none) if (class(arg) == "optional") { if (attr(arg, "option_none")) return(FALSE) else return(arg) } attr(arg, "option_class") <- attr(arg, "class") attr(arg, "option_none") <- FALSE attr(arg, "class") <- "optional" return(arg) } some <- function(arg) { if (class(arg) == "optional") { return(!attr(arg, "option_none")) } return(FALSE) } none <- option(TRUE) attr(none, "option_none") <- TRUE opt_unwrap <- function(opt) { if (class(opt) != "optional") return(opt) if (attr(opt, "option_none")) return(NULL) attr(opt, "class") <- attr(opt, "option_class") attr(opt, "option_class") <- NULL attr(opt, "option_none") <- NULL return(opt) } `==.optional` <- function(e1, e2) { if (class(e1) == "optional" && attr(e1, "option_none")) return(class(e2) == "optional" && attr(e2, "option_none")) if (class(e2) == "optional" && attr(e2, "option_none")) return(class(e1) == "optional" && attr(e1, "option_none")) return(opt_unwrap(e1) == opt_unwrap(e2)) } make_opt <- function(fun, stop_if_none = FALSE, fun_if_none = NULL) { return(function(...) { args <- list(...) to_null <- c() if (length(args) != 0) { for (i in 1:length(args)) { if (class(args[[i]]) != "optional") next if (args[[i]] == none) { if (!is.null(fun_if_none)) fun_if_none() if (stop_if_none) return(none) to_null <- c(to_null, i) } else { attr(args[[i]], "class") <- attr(args[[i]], "option_class") attr(args[[i]], "option_class") <- NULL attr(args[[i]], "option_none") <- NULL } } } args[to_null] <- NULL tryCatch(ret <- do.call(fun, args), error = function(e) { ret <- NULL } ) if (is.null(ret)) return(none) else return(option(ret)) }) } print.optional <- function(x, ...) { if (attr(x, "option_none")) { print("None", ...) } else { attr(x, "class") <- attr(x, "option_class") attr(x, "option_class") <- NULL attr(x, "option_none") <- NULL print(x, ...) } } opt_call_match_ <- function(fun, x) { if (length(formalArgs(fun)) != 0) { return(fun(x)) } else { return(fun()) } } match_with <- function(x, ...) { args <- list(...) n <- length(args) if (n < 3 || n %% 2 != 0) { write("match_with: Wrong number of parameters", stderr()) return(none) } c_opt <- make_opt(c) res_ret <- none for (i in seq(1, n, 2)) { pattern <- args[[i]] res_function <- args[[i + 1]] if ("fseq" %in% class(pattern)) { ret <- pattern(x) if (!is.null(ret) && x == ret) { res_ret <- c_opt(res_ret, opt_call_match_(res_function, x)) if (is.null(attr(res_function, "option_fallthrough"))) { break } } } else if ("list" %in% class(pattern)) { if (x %in% pattern) { res_ret <- c_opt(res_ret, opt_call_match_(res_function, x)) if (is.null(attr(res_function, "option_fallthrough"))) { break } } } else if (x == pattern) { res_ret <- c_opt(res_ret, opt_call_match_(res_function, x)) if (is.null(attr(res_function, "option_fallthrough"))) { break } } } return(res_ret) } fallthrough <- function(fun) { if (class(fun) == "function") attr(fun, "option_fallthrough") <- TRUE return(fun) }
if(getRversion() >= "2.15.1") utils::globalVariables(c("ts","status")) plotErrorRateByHour <-function (dataFrame) { nhoursperbreak = 1 nhours = difftime(max(dataFrame$ts,na.rm=TRUE), min(dataFrame$ts, na.rm=TRUE), units = "hours") if(nhours > 24) { nhoursperbreak = as.integer(nhours/24)+1 } p = ggplot(dataFrame,aes(as.POSIXct(cut(ts,breaks="hour")),fill=status)) p = p + geom_histogram(binwidth=3600) p = p + scale_x_datetime(breaks = date_breaks(paste(nhoursperbreak,"hour"))) p = p + theme(axis.text.x = element_text(angle=60,vjust = 1.1, hjust=1.1)) p = p + ylab("Request Rate and Status by Hour") p = p + xlab("Hour of day") p = p + ggtitle("Count") return(p) }
drop_term <- function(curr.index,data,maximal.mod){ big.X<-maximal.mod$x full.terms<-attributes(big.X)$assign uni<-unique(full.terms[curr.index==1]) uni<-uni[uni>0] term.labels<-attr(summary(maximal.mod)$terms,"term.labels")[uni] term.order<-attr(summary(maximal.mod)$terms,"order")[uni] term.factors<-attr(summary(maximal.mod)$terms,"factors")[,uni] K<-length(term.labels[term.order==1]) can_drop<-c() if(max(term.order)>1){ can_drop<-term.labels[term.order==max(term.order)] candos<-(1:length(term.labels[term.order<max(term.order)]))[-(1:K)] for(ttt in candos){ tls<-(1:K)[term.factors[-1,ttt]==1] ntls<-(1:K)[term.factors[-1,ttt]==0] ok<-c() for(q in 1:length(ntls)){ TLS<-c(tls,ntls[q]) int<-rep(0,K) int[TLS]<-1 run<-as.numeric(apply(matrix(rep(int,dim(term.factors)[2]),nrow=K,byrow=FALSE)==term.factors[-1,],2,all)) ok[q]<-ifelse(sum(run)==0,1,0)} if(all(ok==1)){ can_drop<-c(can_drop,term.labels[ttt])}}} can_drop}
"meapsingle"
context("Message Composition") test_that("composing a simple message is possible", { email <- compose_email() expect_is( object = email, class = "email_message" ) expect_equal( length(email), 4 ) expect_equal( names(email), c("html_str", "html_html", "attachments", "images") ) expect_is( object = email$html_str, class = "character" ) expect_is( object = email$html_html, class = "character" ) expect_is( object = email$attachments, class = "list" ) }) test_that("email components appear in the HTML message", { email <- compose_email(body = "test_text_in_body") expect_true( grepl("test_text_in_body", email$html_str) ) email <- compose_email(header = "test_text_in_header") expect_true( grepl("test_text_in_header", email$html_str) ) email <- compose_email(header = "test_text_in_footer") expect_true( grepl("test_text_in_footer", email$html_str) ) email <- compose_email( body = "test_text_in_body", header = "test_text_in_header", footer = "test_text_in_footer" ) expect_true( all( c( grepl("test_text_in_body", email$html_str), grepl("test_text_in_header", email$html_str), grepl("test_text_in_footer", email$html_str) ) ) ) email <- compose_email( body = "test_text_in_body", title = "email_title" ) expect_true( grepl("<title>email_title</title>", email$html_str) ) email <- compose_email( body = blocks(block_text("test_text_in_body_block")), header = blocks(block_text("test_text_in_header_block")), footer = blocks(block_text("test_text_in_footer_block")) ) expect_true( all( c( grepl("test_text_in_body_block", email$html_str), grepl("test_text_in_header_block", email$html_str), grepl("test_text_in_footer_block", email$html_str) ) ) ) }) test_that("composing a message with local inline images is possible", { library(ggplot2) plot <- ggplot(data = mtcars, aes(x = disp, y = hp, color = wt, size = mpg)) + geom_point() plot_html <- add_ggplot( plot, height = 5, width = 7 ) body_input <- glue::glue( " Here is a plot: {plot_html} " ) %>% as.character() email <- compose_email(body = md(body_input)) expect_is( object = email, class = "email_message" ) expect_equal( length(email), 4 ) expect_equal( names(email), c("html_str", "html_html", "attachments", "images") ) expect_is( object = email$html_str, class = "character" ) expect_is( object = email$html_html, class = "character" ) expect_is( object = email$attachments, class = "list" ) expect_is( object = email$images, class = "list" ) expect_is( object = email$images[[1]], class = "character" ) })
getIncludeColumns <- function() { c("id", "sex", "age", "birth", "exit", "population", "condition", "origin", "first_name", "second_name") }
plot.fpcad <- function(x, nscore=c(1, 2), main = "PCA of probability density functions", sub.title=NULL, color = NULL, fontsize.points = 1.5, ...) { if (length(nscore) > 2) warning(paste("Since dad-4, nscore must be a length 2 numeric vector. The scores number", nscore[1], "and", nscore[2], "are plotted.")) nscore <- nscore[1:2] inertia=x$inertia$inertia coor=x$scores[-1] if (length(nscore) > 2) nscore <- nscore[1:2] if (max(nscore)>ncol(coor)) stop("The components of nscore must be smaller than the number of score columns in the x$scores data frame") if (!is.null(color)) coor <- data.frame(coor, color = color, stringsAsFactors = FALSE) group=x$scores[, 1] i1=nscore[1]; i2=nscore[2] graph <- ggplot(coor) graph <- graph + aes_q(as.name(names(coor)[i1]), as.name(names(coor)[i2]), label = as.character(group)) if (!is.null(color)) { graph <- graph + aes(colour = I(color)) } graph <- graph + geom_text(fontface = "bold", size = 4.2*fontsize.points) graph <- graph + labs(title = main, subtitle = sub.title, x = paste0(names(coor)[i1], " (", inertia[i1], "%)"), y = paste0(names(coor)[i2], " (", inertia[i2], "%)")) print(graph) return(invisible(NULL)) }
library(parsnip) library(dplyr) library(rlang) library(testthat) context("model registration") test_by_col <- function(a, b) { for (i in union(names(a), names(b))) { expect_equal(a[[i]], b[[i]]) } } test_that('adding a new model', { set_new_model("sponge") mod_items <- get_model_env() %>% env_names() sponges <- grep("sponge", mod_items, value = TRUE) exp_obj <- c('sponge_modes', 'sponge_fit', 'sponge_args', 'sponge_predict', 'sponge_pkgs', 'sponge') expect_equal(sort(sponges), sort(exp_obj)) expect_equal( get_from_env("sponge"), tibble(engine = character(0), mode = character(0)) ) test_by_col( get_from_env("sponge_pkgs"), tibble(engine = character(0), pkg = list(), mode = character(0)) ) expect_equal( get_from_env("sponge_modes"), "unknown" ) test_by_col( get_from_env("sponge_args"), dplyr::tibble(engine = character(0), parsnip = character(0), original = character(0), func = vector("list"), has_submodel = logical(0)) ) test_by_col( get_from_env("sponge_fit"), tibble(engine = character(0), mode = character(0), value = vector("list")) ) test_by_col( get_from_env("sponge_predict"), tibble(engine = character(0), mode = character(0), type = character(0), value = vector("list")) ) expect_error(set_new_model()) expect_error(set_new_model(2)) expect_error(set_new_model(letters[1:2])) }) test_that('adding a new mode', { set_model_mode("sponge", "classification") expect_equal(get_from_env("sponge_modes"), c("unknown", "classification")) expect_error(set_model_mode("sponge")) }) test_that('adding a new engine', { set_model_engine("sponge", mode = "classification", eng = "gum") test_by_col( get_from_env("sponge"), tibble(engine = "gum", mode = "classification") ) expect_equal(get_from_env("sponge_modes"), c("unknown", "classification")) expect_error(set_model_engine("sponge", eng = "gum")) expect_error(set_model_engine("sponge", mode = "classification")) expect_error( set_model_engine("sponge", mode = "regression", eng = "gum"), "'regression' is not a known mode" ) }) test_that('adding a new package', { set_dependency("sponge", "gum", "trident") expect_error(set_dependency("sponge", "gum", letters[1:2])) expect_error(set_dependency("sponge", "gummies", "trident")) expect_error(set_dependency("sponge", "gum", "trident", mode = "regression")) test_by_col( get_from_env("sponge_pkgs"), tibble(engine = "gum", pkg = list("trident"), mode = "classification") ) set_dependency("sponge", "gum", "juicy-fruit", mode = "classification") test_by_col( get_from_env("sponge_pkgs"), tibble(engine = "gum", pkg = list(c("trident", "juicy-fruit")), mode = "classification") ) test_by_col( get_dependency("sponge"), tibble(engine = "gum", pkg = list(c("trident", "juicy-fruit")), mode = "classification") ) }) test_that('adding a new argument', { set_model_arg( model = "sponge", eng = "gum", parsnip = "modeling", original = "modelling", func = list(pkg = "foo", fun = "bar"), has_submodel = FALSE ) set_model_arg( model = "sponge", eng = "gum", parsnip = "modeling", original = "modelling", func = list(pkg = "foo", fun = "bar"), has_submodel = FALSE ) args <- get_from_env("sponge_args") expect_equal(sum(args$parsnip == "modeling"), 1) test_by_col( get_from_env("sponge_args"), tibble(engine = "gum", parsnip = "modeling", original = "modelling", func = list(list(pkg = "foo", fun = "bar")), has_submodel = FALSE) ) expect_error( set_model_arg( model = "lunchroom", eng = "gum", parsnip = "modeling", original = "modelling", func = list(pkg = "foo", fun = "bar"), has_submodel = FALSE ) ) expect_error( set_model_arg( model = "sponge", eng = "gum", parsnip = "modeling", func = list(pkg = "foo", fun = "bar"), has_submodel = FALSE ) ) expect_error( set_model_arg( model = "sponge", eng = "gum", original = "modelling", func = list(pkg = "foo", fun = "bar"), has_submodel = FALSE ) ) expect_error( set_model_arg( model = "sponge", eng = "gum", parsnip = "modeling", original = "modelling", func = "foo::bar", has_submodel = FALSE ) ) expect_error( set_model_arg( model = "sponge", eng = "gum", parsnip = "modeling", original = "modelling", func = list(pkg = "foo", fun = "bar"), has_submodel = 2 ) ) expect_error( set_model_arg( model = "sponge", eng = "gum", parsnip = "modeling", original = "modelling", func = list(pkg = "foo", fun = "bar") ) ) expect_error( set_model_arg( model = "sponge", eng = "gum", parsnip = "yodeling", original = "yodelling", func = c(foo = "a", bar = "b"), has_submodel = FALSE ) ) expect_error( set_model_arg( model = "sponge", eng = "gum", parsnip = "yodeling", original = "yodelling", func = c(foo = "a"), has_submodel = FALSE ) ) expect_error( set_model_arg( model = "sponge", eng = "gum", parsnip = "yodeling", original = "yodelling", func = c(fun = 2, pkg = 1), has_submodel = FALSE ) ) }) test_that('adding a new fit', { fit_vals <- list( interface = "formula", protect = c("formula", "data"), func = c(pkg = "foo", fun = "bar"), defaults = list() ) set_fit( model = "sponge", eng = "gum", mode = "classification", value = fit_vals ) expect_error( set_fit( model = "sponge", eng = "gum", mode = "classification", value = fit_vals ) ) fit_env_data <- get_from_env("sponge_fit") test_by_col( fit_env_data[ 1:2], tibble(engine = "gum", mode = "classification") ) expect_equal( fit_env_data$value[[1]], fit_vals ) expect_error( set_fit( model = "cactus", eng = "gum", mode = "classification", value = fit_vals ) ) expect_error( set_fit( model = "sponge", eng = "nose", mode = "classification", value = fit_vals ) ) expect_error( set_fit( model = "sponge", eng = "gum", mode = "frog", value = fit_vals ) ) for (i in 1:length(fit_vals)) { expect_error( set_fit( model = "sponge", eng = "gum", mode = "classification", value = fit_vals[-i] ) ) } fit_vals_0 <- fit_vals fit_vals_0$interface <- "loaf" expect_error( set_fit( model = "sponge", eng = "gum", mode = "classification", value = fit_vals_0 ) ) fit_vals_1 <- fit_vals fit_vals_1$defaults <- 2 expect_error( set_fit( model = "sponge", eng = "gum", mode = "classification", value = fit_vals_1 ) ) fit_vals_2 <- fit_vals fit_vals_2$func <- "foo:bar" expect_error( set_fit( model = "sponge", eng = "gum", mode = "classification", value = fit_vals_2 ) ) fit_vals_3 <- fit_vals fit_vals_3$interface <- letters expect_error( set_fit( model = "sponge", eng = "gum", mode = "classification", value = fit_vals_3 ) ) test_by_col( get_fit("sponge")[, 1:2], tibble(engine = "gum", mode = "classification") ) expect_equal( get_fit("sponge")$value[[1]], fit_vals ) }) test_that('adding a new predict method', { class_vals <- list( pre = I, post = NULL, func = c(fun = "predict"), args = list(x = quote(2)) ) set_pred( model = "sponge", eng = "gum", mode = "classification", type = "class", value = class_vals ) pred_env_data <- get_from_env("sponge_predict") test_by_col( pred_env_data[ 1:3], tibble(engine = "gum", mode = "classification", type = "class") ) expect_equal( pred_env_data$value[[1]], class_vals ) test_by_col( get_pred_type("sponge", "class")[ 1:3], tibble(engine = "gum", mode = "classification", type = "class") ) expect_equal( get_pred_type("sponge", "class")$value[[1]], class_vals ) expect_error( set_pred( model = "cactus", eng = "gum", mode = "classification", type = "class", value = class_vals ) ) expect_error( set_pred( model = "sponge", eng = "nose", mode = "classification", type = "class", value = class_vals ) ) expect_error( set_pred( model = "sponge", eng = "gum", mode = "classification", type = "eggs", value = class_vals ) ) expect_error( set_pred( model = "sponge", eng = "gum", mode = "frog", type = "class", value = class_vals ) ) for (i in 1:length(class_vals)) { expect_error( set_pred( model = "sponge", eng = "gum", mode = "classification", type = "class", value = class_vals[-i] ) ) } class_vals_0 <- class_vals class_vals_0$pre <- "I" expect_error( set_pred( model = "sponge", eng = "gum", mode = "classification", type = "class", value = class_vals_0 ) ) class_vals_1 <- class_vals class_vals_1$post <- "I" expect_error( set_pred( model = "sponge", eng = "gum", mode = "classification", type = "class", value = class_vals_1 ) ) class_vals_2 <- class_vals class_vals_2$func <- "foo:bar" expect_error( set_pred( model = "sponge", eng = "gum", mode = "classification", type = "class", value = class_vals_2 ) ) }) test_that('showing model info', { expect_output( show_model_info("rand_forest"), "Information for `rand_forest`" ) expect_output( show_model_info("rand_forest"), "trees --> ntree" ) expect_output( show_model_info("rand_forest"), "fit modules:" ) expect_output( show_model_info("rand_forest"), "prediction modules:" ) })
geo_pretty <- function(x) { UseMethod("geo_pretty") } geo_pretty.default <- function(x) { stop("no 'geo_pretty' method for ", class(x), call. = FALSE) } geo_pretty.geojson <- function(x) { jsonlite::prettify(x) }
context("as.RollingLDA and Getter") data("economy_texts") data("economy_dates") roll_lda = RollingLDA(economy_texts, economy_dates, "quarter", "6 month", init = 20, K = 5, type = "lda") test_that("various messages", { a = 12 class(a) = "RollingLDA" expect_false(is.RollingLDA(a)) expect_message(is.RollingLDA(a, verbose = TRUE), "object is not a list") tmp = roll_lda names(tmp) = "" expect_false(is.RollingLDA(tmp)) expect_message(is.RollingLDA(tmp, verbose = TRUE), "Must have names") tmp = roll_lda tmp$id = 2L expect_false(is.RollingLDA(tmp)) expect_message(is.RollingLDA(tmp, verbose = TRUE), "May only contain the following types: \\{character,LDA,list,Date,character,data.table,list\\},") tmp = roll_lda names(tmp)[names(tmp) == "id"] = "ID" expect_false(is.RollingLDA(tmp)) expect_message(is.RollingLDA(tmp, verbose = TRUE), "set \\{'id','lda','docs','dates','vocab','chunks','param'\\}") tmp = roll_lda tmp$lda = NULL expect_false(is.RollingLDA(tmp)) expect_message(is.RollingLDA(tmp, verbose = TRUE), "\\{'id','lda','docs','dates','vocab','chunks','param'\\}") tmp = roll_lda tmp$id = c("id1", "id2") expect_false(is.RollingLDA(tmp)) expect_message(is.RollingLDA(tmp, verbose = TRUE), "not a character of length 1") tmp = roll_lda class(tmp$lda) = "not LDA" expect_false(is.RollingLDA(tmp)) expect_message(is.RollingLDA(tmp, verbose = TRUE), "not an \"LDA\" object") tmp = roll_lda tmp$docs = "not list" expect_false(is.RollingLDA(tmp)) expect_message(is.RollingLDA(tmp, verbose = TRUE), "Must be of type 'list', not 'character'") tmp = roll_lda names(tmp$docs)[2] = names(tmp$docs)[1] expect_false(is.RollingLDA(tmp)) expect_message(is.RollingLDA(tmp, verbose = TRUE), "not same names as \"docs\"") tmp = roll_lda tmp$docs[[2]] = "not matrix" expect_false(is.RollingLDA(tmp)) expect_message(is.RollingLDA(tmp, verbose = TRUE), "May only contain the following types: \\{matrix\\}") tmp = roll_lda tmp$docs[[2]] = matrix(0, ncol = 1, nrow = 5) expect_false(is.RollingLDA(tmp)) expect_message(is.RollingLDA(tmp, verbose = TRUE), "not all elements have two rows") tmp = roll_lda tmp$docs[[2]] = matrix(0, ncol = 1, nrow = 2) expect_false(is.RollingLDA(tmp)) expect_message(is.RollingLDA(tmp, verbose = TRUE), "not all values in the second row equal 1") tmp = roll_lda tmp$dates[1] = NA_Date_ expect_false(is.RollingLDA(tmp)) expect_message(is.RollingLDA(tmp, verbose = TRUE), "Contains missing values") tmp = roll_lda tmp$dates = as.character(tmp$dates) expect_false(is.RollingLDA(tmp)) expect_message(is.RollingLDA(tmp, verbose = TRUE), "Must be of class 'Date'") tmp = roll_lda names(tmp$dates)[2] = names(tmp$dates)[1] expect_false(is.RollingLDA(tmp)) expect_message(is.RollingLDA(tmp, verbose = TRUE), "Must have unique names") tmp = roll_lda tmp$docs = append(tmp$docs, list(matrix(c(1,1), nrow = 2))) expect_true(is.RollingLDA(tmp)) tmp = roll_lda tmp$dates = append(tmp$dates, Sys.Date()) expect_false(is.RollingLDA(tmp)) expect_message(is.RollingLDA(tmp, verbose = TRUE), "not same names as \"docs\"") tmp = roll_lda tmp$vocab = c(getVocab(tmp), getVocab(tmp)[1]) expect_false(is.RollingLDA(tmp)) expect_message(is.RollingLDA(tmp, verbose = TRUE), "Contains duplicated values") tmp = roll_lda tmp$vocab = c(getVocab(tmp), NA_character_) expect_false(is.RollingLDA(tmp)) expect_message(is.RollingLDA(tmp, verbose = TRUE), "Contains missing values") tmp = roll_lda tmp$vocab = list(12) expect_false(is.RollingLDA(tmp)) expect_message(is.RollingLDA(tmp, verbose = TRUE), "Must be of type 'character'") tmp = roll_lda tmp$chunks = list() expect_false(is.RollingLDA(tmp)) expect_message(is.RollingLDA(tmp, verbose = TRUE), "not a data.table with standard parameters") tmp = roll_lda tmp$chunks = getChunks(tmp)[, -"chunk.id"] expect_false(is.RollingLDA(tmp)) expect_message(is.RollingLDA(tmp, verbose = TRUE), "not a data.table with standard parameters") tmp = roll_lda tmp$chunks$chunk.id[2] = tmp$chunks$chunk.id[1] expect_false(is.RollingLDA(tmp)) expect_message(is.RollingLDA(tmp, verbose = TRUE), "duplicated \"chunk.id\"") tmp = roll_lda tmp$chunks$chunk.id[1] = 0 expect_false(is.RollingLDA(tmp)) expect_message(is.RollingLDA(tmp, verbose = TRUE), "\"chunk.id\" is not an integer") tmp = roll_lda tmp$chunks$chunk.id[1] = NA_integer_ expect_false(is.RollingLDA(tmp)) expect_message(is.RollingLDA(tmp, verbose = TRUE), "NA\\(s\\) in \"chunk.id\"") tmp = roll_lda tmp$chunks$n[1] = 0 expect_false(is.RollingLDA(tmp)) expect_message(is.RollingLDA(tmp, verbose = TRUE), "\"n\" is not an integer") tmp = roll_lda tmp$chunks$n[1] = NA_integer_ expect_false(is.RollingLDA(tmp)) expect_message(is.RollingLDA(tmp, verbose = TRUE), "NA\\(s\\) in \"n\"") tmp = roll_lda tmp$chunks$n.discarded[1] = 0 expect_false(is.RollingLDA(tmp)) expect_message(is.RollingLDA(tmp, verbose = TRUE), "\"n.discarded\" is not an integer") tmp = roll_lda tmp$chunks$n.memory[1] = 0 expect_false(is.RollingLDA(tmp)) expect_message(is.RollingLDA(tmp, verbose = TRUE), "\"n.memory\" is not an integer") tmp = roll_lda tmp$chunks$n.vocab[1] = 0 expect_false(is.RollingLDA(tmp)) expect_message(is.RollingLDA(tmp, verbose = TRUE), "\"n.vocab\" is not an integer") tmp = roll_lda tmp$chunks$n.vocab[1] = NA_integer_ expect_false(is.RollingLDA(tmp)) expect_message(is.RollingLDA(tmp, verbose = TRUE), "NA\\(s\\) in \"n.vocab\"") tmp = roll_lda tmp$vocab = c(getVocab(roll_lda), "ABC") expect_false(is.RollingLDA(tmp)) expect_message(is.RollingLDA(tmp, verbose = TRUE), "max of \"n.vocab\" does not match number of vocabularies") tmp = roll_lda tmp$chunks$n.vocab = rev(tmp$chunks$n.vocab) expect_false(is.RollingLDA(tmp)) expect_message(is.RollingLDA(tmp, verbose = TRUE), "\"n.vocab\" is not monotonously increasing") tmp = roll_lda tmp$chunks$start.date = as.character(tmp$chunks$start.date) expect_false(is.RollingLDA(tmp)) expect_message(is.RollingLDA(tmp, verbose = TRUE), "\"start.date\" is not a Date object") tmp = roll_lda tmp$chunks$start.date[1] = NA_Date_ expect_false(is.RollingLDA(tmp)) expect_message(is.RollingLDA(tmp, verbose = TRUE), "NA\\(s\\) in \"start.date\"") tmp = roll_lda tmp$chunks$start.date[1] = as.character(Sys.Date()) expect_false(is.RollingLDA(tmp)) expect_message(is.RollingLDA(tmp, verbose = TRUE), "minimum of \"start.date\" is larger than minimum of text's dates") tmp = roll_lda tmp$chunks$end.date = as.character(tmp$chunks$end.date) expect_false(is.RollingLDA(tmp)) expect_message(is.RollingLDA(tmp, verbose = TRUE), "\"end.date\" is not a Date object") tmp = roll_lda tmp$chunks$end.date[1] = NA_Date_ expect_false(is.RollingLDA(tmp)) expect_message(is.RollingLDA(tmp, verbose = TRUE), "NA\\(s\\) in \"end.date\"") tmp = roll_lda tmp$chunks$end.date[nrow(getChunks(tmp))] = tmp$chunks$end.date[nrow(getChunks(tmp))]-1 expect_false(is.RollingLDA(tmp)) expect_message(is.RollingLDA(tmp, verbose = TRUE), "maximum of \"end.date\" is smaller than maximum of text's dates") tmp = roll_lda tmp$chunks$memory = as.character(tmp$chunks$memory) expect_false(is.RollingLDA(tmp)) expect_message(is.RollingLDA(tmp, verbose = TRUE), "\"memory\" is not a Date object") tmp = roll_lda tmp$param = getParam(roll_lda)[-1] expect_false(is.RollingLDA(tmp)) expect_message(is.RollingLDA(tmp, verbose = TRUE), "\\{'vocab.abs','vocab.rel','vocab.fallback','doc.abs'\\}") tmp = roll_lda tmp$param$vocab.abs = -1 expect_false(is.RollingLDA(tmp)) expect_message(is.RollingLDA(tmp, verbose = TRUE), "\"vocab.abs\" is smaller than 0") tmp = roll_lda tmp$param$vocab.rel = -1 expect_false(is.RollingLDA(tmp)) expect_message(is.RollingLDA(tmp, verbose = TRUE), "\"vocab.rel\" is smaller than 0") tmp = roll_lda tmp$param$vocab.fallback = -1 expect_false(is.RollingLDA(tmp)) expect_message(is.RollingLDA(tmp, verbose = TRUE), "\"vocab.fallback\" is smaller than 0") tmp = roll_lda tmp$param$doc.abs = -1 expect_false(is.RollingLDA(tmp)) expect_message(is.RollingLDA(tmp, verbose = TRUE), "\"doc.abs\" is smaller than 0") })
library(devtools) library(dplyr) library(sf) library(tigris) stLouis <- tracts(state = "MO", county = 510) stLouis <- st_as_sf(stLouis) stLouis <- select(stLouis, STATEFP, COUNTYFP, TRACTCE, GEOID, NAME, NAMELSAD) use_data(stLouis, overwrite = TRUE)
ProjSepD <- function(design) { .C(ProjSep, PACKAGE="LatticeDesign", as.double(design), as.integer(dim(design)[2]), as.integer(dim(design)[1]), as.double(rep(0,dim(design)[2])) )[[4]] } DPMPD <- function(p=2, n, rotation="magic", w=100){ if(!p>=2|!p<=8|!p==round(p)) stop("p must be an integer greater than one and no greater than eight.") if(!n>=2|!n==round(n)) stop("n must be an integer greater than one.") if(!w>=1|!w==round(w)|!w<=10000) stop("w must be a positive integer greater no greater than 10000.") detG <- 2 if(p==2) detG <- 2*sqrt(3) if(p==6) detG <- sqrt(3) if(p==7) detG <- sqrt(2) if(p==8) detG <- 1 r <- (n*detG)^(1/p)/2*sqrt(p)+1 ss <- floor( r ) FE <- matrix(0,ss+1,2) FE[,2] = 0:ss FE[,1] = FE[,2]^2 for(j in 2:p) { nFE <- matrix(0,0,j+1) for(k in 0:ss) { oFE = cbind(FE,rep(k,dim(FE)[1])); oFE[,1] = oFE[,1]+k^2; nFE <- rbind(nFE,oFE); } FE <- nFE[nFE[,1]<= floor( r^2 ), ] } FE[,1]=0; for(j in 2:(p+1)) FE[,1]=FE[,1]+FE[,j]; FE = FE[ floor(FE[,1]/2)*2==FE[,1] ,]; if(p>=6) { FE1 = FE[ FE[,2]>0, ] FE1[,2] = -FE1[,2] FE2 = FE[ FE[,2]==1, ] FE2[,2] = -FE2[,2] FE3 = rbind(FE,FE2) FE4 = FE3 +0.5 FE5 = FE +0.5 FE5[,2] = -FE5[,2]-1 FE <- rbind(FE,FE1,FE4,FE5) } if(p<6) { nFE = FE[FE[,2]>0,] nFE[,2] <- -nFE[,2] FE <- rbind(FE,nFE) } if(p==2) { FE[,3] <- FE[,3]*sqrt(3); } if(p==6) { FE[,7] <- FE[,7]*sqrt(3); } if(p==7) { FE[,8] <- FE[,8]*sqrt(2); } FE[,1] <- 0; for(j in 2:(p+1)) FE[,1] <- FE[,1] +FE[,j]^2 FE <- FE[FE[,1]<=r^2,] FE <- FE[,-1] for(j in 2:p) { nFE = FE[FE[,j]>0,] nFE[,j] <- -nFE[,j] nFE[,1] <- -nFE[,1] FE <- rbind(FE,nFE) } mv = 25 if(w>100) mv = 55 vlist <- matrix(0,0,3) for(v1 in 1:mv) for(v2 in v1:mv) { vlist = rbind(vlist,c(v1,v2,v1^2+v2^2)) } vvlist <- matrix(0,0,6) for(i in 1:dim(vlist)[1]) for(j in 1:dim(vlist)[1]) { ratio = vlist[j,3]/vlist[i,3] if(ratio>1) if(floor(sqrt(ratio))!=sqrt(ratio)) if(floor(ratio)*vlist[i,3]==vlist[j,3]) vvlist = rbind(vvlist,c(vlist[i,1:2],vlist[j,1:2],ratio,0)) } vvlist[,6] = abs( (vvlist[,3]-vvlist[,1]*sqrt(vvlist[,5])) / sqrt( (vvlist[,3]-vvlist[,1]*sqrt(vvlist[,5]))^2 + (vvlist[,4]-vvlist[,2]*sqrt(vvlist[,5]))^2 ) ) j=2 while(j<=dim(vvlist)[1]) { for(k in 1:j) { if(k<j) if(abs(vvlist[j,6]-vvlist[k,6])<10^-10) { vvlist = vvlist[-j,]; break; } } if(k==j) j=j+1 } for(i in 1:dim(vvlist)[1]) vvlist[i,6] = max(vvlist[i,1:4]) vvlist1 = vvlist[vvlist[,5]==2,] vvlist2 = vvlist[vvlist[,5]==5,] vvlist3 = vvlist[vvlist[,5]==13,] if(w<=100) { vvlist1 = vvlist1[ order(vvlist1[,6])[1:10], ] vvlist2 = vvlist2[ order(vvlist2[,6])[1:10], ] vvlist3 = vvlist3[ order(vvlist3[,6])[1:10], ] } set.seed(1) ress = matrix(0,w,p+1) l <- (n*detG)^(1/p) maxscore <- -10^10 for(ll in 1:w) { set.seed(ll) if(rotation!="magic"|p==5|p==7) { CPair <- matrix(0,p*(p-1)/2,2) row <- 1 for(i in 1:(p-1)) for(j in (i+1):p) { CPair[row,1] <- i; CPair[row,2] <- j; row <- row+1; } R <- diag(p) for(a in 1:((p*(p-1)/2))) { alpha <- runif(1,0,2*pi) thepair <- CPair[a,] W <- diag(p) W[thepair[1],thepair[1]] <- cos(alpha); W[thepair[2],thepair[2]] <- cos(alpha); W[thepair[1],thepair[2]] <- sin(alpha); W[thepair[2],thepair[1]] <- -sin(alpha); R <- R%*%W } } if(rotation=="magic"&p==2) { q1 <- 3 bb1 <- 20; bb2 <- 4; if(w>100) { bb1 <- floor(w^(2/3)); bb2 <- floor(w^(1/3)); } u1 = ceiling(ll/bb1) u2 = ceiling( ( ll - (u1-1)*bb1 ) / bb2 ) u3 = ll - (u1-1)*bb1 - (u2-1)*bb2 -floor(bb2/2) if(u3^2==3*u1^2+u2^2) u3 = bb2 -floor(bb2/2)+1 R = rbind( c(u1*sqrt(q1)+u3,-u2), c(u2,u1*sqrt(q1)+u3) ) for(j in 1:2) R[,j] = R[,j]/sqrt(sum(R[,j]^2)) R1 = rbind( c(sqrt(3)+1,sqrt(3)-1), c(-sqrt(3)+1,sqrt(3)+1) ) /2/sqrt(2) R = R1 %*% R } if(rotation=="magic"&p==3) { qlist = 2:(w+10) for(k in 2:20) qlist = qlist[ floor(qlist/k^3)*k^3!=qlist ] bb1 <- 10; bb2 <- 55; if(w>100) bb2 <- floor((w+10)/2) q1 = qlist[ll]; if(ll>bb1) q1 = qlist[ll-bb1]/8 if(ll>bb2) q1 = qlist[ll-bb2]/27 R3=matrix(0,3,3) R3[1,1]=R3[3,2]=R3[2,3] = 1-q1 R3[2,1]=R3[1,2]=R3[3,3] = q1-q1^(1/3) R3[3,1]=R3[2,2]=R3[1,3] = (1-q1)*(q1^(1/3)+q1^(2/3)) R <- R3 / sqrt(sum(R3[,3]*R3[,3])) } if(rotation=="magic"&p==4) { bb1 <- 10; if(w>100) bb1 <- floor(sqrt(w)) if(w>bb1*76) bb1 <- ceiling(w/76) rot1 = vvlist1[ceiling(ll/bb1),] GRR1 = rbind( rot1[c(3,1)], rot1[c(4,2)] ) q1 = rot1[5] R1 <- GRR1 %*% rbind( c(1,1), c(-sqrt(q1),sqrt(q1)) ) for(j in 1:2) R1[,j] = R1[,j]/sqrt(sum(R1[,j]^2)) rot2 = vvlist2[ll-ceiling(ll/bb1)*bb1+bb1,] GRR2 = rbind( rot2[c(3,1)], rot2[c(4,2)] ) q2 = rot2[5] R2 <- GRR2 %*% rbind( c(1,1), c(-sqrt(q2),sqrt(q2)) ) for(j in 1:2) R2[,j] = R2[,j]/sqrt(sum(R2[,j]^2)) R <- rbind( cbind(R2[1,1]*R1,R2[1,2]*R1), cbind(R2[2,1]*R1,R2[2,2]*R1) ) } if(rotation=="magic"&p==6) { bb1 <- 50; bb2 <- 25; if(w>100) { bb2 <- floor((w/5)^(1/3)*5); bb1 <- floor((w/5)^(2/3)*5); } q1 <- 3 u1 = ceiling(ll/bb1) u2 = ceiling( ( ll - (ceiling(ll/bb1)-1)*bb1 ) / bb2 ) u3 = ceiling( ( ll - (ceiling(ll/bb2)-1)*bb2 ) / 5 ) - ceiling(bb2/10) if(u3==0) u3 = ceiling(bb2/5) - ceiling(bb2/10) + 1 if(w<=100) if(u1==2&u2==2&abs(u3)==2) u1 = 3 R2 = rbind( c(u1*sqrt(q1)+u3,-u2), c(u2,u1*sqrt(q1)+u3) ) for(j in 1:2) R2[,j] = R2[,j]/sqrt(sum(R2[,j]^2)) qlist = 2:100 for(k in 2:4) qlist = qlist[ floor(qlist/k^3)*k^3!=qlist ] q1 = qlist[ ll-(ceiling(ll/5)-1)*5 ]; R3=matrix(0,3,3) R3[1,1]=R3[3,2]=R3[2,3] = 1-q1 R3[2,1]=R3[1,2]=R3[3,3] = q1-q1^(1/3) R3[3,1]=R3[2,2]=R3[1,3] = (1-q1)*(q1^(1/3)+q1^(2/3)) R3 <- R3 / sqrt(sum(R3[,3]*R3[,3])) R <- rbind( cbind(R3[1,1]*R2,R3[1,2]*R2,R3[1,3]*R2), cbind(R3[2,1]*R2,R3[2,2]*R2,R3[2,3]*R2), cbind(R3[3,1]*R2,R3[3,2]*R2,R3[3,3]*R2) ) } if(rotation=="magic"&p==8) { bb2 <- floor(w^(1/3)); bb1 <- floor(w^(2/3)); rot1 = vvlist1[ ceiling(ll/bb1) ,] GRR1 = rbind( rot1[c(3,1)], rot1[c(4,2)] ) q1 = rot1[5] R1 <- GRR1 %*% rbind( c(1,1), c(-sqrt(q1),sqrt(q1)) ) for(j in 1:2) R1[,j] = R1[,j]/sqrt(sum(R1[,j]^2)) rot2 = vvlist2[ ceiling( (ll-ceiling(ll/bb1)*bb1+bb1) / bb2 ) ,] GRR2 = rbind( rot2[c(3,1)], rot2[c(4,2)] ) q2 = rot2[5] R2 <- GRR2 %*% rbind( c(1,1), c(-sqrt(q2),sqrt(q2)) ) for(j in 1:2) R2[,j] = R2[,j]/sqrt(sum(R2[,j]^2)) rot3 = vvlist3[ ll-ceiling(ll/bb2)*bb2+bb2 ,] GRR3 = rbind( rot3[c(3,1)], rot3[c(4,2)] ) q3 = rot3[5] R3 <- GRR3 %*% rbind( c(1,1), c(-sqrt(q3),sqrt(q3)) ) for(j in 1:2) R3[,j] = R3[,j]/sqrt(sum(R3[,j]^2)) R <- rbind( cbind(R2[1,1]*R1,R2[1,2]*R1), cbind(R2[2,1]*R1,R2[2,2]*R1) ) R <- rbind( cbind(R3[1,1]*R,R3[1,2]*R), cbind(R3[2,1]*R,R3[2,2]*R) ) } E <- FE %*% R isE <- FALSE isB <- FALSE isL <- FALSE epsilonV <- matrix(0,3,p) for(i in 1:100) { while(1) { delta <- runif(p,-1,1) if( sum( sort(abs(delta))[(p-1):p] ) > 1) next if(p==2) delta[p] <- delta[p]*sqrt(3) if(p==6) delta[p] <- delta[p]*sqrt(3) if(p==7) delta[p] <- delta[p]*sqrt(2) if( sum( (abs(delta)+l/2)^2 ) <= r^2) break } epsilon <- delta %*% R design <- E for(j in 1:p) { if(length(design)<=p) break; design <- design[ abs(design[,j]-epsilon[j])<l/2 ,]; } if(length(design)<=p) next; if(dim(design)[1]==n) { isE <- TRUE; epsilonV[1,] <- epsilon; break; } if(isL==FALSE & dim(design)[1]<n) { isL <- TRUE; epsilonV[2,] <- epsilon; } if(isB==FALSE & dim(design)[1]>n) { isB <- TRUE; epsilonV[3,] <- epsilon; } if(isL==TRUE & isB==TRUE) break; } if(isE==FALSE) for(j in 1:(p-1)) { epsilon <- c(epsilonV[2,1:j],epsilonV[3,(j+1):p]) design <- E for(j in 1:p) { if(length(design)<=p) break; design <- design[ abs(design[,j]-epsilon[j])<l/2 ,]; } if(length(design)<=p) next; if(dim(design)[1]==n) { isE <- TRUE; epsilonV[1,] <- epsilon; break; } if(dim(design)[1]<n) { epsilonV[2,] <- epsilon; break; } if(dim(design)[1]>n) { epsilonV[3,] <- epsilon; } } if(isE==FALSE) for(k in 1:100) { epsilon <- (epsilonV[2,]+epsilonV[3,])/2 design <- E for(j in 1:p) { if(length(design)<=p) break; design <- design[ abs(design[,j]-epsilon[j])<l/2 ,]; } if(length(design)<=p) next; if(dim(design)[1]==n) { isE <- TRUE; epsilonV[1,] <- epsilon; break; } if(dim(design)[1]<n) { epsilonV[2,] <- epsilon; } if(dim(design)[1]>n) { epsilonV[3,] <- epsilon; } } for(j in 1:p) design[,j] <- (design[,j]-epsilon[j]) / l + .5 ress[ll,1:p] = ProjSepD(design) ress[ll,p+1] = sum( log(ress[ll,1:p]*n^(1/(1:p))) * c(1/2,2:p) ) if(ll==1|ress[ll,p+1]>maxscore) { maxscore <- ress[ll,p+1] designBest <- design } } for(j in 1:p) designBest[,j] = designBest[,j]-(min(designBest[,j])+max(designBest[,j])-1)/2 return(list(Design=designBest,ProjectiveSeparationDistance=sqrt(ProjSepD(designBest)))) }
art1 <- function(x, ...) UseMethod("art1") art1.default <- function(x, dimX, dimY, f2Units=nrow(x), maxit=100, initFunc="ART1_Weights", initFuncParams=c(1.0, 1.0), learnFunc="ART1", learnFuncParams=c(0.9, 0.0, 0.0), updateFunc="ART1_Stable", updateFuncParams=c(0.0), shufflePatterns=TRUE, ...) { x <- as.matrix(x) nInputs <- dim(x)[2L] snns <- rsnnsObjectFactory(subclass=c("art1"), nInputs=nInputs, maxit=maxit, initFunc=initFunc, initFuncParams=initFuncParams, learnFunc=learnFunc, learnFuncParams=learnFuncParams, updateFunc=updateFunc, updateFuncParams=updateFuncParams, shufflePatterns=shufflePatterns, computeIterativeError=FALSE) snns$archParams <- list(f2Units=f2Units, dimX=dimX, dimY=dimY) snns$snnsObject$art1_createNet(dimX*dimY,dimX,f2Units,dimX) snns <- train(snns, inputsTrain=x) snns }
library(testthat) library(goxygen) context("goxygen") skip_if_not(check_pandoc(error=FALSE)) test_that("extract documentation from modular dummy model", { docfolder <- paste0(tempdir(),"/doc_modular") out <- try(goxygen(path = system.file("dummymodel",package="gms"), docfolder = docfolder, includeCore = TRUE, cff = "HOWTOCITE.cff")) expect_null(out) expect_true(file.exists(paste0(docfolder,"/html/index.htm"))) expect_true(file.exists(paste0(docfolder,"/html/core.htm"))) expect_true(file.exists(paste0(docfolder,"/html/01_fancymodule.htm"))) expect_true(file.exists(paste0(docfolder,"/html/02_crazymodule.htm"))) expect_true(file.exists(paste0(docfolder,"/documentation.tex"))) }) test_that("extract HTML documentation from modular dummy model with classic style", { docfolder <- paste0(tempdir(),"/doc_modular_classic") out <- try(goxygen(path = system.file("dummymodel",package="gms"), htmlStyle = "classic", output="html", docfolder = docfolder, includeCore = TRUE, cff = "HOWTOCITE.cff")) expect_null(out) expect_true(file.exists(paste0(docfolder,"/html/index.htm"))) expect_true(file.exists(paste0(docfolder,"/html/core.htm"))) expect_true(file.exists(paste0(docfolder,"/html/01_fancymodule.htm"))) expect_true(file.exists(paste0(docfolder,"/html/02_crazymodule.htm"))) }) test_that("cache and unknown output", { docfolder <- paste0(tempdir(),"/doc_modular") expect_warning(out <- try(goxygen(path = system.file("dummymodel",package="gms"), docfolder = docfolder, includeCore = TRUE, cache = TRUE, output="bla"))) expect_null(out) }) test_that("extract documentation from simple dummy model", { docfolder <- paste0(tempdir(),"/doc_simple") out <- try(goxygen(path = system.file("dummymodel",package="gms"), docfolder = docfolder, modularCode = FALSE, cff = "HOWTOCITE.cff")) expect_null(out) expect_true(file.exists(paste0(docfolder,"/html/index.htm"))) expect_true(file.exists(paste0(docfolder,"/html/modules_01_fancymodule_default_calculations.htm"))) expect_true(file.exists(paste0(docfolder,"/html/modules_02_crazymodule_module.htm"))) expect_true(file.exists(paste0(docfolder,"/documentation.tex"))) })
compute_F_test_with_limma <- function( x, p.adj.threshold = 0.05, print.table = FALSE ) { if ( any( x$"parameters"$"contrasts" != "contr.sum" ) ) { stop( "Call compute_models_with_limma() first with F.test = TRUE." ) return( NULL ) } else { idx.target <- grep( x = colnames( x$"model"$"coefficients" ), pattern = paste0("^", x$"parameters"$"independent.variables"[ 1 ] ) ) names.target <- colnames( x$"model"$"coefficients" )[ idx.target ] y <- limma::topTable( fit = x$"model", coef = names.target, confint = TRUE, number = Inf, p.value = 1, adjust.method = "BH" ) if ( print.table ) { tmp <- which( y$"adj.P.Val" < p.adj.threshold ) if ( length( tmp ) > 0 ) { y.printed <- y[ tmp, , drop = FALSE ] y.printed <- signif( x = y.printed, digits = 3 ) y.printed$"Name" <- rownames( y.printed ) y.printed$"Name" <- stringr::str_sub( string = y.printed$"Name", start = 1, end = 25 ) y.printed <- y.printed[ , c( "Name", "AveExpr", "F", "P.Value", "adj.P.Val" ) ] y.printed <- knitr::kable( x = y.printed, caption = paste( "F-test for", paste( names.target, collapse = ", " ) ), row.names = FALSE ) print( y.printed ) } else { message( paste( "No significant F-tests at p.adj <", p.adj.threshold ) ) } } y.out <- x y.out$"result.F.test" <- y y.out$"parameters"$"p.adj.threshold" <- p.adj.threshold return( y.out ) } }
agree_nest <- function(x, y, id, data, delta, agree.level = .95, conf.level = .95){ agreeq = qnorm(1 - (1 - agree.level) / 2) agree.l = 1 - (1 - agree.level) / 2 agree.u = (1 - agree.level) / 2 confq = qnorm(1 - (1 - conf.level) / 2) alpha.l = 1 - (1 - conf.level) / 2 alpha.u = (1 - conf.level) / 2 df = data %>% select(all_of(id),all_of(x),all_of(y)) %>% rename(id = all_of(id), x = all_of(x), y = all_of(y)) %>% select(id,x,y) %>% drop_na() df_long = df %>% pivot_longer(!id, names_to = "method", values_to = "measure") ccc_nest = cccUst(dataset = df_long, ry = "measure", rmet = "method", cl = conf.level) ccc.xy = data.frame(est.ccc = ccc_nest[1], lower.ci = ccc_nest[2], upper.ci = ccc_nest[3], SE = ccc_nest[4]) df2 = df %>% group_by(id) %>% summarize(m = n(), x_bar = mean(x, na.rm=TRUE), x_var = var(x, na.rm=TRUE), y_bar = mean(y, na.rm=TRUE), y_var = var(y, na.rm=TRUE), d = mean(x-y), d_var = var(x-y), .groups = "drop") %>% mutate(both_avg = (x_bar+y_bar)/2) d_bar = mean(df2$d) d_var = var(df2$d) sdw2 = sum((df2$m-1)/(nrow(df)-nrow(df2))*df2$d_var) mh = nrow(df2)/sum(1/df2$m) d_lo = d_bar - confq*sqrt(d_var)/sqrt(nrow(df2)) d_hi = d_bar + confq*sqrt(d_var)/sqrt(nrow(df2)) var_tot = d_var + (1-1/mh) * sdw2 loa_l = d_bar - agreeq*sqrt(var_tot) loa_u = d_bar + agreeq*sqrt(var_tot) move.l.1 = (d_var*(1-(nrow(df2)-1)/(qchisq(alpha.l,nrow(df2)-1))))^2 move.l.2 = ((1-1/mh)*sdw2*(1-(nrow(df)-nrow(df2))/(qchisq(alpha.l,nrow(df)-nrow(df2)))))^2 move.l = var_tot - sqrt(move.l.1+move.l.2) move.u.1 = (d_var*((nrow(df2)-1)/(qchisq(alpha.u,nrow(df2)-1))-1))^2 move.u.2 = ((1-1/mh)*sdw2*((nrow(df)-nrow(df2))/(qchisq(alpha.u,nrow(df)-nrow(df2)))-1))^2 move.u = var_tot + sqrt(move.u.1+move.u.2) LME = sqrt(confq^2*(d_var/nrow(df2))+agreeq^2*(sqrt(move.u)-sqrt(var_tot))^2) RME = sqrt(confq^2*(d_var/nrow(df2))+agreeq^2*(sqrt(var_tot)-sqrt(move.l))^2) loa_l.l = loa_l - LME loa_l.u = loa_l + RME loa_u.l = loa_u - RME loa_u.u = loa_u + LME df_loa = data.frame( estimate = c(d_bar, loa_l, loa_u), lower.ci = c(d_lo, loa_l.l, loa_u.l), upper.ci = c(d_hi, loa_l.u, loa_u.u), row.names = c("Difference","Lower LoA","Upper LoA") ) if (!missing(delta)) { rej <- (-delta < loa_l.l) * (loa_u.l < delta) rej_text = "don't reject h0" if (rej == 1) { rej_text = "reject h0" }} else { rej_text = "No Hypothesis Test" } z <- lm(y_bar ~ x_bar, df2) the_int <- summary(z)$coefficients[1,1] the_slope <- summary(z)$coefficients[2,1] tmp.lm <- data.frame(the_int, the_slope) scalemin = min(c(min(df$x),min(df$y))) scalemax = max(c(max(df$x),max(df$y))) df = df %>% mutate(id = as.factor(id)) identity.plot = ggplot(df, aes(x = x, y = y,color=id)) + geom_point() + geom_abline(intercept = 0, slope = 1) + geom_abline( data = tmp.lm, aes(intercept = the_int, slope = the_slope), linetype = "dashed", color = "red" ) + xlab("Method: x") + xlim(scalemin,scalemax) + ylim(scalemin,scalemax) + ylab("Method: y") + coord_fixed(ratio = 1 / 1) + theme_bw() + scale_color_viridis_d() df = df %>% mutate(d = x-y, avg_both = (x+y)/2) bland_alt.plot = ggplot(df, aes(x = avg_both, y = d)) + geom_point(na.rm = TRUE) + annotate("rect", xmin = -Inf, xmax = Inf, ymin = df_loa$lower.ci[2], ymax = df_loa$upper.ci[2], alpha = .5, fill = " annotate("rect", xmin = -Inf, xmax = Inf, ymin = df_loa$lower.ci[3], ymax = df_loa$upper.ci[3], alpha = .5, fill = " geom_hline(aes(yintercept = d_bar), linetype = 1) + annotate("rect", xmin = -Inf, xmax = Inf, ymin = df_loa$lower.ci[1], ymax = df_loa$upper.ci[1], alpha = .5, fill = "gray") + xlab("Average of Method x and Method y") + ylab("Average Difference between Methods") + theme_bw() + theme(legend.position = "none") structure(list(loa = df_loa, h0_test = rej_text, bland_alt.plot = bland_alt.plot, identity.plot = identity.plot, conf.level = conf.level, agree.level = agree.level, ccc.xy = ccc.xy, class = "nested"), class = "simple_agree") }
rwyxz <- function(mw,mx,my,mz,sw,sx,sy,sz,rwx=0,rwy=0,rwz=0,rxy=0,rxz=0,ryz=0){ out <- ( rwx*(sw/mw)*(sx/mx) - rwz*(sw/mw)*(sz/mz) - rxy*(sx/mx)*(sy/my) + ryz*(sy/my)*(sz/mz) )/( sqrt((sw/mw)^2+(sy/my)^2-2*rwy*(sw/mw)*(sy/my)) * sqrt((sx/mx)^2+(sz/mz)^2-2*rxz*(sx/mx)*(sz/mz)) ) out } ryxy <- function(mx,my,sx,sy,rxy=0){ rwyxz(mw=my,mx=mx,my=1,mz=my,sw=sy,sx=sx,sy=0,sz=sy, rwx=rxy,rwy=0,rwz=1,rxy=0,rxz=rxy,ryz=0) } rxzyz <- function(mx,my,mz,sx,sy,sz,rxy=0,rxz=0,ryz=0){ rwyxz(mw=my,mx=mx,my=my,mz=mz,sw=sy,sx=sx,sy=sz,sz=sz, rwx=rxy,rwy=ryz,rwz=ryz,rxy=rxz,rxz=rxz,ryz=1) }
test_that("format_glimpse() output test", { expect_snapshot({ " format_glimpse(1) format_glimpse(1:3) format_glimpse(NA) format_glimpse(TRUE) format_glimpse(logical()) " format_glimpse("1") format_glimpse(letters) format_glimpse(NA_character_) format_glimpse(character()) " format_glimpse(factor(c("1", "a"))) format_glimpse(factor(c("foo", '"bar"'))) format_glimpse(factor()) "Add quotes around factor levels with comma" "so they don't appear as if they were two observations ( format_glimpse(factor(c("foo, bar", "foo", '"bar"'))) " format_glimpse(list(1:3)) format_glimpse(as.list(1:3)) format_glimpse(list(1:3, 4)) format_glimpse(list(1:3, 4:5)) format_glimpse(list()) format_glimpse(list(list())) format_glimpse(list(character())) format_glimpse(list(1:3, list(4))) format_glimpse(list(1:3, list(4:5))) }) }) test_that("glimpse(width = Inf) raises legible error", { expect_error( glimpse(mtcars, width = Inf) ) }) test_that("glimpse calls tbl_sum() ( skip_if(!l10n_info()$`UTF-8`) local_override_tbl_sum() trees2 <- as_override_tbl_sum(trees) expect_output( glimpse(trees2), "Overridden: tbl_sum", fixed = TRUE ) }) test_that("output test for glimpse()", { local_unknown_rows() expect_snapshot({ glimpse(as_tbl(mtcars), width = 70L) glimpse(as_tbl(trees), width = 70L) "No columns" glimpse(as_tbl(trees[integer()]), width = 70L) "Non-syntactic names" df <- tibble::tibble(!!!set_names(c(5, 3), c("mean(x)", "var(x)"))) glimpse(df, width = 28) glimpse(as_tbl(df_all), width = 70L) "options(tibble.width = 50)" withr::with_options( list(tibble.width = 50), glimpse(as_tbl(df_all)) ) "options(tibble.width = 35)" withr::with_options( list(tibble.width = 35), glimpse(as_tbl(df_all)) ) "non-tibble" glimpse(5) trees2 <- as_unknown_rows(trees) glimpse(trees2, width = 70L) cyl <- unique(mtcars$cyl) data <- unname(split(mtcars, mtcars$cyl)) nested_mtcars_df <- tibble::tibble(cyl, data) glimpse(nested_mtcars_df, width = 70L) data <- map(data, as_tbl) nested_mtcars_tbl <- tibble::tibble(cyl, data) glimpse(nested_mtcars_tbl, width = 70L) }) })
double.exp <- function(x) { 0.5 * exp(-abs(x)) }
ls_fun_args <- function (x) { if (is.function(x)) { c(ls_fun_args(formals(x)), ls_fun_args(body(x))) } else if (is.call(x)) { args <- as.list(x[-1]) c(list(args), unlist(lapply(x[-1], ls_fun_args), use.names = FALSE, recursive = FALSE)) } }
execute_field <- function(object_type, object_value, field_type, fields, ..., oh) { field <- fields[[1]] if (identical(format(field$name), "__typename")) { completed_value <- resolve__typename(object_type, object_value, oh = oh) return(completed_value) } argument_values <- coerce_argument_values(object_type, field, ..., oh = oh) resolved_value <- resolve_field_value( object_type, object_value, field_obj = field, argument_values, oh = oh ) completed_value <- complete_value(field_type, fields, resolved_value, oh = oh) completed_value } resolve__typename <- function(object_type, object_value, ..., oh) { if (oh$schema$is_object(object_type)) { ret <- format(object_type) return(ret) } obj <- ifnull(oh$schema$get_interface(object_type), oh$schema$get_union(object_type)) ret <- obj$.resolve_type(object_value, oh$schema) ret } coerce_argument_values <- function(object_type, field, ..., oh) { coerced_values <- list() argument_values <- field$arguments if (is.null(argument_values)) return(coerced_values) if (length(argument_values) == 0) return(coerced_values) field_parent_obj <- oh$schema$get_object(object_type) matching_field_obj <- field_parent_obj$.get_field(field) argument_definitions <- matching_field_obj$arguments for (argument_definition in argument_definitions) { argument_name <- argument_definition$.get_name() argument_type <- argument_definition$type type_obj <- oh$schema$get_type(argument_type) default_value <- argument_definition$defaultValue matching_arg <- field$.get_matching_argument(argument_definition) value <- matching_arg$value if (is.null(value) || inherits(value, "NullValue")) { if (!is.null(default_value)) { value <- default_value } else if (inherits(argument_type, "NonNullType")) { oh$error_list$add( "6.4.1", "Received null value for non nullable type argument definition", loc = value$loc ) next } else { next } } if (inherits(value, "Variable")) { if (oh$has_variable_value(value)) { variable_value <- oh$get_variable_value(value) coerced_value <- type_obj$.resolve(variable_value, oh$schema) if (!is.null(variable_value) && is.null(coerced_value)) { oh$error_list$add( "6.4.1", "Variable value cannot be coerced according to the input coercion rules", loc = value$loc ) next } coerced_values[[argument_name]] <- coerced_value next } else if (!is.null(default_value)) { value <- default_value } else if (inherits(argument_type, "NonNullType")) { oh$error_list$add( "6.4.1", "non nullable type argument did not find variable definition", loc = value$loc ) next } else { next } } coerced_value <- type_obj$.parse_ast(value, oh$schema) if (!is.null(value) && is.null(coerced_value)) { oh$error_list$add( "6.4.1", "Value cannot be coerced according to the input coercion rules", loc = value$loc ) next } coerced_values[[argument_name]] <- coerced_value } coerced_values } resolve_field_value <- function(object_type, object_value, field_obj, argument_values, ..., oh) { field_name_txt <- format(field_obj$name) if (! (field_name_txt %in% names(object_value))) { return(NULL) } val <- object_value[[field_name_txt]] if (is.function(val)) { val_fn <- val ans <- val_fn(object_value, argument_values, oh$schema) return(ans) } return(val) } complete_value <- function(field_type, fields, result, ..., oh) { if (inherits(field_type, "NonNullType")) { inner_type <- field_type$type completed_result <- complete_value(inner_type, fields, result, oh = oh) if (is.null(completed_result)) { oh$error_list$add( "6.4.3", "non null type: ", format(field_type), " returned a null value", loc = fields[[1]]$loc ) return(NULL) } return(completed_result) } if (is_nullish(result)) { return(NULL) } if (inherits(field_type, "ListType")) { if (is.vector(result)) { result <- as.list(result) } if (!is.list(result)) { oh$error_list$add( "6.4.3", "list type returned a non list type" ) return(NULL) } inner_type <- field_type$type completed_result <- lapply(result, function(result_item) { complete_value(inner_type, fields, result_item, oh = oh) }) completed_result <- unname(completed_result) return(completed_result) } if ( oh$schema$is_scalar(field_type) || oh$schema$is_enum(field_type) ) { type_obj <- ifnull( oh$schema$get_scalar(field_type), oh$schema$get_enum(field_type) ) resolved_result <- type_obj$.resolve(result, oh$schema) if (length(resolved_result) == 0) { return(NULL) } return(resolved_result) } if ( is_object_interface_or_union(field_type, oh$schema) ) { if (oh$schema$is_object(field_type)) { object_type <- field_type } else { field_obj <- ifnull( oh$schema$get_interface(field_type), oh$schema$get_union(field_type) ) object_type <- resolve_abstract_type(field_type, result, field_obj, oh = oh) } object_obj <- oh$schema$get_object(object_type) if (is.function(object_obj$.resolve)) { result <- object_obj$.resolve(result, schema = oh$schema) if (is_nullish(result)) { return(NULL) } } sub_selection_set <- merge_selection_sets(fields, oh = oh) ret <- execute_selection_set(sub_selection_set, object_type, result, oh = oh) return(ret) } stop("this should not be reached") } resolve_abstract_type <- function(abstract_type, object_value, abstract_obj, ..., oh) { if (inherits(abstract_obj, "InterfaceTypeDefinition")) { type <- abstract_obj$.resolve_type(object_value, oh$schema) type <- as_type(type) return(type) } else if (inherits(abstract_obj, "UnionTypeDefinition")) { type <- abstract_obj$.resolve_type(object_value, oh$schema) type <- as_type(type) return(type) } stop("Interface or Union objects can only resolve an abstract type") } merge_selection_sets <- function(fields, ..., oh) { selections <- list() for (field in fields) { field_selection_set <- field$selectionSet if (is.null(field_selection_set)) next if (length(field_selection_set) == 0) next selections <- append(selections, field_selection_set$selections) } ret <- SelectionSet$new(selections = selections) return(ret) } is_nullish <- function(x) { if (is.null(x)) { return(TRUE) } if ( is.logical(x) || is.numeric(x) || is.character(x) ) { if (length(x) == 0) { return(TRUE) } else if (length(x) > 1) { return(FALSE) } else { return( is.na(x) | is.nan(x) ) } } return(FALSE) }
readBTLS <- function(dat_FilePath, spss_FilePath, verbose=TRUE) { userOp <- options(OutDec = ".") on.exit(options(userOp), add = TRUE) dat_FilePath <- suppressWarnings(normalizePath(unique(dat_FilePath), winslash = "/")) spss_FilePath <- suppressWarnings(normalizePath(unique(spss_FilePath), winslash = "/")) if(!file.exists(dat_FilePath)){ stop(paste0("Cannot find specified data file ", sQuote("dat_FilePath"), " in path ", sQuote(file.path(dat_FilePath)), ".")) } if(!file.exists(spss_FilePath)){ stop(paste0("Cannot find specified data file ", sQuote("spss_FilePath"), " in path ", sQuote(file.path(spss_FilePath)), ".")) } if(verbose){ cat(paste0("Parsing SPSS syntax file.\n")) } fileFormat <- parseSPSSFileFormat(spss_FilePath) lafObj <- laf_open_fwf(dat_FilePath, fileFormat$dataType, fileFormat$Width, fileFormat$variableName) for(coli in 1:nrow(fileFormat)){ if(verbose && ((coli %% 500)==0) || coli==1 || coli==nrow(fileFormat)){ cat(paste0("Processing column ", coli, " of ", ncol(lafObj), "\n")) } colData <- lafObj[,coli] colData <- colData[,1, drop=TRUE] if(is.numeric(colData)){ if(any(grepl(".", colData, fixed = TRUE), na.rm = TRUE)){ decTestLen <- num.decimals(colData) decTestLen[is.na(decTestLen)] <- 0 fileFormat$dataType[coli] <- "numeric" fileFormat$Decimal[coli] <- max(decTestLen) }else{ if(fileFormat$Width[coli]<9){ fileFormat$dataType[coli] <- "integer" fileFormat$Decimal[coli] <- 0 } } } } close(lafObj) lafObj <- laf_open_fwf(dat_FilePath, fileFormat$dataType, fileFormat$Width, fileFormat$variableName) fileFormat <- identifyBTLSWeights(fileFormat) weights <- buildBTLSWeightList(fileFormat) if(!is.null(weights)){ attributes(weights)$default <- "" } pvs <- list() omittedLevels <- c("Deceased", "Nonrespondent", "suppressed due to limited number of respondents", "Respondent, valid skip", "Valid Skip", "Valid skip", "Missing", "Respondent, missing data", "(Missing)", NA) edsurvey.data.frame(userConditions = list(), defaultConditions = NULL, dataList = buildBTLSDataList(lafObj, fileFormat), weights = weights, pvvars = pvs, subject = "", year = "2007-2012", assessmentCode = "Longitudinal", dataType = "Longitudinal Data", gradeLevel = "", achievementLevels = NULL, omittedLevels = omittedLevels, survey = "BTLS", country = "USA", psuVar = NULL, stratumVar = NULL, jkSumMultiplier = 0.0113636363636364, validateFactorLabels = TRUE, reqDecimalConversion = FALSE) } identifyBTLSWeights <- function(fileFormat){ varNames <- fileFormat$variableName wgtVars <- grep("^(w1|w2|w3|w4|w5).*(wt|wgt)$", fileFormat$variableName, ignore.case = TRUE, value = TRUE) fileFormat$weights <- fileFormat$variableName %in% wgtVars return(fileFormat) } buildBTLSWeightList <- function(fileFormat){ wgtVars <- fileFormat[fileFormat$weights==TRUE, "variableName"] if(length(wgtVars)==0){ return(NULL) } weights <- list() wgtLookupDF <- data.frame(wgt=wgtVars, repVar=rep("", times=length(wgtVars)), stringsAsFactors = FALSE) wgtLookupDF[wgtLookupDF$wgt=="w1tfnlwgt", "repVar"] <- "w1trepwt" wgtLookupDF[wgtLookupDF$wgt=="w2afwt", "repVar"] <- "w2arwt" wgtLookupDF[wgtLookupDF$wgt=="w2rafwt", "repVar"] <- "w2rarwt" wgtLookupDF[wgtLookupDF$wgt=="w3afwt", "repVar"] <- "w3arwt" wgtLookupDF[wgtLookupDF$wgt=="w3lwgt", "repVar"] <- "w3lrwgt" wgtLookupDF[wgtLookupDF$wgt=="w3rafwt", "repVar"] <- "w3rarwt" wgtLookupDF[wgtLookupDF$wgt=="w3rlwgt", "repVar"] <- "w3rlrwgt" wgtLookupDF[wgtLookupDF$wgt=="w4afwt", "repVar"] <- "w4arwt" wgtLookupDF[wgtLookupDF$wgt=="w4lwgt", "repVar"] <- "w4lrwgt" wgtLookupDF[wgtLookupDF$wgt=="w4rlwgt", "repVar"] <- "w4rlrwgt" wgtLookupDF[wgtLookupDF$wgt=="w4rafwt", "repVar"] <- "w4rarwt" wgtLookupDF[wgtLookupDF$wgt=="w5afwt", "repVar"] <- "w5arwt" wgtLookupDF[wgtLookupDF$wgt=="w5lwgt", "repVar"] <- "w5lrwgt" wgtLookupDF[wgtLookupDF$wgt=="w5rlwgt", "repVar"] <- "w5rlrwgt" for(i in 1:length(wgtVars)){ tempVar <- wgtVars[i] repVar <- wgtLookupDF$repVar[wgtLookupDF$wgt==tempVar] wgtPattern = paste0("^", repVar,"\\d+$") ujkz <- unique(tolower(grep(wgtPattern, fileFormat$variableName, value = TRUE, ignore.case = TRUE))) ujkz <- sub(repVar, "", ujkz, ignore.case = TRUE) if(length(ujkz)>0){ tmpWgt <- list() tmpWgt[[1]] <- list(jkbase=repVar, jksuffixes=as.character(ujkz)) names(tmpWgt)[[1]] <- tempVar weights <- c(weights,tmpWgt) } } return(weights) } buildBTLSDataList <- function(lafObj, fileFormat){ dataList <- list() dataList[["Data"]] <- dataListItem(lafObject = lafObj, fileFormat = fileFormat, levelLabel = "Data", forceMerge = TRUE, parentMergeLevels = NULL, parentMergeVars = NULL, mergeVars = NULL, ignoreVars = NULL, isDimLevel = TRUE) return(dataList) }
as_tibble.pkg_ref <- function(x, ...) { as_tibble(vctrs::new_list_of(list(x), ptype = pkg_ref(), class = "list_of_pkg_ref")) } as_tibble.list_of_pkg_ref <- function(x, ...) { package_names <- vapply(x, "[[", character(1L), "name") versions <- vapply(x, function(xi) as.character(xi$version), character(1L)) tibble::tibble( package = package_names, version = versions, pkg_ref = x) }
MeanA.SGB <- function(shape1,scale,shape2){ pdig <- digamma(shape2)/shape1 np <- length(shape2) EAu <- scale%*%diag(exp(pdig),nrow=np,ncol=np) EAu <- EAu/rowSums(EAu) colnames(EAu) <- colnames(scale) return(EAu) }
gradient_cloud <- function(text.var, bigroup.var, rev.binary = FALSE, X = "red", Y = "blue", stem = FALSE, stopwords = NULL, caps = TRUE, caps.list = NULL, I.list = TRUE, random.order = FALSE, rot.per = 0.0, min.freq = 1, max.word.size = NULL, min.word.size = 0.5, breaks = 10, cloud.font = NULL, title = NULL, title.font = NULL, title.color = "black", title.padj = .25, title.location = 3, title.cex = NULL, legend.cex = .8, legend.location = c(.025, .025, .25, .04), char2space = "~~") { text.var <- as.character(text.var) bigroup.var <- drop.levels(bigroup.var) if (length(unique(bigroup.var)) != 2) { stop("bigroup.var must contain exactly 2 levels") } if (rev.binary) { bigroup.var <- factor(bigroup.var, levels = rev(levels(bigroup.var))) } if (stem) { text.var <- stemmer(text.var) } word.freq <- wfdf(text.var, bigroup.var) nms <- colnames(word.freq)[-1] colnames(word.freq)[-1] <- utils::tail(LETTERS, 2) wf2 <- word.freq[, -1]/colSums(word.freq[, -1]) colnames(wf2) <- paste0("prop_", colnames(wf2)) WF <- data.frame(word.freq, wf2, check.names = FALSE) WF[, "total"] <- rowSums(word.freq[, -1]) WF[, "diff"] <- wf2[, 1] - wf2[, 2] low <- WF[, "diff"][WF[, "diff"] < 0] high <- WF[, "diff"][WF[, "diff"] > 0] lcuts <- stats::quantile(low, seq(0, 1, length.out = round(breaks/2))) hcuts <- stats::quantile(high, seq(0, 1, length.out = round(breaks/2))) cts <- as.numeric(unique(sort(c(-1, lcuts, 0, hcuts, 1)))) WF[, "trans"] <- cut(WF[, "diff"], breaks=cts) if (!is.null(stopwords)) { WF <- WF[!WF[, 1] %in% tolower(stopwords),] } if (caps) { WF[, 1] <- capitalizer(WF[, 1], caps.list = caps.list, I.list = I.list, apostrophe.remove = TRUE) } if(is.null(max.word.size )) { max.word.size <- mean(WF[, "total"] + 1) } colfunc <- grDevices::colorRampPalette(c(X, Y)) WF[, "colors"] <- lookup(WF[, "trans"], levels(WF[, "trans"]), rev(colfunc(length(levels(WF[, "trans"]))))) OP <- graphics::par()[["mar"]] on.exit(graphics::par(mar = OP)) graphics::par(mar=c(7,1,1,1)) wordcloud(WF[, 1], WF[, "total"], min.freq = min.freq, colors = WF[, "colors"], rot.per = rot.per, random.order = random.order, ordered.colors = TRUE, vfont = cloud.font, scale = c(max.word.size , min.word.size)) if (!is.null(title)) { graphics::mtext(title, side = title.location, padj = title.padj, col = title.color, family = title.font, cex = title.cex) } COLS <- colfunc(length(levels(WF[, "trans"]))) LL <- legend.location color.legend(LL[1], LL[2], LL[3], LL[4], nms, COLS, cex = legend.cex) colnames(WF)[1:5] <- c("words", nms, paste0("prop.", nms)) WF <- WF[, c(1:3, 6, 4:5, 7:9)] return(invisible(WF)) } drop.levels <- function(x, reorder=TRUE, ...){ x <- x[, drop=TRUE] if(reorder) x <- reorder(x, ...) x }
Token2S <- R6Class("token2s", public = list(initialize = function(shape = pp_shape(), whd = list(width = 1, height = 1, depth = 1), center = Point3D$new(), R = diag(3)) { xy_npc <- Point2D$new(shape$npc_coords) xyz_scaled <- Point3D$new(xy_npc)$translate(-0.5, -0.5, 0.5)$dilate(whd) xyz_f <- xyz_scaled$rotate(R)$translate(center) xy_npc <- Point2D$new(shape$npc_coords) xyz_scaled <- Point3D$new(xy_npc)$translate(-0.5, -0.5, -0.5)$dilate(whd) xyz_b <- xyz_scaled$rotate(R)$translate(center) self$xyz <- Point3D$new(x = c(xyz_f$x, xyz_b$x), y = c(xyz_f$y, xyz_b$y), z = c(xyz_f$z, xyz_b$z)) edge_partition <- partition_edges(shape) n_points <- length(xyz_f) n_edges <- length(edge_partition$type) edges <- vector("list", n_edges) for (i in seq(n_edges)) { vertices <- self$xyz[edge_indices(edge_partition$indices[[i]], n_points)] type <- edge_partition$type[i] edges[[i]] <- edge_class(type, vertices) } self$edges <- edges }, op_edge_order = function(angle) { r <- 10 * self$xyz$width op_diff <- Point2D$new(0, 0)$translate_polar(angle, r) op_diff <- Point3D$new(op_diff, z = r / sqrt(2)) op_ref <- self$xyz$c$translate(op_diff) dists <- sapply(self$edges, function(x) op_ref$distance_to(x$vertices$c)) order(dists) }, op_edges = function(angle) { self$edges[self$op_edge_order(angle)] }, xyz = NULL, edges = NULL ), private = list(), active = list(xyz_face = function() { n <- length(self$xyz$x) / 2 self$xyz[seq(n)] }, xyz_back = function() { n <- length(self$xyz$x) / 2 self$xyz[seq(n + 1, 2 * n)] }) ) edge_indices <- function(indices, n_points) { c(indices, n_points + rev(indices)) } edge_class <- function(type, vertices) { switch(type, curved = CurvedEdge$new(vertices), flat = FlatEdge$new(vertices), ring = RingEdge$new(vertices)) } partition_edges <- function(shape) { classes <- shape$npc_coords$c n <- length(classes) if (all(classes == "C0")) { list(type = rep("flat", n), indices = lapply(seq_along(classes), function(x) c(x, x %% n + 1))) } else if (all(classes == "C1")) { list(type = "ring", indices = list(seq_along(classes))) } else { if (!(classes[n] == "C0")) stop("Can only handle case when last class is 'C0'") type <- vector("character") indices <- vector("list") index <- 1 prev <- classes[n] curve_start <- NULL for (i in seq_along(classes)) { class <- classes[i] if (all(c(prev, class) == "C0")) { type[index] <- "flat" i_prev <- ifelse(i == 1, n, i - 1) indices[[index]] <- c(i_prev, i) index <- index + 1 } else if (prev == "C1" && class == "C0") { type[index] <- "curved" if (curve_start == 0) { indices[[index]] <- c(n, seq(i)) } else { indices[[index]] <- seq(curve_start, i) } index <- index + 1 } else if (prev == "C0" && class == "C1") { curve_start <- i - 1 } prev <- class } list(type = type, indices = indices) } } FlatEdge <- R6Class("edge_flat", public = list(vertices = NULL, initialize = function(vertices = NULL) self$vertices <- vertices, op_grob = function(angle, scale, ...) { xy <- self$vertices$project_op(angle, scale) polygonGrob(xy$x, xy$y, default.units = "in", ...) }), private = list(), active = list() ) RingEdge <- R6Class("edge_ring", public = list(vertices = NULL, initialize = function(vertices = NULL) self$vertices <- vertices, op_grob = function(angle, scale, ...) { n <- length(self$vertices) / 2 xy_f <- self$vertices[seq(n)]$project_op(angle, scale) projections <- numeric(n) proj_vec <- Vector$new(to_x(angle - 90, 1), to_y(angle - 90, 1)) for (ii in seq(n)) { projections[ii] <- proj_vec$dot(xy_f[ii]) } i_min <- which.min(projections) i_max <- which.max(projections) if (i_min < i_max) { indices1 <- seq(i_min, i_max) if (i_max < n) { indices2 <- c(seq(i_max + 1, n), seq_len(i_min - 1)) } else { indices2 <- seq(1, i_min - 1) } } else { indices1 <- c(seq(i_min, n), seq(1, i_max)) indices2 <- seq(i_max + 1, i_min - 1) } r <- 10 * self$vertices$width op_diff <- Point2D$new(0, 0)$translate_polar(angle, r) op_diff <- Point3D$new(op_diff, z = r / sqrt(2)) op_ref <- self$vertices$c$translate(op_diff) d1 <- op_ref$distance_to(self$vertices[indices1]$c) d2 <- op_ref$distance_to(self$vertices[indices2]$c) if (d1 > d2) { indices_obscured <- indices2 indices_visible <- indices1 } else { indices_obscured <- indices1 indices_visible <- indices2 } xy <- self$vertices$project_op(angle, scale) x_obscured <- xy$x[full_indices(indices_obscured, n)] y_obscured <- xy$y[full_indices(indices_obscured, n)] x_visible <- xy$x[full_indices(indices_visible, n)] y_visible <- xy$y[full_indices(indices_visible, n)] polygonGrob(x=c(x_obscured, x_visible), y=c(y_obscured, y_visible), id.lengths = c(length(x_obscured), length(x_visible)), default.units="in", ...) }), private = list(), active = list() ) full_indices <- function(indices, n) c(indices, rev(2 * n + 1 - indices)) CurvedEdge <- R6Class("edge_curved", public = list(vertices = NULL, initialize = function(vertices = NULL) self$vertices <- vertices, op_grob = function(angle, scale, ...) { n <- length(self$vertices) / 2 xy_f <- self$vertices[seq(n)]$project_op(angle, scale) projections <- numeric(n) proj_vec <- Vector$new(to_x(angle - 90, 1), to_y(angle - 90, 1)) for (ii in seq(n)) { projections[ii] <- proj_vec$dot(xy_f[ii]) } i_min <- which.min(projections) i_max <- which.max(projections) l_indices <- list() i_l <- min(i_min, i_max) i_u <- max(i_min, i_max) if (i_l == 1 && i_u == n) { l_indices[[1]] <- seq(n) } else if (i_l == 1) { l_indices[[1]] <- seq(i_u + 1, n) l_indices[[2]] <- seq(1, i_u) } else if (i_u == n) { l_indices[[1]] <- seq(1, i_l - 1) l_indices[[2]] <- seq(i_l, n) } else { l_indices[[1]] <- seq(1, i_l - 1) l_indices[[2]] <- seq(i_u + 1, n) l_indices[[3]] <- seq(i_l, i_u) } xy <- self$vertices$project_op(angle, scale) x <- numeric(0) y <- numeric(0) id <- numeric(0) r <- 10 * self$vertices$width op_diff <- Point2D$new(0, 0)$translate_polar(angle, r) op_diff <- Point3D$new(op_diff, z = r / sqrt(2)) op_ref <- self$vertices$c$translate(op_diff) dists <- sapply(l_indices, function(x) { indices <- full_indices(x, n) op_ref$distance_to(self$vertices[indices]$c) }) l_indices <- l_indices[order(dists)] for (i in seq_along(l_indices)) { indices <- full_indices(l_indices[[i]], n) x <- append(x, xy$x[indices]) y <- append(y, xy$y[indices]) id <- append(id, rep(i, length(indices))) } polygonGrob(x=x, y=y, id=id, default.units="in", ...) }), private = list(), active = list() )
.brent <- function(brac, f, mObj, bObj, wb, init, pMat, qu, ctrl, varHat, cluster, t = .Machine$double.eps^0.25, aTol = 0, ...) { brac <- sort(brac) a <- brac[1] b <- brac[2] epsi = sqrt(.Machine$double.eps) cc = 0.5 * ( 3.0 - sqrt(5.0) ) sa = a sb = b x = sa + cc * ( b - a ) w = x v = w e = 0.0 feval = f(lsig = x, mObj = mObj, bObj = bObj, wb = wb, initM = init[["initM"]], initB = init[["initB"]], pMat = pMat, qu = qu, ctrl = ctrl, varHat = varHat, cluster = cluster, ...) fx = feval$outLoss fw = fx fv = fw jj <- 1 store <- list() store[[jj]] <- list("x" = x, "f" = fx, "initM" = feval[["initM"]], "initB" = feval[["initB"]]) jj <- jj + 1 while( TRUE ) { m = 0.5 * ( sa + sb ) tol = epsi * abs ( x ) + t t2 = 2.0 * tol if( (abs(x-m) <= (t2 - 0.5 * (sb-sa))) || any(abs(x-c(a, b)) < aTol * abs(b-a)) ) { break } r = 0.0 q = r p = q if ( tol < abs(e) ) { r = ( x - w ) * ( fx - fv ) q = ( x - v ) * ( fx - fw ) p = ( x - v ) * q - ( x - w ) * r q = 2.0 * ( q - r ) if( 0.0 < q ) { p = - p } q = abs ( q ) r = e e = d } if ( (abs(p) < abs(0.5 * q * r)) && (q * ( sa - x )) < p && (p < q * ( sb - x )) ) { d = p / q u = x + d if ( ( u - sa ) < t2 || ( sb - u ) < t2 ) { if ( x < m ) { d = tol } else { d = - tol } } } else { if ( x < m ){ e = sb - x } else { e = sa - x } d = cc * e } if ( tol <= abs( d ) ){ u = x + d } else { if ( 0.0 < d ) { u = x + tol } else { u = x - tol } } init <- store[[ which.min(abs(u - sapply(store, "[[", "x"))) ]] feval = f(lsig = u, mObj = mObj, bObj = bObj, wb = wb, initM = init[["initM"]], initB = init[["initB"]], pMat = pMat, qu = qu, ctrl = ctrl, varHat = varHat, cluster = cluster, ...) fu = feval$outLoss store[[jj]] <- list("x" = u, "f" = fu, "initM" = feval[["initM"]], "initB" = feval[["initB"]]) jj <- jj + 1 if ( fu <= fx ){ if ( u < x ) { sb = x } else { sa = x } v = w fv = fw w = x fw = fx x = u fx = fu } else { if ( u < x ) { sa = u } else { sb = u } if ( (fu <= fw) || (w == x) ) { v = w fv = fw w = u fw = fu } else { if ( (fu <= fv) || (v == x) || (v == w) ){ v = u fv = fu } } } } store <- rbind( sapply(store, "[[", "x"), sapply(store, "[[", "f") ) return( list("minimum" = x, "objective" = fx, "store" = store) ) }
LRTTBoot <- function(X, mu0, B){ n <- nrow(X) p <- ncol(X) if (length(mu0)!= p) stop("The test cannot be performed.") Xsrb <- apply(X, 2, mean) Ssrb <- var(X) H <- (Xsrb - mu0) %*% t(Xsrb - mu0) LRTTo <- n * (log(sum(diag(Ssrb + H))) - log(sum(diag(Ssrb)))) LRTTv <- LRTTo for (i in 1:B) { Xbb <- mvrnorm(n, mu0, Ssrb) Xsbb <- apply(Xbb, 2, mean) Ssbb <- var(Xbb) H <- (Xsbb - mu0) %*% t(Xsbb - mu0) LRTTb <- n * (log(sum(diag(Ssbb + H))) - log(sum(diag(Ssbb)))) LRTTv <- c(LRTTv, LRTTb) } p.value <- length(LRTTv[as.numeric(LRTTo) <= LRTTv]) / (B + 1) return(list(LRTT = LRTTo, valor.p = p.value)) }
"simts_3node"
bootstrapVarElimination_Bin <- function (object,pvalue=0.05,Outcome="Class",data,startOffset=0, type = c("LOGIT", "LM","COX"),selectionType=c("zIDI","zNRI"),loops=64,print=TRUE,plots=TRUE) { seltype <- match.arg(selectionType) pvalue <- as.vector(pvalue); boot.var.IDISelection <- function (object,pvalue=0.05,Outcome="Class",startOffset=0, type = c("LOGIT", "LM","COX"),selectionType=c("zIDI","zNRI"),loops,best.formula=NULL) { seltype <- match.arg(selectionType) type <- match.arg(type); varsList <- unlist(as.list(attr(terms(object),"variables"))) termList <- str_replace_all(attr(terms(object),"term.labels"),":","\\*") if (pvalue[1]<0.5) { cthr <- abs(qnorm(pvalue)); } else { cthr <- pvalue; } removeID <- 0; outCome <- paste(varsList[2]," ~ 1"); frm1 <- outCome; testAUC <- 0.5; removedTerm <- NULL; who <- 0; idiCV <- NULL; modsize <- length(termList); if (modsize>0) { for ( i in 1:modsize) { frm1 <- paste(frm1,"+",termList[i]); } ftmp <- formula(frm1); idiCV <- bootstrapValidation_Bin(1.0,loops,ftmp,Outcome,data,type,plots =plots,best.model.formula=best.formula) testAUC <- (idiCV$sensitivity + idiCV$specificity)/2; testAUC <- median(testAUC,na.rm = TRUE); resuBin <- getVar.Bin(object,data,Outcome,type); startSearch <- 1 + startOffset; frm1 <- outCome; if (startSearch > 1) { for ( i in 1:(startSearch-1)) { frm1 <- paste(frm1,"+",termList[i]); } } if (startSearch <= modsize) { ploc <- 1+modsize-startSearch; if (ploc>length(cthr)) ploc <- length(cthr); minlcl <- cthr[ploc]; idlist <- startOffset+1; for ( i in startSearch:modsize ) { { if (seltype=="zIDI") { c0 <- resuBin$z.IDIs[idlist]; ci <- median(idiCV$z.IDIs[,idlist], na.rm = TRUE); ci2 <- median(idiCV$test.z.IDIs[,idlist], na.rm = TRUE); } else { c0 <- resuBin$z.NRIs[idlist]; ci <- median(idiCV$z.NRIs[,idlist], na.rm = TRUE); ci2 <- median(idiCV$test.z.NRIs[,idlist], na.rm = TRUE); } if (is.nan(ci) || is.na(ci) ) ci <- c0; if (is.nan(ci2) || is.na(ci2) ) ci2 <- ci; minz <- min(c(c0,ci,ci2)); if (minz < minlcl) { minlcl = minz; who = i; } } idlist=idlist+1; } } for ( i in startSearch:modsize) { if (who != i) { if (who != -1) { frm1 <- paste(frm1,"+",termList[i]); } } else { removeID=i; removedTerm=termList[i]; } } if ((modsize == startSearch) && (who == startSearch)) { removeID = -removeID; } } ftmp <- formula(frm1); if ((who>0) && (modsize>1)) idiCV <- bootstrapValidation_Bin(1.0,loops,ftmp,Outcome,data,type,plots=plots) afterTestAUC <- (idiCV$sensitivity + idiCV$specificity)/2; afterTestAUC <- median(afterTestAUC,na.rm = TRUE); if (is.null(afterTestAUC)) afterTestAUC=0.0; if (is.null(testAUC)) testAUC=0.5; if (is.na(afterTestAUC)) afterTestAUC=0.0; if (is.na(testAUC)) testAUC=0.5; result <- list(Removed=removeID,BootModelAUC=idiCV$blind.ROCAUC$auc,backfrm=frm1,bootval=idiCV,afterTestAUC=afterTestAUC,beforeTestAUC=testAUC,removedTerm=removedTerm); return (result) } bkobj <- NULL; bestAccuracy <- c(0.5,0.5,0.5); best.formula=NULL; startAccuracy = bestAccuracy; maxAccuracy <- startAccuracy[2]; changes=1; loopsAux=0; model <- object; modelReclas <- NULL; myOutcome <- Outcome; varsList <- unlist(as.list(attr(terms(object),"variables"))) termList <- str_replace_all(attr(terms(object),"term.labels"),":","\\*") outCome = paste(varsList[2]," ~ 1"); frm1 = outCome; if (length(termList) > 0) { for ( i in 1:length(termList)) { frm1 <- paste(frm1,paste("+",termList[i])); } } beforeFSCmodel.formula <- frm1; model.formula <- frm1; if (is.null(best.formula)) { best.formula <- frm1; } min.formula <- best.formula; beforeFSCmodel <- object; beforeFormula <- frm1; bk <- NULL; changes2 <- 0; while ((changes>0) && (loopsAux<100)) { bk <- boot.var.IDISelection(model,pvalue,Outcome=myOutcome,startOffset,type,seltype,loops,best.formula); beforeFormula <- bk$backfrm; nmodel = modelFitting(formula(bk$backfrm),data,type,TRUE); if (!is.null(bk$bootval)) { testAccuracy <-as.vector(quantile(bk$bootval$accuracy, probs = c(0.05, 0.5, 0.95), na.rm = TRUE,names = FALSE, type = 7)); if (loopsAux == 0) startAccuracy <- bk$beforeTestAUC; } if ((bk$Removed>0) && (!inherits(nmodel, "try-error"))) { if (!is.null(bk$bootval)) { if (!is.na(testAccuracy) && !is.null(testAccuracy)) { if (testAccuracy[2] >= bestAccuracy[1]) { best.formula <- bk$backfrm; if (testAccuracy[2] >= maxAccuracy) { min.formula <- bk$backfrm; maxAccuracy <- testAccuracy[2]; } bestAccuracy <- testAccuracy; } } } if (changes>0) { changes2<- attr(terms(model),"term.labels")[which(!(attr(terms(model),"term.labels") %in% attr(terms(nmodel),"term.labels")))] if (length(changes2)>1) { changes2<-changes2[2] } } } changes = as.integer(bk$Removed); model <- nmodel; model.formula <- bk$backfrm; loopsAux = loopsAux + 1 } idiCV <- NULL; if (length(all.vars(formula(model.formula))) > 1) { modelReclas <- getVar.Bin(model,data=data,Outcome=myOutcome,type); idiCV <- bootstrapValidation_Bin(1.0000,2*loops,formula(model.formula),myOutcome,data,type,plots=plots); } else { model.formula <- outCome; idiCV <- bootstrapValidation_Bin(1.0000,loops,formula(model.formula),myOutcome,data,type,plots=plots); } testAccuracy <-as.vector(quantile(idiCV$accuracy, probs = c(0.05, 0.5, 0.95), na.rm = TRUE,names = FALSE, type = 7)); if (print == TRUE) { cat("Before FSC Mod:",beforeFSCmodel.formula,"\n") cat("At Acc Model :",min.formula,"\n") cat("Reduced Model :",model.formula,"\n") cat("Start AUC:",startAccuracy,"last AUC:",idiCV$blind.ROCAUC$auc,"Accuracy:",testAccuracy[2],"\n") } back.model<-modelFitting(formula(model.formula),data,type,TRUE); environment(back.model$formula) <- globalenv() environment(back.model$terms) <- globalenv() at.opt.model<-modelFitting(formula(min.formula),data,type,TRUE); environment(at.opt.model$formula) <- NULL environment(at.opt.model$terms) <- NULL result <- list(back.model=back.model, loops=loopsAux, reclas.info=modelReclas, bootCV=idiCV, back.formula=model.formula, lastRemoved=changes2, at.opt.model=at.opt.model, beforeFSC.formula=beforeFSCmodel.formula, at.Accuracy.formula=best.formula); return (result); }
get_Rcpp_module_def_code <- function(model_name) { RCPP_MODULE <- ' struct stan_model_holder { stan_model_holder(rstan::io::rlist_ref_var_context rcontext, unsigned int random_seed) : rcontext_(rcontext), random_seed_(random_seed) { } //stan::math::ChainableStack ad_stack; rstan::io::rlist_ref_var_context rcontext_; unsigned int random_seed_; }; Rcpp::XPtr<stan::model::model_base> model_ptr(stan_model_holder* smh) { Rcpp::XPtr<stan::model::model_base> model_instance(new stan_model(smh->rcontext_, smh->random_seed_), true); return model_instance; } Rcpp::XPtr<rstan::stan_fit_base> fit_ptr(stan_model_holder* smh) { return Rcpp::XPtr<rstan::stan_fit_base>(new rstan::stan_fit(model_ptr(smh), smh->random_seed_), true); } std::string model_name(stan_model_holder* smh) { return model_ptr(smh).get()->model_name(); } RCPP_MODULE(stan_fit4%model_name%_mod){ Rcpp::class_<stan_model_holder>("stan_fit4%model_name%") .constructor<rstan::io::rlist_ref_var_context, unsigned int>() .method("model_ptr", &model_ptr) .method("fit_ptr", &fit_ptr) .method("model_name", &model_name) ; } ' gsub("%model_name%", model_name, RCPP_MODULE) }
node.sons <- function(phy, node) { if (!("phylo" %in% class(phy))) stop("Object \"phy\" is not of class \"phylo\"") E <- phy$edge n <- dim(E)[1] sons <- numeric(0) count <- 1 for(i in 1:n) { if(E[i,1] == node) { sons[count] <- E[i,2]; count <- count + 1 } } return(sons) }
convert.graph <- function(graph) { if (is.matrix(graph)) t(graph) else if (is.data.frame(graph)) t(data.matrix(graph)) else if (inherits(graph, "graph") && requireNamespace("graph", quietly=TRUE)) { graph::edgeMatrix(graph) } else stop("unrecognized graph type") } name.orbits <- function(orbits) { orb.names = NULL for (i in 0:(ncol(orbits)-1)) { orb.names <- c(orb.names, paste("O", i, sep="")) } colnames(orbits) <- orb.names orbits } count4 <- function(graph) { edges <- convert.graph(graph) result <- .C("count4", edges, dim(edges), orbits=matrix(0, nrow=max(edges), ncol=15))$orbits name.orbits(result) } count5 <- function(graph) { edges <- convert.graph(graph) result <- .C("count5", edges, dim(edges), orbits=matrix(0, nrow=max(edges), ncol=73))$orbits name.orbits(result) } ecount4 <- function(graph) { edges <- convert.graph(graph) result <- .C("ecount4", edges, dim(edges), orbits=matrix(0, nrow=ncol(edges), ncol=12))$orbits name.orbits(result) } ecount5 <- function(graph) { edges <- convert.graph(graph) result <- .C("ecount5", edges, dim(edges), orbits=matrix(0, nrow=ncol(edges), ncol=68))$orbits name.orbits(result) }
l2dpar <- function(mean1,var1,mean2,var2,check=FALSE) { p=length(mean1); d=mean1-mean2; vars=var1+var2; if (p == 1) { if(check) {if(abs(var1)<.Machine$double.eps | abs(var2)<.Machine$double.eps) {stop("At least one variance is zero") } } return((1/sqrt(2*pi))*(1/sqrt(vars))*exp(-(1/2)*(d^2)/vars)) } else { if(check) {if(abs(det(var1))<.Machine$double.eps | abs(det(var2))<.Machine$double.eps) {stop("One of the sample variances is degenerate") } } return(as.numeric((1/(2*pi)^(p/2))*(1/det(vars)^(1/2))*exp((-1/2)*t(d)%*%solve(vars)%*%d))) } }
plot_layout_vis.plotly <- function( p_obj, x, distribution = c( "weibull", "lognormal", "loglogistic", "normal", "logistic", "sev" ), title_main = "Probability Plot", title_x = "Characteristic", title_y = "Unreliability" ) { distribution <- match.arg(distribution) layout_helper <- plot_layout_helper(x, distribution, "plotly") x_axis_type <- if (distribution %in% c("sev", "normal", "logistic")) "-" else "log" x_config <- list( title = list( text = title_x ), type = x_axis_type, autorange = TRUE, rangemode = "nonnegative", ticks = "inside", tickwidth = 1, tickfont = list(family = 'Arial', size = 10), tickangle = 90, showticklabels = TRUE, zeroline = FALSE, showgrid = TRUE, gridwidth = 1, exponentformat = "none", showline = TRUE, linecolor = " ) if (distribution %in% c("weibull", "lognormal", "loglogistic")) { x_config <- c( x_config, list( tickvals = layout_helper$x_ticks, ticktext = layout_helper$x_labels ) ) } y_config <- list( title = list( text = title_y ), autorange = TRUE, tickvals = layout_helper$y_ticks, ticktext = layout_helper$y_labels, ticks = "inside", tickwidth = 1, tickfont = list(family = 'Arial', size = 10), showticklabels = TRUE, zeroline = FALSE, showgrid = TRUE, gridwidth = 1, exponentformat = "none", showline = TRUE, linecolor = " ) l <- list( title = list( font = list( family = "Arial", size = 10, color = " ) ) ) m <- list( l = 55, r = 10, b = 55, t = 25, pad = 4 ) title <- list( text = title_main, font = list( family = "Arial", size = 16, color = " ) ) p_obj <- p_obj %>% plotly::layout( title = title, separators = ".", legend = l, xaxis = x_config, yaxis = y_config, margin = m ) return(p_obj) } plot_prob_vis.plotly <- function( p_obj, tbl_prob, distribution = c( "weibull", "lognormal", "loglogistic", "normal", "logistic", "sev" ), title_main = "Probability Plot", title_x = "Characteristic", title_y = "Unreliability", title_trace = "Sample" ) { distribution <- match.arg(distribution) mark_x <- unlist(strsplit(title_x, " "))[1] mark_y <- unlist(strsplit(title_y, " "))[1] n_group <- length(unique(tbl_prob[["group"]])) n_method <- length(unique(tbl_prob$cdf_estimation_method)) color <- if (n_method == 1) I(" symbol <- if (n_group == 0) NULL else ~group name <- to_name(tbl_prob, n_method, n_group, title_trace) p_prob <- p_obj %>% plotly::add_trace( data = tbl_prob, x = ~x, y = ~q, type = "scatter", mode = "markers", hoverinfo = "text", name = name, color = color, colors = "Set2", symbol = symbol, legendgroup = ~cdf_estimation_method, text = paste( "ID:", tbl_prob$id, paste("<br>", paste0(mark_x, ":")), format(tbl_prob$x, digits = 3), paste("<br>", paste0(mark_y, ":")), format(tbl_prob$prob, digits = 6) ) ) %>% plotly::layout(showlegend = TRUE) return(p_prob) } plot_mod_vis.plotly <- function( p_obj, tbl_pred, title_trace = "Fit" ) { x_mark <- unlist(strsplit(p_obj$x$layoutAttrs[[2]]$xaxis$title$text, " "))[1] y_mark <- unlist(strsplit(p_obj$x$layoutAttrs[[2]]$yaxis$title$text, " "))[1] tbl_pred <- tbl_pred %>% dplyr::rowwise() %>% dplyr::mutate(hovertext = to_hovertext( .data$x_p, .data$y_p, .data$param_val, .data$param_label, x_mark, y_mark )) %>% dplyr::ungroup() n_method <- length(unique(tbl_pred$cdf_estimation_method)) n_group <- length(unique(tbl_pred$group)) color <- if (n_method == 1) I(" name <- to_name(tbl_pred, n_method, n_group, title_trace) p_mod <- plotly::add_lines( p = p_obj, data = tbl_pred, x = ~x_p, y = ~q, type = "scatter", mode = "lines", hoverinfo = "text", name = name, color = color, colors = "Set2", legendgroup = ~cdf_estimation_method, text = ~hovertext ) return(p_mod) } plot_conf_vis.plotly <- function(p_obj, tbl_p, title_trace) { x_mark <- unlist(strsplit(p_obj$x$layoutAttrs[[2]]$xaxis$title$text, " "))[1] y_mark <- unlist(strsplit(p_obj$x$layoutAttrs[[2]]$yaxis$title$text, " "))[1] n_method <- length(unique(tbl_p$cdf_estimation_method)) color <- if (n_method == 1) I(" name <- to_name(tbl_p, n_method, n_group = 0, title_trace) p_conf <- plotly::add_lines( p = p_obj, data = tbl_p, x = ~x, y = ~q, type = "scatter", mode = "lines", hoverinfo = "text", line = list(dash = "dash", width = 1), color = color, colors = "Set2", name = name, legendgroup = ~cdf_estimation_method, text = paste( paste0(x_mark, ":"), format(tbl_p$x, digits = 3), paste("<br>", paste0(y_mark, ":")), format(tbl_p$y, digits = 6) ) ) return(p_conf) } plot_pop_vis.plotly <- function( p_obj, tbl_pop, title_trace ) { x_mark <- unlist(strsplit(p_obj$x$layoutAttrs[[2]]$xaxis$title$text, " "))[1] y_mark <- unlist(strsplit(p_obj$x$layoutAttrs[[2]]$yaxis$title$text, " "))[1] tbl_pop <- tbl_pop %>% dplyr::rowwise() %>% dplyr::mutate( hovertext = to_hovertext( .data$x_s, .data$y_s, .data$param_val, .data$param_label, x_mark, y_mark ), name = to_name_pop( .data$param_val, .data$param_label ) ) %>% dplyr::ungroup() p_pop <- plotly::add_lines( p = p_obj, data = tbl_pop, x = ~x_s, y = ~q, type = "scatter", mode = "lines", hoverinfo = "text", colors = "Set2", name = ~name, line = list(width = 1), text = ~hovertext ) %>% plotly::layout(showlegend = TRUE) return(p_pop) } to_hovertext <- function(x, y, param_val, param_label, x_mark, y_mark) { param_val <- unlist(param_val) param_label <- unlist(param_label) text <- paste( paste0(x_mark, ":"), format(x, digits = 3), paste("<br>", paste0(y_mark, ":")), format(y, digits = 6), "<br>", paste(param_label[1], param_val[1]), "<br>", paste(param_label[2], param_val[2]) ) if (!is.na(param_val[3])) { text <- paste( text, "<br>", paste(param_label[3], param_val[3]) ) } text } to_name_pop <- function(param_val, param_label) { param_val <- unlist(param_val) param_label <- unlist(param_label) text <- paste0( param_label[1], " ", param_val[1], ", ", param_label[2], " ", param_val[2] ) if (!is.na(param_val[3])) { text <- paste0( text, ", ", param_label[3], " ", param_val[3] ) } text } to_name <- function(tbl, n_method, n_group, title_trace) { if (n_method <= 1) { if (n_group <= 1) { title_trace } else { paste0(title_trace, ": ", tbl$group) } } else { if (n_group <= 1) { paste0(title_trace, ": ", tbl$cdf_estimation_method) } else { paste0(title_trace, ": ", tbl$cdf_estimation_method, ", ", tbl$group) } } }
EMMax.p <- function(Z, w, p, ptype) { switch(ptype, p.free = apply(Z,2,weighted.mean, w), p.fixed = p, p.HW = EMMax.p.HW(Z,w), p.part = apply(Z,2,weighted.mean, w) ) }
test_that("stops on failure", { withr::local_envvar(TESTTHAT_PARALLEL = "FALSE") expect_error( test_dir(test_path("test_dir"), reporter = "silent") ) }) test_that("runs all tests and records output", { withr::local_envvar(TESTTHAT_PARALLEL = "FALSE") res <- test_dir(test_path("test_dir"), reporter = "silent", stop_on_failure = FALSE) df <- as.data.frame(res) df$user <- df$system <- df$real <- df$result <- NULL local_reproducible_output(width = 200) local_edition(3) expect_snapshot_output(print(df)) }) test_that("complains if no files", { withr::local_envvar(TESTTHAT_PARALLEL = "FALSE") path <- tempfile() dir.create(path) expect_error(test_dir(path), "test files") }) test_that("can control if failures generate errors", { withr::local_envvar(TESTTHAT_PARALLEL = "FALSE") test_error <- function(...) { test_dir(test_path("test-error"), reporter = "silent", ...) } expect_error(test_error(stop_on_failure = TRUE), "Test failures") expect_error(test_error(stop_on_failure = FALSE), NA) }) test_that("can control if warnings errors", { withr::local_envvar(TESTTHAT_PARALLEL = "FALSE") test_warning <- function(...) { test_dir(test_path("test-warning"), reporter = "silent", ...) } expect_error(test_warning(stop_on_warning = TRUE), "Tests generated warnings") expect_error(test_warning(stop_on_warning = FALSE), NA) }) test_that("can test single file", { out <- test_file(test_path("test_dir/test-basic.R"), reporter = "silent") expect_length(out, 5) }) test_that("complains if file doesn't exist", { expect_error(test_file("DOESNTEXIST"), "does not exist") }) test_that("files created by setup still exist", { expect_true(file.exists("DELETE-ME")) expect_true(file.exists("DELETE-ME-2")) }) test_that("can filter test scripts", { x <- c("test-a.R", "test-b.R", "test-c.R") expect_equal(filter_test_scripts(x), x) expect_equal(filter_test_scripts(x, "a"), x[1]) expect_equal(filter_test_scripts(x, "a", invert = TRUE), x[-1]) expect_equal(filter_test_scripts(x, "test"), character()) expect_equal(filter_test_scripts(x, ".R"), character()) })
source("ex4.01.R") source("ex4.02.R") source("ex4.03.R") source("ex4.04.R") source("ex4.05.R") source("ex4.06.R") source("ex4.07.R")
mt <- mtcars[c("mpg", "hp", "wt", "am")] head(mt) mt <- mtcars[c("mpg", "hp", "wt", "am")] summary(mt) mystats <- function(x, na.omit=FALSE){ if (na.omit) x <- x[!is.na(x)] m <- mean(x) n <- length(x) s <- sd(x) skew <- sum((x-m)^3/s^3)/n kurt <- sum((x-m)^4/s^4)/n - 3 return(c(n=n, mean=m, stdev=s, skew=skew, kurtosis=kurt)) } myvars <- c("mpg", "hp", "wt") sapply(mtcars[myvars], mystats) library(Hmisc) myvars <- c("mpg", "hp", "wt") describe(mtcars[myvars]) library(pastecs) myvars <- c("mpg", "hp", "wt") stat.desc(mtcars[myvars]) library(psych) myvars <- c("mpg", "hp", "wt") describe(mtcars[myvars]) myvars <- c("mpg", "hp", "wt") aggregate(mtcars[myvars], by=list(am=mtcars$am), mean) aggregate(mtcars[myvars], by=list(am=mtcars$am), sd) dstats <- function(x)sapply(x, mystats) myvars <- c("mpg", "hp", "wt") by(mtcars[myvars], mtcars$am, dstats) library(doBy) summaryBy(mpg+hp+wt~am, data=mtcars, FUN=mystats) library(psych) myvars <- c("mpg", "hp", "wt") describeBy(mtcars[myvars], list(am=mtcars$am)) library(reshape) dstats <- function(x)(c(n=length(x), mean=mean(x), sd=sd(x))) dfm <- melt(mtcars, measure.vars=c("mpg", "hp", "wt"), id.vars=c("am", "cyl")) cast(dfm, am + cyl + variable ~ ., dstats) library(vcd) head(Arthritis) mytable <- with(Arthritis, table(Improved)) mytable prop.table(mytable) prop.table(mytable)*100 mytable <- xtabs(~ Treatment+Improved, data=Arthritis) mytable margin.table(mytable,1) margin.table(mytable, 2) prop.table(mytable) prop.table(mytable, 1) prop.table(mytable, 2) addmargins(mytable) addmargins(prop.table(mytable)) addmargins(prop.table(mytable, 1), 2) addmargins(prop.table(mytable, 2), 1) library(gmodels) CrossTable(Arthritis$Treatment, Arthritis$Improved) mytable <- xtabs(~ Treatment+Sex+Improved, data=Arthritis) mytable ftable(mytable) margin.table(mytable, 1) margin.table(mytable, 2) margin.table(mytable, 2) margin.table(mytable, c(1,3)) ftable(prop.table(mytable, c(1,2))) ftable(addmargins(prop.table(mytable, c(1, 2)), 3)) library(vcd) mytable <- xtabs(~Treatment+Improved, data=Arthritis) chisq.test(mytable) mytable <- xtabs(~Improved+Sex, data=Arthritis) chisq.test(mytable) mytable <- xtabs(~Treatment+Improved, data=Arthritis) fisher.test(mytable) mytable <- xtabs(~Treatment+Improved+Sex, data=Arthritis) mantelhaen.test(mytable) library(vcd) mytable <- xtabs(~Treatment+Improved, data=Arthritis) assocstats(mytable) states<- state.x77[,1:6] cov(states) cor(states) cor(states, method="spearman") x <- states[,c("Population", "Income", "Illiteracy", "HS Grad")] y <- states[,c("Life Exp", "Murder")] cor(x,y) library(ggm) pcor(c(1,5,2,3,6), cov(states)) cor.test(states[,3], states[,5]) library(psych) corr.test(states, use="complete") library(MASS) t.test(Prob ~ So, data=UScrime) sapply(UScrime[c("U1","U2")], function(x)(c(mean=mean(x),sd=sd(x)))) with(UScrime, t.test(U1, U2, paired=TRUE)) with(UScrime, by(Prob, So, median)) wilcox.test(Prob ~ So, data=UScrime) sapply(UScrime[c("U1", "U2")], median) with(UScrime, wilcox.test(U1, U2, paired=TRUE)) states <- data.frame(state.region, state.x77) kruskal.test(Illiteracy ~ state.region, data=states) source("http://www.statmethods.net/RiA/wmc.txt") states <- data.frame(state.region, state.x77) wmc(Illiteracy ~ state.region, data=states, method="holm")
funOptimizeSim <- function(x, conf, data, ...) { para <- mapXToPara(x) res <- modelResultHospital(para = para, conf = conf, data = data) err <- getError(res = res, conf = conf) if (conf$verbosity > 1000){ print(x) str(para) str(res) } if (conf$verbosity > 10) { print(paste0("Err:", err)) } return(err) }
plotExpSpace <- function(expSpace, y = expSpace[["attPerturb"]][1], x = expSpace[["attPerturb"]][2] ){ targetMat <- expSpace[["targetMat"]] targetAtts <- colnames(expSpace[["targetMat"]]) x.no <- which(targetAtts == x) y.no <- which(targetAtts == y) xUnits <- getVarUnits(strsplit(x, "_")[[1]][1]) yUnits <- getVarUnits(strsplit(y, "_")[[1]][1]) xyFullNames <- mapply(tagBlender_noUnits, c(x,y)) y.lab <- paste0(xyFullNames[2], " (", yUnits, ")") x.lab <- paste0(xyFullNames[1], " (", xUnits, ")") out <- expSpace2dViz(targetMat[ ,x.no], targetMat[ ,y.no], x.lab = x.lab, y.lab = y.lab) }
reject<- function(sorted, criticals){ m<- length(sorted) stopifnot( length(criticals) == m ) indicators<- sorted<criticals if(!any(indicators)) { return(list(cutoff=0,cut.index=0)) } cut.index<- max((1:m)[indicators]) cutoff<- sorted[cut.index] return( list(cutoff=cutoff,cut.index=cut.index) ) } bh.adjust<- function(sorted, m, m0, constant=1){ adjusted<- rep(NA,m) temp.min<- sorted[m] min.ind<- rep(0,m) for (i in m:1) { temp<- min(m0*sorted[i]*constant / i, 1) if ( temp <= temp.min ) { temp.min <- temp min.ind[i]<- 1 } adjusted[i]<- temp.min } return(adjusted) } linearStepUp<- function(sorted, q, m, adjust=FALSE, m0=m, pi0, constant=1){ if(missing(m0) & !missing(pi0)) { m0=pi0*m } else{ criticals<- (1:m)*q/(m0*constant) cutoff<- reject(sorted,criticals) rejected<- sorted<=cutoff$cutoff adjusted=rep(NA,m) if(adjust) { adjusted<-bh.adjust(sorted,m=m,m0=m0,constant=constant) } multiple.pvals<- data.frame( original.pvals=sorted, criticals=criticals, rejected=rejected, adjusted.pvals=adjusted) output<- list(Cutoff=cutoff,Pvals=multiple.pvals) return(output) } } solve.q<- function(sorted, m, j, r){ a<- sorted*(m-r)/(1:m) adjusted<- ifelse(a>0.5, 1 , a/(1-a) ) temp.min<- adjusted[m] for(i in m:j){ if(adjusted[i]<=temp.min) temp.min<- adjusted[i] else adjusted[i]<- temp.min } return(adjusted) } two.stage.adjust<- function(sorted, r=0, patience=4, m){ adjusted<- rep(0,m) adjusted.q<- solve.q(sorted=sorted,m=m,j=1,r=0) checking<- adjusted.q if(sum(linearStepUp(sorted,adjusted.q[1]/(1+adjusted.q[1]),m=m)$Pvals[['rejected']])==m){ adjusted.q<- rep(adjusted.q[1],m) return(adjusted.q) } else{ for (j in 1:m) { delta.r<- 1 delta.q<- 1 new.q<- adjusted.q[j] r.new<- sum(linearStepUp(sorted,new.q/(1+new.q),m=m)$Pvals[['rejected']]) counter<- 0 max.q<- 0 while(delta.r>0 & delta.q>0){ old.q<- new.q r.old<- r.new new.q<- solve.q(sorted=sorted,m=m,j=j,r=r.old)[j] r.new<- sum(linearStepUp(sorted,new.q/(1+new.q),m=m)$Pvals[['rejected']]) delta.r<- abs(r.new-r.old) delta.q<- abs(new.q-old.q) counter<- counter+1 if(counter>patience & max.q!=new.q) max.q<- max(max.q,new.q) else if(counter>patience & max.q==new.q ) break } adjusted.q[j]<- min(new.q,1) adjusted.q[min(j+1,m)]<- adjusted.q[j] stopifnot(any(adjusted.q[j]<=checking[j])) } temp.min<- adjusted.q[m] for(i in m:1){ if(adjusted.q[i]<=temp.min) temp.min<- adjusted.q[i] else adjusted.q[i]<- temp.min } return(adjusted.q) } } two.stage<- function(pValues, alpha){ ranks<- rank(pValues) sorted<-sort(pValues) m<- length(sorted) q1<- alpha/(1+alpha) stage.one<- linearStepUp(sorted, q1, adjust=TRUE, m=m) r<- sum(stage.one$Pvals[['rejected']]) if (r==0) { stage.one$Pvals[['adjusted.pvals']]<- 1 return(stage.one) } else if (r==m) { stage.one$Pvals[['adjusted.pvals']]<- stage.one$Pvals[['adjusted.pvals']][1] return(stage.one) } else { m0<- m-r output<- linearStepUp(sorted=sorted,q=q1,m0=m0,m=m) output$Pvals[['adjusted.pvals']]<- two.stage.adjust(sorted, alpha, m=m) output<-output$Pvals[ranks,] output.2<- list( criticalValues=output$criticals, rejected=output$rejected, adjPValues=output$adjusted.pvals, errorControl=new(Class='ErrorControl',type="FDR",alpha=alpha), pi0= m0/m ) return(output.2) } } mutoss.two.stage<- function() { return(new(Class="MutossMethod", label="B.K.Y. (2006) Two-Stage Step-Up", errorControl="FDR", callFunction="two.stage", output=c("adjPValues", "criticalValues", "rejected", "pi0", "errorControl"), assumptions=c("Independent test statistics"), info="<h2>Benjamini-Krieger-Yekutieli (2006) Two-Stage Step-Up Procedure</h2>\n\n <p>A p-value procedure which controls the FDR at level <i>&alpha;</i> for independent test statistics, in which case it is more powerful then non adaptive procedures such as the Linear Step-Up (BH). On the other hand, when this is not the case, no error control is guaranteed. The linear step-up procedure is used in he first stage to estimate the number of true null hypotheses (mo) which is plugged in a linear step-up procedure at the second stage. <h3>Reference:</h3> <ul> <li>Benjamini, Y., Krieger, A. and Yekutieli, D. \"<i> Adaptive linear step-up procedures that control the false discovery rate. </i>\" Biometrika, 93(3):491-507, 2006. </li>\n </ul>", parameters=list(pValues=list(type="numeric"), alpha=list(type="numeric")) )) } multiple.down.adjust<- function(sorted, m){ adjusted<- rep(NA,m) temp.max<- sorted[1] max.ind<- rep(0,m) for (i in 1:m) { temp<- min(sorted[i]*(m+1-i)/(i*(1-sorted[i])),1) if ( temp >= temp.max ) { temp.max <- temp max.ind[i] <- 1 } adjusted[i]<- temp.max } return(adjusted) } multiple.down=function(pValues, alpha){ sorted<- sort(pValues) ranks<- rank(pValues) m<- length(pValues) if(alpha>0.5) warning('FDR is not controlled when q>0.5') criticals<- sapply(1:m,function(i) alpha*i/(m-i*(1-alpha)+1)) indicators<- sorted<criticals if(!indicators[1]) cutoff<-list(cutoff=0,cut.index=0) else if(all(indicators)) cutoff<- list(cutoff=sorted[m],cut.index=m) else{ cut.index<- min((1:m)[!indicators])-1 cutoff<- list(cutoff=sorted[cut.index],cut.index=cut.index) } rejected<- sorted<=cutoff$cutoff adjusted<-multiple.down.adjust(sorted,m) output<- data.frame( criticals=criticals, rejected=rejected, adjusted.pvals=adjusted) output<- output[ranks,] output.2<-list( criticalValues=output$criticals, rejected=output$rejected, adjPValues=output$adjusted.pvals, errorControl=new(Class='ErrorControl',type="FDR",alpha=alpha) ) return(output.2) } mutoss.multiple.down <- function() { return(new(Class="MutossMethod", label="B.K.Y. (2006) Multi-Stage Step-down", errorControl="FDR", callFunction="multiple.down", output=c("adjPValues", "criticalValues", "rejected", "errorControl"), assumptions=c("Independent test statistics"), info="<h2>Benjamini-Krieger-Yekutieli (2006) multi-stage step-down procedure</h2>\n\n\ <p>A non-linear step-down p-value procedure which control the FDR for independent test statistics and enjoys more power then other non-adaptive procedure such as the linear step-up (BH). For the case of non-independent test statistics, non-adaptive procedures such as the linear step-up (BH) or the all-purpose conservative Benjamini-Yekutieli (2001) are recommended.</p>\n <h3>Reference:</h3> <ul> <li>Benjamini, Y., Krieger, A. and Yekutieli, D. \"<i> Adaptive linear step-up procedures that control the false discovery rate. </i>\" Biometrika, 93(3):491-507, 2006. </li>\n </ul>", parameters=list(pValues=list(type="numeric"), alpha=list(type="numeric")) )) }
install_keras <- function(method = c("auto", "virtualenv", "conda"), conda = "auto", version = "default", tensorflow = version, extra_packages = NULL, ..., pip_ignore_installed = TRUE) { method <- match.arg(method) if(is_mac_arm64()) { return(tensorflow::install_tensorflow( method = method, conda = conda, version = version, extra_packages = c("pandas", "Pillow", "tensorflow-hub", "tensorflow-datasets", extra_packages), ...)) } pkgs <- default_extra_packages(tensorflow) if(!is.null(extra_packages)) pkgs[gsub("[=<>~]{1,2}[0-9.]+$", "", extra_packages)] <- extra_packages if(tensorflow %in% c("cpu", "gpu")) tensorflow <- paste0("default-", tensorflow) if(grepl("^default", tensorflow)) tensorflow <- sub("^default", as.character(default_version), tensorflow) tensorflow::install_tensorflow( method = match.arg(method), conda = conda, version = tensorflow, extra_packages = pkgs, pip_ignore_installed = pip_ignore_installed, ... ) } default_version <- numeric_version("2.8") default_extra_packages <- function(tensorflow_version) { pkgs <- c("tensorflow-hub", "scipy", "requests", "pyyaml", "Pillow", "h5py", "pandas") names(pkgs) <- pkgs v <- tensorflow_version if(grepl("nightly", v)) return(pkgs) v <- sub("-?(gpu|cpu)$", "", v) v <- sub("rc[0-9]+", "", v) constraint <- sub("^([><=~]{,2}).*", "\\1", v) v <- substr(v, nchar(constraint)+1, nchar(v)) if(v %in% c("default", "")) v <- default_version v <- numeric_version(v) if(nzchar(constraint)) { l <- length(unclass(v)[[1]]) switch(constraint, ">" = v[[1, l + 1]] <- 1, "<" = { v <- unclass(v)[[1]] if(v[l] == 0) l <- l-1 v[c(l, l+1)] <- c(v[l] - 1, 9999) v <- numeric_version(paste0(v, collapse = ".")) }, "~=" = v[[1, l]] <- 9999) } if (v >= "2.6") { pkgs <- pkgs[names(pkgs) != "pyyaml"] return(pkgs) } if (v >= "2.4") { pkgs["Pillow"] <- "Pillow<8.3" return(pkgs) } if (v >= "2.1") { pkgs["pyyaml"] <- "pyyaml==3.12" pkgs["h5py"] <- "h5py==2.10.0" return(pkgs) } pkgs }
library(ggvis) data(diamonds, package = "ggplot2") shinyServer(function(input, output, session) { values <- reactiveValues(selected = rep(TRUE, nrow(diamonds))) diamonds %>% ggvis(~carat) %>% layer_histograms(fill.hover := "red", width = 0.1) %>% handle_hover(function(data, ...) { values$selected <- diamonds$carat >= data$xmin_ & diamonds$carat < data$xmax_ }) %>% set_options(width = 400, height = 200) %>% bind_shiny("plot1") reactive(diamonds[values$selected, , drop = FALSE]) %>% ggvis(~carat) %>% layer_histograms(width = 0.01) %>% set_options(width = 400, height = 200) %>% bind_shiny("plot2") })
set_serialAxes_scales_grob <- function(loon.grob, pointsTreeName, glyphNames, showAxes, swap, whichIsDeactive) { newGrob <- grid::getGrob(loon.grob, pointsTreeName) serialaxes_and_active <- setdiff(which(grepl(glyphNames, pattern = "serialaxes")), whichIsDeactive) if(length(serialaxes_and_active) > 0) { lapply(serialaxes_and_active, function(i) { serialaxes_tree <- newGrob$children[[i]] axesGrob <- grid::getGrob(serialaxes_tree, "axes") if(is.null(axesGrob)) { axesGrob <- grid::getGrob(serialaxes_tree, "axes: polylineGrob arguments") axesGrob_name <- "axes: polylineGrob arguments" } else { axesGrob_name <- "axes" } newGrob$children[[i]] <<- if(showAxes) { grid::setGrob( gTree = newGrob$children[[i]], gPath = axesGrob_name, newGrob = do.call( grid::polylineGrob, args = getGrobArgs(axesGrob) ) ) } else { grid::setGrob( gTree = newGrob$children[[i]], gPath = axesGrob_name, newGrob = do.call( grob, args = getGrobArgs(axesGrob) ) ) } if(swap & showAxes) { newGrob$children[[i]] <<- grid::setGrob( gTree = newGrob$children[[i]], gPath = axesGrob_name, newGrob = grid::editGrob( grob = grid::getGrob(newGrob$children[[i]], axesGrob_name), y = get_unit(axesGrob$x, as.numeric = FALSE) + get_unit(axesGrob$y, is.unit = FALSE, as.numeric = FALSE), x = get_unit(axesGrob$y, as.numeric = FALSE) + get_unit(axesGrob$x, is.unit = FALSE, as.numeric = FALSE) ) ) } } ) } else NULL grid::setGrob( gTree = loon.grob, gPath = pointsTreeName, newGrob = newGrob ) }
setBlur <- function(intensity = 2) { css <- paste0( "* { margin: 0; padding: 0; overflow: hidden; } .blur { -webkit-transition: all .25s ease; -moz-transition: all .25s ease; -o-transition: all .25s ease; -ms-transition: all .25s ease; transition: all .25s ease; } .blur:hover { -webkit-filter: blur(15px); -moz-filter: all .25s ease; -o-filter: all .25s ease; -ms-filter: all .25s ease; filter: blur(", intensity, "px); } " ) htmltools::tags$head( htmltools::tags$style(css) ) } blurContainer <- function(tag) { if (length(tag) == 2) { tag[[2]]$attribs$class <- paste0(tag[[2]]$attribs$class, " blur") return(tag) } else { tag$attribs$class <- paste0(tag$attribs$class, " blur") return(tag) } }
library("Mercator") data("CML500") CML500 <- removeDuplicateFeatures(CML500) vis1 <- Mercator(CML500, "jacc", "mds", K=8) vis2 <- Mercator(CML500, "sokal", "mds", K=8) vis3 <- remapColors(vis1, vis2) plot(vis1) plot(vis2) plot(vis3) A <- getClusters(vis2) B <- getClusters(vis3) table(A, B) X <- getClusters(vis1) table(A, X) table(B, X) library(cluster) clus <- pam(vis1@distance, k = 12, diss=TRUE, cluster.only=TRUE) vis4 <- setClusters(vis1, clus) plot(vis4) slot(vis4, "palette") <- c("red", "green", "blue", "cyan", "purple", "black") table(Mercator:::symv(vis4))
extract_mod <- function(result, dim = 1:2){ coord.mod <- result$coord.mod[, dim] rownames(coord.mod) <- result$names.mod coord.mod <- coord.mod[,] colnames(coord.mod) <- c("X", "Y") md <- coord.mod %>% data.frame() %>% tibble::rownames_to_column(var = "Modality") ctr <- result$ctr.mod[, dim] md$ctr.x <- ctr[, 1] md$ctr.y <- ctr[, 2] md$ctr <- rowSums(ctr) / 2 md$ctr.set <- (apply(ctr, 2, function(x) x >= mean(x)) %>% rowSums()) > 0 md$Frequency <- result$freq.mod md$Variable <- result$variable md } extract_sup <- function(result, dim = 1:2){ coord.sup <- result$coord.sup[, dim] rownames(coord.sup) <- result$names.sup coord.sup <- coord.sup[,] colnames(coord.sup) <- c("X", "Y") md <- coord.sup %>% data.frame() %>% rownames_to_column(var = "Modality") md$Frequency <- result$freq.sup md$Variable <- result$variable.sup md } extract_ind <- function(result, dim = 1:2){ coord.ind <- result$coord.ind[, dim] rownames(coord.ind) <- result$names.ind coord.ind <- coord.ind[,] colnames(coord.ind) <- c("X", "Y") md <- coord.ind %>% data.frame() %>% rownames_to_column(var = "Individual") ctr <- result$ctr.ind[, dim] md$ctr.x <- ctr[, 1] md$ctr.y <- ctr[, 2] md$ctr <- rowSums(ctr) / 2 md$ctr.set <- (apply(ctr, 2, function(x) x >= mean(x)) %>% rowSums()) > 0 md } map.ca.base <- function(up = NULL, down = NULL, right = NULL, left = NULL, ...){ breaks.major <- seq(-100, 100, by = 0.25) labels <- breaks.major labels[c(FALSE, TRUE)] <- "" p <- ggplot(...) + geom_vline(xintercept = 0, size = 0.2) + geom_hline(yintercept = 0, size = 0.2) p <- p + scale_x_continuous(sec.axis = sec_axis(~.*1, name = up, breaks = breaks.major, labels = labels), name = down, breaks = breaks.major, labels = labels) p <- p + scale_y_continuous(sec.axis = sec_axis(~.*1, name = right, breaks = breaks.major, labels = labels), name = left, breaks = breaks.major, labels = labels) p <- p + theme(axis.title.y.left = element_text(size = 16), axis.title.y.right = element_text(size = 16)) p <- p + theme(axis.title.x.top = element_text(size = 16), axis.title.x.bottom = element_text(size = 16)) theme_ca_base <- function (base_size = 15, base_family = "serif", ticks = TRUE) { ret <- theme_bw(base_family = base_family, base_size = base_size) + theme(legend.background = element_blank(), legend.key = element_blank(), panel.background = element_blank(), panel.border = element_blank(), strip.background = element_blank(), plot.background = element_blank(), axis.line = element_blank(), panel.grid = element_blank()) if (!ticks) { ret <- ret + theme(axis.ticks = element_blank()) } ret } p <- p + theme_ca_base() p <- p + scale_size_continuous(range = c(0.1, 2)) p <- p + theme(legend.position = "bottom") p }
appendGen <- function(ped, M, AF=c(), mut.rate=0) { if(!identical(as.integer(ped[,1]), 1:nrow(ped))) stop("!identical(as.integer(ped[,1]), 1:nrow(ped)); Please consider renumberring the pedigree: ped[,1:3] <- ggroups::renum(ped[,1:3])$newped") stopifnot(nrow(M) < nrow(ped)) if(nrow(M)==0) stop("The genotype matrix is empty. Please use function simulateGen.") colnames(ped) = c("ID","SIRE","DAM") if(length(AF)==0) { AF = colMeans(M) } else { stopifnot(min(AF)>=0.01) stopifnot(max(AF)<=0.99) } if(!identical(mut.rate, 0)) { stopifnot(length(AF)==length(mut.rate)) stopifnot(min(mut.rate)>=0) if(length(mut.rate[mut.rate > 10^-6])) { warning("Found ", length(mut.rate[mut.rate > 10^-6]), " markers with mutation rate > 10^-6") warning("Maximum mutation rate = ", max(mut.rate)) } } else { message("No mutation was simulated.") } tmp = c() SNPs = 1:length(AF) for(i in (nrow(M)+1):nrow(ped)) { s = ped$SIRE[i] d = ped$DAM[i] tmp = c() if(s==0 & d==0) { for(j in SNPs) tmp = c(tmp, sample(0:2, 1, prob=c((1-AF[j])^2, 2*(1-AF[j])*AF[j], AF[j]^2))) } else if(s>0 & d==0) { for(j in SNPs) tmp = c(tmp, sample(0:1, 1, prob=c(1-AF[j], AF[j]))) tmp = tmp+makegamete(M[s,]) } else if(s==0 & d>0) { for(j in SNPs) tmp = c(tmp, sample(0:1, 1, prob=c(1-AF[j], AF[j]))) tmp = tmp+makegamete(M[d,]) } else { tmp = makegamete(M[s,])+makegamete(M[d,]) } if(!identical(mut.rate, 0)) tmp = mutate(tmp, mut.rate) M = rbind(M, tmp) rownames(M) = NULL } return(M) }
test_that("get_outcome_type works", { expect_equal(get_outcome_type(c(1, 2, 1)), "continuous") expect_equal(get_outcome_type(c("a", "b", "b")), "binary") expect_equal(get_outcome_type(c("a", "b", "c")), "multiclass") }) test_that("get_outcome_type errors when num_outcomes < 2", { error_msg <- "A continuous, binary, or multi-class outcome variable is required, but this dataset has " expect_error( get_outcome_type(c(1, 1)), error_msg ) expect_error( get_outcome_type(c("a", "a", "a")), error_msg ) expect_error( get_outcome_type(c()), error_msg ) }) test_that("get_perf_metric_fn works", { expect_equal(get_perf_metric_fn("continuous"), caret::defaultSummary) expect_equal(get_perf_metric_fn("binary"), caret::multiClassSummary) expect_equal(get_perf_metric_fn("multiclass"), caret::multiClassSummary) expect_error(get_perf_metric_fn("asdf"), "Outcome type of outcome must be one of:") }) test_that("get_perf_metric_name works", { expect_equal(get_perf_metric_name("continuous"), "RMSE") expect_equal(get_perf_metric_name("binary"), "AUC") expect_equal(get_perf_metric_name("multiclass"), "logLoss") expect_error(get_perf_metric_name("asdf"), "Outcome type of outcome must be one of:") }) test_that("calc_perf_metrics works", { expect_equal( calc_perf_metrics(otu_mini_bin_results_glmnet$test_data, otu_mini_bin_results_glmnet$trained_model, "dx", caret::multiClassSummary, class_probs = TRUE ), unlist(c(otu_mini_bin_results_glmnet$performance[, !(colnames(otu_mini_bin_results_glmnet$performance) %in% c("cv_metric_AUC", "method", "seed"))])) ) }) test_that("get_performance_tbl works", { set.seed(2019) expect_equal( get_performance_tbl( otu_mini_bin_results_glmnet$trained_model, otu_mini_bin_results_glmnet$test_data, "dx", caret::multiClassSummary, "AUC", TRUE, "glmnet", seed = 2019 ), otu_mini_bin_results_glmnet$performance ) expect_warning(get_performance_tbl( otu_mini_bin_results_glmnet$trained_model, otu_mini_bin_results_glmnet$test_data, "dx", caret::multiClassSummary, "not_a_perf_metric", TRUE, "glmnet", seed = 2019 ), "The performance metric provided does not match the metric used to train the data.") })
library(knotR) filename <- "reefknot.svg" a <- reader(filename) Mhor <- matrix(c( 17,1, 16,2, 18,32, 15,3, 19,31, 24,26, 23,27, 14,4, 22,28, 13,5, 22,28, 12,6, 21,29, 11,7, 20,30, 10,8, 19,31, 18,32 ),ncol=2,byrow=TRUE) Mver <- matrix(c( 16,18, 23,11, 22,12, 24,10, 15,19, 3,31, 14,20, 13,21, 3,31, 25,9, 4,30, 5,29, 26,8, 27,7, 28,6, 2,32 ),ncol=2,byrow=TRUE) xver <- c(1,17) xhor <- c(25,9) symobjreef <- symmetry_object(a, Mver=Mver,Mhor=Mhor,xver=xver, xhor=xhor,reefknot=TRUE) a <- symmetrize(a,symobjreef) oureef <- matrix(c( 20, 10, 13, 22, 25, 15, 26, 04, 06, 29, 31, 09 ),ncol=2,byrow=TRUE) jj <- knotoptim(filename, symobj = symobjreef, ou = oureef, prob = 0, iterlim=1000, print.level=2 ) write_svg(jj,filename,safe=FALSE) dput(jj,file=sub('.svg','.S',filename))
rxodeTest({ test_that("Parallel solve vs single vs for", { TV_CLr <- 6.54 TV_CLnr <- 2.39 TV_Vc <- 95.1 TV_alag <- 0.145 TV_D <- 0.512 TV_Q <- 2.1 TV_Vp <- 23.3 OM_D_normal <- log((128/100)^2+1) D_trans <- 0.0819 OM_CLr <- log((36.2/100)^2+1) OM_CLnr <- log((43.6/100)^2+1) OM_Vc <- log((14.4/100)^2+1) OM_Q <- log((15.1/100)^2+1) OM_Vp <- log((37.6/100)^2+1) OM_CLr_CLnr <- 0.101 OM_CLr_Vc <- 0.0066 rwishart <- function(df, p = nrow(SqrtSigma), Sigma, SqrtSigma = diag(p)) { if (!missing(Sigma)) { tmp <- svd(Sigma) SqrtSigma <- sqrt(tmp$d) * t(tmp$u) } if ((Ident <- missing(SqrtSigma)) && missing(p)) stop("either p, Sigma or SqrtSigma must be specified") Z <- matrix(0, p, p) diag(Z) <- sqrt(rchisq(p, df:(df - p + 1))) if (p > 1) { pseq <- 1:(p - 1) Z[rep(p * pseq, pseq) + unlist(lapply(pseq, seq))] <- rnorm(p * (p - 1)/2) } if (Ident) crossprod(Z) else crossprod(Z %*% SqrtSigma) } sample.etas <- function(df, R, n) { R.inv = solve(df*R) R0 = chol(.5*(R.inv+t(R.inv))) R1 = solve(rwishart(df, SqrtSigma=R0)) eta = rxRmvn(n = n, mu= rep(0, nrow(R)), sigma= .5*(R1+t(R1))) eta } set.seed(100) nsubj <- 200 n.pts.pk <- 300 eta_CLr_CLnr_Vc <- as.data.frame(sample.etas(df = n.pts.pk, R = lotri({eta_CLr + eta_CLnr + eta_Vc ~ c(OM_CLr, OM_CLr_CLnr, OM_CLnr, OM_CLr_Vc, 0, OM_Vc) }), n = nsubj)) eta_D_trans <- data.frame(eta_D_normal = rnorm(mean=0,sd=sqrt(OM_D_normal),n=nsubj)) %>% dplyr::mutate(eta_D = ((exp(eta_D_normal))^D_trans-1)/D_trans) par.pk <- data.frame(sim.id = seq(nsubj), D = TV_D * exp(eta_D_trans$eta_D), CLr = TV_CLr * exp(eta_CLr_CLnr_Vc$eta_CLr), CLnr = TV_CLnr * exp(eta_CLr_CLnr_Vc$eta_CLnr), Vc = TV_Vc * exp(eta_CLr_CLnr_Vc$eta_Vc), Vp = TV_Vp * exp(rnorm(nsubj, 0, sqrt(OM_Vp))), Q = TV_Q * exp(rnorm(nsubj, 0, sqrt(OM_Q))), alag = TV_alag) mod <- RxODE({ CL <- CLr+CLnr C2 <- central/Vc*1000 all<- central+periph+output d/dt(central) <- - CL/Vc*central - Q/Vc*central + Q/Vp*periph d/dt(periph) <- Q/Vc*central - Q/Vp*periph d/dt(output) <- CL/Vc*central alag(central) <- alag dur(central) <- D }) ev <- et(amt=2,cmt="central",rate=-2,ii=24,addl=4) %>% et(seq(0,120,0.1)) bar2x <- rxSolve(mod, ev, params=par.pk, cores=2L, returnType="data.frame") bar1x <- rxSolve(mod, ev, params=par.pk, cores=1L, returnType="data.frame") expect_equal(bar1x, bar2x) bar3x <- rxSolve(mod, ev, params=par.pk) res.all = NULL for (id in seq(nsubj)) { ev.new <- eventTable() %>% add.dosing(dose = 2, nbr.doses = 5, dosing.interval = 24, dur = par.pk$D[par.pk$sim.id == id]) %>% add.sampling(seq(0,120,0.1)) theta <- c(CLr = par.pk$CLr[par.pk$sim.id == id], CLnr = par.pk$CLnr[par.pk$sim.id == id], Vc = par.pk$Vc[par.pk$sim.id == id], Q = par.pk$Q[par.pk$sim.id == id], Vp = par.pk$Vp[par.pk$sim.id == id], alag = par.pk$alag[par.pk$sim.id == id], D = par.pk$D[par.pk$sim.id == id]) res.id = data.frame(sim.id=id, rxSolve(mod, theta, ev.new, returnType="data.frame")) expect_equal(theta, unlist(bar3x$params[bar3x$params$sim.id == id, -1])) row.names(res.id) <- NULL res2 <- as.data.frame(bar3x[bar3x$sim.id == id,]) row.names(res2) <- NULL expect_equal(res.id, res2) res.all = rbind(res.all, res.id) } expect_equal(bar2x, res.all) }) }, test="lvl2")
IRT.data <- function(object, ...) { UseMethod("IRT.data") } IRT.data.din <- function( object, ... ){ dat <- object$dat attr(dat,"weights") <- object$control$weights attr(dat,"group") <- object$control$group return(dat) } IRT.data.gdina <- IRT.data.din IRT.data.gdm <- IRT.data.din IRT.data.mcdina <- IRT.data.din IRT.data.slca <- IRT.data.din IRT.data.reglca <- function( object, ... ) { dat <- object$dat0 attr(dat,"weights") <- object$weights attr(dat,"group") <- NULL return(dat) }
NULL iot <- function(config = list()) { svc <- .iot$operations svc <- set_config(svc, config) return(svc) } .iot <- list() .iot$operations <- list() .iot$metadata <- list( service_name = "iot", endpoints = list("*" = list(endpoint = "iot.{region}.amazonaws.com", global = FALSE), "cn-*" = list(endpoint = "iot.{region}.amazonaws.com.cn", global = FALSE), "us-iso-*" = list(endpoint = "iot.{region}.c2s.ic.gov", global = FALSE), "us-isob-*" = list(endpoint = "iot.{region}.sc2s.sgov.gov", global = FALSE)), service_id = "IoT", api_version = "2015-05-28", signing_name = "execute-api", json_version = "", target_prefix = "" ) .iot$service <- function(config = list()) { handlers <- new_handlers("restjson", "v4") new_service(.iot$metadata, handlers, config) }
cat(switch(Sys.info()[['sysname']], Windows='.win', Linux='', Darwin='.macos'))
NPtest<-function(obj, n=NULL, method="T1", ...){ dots<-as.list(substitute(list(...)))[-1] nn<-names(dots) for (i in seq(along=dots)) assign(nn[i],dots[[i]]) if(!exists("burn_in", inherits = FALSE)) burn_in <- 256 if(!("step" %in% nn)) step<-32 if(!exists("seed", inherits = FALSE)) seed<-0 if(is.null(n)) n <- 500 if(is.matrix(obj) || is.data.frame(obj)){ if (!all(obj %in% 0:1)) stop("Data matrix must be binary, NAs not allowed") itscor<-colSums(obj) itcol<-(itscor==0|itscor==nrow(obj)) if (any(itcol)){ cat("The following columns in the data show complete 0/full responses: \n") cat((1:ncol(obj))[itcol],sep=", ") cat("\n") stop("NPtest using these items is meaningless. Delete them first!") } obj<-rsampler(obj,rsctrl(burn_in=burn_in, n_eff=n, step=step, seed=seed)) } else if(class(obj)!="RSmpl"){ stop("Input object must be data matrix/data frame or output from RaschSampler") } if(exists("RSinfo", inherits = FALSE)) if(get("RSinfo")) summary(obj) switch(method, "T1" = T1(obj, ...), "T1l" = T1l(obj, ...), "T1m" = T1m(obj, ...), "Tmd" = Tmd(obj, ...), "T2" = T2(obj, ...), "T2m" = T2m(obj, ...), "T4" = T4(obj, ...), "T10" = T10(obj, ...), "T11" = T11(obj, ...), "Tpbis" = Tpbis(obj, ...), "MLoef" = MLoef.x(obj, ...), "Q3h" = Q3h(obj, ...), "Q3l" = Q3l(obj, ...) ) } MLoef.x<-function(rsobj, splitcr=NULL, ...){ MLexact<-function(X,splitcr){ rmod<-RM(X) LR<-MLoef(rmod,splitcr)$LR LR } if(is.null(splitcr)) splitcr="median" res <- rstats(rsextrobj(rsobj, 2), MLexact, splitcr) rmod<-RM(rsextrmat(rsobj,1)) MLres<-MLoef(rmod,splitcr) class(MLres)<-c(class(MLres),"MLx") res1<-MLres$LR n_eff<-rsobj$n_eff res<-unlist(res) prop<-sum((res[1:n_eff]>=res1)/n_eff) result<-list(MLres=MLres, n_eff=n_eff, prop=prop, MLoefvec=res) class(result)<-"MLobj" result } Tpbis <- function(rsobj, idxt=NULL, idxs=NULL, ...){ Tpbis.stat <- function(x){ rb <- rowSums(x[, idxs, drop = FALSE]) t <- x[, idxt] r <- tapply(rb, t, sum, simplify = FALSE) n1 <- sum(t) n0 <- sum(1 - t) return(n0 * r[[2L]][1L] - n1*r[[1L]][1L]) } if(is.null(idxs)) stop("No item(s) for subscale specified (use idxs!)") if(is.null(idxt)) stop("No test item for testing against subscale specified (use idx!)") li1 <- length(idxt) li2 <- length(idxs) k <- rsobj$k if(li1 > 1L ||li2 >= k || (li1 + li2) > k || any(idxt %in% idxs) || any(c(idxt,idxs) > k)){ stop("Subscale and/or test item incorrectly specified.") } n_eff <- rsobj$n_eff n_tot <- rsobj$n_tot res <- rstats(rsobj, Tpbis.stat) corrvec <- do.call(cbind, lapply(res, as.vector)) prop <- sum(corrvec[2L:(n_tot)] <= corrvec[1L]) / n_eff result <- list("n_eff" = n_eff, "prop" = prop, "idxt" = idxt, "idxs" = idxs, "Tpbisvec" = corrvec) class(result)<-"Tpbisobj" return(result) } Tmd<-function(rsobj, idx1=NULL, idx2=NULL, ...){ Tmd.stat<-function(x){ r1<-rowSums(x[,idx1, drop=FALSE]) r2<-rowSums(x[,idx2, drop=FALSE]) corr<-cor(r1,r2) corr } if(is.null(idx1)) stop("No item(s) for subscale 1 specified (use idx1!)") if(is.null(idx2)) stop("No item(s) for subscale 2 specified (use idx2!)") li1<-length(idx1) li2<-length(idx2) k<-rsobj$k if(li1>=k ||li2>=k || li1+li2>k || any(idx1 %in% idx2)) stop("Subscale(s) incorrectly specified.") n_eff<-rsobj$n_eff n_tot<-rsobj$n_tot res<-rstats(rsobj,Tmd.stat) corrvec<-do.call(cbind, lapply(res,as.vector)) prop<-sum(corrvec[2:(n_tot)]<=corrvec[1])/n_eff result<-list(n_eff=n_eff, prop=prop, idx1=idx1, idx2=idx2, Tmdvec=corrvec) class(result)<-"Tmdobj" result } T1m<-function(rsobj, ...){ T1mstat<-function(x){ unlist(lapply(1:(k-1),function(i) lapply((i+1):k, function(j) sum(x[,i]==x[,j])))) } n_eff<-rsobj$n_eff n_tot<-rsobj$n_tot k<-rsobj$k res<-rstats(rsobj,T1mstat) res<-do.call(cbind, lapply(res,as.vector)) T1mvec<-apply(res, 1, function(x) sum(x[2:(n_tot)]<=x[1])/n_eff) T1mmat<-matrix(,k,k) T1mmat[lower.tri(T1mmat)] <- T1mvec result<-list(n_eff=n_eff, prop=T1mvec, T1mmat=T1mmat) class(result)<-"T1mobj" result } T1<-function(rsobj, ...){ T1stat<-function(x){ unlist(lapply(1:(k-1),function(i) lapply((i+1):k, function(j) sum(x[,i]==x[,j])))) } n_eff<-rsobj$n_eff n_tot<-rsobj$n_tot k<-rsobj$k res<-rstats(rsobj,T1stat) res<-do.call(cbind, lapply(res,as.vector)) T1vec<-apply(res, 1, function(x) sum(x[2:(n_tot)]>=x[1])/n_eff) T1mat<-matrix(,k,k) T1mat[lower.tri(T1mat)] <- T1vec result<-list(n_eff=n_eff, prop=T1vec, T1mat=T1mat) class(result)<-"T1obj" result } T1l<-function(rsobj, ...){ T1lstat<-function(x){ unlist(lapply(1:(k-1),function(i) lapply((i+1):k, function(j) sum(x[,i] & x[,j])))) } n_eff<-rsobj$n_eff n_tot<-rsobj$n_tot k<-rsobj$k res<-rstats(rsobj,T1lstat) res<-do.call(cbind, lapply(res,as.vector)) T1lvec<-apply(res, 1, function(x) sum(x[2:(n_tot)]>=x[1])/n_eff) T1lmat<-matrix(,k,k) T1lmat[lower.tri(T1lmat)] <- T1lvec result<-list(n_eff=n_eff, prop=T1lvec, T1lmat=T1lmat) class(result)<-"T1lobj" result } T2<-function(rsobj,idx=NULL,stat="var", ...){ T2.Var.stat<-function(x){ var(rowSums(x[,idx, drop=FALSE])) } T2.MAD1.stat<-function(x){ y<-rowSums(x[,idx, drop=FALSE]) mean(abs(y-mean(y))) } T2.MAD2.stat<-function(x){ mad(rowSums(x[,idx, drop=FALSE]),constant=1) } T2.Range.stat<-function(x){ diff(range(rowSums(x[,idx, drop=FALSE]))) } n<-rsobj$n n_eff<-rsobj$n_eff k<-rsobj$k if(is.null(idx)) stop("No item(s) for subscale specified (use idx!)") res<-switch(stat, "var"=rstats(rsobj,T2.Var.stat), "mad1"=rstats(rsobj,T2.MAD1.stat), "mad2"=rstats(rsobj,T2.MAD2.stat), "range"=rstats(rsobj,T2.Range.stat), stop("stat must be one of \"var\", \"mad1\", \"mad2\", \"range\"") ) res<-unlist(res) prop<-sum(res[2:(n_eff+1)]>=res[1])/n_eff result<-list(n_eff=n_eff, prop=prop, idx=idx, stat=stat, T2vec=res) class(result)<-"T2obj" result } T2m<-function(rsobj,idx=NULL,stat="var", ...){ T2m.Var.stat<-function(x){ var(rowSums(x[,idx, drop=FALSE])) } T2m.MAD1.stat<-function(x){ y<-rowSums(x[,idx, drop=FALSE]) mean(abs(y-mean(y))) } T2m.MAD2.stat<-function(x){ mad(rowSums(x[,idx, drop=FALSE]),constant=1) } T2m.Range.stat<-function(x){ diff(range(rowSums(x[,idx, drop=FALSE]))) } n<-rsobj$n n_eff<-rsobj$n_eff k<-rsobj$k if(is.null(idx)) stop("No item(s) for subscale specified (use idx!)") res<-switch(stat, "var"=rstats(rsobj,T2m.Var.stat), "mad1"=rstats(rsobj,T2m.MAD1.stat), "mad2"=rstats(rsobj,T2m.MAD2.stat), "range"=rstats(rsobj,T2m.Range.stat), stop("stat must be one of \"var\", \"mad1\", \"mad2\", \"range\"") ) res<-unlist(res) prop<-sum(res[2:(n_eff+1)]<=res[1])/n_eff result<-list(n_eff=n_eff, prop=prop, idx=idx, stat=stat, T2mvec=res) class(result)<-"T2mobj" result } T4<-function(rsobj,idx=NULL,group=NULL,alternative="high", ...){ T4.stat<-function(x){ sign*sum(rowSums(x[gr,idx,drop=FALSE])) } n_eff<-rsobj$n_eff n_tot<-rsobj$n_tot k<-rsobj$k if(is.null(idx)) stop("No item(s) for subscale specified (use idx!)") if(length(idx)==k) stop("Subscale containing all items gives meaningless results for T4.") if(is.null(group)) stop("No group specified (use group!)") if(!is.logical(group)) stop("group must be of type \"logical\" (e.g., group = (age==1) )") if(alternative=="high") sign <- 1 else if(alternative=="low") sign <- -1 else stop("alternative incorrectly specified! (use either \"high\" or \"low\")") gr<-as.logical(group) res<-rstats(rsobj,T4.stat) res<-unlist(res) prop<-sum(res[2:(n_tot)]>=res[1])/n_eff gr.nam <- deparse(substitute(group)) gr.n <- sum(group) result<-list(n_eff=n_eff, prop=prop, idx=idx, gr.nam=gr.nam, gr.n=gr.n, T4vec=res, alternative=alternative) class(result)<-"T4obj" result } T10<-function(rsobj, splitcr="median", ...){ calc.groups<-function(x,splitcr){ if (length(splitcr) > 1) { if (length(splitcr) != nrow(x)) { stop("Mismatch between length of split vector and number of persons!") } splitcr <- as.factor(splitcr) if (length(levels(splitcr))>2) { stop("Split vector defines more than 2 groups (only two allowed)!") } spl.lev <- levels(splitcr) hi <- splitcr==spl.lev[1] } else if (!is.numeric(splitcr)) { spl.nam <- splitcr if (splitcr == "median") { spl.gr <- c("Raw Scores <= Median", "Raw Scores > Median") rv <- rowSums(x) rvsplit <- median(rv) hi <- rv > rvsplit } if (splitcr == "mean") { spl.gr <- c("Raw Scores < Mean", "Raw Scores >= Mean") rv <- rowSums(x) rvsplit <- mean(rv) hi <- rv > rvsplit } } list(hi=hi,spl.nam=spl.nam) } T10.stat<-function(x){ nij.hi<-unlist(lapply(1:k,function(i) lapply(1:k, function(j) sum(x[hi,i]>x[hi,j])))) nij.low<-unlist(lapply(1:k,function(i) lapply(1:k, function(j) sum(x[!hi,i]>x[!hi,j])))) nji.hi<- unlist(lapply(1:k,function(i) lapply(1:k, function(j) sum(x[hi,i]<x[hi,j])))) nji.low<- unlist(lapply(1:k,function(i) lapply(1:k, function(j) sum(x[!hi,i]<x[!hi,j])))) RET<-sum(abs(nij.hi*nji.low-nij.low*nji.hi)) RET } spl.nam <- deparse(substitute(splitcr)) n_eff<-rsobj$n_eff n_tot<-rsobj$n_tot k<-rsobj$k obj<-rsextrobj(rsobj,1,1) x<-matrix(obj$inpmat,obj$n,obj$k) ans <- calc.groups(x,splitcr) hi<-ans$hi hi.n<-sum(hi) low.n<-sum(!hi) res<-rstats(rsobj,T10.stat) res<-unlist(res) prop<-sum(res[2:(n_eff+1)]>=res[1])/n_eff result<-list(n_eff=n_eff, prop=prop,spl.nam=ans$spl.nam,hi.n=hi.n,low.n=low.n,T10vec=res) class(result)<-"T10obj" result } T11<-function(rsobj, ...){ T11.stat<-function(x){ as.vector(cor(x)) } calc.T11<-function(x){ sum(abs(x-rho)) } n_eff<-rsobj$n_eff n_tot<-rsobj$n_tot k<-rsobj$k res<-rstats(rsobj,T11.stat) cormats <- matrix(unlist(res),nrow=k*k) rho<-apply(cormats[,2:n_tot],1,mean) T11obs<-calc.T11(cormats[,1]) prop<-sum(apply(cormats[, 2:n_tot],2,calc.T11)>=T11obs)/n_eff result<-list(n_eff=n_eff, prop=prop, T11r=cormats[,1], T11rho=rho) class(result)<-"T11obj" result } Q3h<-function(rsobj, ...){ Q3h.stat <- function(x){ as.vector(x) } calcQ3h.stat <- function(x, exp=exp) { i <- ncol(x) mat <- x - exp res <- matrix(nrow=i,ncol=i) for(a in 1:(i-1)) { for(b in (a+1):i) { res[b,a] <- res[a,b] <- -cor(mat[,a],mat[,b]) } } return(res) } n_eff<-rsobj$n_eff n_tot<-rsobj$n_tot k <- rsobj$k n <- rsobj$n res <- rstats(rsobj,Q3h.stat) datmat <- matrix(unlist(res),nrow=k*n) exp <- matrix(apply(datmat, 1, mean), nrow=n, ncol=k) res <- rstats(rsobj, calcQ3h.stat, exp=exp) res<-do.call(cbind, lapply(res,as.vector)) Q3hvec<-apply(res, 1, function(x) sum(x[2:(n_tot)]<x[1])/n_eff) Q3hmat<- matrix(Q3hvec, ncol=k) Q3hmat[upper.tri(Q3hmat)] <- NA Q3hvec <- as.vector(Q3hmat) Q3hvec <- Q3hvec[!is.na(Q3hvec)] result<-list(n_eff=n_eff, prop=Q3hvec, Q3hmat=Q3hmat) class(result)<-"Q3hobj" return(result) } Q3l<-function(rsobj, ...){ Q3l.stat <- function(x){ as.vector(x) } calcQ3l.stat <- function(x, exp=exp) { i <- ncol(x) mat <- x - exp res <- matrix(nrow=i,ncol=i) for(a in 1:(i-1)) { for(b in (a+1):i) { res[b,a] <- res[a,b] <- cor(mat[,a],mat[,b]) } } return(res) } n_eff<-rsobj$n_eff n_tot<-rsobj$n_tot k <- rsobj$k n <- rsobj$n res <- rstats(rsobj,Q3l.stat) datmat <- matrix(unlist(res),nrow=k*n) exp <- matrix(apply(datmat, 1, mean), nrow=n, ncol=k) res <- rstats(rsobj, calcQ3l.stat, exp=exp) res<-do.call(cbind, lapply(res,as.vector)) Q3lvec<-apply(res, 1, function(x) sum(x[2:(n_tot)]<x[1])/n_eff) Q3lmat<- matrix(Q3lvec, ncol=k) Q3lmat[upper.tri(Q3lmat)] <- NA Q3lvec <- as.vector(Q3lmat) Q3lvec <- Q3lvec[!is.na(Q3lvec)] result<-list(n_eff=n_eff, prop=Q3lvec, Q3lmat=Q3lmat) class(result)<-"Q3lobj" return(result) } print.MLobj<-function(x,...){ print(x$MLres) cat("'exact' p-value =", x$prop, " (based on", x$n_eff, "sampled matrices)\n\n") } print.Tmdobj<-function(x,...){ txt1<-"\nNonparametric RM model test: Tmd (Multidimensionality)" writeLines(strwrap(txt1, exdent=4)) cat(" (correlation of subscale person scores)\n") cat("Number of sampled matrices:", x$n_eff,"\n") cat("Subscale 1 - Items:", x$idx1,"\n") cat("Subscale 2 - Items:", x$idx2,"\n") cat("Observed correlation:", x$Tmdvec[1],"\n") cat("one-sided p-value:",x$prop,"\n\n") } print.Tpbisobj<-function(x,...){ txt1<-"\nNonparametric RM model test: Tpbis (discrimination)" writeLines(strwrap(txt1, exdent=4)) cat(" (pointbiserial correlation of test item vs. subscale)\n") cat("Number of sampled matrices:", x$n_eff,"\n") cat("Test Item:", x$idxt,"\n") cat("Subscale - Items:", x$idxs,"\n") cat("one-sided p-value (rpbis too low):",x$prop,"\n\n") } print.T1obj<-function(x,alpha=0.05,...){ txt1<-"\nNonparametric RM model test: T1 (local dependence - increased inter-item correlations)\n" writeLines(strwrap(txt1, exdent=4)) cat(" (counting cases with equal responses on both items)\n") cat("Number of sampled matrices:", x$n_eff,"\n") cat("Number of Item-Pairs tested:", length(x$prop),"\n") cat("Item-Pairs with one-sided p <", alpha,"\n") T1mat<-x$T1mat idx<-which(T1mat<alpha,arr.ind=TRUE) val<-T1mat[which(T1mat<alpha)] names(val)<-apply(idx,1,function(x) paste("(",x[2],",",x[1],")",sep="",collapse="")) if (length(val)>0) print(round(val,digits=3)) else cat("none\n\n") } print.T1mobj<-function(x,alpha=0.05,...){ txT1m<-"\nNonparametric RM model test: T1m (multidimensionality - reduced inter-item correlations)\n" writeLines(strwrap(txT1m, exdent=4)) cat(" (counting cases with equal responses on both items)\n") cat("Number of sampled matrices:", x$n_eff,"\n") cat("Number of Item-Pairs tested:", length(x$prop),"\n") cat("Item-Pairs with one-sided p <", alpha,"\n") T1mmat<-x$T1mmat idx<-which(T1mmat<alpha,arr.ind=TRUE) val<-T1mmat[which(T1mmat<alpha)] names(val)<-apply(idx,1,function(x) paste("(",x[2],",",x[1],")",sep="",collapse="")) if (length(val)>0) print(round(val,digits=3)) else cat("none\n\n") } print.T1lobj<-function(x,alpha=0.05,...){ txt1<-"\nNonparametric RM model test: T1 (learning - based on item pairs)\n" writeLines(strwrap(txt1, exdent=4)) cat(" (counting cases with reponsepattern (1,1) for item pair)\n") cat("Number of sampled matrices:", x$n_eff,"\n") cat("Number of sampled matrices:", x$n_eff,"\n") cat("Number of Item-Pairs tested:", length(x$prop),"\n") cat("Item-Pairs with one-sided p <", alpha,"\n") T1lmat<-x$T1lmat idx<-which(T1lmat<alpha,arr.ind=TRUE) val<-T1lmat[which(T1lmat<alpha)] names(val)<-apply(idx,1,function(x) paste("(",x[2],",",x[1],")",sep="",collapse="")) if (length(val)>0) print(round(val,digits=3)) else cat("none\n\n") } print.T2obj<-function(x,...){ prop<-x$prop idx<-x$idx stat<-x$stat statnam<-switch(stat, "var"="variance", "mad1"="mean absolute deviation", "mad2"="median absolute deviation", "range"="range" ) txt<-"\nNonparametric RM model test: T2 (local dependence - model deviating subscales)\n" writeLines(strwrap(txt, exdent=4)) cat(" (increased dispersion of subscale person rawscores)\n") cat("Number of sampled matrices:", x$n_eff,"\n") cat("Items in subscale:", idx,"\n") cat("Statistic:", statnam,"\n") cat("one-sided p-value:",prop,"\n\n") } print.T2mobj<-function(x,...){ prop<-x$prop idx<-x$idx stat<-x$stat statnam<-switch(stat, "var"="variance", "mad1"="mean absolute deviation", "mad2"="median absolute deviation", "range"="range" ) txt<-"\nNonparametric RM model test: T2m (multidimensionality - model deviating subscales)\n" writeLines(strwrap(txt, exdent=4)) cat(" (decreased dispersion of subscale person rawscores)\n") cat("Number of sampled matrices:", x$n_eff,"\n") cat("Items in subscale:", idx,"\n") cat("Statistic:", statnam,"\n") cat("one-sided p-value:",prop,"\n\n") } print.T4obj<-function(x,...){ prop<-x$prop idx<-x$idx gr.nam<-x$gr.nam gr.n<-x$gr.n alternative<-x$alternative cat("\nNonparametric RM model test: T4 (Group anomalies - DIF)\n") txt<-paste(" (counting", alternative, "raw scores on item(s) for specified group)\n", collapse="") writeLines(strwrap(txt, exdent=4)) cat("Number of sampled matrices:", x$n_eff,"\n") cat("Items in Subscale:", idx,"\n") cat("Group:",gr.nam," n =",gr.n,"\n") cat("one-sided p-value:",prop,"\n\n") } print.T10obj<-function(x,...){ spl.nam<-x$spl.nam prop<-x$prop hi.n<-x$hi.n low.n<-x$low.n txt<-"\nNonparametric RM model test: T10 (global test - subgroup-invariance)\n" writeLines(strwrap(txt, exdent=4)) cat("Number of sampled matrices:", x$n_eff,"\n") cat("Split:",spl.nam,"\n") cat("Group 1: n = ",hi.n," Group 2: n =",low.n,"\n") cat("one-sided p-value:",prop,"\n\n") } print.T11obj<-function(x,...){ prop<-x$prop txt<-"\nNonparametric RM model test: T11 (global test - local dependence)\n" writeLines(strwrap(txt, exdent=4)) txt<-" (sum of deviations between observed and expected inter-item correlations)\n" writeLines(strwrap(txt, exdent=4)) cat("Number of sampled matrices:", x$n_eff,"\n") cat("one-sided p-value:",prop,"\n\n") } print.Q3hobj<-function(x,alpha=0.05,...){ txt1<-"\nNonparametric RM model test: Q3h (local dependence - increased correlation of inter-item residuals)\n" writeLines(strwrap(txt1, exdent=4)) cat("Number of sampled matrices:", x$n_eff,"\n") cat("Number of Item-Pairs tested:", length(x$prop),"\n") cat("Item-Pairs with one-sided p <", alpha,"\n") Q3hmat<-x$Q3hmat idx<-which(Q3hmat<alpha,arr.ind=TRUE) val<-Q3hmat[which(Q3hmat<alpha)] names(val)<-apply(idx,1,function(x) paste("(",x[2],",",x[1],")",sep="",collapse="")) if (length(val)>0) print(round(val,digits=3)) else cat("none\n\n") } print.Q3lobj<-function(x,alpha=0.05,...){ txt1<-"\nNonparametric RM model test: Q3l (local dependence - decreased correlation of inter-item residuals)\n" writeLines(strwrap(txt1, exdent=4)) cat("Number of sampled matrices:", x$n_eff,"\n") cat("Number of Item-Pairs tested:", length(x$prop),"\n") cat("Item-Pairs with one-sided p <", alpha,"\n") Q3lmat<-x$Q3lmat idx<-which(Q3lmat<alpha,arr.ind=TRUE) val<-Q3lmat[which(Q3lmat<alpha)] names(val)<-apply(idx,1,function(x) paste("(",x[2],",",x[1],")",sep="",collapse="")) if (length(val)>0) print(round(val,digits=3)) else cat("none\n\n") }
ifelse_pipe = function(.x, .p, .f1, .f2 = NULL) { switch(.p %>% not%>% sum(1), as_mapper(.f1)(.x), if (.f2 %>% is.null %>% not) as_mapper(.f2)(.x) else .x) } ifelse2_pipe = function(.x, .p1, .p2, .f1, .f2, .f3 = NULL) { switch( .p1 %>% not%>% sum(1), as_mapper(.f1)(.x), switch( .p2 %>% not %>% sum(1), as_mapper(.f2)(.x), if (.f3 %>% is.null %>% not) as_mapper(.f3)(.x) else .x )) } as_matrix <- function(tbl, rownames = NULL, do_check = TRUE) { variable = NULL rownames = enquo(rownames) tbl %>% ifelse_pipe( do_check && tbl %>% ifelse_pipe(!quo_is_null(rownames), ~ .x[, -1], ~ .x) %>% dplyr::summarise_all(class) %>% tidyr::gather(variable, class) %>% pull(class) %>% unique() %>% `%in%`(c("numeric", "integer")) %>% not() %>% any(), ~ { warning("to_matrix says: there are NON-numerical columns, the matrix will NOT be numerical") .x } ) %>% as.data.frame() %>% ifelse_pipe( !quo_is_null(rownames), ~ .x %>% magrittr::set_rownames(tbl %>% pull(!!rownames)) %>% select(-1) ) %>% as.matrix() } error_if_log_transformed <- function(x, .abundance) { m = NULL .abundance = enquo(.abundance) if (x %>% nrow %>% gt(0)) if (x %>% summarise(m = !!.abundance %>% max) %>% pull(m) < 50) stop( "tidyHeatmap says: The input was log transformed, this algorithm requires raw (un-normalised) read counts" ) } parse_formula <- function(fm) { if (attr(terms(fm), "response") == 1) stop("tidyHeatmap says: The .formula must be of the kind \"~ covariates\" ") else as.character(attr(terms(fm), "variables"))[-1] } scale_design = function(df, .formula) { value = sample_idx = `(Intercept)` = NULL df %>% setNames(c("sample_idx", "(Intercept)", parse_formula(.formula))) %>% gather(cov, value,-sample_idx) %>% group_by(cov) %>% mutate(value = ifelse( !grepl("Intercept", cov) & length(union(c(0, 1), value)) != 2, scale(value), value )) %>% ungroup() %>% spread(cov, value) %>% arrange(as.integer(sample_idx)) %>% select(`(Intercept)`, one_of(parse_formula(.formula))) } add_attr = function(var, attribute, name) { attr(var, name) <- attribute var } drop_class = function(var, name) { class(var) <- class(var)[!class(var)%in%name] var } prepend = function (x, values, before = 1) { n <- length(x) stopifnot(before > 0 && before <= n) if (before == 1) { c(values, x) } else { c(x[1:(before - 1)], values, x[before:n]) } } add_class = function(var, name) { class(var) <- prepend(class(var),name) var } get_sample_transcript_counts = function(.data, .sample, .transcript, .abundance){ my_stop = function() { stop(" tidyHeatmap says: The function does not know what your sample, transcript and counts columns are.\n You have to either enter those as symbols (e.g., `sample`), \n or use the funtion create_tt_from_tibble() to pass your column names that will be remembered. ") } if( .sample %>% quo_is_symbol() ) .sample = .sample else if(".sample" %in% (.data %>% attr("parameters") %>% names)) .sample = attr(.data, "parameters")$.sample else my_stop() if( .transcript %>% quo_is_symbol() ) .transcript = .transcript else if(".transcript" %in% (.data %>% attr("parameters") %>% names)) .transcript = attr(.data, "parameters")$.transcript else my_stop() if( .abundance %>% quo_is_symbol() ) .abundance = .abundance else if(".abundance" %in% (.data %>% attr("parameters") %>% names)) .abundance = attr(.data, "parameters")$.abundance else my_stop() list(.sample = .sample, .transcript = .transcript, .abundance = .abundance) } get_sample_counts = function(.data, .sample, .abundance){ my_stop = function() { stop(" tidyHeatmap says: The function does not know what your sample, transcript and counts columns are.\n You have to either enter those as symbols (e.g., `sample`), \n or use the funtion create_tt_from_tibble() to pass your column names that will be remembered. ") } if( .sample %>% quo_is_symbol() ) .sample = .sample else if(".sample" %in% (.data %>% attr("parameters") %>% names)) .sample = attr(.data, "parameters")$.sample else my_stop() if( .abundance %>% quo_is_symbol() ) .abundance = .abundance else if(".abundance" %in% (.data %>% attr("parameters") %>% names)) .abundance = attr(.data, "parameters")$.abundance else my_stop() list(.sample = .sample, .abundance = .abundance) } get_sample_transcript = function(.data, .sample, .transcript){ my_stop = function() { stop(" tidyHeatmap says: The function does not know what your sample, transcript and counts columns are.\n You have to either enter those as symbols (e.g., `sample`), \n or use the funtion create_tt_from_tibble() to pass your column names that will be remembered. ") } if( .sample %>% quo_is_symbol() ) .sample = .sample else if(".sample" %in% (.data %>% attr("parameters") %>% names)) .sample = attr(.data, "parameters")$.sample else my_stop() if( .transcript %>% quo_is_symbol() ) .transcript = .transcript else if(".transcript" %in% (.data %>% attr("parameters") %>% names)) .transcript = attr(.data, "parameters")$.transcript else my_stop() list(.sample = .sample, .transcript = .transcript) } get_elements_features = function(.data, .element, .feature, of_samples = TRUE){ if( .element %>% quo_is_symbol() & .feature %>% quo_is_symbol() ) return(list( .element = .element, .feature = .feature )) else { if(.data %>% attr("parameters") %>% is.null %>% not) return(list( .element = switch( of_samples %>% not %>% sum(1), attr(.data, "parameters")$.sample, attr(.data, "parameters")$.transcript ), .feature = switch( of_samples %>% not %>% sum(1), attr(.data, "parameters")$.transcript, attr(.data, "parameters")$.sample ) )) else stop(" tidyHeatmap says: The function does not know what your elements (e.g., sample) and features (e.g., transcripts) are.\n You have to either enter those as symbols (e.g., `sample`), \n or use the funtion create_tt_from_tibble() to pass your column names that will be remembered. ") } } get_elements_features_abundance = function(.data, .element, .feature, .abundance, of_samples = TRUE){ my_stop = function() { stop(" tidyHeatmap says: The function does not know what your elements (e.g., sample) and features (e.g., transcripts) are.\n You have to either enter those as symbols (e.g., `sample`), \n or use the funtion create_tt_from_tibble() to pass your column names that will be remembered. ") } if( .element %>% quo_is_symbol() ) .element = .element else if(of_samples & ".sample" %in% (.data %>% attr("parameters") %>% names)) .element = attr(.data, "parameters")$.sample else if((!of_samples) & ".transcript" %in% (.data %>% attr("parameters") %>% names)) .element = attr(.data, "parameters")$.transcript else my_stop() if( .feature %>% quo_is_symbol() ) .feature = .feature else if(of_samples & ".transcript" %in% (.data %>% attr("parameters") %>% names)) .feature = attr(.data, "parameters")$.transcript else if((!of_samples) & ".sample" %in% (.data %>% attr("parameters") %>% names)) .feature = attr(.data, "parameters")$.sample else my_stop() if( .abundance %>% quo_is_symbol() ) .abundance = .abundance else if(".abundance" %in% (.data %>% attr("parameters") %>% names)) .abundance = attr(.data, "parameters")$.abundance else my_stop() list(.element = .element, .feature = .feature, .abundance = .abundance) } get_elements = function(.data, .element, of_samples = TRUE){ if( .element %>% quo_is_symbol() ) return(list( .element = .element )) else { if(.data %>% attr("parameters") %>% is.null %>% not) return(list( .element = switch( of_samples %>% not %>% sum(1), attr(.data, "parameters")$.sample, attr(.data, "parameters")$.transcript ) )) else stop(" tidyHeatmap says: The function does not know what your elements (e.g., sample) are.\n You have to either enter those as symbols (e.g., `sample`), \n or use the funtion create_tt_from_tibble() to pass your column names that will be remembered. ") } } get_abundance_norm_if_exists = function(.data, .abundance){ .abundance_norm = NULL if( .abundance %>% quo_is_symbol() ) return(list( .abundance = .abundance )) else { if(.data %>% attr("parameters") %>% is.null %>% not) return(list( .abundance = switch( (".abundance_norm" %in% (.data %>% attr("parameters") %>% names) & quo_name(.data %>% attr("parameters") %$% .abundance_norm) %in% (.data %>% colnames) ) %>% not %>% sum(1), attr(.data, "parameters")$.abundance_norm, attr(.data, "parameters")$.abundance ) )) else stop(" tidyHeatmap says: The function does not know what your elements (e.g., sample) are.\n You have to either enter those as symbols (e.g., `sample`), \n or use the funtion create_tt_from_tibble() to pass your column names that will be remembered. ") } } select_closest_pairs = function(df) { `sample 1` = `sample 2` = NULL couples <- df %>% head(n = 0) while (df %>% nrow() > 0) { pair <- df %>% arrange(dist) %>% head(n = 1) couples <- couples %>% bind_rows(pair) df <- df %>% filter( !`sample 1` %in% (pair %>% select(1:2) %>% as.character()) & !`sample 2` %in% (pair %>% select(1:2) %>% as.character()) ) } couples } get_x_y_annotation_columns = function(.data, .column, .row, .abundance){ . = NULL value = NULL orientation = NULL col_name = NULL .column = enquo(.column) .row = enquo(.row) .abundance = enquo(.abundance) .data %>% select_if(negate(is.list)) %>% ungroup() %>% { bind_rows( (.) %>% subset(!!.column) %>% colnames %>% as_tibble %>% rename(column = value) %>% gather(orientation, col_name), (.) %>% subset(!!.row) %>% colnames %>% as_tibble %>% rename(row = value) %>% gather(orientation, col_name) ) } } ct_colors = function(ct) ct %>% as.character() %>% map_chr( ~ switch( .x, "E" = " "F" = " "M" = " "T" = " ) ) type_to_annot_function = list( "tile" = NULL, "point" = anno_points, "bar" = anno_barplot, "line" = anno_lines ) get_top_left_annotation = function(.data_, .column, .row, .abundance, annotation, palette_annotation, type, x_y_annot_cols, size, ...){ data = NULL fx = NULL annot = NULL annot_type = NULL idx = NULL value = NULL orientation = NULL col_name = NULL col_orientation = NULL .column = enquo(.column) .row = enquo(.row) .abundance = enquo(.abundance) annotation = enquo(annotation) dots_args = rlang::dots_list(...) annotation_function = type_to_annot_function[type] quo_names(annotation) %>% as_tibble %>% rename(col_name = value) %>% when(quo_is_null(annotation) ~ slice(., 0), ~ (.)) %>% left_join(x_y_annot_cols, by = "col_name") %>% mutate(col_orientation = map_chr(orientation, ~ .x %>% when((.) == "column" ~ quo_name(.column), (.) == "row" ~ quo_name(.row)))) %>% mutate( data = map2( col_name, col_orientation, ~ .data_ %>% ungroup() %>% select(.y, .x) %>% distinct() %>% arrange_at(vars(.y)) %>% pull(.x) ) ) %>% mutate(fx = annotation_function) %>% mutate(annot = pmap(list(data, fx, orientation), ~ { fx = ..2 if(is_function(fx) & ..3 == "column") fx(..1, which=..3, height = size) else if(is_function(fx) & ..3 == "row") fx(..1, which=..3, width = size) else .x })) %>% mutate(annot_type = map_chr(annot, ~ .x %>% when(class(.) %in% c("factor", "character", "logical") ~ "discrete", class(.) %in% c("integer", "numerical", "numeric", "double") ~ "continuous", ~ "other" ) )) %>% group_by(annot_type) %>% mutate(idx = row_number()) %>% ungroup() %>% mutate(color = map2(annot, idx, ~ { if(.x %>% class %in% c("factor", "character", "logical")) colorRampPalette(palette_annotation$discrete[[.y]])(length(unique(.x))) %>% setNames(unique(.x)) else if (.x %>% class %in% c("integer", "numerical", "numeric", "double")) colorRampPalette(palette_annotation$continuous[[.y]])(length(.x)) %>% colorRamp2(seq(min(.x), max(.x), length.out = length(.x)), .) else NULL })) %>% mutate(further_arguments = map2( col_name, fx, ~ dots_args %>% when(!is_function(.y) ~ c(., list(simple_anno_size = size)), ~ (.)) )) %>% when( (.) %>% pull(data) %>% map_chr(~ .x %>% class) %in% c("factor", "character") %>% which %>% length %>% gt(palette_annotation$discrete %>% length) ~ stop("tidyHeatmap says: Your discrete annotaton columns are bigger than the palette available"), ~ (.) ) %>% when( (.) %>% pull(data) %>% map_chr(~ .x %>% class) %in% c("int", "dbl", "numeric") %>% which %>% length %>% gt( palette_annotation$continuous %>% length) ~ stop("tidyHeatmap says: Your continuous annotaton columns are bigger than the palette available"), ~ (.) ) } get_group_annotation = function(.data, .column, .row, .abundance, palette_annotation){ data = NULL . = NULL orientation = NULL .column = enquo(.column) .row = enquo(.row) .abundance = enquo(.abundance) top_annotation = list() left_annotation = list() row_split = NULL col_split = NULL col_group = get_grouping_columns(.data) x_y_annot_cols = .data %>% get_x_y_annotation_columns(!!.column,!!.row,!!.abundance) x_y_annotation_cols = x_y_annot_cols %>% nest(data = -orientation) %>% mutate(data = map(data, ~ .x %>% pull(1))) %>% { df = (.) pull(df, data) %>% setNames(pull(df, orientation)) } %>% map( ~ .x %>% intersect(col_group) ) if(x_y_annotation_cols %>% lapply(length) %>% unlist %>% max %>% gt(1)) stop("tidyHeatmap says: At the moment just one grouping per dimension (max 1 row and 1 column) is supported.") if(x_y_annotation_cols %>% unlist() %>% duplicated() %>% any()) stop(sprintf("tidyHeatmap says: the grouping %s is not specific to row or columns. Maybe you just have one grouping.", x_y_annotation_cols %>% unlist() %>% .[x_y_annotation_cols %>% unlist() %>% duplicated()])) if(length(x_y_annotation_cols$row) > 0){ row_split = .data %>% ungroup() %>% distinct(!!.row, !!as.symbol(x_y_annotation_cols$row)) %>% arrange(!!.row) %>% pull(!!as.symbol(x_y_annotation_cols$row)) palette_fill_row = colorRampPalette( palette_annotation[[1]][ 1:min(length(unique(row_split)), length(palette_annotation[[1]])) ])( length(unique(row_split)) ) %>% setNames(unique(row_split)) palette_text_row = if_else(palette_fill_row %in% c(" left_annotation_args = list( ct = anno_block( gp = gpar(fill = palette_fill_row ), labels = row_split %>% unique %>% sort, labels_gp = gpar(col = palette_text_row, fontsize = 8), which = "row", width = unit(9, "pt") ) ) left_annotation = as.list(left_annotation_args) palette_annotation = palette_annotation[-1] } if(length(x_y_annotation_cols$column) > 0){ col_split = .data %>% ungroup() %>% distinct(!!.column, !!as.symbol(x_y_annotation_cols$column)) %>% arrange(!!.column) %>% pull(!!as.symbol(x_y_annotation_cols$column)) palette_fill_column = colorRampPalette( palette_annotation[[1]][ 1:min(length(unique(col_split)), length(palette_annotation[[1]])) ])( length(unique(col_split)) ) %>% setNames(unique(col_split)) palette_text_column = if_else(palette_fill_column %in% c(" top_annotation_args = list( ct = anno_block( gp = gpar(fill = palette_fill_column ), labels = col_split %>% unique %>% sort, labels_gp = gpar(col = palette_text_column, fontsize = 8), which = "column", height = unit(9, "pt") ) ) top_annotation = as.list(top_annotation_args) } list( left_annotation = left_annotation, row_split = row_split, top_annotation = top_annotation, col_split = col_split ) } get_group_annotation_OPTIMISED_NOT_FINISHED = function(.data, .column, .row, .abundance, palette_annotation){ value = NULL col_name = NULL col_orientation = NULL annotation_function = NULL data = NULL . = NULL orientation = NULL .column = enquo(.column) .row = enquo(.row) .abundance = enquo(.abundance) top_annotation = NULL left_annotation = NULL row_split = NULL col_split = NULL col_group = get_grouping_columns(.data) x_y_annot_cols = .data %>% get_x_y_annotation_columns(!!.column,!!.row,!!.abundance) x_y_annotation_cols = x_y_annot_cols %>% nest(data = -orientation) %>% mutate(data = map(data, ~ .x %>% pull(1))) %>% { df = (.) pull(df, data) %>% setNames(pull(df, orientation)) } %>% map( ~ .x %>% intersect(col_group) ) if(x_y_annotation_cols %>% lapply(length) %>% unlist %>% max %>% gt(1)) stop("tidyHeatmap says: At the moment just one grouping per dimension (max 1 row and 1 column) is supported.") col_group %>% as_tibble %>% rename(col_name = value) %>% when(length(col_group)==0 ~ slice(., 0), ~ (.)) %>% left_join(x_y_annot_cols, by = "col_name") %>% mutate(col_orientation = map_chr(orientation, ~ .x %>% when((.) == "column" ~ quo_name(.column), (.) == "row" ~ quo_name(.row)))) %>% mutate( data = map2( col_name, col_orientation, ~ .data_ %>% ungroup() %>% select(.y, .x) %>% distinct() %>% arrange_at(vars(.y)) %>% pull(.x) ) ) %>% mutate(fx = annotation_function) if(length(x_y_annotation_cols$row) > 0){ row_split = .data %>% ungroup() %>% distinct(!!.row, !!as.symbol(x_y_annotation_cols$row)) %>% arrange(!!.row) %>% pull(!!as.symbol(x_y_annotation_cols$row)) palette_fill_row = palette_annotation[[1]][1:length(unique(row_split))] %>% setNames(unique(row_split)) left_annotation_args = list( ct = anno_block( gp = gpar(fill = palette_fill_row ), labels = row_split %>% unique %>% sort, labels_gp = gpar(col = "white"), which = "row" ) ) left_annotation = as.list(left_annotation_args) palette_annotation = palette_annotation[-1] } if(length(x_y_annotation_cols$column) > 0){ col_split = .data %>% ungroup() %>% distinct(!!.column, !!as.symbol(x_y_annotation_cols$column)) %>% arrange(!!.column) %>% pull(!!as.symbol(x_y_annotation_cols$column)) palette_fill_column = palette_annotation[[1]][1:length(unique(col_split))] %>% setNames(unique(col_split)) top_annotation_args = list( ct = anno_block( gp = gpar(fill = palette_fill_column ), labels = col_split %>% unique %>% sort, labels_gp = gpar(col = "white"), which = "column" ) ) top_annotation = as.list(top_annotation_args) } list( left_annotation = left_annotation, row_split = row_split, top_annotation = top_annotation, col_split = col_split ) } get_grouping_columns = function(.data){ .rows = NULL if("groups" %in% (.data %>% attributes %>% names)) .data %>% attr("groups") %>% select(-.rows) %>% colnames() else c() } list_drop_null = function(.data){ .data[!sapply(.data, is.null)] } scale_robust = function(y){ do_consider_df = !is.na(sd(y, na.rm=T)) && as.logical(sd(y, na.rm=T) ) (y - mean(y, na.rm=T)) / ( sd(y, na.rm=T) ^ do_consider_df ) } quo_names <- function(v) { v = quo_name(quo_squash(v)) gsub('^c\\(|`|\\)$', '', v) %>% strsplit(', ') %>% unlist } annot_to_list = function(.data){ col_name = NULL annot = NULL value = NULL my_cells = NULL name = NULL data = NULL .data %>% pull(annot) %>% setNames(.data %>% pull(col_name)) %>% when(length(.) > 0 ~ (.) %>% c( col = list(.data %>% filter(map_lgl(color, ~ .x %>% is.null %>% not)) %>% { setNames( pull(., color), pull(., col_name)) }) ) %>% c( .data %>% pull(further_arguments) %>% combine_elements_with_the_same_name() ), ~ (.)) } list_append = function(.list1, .list2){ .list1 %>% c(.list2) } reduce_to_tbl_if_in_class_chain = function(.obj){ .obj %>% when( "tbl" %in% class(.) ~ drop_class(., class(.)[1:which(class(.) == "tbl")-1] ), ~ (.) ) } gt = function(a, b){ a > b } st = function(a, b){ a < b } not = function(is){ !is } pow = function(a,b){ a^b } combine_elements_with_the_same_name = function(x){ my_class = NULL value = NULL name = NULL data = NULL if(length(unlist(x))==0) return(unlist(x)) else { list_df = map_dfr(x, ~ enframe(.x)) %>% mutate(my_class = map_chr(value, ~class(.x)[[1]])) if( list_df %>% filter(my_class == "simpleUnit") %>% nrow() %>% gt(1) && list_df %>% filter(my_class == "simpleUnit") %>% pull(value) %>% reduce(identical) %>% not() ) warning("tidyHeatmap says: the current backend only allows for one tail annotation size. The latter one will be selected.") list_df = bind_rows( list_df %>% filter(my_class == "simpleUnit") %>% tail(1), list_df %>% filter(my_class != "simpleUnit") ) %>% nest(data = -c(name, my_class)) %>% mutate(vector = map2( data, my_class, ~ { if(.y == "simpleUnit") reduce(.x$value, unit.c) else if(.y == "gpar") combine_lists_with_the_same_name(.x$value) %>% as.list() %>% do.call(gpar, .) else reduce(.x$value, c) } )) list_df %>% pull(vector) %>% setNames(list_df$name) } } combine_lists_with_the_same_name = function(x){ if(length(unlist(x))==0) return(unlist(x)) else { x = unlist(x) tapply(unlist(x, use.names = FALSE), rep(names(x), lengths(x)), FUN = c) } }
relmse <- function(forecast, forecastbench, true) { if (length(forecast) != length(true)) stop("RelMAE: the lengths of input vectors must be the same.") ferror = mean((true - forecast)^2) ferrorbench = mean((true - forecastbench)^2) relativerror = ferror / ferrorbench return(round(relativerror, 6)) }
library(paletteer) i <- 1 pal_viz <- function() { name <- paste(palettes_d_names[i, ]$package, palettes_d_names[i, ]$palette, sep = "::") plot( paletteer_d( name ) ) title(name) i <<- i + 1 } palettes_d_names <- tibble::tribble( ~package, ~palette, ~length, ~type, ~novelty, "awtools", "a_palette", 8L, "sequential", TRUE, "awtools", "ppalette", 8L, "qualitative", TRUE, "awtools", "bpalette", 16L, "qualitative", TRUE, "awtools", "gpalette", 4L, "sequential", TRUE, "awtools", "mpalette", 9L, "qualitative", TRUE, "awtools", "spalette", 6L, "qualitative", TRUE, "basetheme", "brutal", 10L, "qualitative", TRUE, "basetheme", "clean", 10L, "qualitative", TRUE, "basetheme", "dark", 10L, "qualitative", TRUE, "basetheme", "deepblue", 10L, "qualitative", TRUE, "basetheme", "ink", 10L, "qualitative", TRUE, "basetheme", "minimal", 10L, "qualitative", TRUE, "basetheme", "royal", 10L, "qualitative", TRUE, "basetheme", "void", 10L, "qualitative", TRUE, "beyonce", "X1", 6L, "divergent", TRUE, "beyonce", "X2", 6L, "sequential", TRUE, "beyonce", "X3", 6L, "sequential", TRUE, "beyonce", "X4", 6L, "qualitative", TRUE, "beyonce", "X5", 6L, "qualitative", TRUE, "beyonce", "X6", 6L, "divergent", TRUE, "beyonce", "X7", 6L, "sequential", TRUE, "beyonce", "X8", 6L, "sequential", TRUE, "beyonce", "X9", 6L, "qualitative", TRUE, "beyonce", "X10", 6L, "divergent", TRUE, "beyonce", "X11", 6L, "qualitative", TRUE, "beyonce", "X12", 6L, "qualitative", TRUE, "beyonce", "X13", 6L, "qualitative", TRUE, "beyonce", "X14", 6L, "qualitative", TRUE, "beyonce", "X15", 6L, "qualitative", TRUE, "beyonce", "X16", 6L, "sequential", TRUE, "beyonce", "X17", 6L, "qualitative", TRUE, "beyonce", "X18", 6L, "qualitative", TRUE, "beyonce", "X19", 6L, "qualitative", TRUE, "beyonce", "X20", 6L, "qualitative", TRUE, "beyonce", "X21", 6L, "qualitative", TRUE, "beyonce", "X22", 6L, "qualitative", TRUE, "beyonce", "X23", 6L, "sequential", TRUE, "beyonce", "X24", 4L, "sequential", TRUE, "beyonce", "X25", 6L, "qualitative", TRUE, "beyonce", "X26", 6L, "sequential", TRUE, "beyonce", "X27", 6L, "qualitative", TRUE, "beyonce", "X28", 6L, "sequential", TRUE, "beyonce", "X29", 6L, "qualitative", TRUE, "beyonce", "X30", 6L, "qualitative", TRUE, "beyonce", "X31", 6L, "qualitative", TRUE, "beyonce", "X32", 6L, "qualitative", TRUE, "beyonce", "X33", 6L, "qualitative", TRUE, "beyonce", "X34", 6L, "divergent", TRUE, "beyonce", "X35", 6L, "qualitative", TRUE, "beyonce", "X36", 6L, "qualitative", TRUE, "beyonce", "X37", 6L, "qualitative", TRUE, "beyonce", "X38", 6L, "qualitative", TRUE, "beyonce", "X39", 6L, "divergent", TRUE, "beyonce", "X40", 8L, "qualitative", TRUE, "beyonce", "X41", 5L, "sequential", TRUE, "beyonce", "X42", 6L, "qualitative", TRUE, "beyonce", "X43", 6L, "qualitative", TRUE, "beyonce", "X44", 6L, "qualitative", TRUE, "beyonce", "X45", 6L, "qualitative", TRUE, "beyonce", "X46", 6L, "divergent", TRUE, "beyonce", "X47", 6L, "divergent", TRUE, "beyonce", "X48", 6L, "qualitative", TRUE, "beyonce", "X49", 6L, "qualitative", TRUE, "beyonce", "X50", 6L, "sequential", TRUE, "beyonce", "X51", 6L, "divergent", TRUE, "beyonce", "X52", 6L, "sequential", TRUE, "beyonce", "X53", 6L, "qualitative", TRUE, "beyonce", "X54", 6L, "sequential", TRUE, "beyonce", "X55", 7L, "sequential", TRUE, "beyonce", "X56", 6L, "qualitative", TRUE, "beyonce", "X57", 9L, "qualitative", TRUE, "beyonce", "X58", 6L, "sequential", TRUE, "beyonce", "X59", 9L, "sequential", TRUE, "beyonce", "X60", 9L, "qualitative", TRUE, "beyonce", "X61", 15L, "qualitative", TRUE, "beyonce", "X62", 23L, "qualitative", TRUE, "beyonce", "X63", 11L, "qualitative", TRUE, "beyonce", "X64", 11L, "qualitative", TRUE, "beyonce", "X65", 13L, "qualitative", TRUE, "beyonce", "X66", 11L, "qualitative", TRUE, "beyonce", "X67", 11L, "qualitative", TRUE, "beyonce", "X68", 11L, "qualitative", TRUE, "beyonce", "X69", 11L, "qualitative", TRUE, "beyonce", "X70", 11L, "qualitative", TRUE, "beyonce", "X71", 17L, "qualitative", TRUE, "beyonce", "X72", 12L, "qualitative", TRUE, "beyonce", "X73", 14L, "qualitative", TRUE, "beyonce", "X74", 11L, "qualitative", TRUE, "beyonce", "X75", 11L, "qualitative", TRUE, "beyonce", "X76", 20L, "qualitative", TRUE, "beyonce", "X77", 11L, "qualitative", TRUE, "beyonce", "X78", 4L, "qualitative", TRUE, "beyonce", "X79", 11L, "qualitative", TRUE, "beyonce", "X80", 11L, "qualitative", TRUE, "beyonce", "X81", 10L, "qualitative", TRUE, "beyonce", "X82", 11L, "qualitative", TRUE, "beyonce", "X83", 11L, "qualitative", TRUE, "beyonce", "X84", 11L, "qualitative", TRUE, "beyonce", "X85", 11L, "sequential", TRUE, "beyonce", "X86", 11L, "sequential", TRUE, "beyonce", "X87", 14L, "sequential", TRUE, "beyonce", "X88", 12L, "qualitative", TRUE, "beyonce", "X89", 11L, "qualitative", TRUE, "beyonce", "X90", 11L, "qualitative", TRUE, "beyonce", "X91", 6L, "qualitative", TRUE, "beyonce", "X92", 8L, "qualitative", TRUE, "beyonce", "X93", 31L, "qualitative", TRUE, "beyonce", "X94", 14L, "qualitative", TRUE, "beyonce", "X95", 20L, "qualitative", TRUE, "beyonce", "X96", 20L, "qualitative", TRUE, "beyonce", "X97", 19L, "qualitative", TRUE, "beyonce", "X98", 16L, "qualitative", TRUE, "beyonce", "X99", 19L, "qualitative", TRUE, "beyonce", "X100", 14L, "qualitative", TRUE, "beyonce", "X101", 6L, "qualitative", TRUE, "beyonce", "X102", 6L, "qualitative", TRUE, "beyonce", "X103", 5L, "sequential", TRUE, "beyonce", "X104", 5L, "qualitative", TRUE, "beyonce", "X105", 6L, "qualitative", TRUE, "beyonce", "X106", 5L, "qualitative", TRUE, "beyonce", "X107", 5L, "qualitative", TRUE, "beyonce", "X108", 7L, "qualitative", TRUE, "beyonce", "X109", 6L, "qualitative", TRUE, "beyonce", "X110", 16L, "qualitative", TRUE, "beyonce", "X111", 15L, "qualitative", TRUE, "beyonce", "X112", 17L, "qualitative", TRUE, "beyonce", "X113", 14L, "qualitative", TRUE, "beyonce", "X114", 18L, "qualitative", TRUE, "beyonce", "X115", 5L, "sequential", TRUE, "beyonce", "X116", 21L, "qualitative", TRUE, "beyonce", "X117", 16L, "qualitative", TRUE, "beyonce", "X118", 10L, "qualitative", TRUE, "beyonce", "X119", 7L, "qualitative", TRUE, "beyonce", "X120", 10L, "qualitative", TRUE, "beyonce", "X121", 6L, "qualitative", TRUE, "beyonce", "X122", 6L, "qualitative", TRUE, "beyonce", "X123", 6L, "qualitative", TRUE, "beyonce", "X124", 6L, "divergent", TRUE, "beyonce", "X125", 7L, "qualitative", TRUE, "beyonce", "X126", 6L, "qualitative", TRUE, "beyonce", "X127", 6L, "qualitative", TRUE, "beyonce", "X128", 6L, "qualitative", TRUE, "beyonce", "X129", 6L, "qualitative", TRUE, "beyonce", "X130", 5L, "qualitative", TRUE, "calecopal", "sierra1", 6L, "qualitative", TRUE, "calecopal", "sierra2", 6L, "qualitative", TRUE, "calecopal", "chaparral1", 6L, "qualitative", TRUE, "calecopal", "chaparral2", 6L, "qualitative", TRUE, "calecopal", "chaparral3", 5L, "sequential", TRUE, "calecopal", "conifer", 5L, "qualitative", TRUE, "calecopal", "desert", 5L, "sequential", TRUE, "calecopal", "wetland", 5L, "qualitative", TRUE, "calecopal", "oak", 5L, "qualitative", TRUE, "calecopal", "kelp1", 6L, "qualitative", TRUE, "calecopal", "kelp2", 5L, "qualitative", TRUE, "calecopal", "coastaldune1", 5L, "qualitative", TRUE, "calecopal", "coastaldune2", 5L, "qualitative", TRUE, "calecopal", "superbloom1", 5L, "qualitative", TRUE, "calecopal", "superbloom2", 5L, "qualitative", TRUE, "calecopal", "superbloom3", 6L, "qualitative", TRUE, "calecopal", "sbchannel", 5L, "sequential", TRUE, "calecopal", "lake", 5L, "qualitative", TRUE, "calecopal", "fire", 5L, "qualitative", TRUE, "calecopal", "agriculture", 5L, "qualitative", TRUE, "calecopal", "bigsur", 6L, "qualitative", TRUE, "calecopal", "figmtn", 9L, "qualitative", TRUE, "calecopal", "caqu", 5L, "qualitative", TRUE, "calecopal", "eschscholzia", 5L, "sequential", TRUE, "calecopal", "arbutus", 5L, "qualitative", TRUE, "calecopal", "calochortus", 5L, "qualitative", TRUE, "calecopal", "grassdry", 5L, "qualitative", TRUE, "calecopal", "grasswet", 6L, "qualitative", TRUE, "calecopal", "sage", 5L, "qualitative", TRUE, "calecopal", "tidepool", 6L, "qualitative", TRUE, "calecopal", "seagrass", 6L, "qualitative", TRUE, "calecopal", "bigsur2", 6L, "qualitative", TRUE, "calecopal", "bixby", 5L, "qualitative", TRUE, "calecopal", "redwood1", 5L, "qualitative", TRUE, "calecopal", "redwood2", 5L, "qualitative", TRUE, "calecopal", "halfdome", 5L, "qualitative", TRUE, "calecopal", "creek", 6L, "qualitative", TRUE, "calecopal", "vermillion", 5L, "qualitative", TRUE, "calecopal", "canary", 5L, "qualitative", TRUE, "calecopal", "casj", 5L, "qualitative", TRUE, "calecopal", "lupinus", 5L, "divergent", TRUE, "calecopal", "dudleya", 5L, "qualitative", TRUE, "calecopal", "gayophytum", 5L, "qualitative", TRUE, "calecopal", "collinsia", 5L, "qualitative", TRUE, "calecopal", "buow", 5L, "qualitative", TRUE, "colorBlindness", "paletteMartin", 15L, "qualitative", FALSE, "colorBlindness", "Blue2DarkOrange12Steps", 12L, "divergent", FALSE, "colorBlindness", "Blue2DarkOrange18Steps", 18L, "divergent", FALSE, "colorBlindness", "Blue2DarkRed12Steps", 12L, "divergent", FALSE, "colorBlindness", "Blue2DarkRed18Steps", 18L, "divergent", FALSE, "colorBlindness", "Blue2Gray8Steps", 8L, "divergent", FALSE, "colorBlindness", "Blue2Green14Steps", 14L, "divergent", FALSE, "colorBlindness", "Blue2Orange10Steps", 10L, "divergent", FALSE, "colorBlindness", "Blue2Orange12Steps", 12L, "divergent", FALSE, "colorBlindness", "Blue2Orange8Steps", 8L, "divergent", FALSE, "colorBlindness", "Blue2OrangeRed14Steps", 14L, "divergent", FALSE, "colorBlindness", "Brown2Blue10Steps", 10L, "divergent", FALSE, "colorBlindness", "Brown2Blue12Steps", 12L, "divergent", FALSE, "colorBlindness", "Green2Magenta16Steps", 16L, "divergent", FALSE, "colorBlindness", "LightBlue2DarkBlue10Steps", 10L, "sequential", FALSE, "colorBlindness", "LightBlue2DarkBlue7Steps", 7L, "sequential", FALSE, "colorBlindness", "ModifiedSpectralScheme11Steps", 11L, "divergent", FALSE, "colorBlindness", "PairedColor12Steps", 12L, "qualitative", FALSE, "colorBlindness", "SteppedSequential5Steps", 25L, "qualitative", FALSE, "colorblindr", "OkabeIto", 8L, "qualitative", FALSE, "colorblindr", "OkabeIto_black", 8L, "qualitative", FALSE, "colRoz", "grandis", 6L, "qualitative", TRUE, "colRoz", "flavolineata", 6L, "qualitative", TRUE, "colRoz", "whitei", 6L, "qualitative", TRUE, "colRoz", "picta", 6L, "qualitative", TRUE, "colRoz", "virgo", 6L, "qualitative", TRUE, "colRoz", "ngadju", 6L, "qualitative", TRUE, "colRoz", "c_decresii", 6L, "qualitative", TRUE, "colRoz", "c_kingii", 5L, "qualitative", TRUE, "colRoz", "e_leuraensis", 5L, "qualitative", TRUE, "colRoz", "i_lesueurii", 5L, "qualitative", TRUE, "colRoz", "l_boydii", 5L, "qualitative", TRUE, "colRoz", "m_horridus", 5L, "qualitative", TRUE, "colRoz", "m_horridus2", 5L, "qualitative", TRUE, "colRoz", "t_nigrolutea", 6L, "qualitative", TRUE, "colRoz", "v_acanthurus", 5L, "sequential", TRUE, "colRoz", "v_pilbarensis", 5L, "qualitative", TRUE, "colRoz", "n_levis", 6L, "qualitative", TRUE, "colRoz", "s_spinigerus", 6L, "qualitative", TRUE, "colRoz", "e_kingii", 6L, "qualitative", TRUE, "colRoz", "uluru", 7L, "qualitative", TRUE, "colRoz", "shark_bay", 6L, "qualitative", TRUE, "colRoz", "sky", 6L, "sequential", TRUE, "colRoz", "desert_sunset", 6L, "qualitative", TRUE, "colRoz", "desert_dusk", 6L, "qualitative", TRUE, "colRoz", "desert_flood", 6L, "qualitative", TRUE, "colRoz", "salt_lake", 6L, "qualitative", TRUE, "colRoz", "daintree", 5L, "qualitative", TRUE, "colRoz", "spinifex", 6L, "qualitative", TRUE, "colRoz", "nq_stream", 5L, "qualitative", TRUE, "colRoz", "kimberley", 5L, "qualitative", TRUE, "colRoz", "capricorn", 6L, "qualitative", TRUE, "colRoz", "p_cincta", 6L, "qualitative", TRUE, "colRoz", "c_azureus", 6L, "qualitative", TRUE, "colRoz", "m_cyaneus", 5L, "qualitative", TRUE, "colRoz", "d_novae", 6L, "qualitative", TRUE, "colRoz", "a_ramsayi", 6L, "qualitative", TRUE, "colRoz", "n_violacea", 6L, "divergent", TRUE, "colRoz", "xantho", 6L, "qualitative", TRUE, "colRoz", "r_aculeatus", 6L, "qualitative", TRUE, "colRoz", "p_mitchelli", 5L, "qualitative", TRUE, "colRoz", "k_tristis", 7L, "qualitative", TRUE, "colRoz", "m_oscellata", 6L, "qualitative", TRUE, "colRoz", "a_conica", 6L, "qualitative", TRUE, "colRoz", "v_viatica", 5L, "qualitative", TRUE, "colRoz", "c_brevi", 7L, "qualitative", TRUE, "colRoz", "a_westwoodi", 6L, "qualitative", TRUE, "colRoz", "a_plagiata", 6L, "sequential", TRUE, "colRoz", "physalia", 6L, "qualitative", TRUE, "colRoz", "c_australasiae", 6L, "qualitative", TRUE, "colRoz", "k_scurra", 6L, "qualitative", TRUE, "colRoz", "l_vestiens", 6L, "qualitative", TRUE, "colRoz", "t_australis", 6L, "qualitative", TRUE, "colRoz", "p_breviceps", 6L, "qualitative", TRUE, "colRoz", "thylacine", 5L, "qualitative", TRUE, "dichromat", "BrowntoBlue_10", 10L, "divergent", FALSE, "dichromat", "BrowntoBlue_12", 12L, "divergent", FALSE, "dichromat", "BluetoDarkOrange_12", 12L, "divergent", FALSE, "dichromat", "BluetoDarkOrange_18", 18L, "divergent", FALSE, "dichromat", "DarkRedtoBlue_12", 12L, "divergent", FALSE, "dichromat", "DarkRedtoBlue_18", 18L, "divergent", FALSE, "dichromat", "BluetoGreen_14", 14L, "divergent", FALSE, "dichromat", "BluetoGray_8", 8L, "divergent", FALSE, "dichromat", "BluetoOrangeRed_14", 14L, "divergent", FALSE, "dichromat", "BluetoOrange_10", 10L, "divergent", FALSE, "dichromat", "BluetoOrange_12", 12L, "divergent", FALSE, "dichromat", "BluetoOrange_8", 8L, "divergent", FALSE, "dichromat", "LightBluetoDarkBlue_10", 10L, "sequential", FALSE, "dichromat", "LightBluetoDarkBlue_7", 7L, "sequential", FALSE, "dichromat", "Categorical_12", 12L, "qualitative", FALSE, "dichromat", "GreentoMagenta_16", 16L, "divergent", FALSE, "dichromat", "SteppedSequential_5", 25L, "qualitative", FALSE, "dutchmasters", "milkmaid", 13L, "qualitative", TRUE, "dutchmasters", "pearl_earring", 11L, "qualitative", TRUE, "dutchmasters", "view_of_Delft", 12L, "qualitative", TRUE, "dutchmasters", "little_street", 11L, "qualitative", TRUE, "dutchmasters", "anatomy", 7L, "qualitative", TRUE, "dutchmasters", "staalmeesters", 7L, "qualitative", TRUE, "DresdenColor", "stormfront", 6L, "qualitative", TRUE, "DresdenColor", "foolmoon", 6L, "qualitative", TRUE, "DresdenColor", "graveperil", 6L, "qualitative", TRUE, "DresdenColor", "summerknight", 6L, "qualitative", TRUE, "DresdenColor", "deathmasks", 6L, "qualitative", TRUE, "DresdenColor", "bloodrites", 6L, "qualitative", TRUE, "DresdenColor", "deadbeat", 6L, "qualitative", TRUE, "DresdenColor", "provenguilty", 6L, "qualitative", TRUE, "DresdenColor", "whitenight", 6L, "qualitative", TRUE, "DresdenColor", "smallfavor", 6L, "qualitative", TRUE, "DresdenColor", "turncoat", 6L, "qualitative", TRUE, "DresdenColor", "changes", 6L, "qualitative", TRUE, "DresdenColor", "ghoststory", 6L, "qualitative", TRUE, "DresdenColor", "colddays", 6L, "qualitative", TRUE, "DresdenColor", "skingame", 6L, "qualitative", TRUE, "DresdenColor", "sidejobs", 6L, "qualitative", TRUE, "DresdenColor", "briefcases", 6L, "qualitative", TRUE, "DresdenColor", "paired", 12L, "qualitative", TRUE, "fishualize", "Acanthisthius_brasilianus", 5L, "qualitative", TRUE, "fishualize", "Acanthostracion_polygonius", 5L, "sequential", TRUE, "fishualize", "Acanthostracion_polygonius_y", 5L, "qualitative", TRUE, "fishualize", "Acanthurus_chirurgus", 5L, "qualitative", TRUE, "fishualize", "Acanthurus_coeruleus", 5L, "qualitative", TRUE, "fishualize", "Acanthurus_leucosternon", 5L, "qualitative", TRUE, "fishualize", "Acanthurus_olivaceus", 5L, "qualitative", TRUE, "fishualize", "Acanthurus_sohal", 5L, "qualitative", TRUE, "fishualize", "Acanthurus_triostegus", 5L, "sequential", TRUE, "fishualize", "Alosa_fallax", 5L, "qualitative", TRUE, "fishualize", "Aluterus_scriptus", 5L, "sequential", TRUE, "fishualize", "Anchoviella_lepidentostole", 5L, "qualitative", TRUE, "fishualize", "Anisotremus_virginicus", 5L, "qualitative", TRUE, "fishualize", "Antennarius_commerson", 5L, "qualitative", TRUE, "fishualize", "Antennarius_multiocellatus", 5L, "sequential", TRUE, "fishualize", "Atherinella_brasiliensis", 5L, "qualitative", TRUE, "fishualize", "Aulostomus_chinensis", 5L, "qualitative", TRUE, "fishualize", "Balistapus_undulatus", 5L, "qualitative", TRUE, "fishualize", "Balistes_vetula", 5L, "qualitative", TRUE, "fishualize", "Balistoides_conspicillum", 5L, "qualitative", TRUE, "fishualize", "Barbus_barbus", 5L, "qualitative", TRUE, "fishualize", "Bodianus_pulchellus", 5L, "qualitative", TRUE, "fishualize", "Bodianus_rufus", 5L, "qualitative", TRUE, "fishualize", "Bryaninops_natans", 5L, "qualitative", TRUE, "fishualize", "Callanthias_australis", 5L, "qualitative", TRUE, "fishualize", "Cantherhines_macrocerus", 5L, "qualitative", TRUE, "fishualize", "Centropyge_loricula", 5L, "qualitative", TRUE, "fishualize", "Cephalopholis_argus", 5L, "qualitative", TRUE, "fishualize", "Cephalopholis_fulva", 5L, "qualitative", TRUE, "fishualize", "Cetengraulis_edentulus", 5L, "qualitative", TRUE, "fishualize", "Chaetodon_ephippium", 5L, "qualitative", TRUE, "fishualize", "Chaetodon_larvatus", 5L, "qualitative", TRUE, "fishualize", "Chaetodon_pelewensis", 5L, "qualitative", TRUE, "fishualize", "Chaetodon_sedentarius", 5L, "qualitative", TRUE, "fishualize", "Chaetodontoplus_conspicillatus", 5L, "qualitative", TRUE, "fishualize", "Chlorurus_microrhinos", 5L, "qualitative", TRUE, "fishualize", "Chlorurus_spilurus", 5L, "qualitative", TRUE, "fishualize", "Chormis_multilineata", 5L, "qualitative", TRUE, "fishualize", "Chromis_vanderbilti", 5L, "qualitative", TRUE, "fishualize", "Cirrhilabrus_solorensis", 5L, "qualitative", TRUE, "fishualize", "Cirrhilabrus_tonozukai", 5L, "qualitative", TRUE, "fishualize", "Clepticus_brasiliensis", 5L, "qualitative", TRUE, "fishualize", "Clepticus_parrae", 5L, "qualitative", TRUE, "fishualize", "Coris_gaimard", 5L, "qualitative", TRUE, "fishualize", "Coryphaena_hippurus", 5L, "qualitative", TRUE, "fishualize", "Dermatolepis_inermis", 5L, "qualitative", TRUE, "fishualize", "Elacatinus_figaro", 5L, "qualitative", TRUE, "fishualize", "Elagatis_bipinnulata", 5L, "qualitative", TRUE, "fishualize", "Epibulus_insidiator", 5L, "qualitative", TRUE, "fishualize", "Epinephelus_fasciatus", 5L, "qualitative", TRUE, "fishualize", "Epinephelus_lanceolatus", 5L, "qualitative", TRUE, "fishualize", "Epinephelus_marginatus", 5L, "qualitative", TRUE, "fishualize", "Epinephelus_striatus", 5L, "sequential", TRUE, "fishualize", "Esox_lucius", 5L, "sequential", TRUE, "fishualize", "Etheostoma_barrenense", 5L, "qualitative", TRUE, "fishualize", "Etheostoma_spectabile", 5L, "qualitative", TRUE, "fishualize", "Exallias_brevis", 5L, "qualitative", TRUE, "fishualize", "Forcipiger_longirostris", 5L, "qualitative", TRUE, "fishualize", "Gadus_morhua", 5L, "qualitative", TRUE, "fishualize", "Ginglymostoma_cirratum", 5L, "qualitative", TRUE, "fishualize", "Gomphosus_varius", 5L, "qualitative", TRUE, "fishualize", "Gramma_brasiliensis", 5L, "qualitative", TRUE, "fishualize", "Gramma_loreto", 5L, "qualitative", TRUE, "fishualize", "Gymnothorax_funebris", 5L, "qualitative", TRUE, "fishualize", "Haemulon_squamipinna", 5L, "qualitative", TRUE, "fishualize", "Halichoeres_bivittatus", 5L, "qualitative", TRUE, "fishualize", "Halichoeres_brasiliensis", 5L, "sequential", TRUE, "fishualize", "Halichoeres_dimidiatus", 5L, "qualitative", TRUE, "fishualize", "Halichoeres_garnoti", 5L, "qualitative", TRUE, "fishualize", "Halichoeres_radiatus", 5L, "qualitative", TRUE, "fishualize", "Hamulon_plumieri", 5L, "qualitative", TRUE, "fishualize", "Harengula_jaguana", 5L, "qualitative", TRUE, "fishualize", "Hemitaurichthys_polylepis", 5L, "qualitative", TRUE, "fishualize", "Heretopriacanthus_cruentatus", 5L, "qualitative", TRUE, "fishualize", "Hexagrammos_lagocephalus", 5L, "qualitative", TRUE, "fishualize", "Hippocampus_reidi", 5L, "qualitative", TRUE, "fishualize", "Histiophryne_psychedelica", 5L, "qualitative", TRUE, "fishualize", "Holacanthus_ciliaris", 5L, "qualitative", TRUE, "fishualize", "Holocentrus_adscensionis", 5L, "qualitative", TRUE, "fishualize", "Hypleurochilus_fissicornis", 5L, "qualitative", TRUE, "fishualize", "Hypoplectrus_puella", 5L, "qualitative", TRUE, "fishualize", "Hypsoblennius_invemar", 5L, "qualitative", TRUE, "fishualize", "Hypsypops_rubicundus", 5L, "qualitative", TRUE, "fishualize", "Koumansetta_rainfordi", 5L, "qualitative", TRUE, "fishualize", "Labrisomus_cricota", 5L, "qualitative", TRUE, "fishualize", "Labrisomus_nuchipinnis", 5L, "qualitative", TRUE, "fishualize", "Lampris_guttatus", 5L, "qualitative", TRUE, "fishualize", "Lepomis_megalotis", 5L, "qualitative", TRUE, "fishualize", "Lile_piquitinga", 5L, "qualitative", TRUE, "fishualize", "Lutjanus_jocu", 5L, "qualitative", TRUE, "fishualize", "Lutjanus_sebae", 5L, "qualitative", TRUE, "fishualize", "Lycengraulis_grossidens", 5L, "qualitative", TRUE, "fishualize", "Melichthys_vidua", 5L, "qualitative", TRUE, "fishualize", "Micropterus_punctulatus", 5L, "qualitative", TRUE, "fishualize", "Minilabrus_striatus", 5L, "qualitative", TRUE, "fishualize", "Mugil_liza", 5L, "qualitative", TRUE, "fishualize", "Mycteroperca_bonaci", 5L, "qualitative", TRUE, "fishualize", "Myrichthys_ocellatus", 5L, "qualitative", TRUE, "fishualize", "Naso_lituratus", 5L, "qualitative", TRUE, "fishualize", "Nemateleotris_magnifica", 5L, "qualitative", TRUE, "fishualize", "Neogobius_melanostomus", 5L, "qualitative", TRUE, "fishualize", "Odonus_niger", 5L, "qualitative", TRUE, "fishualize", "Oncorhynchus_gorbuscha", 5L, "qualitative", TRUE, "fishualize", "Oncorhynchus_keta", 5L, "qualitative", TRUE, "fishualize", "Oncorhynchus_kisutch", 5L, "qualitative", TRUE, "fishualize", "Oncorhynchus_mykiss", 5L, "qualitative", TRUE, "fishualize", "Oncorhynchus_nerka", 5L, "qualitative", TRUE, "fishualize", "Oncorhynchus_tshawytscha", 5L, "qualitative", TRUE, "fishualize", "Opisthonema_oglinum", 5L, "qualitative", TRUE, "fishualize", "Ostorhinchus_angustatus", 5L, "qualitative", TRUE, "fishualize", "Ostracion_cubicus", 5L, "sequential", TRUE, "fishualize", "Ostracion_whitleyi", 5L, "sequential", TRUE, "fishualize", "Oxymonacanthus_longirostris", 5L, "qualitative", TRUE, "fishualize", "Parablennius_marmoreus", 5L, "qualitative", TRUE, "fishualize", "Parablennius_pilicornis", 5L, "qualitative", TRUE, "fishualize", "Paracanthurus_hepatus", 5L, "qualitative", TRUE, "fishualize", "Paralabrax_clathratus", 5L, "sequential", TRUE, "fishualize", "Paranthias_furcifer", 5L, "qualitative", TRUE, "fishualize", "Pareiorhaphis_garbei", 5L, "qualitative", TRUE, "fishualize", "Parupeneus_insularis", 5L, "qualitative", TRUE, "fishualize", "Petromyzon_marinus", 5L, "sequential", TRUE, "fishualize", "Phractocephalus_hemioliopterus", 5L, "qualitative", TRUE, "fishualize", "Pleuronectes_platessa", 5L, "qualitative", TRUE, "fishualize", "Pomacanthus_imperator", 5L, "qualitative", TRUE, "fishualize", "Pomacanthus_paru", 5L, "qualitative", TRUE, "fishualize", "Pomacanthus_xanthometopon", 5L, "qualitative", TRUE, "fishualize", "Prionace_glauca", 5L, "qualitative", TRUE, "fishualize", "Prognathodes_brasiliensis", 5L, "qualitative", TRUE, "fishualize", "Prognathodes_guyanensis", 5L, "qualitative", TRUE, "fishualize", "Pronotogrammus_martinicensis", 5L, "qualitative", TRUE, "fishualize", "Pseudocheilinus_tetrataenia", 5L, "qualitative", TRUE, "fishualize", "Pseudochromis_aldabraensis", 5L, "qualitative", TRUE, "fishualize", "Pseudupeneus_maculatus", 5L, "qualitative", TRUE, "fishualize", "Pterois_volitans", 5L, "qualitative", TRUE, "fishualize", "Rhinecanthus_aculeatus", 5L, "qualitative", TRUE, "fishualize", "Rhinecanthus_assasi", 5L, "qualitative", TRUE, "fishualize", "Salmo_salar", 5L, "qualitative", TRUE, "fishualize", "Salmo_trutta", 5L, "qualitative", TRUE, "fishualize", "Salvelinus_fontinalis", 5L, "qualitative", TRUE, "fishualize", "Sander_lucioperca", 5L, "qualitative", TRUE, "fishualize", "Sardinella_brasiliensis", 5L, "qualitative", TRUE, "fishualize", "Sargocentron_bullisi", 5L, "qualitative", TRUE, "fishualize", "Scarus_ghobban", 5L, "qualitative", TRUE, "fishualize", "Scarus_globiceps", 5L, "qualitative", TRUE, "fishualize", "Scarus_hoefleri", 5L, "qualitative", TRUE, "fishualize", "Scarus_quoyi", 5L, "qualitative", TRUE, "fishualize", "Scarus_tricolor", 5L, "qualitative", TRUE, "fishualize", "Scarus_zelindae", 5L, "qualitative", TRUE, "fishualize", "Semicossyphus_pulcher", 5L, "sequential", TRUE, "fishualize", "Serranus_baldwini", 5L, "qualitative", TRUE, "fishualize", "Serranus_scriba", 5L, "qualitative", TRUE, "fishualize", "Sparisoma_frondosum_m", 5L, "qualitative", TRUE, "fishualize", "Sparisoma_tuyupiranga_f", 5L, "qualitative", TRUE, "fishualize", "Sparisoma_tuyupiranga_m", 5L, "qualitative", TRUE, "fishualize", "Sparisoma_viride", 5L, "qualitative", TRUE, "fishualize", "Stegastes_nigricans", 5L, "qualitative", TRUE, "fishualize", "Stegastes_partitus", 5L, "qualitative", TRUE, "fishualize", "Stegastes_variabilis", 5L, "qualitative", TRUE, "fishualize", "Stethojulis_bandanensis", 5L, "qualitative", TRUE, "fishualize", "Synchiropus_splendidus", 5L, "qualitative", TRUE, "fishualize", "Taeniura_lymma", 5L, "qualitative", TRUE, "fishualize", "Thalassoma_bifasciatum", 5L, "qualitative", TRUE, "fishualize", "Thalassoma_hardwicke", 5L, "qualitative", TRUE, "fishualize", "Thalassoma_noronhanum", 5L, "qualitative", TRUE, "fishualize", "Thalassoma_pavo", 5L, "qualitative", TRUE, "fishualize", "Thunnus_obesus", 5L, "qualitative", TRUE, "fishualize", "Trimma_lantana", 5L, "qualitative", TRUE, "fishualize", "Valenciennea_strigata", 5L, "qualitative", TRUE, "fishualize", "Variola_louti", 5L, "qualitative", TRUE, "fishualize", "Xyrichthys_novacula", 5L, "qualitative", TRUE, "fishualize", "Zanclus_cornutus", 5L, "qualitative", TRUE, "fishualize", "Zapteryx_brevirostris", 5L, "qualitative", TRUE, "fishualize", "Zebrasoma_velifer", 5L, "qualitative", TRUE, "fishualize", "Zebrasoma_xanthurum", 5L, "qualitative", TRUE, "futurevisions", "venus", 5L, "qualitative", TRUE, "futurevisions", "earth", 7L, "qualitative", TRUE, "futurevisions", "mars", 6L, "qualitative", TRUE, "futurevisions", "jupiter", 6L, "qualitative", TRUE, "futurevisions", "ceres", 4L, "sequential", TRUE, "futurevisions", "enceladus", 5L, "qualitative", TRUE, "futurevisions", "europa", 5L, "sequential", TRUE, "futurevisions", "titan", 6L, "sequential", TRUE, "futurevisions", "cancri", 6L, "sequential", TRUE, "futurevisions", "hd", 6L, "qualitative", TRUE, "futurevisions", "kepler186", 9L, "divergent", TRUE, "futurevisions", "kepler16b", 7L, "qualitative", TRUE, "futurevisions", "pegasi", 8L, "qualitative", TRUE, "futurevisions", "pso", 5L, "sequential", TRUE, "futurevisions", "trappest", 8L, "qualitative", TRUE, "futurevisions", "grand_tour", 7L, "qualitative", TRUE, "futurevisions", "atomic_clock", 5L, "qualitative", TRUE, "futurevisions", "atomic_red", 3L, "qualitative", TRUE, "futurevisions", "atomic_blue", 3L, "qualitative", TRUE, "futurevisions", "atomic_orange", 3L, "qualitative", TRUE, "ggsci", "nrc_npg", 10L, "qualitative", TRUE, "ggsci", "default_aaas", 10L, "qualitative", TRUE, "ggsci", "default_nejm", 8L, "qualitative", TRUE, "ggsci", "lanonc_lancet", 9L, "qualitative", TRUE, "ggsci", "default_jama", 7L, "qualitative", TRUE, "ggsci", "default_jco", 10L, "qualitative", TRUE, "ggsci", "default_ucscgb", 26L, "qualitative", FALSE, "ggsci", "category10_d3", 10L, "qualitative", FALSE, "ggsci", "category20_d3", 20L, "qualitative", FALSE, "ggsci", "category20b_d3", 20L, "qualitative", FALSE, "ggsci", "category20c_d3", 20L, "qualitative", FALSE, "ggsci", "default_igv", 51L, "qualitative", FALSE, "ggsci", "alternating_igv", 2L, "qualitative", FALSE, "ggsci", "default_locuszoom", 7L, "qualitative", TRUE, "ggsci", "default_uchicago", 9L, "qualitative", TRUE, "ggsci", "light_uchicago", 9L, "qualitative", TRUE, "ggsci", "dark_uchicago", 9L, "qualitative", TRUE, "ggsci", "hallmarks_dark_cosmic", 10L, "qualitative", TRUE, "ggsci", "hallmarks_light_cosmic", 10L, "qualitative", TRUE, "ggsci", "signature_substitutions_cosmic", 6L, "qualitative", TRUE, "ggsci", "springfield_simpsons", 16L, "qualitative", TRUE, "ggsci", "planetexpress_futurama", 12L, "qualitative", TRUE, "ggsci", "schwifty_rickandmorty", 12L, "qualitative", TRUE, "ggsci", "uniform_startrek", 7L, "qualitative", TRUE, "ggsci", "legacy_tron", 7L, "qualitative", TRUE, "ggsci", "default_gsea", 12L, "divergent", FALSE, "ggsci", "red_material", 10L, "sequential", FALSE, "ggsci", "pink_material", 10L, "sequential", FALSE, "ggsci", "purple_material", 10L, "sequential", FALSE, "ggsci", "deep_purple_material", 10L, "sequential", FALSE, "ggsci", "indigo_material", 10L, "sequential", FALSE, "ggsci", "blue_material", 10L, "sequential", FALSE, "ggsci", "light_blue_material", 10L, "sequential", FALSE, "ggsci", "cyan_material", 10L, "sequential", FALSE, "ggsci", "teal_material", 10L, "sequential", FALSE, "ggsci", "green_material", 10L, "sequential", FALSE, "ggsci", "light_green_material", 10L, "sequential", FALSE, "ggsci", "lime_material", 10L, "sequential", FALSE, "ggsci", "yellow_material", 10L, "sequential", FALSE, "ggsci", "amber_material", 10L, "sequential", FALSE, "ggsci", "orange_material", 10L, "sequential", FALSE, "ggsci", "deep_orange_material", 10L, "sequential", FALSE, "ggsci", "brown_material", 10L, "sequential", FALSE, "ggsci", "grey_material", 10L, "sequential", FALSE, "ggsci", "blue_grey_material", 10L, "sequential", FALSE, "ggpomological", "pomological_base", 7L, "qualitative", TRUE, "ggpomological", "pomological_palette", 9L, "qualitative", TRUE, "ggprism", "autumn_leaves", 9L, "qualitative", TRUE, "ggprism", "beer_and_ales", 9L, "qualitative", TRUE, "ggprism", "black_and_white", 9L, "qualitative", TRUE, "ggprism", "blueprint", 9L, "qualitative", TRUE, "ggprism", "blueprint2", 9L, "qualitative", TRUE, "ggprism", "blueprint3", 9L, "qualitative", TRUE, "ggprism", "candy_bright", 9L, "qualitative", TRUE, "ggprism", "candy_soft", 9L, "qualitative", TRUE, "ggprism", "colorblind_safe", 6L, "qualitative", TRUE, "ggprism", "colors", 20L, "qualitative", TRUE, "ggprism", "diazo", 9L, "qualitative", TRUE, "ggprism", "earth_tones", 10L, "qualitative", TRUE, "ggprism", "evergreen", 9L, "qualitative", TRUE, "ggprism", "fir", 9L, "qualitative", TRUE, "ggprism", "fir2", 9L, "qualitative", TRUE, "ggprism", "fir3", 9L, "qualitative", TRUE, "ggprism", "flames", 9L, "qualitative", TRUE, "ggprism", "flames2", 9L, "qualitative", TRUE, "ggprism", "floral", 12L, "qualitative", TRUE, "ggprism", "floral2", 12L, "qualitative", TRUE, "ggprism", "greenwash", 10L, "qualitative", TRUE, "ggprism", "inferno", 6L, "sequential", TRUE, "ggprism", "magma", 6L, "sequential", TRUE, "ggprism", "mustard_field", 9L, "qualitative", TRUE, "ggprism", "mustard_field2", 9L, "qualitative", TRUE, "ggprism", "muted_rainbow", 10L, "qualitative", TRUE, "ggprism", "neon", 9L, "qualitative", TRUE, "ggprism", "ocean", 9L, "qualitative", TRUE, "ggprism", "ocean2", 9L, "qualitative", TRUE, "ggprism", "ocean3", 9L, "qualitative", TRUE, "ggprism", "office", 9L, "qualitative", TRUE, "ggprism", "pastels", 9L, "qualitative", TRUE, "ggprism", "pearl", 6L, "qualitative", TRUE, "ggprism", "pearl2", 6L, "qualitative", TRUE, "ggprism", "plasma", 6L, "sequential", TRUE, "ggprism", "prism_dark", 10L, "qualitative", TRUE, "ggprism", "prism_dark2", 10L, "qualitative", TRUE, "ggprism", "prism_light", 10L, "qualitative", TRUE, "ggprism", "prism_light2", 10L, "qualitative", TRUE, "ggprism", "purple_passion", 9L, "qualitative", TRUE, "ggprism", "quiet", 9L, "qualitative", TRUE, "ggprism", "quiet2", 9L, "qualitative", TRUE, "ggprism", "shades_of_gray", 9L, "qualitative", TRUE, "ggprism", "spring", 9L, "qualitative", TRUE, "ggprism", "spring2", 9L, "qualitative", TRUE, "ggprism", "stained_glass", 9L, "qualitative", TRUE, "ggprism", "stained_glass2", 9L, "qualitative", TRUE, "ggprism", "starry", 5L, "qualitative", TRUE, "ggprism", "starry2", 5L, "qualitative", TRUE, "ggprism", "summer", 10L, "qualitative", TRUE, "ggprism", "sunny_garden", 9L, "qualitative", TRUE, "ggprism", "sunny_garden2", 9L, "qualitative", TRUE, "ggprism", "sunny_garden3", 9L, "qualitative", TRUE, "ggprism", "the_blues", 9L, "qualitative", TRUE, "ggprism", "viridis", 6L, "sequential", TRUE, "ggprism", "warm_and_sunny", 9L, "qualitative", TRUE, "ggprism", "warm_pastels", 9L, "qualitative", TRUE, "ggprism", "warm_pastels2", 9L, "qualitative", TRUE, "ggprism", "waves", 5L, "qualitative", TRUE, "ggprism", "waves2", 5L, "qualitative", TRUE, "ggprism", "winter_bright", 9L, "qualitative", TRUE, "ggprism", "winter_soft", 9L, "qualitative", TRUE, "ggprism", "wool_muffler", 9L, "qualitative", TRUE, "ggprism", "wool_muffler2", 9L, "qualitative", TRUE, "ggprism", "wool_muffler3", 9L, "qualitative", TRUE, "ggthemes", "calc", 12L, "qualitative", TRUE, "ggthemes", "manyeys", 19L, "qualitative", TRUE, "ggthemes", "gdoc", 10L, "qualitative", TRUE, "ggthemes", "fivethirtyeight", 6L, "qualitative", TRUE, "ggthemes", "colorblind", 8L, "qualitative", FALSE, "ggthemes", "Tableau_10", 10L, "qualitative", FALSE, "ggthemes", "Tableau_20", 20L, "qualitative", FALSE, "ggthemes", "Color_Blind", 10L, "qualitative", FALSE, "ggthemes", "Seattle_Grays", 5L, "qualitative", TRUE, "ggthemes", "Traffic", 9L, "qualitative", TRUE, "ggthemes", "Miller_Stone", 11L, "qualitative", TRUE, "ggthemes", "Superfishel_Stone", 10L, "qualitative", TRUE, "ggthemes", "Nuriel_Stone", 9L, "qualitative", TRUE, "ggthemes", "Jewel_Bright", 9L, "qualitative", TRUE, "ggthemes", "Summer", 8L, "qualitative", TRUE, "ggthemes", "Winter", 10L, "qualitative", TRUE, "ggthemes", "Green_Orange_Teal", 12L, "qualitative", TRUE, "ggthemes", "Red_Blue_Brown", 12L, "qualitative", TRUE, "ggthemes", "Purple_Pink_Gray", 12L, "qualitative", TRUE, "ggthemes", "Hue_Circle", 19L, "qualitative", TRUE, "ggthemes", "Classic_10", 10L, "qualitative", FALSE, "ggthemes", "Classic_10_Medium", 10L, "qualitative", FALSE, "ggthemes", "Classic_10_Light", 10L, "qualitative", FALSE, "ggthemes", "Classic_20", 20L, "qualitative", FALSE, "ggthemes", "Classic_Gray_5", 5L, "qualitative", FALSE, "ggthemes", "Classic_Color_Blind", 10L, "qualitative", FALSE, "ggthemes", "Classic_Traffic_Light", 9L, "qualitative", FALSE, "ggthemes", "Classic_Purple_Gray_6", 6L, "qualitative", FALSE, "ggthemes", "Classic_Purple_Gray_12", 12L, "qualitative", FALSE, "ggthemes", "Classic_Green_Orange_6", 6L, "qualitative", FALSE, "ggthemes", "Classic_Green_Orange_12", 12L, "qualitative", FALSE, "ggthemes", "Classic_Blue_Red_6", 6L, "qualitative", FALSE, "ggthemes", "Classic_Blue_Red_12", 12L, "qualitative", FALSE, "ggthemes", "Classic_Cyclic", 13L, "qualitative", FALSE, "ggthemes", "few_Light", 9L, "qualitative", FALSE, "ggthemes", "few_Medium", 9L, "qualitative", FALSE, "ggthemes", "few_Dark", 9L, "qualitative", FALSE, "ggthemes", "excel_Atlas", 6L, "qualitative", FALSE, "ggthemes", "excel_Badge", 6L, "qualitative", FALSE, "ggthemes", "excel_Berlin", 6L, "qualitative", FALSE, "ggthemes", "excel_Celestial", 6L, "qualitative", FALSE, "ggthemes", "excel_Crop", 6L, "qualitative", FALSE, "ggthemes", "excel_Depth", 6L, "qualitative", FALSE, "ggthemes", "excel_Droplet", 6L, "qualitative", FALSE, "ggthemes", "excel_Facet", 6L, "qualitative", FALSE, "ggthemes", "excel_Feathered", 6L, "qualitative", FALSE, "ggthemes", "excel_Gallery", 6L, "qualitative", FALSE, "ggthemes", "excel_Headlines", 6L, "qualitative", TRUE, "ggthemes", "excel_Integral", 6L, "qualitative", TRUE, "ggthemes", "excel_Ion_Boardroom", 6L, "qualitative", TRUE, "ggthemes", "excel_Ion", 6L, "qualitative", TRUE, "ggthemes", "excel_Madison", 6L, "qualitative", TRUE, "ggthemes", "excel_Main_Event", 6L, "qualitative", TRUE, "ggthemes", "excel_Mesh", 6L, "qualitative", TRUE, "ggthemes", "excel_Office_Theme", 6L, "qualitative", TRUE, "ggthemes", "excel_Organic", 6L, "qualitative", TRUE, "ggthemes", "excel_Parallax", 6L, "qualitative", TRUE, "ggthemes", "excel_Parcel", 6L, "qualitative", TRUE, "ggthemes", "excel_Retrospect", 6L, "qualitative", TRUE, "ggthemes", "excel_Savon", 6L, "qualitative", TRUE, "ggthemes", "excel_Slice", 6L, "qualitative", TRUE, "ggthemes", "excel_Vapor_Trail", 6L, "qualitative", TRUE, "ggthemes", "excel_View", 6L, "qualitative", TRUE, "ggthemes", "excel_Wisp", 6L, "qualitative", TRUE, "ggthemes", "excel_Wood_Type", 6L, "qualitative", TRUE, "ggthemes", "excel_Aspect", 6L, "qualitative", TRUE, "ggthemes", "excel_Blue_Green", 6L, "qualitative", TRUE, "ggthemes", "excel_Blue_II", 6L, "qualitative", TRUE, "ggthemes", "excel_Blue_Warm", 6L, "qualitative", TRUE, "ggthemes", "excel_Blue", 6L, "qualitative", TRUE, "ggthemes", "excel_Grayscale", 6L, "sequential", FALSE, "ggthemes", "excel_Green_Yellow", 6L, "qualitative", TRUE, "ggthemes", "excel_Green", 6L, "qualitative", TRUE, "ggthemes", "excel_Marquee", 6L, "qualitative", TRUE, "ggthemes", "excel_Median", 6L, "qualitative", TRUE, "ggthemes", "excel_Office_2007_2010", 6L, "qualitative", TRUE, "ggthemes", "excel_Orange_Red", 6L, "qualitative", TRUE, "ggthemes", "excel_Orange", 6L, "qualitative", TRUE, "ggthemes", "excel_Paper", 6L, "qualitative", TRUE, "ggthemes", "excel_Red_Orange", 6L, "qualitative", TRUE, "ggthemes", "excel_Red_Violet", 6L, "qualitative", TRUE, "ggthemes", "excel_Red", 6L, "qualitative", TRUE, "ggthemes", "excel_Slipstream", 6L, "qualitative", TRUE, "ggthemes", "excel_Violet_II", 6L, "qualitative", TRUE, "ggthemes", "excel_Violet", 6L, "qualitative", TRUE, "ggthemes", "excel_Yellow_Orange", 6L, "qualitative", TRUE, "ggthemes", "excel_Yellow", 6L, "qualitative", TRUE, "ggthemes", "wsj_rgby", 4L, "qualitative", TRUE, "ggthemes", "wsj_red_green", 2L, "qualitative", TRUE, "ggthemes", "wsj_black_green", 4L, "qualitative", TRUE, "ggthemes", "wsj_dem_rep", 3L, "qualitative", TRUE, "ggthemes", "wsj_colors6", 6L, "qualitative", TRUE, "ggthemes", "stata_s2color", 15L, "qualitative", TRUE, "ggthemes", "stata_s1rcolor", 15L, "qualitative", TRUE, "ggthemes", "stata_s1color", 15L, "qualitative", TRUE, "ggthemes", "stata_mono", 15L, "qualitative", TRUE, "ggthemes", "stata_economist", 15L, "qualitative", TRUE, "ggthemes", "hc_default", 10L, "qualitative", TRUE, "ggthemes", "hc_darkunica", 11L, "qualitative", TRUE, "ggthemes", "hc_bg", 5L, "qualitative", TRUE, "ggthemes", "hc_fg", 12L, "qualitative", TRUE, "ggthemr", "flat", 9L, "qualitative", TRUE, "ggthemr", "flat_dark", 9L, "qualitative", TRUE, "ggthemr", "dust", 9L, "qualitative", TRUE, "ggthemr", "light", 9L, "qualitative", TRUE, "ggthemr", "earth", 9L, "qualitative", TRUE, "ggthemr", "fresh", 9L, "qualitative", TRUE, "ggthemr", "chalk", 7L, "qualitative", TRUE, "ggthemr", "lilac", 11L, "qualitative", TRUE, "ggthemr", "carrot", 9L, "qualitative", TRUE, "ggthemr", "pale", 10L, "qualitative", TRUE, "ggthemr", "copper", 11L, "qualitative", TRUE, "ggthemr", "grape", 9L, "qualitative", TRUE, "ggthemr", "greyscale", 9L, "qualitative", TRUE, "ggthemr", "sky", 6L, "qualitative", TRUE, "ggthemr", "solarized", 7L, "qualitative", TRUE, "ggthemr", "grass", 7L, "qualitative", TRUE, "ggthemr", "sea", 11L, "qualitative", TRUE, "ggthemr", "camouflage", 7L, "qualitative", TRUE, "ghibli", "MarnieLight1", 7L, "qualitative", TRUE, "ghibli", "MarnieMedium1", 7L, "qualitative", TRUE, "ghibli", "MarnieDark1", 7L, "qualitative", TRUE, "ghibli", "MarnieLight2", 7L, "qualitative", TRUE, "ghibli", "MarnieMedium2", 7L, "qualitative", TRUE, "ghibli", "MarnieDark2", 7L, "qualitative", TRUE, "ghibli", "PonyoLight", 7L, "qualitative", TRUE, "ghibli", "PonyoMedium", 7L, "qualitative", TRUE, "ghibli", "PonyoDark", 7L, "qualitative", TRUE, "ghibli", "LaputaLight", 7L, "qualitative", TRUE, "ghibli", "LaputaMedium", 7L, "qualitative", TRUE, "ghibli", "LaputaDark", 7L, "qualitative", TRUE, "ghibli", "MononokeLight", 7L, "qualitative", TRUE, "ghibli", "MononokeMedium", 7L, "qualitative", TRUE, "ghibli", "MononokeDark", 7L, "qualitative", TRUE, "ghibli", "SpiritedLight", 7L, "qualitative", TRUE, "ghibli", "SpiritedMedium", 7L, "qualitative", TRUE, "ghibli", "SpiritedDark", 7L, "qualitative", TRUE, "ghibli", "YesterdayLight", 7L, "qualitative", TRUE, "ghibli", "YesterdayMedium", 7L, "qualitative", TRUE, "ghibli", "YesterdayDark", 7L, "qualitative", TRUE, "ghibli", "KikiLight", 7L, "qualitative", TRUE, "ghibli", "KikiMedium", 7L, "qualitative", TRUE, "ghibli", "KikiDark", 7L, "qualitative", TRUE, "ghibli", "TotoroLight", 7L, "qualitative", TRUE, "ghibli", "TotoroMedium", 7L, "qualitative", TRUE, "ghibli", "TotoroDark", 7L, "qualitative", TRUE, "grDevices", "blues9", 9L, "sequential", FALSE, "IslamicArt", "shiraz", 12L, "qualitative", TRUE, "IslamicArt", "samarqand", 12L, "qualitative", TRUE, "IslamicArt", "samarqand2", 4L, "qualitative", TRUE, "IslamicArt", "shiraz2", 12L, "qualitative", TRUE, "IslamicArt", "abu_dhabi", 13L, "qualitative", TRUE, "IslamicArt", "istanbul", 8L, "qualitative", TRUE, "IslamicArt", "istanbul2", 11L, "qualitative", TRUE, "IslamicArt", "istanbul3", 8L, "qualitative", TRUE, "IslamicArt", "konya", 8L, "qualitative", TRUE, "IslamicArt", "jerusalem", 9L, "qualitative", TRUE, "IslamicArt", "fes", 8L, "qualitative", TRUE, "IslamicArt", "fes2", 9L, "qualitative", TRUE, "IslamicArt", "alhambra", 6L, "qualitative", TRUE, "IslamicArt", "cordoba", 8L, "qualitative", TRUE, "IslamicArt", "damascus", 9L, "qualitative", TRUE, "IslamicArt", "ottoman", 5L, "qualitative", TRUE, "khroma", "broc", 256L, "divergent", FALSE, "khroma", "cork", 256L, "divergent", FALSE, "khroma", "vik", 256L, "divergent", FALSE, "khroma", "lisbon", 256L, "divergent", FALSE, "khroma", "tofino", 256L, "divergent", FALSE, "khroma", "berlin", 256L, "divergent", FALSE, "khroma", "roma", 256L, "divergent", FALSE, "khroma", "bam", 256L, "divergent", FALSE, "khroma", "vanimo", 256L, "divergent", FALSE, "khroma", "oleron", 256L, "divergent", FALSE, "khroma", "bukavu", 256L, "divergent", FALSE, "khroma", "fes", 256L, "divergent", FALSE, "khroma", "devon", 256L, "sequential", FALSE, "khroma", "lajolla", 256L, "sequential", FALSE, "khroma", "bamako", 256L, "sequential", FALSE, "khroma", "davos", 256L, "sequential", FALSE, "khroma", "bilbao", 256L, "sequential", FALSE, "khroma", "nuuk", 256L, "sequential", FALSE, "khroma", "oslo", 256L, "sequential", FALSE, "khroma", "grayC", 256L, "sequential", FALSE, "khroma", "hawaii", 256L, "sequential", FALSE, "khroma", "lapaz", 256L, "sequential", FALSE, "khroma", "tokyo", 256L, "sequential", FALSE, "khroma", "buda", 256L, "sequential", FALSE, "khroma", "acton", 256L, "sequential", FALSE, "khroma", "turku", 256L, "sequential", FALSE, "khroma", "imola", 256L, "sequential", FALSE, "khroma", "batlow", 256L, "sequential", FALSE, "khroma", "batlowW", 256L, "sequential", FALSE, "khroma", "batlowK", 256L, "sequential", FALSE, "khroma", "brocO", 256L, "divergent", FALSE, "khroma", "corkO", 256L, "divergent", FALSE, "khroma", "vikO", 256L, "divergent", FALSE, "khroma", "romaO", 256L, "divergent", FALSE, "khroma", "bamO", 256L, "divergent", FALSE, "khroma", "bright", 7L, "qualitative", FALSE, "khroma", "contrast", 3L, "qualitative", FALSE, "khroma", "vibrant", 7L, "qualitative", FALSE, "khroma", "muted", 9L, "qualitative", FALSE, "khroma", "pale", 6L, "qualitative", FALSE, "khroma", "dark", 6L, "qualitative", FALSE, "khroma", "light", 9L, "qualitative", FALSE, "khroma", "sunset", 11L, "divergent", FALSE, "khroma", "BuRd", 9L, "divergent", FALSE, "khroma", "PRGn", 9L, "divergent", FALSE, "khroma", "YlOrBr", 9L, "sequential", FALSE, "khroma", "iridescent", 23L, "sequential", FALSE, "khroma", "discrete_rainbow", 29L, "qualitative", FALSE, "khroma", "smooth_rainbow", 34L, "sequential", FALSE, "khroma", "okabe_ito", 8L, "qualitative", FALSE, "khroma", "stratigraphy", 175L, "qualitative", FALSE, "khroma", "soil", 24L, "qualitative", FALSE, "khroma", "land", 14L, "qualitative", FALSE, "jcolors", "default", 5L, "qualitative", TRUE, "jcolors", "pal2", 5L, "qualitative", TRUE, "jcolors", "pal3", 5L, "qualitative", TRUE, "jcolors", "pal4", 6L, "qualitative", TRUE, "jcolors", "pal5", 6L, "qualitative", TRUE, "jcolors", "pal6", 8L, "qualitative", TRUE, "jcolors", "pal7", 8L, "qualitative", TRUE, "jcolors", "pal8", 12L, "qualitative", TRUE, "jcolors", "pal9", 6L, "qualitative", TRUE, "jcolors", "pal10", 10L, "sequential", TRUE, "jcolors", "pal11", 12L, "sequential", TRUE, "jcolors", "pal12", 13L, "sequential", TRUE, "jcolors", "rainbow", 9L, "qualitative", TRUE, "LaCroixColoR", "PassionFruit", 6L, "qualitative", TRUE, "LaCroixColoR", "Mango", 6L, "qualitative", TRUE, "LaCroixColoR", "Pure", 6L, "qualitative", TRUE, "LaCroixColoR", "Lime", 6L, "divergent", TRUE, "LaCroixColoR", "Lemon", 6L, "divergent", TRUE, "LaCroixColoR", "Orange", 6L, "divergent", TRUE, "LaCroixColoR", "Berry", 6L, "divergent", TRUE, "LaCroixColoR", "CranRaspberry", 6L, "divergent", TRUE, "LaCroixColoR", "Pamplemousse", 6L, "divergent", TRUE, "LaCroixColoR", "PeachPear", 6L, "divergent", TRUE, "LaCroixColoR", "Coconut", 6L, "divergent", TRUE, "LaCroixColoR", "Apricot", 6L, "qualitative", TRUE, "LaCroixColoR", "Tangerine", 7L, "qualitative", TRUE, "LaCroixColoR", "KeyLime", 5L, "qualitative", TRUE, "LaCroixColoR", "PommeBaya", 5L, "qualitative", TRUE, "LaCroixColoR", "CeriseLimon", 6L, "qualitative", TRUE, "LaCroixColoR", "PinaFraise", 6L, "qualitative", TRUE, "LaCroixColoR", "KiwiSandia", 7L, "qualitative", TRUE, "LaCroixColoR", "MelonPomelo", 6L, "qualitative", TRUE, "LaCroixColoR", "MurePepino", 6L, "qualitative", TRUE, "LaCroixColoR", "paired", 14L, "qualitative", TRUE, "lisa", "JosefAlbers", 5L, "qualitative", TRUE, "lisa", "JosefAlbers_1", 5L, "qualitative", TRUE, "lisa", "GretchenAlbrecht", 5L, "qualitative", TRUE, "lisa", "BillyApple", 5L, "qualitative", TRUE, "lisa", "PerArnoldi", 5L, "qualitative", TRUE, "lisa", "MiltonAvery", 5L, "qualitative", TRUE, "lisa", "MiltonAvery_1", 5L, "qualitative", TRUE, "lisa", "HilmaafKlint", 5L, "qualitative", TRUE, "lisa", "Jean_MichelBasquiat", 5L, "qualitative", TRUE, "lisa", "Jean_MichelBasquiat_1", 5L, "qualitative", TRUE, "lisa", "MaxBeckmann", 5L, "qualitative", TRUE, "lisa", "FernandoBotero", 5L, "qualitative", TRUE, "lisa", "SandroBotticelli", 5L, "qualitative", TRUE, "lisa", "SandroBotticelli_1", 5L, "qualitative", TRUE, "lisa", "PieterBruegel", 5L, "qualitative", TRUE, "lisa", "JackBush", 5L, "qualitative", TRUE, "lisa", "JackBush_1", 5L, "qualitative", TRUE, "lisa", "MaryCassatt", 5L, "qualitative", TRUE, "lisa", "PaulCezanne", 5L, "qualitative", TRUE, "lisa", "MarcChagall", 5L, "qualitative", TRUE, "lisa", "C_M_Coolidge", 5L, "divergent", TRUE, "lisa", "SalvadorDali", 5L, "qualitative", TRUE, "lisa", "SalvadorDali_1", 5L, "qualitative", TRUE, "lisa", "LeonardodaVinci", 5L, "qualitative", TRUE, "lisa", "GeneDavis", 5L, "qualitative", TRUE, "lisa", "GiorgiodeChirico", 5L, "qualitative", TRUE, "lisa", "GiorgiodeChirico_1", 5L, "qualitative", TRUE, "lisa", "EdgarDegas", 5L, "qualitative", TRUE, "lisa", "RobertDelaunay", 5L, "qualitative", TRUE, "lisa", "RobertDelaunay_1", 5L, "qualitative", TRUE, "lisa", "CharlesDemuth", 5L, "qualitative", TRUE, "lisa", "RichardDiebenkorn", 5L, "qualitative", TRUE, "lisa", "OttoDix", 5L, "qualitative", TRUE, "lisa", "OttoDix_1", 5L, "qualitative", TRUE, "lisa", "MarcelDuchamp", 5L, "qualitative", TRUE, "lisa", "AlbrechtDurer", 5L, "qualitative", TRUE, "lisa", "MaxErnst", 5L, "qualitative", TRUE, "lisa", "M_C_Escher", 5L, "qualitative", TRUE, "lisa", "PaulFeeley", 5L, "qualitative", TRUE, "lisa", "LorserFeitelson", 5L, "qualitative", TRUE, "lisa", "HelenFrankenthaler", 5L, "qualitative", TRUE, "lisa", "LucianFreud", 5L, "qualitative", TRUE, "lisa", "TerryFrost", 5L, "qualitative", TRUE, "lisa", "PaulGauguin", 5L, "qualitative", TRUE, "lisa", "RupprechtGeiger", 5L, "qualitative", TRUE, "lisa", "HansHofmann", 5L, "qualitative", TRUE, "lisa", "KatsushikaHokusai", 5L, "qualitative", TRUE, "lisa", "WinslowHomer", 5L, "qualitative", TRUE, "lisa", "EdwardHopper", 5L, "qualitative", TRUE, "lisa", "RobertIndiana", 5L, "qualitative", TRUE, "lisa", "JamesJean", 5L, "qualitative", TRUE, "lisa", "JasperJohns", 5L, "qualitative", TRUE, "lisa", "FridaKahlo", 5L, "divergent", TRUE, "lisa", "WassilyKandinsky", 5L, "qualitative", TRUE, "lisa", "WassilyKandinsky_1", 5L, "qualitative", TRUE, "lisa", "WassilyKandinsky_2", 5L, "qualitative", TRUE, "lisa", "PaulKlee", 5L, "qualitative", TRUE, "lisa", "PaulKlee_1", 5L, "qualitative", TRUE, "lisa", "YvesKlein", 5L, "qualitative", TRUE, "lisa", "GustavKlimt", 5L, "qualitative", TRUE, "lisa", "JeffKoons", 5L, "qualitative", TRUE, "lisa", "LeeKrasner", 5L, "qualitative", TRUE, "lisa", "JacobLawrence", 5L, "qualitative", TRUE, "lisa", "JacobLawrence_1", 5L, "qualitative", TRUE, "lisa", "SolLeWitt", 5L, "qualitative", TRUE, "lisa", "RoyLichtenstein", 5L, "qualitative", TRUE, "lisa", "RoyLichtenstein_1", 5L, "qualitative", TRUE, "lisa", "RoyLichtenstein_2", 5L, "qualitative", TRUE, "lisa", "KazimirMalevich", 5L, "qualitative", TRUE, "lisa", "EdouardManet", 5L, "qualitative", TRUE, "lisa", "ReneMagritte", 5L, "qualitative", TRUE, "lisa", "ReneMagritte_1", 5L, "qualitative", TRUE, "lisa", "Masaccio", 5L, "qualitative", TRUE, "lisa", "Michelangelo", 5L, "qualitative", TRUE, "lisa", "JoanMiro", 5L, "qualitative", TRUE, "lisa", "AmedeoModigliani", 5L, "qualitative", TRUE, "lisa", "PietMondrian", 5L, "qualitative", TRUE, "lisa", "ClaudeMonet", 5L, "qualitative", TRUE, "lisa", "ClaudeMonet_1", 5L, "qualitative", TRUE, "lisa", "ClaudeMonet_2", 5L, "qualitative", TRUE, "lisa", "EdvardMunch", 5L, "qualitative", TRUE, "lisa", "EdvardMunch_1", 5L, "qualitative", TRUE, "lisa", "BarnettNewman", 5L, "qualitative", TRUE, "lisa", "KennethNoland", 5L, "qualitative", TRUE, "lisa", "GeorgiaOKeeffe", 5L, "sequential", TRUE, "lisa", "ClaesOldenburg", 5L, "qualitative", TRUE, "lisa", "PabloPicasso", 5L, "qualitative", TRUE, "lisa", "PabloPicasso_1", 5L, "qualitative", TRUE, "lisa", "JacksonPollock", 5L, "qualitative", TRUE, "lisa", "Prince", 5L, "sequential", TRUE, "lisa", "JohnQuidor", 5L, "qualitative", TRUE, "lisa", "MelRamos", 5L, "qualitative", TRUE, "lisa", "OdilonRedon", 5L, "qualitative", TRUE, "lisa", "Rembrandt", 5L, "qualitative", TRUE, "lisa", "Pierre_AugusteRenoir", 5L, "qualitative", TRUE, "lisa", "Pierre_AugusteRenoir_1", 5L, "qualitative", TRUE, "lisa", "BridgetRiley", 5L, "qualitative", TRUE, "lisa", "JamesRosenquist", 5L, "qualitative", TRUE, "lisa", "MarkRothko", 5L, "sequential", TRUE, "lisa", "MarkRothko_1", 5L, "qualitative", TRUE, "lisa", "JohnSingerSargent", 5L, "qualitative", TRUE, "lisa", "JohnSingerSargent_1", 5L, "qualitative", TRUE, "lisa", "JohnSingerSargent_2", 5L, "qualitative", TRUE, "lisa", "OskarSchlemmer", 5L, "divergent", TRUE, "lisa", "GeorgesSeurat", 5L, "qualitative", TRUE, "lisa", "SandySkoglund", 5L, "qualitative", TRUE, "lisa", "PavelTchelitchew", 5L, "qualitative", TRUE, "lisa", "J_M_W_Turner", 5L, "qualitative", TRUE, "lisa", "CyTwombly", 5L, "qualitative", TRUE, "lisa", "JohannJacobUlrich", 5L, "sequential", TRUE, "lisa", "TheovanDoesburg", 5L, "qualitative", TRUE, "lisa", "TheovanDoesburg_1", 5L, "qualitative", TRUE, "lisa", "JanvanEyck", 5L, "qualitative", TRUE, "lisa", "VincentvanGogh", 5L, "qualitative", TRUE, "lisa", "VincentvanGogh_1", 5L, "qualitative", TRUE, "lisa", "VincentvanGogh_2", 5L, "qualitative", TRUE, "lisa", "RemediosVaro", 5L, "qualitative", TRUE, "lisa", "DiegoVelazquez", 5L, "qualitative", TRUE, "lisa", "JohannesVermeer", 5L, "qualitative", TRUE, "lisa", "JohannesVermeer_1", 5L, "qualitative", TRUE, "lisa", "AndyWarhol", 5L, "qualitative", TRUE, "lisa", "AndyWarhol_1", 5L, "qualitative", TRUE, "lisa", "AndyWarhol_2", 5L, "qualitative", TRUE, "lisa", "AndyWarhol_3", 5L, "qualitative", TRUE, "lisa", "GrantWood", 5L, "qualitative", TRUE, "lisa", "FrancescoXanto", 5L, "qualitative", TRUE, "lisa", "JackYoungerman", 5L, "qualitative", TRUE, "lisa", "KarlZerbe", 5L, "qualitative", TRUE, "nationalparkcolors", "SmokyMountains", 6L, "qualitative", TRUE, "nationalparkcolors", "RockyMountains", 5L, "qualitative", TRUE, "nationalparkcolors", "Yellowstone", 6L, "qualitative", TRUE, "nationalparkcolors", "Arches", 6L, "qualitative", TRUE, "nationalparkcolors", "ArcticGates", 6L, "qualitative", TRUE, "nationalparkcolors", "MtMckinley", 6L, "qualitative", TRUE, "nationalparkcolors", "GeneralGrant", 8L, "qualitative", TRUE, "nationalparkcolors", "Hawaii", 5L, "qualitative", TRUE, "nationalparkcolors", "CraterLake", 7L, "qualitative", TRUE, "nationalparkcolors", "Saguaro", 6L, "qualitative", TRUE, "nationalparkcolors", "GrandTeton", 5L, "qualitative", TRUE, "nationalparkcolors", "BryceCanyon", 5L, "qualitative", TRUE, "nationalparkcolors", "MtRainier", 5L, "qualitative", TRUE, "nationalparkcolors", "Badlands", 5L, "qualitative", TRUE, "nationalparkcolors", "Redwoods", 5L, "qualitative", TRUE, "nationalparkcolors", "Everglades", 5L, "qualitative", TRUE, "nationalparkcolors", "Voyageurs", 5L, "qualitative", TRUE, "nationalparkcolors", "BlueRidgePkwy", 6L, "qualitative", TRUE, "nationalparkcolors", "Denali", 5L, "qualitative", TRUE, "nationalparkcolors", "GreatBasin", 6L, "qualitative", TRUE, "nationalparkcolors", "ChannelIslands", 6L, "qualitative", TRUE, "nationalparkcolors", "Yosemite", 5L, "qualitative", TRUE, "nationalparkcolors", "Acadia", 6L, "qualitative", TRUE, "nationalparkcolors", "DeathValley", 6L, "qualitative", TRUE, "nationalparkcolors", "Zion", 5L, "qualitative", TRUE, "nbapalettes", "bobcats", 5L, "qualitative", TRUE, "nbapalettes", "bobcats_original", 4L, "qualitative", TRUE, "nbapalettes", "blazers", 3L, "qualitative", TRUE, "nbapalettes", "blazers_statement", 3L, "qualitative", TRUE, "nbapalettes", "blazers_city", 5L, "qualitative", TRUE, "nbapalettes", "blazers_city2", 4L, "qualitative", TRUE, "nbapalettes", "bucks", 4L, "qualitative", TRUE, "nbapalettes", "bucks_earned", 6L, "qualitative", TRUE, "nbapalettes", "bucks_00s", 3L, "qualitative", TRUE, "nbapalettes", "bucks_retro", 5L, "qualitative", TRUE, "nbapalettes", "bucks_city", 4L, "qualitative", TRUE, "nbapalettes", "bucks_city2", 6L, "qualitative", TRUE, "nbapalettes", "bulls", 2L, "qualitative", TRUE, "nbapalettes", "bulls_city", 3L, "qualitative", TRUE, "nbapalettes", "bulls_city2", 3L, "qualitative", TRUE, "nbapalettes", "bulls_holiday", 3L, "qualitative", TRUE, "nbapalettes", "cavaliers", 4L, "qualitative", TRUE, "nbapalettes", "cavaliers_90s", 3L, "qualitative", TRUE, "nbapalettes", "cavaliers_retro", 2L, "qualitative", TRUE, "nbapalettes", "celtics", 3L, "qualitative", TRUE, "nbapalettes", "celtics2", 5L, "qualitative", TRUE, "nbapalettes", "celtics_europe", 3L, "qualitative", TRUE, "nbapalettes", "celtics_champ", 4L, "qualitative", TRUE, "nbapalettes", "clippers", 4L, "qualitative", TRUE, "nbapalettes", "clippers_city", 5L, "qualitative", TRUE, "nbapalettes", "clippers_retro", 3L, "qualitative", TRUE, "nbapalettes", "clippers_original", 4L, "qualitative", TRUE, "nbapalettes", "grizzlies", 5L, "qualitative", TRUE, "nbapalettes", "grizzlies_00s", 4L, "qualitative", TRUE, "nbapalettes", "grizzlies_retro", 4L, "qualitative", TRUE, "nbapalettes", "grizzlies_europe", 5L, "qualitative", TRUE, "nbapalettes", "hawks", 4L, "qualitative", TRUE, "nbapalettes", "hawks_statement", 3L, "qualitative", TRUE, "nbapalettes", "hawks_90s", 4L, "qualitative", TRUE, "nbapalettes", "hawks_retro", 3L, "qualitative", TRUE, "nbapalettes", "heat", 3L, "qualitative", TRUE, "nbapalettes", "heat_90s", 3L, "qualitative", TRUE, "nbapalettes", "heat_vice", 3L, "qualitative", TRUE, "nbapalettes", "heat_dark", 4L, "qualitative", TRUE, "nbapalettes", "heat_0506", 3L, "qualitative", TRUE, "nbapalettes", "heat_military", 5L, "qualitative", TRUE, "nbapalettes", "hornets", 3L, "qualitative", TRUE, "nbapalettes", "hornets2", 4L, "qualitative", TRUE, "nbapalettes", "hornets_classic", 6L, "qualitative", TRUE, "nbapalettes", "hornets_city", 3L, "qualitative", TRUE, "nbapalettes", "hornets_city2", 4L, "qualitative", TRUE, "nbapalettes", "huskies", 2L, "qualitative", TRUE, "nbapalettes", "jazz", 3L, "qualitative", TRUE, "nbapalettes", "jazz_city", 9L, "sequential", TRUE, "nbapalettes", "jazz_classic", 5L, "qualitative", TRUE, "nbapalettes", "jazz_retro", 5L, "qualitative", TRUE, "nbapalettes", "kings", 3L, "qualitative", TRUE, "nbapalettes", "kings_city", 4L, "qualitative", TRUE, "nbapalettes", "kings_alt", 5L, "qualitative", TRUE, "nbapalettes", "kings_alt2", 3L, "qualitative", TRUE, "nbapalettes", "knicks", 3L, "qualitative", TRUE, "nbapalettes", "knicks_retro", 3L, "qualitative", TRUE, "nbapalettes", "knicks_city", 4L, "qualitative", TRUE, "nbapalettes", "knicks_city2", 4L, "qualitative", TRUE, "nbapalettes", "knicks_holiday", 5L, "qualitative", TRUE, "nbapalettes", "lakers", 3L, "qualitative", TRUE, "nbapalettes", "lakers_city", 4L, "qualitative", TRUE, "nbapalettes", "lakers_alt", 3L, "qualitative", TRUE, "nbapalettes", "magic", 3L, "qualitative", TRUE, "nbapalettes", "magic_city", 3L, "qualitative", TRUE, "nbapalettes", "magic_city2", 5L, "qualitative", TRUE, "nbapalettes", "mavericks", 4L, "qualitative", TRUE, "nbapalettes", "mavericks_alt", 5L, "qualitative", TRUE, "nbapalettes", "mavericks_city", 4L, "qualitative", TRUE, "nbapalettes", "mavericks_retro", 3L, "qualitative", TRUE, "nbapalettes", "mavericks_banner", 5L, "qualitative", TRUE, "nbapalettes", "nets", 2L, "qualitative", TRUE, "nbapalettes", "nets_city", 5L, "qualitative", TRUE, "nbapalettes", "hornets_believe", 6L, "qualitative", TRUE, "nbapalettes", "nuggets", 4L, "qualitative", TRUE, "nbapalettes", "nuggets_80s", 7L, "qualitative", TRUE, "nbapalettes", "nuggets_statement", 4L, "qualitative", TRUE, "nbapalettes", "nuggets_city", 5L, "qualitative", TRUE, "nbapalettes", "nuggets_city2", 7L, "qualitative", TRUE, "nbapalettes", "pacers", 3L, "qualitative", TRUE, "nbapalettes", "pacers_classic", 2L, "qualitative", TRUE, "nbapalettes", "pacers_venue", 4L, "qualitative", TRUE, "nbapalettes", "pacers_foundation", 4L, "qualitative", TRUE, "nbapalettes", "pelicans", 3L, "qualitative", TRUE, "nbapalettes", "pelicans_city", 4L, "qualitative", TRUE, "nbapalettes", "pelicans_pride", 4L, "qualitative", TRUE, "nbapalettes", "pistons", 4L, "qualitative", TRUE, "nbapalettes", "pistons_90s", 5L, "qualitative", TRUE, "nbapalettes", "pistons_city", 4L, "qualitative", TRUE, "nbapalettes", "raptors", 5L, "qualitative", TRUE, "nbapalettes", "raptors_statement", 3L, "qualitative", TRUE, "nbapalettes", "raptors_city", 4L, "qualitative", TRUE, "nbapalettes", "raptors_original", 4L, "qualitative", TRUE, "nbapalettes", "raptors_europe", 4L, "qualitative", TRUE, "nbapalettes", "raptors_military", 5L, "qualitative", TRUE, "nbapalettes", "rockets", 4L, "qualitative", TRUE, "nbapalettes", "rockets_90s", 4L, "qualitative", TRUE, "nbapalettes", "rockets_city", 3L, "qualitative", TRUE, "nbapalettes", "rockets_original", 3L, "qualitative", TRUE, "nbapalettes", "sixers", 5L, "qualitative", TRUE, "nbapalettes", "sixers_retro", 2L, "qualitative", TRUE, "nbapalettes", "sixers_90s", 4L, "qualitative", TRUE, "nbapalettes", "sixers_city", 4L, "qualitative", TRUE, "nbapalettes", "spurs", 5L, "qualitative", TRUE, "nbapalettes", "suns", 7L, "qualitative", TRUE, "nbapalettes", "suns_00s", 6L, "qualitative", TRUE, "nbapalettes", "suns_retro", 3L, "qualitative", TRUE, "nbapalettes", "suns_statement", 5L, "qualitative", TRUE, "nbapalettes", "suns_city", 13L, "qualitative", TRUE, "nbapalettes", "supersonics", 3L, "qualitative", TRUE, "nbapalettes", "supersonics_90s", 5L, "qualitative", TRUE, "nbapalettes", "supersonics_holiday", 4L, "qualitative", TRUE, "nbapalettes", "thunder", 4L, "qualitative", TRUE, "nbapalettes", "thunder_statement", 3L, "qualitative", TRUE, "nbapalettes", "thunder_city", 6L, "qualitative", TRUE, "nbapalettes", "thunder_city2", 5L, "qualitative", TRUE, "nbapalettes", "thunder_tribute", 9L, "qualitative", TRUE, "nbapalettes", "timberwolves", 4L, "qualitative", TRUE, "nbapalettes", "timberwolves_00s", 6L, "qualitative", TRUE, "nbapalettes", "timberwolves_classic", 6L, "qualitative", TRUE, "nbapalettes", "timberwolves_statement", 4L, "qualitative", TRUE, "nbapalettes", "warriors", 3L, "qualitative", TRUE, "nbapalettes", "warriors_00s", 4L, "qualitative", TRUE, "nbapalettes", "warriors_city", 3L, "qualitative", TRUE, "nbapalettes", "warriors_city2", 4L, "qualitative", TRUE, "nbapalettes", "warriors_cny", 3L, "qualitative", TRUE, "nbapalettes", "wizards", 3L, "qualitative", TRUE, "nbapalettes", "wizards_city", 3L, "qualitative", TRUE, "nbapalettes", "wizards_earned", 4L, "qualitative", TRUE, "NineteenEightyR", "cobra", 6L, "qualitative", TRUE, "NineteenEightyR", "electronic_night", 5L, "qualitative", TRUE, "NineteenEightyR", "hotpink", 5L, "sequential", TRUE, "NineteenEightyR", "malibu", 5L, "qualitative", TRUE, "NineteenEightyR", "miami1", 5L, "divergent", TRUE, "NineteenEightyR", "miami2", 5L, "divergent", TRUE, "NineteenEightyR", "seventies_aint_done_yet", 5L, "qualitative", TRUE, "NineteenEightyR", "sonny", 5L, "qualitative", TRUE, "NineteenEightyR", "sunset1", 5L, "qualitative", TRUE, "NineteenEightyR", "sunset2", 5L, "sequential", TRUE, "NineteenEightyR", "sunset3", 5L, "sequential", TRUE, "NineteenEightyR", "youngturqs", 12L, "qualitative", TRUE, "nord", "polarnight", 4L, "sequential", TRUE, "nord", "snowstorm", 3L, "sequential", TRUE, "nord", "frost", 4L, "qualitative", TRUE, "nord", "aurora", 5L, "qualitative", TRUE, "nord", "lumina", 5L, "qualitative", TRUE, "nord", "mountain_forms", 5L, "divergent", TRUE, "nord", "silver_mine", 5L, "divergent", TRUE, "nord", "lake_superior", 6L, "qualitative", TRUE, "nord", "victory_bonds", 5L, "qualitative", TRUE, "nord", "halifax_harbor", 6L, "sequential", TRUE, "nord", "moose_pond", 8L, "qualitative", TRUE, "nord", "algoma_forest", 7L, "qualitative", TRUE, "nord", "rocky_mountain", 6L, "qualitative", TRUE, "nord", "red_mountain", 8L, "qualitative", TRUE, "nord", "baie_mouton", 7L, "qualitative", TRUE, "nord", "afternoon_prarie", 9L, "qualitative", TRUE, "ochRe", "namatjira_qual", 8L, "qualitative", TRUE, "ochRe", "namatjira_div", 8L, "qualitative", TRUE, "ochRe", "mccrea", 11L, "qualitative", TRUE, "ochRe", "parliament", 8L, "qualitative", TRUE, "ochRe", "tasmania", 7L, "qualitative", TRUE, "ochRe", "nolan_ned", 5L, "qualitative", TRUE, "ochRe", "winmar", 7L, "qualitative", TRUE, "ochRe", "olsen_qual", 6L, "qualitative", TRUE, "ochRe", "olsen_seq", 14L, "qualitative", TRUE, "ochRe", "williams_pilbara", 7L, "qualitative", TRUE, "ochRe", "healthy_reef", 9L, "qualitative", TRUE, "ochRe", "emu_woman_paired", 18L, "qualitative", TRUE, "ochRe", "galah", 6L, "divergent", TRUE, "ochRe", "lorikeet", 6L, "qualitative", TRUE, "ochRe", "dead_reef", 6L, "qualitative", TRUE, "ochRe", "jumping_frog", 5L, "qualitative", TRUE, "palettetown", "bulbasaur", 13L, "qualitative", TRUE, "palettetown", "ivysaur", 13L, "qualitative", TRUE, "palettetown", "venusaur", 14L, "qualitative", TRUE, "palettetown", "charmander", 13L, "qualitative", TRUE, "palettetown", "charmeleon", 12L, "qualitative", TRUE, "palettetown", "charizard", 14L, "qualitative", TRUE, "palettetown", "squirtle", 14L, "qualitative", TRUE, "palettetown", "wartortle", 13L, "qualitative", TRUE, "palettetown", "blastoise", 14L, "qualitative", TRUE, "palettetown", "caterpie", 12L, "qualitative", TRUE, "palettetown", "metapod", 5L, "qualitative", TRUE, "palettetown", "butterfree", 13L, "qualitative", TRUE, "palettetown", "weedle", 11L, "qualitative", TRUE, "palettetown", "kakuna", 8L, "qualitative", TRUE, "palettetown", "beedrill", 14L, "qualitative", TRUE, "palettetown", "pidgey", 12L, "qualitative", TRUE, "palettetown", "pidgeotto", 13L, "qualitative", TRUE, "palettetown", "pidgeot", 14L, "qualitative", TRUE, "palettetown", "rattata", 13L, "qualitative", TRUE, "palettetown", "raticate", 13L, "qualitative", TRUE, "palettetown", "spearow", 15L, "qualitative", TRUE, "palettetown", "fearow", 12L, "qualitative", TRUE, "palettetown", "ekans", 12L, "qualitative", TRUE, "palettetown", "arbok", 10L, "qualitative", TRUE, "palettetown", "pikachu", 10L, "qualitative", TRUE, "palettetown", "raichu", 14L, "qualitative", TRUE, "palettetown", "sandshrew", 10L, "qualitative", TRUE, "palettetown", "sandslash", 13L, "qualitative", TRUE, "palettetown", "nidoranf", 11L, "qualitative", TRUE, "palettetown", "nidorina", 13L, "qualitative", TRUE, "palettetown", "nidoqueen", 13L, "qualitative", TRUE, "palettetown", "nidoranm", 10L, "qualitative", TRUE, "palettetown", "nidorino", 12L, "qualitative", TRUE, "palettetown", "nidoking", 11L, "qualitative", TRUE, "palettetown", "clefairy", 13L, "qualitative", TRUE, "palettetown", "clefable", 12L, "qualitative", TRUE, "palettetown", "vulpix", 13L, "qualitative", TRUE, "palettetown", "ninetales", 7L, "qualitative", TRUE, "palettetown", "jigglypuff", 11L, "qualitative", TRUE, "palettetown", "wigglytuff", 12L, "qualitative", TRUE, "palettetown", "zubat", 11L, "qualitative", TRUE, "palettetown", "golbat", 11L, "qualitative", TRUE, "palettetown", "oddish", 10L, "qualitative", TRUE, "palettetown", "gloom", 14L, "qualitative", TRUE, "palettetown", "vileplume", 13L, "qualitative", TRUE, "palettetown", "paras", 12L, "qualitative", TRUE, "palettetown", "parasect", 11L, "qualitative", TRUE, "palettetown", "venonat", 14L, "qualitative", TRUE, "palettetown", "venomoth", 11L, "qualitative", TRUE, "palettetown", "diglett", 4L, "qualitative", TRUE, "palettetown", "dugtrio", 12L, "qualitative", TRUE, "palettetown", "meowth", 13L, "qualitative", TRUE, "palettetown", "persian", 12L, "qualitative", TRUE, "palettetown", "psyduck", 10L, "qualitative", TRUE, "palettetown", "golduck", 13L, "qualitative", TRUE, "palettetown", "mankey", 14L, "qualitative", TRUE, "palettetown", "primeape", 15L, "qualitative", TRUE, "palettetown", "growlithe", 11L, "qualitative", TRUE, "palettetown", "arcanine", 14L, "qualitative", TRUE, "palettetown", "poliwag", 11L, "qualitative", TRUE, "palettetown", "poliwhirl", 9L, "qualitative", TRUE, "palettetown", "poliwrath", 9L, "qualitative", TRUE, "palettetown", "abra", 8L, "qualitative", TRUE, "palettetown", "kadabra", 14L, "qualitative", TRUE, "palettetown", "alakazam", 12L, "qualitative", TRUE, "palettetown", "machop", 13L, "qualitative", TRUE, "palettetown", "machoke", 13L, "qualitative", TRUE, "palettetown", "machamp", 13L, "qualitative", TRUE, "palettetown", "bellsprout", 13L, "qualitative", TRUE, "palettetown", "weepinbell", 14L, "qualitative", TRUE, "palettetown", "victreebel", 14L, "qualitative", TRUE, "palettetown", "tentacool", 14L, "qualitative", TRUE, "palettetown", "tentacruel", 14L, "qualitative", TRUE, "palettetown", "geodude", 6L, "qualitative", TRUE, "palettetown", "graveler", 6L, "qualitative", TRUE, "palettetown", "golem", 12L, "qualitative", TRUE, "palettetown", "ponyta", 11L, "qualitative", TRUE, "palettetown", "rapidash", 11L, "qualitative", TRUE, "palettetown", "slowpoke", 12L, "qualitative", TRUE, "palettetown", "slowbro", 13L, "qualitative", TRUE, "palettetown", "magnemite", 14L, "qualitative", TRUE, "palettetown", "magneton", 14L, "qualitative", TRUE, "palettetown", "farfetchd", 14L, "qualitative", TRUE, "palettetown", "doduo", 9L, "qualitative", TRUE, "palettetown", "dodrio", 15L, "qualitative", TRUE, "palettetown", "seel", 11L, "qualitative", TRUE, "palettetown", "dewgong", 7L, "qualitative", TRUE, "palettetown", "grimer", 9L, "qualitative", TRUE, "palettetown", "muk", 8L, "qualitative", TRUE, "palettetown", "shellder", 9L, "qualitative", TRUE, "palettetown", "cloyster", 9L, "qualitative", TRUE, "palettetown", "gastly", 8L, "qualitative", TRUE, "palettetown", "haunter", 10L, "qualitative", TRUE, "palettetown", "gengar", 10L, "qualitative", TRUE, "palettetown", "onix", 6L, "qualitative", TRUE, "palettetown", "drowzee", 9L, "qualitative", TRUE, "palettetown", "hypno", 9L, "qualitative", TRUE, "palettetown", "krabby", 10L, "qualitative", TRUE, "palettetown", "kingler", 10L, "qualitative", TRUE, "palettetown", "voltorb", 9L, "qualitative", TRUE, "palettetown", "electrode", 10L, "qualitative", TRUE, "palettetown", "exeggcute", 9L, "qualitative", TRUE, "palettetown", "exeggutor", 14L, "qualitative", TRUE, "palettetown", "cubone", 13L, "qualitative", TRUE, "palettetown", "marowak", 14L, "qualitative", TRUE, "palettetown", "hitmonlee", 12L, "qualitative", TRUE, "palettetown", "hitmonchan", 13L, "qualitative", TRUE, "palettetown", "lickitung", 9L, "qualitative", TRUE, "palettetown", "koffing", 12L, "qualitative", TRUE, "palettetown", "weezing", 13L, "qualitative", TRUE, "palettetown", "rhyhorn", 8L, "qualitative", TRUE, "palettetown", "rhydon", 11L, "qualitative", TRUE, "palettetown", "chansey", 9L, "qualitative", TRUE, "palettetown", "tangela", 9L, "qualitative", TRUE, "palettetown", "kangaskhan", 14L, "qualitative", TRUE, "palettetown", "horsea", 10L, "qualitative", TRUE, "palettetown", "seadra", 10L, "qualitative", TRUE, "palettetown", "goldeen", 11L, "qualitative", TRUE, "palettetown", "seaking", 12L, "qualitative", TRUE, "palettetown", "staryu", 12L, "qualitative", TRUE, "palettetown", "starmie", 12L, "qualitative", TRUE, "palettetown", "mr_mime", 12L, "qualitative", TRUE, "palettetown", "scyther", 12L, "qualitative", TRUE, "palettetown", "jynx", 15L, "qualitative", TRUE, "palettetown", "electabuzz", 10L, "qualitative", TRUE, "palettetown", "magmar", 12L, "qualitative", TRUE, "palettetown", "pinsir", 9L, "qualitative", TRUE, "palettetown", "tauros", 13L, "qualitative", TRUE, "palettetown", "magikarp", 13L, "qualitative", TRUE, "palettetown", "gyarados", 15L, "qualitative", TRUE, "palettetown", "lapras", 15L, "qualitative", TRUE, "palettetown", "ditto", 6L, "qualitative", TRUE, "palettetown", "eevee", 9L, "qualitative", TRUE, "palettetown", "vaporeon", 15L, "qualitative", TRUE, "palettetown", "jolteon", 11L, "qualitative", TRUE, "palettetown", "flareon", 10L, "qualitative", TRUE, "palettetown", "porygon", 11L, "qualitative", TRUE, "palettetown", "omanyte", 12L, "qualitative", TRUE, "palettetown", "omastar", 12L, "qualitative", TRUE, "palettetown", "kabuto", 11L, "qualitative", TRUE, "palettetown", "kabutops", 9L, "qualitative", TRUE, "palettetown", "aerodactyl", 7L, "qualitative", TRUE, "palettetown", "snorlax", 14L, "qualitative", TRUE, "palettetown", "articuno", 12L, "qualitative", TRUE, "palettetown", "zapdos", 10L, "qualitative", TRUE, "palettetown", "moltres", 14L, "qualitative", TRUE, "palettetown", "dratini", 9L, "qualitative", TRUE, "palettetown", "dragonair", 12L, "qualitative", TRUE, "palettetown", "dragonite", 13L, "qualitative", TRUE, "palettetown", "mewtwo", 9L, "qualitative", TRUE, "palettetown", "mew", 6L, "qualitative", TRUE, "palettetown", "chikorita", 11L, "qualitative", TRUE, "palettetown", "bayleef", 14L, "qualitative", TRUE, "palettetown", "meganium", 14L, "qualitative", TRUE, "palettetown", "cyndaquil", 13L, "qualitative", TRUE, "palettetown", "quilava", 14L, "qualitative", TRUE, "palettetown", "typhlosion", 14L, "qualitative", TRUE, "palettetown", "totodile", 11L, "qualitative", TRUE, "palettetown", "croconaw", 13L, "qualitative", TRUE, "palettetown", "feraligatr", 14L, "qualitative", TRUE, "palettetown", "sentret", 12L, "qualitative", TRUE, "palettetown", "furret", 11L, "qualitative", TRUE, "palettetown", "hoothoot", 13L, "qualitative", TRUE, "palettetown", "noctowl", 13L, "qualitative", TRUE, "palettetown", "ledyba", 12L, "qualitative", TRUE, "palettetown", "ledian", 14L, "qualitative", TRUE, "palettetown", "spinarak", 14L, "qualitative", TRUE, "palettetown", "ariados", 14L, "qualitative", TRUE, "palettetown", "crobat", 9L, "qualitative", TRUE, "palettetown", "chinchou", 13L, "qualitative", TRUE, "palettetown", "lanturn", 14L, "qualitative", TRUE, "palettetown", "pichu", 11L, "qualitative", TRUE, "palettetown", "cleffa", 11L, "qualitative", TRUE, "palettetown", "igglybuff", 9L, "qualitative", TRUE, "palettetown", "togepi", 12L, "qualitative", TRUE, "palettetown", "togetic", 11L, "qualitative", TRUE, "palettetown", "natu", 14L, "qualitative", TRUE, "palettetown", "xatu", 15L, "qualitative", TRUE, "palettetown", "mareep", 14L, "qualitative", TRUE, "palettetown", "flaaffy", 13L, "qualitative", TRUE, "palettetown", "ampharos", 12L, "qualitative", TRUE, "palettetown", "bellossom", 13L, "qualitative", TRUE, "palettetown", "marill", 10L, "qualitative", TRUE, "palettetown", "azumarill", 10L, "qualitative", TRUE, "palettetown", "sudowoodo", 11L, "qualitative", TRUE, "palettetown", "politoed", 14L, "qualitative", TRUE, "palettetown", "hoppip", 10L, "qualitative", TRUE, "palettetown", "skiploom", 11L, "qualitative", TRUE, "palettetown", "jumpluff", 13L, "qualitative", TRUE, "palettetown", "aipom", 12L, "qualitative", TRUE, "palettetown", "sunkern", 13L, "qualitative", TRUE, "palettetown", "sunflora", 12L, "qualitative", TRUE, "palettetown", "yanma", 11L, "qualitative", TRUE, "palettetown", "wooper", 9L, "qualitative", TRUE, "palettetown", "quagsire", 9L, "qualitative", TRUE, "palettetown", "espeon", 9L, "qualitative", TRUE, "palettetown", "umbreon", 10L, "qualitative", TRUE, "palettetown", "murkrow", 12L, "qualitative", TRUE, "palettetown", "slowking", 13L, "qualitative", TRUE, "palettetown", "misdreavus", 13L, "qualitative", TRUE, "palettetown", "unown", 5L, "qualitative", TRUE, "palettetown", "wobbuffet", 8L, "qualitative", TRUE, "palettetown", "girafarig", 13L, "qualitative", TRUE, "palettetown", "pineco", 5L, "qualitative", TRUE, "palettetown", "forretress", 10L, "qualitative", TRUE, "palettetown", "dunsparce", 13L, "qualitative", TRUE, "palettetown", "gligar", 12L, "qualitative", TRUE, "palettetown", "steelix", 7L, "qualitative", TRUE, "palettetown", "snubbull", 12L, "qualitative", TRUE, "palettetown", "granbull", 11L, "qualitative", TRUE, "palettetown", "qwilfish", 12L, "qualitative", TRUE, "palettetown", "scizor", 11L, "qualitative", TRUE, "palettetown", "shuckle", 12L, "qualitative", TRUE, "palettetown", "heracross", 11L, "qualitative", TRUE, "palettetown", "sneasel", 14L, "qualitative", TRUE, "palettetown", "teddiursa", 12L, "qualitative", TRUE, "palettetown", "ursaring", 13L, "qualitative", TRUE, "palettetown", "slugma", 9L, "qualitative", TRUE, "palettetown", "magcargo", 12L, "qualitative", TRUE, "palettetown", "swinub", 9L, "qualitative", TRUE, "palettetown", "piloswine", 12L, "qualitative", TRUE, "palettetown", "corsola", 9L, "qualitative", TRUE, "palettetown", "remoraid", 9L, "qualitative", TRUE, "palettetown", "octillery", 12L, "qualitative", TRUE, "palettetown", "delibird", 13L, "qualitative", TRUE, "palettetown", "mantine", 13L, "qualitative", TRUE, "palettetown", "skarmory", 12L, "qualitative", TRUE, "palettetown", "houndour", 11L, "qualitative", TRUE, "palettetown", "houndoom", 12L, "qualitative", TRUE, "palettetown", "kingdra", 12L, "qualitative", TRUE, "palettetown", "phanpy", 9L, "qualitative", TRUE, "palettetown", "donphan", 13L, "qualitative", TRUE, "palettetown", "porygon2", 12L, "qualitative", TRUE, "palettetown", "stantler", 12L, "qualitative", TRUE, "palettetown", "smeargle", 12L, "qualitative", TRUE, "palettetown", "tyrogue", 12L, "qualitative", TRUE, "palettetown", "hitmontop", 12L, "qualitative", TRUE, "palettetown", "smoochum", 12L, "qualitative", TRUE, "palettetown", "elekid", 9L, "qualitative", TRUE, "palettetown", "magby", 10L, "qualitative", TRUE, "palettetown", "miltank", 15L, "qualitative", TRUE, "palettetown", "blissey", 9L, "qualitative", TRUE, "palettetown", "raikou", 13L, "qualitative", TRUE, "palettetown", "entei", 14L, "qualitative", TRUE, "palettetown", "suicune", 14L, "qualitative", TRUE, "palettetown", "larvitar", 9L, "qualitative", TRUE, "palettetown", "pupitar", 9L, "qualitative", TRUE, "palettetown", "tyranitar", 11L, "qualitative", TRUE, "palettetown", "lugia", 9L, "qualitative", TRUE, "palettetown", "ho_oh", 13L, "qualitative", TRUE, "palettetown", "celebi", 11L, "qualitative", TRUE, "palettetown", "treecko", 14L, "qualitative", TRUE, "palettetown", "grovyle", 14L, "qualitative", TRUE, "palettetown", "sceptile", 13L, "qualitative", TRUE, "palettetown", "torchic", 12L, "qualitative", TRUE, "palettetown", "combusken", 14L, "qualitative", TRUE, "palettetown", "blaziken", 14L, "qualitative", TRUE, "palettetown", "mudkip", 14L, "qualitative", TRUE, "palettetown", "marshtomp", 14L, "qualitative", TRUE, "palettetown", "swampert", 14L, "qualitative", TRUE, "palettetown", "poochyena", 14L, "qualitative", TRUE, "palettetown", "mightyena", 11L, "qualitative", TRUE, "palettetown", "zigzagoon", 14L, "qualitative", TRUE, "palettetown", "linoone", 11L, "qualitative", TRUE, "palettetown", "wurmple", 13L, "qualitative", TRUE, "palettetown", "silcoon", 9L, "qualitative", TRUE, "palettetown", "beautifly", 13L, "qualitative", TRUE, "palettetown", "cascoon", 8L, "qualitative", TRUE, "palettetown", "dustox", 14L, "qualitative", TRUE, "palettetown", "lotad", 13L, "qualitative", TRUE, "palettetown", "lombre", 12L, "qualitative", TRUE, "palettetown", "ludicolo", 15L, "qualitative", TRUE, "palettetown", "seedot", 11L, "qualitative", TRUE, "palettetown", "nuzleaf", 14L, "qualitative", TRUE, "palettetown", "shiftry", 13L, "qualitative", TRUE, "palettetown", "taillow", 15L, "qualitative", TRUE, "palettetown", "swellow", 15L, "qualitative", TRUE, "palettetown", "wingull", 14L, "qualitative", TRUE, "palettetown", "pelipper", 15L, "qualitative", TRUE, "palettetown", "ralts", 11L, "qualitative", TRUE, "palettetown", "kirlia", 13L, "qualitative", TRUE, "palettetown", "gardevoir", 12L, "qualitative", TRUE, "palettetown", "surskit", 12L, "qualitative", TRUE, "palettetown", "masquerain", 14L, "qualitative", TRUE, "palettetown", "shroomish", 11L, "qualitative", TRUE, "palettetown", "breloom", 15L, "qualitative", TRUE, "palettetown", "slakoth", 14L, "qualitative", TRUE, "palettetown", "vigoroth", 15L, "qualitative", TRUE, "palettetown", "slaking", 14L, "qualitative", TRUE, "palettetown", "nincada", 15L, "qualitative", TRUE, "palettetown", "ninjask", 13L, "qualitative", TRUE, "palettetown", "shedinja", 10L, "qualitative", TRUE, "palettetown", "whismur", 12L, "qualitative", TRUE, "palettetown", "loudred", 14L, "qualitative", TRUE, "palettetown", "exploud", 15L, "qualitative", TRUE, "palettetown", "makuhita", 12L, "qualitative", TRUE, "palettetown", "hariyama", 15L, "qualitative", TRUE, "palettetown", "azurill", 11L, "qualitative", TRUE, "palettetown", "nosepass", 11L, "qualitative", TRUE, "palettetown", "skitty", 11L, "qualitative", TRUE, "palettetown", "delcatty", 15L, "qualitative", TRUE, "palettetown", "sableye", 13L, "qualitative", TRUE, "palettetown", "mawile", 14L, "qualitative", TRUE, "palettetown", "aron", 9L, "qualitative", TRUE, "palettetown", "lairon", 12L, "qualitative", TRUE, "palettetown", "aggron", 12L, "qualitative", TRUE, "palettetown", "meditite", 13L, "qualitative", TRUE, "palettetown", "medicham", 13L, "qualitative", TRUE, "palettetown", "electrike", 10L, "qualitative", TRUE, "palettetown", "manectric", 13L, "qualitative", TRUE, "palettetown", "plusle", 10L, "qualitative", TRUE, "palettetown", "minun", 13L, "qualitative", TRUE, "palettetown", "volbeat", 15L, "qualitative", TRUE, "palettetown", "illumise", 15L, "qualitative", TRUE, "palettetown", "roselia", 15L, "qualitative", TRUE, "palettetown", "gulpin", 11L, "qualitative", TRUE, "palettetown", "swalot", 14L, "qualitative", TRUE, "palettetown", "carvanha", 13L, "qualitative", TRUE, "palettetown", "sharpedo", 14L, "qualitative", TRUE, "palettetown", "wailmer", 15L, "qualitative", TRUE, "palettetown", "wailord", 13L, "qualitative", TRUE, "palettetown", "numel", 15L, "qualitative", TRUE, "palettetown", "camerupt", 13L, "qualitative", TRUE, "palettetown", "torkoal", 12L, "qualitative", TRUE, "palettetown", "spoink", 13L, "qualitative", TRUE, "palettetown", "grumpig", 15L, "qualitative", TRUE, "palettetown", "spinda", 10L, "qualitative", TRUE, "palettetown", "trapinch", 10L, "qualitative", TRUE, "palettetown", "vibrava", 14L, "qualitative", TRUE, "palettetown", "flygon", 15L, "qualitative", TRUE, "palettetown", "cacnea", 14L, "qualitative", TRUE, "palettetown", "cacturne", 12L, "qualitative", TRUE, "palettetown", "swablu", 12L, "qualitative", TRUE, "palettetown", "altaria", 12L, "qualitative", TRUE, "palettetown", "zangoose", 15L, "qualitative", TRUE, "palettetown", "seviper", 14L, "qualitative", TRUE, "palettetown", "lunatone", 14L, "qualitative", TRUE, "palettetown", "solrock", 14L, "qualitative", TRUE, "palettetown", "barboach", 12L, "qualitative", TRUE, "palettetown", "whiscash", 15L, "qualitative", TRUE, "palettetown", "corphish", 13L, "qualitative", TRUE, "palettetown", "crawdaunt", 15L, "qualitative", TRUE, "palettetown", "baltoy", 7L, "qualitative", TRUE, "palettetown", "claydol", 12L, "qualitative", TRUE, "palettetown", "lileep", 12L, "qualitative", TRUE, "palettetown", "cradily", 12L, "qualitative", TRUE, "palettetown", "anorith", 14L, "qualitative", TRUE, "palettetown", "armaldo", 14L, "qualitative", TRUE, "palettetown", "feebas", 13L, "qualitative", TRUE, "palettetown", "milotic", 14L, "qualitative", TRUE, "palettetown", "castform", 9L, "qualitative", TRUE, "palettetown", "kecleon", 15L, "qualitative", TRUE, "palettetown", "shuppet", 12L, "qualitative", TRUE, "palettetown", "banette", 12L, "qualitative", TRUE, "palettetown", "duskull", 13L, "qualitative", TRUE, "palettetown", "dusclops", 11L, "qualitative", TRUE, "palettetown", "tropius", 15L, "qualitative", TRUE, "palettetown", "chimecho", 13L, "qualitative", TRUE, "palettetown", "absol", 11L, "qualitative", TRUE, "palettetown", "wynaut", 11L, "qualitative", TRUE, "palettetown", "snorunt", 15L, "qualitative", TRUE, "palettetown", "glalie", 13L, "qualitative", TRUE, "palettetown", "spheal", 12L, "qualitative", TRUE, "palettetown", "sealeo", 15L, "qualitative", TRUE, "palettetown", "walrein", 12L, "qualitative", TRUE, "palettetown", "clamperl", 14L, "qualitative", TRUE, "palettetown", "huntail", 14L, "qualitative", TRUE, "palettetown", "gorebyss", 12L, "qualitative", TRUE, "palettetown", "relicanth", 13L, "qualitative", TRUE, "palettetown", "luvdisc", 9L, "qualitative", TRUE, "palettetown", "bagon", 11L, "qualitative", TRUE, "palettetown", "shelgon", 12L, "qualitative", TRUE, "palettetown", "salamence", 13L, "qualitative", TRUE, "palettetown", "beldum", 10L, "qualitative", TRUE, "palettetown", "metang", 13L, "qualitative", TRUE, "palettetown", "metagross", 13L, "qualitative", TRUE, "palettetown", "regirock", 13L, "qualitative", TRUE, "palettetown", "regice", 10L, "qualitative", TRUE, "palettetown", "registeel", 13L, "qualitative", TRUE, "palettetown", "latias", 14L, "qualitative", TRUE, "palettetown", "latios", 14L, "qualitative", TRUE, "palettetown", "kyogre", 14L, "qualitative", TRUE, "palettetown", "groudon", 14L, "qualitative", TRUE, "palettetown", "rayquaza", 12L, "qualitative", TRUE, "palettetown", "jirachi", 12L, "qualitative", TRUE, "palettetown", "deoxys", 14L, "qualitative", TRUE, "palettetown", "teamrocket", 6L, "qualitative", TRUE, "palettetown", "starterspairs", 6L, "qualitative", TRUE, "palettetown", "startersDark", 6L, "qualitative", TRUE, "pals", "alphabet", 26L, "qualitative", FALSE, "pals", "alphabet2", 26L, "qualitative", FALSE, "pals", "glasbey", 32L, "qualitative", FALSE, "pals", "kelly", 22L, "qualitative", FALSE, "pals", "polychrome", 36L, "qualitative", FALSE, "pals", "stepped", 24L, "qualitative", FALSE, "pals", "tol", 12L, "qualitative", FALSE, "pals", "watlington", 16L, "qualitative", FALSE, "Polychrome", "alphabet", 26L, "qualitative", FALSE, "Polychrome", "dark", 24L, "qualitative", FALSE, "Polychrome", "glasbey", 32L, "qualitative", FALSE, "Polychrome", "green_armytage", 26L, "qualitative", FALSE, "Polychrome", "kelly", 22L, "qualitative", FALSE, "Polychrome", "light", 24L, "qualitative", FALSE, "Polychrome", "palette36", 36L, "qualitative", FALSE, "Manu", "Hihi", 5L, "qualitative", TRUE, "Manu", "Hoiho", 6L, "qualitative", TRUE, "Manu", "Kaka", 5L, "qualitative", TRUE, "Manu", "Kakapo", 6L, "qualitative", TRUE, "Manu", "Kakariki", 5L, "qualitative", TRUE, "Manu", "Kea", 7L, "qualitative", TRUE, "Manu", "Kereru", 6L, "qualitative", TRUE, "Manu", "Kereru_orig", 5L, "qualitative", TRUE, "Manu", "Korimako", 6L, "qualitative", TRUE, "Manu", "Korora", 5L, "qualitative", TRUE, "Manu", "Kotare", 6L, "qualitative", TRUE, "Manu", "Putangitangi", 6L, "qualitative", TRUE, "Manu", "Takahe", 5L, "qualitative", TRUE, "Manu", "Takapu", 5L, "qualitative", TRUE, "Manu", "Titipounamu", 6L, "qualitative", TRUE, "Manu", "Tui", 6L, "qualitative", TRUE, "Manu", "Pepetuna", 5L, "qualitative", TRUE, "Manu", "Pohutukawa", 6L, "qualitative", TRUE, "Manu", "Gloomy_Nudi", 5L, "qualitative", TRUE, "MapPalettes", "green_machine", 5L, "sequential", FALSE, "MapPalettes", "bruiser", 5L, "sequential", FALSE, "MapPalettes", "tealberry_pie", 5L, "divergent", FALSE, "MapPalettes", "the_joker", 5L, "divergent", FALSE, "MapPalettes", "sunset", 5L, "divergent", FALSE, "MapPalettes", "irish_flag", 5L, "divergent", FALSE, "miscpalettes", "dreaming", 8L, "qualitative", TRUE, "miscpalettes", "jojo", 8L, "qualitative", TRUE, "miscpalettes", "beach", 8L, "qualitative", TRUE, "miscpalettes", "waterfall", 8L, "qualitative", TRUE, "miscpalettes", "sunset", 8L, "qualitative", TRUE, "miscpalettes", "bright", 16L, "qualitative", TRUE, "miscpalettes", "grayscale", 16L, "sequential", TRUE, "miscpalettes", "excel", 16L, "qualitative", TRUE, "miscpalettes", "light", 10L, "qualitative", TRUE, "miscpalettes", "pastel", 16L, "qualitative", TRUE, "miscpalettes", "earthTones", 16L, "qualitative", TRUE, "miscpalettes", "semiTransparent", 16L, "qualitative", TRUE, "miscpalettes", "berry", 11L, "qualitative", TRUE, "miscpalettes", "chocolate", 10L, "qualitative", TRUE, "miscpalettes", "fire", 10L, "qualitative", TRUE, "miscpalettes", "seaGreen", 10L, "qualitative", TRUE, "miscpalettes", "brightPastel", 15L, "qualitative", TRUE, "palettesForR", "Android", 15L, "qualitative", TRUE, "palettesForR", "Bears", 256L, "qualitative", TRUE, "palettesForR", "Bgold", 256L, "qualitative", TRUE, "palettesForR", "Blues", 256L, "qualitative", TRUE, "palettesForR", "Borders", 256L, "qualitative", TRUE, "palettesForR", "Browns", 22L, "qualitative", TRUE, "palettesForR", "Caramel", 256L, "qualitative", TRUE, "palettesForR", "Cascade", 256L, "qualitative", TRUE, "palettesForR", "China", 256L, "qualitative", TRUE, "palettesForR", "Coldfire", 256L, "qualitative", TRUE, "palettesForR", "Cool", 8L, "qualitative", TRUE, "palettesForR", "Cranes", 256L, "qualitative", TRUE, "palettesForR", "Dark", 256L, "qualitative", TRUE, "palettesForR", "Default", 23L, "qualitative", TRUE, "palettesForR", "Echo", 27L, "qualitative", TRUE, "palettesForR", "Ega", 240L, "qualitative", TRUE, "palettesForR", "Firecode", 256L, "sequential", TRUE, "palettesForR", "Gold", 102L, "sequential", TRUE, "palettesForR", "Gray", 256L, "sequential", TRUE, "palettesForR", "Grayblue", 256L, "divergent", TRUE, "palettesForR", "Grays", 31L, "sequential", TRUE, "palettesForR", "GrayViolet", 256L, "divergent", TRUE, "palettesForR", "Greens", 256L, "qualitative", TRUE, "palettesForR", "Hilite", 170L, "qualitative", TRUE, "palettesForR", "Inkscape", 431L, "qualitative", TRUE, "palettesForR", "Khaki", 156L, "qualitative", TRUE, "palettesForR", "LaTeX", 136L, "qualitative", TRUE, "palettesForR", "Lights", 25L, "qualitative", TRUE, "palettesForR", "MATLAB", 73L, "qualitative", TRUE, "palettesForR", "Muted", 78L, "qualitative", TRUE, "palettesForR", "Named", 448L, "qualitative", TRUE, "palettesForR", "News3", 256L, "qualitative", TRUE, "palettesForR", "Op2", 256L, "qualitative", TRUE, "palettesForR", "Paintjet", 16L, "qualitative", TRUE, "palettesForR", "Pastels", 18L, "qualitative", TRUE, "palettesForR", "Plasma", 256L, "qualitative", TRUE, "palettesForR", "Reds", 177L, "qualitative", TRUE, "palettesForR", "Royal", 222L, "qualitative", TRUE, "palettesForR", "SVG", 139L, "qualitative", TRUE, "palettesForR", "Tango", 29L, "qualitative", TRUE, "palettesForR", "Topographic", 191L, "qualitative", TRUE, "palettesForR", "Visibone", 336L, "qualitative", TRUE, "palettesForR", "Volcano", 256L, "qualitative", TRUE, "palettesForR", "Warm", 7L, "qualitative", TRUE, "palettesForR", "Web", 216L, "qualitative", TRUE, "palettesForR", "WebHex", 216L, "qualitative", TRUE, "palettesForR", "WebSafe22", 22L, "qualitative", TRUE, "palettesForR", "Windows", 31L, "qualitative", TRUE, "PNWColors", "Starfish", 7L, "sequential", TRUE, "PNWColors", "Shuksan", 8L, "sequential", TRUE, "PNWColors", "Bay", 5L, "qualitative", TRUE, "PNWColors", "Winter", 5L, "sequential", TRUE, "PNWColors", "Lake", 8L, "sequential", TRUE, "PNWColors", "Sunset", 7L, "sequential", TRUE, "PNWColors", "Shuksan2", 5L, "divergent", TRUE, "PNWColors", "Cascades", 6L, "qualitative", TRUE, "PNWColors", "Sailboat", 6L, "qualitative", TRUE, "PNWColors", "Moth", 5L, "qualitative", TRUE, "PNWColors", "Spring", 6L, "divergent", TRUE, "PNWColors", "Mushroom", 6L, "sequential", TRUE, "PNWColors", "Sunset2", 5L, "sequential", TRUE, "PNWColors", "Anemone", 7L, "divergent", TRUE, "rcartocolor", "ag_Sunset", 7L, "sequential", FALSE, "rcartocolor", "ag_GrnYl", 7L, "sequential", FALSE, "rcartocolor", "Tropic", 7L, "divergent", FALSE, "rcartocolor", "Temps", 7L, "divergent", FALSE, "rcartocolor", "TealRose", 7L, "divergent", FALSE, "rcartocolor", "Geyser", 7L, "divergent", FALSE, "rcartocolor", "Fall", 7L, "divergent", FALSE, "rcartocolor", "Earth", 7L, "divergent", FALSE, "rcartocolor", "ArmyRose", 7L, "divergent", FALSE, "rcartocolor", "Vivid", 12L, "qualitative", FALSE, "rcartocolor", "Safe", 12L, "qualitative", FALSE, "rcartocolor", "Prism", 12L, "qualitative", FALSE, "rcartocolor", "Pastel", 12L, "qualitative", FALSE, "rcartocolor", "Bold", 12L, "qualitative", FALSE, "rcartocolor", "Antique", 12L, "qualitative", FALSE, "rcartocolor", "TealGrn", 7L, "sequential", FALSE, "rcartocolor", "Teal", 7L, "sequential", FALSE, "rcartocolor", "SunsetDark", 7L, "sequential", FALSE, "rcartocolor", "Sunset", 7L, "sequential", FALSE, "rcartocolor", "RedOr", 7L, "sequential", FALSE, "rcartocolor", "PurpOr", 7L, "sequential", FALSE, "rcartocolor", "Purp", 7L, "sequential", FALSE, "rcartocolor", "PinkYl", 7L, "sequential", FALSE, "rcartocolor", "Peach", 7L, "sequential", FALSE, "rcartocolor", "OrYel", 7L, "sequential", FALSE, "rcartocolor", "Mint", 7L, "sequential", FALSE, "rcartocolor", "Magenta", 7L, "sequential", FALSE, "rcartocolor", "Emrld", 7L, "sequential", FALSE, "rcartocolor", "DarkMint", 7L, "sequential", FALSE, "rcartocolor", "BurgYl", 7L, "sequential", FALSE, "rcartocolor", "Burg", 7L, "sequential", FALSE, "rcartocolor", "BrwnYl", 7L, "sequential", FALSE, "rcartocolor", "BluYl", 7L, "sequential", FALSE, "rcartocolor", "BluGrn", 7L, "sequential", FALSE, "RColorBrewer", "BrBG", 11L, "divergent", FALSE, "RColorBrewer", "PiYG", 11L, "divergent", FALSE, "RColorBrewer", "PRGn", 11L, "divergent", FALSE, "RColorBrewer", "PuOr", 11L, "divergent", FALSE, "RColorBrewer", "RdBu", 11L, "divergent", FALSE, "RColorBrewer", "RdGy", 11L, "divergent", FALSE, "RColorBrewer", "RdYlBu", 11L, "divergent", FALSE, "RColorBrewer", "RdYlGn", 11L, "divergent", FALSE, "RColorBrewer", "Spectral", 11L, "sequential", FALSE, "RColorBrewer", "Accent", 8L, "qualitative", FALSE, "RColorBrewer", "Dark2", 8L, "qualitative", FALSE, "RColorBrewer", "Paired", 12L, "qualitative", FALSE, "RColorBrewer", "Pastel1", 9L, "qualitative", FALSE, "RColorBrewer", "Pastel2", 8L, "qualitative", FALSE, "RColorBrewer", "Set1", 9L, "qualitative", FALSE, "RColorBrewer", "Set2", 8L, "qualitative", FALSE, "RColorBrewer", "Set3", 12L, "qualitative", FALSE, "RColorBrewer", "Blues", 9L, "sequential", FALSE, "RColorBrewer", "BuGn", 9L, "sequential", FALSE, "RColorBrewer", "BuPu", 9L, "sequential", FALSE, "RColorBrewer", "GnBu", 9L, "sequential", FALSE, "RColorBrewer", "Greens", 9L, "sequential", FALSE, "RColorBrewer", "Greys", 9L, "sequential", FALSE, "RColorBrewer", "Oranges", 9L, "sequential", FALSE, "RColorBrewer", "OrRd", 9L, "sequential", FALSE, "RColorBrewer", "PuBu", 9L, "sequential", FALSE, "RColorBrewer", "PuBuGn", 9L, "sequential", FALSE, "RColorBrewer", "PuRd", 9L, "sequential", FALSE, "RColorBrewer", "Purples", 9L, "sequential", FALSE, "RColorBrewer", "RdPu", 9L, "sequential", FALSE, "RColorBrewer", "Reds", 9L, "sequential", FALSE, "RColorBrewer", "YlGn", 9L, "sequential", FALSE, "RColorBrewer", "YlGnBu", 9L, "sequential", FALSE, "RColorBrewer", "YlOrBr", 9L, "sequential", FALSE, "RColorBrewer", "YlOrRd", 9L, "sequential", FALSE, "Redmonder", "dPBIYlBu", 11L, "divergent", TRUE, "Redmonder", "dPBIYlPu", 11L, "divergent", TRUE, "Redmonder", "dPBIPuGn", 11L, "divergent", TRUE, "Redmonder", "dPBIPuOr", 11L, "divergent", TRUE, "Redmonder", "dPBIRdBu", 11L, "divergent", TRUE, "Redmonder", "dPBIRdGy", 11L, "divergent", TRUE, "Redmonder", "dPBIRdGn", 11L, "divergent", TRUE, "Redmonder", "qMSOStd", 10L, "qualitative", TRUE, "Redmonder", "qMSO12", 8L, "qualitative", TRUE, "Redmonder", "qMSO15", 8L, "qualitative", TRUE, "Redmonder", "qMSOBuWarm", 8L, "qualitative", TRUE, "Redmonder", "qMSOBu", 8L, "qualitative", TRUE, "Redmonder", "qMSOBu2", 8L, "qualitative", TRUE, "Redmonder", "qMSOBuGn", 8L, "qualitative", TRUE, "Redmonder", "qMSOGn", 8L, "qualitative", TRUE, "Redmonder", "qMSOGnYl", 8L, "qualitative", TRUE, "Redmonder", "qMSOYl", 8L, "qualitative", TRUE, "Redmonder", "qMSOYlOr", 8L, "qualitative", TRUE, "Redmonder", "qMSOOr", 8L, "qualitative", TRUE, "Redmonder", "qMSOOrRd", 8L, "qualitative", TRUE, "Redmonder", "qMSORdOr", 8L, "qualitative", TRUE, "Redmonder", "qMSORd", 8L, "qualitative", TRUE, "Redmonder", "qMSORdPu", 8L, "qualitative", TRUE, "Redmonder", "qMSOPu", 8L, "qualitative", TRUE, "Redmonder", "qMSOPu2", 8L, "qualitative", TRUE, "Redmonder", "qMSOMed", 8L, "qualitative", TRUE, "Redmonder", "qMSOPap", 8L, "qualitative", TRUE, "Redmonder", "qMSOMrq", 8L, "qualitative", TRUE, "Redmonder", "qMSOSlp", 8L, "qualitative", TRUE, "Redmonder", "qMSOAsp", 8L, "qualitative", TRUE, "Redmonder", "qPBI", 8L, "qualitative", TRUE, "Redmonder", "sPBIGn", 9L, "sequential", TRUE, "Redmonder", "sPBIGy1", 9L, "sequential", TRUE, "Redmonder", "sPBIRd", 9L, "sequential", TRUE, "Redmonder", "sPBIYl", 9L, "sequential", TRUE, "Redmonder", "sPBIGy2", 9L, "sequential", TRUE, "Redmonder", "sPBIBu", 9L, "sequential", TRUE, "Redmonder", "sPBIOr", 9L, "sequential", TRUE, "Redmonder", "sPBIPu", 9L, "sequential", TRUE, "Redmonder", "sPBIYlGn", 9L, "sequential", TRUE, "Redmonder", "sPBIRdPu", 9L, "sequential", TRUE, "rockthemes", "alice", 4L, "qualitative", TRUE, "rockthemes", "californication", 4L, "qualitative", TRUE, "rockthemes", "coltrane", 4L, "qualitative", TRUE, "rockthemes", "deelite", 4L, "qualitative", TRUE, "rockthemes", "electric", 4L, "qualitative", TRUE, "rockthemes", "facelift", 4L, "qualitative", TRUE, "rockthemes", "faithnomore", 4L, "qualitative", TRUE, "rockthemes", "harvey", 4L, "qualitative", TRUE, "rockthemes", "heep", 4L, "qualitative", TRUE, "rockthemes", "hellawaits", 4L, "qualitative", TRUE, "rockthemes", "husker", 4L, "qualitative", TRUE, "rockthemes", "janelle", 4L, "qualitative", TRUE, "rockthemes", "melloncollie", 4L, "qualitative", TRUE, "rockthemes", "miles", 4L, "qualitative", TRUE, "rockthemes", "muse", 4L, "qualitative", TRUE, "rockthemes", "nodoubt", 4L, "qualitative", TRUE, "rockthemes", "peacesells", 4L, "qualitative", TRUE, "rockthemes", "secondlaw", 4L, "qualitative", TRUE, "rockthemes", "siamesedream", 4L, "qualitative", TRUE, "rockthemes", "swift", 4L, "qualitative", TRUE, "rockthemes", "zeppelin", 4L, "qualitative", TRUE, "RSkittleBrewer", "original", 5L, "qualitative", TRUE, "RSkittleBrewer", "tropical", 5L, "qualitative", TRUE, "RSkittleBrewer", "wildberry", 5L, "qualitative", TRUE, "RSkittleBrewer", "M_M", 6L, "qualitative", TRUE, "RSkittleBrewer", "smarties", 8L, "qualitative", TRUE, "rtist", "raphael", 5L, "qualitative", TRUE, "rtist", "hokusai", 5L, "qualitative", TRUE, "rtist", "vermeer", 5L, "qualitative", TRUE, "rtist", "degas", 5L, "qualitative", TRUE, "rtist", "davinci", 5L, "qualitative", TRUE, "rtist", "vangogh", 5L, "qualitative", TRUE, "rtist", "hopper", 5L, "qualitative", TRUE, "rtist", "klimt", 5L, "qualitative", TRUE, "rtist", "rembrandt", 5L, "qualitative", TRUE, "rtist", "munch", 5L, "qualitative", TRUE, "rtist", "warhol", 5L, "qualitative", TRUE, "rtist", "okeeffe", 5L, "qualitative", TRUE, "rtist", "oldenburg", 5L, "qualitative", TRUE, "rtist", "picasso", 5L, "qualitative", TRUE, "rtist", "pollock", 5L, "qualitative", TRUE, "soilpalettes", "alaquod", 5L, "qualitative", TRUE, "soilpalettes", "bangor", 5L, "qualitative", TRUE, "soilpalettes", "durorthod", 5L, "sequential", TRUE, "soilpalettes", "paleustalf", 5L, "qualitative", TRUE, "soilpalettes", "rendoll", 5L, "qualitative", TRUE, "soilpalettes", "redox", 5L, "qualitative", TRUE, "soilpalettes", "podzol", 5L, "sequential", TRUE, "soilpalettes", "eutrostox", 5L, "sequential", TRUE, "soilpalettes", "pywell", 5L, "qualitative", TRUE, "soilpalettes", "natrudoll", 5L, "sequential", TRUE, "soilpalettes", "vitrixerand", 5L, "sequential", TRUE, "soilpalettes", "crait", 5L, "sequential", TRUE, "soilpalettes", "gley", 5L, "sequential", TRUE, "soilpalettes", "redox2", 5L, "qualitative", TRUE, "suffrager", "london", 4L, "qualitative", TRUE, "suffrager", "oxon", 5L, "qualitative", TRUE, "suffrager", "CarolMan", 4L, "qualitative", TRUE, "suffrager", "hanwell", 5L, "qualitative", TRUE, "suffrager", "chelsea", 5L, "qualitative", TRUE, "suffrager", "classic", 2L, "qualitative", TRUE, "tayloRswift", "taylorSwift", 6L, "qualitative", TRUE, "tayloRswift", "fearless", 5L, "qualitative", TRUE, "tayloRswift", "speakNow", 5L, "qualitative", TRUE, "tayloRswift", "speakNowLive", 5L, "qualitative", TRUE, "tayloRswift", "taylorRed", 5L, "qualitative", TRUE, "tayloRswift", "taylor1989", 6L, "qualitative", TRUE, "tayloRswift", "reputation", 6L, "qualitative", TRUE, "tayloRswift", "lover", 6L, "qualitative", TRUE, "tayloRswift", "folklore", 4L, "sequential", TRUE, "tayloRswift", "evermore", 5L, "qualitative", TRUE, "tidyquant", "tq_light", 12L, "qualitative", FALSE, "tidyquant", "tq_dark", 12L, "qualitative", FALSE, "tidyquant", "tq_green", 12L, "qualitative", FALSE, "trekcolors", "andorian", 9L, "sequential", TRUE, "trekcolors", "bajoran", 6L, "qualitative", TRUE, "trekcolors", "borg", 9L, "sequential", TRUE, "trekcolors", "breen", 8L, "qualitative", TRUE, "trekcolors", "breen2", 9L, "sequential", TRUE, "trekcolors", "dominion", 7L, "qualitative", TRUE, "trekcolors", "enara", 9L, "sequential", TRUE, "trekcolors", "enara2", 4L, "qualitative", TRUE, "trekcolors", "ferengi", 9L, "divergent", TRUE, "trekcolors", "gorn", 9L, "qualitative", TRUE, "trekcolors", "iconian", 9L, "sequential", TRUE, "trekcolors", "klingon", 9L, "sequential", TRUE, "trekcolors", "lcars_series", 31L, "qualitative", TRUE, "trekcolors", "lcars_2357", 9L, "qualitative", TRUE, "trekcolors", "lcars_2369", 8L, "qualitative", TRUE, "trekcolors", "lcars_2375", 8L, "qualitative", TRUE, "trekcolors", "lcars_2379", 8L, "qualitative", TRUE, "trekcolors", "lcars_alt", 17L, "qualitative", TRUE, "trekcolors", "lcars_first_contact", 8L, "qualitative", TRUE, "trekcolors", "lcars_nemesis", 10L, "qualitative", TRUE, "trekcolors", "lcars_nx01", 6L, "qualitative", TRUE, "trekcolors", "lcars_29c", 8L, "qualitative", TRUE, "trekcolors", "lcars_23c", 7L, "qualitative", TRUE, "trekcolors", "lcars_red_alert", 8L, "qualitative", TRUE, "trekcolors", "lcars_cardassian", 21L, "qualitative", TRUE, "trekcolors", "romulan", 9L, "divergent", TRUE, "trekcolors", "romulan2", 9L, "divergent", TRUE, "trekcolors", "starfleet", 3L, "qualitative", TRUE, "trekcolors", "starfleet2", 6L, "qualitative", TRUE, "trekcolors", "tholian", 9L, "divergent", TRUE, "trekcolors", "terran", 9L, "sequential", TRUE, "trekcolors", "ufp", 9L, "sequential", TRUE, "trekcolors", "red_alert", 6L, "qualitative", TRUE, "trekcolors", "yellow_alert", 6L, "qualitative", TRUE, "trekcolors", "black_alert", 5L, "qualitative", TRUE, "tvthemes", "attackOnTitan", 8L, "qualitative", TRUE, "tvthemes", "FireNation", 8L, "qualitative", TRUE, "tvthemes", "AirNomads", 7L, "qualitative", TRUE, "tvthemes", "EarthKingdom", 9L, "qualitative", TRUE, "tvthemes", "WaterTribe", 8L, "qualitative", TRUE, "tvthemes", "bigHero6", 8L, "qualitative", TRUE, "tvthemes", "Regular", 10L, "qualitative", TRUE, "tvthemes", "Dark", 9L, "qualitative", TRUE, "tvthemes", "gravityFalls", 14L, "qualitative", TRUE, "tvthemes", "Day", 8L, "qualitative", TRUE, "tvthemes", "Dusk", 8L, "qualitative", TRUE, "tvthemes", "Night", 8L, "qualitative", TRUE, "tvthemes", "kimPossible", 12L, "qualitative", TRUE, "tvthemes", "parksAndRec", 10L, "qualitative", TRUE, "tvthemes", "rickAndMorty", 9L, "qualitative", TRUE, "tvthemes", "simpsons", 10L, "qualitative", TRUE, "tvthemes", "spongeBob", 9L, "qualitative", TRUE, "tvthemes", "Stark", 9L, "qualitative", TRUE, "tvthemes", "Stannis", 7L, "qualitative", TRUE, "tvthemes", "Lannister", 6L, "qualitative", TRUE, "tvthemes", "Tyrell", 9L, "qualitative", TRUE, "tvthemes", "Targaryen", 5L, "qualitative", TRUE, "tvthemes", "Martell", 8L, "qualitative", TRUE, "tvthemes", "Tully", 6L, "qualitative", TRUE, "tvthemes", "Greyjoy", 6L, "qualitative", TRUE, "tvthemes", "Manderly", 7L, "qualitative", TRUE, "tvthemes", "Arryn", 7L, "qualitative", TRUE, "unikn", "pal_unikn", 11L, "divergent", TRUE, "unikn", "pal_unikn_web", 10L, "divergent", TRUE, "unikn", "pal_unikn_ppt", 10L, "divergent", TRUE, "unikn", "pal_unikn_light", 10L, "qualitative", TRUE, "unikn", "pal_unikn_dark", 10L, "qualitative", TRUE, "unikn", "pal_unikn_pair", 16L, "qualitative", TRUE, "unikn", "pal_unikn_pref", 9L, "qualitative", TRUE, "unikn", "pal_seeblau", 5L, "sequential", TRUE, "unikn", "pal_peach", 5L, "sequential", TRUE, "unikn", "pal_grau", 5L, "sequential", TRUE, "unikn", "pal_petrol", 5L, "sequential", TRUE, "unikn", "pal_seegruen", 5L, "sequential", TRUE, "unikn", "pal_karpfenblau", 5L, "sequential", TRUE, "unikn", "pal_pinky", 5L, "sequential", TRUE, "unikn", "pal_bordeaux", 5L, "sequential", TRUE, "unikn", "pal_signal", 3L, "qualitative", TRUE, "vapeplot", "vaporwave", 14L, "qualitative", TRUE, "vapeplot", "cool", 5L, "qualitative", TRUE, "vapeplot", "crystal_pepsi", 4L, "qualitative", TRUE, "vapeplot", "mallsoft", 6L, "qualitative", TRUE, "vapeplot", "jazzcup", 5L, "qualitative", TRUE, "vapeplot", "sunset", 5L, "qualitative", TRUE, "vapeplot", "macplus", 6L, "qualitative", TRUE, "vapeplot", "seapunk", 5L, "qualitative", TRUE, "vapoRwave", "avanti", 5L, "qualitative", TRUE, "vapoRwave", "cool", 5L, "sequential", TRUE, "vapoRwave", "crystalPepsi", 4L, "sequential", TRUE, "vapoRwave", "floralShoppe", 8L, "qualitative", TRUE, "vapoRwave", "hotlineBling", 8L, "qualitative", TRUE, "vapoRwave", "hyperBubble", 7L, "qualitative", TRUE, "vapoRwave", "jazzCup", 5L, "qualitative", TRUE, "vapoRwave", "jwz", 8L, "qualitative", TRUE, "vapoRwave", "macPlus", 6L, "divergent", TRUE, "vapoRwave", "mallSoft", 6L, "qualitative", TRUE, "vapoRwave", "newRetro", 9L, "qualitative", TRUE, "vapoRwave", "seaPunk", 5L, "qualitative", TRUE, "vapoRwave", "sunSet", 5L, "qualitative", TRUE, "vapoRwave", "vapoRwave", 11L, "qualitative", TRUE, "werpals", "cinderella", 5L, "qualitative", TRUE, "werpals", "monet", 6L, "sequential", TRUE, "werpals", "small_world", 6L, "qualitative", TRUE, "werpals", "alice", 6L, "qualitative", TRUE, "werpals", "pan", 6L, "qualitative", TRUE, "werpals", "when_i_was_your_age", 6L, "qualitative", TRUE, "werpals", "firefly", 7L, "qualitative", TRUE, "werpals", "uyuni", 10L, "qualitative", TRUE, "werpals", "okavango", 10L, "qualitative", TRUE, "werpals", "lakelouise", 10L, "qualitative", TRUE, "werpals", "provence", 10L, "qualitative", TRUE, "werpals", "halong", 10L, "qualitative", TRUE, "werpals", "vatnajokull", 10L, "qualitative", TRUE, "werpals", "arashiyama", 10L, "qualitative", TRUE, "werpals", "mountcook", 10L, "qualitative", TRUE, "werpals", "benagil", 10L, "qualitative", TRUE, "werpals", "bryce", 10L, "qualitative", TRUE, "werpals", "jozi", 10L, "qualitative", TRUE, "wesanderson", "BottleRocket1", 7L, "qualitative", TRUE, "wesanderson", "BottleRocket2", 5L, "qualitative", TRUE, "wesanderson", "Rushmore1", 5L, "qualitative", TRUE, "wesanderson", "Rushmore", 5L, "qualitative", TRUE, "wesanderson", "Royal1", 4L, "qualitative", TRUE, "wesanderson", "Royal2", 5L, "qualitative", TRUE, "wesanderson", "Zissou1", 5L, "qualitative", TRUE, "wesanderson", "Darjeeling1", 5L, "qualitative", TRUE, "wesanderson", "Darjeeling2", 5L, "qualitative", TRUE, "wesanderson", "Chevalier1", 4L, "qualitative", TRUE, "wesanderson", "FantasticFox1", 5L, "qualitative", TRUE, "wesanderson", "Moonrise1", 4L, "qualitative", TRUE, "wesanderson", "Moonrise2", 4L, "qualitative", TRUE, "wesanderson", "Moonrise3", 5L, "qualitative", TRUE, "wesanderson", "Cavalcanti1", 5L, "qualitative", TRUE, "wesanderson", "GrandBudapest1", 4L, "qualitative", TRUE, "wesanderson", "GrandBudapest2", 4L, "qualitative", TRUE, "wesanderson", "IsleofDogs1", 6L, "qualitative", TRUE, "wesanderson", "IsleofDogs2", 5L, "qualitative", TRUE, "yarrr", "basel", 10L, "qualitative", TRUE, "yarrr", "pony", 9L, "qualitative", TRUE, "yarrr", "xmen", 8L, "qualitative", TRUE, "yarrr", "decision", 6L, "qualitative", TRUE, "yarrr", "southpark", 6L, "qualitative", TRUE, "yarrr", "google", 4L, "qualitative", TRUE, "yarrr", "eternal", 7L, "qualitative", TRUE, "yarrr", "evildead", 6L, "qualitative", TRUE, "yarrr", "usualsuspects", 7L, "qualitative", TRUE, "yarrr", "ohbrother", 7L, "qualitative", TRUE, "yarrr", "appletv", 6L, "qualitative", TRUE, "yarrr", "brave", 5L, "qualitative", TRUE, "yarrr", "bugs", 5L, "qualitative", TRUE, "yarrr", "cars", 5L, "qualitative", TRUE, "yarrr", "nemo", 5L, "qualitative", TRUE, "yarrr", "rat", 5L, "qualitative", TRUE, "yarrr", "up", 5L, "qualitative", TRUE, "yarrr", "espresso", 5L, "qualitative", TRUE, "yarrr", "ipod", 7L, "qualitative", TRUE, "yarrr", "info", 9L, "qualitative", TRUE, "yarrr", "info2", 14L, "qualitative", TRUE, ) usethis::use_data(palettes_d_names, overwrite = TRUE)
pandterm=function(message) { stop(message,call.=FALSE) }
layer.density <- function(top, bottom, wtr, depths, bthA, bthD, sal = wtr*0){ force(sal) if(top>bottom){ stop('bottom depth must be greater than top') }else if(length(wtr)!=length(depths)){ stop('water temperature vector must be same length as depth vector') }else if(length(as.list(match.call()))<4){ stop('not enough input arguments') }else if(any(is.na(wtr),is.na(depths),is.na(bthA),is.na(bthD))){ stop('input arguments must be numbers') } if(min(bthD)<0){ useI <- bthD>=0 if(!any(bthD==0)){ depT <- c(0,bthD[useI]) }else{ depT <- bthD[useI] } bthA <- stats::approx(bthD,bthA,depT)$y bthD <- depT } dz <- 0.1 numD <- length(wtr) if(max(bthD)>depths[numD]){ wtr[numD+1] <- wtr[numD] sal[numD+1] <- sal[numD] depths[numD+1] <- max(bthD) }else if(max(bthD)<depths[numD]){ bthD <- c(bthD,depths[numD]) bthA <- c(bthA,0) } if(min(bthD)<depths[1]){ wtr <- c(wtr[1],wtr) sal <- c(sal[1],sal) depths <- c(min(bthD),depths) } Io <- grep(min(depths),depths) Ao <- bthA[Io] if(Ao[1]==0){ stop('surface area cannot be zero, check bathymetry file') } layerD <- seq(top,bottom,dz) layerT <- stats::approx(depths,wtr,layerD)$y layerS <- stats::approx(depths,sal,layerD)$y layerA <- stats::approx(bthD,bthA,layerD)$y layerP <- water.density(layerT,layerS) mass <- layerA*layerP*dz aveDensity <- sum(mass)/(sum(layerA))/dz return(aveDensity) }
context("Build map") test_that("Default map", { default_map <- getSpMaps() expect_is(default_map, "SpatialPolygonsDataFrame") }) test_that("Subset and combine", { combine_map <- getSpMaps(countries = c("ITA", "ESP", "FRA"), states = "FRA") expect_is(combine_map, "SpatialPolygonsDataFrame") all_map <- getSpMaps(countries = "all", states = "all") expect_is(all_map, "SpatialPolygonsDataFrame") all_map_2 <- getSpMaps(countries = "all", states = NULL) expect_is(all_map, "SpatialPolygonsDataFrame") all_map_3 <- getSpMaps(countries = NULL, states = "all") expect_is(all_map, "SpatialPolygonsDataFrame") all_map_4 <- getSpMaps(countries = "all", states = "FRA") expect_is(all_map, "SpatialPolygonsDataFrame") all_map_5 <- getSpMaps(countries = "FRA", states = "all") expect_is(all_map, "SpatialPolygonsDataFrame") }) test_that("NULL map", { null_map <- suppressMessages(getSpMaps(countries = NULL, states = NULL)) expect_null(null_map) }) test_that("Invalid countries and states", { expect_error(getSpMaps(countries = "invalid")) expect_error(getSpMaps(states = "invalid")) })
test_that('3+3 enforcer errors when it should.', { expect_error(enforce_three_plus_three(outcomes = '1NNN 1N')) expect_error(enforce_three_plus_three(outcomes = '1NNN 1NNN')) expect_error(enforce_three_plus_three(outcomes = '1NNN 2NNT 2NNN 4N')) expect_error(enforce_three_plus_three(outcomes = '1NNN 2TTT 1N')) }) test_that('3+3 enforcer acquiesces when it should.', { expect_null(enforce_three_plus_three(outcomes = '')) expect_null(enforce_three_plus_three(outcomes = '1N')) expect_null(enforce_three_plus_three(outcomes = '1T')) expect_null(enforce_three_plus_three(outcomes = '1NN')) expect_null(enforce_three_plus_three(outcomes = '1NT')) expect_null(enforce_three_plus_three(outcomes = '1TT')) expect_null(enforce_three_plus_three(outcomes = '1NNN')) expect_null(enforce_three_plus_three(outcomes = '1NNT')) expect_null(enforce_three_plus_three(outcomes = '1NTT')) expect_null(enforce_three_plus_three(outcomes = '1TTT')) expect_null(enforce_three_plus_three(outcomes = '1NNN 2N')) expect_null(enforce_three_plus_three(outcomes = '1NNN 2T')) expect_null(enforce_three_plus_three(outcomes = '1NNN 2NN')) expect_null(enforce_three_plus_three(outcomes = '1NNN 2NT')) expect_null(enforce_three_plus_three(outcomes = '1NNN 2TT')) expect_null(enforce_three_plus_three(outcomes = '1NNN 2NNN')) expect_null(enforce_three_plus_three(outcomes = '1NNN 2NNT')) expect_null(enforce_three_plus_three(outcomes = '1NNN 2NTT')) expect_null(enforce_three_plus_three(outcomes = '1NNN 2TTT')) expect_null(enforce_three_plus_three(outcomes = '1NNN 2NNT 2N')) expect_null(enforce_three_plus_three(outcomes = '1NNN 2NNT 2T')) expect_null(enforce_three_plus_three(outcomes = '1NNN 2NNT 2NN')) expect_null(enforce_three_plus_three(outcomes = '1NNN 2NNT 2NT')) expect_null(enforce_three_plus_three(outcomes = '1NNN 2NNT 2TT')) expect_null(enforce_three_plus_three(outcomes = '1NNN 2NNT 2NNN')) expect_null(enforce_three_plus_three(outcomes = '1NNN 2NNT 2NNT')) expect_null(enforce_three_plus_three(outcomes = '1NNN 2NNT 2NTT')) expect_null(enforce_three_plus_three(outcomes = '1NNN 2NNT 2NNN')) expect_null(enforce_three_plus_three(outcomes = '1NNN 2NNN 3NNN 4NNN 5N')) expect_null(enforce_three_plus_three(outcomes = '1NNN 2NNN 3NNN 4NNN 5NN')) expect_null(enforce_three_plus_three(outcomes = '1NNN 2NNN 3NNN 4NNN 5NNN')) expect_null(enforce_three_plus_three(outcomes = '1NNN 2NNN 3NNN 4NNN 5NNT')) expect_null(enforce_three_plus_three(outcomes = '1NNN 2NNN 3NNN 4NNN 5NTT')) expect_null(enforce_three_plus_three(outcomes = '1NNN 2NNN 3NNN 4NNN 5TTT')) expect_null(enforce_three_plus_three( outcomes = '1NNN 2NNN 3NNN 4NNN 5NNT 5N')) expect_null(enforce_three_plus_three( outcomes = '1NNN 2NNN 3NNN 4NNN 5NNT 5NN')) expect_null(enforce_three_plus_three( outcomes = '1NNN 2NNN 3NNN 4NNN 5NNT 5NT')) expect_null(enforce_three_plus_three( outcomes = '1NNN 2NNN 3NNN 4NNN 5NNT 5TT')) expect_null(enforce_three_plus_three( outcomes = '1NNN 2NNN 3NNN 4NNN 5NNT 5NNN')) expect_null(enforce_three_plus_three( outcomes = '1NNN 2NNN 3NNN 4NNN 5NNT 5NNT')) expect_null(enforce_three_plus_three( outcomes = '1NNN 2NNN 3NNN 4NNN 5NNT 5NTT')) expect_null(enforce_three_plus_three( outcomes = '1NNN 2NNN 3NNN 4NNN 5NNT 5TTT')) })
test_that("load_sharpe_games works", { g <- load_sharpe_games() skip_if_not(nrow(g) > 0, message = NULL) expect_true(is_tibble(g)) })
packageVersion("plantecophys") library(plantecophys) f <- fitaci(acidata1, gmeso=0.2) acidata1$Cc <- with(acidata1, Ci - Photo/0.2) f <- fitaci(acidata1, varnames=list(ALEAF="Photo", Ci="Cc", Tleaf="Tleaf", PPFD="PARi"))
France <- R6::R6Class("France", inherit = DataClass, public = list( origin = "France", supported_levels = list("1", "2"), supported_region_names = list("1" = "region", "2" = "department"), supported_region_codes = list("1" = "iso_3166_2", "2" = "ons_region_code"), level_data_urls = list( "1" = list("cases" = "https://www.data.gouv.fr/fr/datasets/r/001aca18-df6a-45c8-89e6-f82d689e6c01"), "2" = list( "cases" = "https://www.data.gouv.fr/fr/datasets/r/406c6a23-e283-4300-9484-54e78c8ae675", "hosp" = "https://www.data.gouv.fr/fr/datasets/r/6fadff46-9efd-4c53-942a-54aca783c30c" ) ), source_data_cols = c("cases_new", "tested_new"), source_text = "French Public Open Data Platform", source_url = "https://www.data.gouv.fr/fr/pages/donnees-coronavirus", set_region_codes = function() { self$codes_lookup$`1` <- france_codes %>% select( .data$level_1_region_code, .data$level_1_region, .data$insee_code ) self$codes_lookup$`2` <- france_codes }, clean_level_1 = function() { self$data$clean <- self$data$raw$cases %>% filter(.data$cl_age90 == 0) %>% select( date = .data$jour, insee_code = .data$reg, cases_new = .data$P, tested_new = .data$`T` ) %>% mutate(date = as_date(ymd(date))) %>% left_join( self$codes_lookup$`1`, insee_code = reg, by = c("insee_code") ) }, clean_level_2 = function() { cases_data <- self$data$raw$cases %>% filter(.data$cl_age90 == 0) %>% select( date = .data$jour, level_2_region_code = .data$dep, cases_new = .data$P, tested_new = .data$`T` ) %>% mutate(date = as_date(ymd(date))) if (!is.null(self$data$raw$hosp)) { hosp_data <- self$data$raw$hosp %>% select( date = jour, level_2_region_code = dep, hosp_new = incid_hosp, deaths_new = incid_dc ) %>% mutate(date = as_date(ymd(date))) combined_data <- full_join(cases_data, hosp_data, by = c("date", "level_2_region_code") ) } else { combined_data <- cases_data } self$data$clean <- combined_data %>% mutate( level_2_region_code = paste0("FR-", level_2_region_code) ) %>% left_join(self$codes_lookup$`2`, by = "level_2_region_code") } ) )
context("ml feature - ngram") skip_databricks_connect() test_that("ft_ngram() default params", { test_requires_latest_spark() sc <- testthat_spark_connection() test_default_args(sc, ft_ngram) }) test_that("ft_ngram() param setting", { test_requires_latest_spark() sc <- testthat_spark_connection() test_args <- list( input_col = "foo", output_col = "bar", n = 3 ) test_param_setting(sc, ft_ngram, test_args) }) test_that("ft_ngram() works properly", { sc <- testthat_spark_connection() sentence_df <- data.frame(sentence = "The purrrers on the bus go map map map") sentence_tbl <- copy_to(sc, sentence_df, overwrite = TRUE) bigrams <- sentence_tbl %>% ft_tokenizer("sentence", "words") %>% ft_ngram("words", "bigrams", n = 2) %>% pull(bigrams) %>% unlist() expect_identical( bigrams, c( "the purrrers", "purrrers on", "on the", "the bus", "bus go", "go map", "map map", "map map" ) ) trigrams <- sentence_tbl %>% ft_tokenizer("sentence", "words") %>% ft_ngram("words", "trigrams", n = 3) %>% pull(trigrams) %>% unlist() expect_identical( trigrams, c( "the purrrers on", "purrrers on the", "on the bus", "the bus go", "bus go map", "go map map", "map map map" ) ) })
RACDPAL_fun <- function(RAC_1, RAC_2A, RAC_2B, RAC_2C){ if_else2((RAC_1 %in% 1:3) & (RAC_2A %in% 1:3) & (RAC_2B %in% 1:4) & (RAC_2C %in% 1:3), if_else2(RAC_1 == 2 | RAC_2A == 2 | RAC_2B == 2 | RAC_2C == 2, 2, if_else2(RAC_1 == 1 | RAC_2A == 1 | RAC_2B == 1 | RAC_2C == 1, 1, if_else2(RAC_1 == 3 & RAC_2A == 3 & (RAC_2B %in% 3:4) & RAC_2C == 3, 3, "NA(b)"))), "NA(b)" ) }
setup <- function(){ print("Setting up for loa") print("(this should run without errors, warnings)") }
Ralpha <- function(x, n, alpha) { if (n==1) stop('We are not able to provide sensible results for n=1') I2n <- function(x, n, lower=NULL, upper=NULL) { if (is.null(lower)) lower <- 0 if (is.null(upper)) { if (n < 1500) upper <- 100+10000/n else upper <- 50+10000/n } temp <- function(x, n, lower, upper) { f1 <- integrate(function(x, R, n) besselJ(x, 0)^n*besselJ(R*x, 0)*x, lower=lower, upper=upper-2*0.99*log(n), R=x, n=n, subdivisions=4000, stop.on.error=FALSE)$value f2 <- integrate(function(x, R, n) besselJ(x, 0)^n*besselJ(R*x, 0)*x, lower=lower, upper=upper-0.99*log(n), R=x, n=n, subdivisions=4000, stop.on.error=FALSE)$value f3 <- integrate(function(x, R, n) besselJ(x, 0)^n*besselJ(R*x, 0)*x, lower=lower, upper=upper, R=x, n=n, subdivisions=4000, stop.on.error=FALSE)$value f4 <- integrate(function(x, R, n) besselJ(x, 0)^n*besselJ(R*x, 0)*x, lower=lower, upper=upper+0.99*log(n), R=x, n=n, subdivisions=4000, stop.on.error=FALSE)$value f5 <- integrate(function(x, R, n) besselJ(x, 0)^n*besselJ(R*x, 0)*x, lower=lower, upper=upper+2*0.99*log(n), R=x, n=n, subdivisions=4000, stop.on.error=FALSE)$value median(c(f1,f2,f3,f4,f5)) } sapply(X=x, FUN=temp, n=n, lower=lower, upper=upper) } I3n <- function(x, n, lower=NULL, upper=NULL) { if (is.null(lower)) lower <- 0 if (is.null(upper)) { if (n < 1500) upper <- 100+10000/n else upper <- 50+10000/n } temp <- function(x, n, lower, upper) { f1 <- integrate(function(x, C, n) besselJ(x, 0)^n*cos(C*x), lower=lower, upper=upper-2*0.99*log(n+1), C=x, n=n, subdivisions=4000, stop.on.error=FALSE)$value f2 <- integrate(function(x, C, n) besselJ(x, 0)^n*cos(C*x), lower=lower, upper=upper-0.99*log(n+1), C=x, n=n, subdivisions=4000, stop.on.error=FALSE)$value f3 <- integrate(function(x, C, n) besselJ(x, 0)^n*cos(C*x), lower=lower, upper=upper, C=x, n=n, subdivisions=4000, stop.on.error=FALSE)$value f4 <- integrate(function(x, C, n) besselJ(x, 0)^n*cos(C*x), lower=lower, upper=upper+0.99*log(n+1), C=x, n=n, subdivisions=4000, stop.on.error=FALSE)$value f5 <- integrate(function(x, C, n) besselJ(x, 0)^n*cos(C*x), lower=lower, upper=upper+2*0.99*log(n+1), C=x, n=n, subdivisions=4000, stop.on.error=FALSE)$value median(c(f1,f2,f3,f4,f5)) } sapply(X=x, temp, n=n, lower=lower, upper=upper) } lhs <- function(x, C, n) { temp <- function(x, C, n) integrate(function(x, C, n) x/sqrt(x^2-C^2)*I2n(x, n), lower=x, upper=n, C=C, n=n, subdivisions=4000, stop.on.error=FALSE)$value sapply(X=x, FUN=temp, C=C, n=n) } equat <- function(x, C, n, alphaI3n) { lhs(x=x, C=C, n=n) - alphaI3n } temp <- function(x, n, alpha) { alphaI3n <- alpha*I3n(x=x, n=n) uniroot(equat, lower=x, upper=n, C=x, n=n, alphaI3n=alphaI3n)$root } sapply(X=x, FUN=temp, n=n, alpha=alpha) } Ralphaapprox <- function(x, n, alpha) { if (n<3) stop('We are not able to provide sensible results for n<3') temp <- function(x, n, alpha) { if (n >=15 & x > 0 & x < n/3) { y <- sqrt(x^2+qchisq(alpha, df=1, lower.tail=FALSE)*0.5*n) } else if (x > n/2 & x < 3*n/4) { ff <- qf(alpha, df1=2, df2=2*n-2, lower.tail=FALSE) y <- (ff*n+(n-1)*x)/(n+ff-1) } else if (x > 5/6*n) { ff <- qf(alpha, df1=1, df2=n-1, lower.tail=FALSE) y <- (ff*n+(n-1)*x)/(n+ff-1) } else { y <- NA } return(y) } sapply(X=x, FUN=temp, n=n, alpha=alpha) }
optimsimplex.gradcenter <- function(this=NULL,fun=NULL,data=NULL){ g1 <- optimsimplex.gradforward(this) tmp <- optimsimplex.reflect(this=this,fun=fun,data=data) r <- tmp$r if (!is.null(data)) data <- tmp$data g2 <- optimsimplex.gradforward(r) g <- (g1 + g2)/2 varargout <- list(g=g,data=data) return(varargout) }
`mantel_pertables` <- function (pertab, env, dist.method = "bray", binary = FALSE, cor.method = "pearson", permutations = 100) { mantel.test <- function(z, env) { mantel.st <- mantel(vegdist(z, method = dist.method, binary = binary), dist(env), method = cor.method, permutations = permutations) mantel.r <- -mantel.st$statistic mantel.p <- mantel.st$signif return(c(mantel.r, mantel.p)) } results <- sapply(pertab$pertables, function(x) mantel.test(x, env)) row.names(results) <- c("r", "p-value") mantel.quant <- apply(results, 1, quantile, c(0, 0.005, 0.025, 0.5, 0.975, 0.995, 1)) vdper <- lapply(pertab$pertables, function(x) 1 - vegdist(x, method = dist.method, binary = binary)) z <- pertab$raw mantel.raw <- mantel(vegdist(z, method = dist.method, binary = binary), dist(env), method = cor.method, permutations = permutations) mantel.r <- -mantel.raw$statistic ptax <- ((rank(c(mantel.r, results[1, ])))/(length(results[1, ]) + 1))[1] ptax <- ifelse(ptax <= 0.5, ptax, 1 - ptax) vd <- 1 - vegdist(pertab$raw, method = dist.method, binary = binary) env.dist <- as.vector(dist(env)) mantel.output <- list(mantel = list(mantel.raw = mantel.raw, ptax = ptax), simulation = list(results = results, mantel.quant = mantel.quant, vegdist = vdper), raw = list(vegdist = vd, env.dist = env.dist)) class(mantel.output) <- c("mantel_pertables", class(mantel.output)) return(mantel.output) }
print.DTR <- function(x, ...) { if (!is.null(x$Call)) { cat("Call: ") dput(x$Call) cat("\n") } temp <- data.frame( DTR=x$DTR, records=x$records, events=x$events, median=c(min(x$time[which(abs(x$SURV11-0.5)==min(abs(x$SURV11-0.5)[which(x$SURV11<=0.5)]))]), min(x$time[which(abs(x$SURV12-0.5)==min(abs(x$SURV12-0.5)[which(x$SURV12<=0.5)]))]), min(x$time[which(abs(x$SURV21-0.5)==min(abs(x$SURV21-0.5)[which(x$SURV21<=0.5)]))]), min(x$time[which(abs(x$SURV22-0.5)==min(abs(x$SURV22-0.5)[which(x$SURV22<=0.5)]))])), LCL95=c(min(x$time[which(abs(x$SURV11-1.96*x$SE11-0.5)==min(abs(x$SURV11-1.96*x$SE11-0.5)[which((x$SURV11-1.96*x$SE11)<=0.5)]))]), min(x$time[which(abs(x$SURV12-1.96*x$SE12-0.5)==min(abs(x$SURV12-1.96*x$SE12-0.5)[which((x$SURV12-1.96*x$SE12)<=0.5)]))]), min(x$time[which(abs(x$SURV21-1.96*x$SE21-0.5)==min(abs(x$SURV21-1.96*x$SE21-0.5)[which((x$SURV21-1.96*x$SE21)<=0.5)]))]), min(x$time[which(abs(x$SURV22-1.96*x$SE22-0.5)==min(abs(x$SURV22-1.96*x$SE22-0.5)[which((x$SURV22-1.96*x$SE22)<=0.5)]))])), UCL95=c(min(x$time[which(abs(x$SURV11+1.96*x$SE11-0.5)==min(abs(x$SURV11+1.96*x$SE11-0.5)[which((x$SURV11+1.96*x$SE11)<=0.5)]))]), min(x$time[which(abs(x$SURV12+1.96*x$SE12-0.5)==min(abs(x$SURV12+1.96*x$SE12-0.5)[which((x$SURV12+1.96*x$SE12)<=0.5)]))]), min(x$time[which(abs(x$SURV21+1.96*x$SE21-0.5)==min(abs(x$SURV21+1.96*x$SE21-0.5)[which((x$SURV21+1.96*x$SE21)<=0.5)]))]), min(x$time[which(abs(x$SURV22+1.96*x$SE22-0.5)==min(abs(x$SURV22+1.96*x$SE22-0.5)[which((x$SURV22+1.96*x$SE22)<=0.5)]))])) ) print(temp, row.names = FALSE) }
tidy_name2 <- function(x) { new_spec_names <- unlist(lapply(x, function(y) { split_str <- unlist(stringr::str_split(y, " ")) return(paste0( stringr::str_to_upper(stringr::str_sub(split_str[1], 1, 1)), stringr::str_sub(split_str[1], 2, nchar(split_str[1])), stringr::str_to_upper(stringr::str_sub(split_str[2],1,1)), stringr::str_sub(split_str[2], 2, nchar(split_str[2])), collapse = "" )) })) return(new_spec_names) }
boot.penv <- function(X1, X2, Y, u, B) { X1 <- as.matrix(X1) X2 <- as.matrix(X2) a <- dim(Y) n <- a[1] r <- a[2] p1 <- ncol(X1) p2 <- ncol(X2) fit <- penv(X1, X2, Y, u, asy = F) Yfit <- matrix(1, n, 1) %*% t(fit$mu) + X1 %*% t(fit$beta1) + X2 %*% t(fit$beta2) res <- Y - Yfit bootenv <- function(i) { res.boot <- res[sample(1:n, n, replace = T), ] Y.boot <- Yfit + res.boot return(c(penv(X1, X2, Y.boot, u, asy = F)$beta1)) } bootbeta <- lapply(1:B, function(i) bootenv(i)) bootbeta <- matrix(unlist(bootbeta), nrow = B, byrow = TRUE) bootse <- matrix(apply(bootbeta, 2, stats::sd), nrow = r) return(bootse) }
plotseis24<-function(JJ, dy=1/18, FIX=24, SCALE=0, FILT=list(ON=FALSE, fl=0.05 , fh=20.0, type="BP", proto="BU"), RCOLS=c(rgb(0.2, .2, 1), rgb(.2, .2, .2)) , add=FALSE ) { if(missing(FIX)) { FIX=24 } if(missing(dy)) { dy = 1/18 } if(missing(RCOLS)) { RCOLS = c(rgb(0.2, .2, 1), rgb(.2, .2, .2),"tomato3","royalblue","forestgreen","blueviolet","tan3","lightseagreen","deeppink","cyan3","bisque3","magenta1","lightsalmon3","darkcyan") } if(missing(SCALE )) { SCALE = 0 } if(missing(FILT)) { FILT = list(ON=FALSE, fl=0.05 , fh=20.0, type="BP", proto="BU") } h = FIX m1 = 0 ry = range(c(m1, m1+23.999/24) ) adt=min(JJ$gdt) xa = seq(from=0, length=3600/adt, by=adt) mx1 = min(xa) mx2 = max(xa) bcol = rgb(1, .8, .8) gcol = rgb(.8, 1, .8) rcol = RCOLS par(mar=c(5, 4, 4, 4)+0.1, xaxs='i', yaxs='i', lwd=0.5, bty="u") if(!add) { plot( c(0, 3600), -ry , type='n', xpd=TRUE, axes=FALSE, xlab="Time,s", ylab="") box(col=grey(0.7) ) } tix = rep(NA, length=h) altcol = length(RCOLS) cols = rep(1:altcol, length=24) miny = rep(NA, length(24)) maxy = rep(NA, length(24)) for(i in 1:24 ) { zed = JJ$sigs[[i]] fy = zed if(FILT$ON==TRUE) { L = length(zed) ipad = ceiling(L*0.02) if(ipad>10) { ibeg = zed[1:ipad] iend = zed[(L-ipad+1):L] ked = c(rev(ibeg), zed, rev(iend)) if(!any(is.na(ked))) { fy = butfilt(ked,fl=FILT$fl, fh=FILT$fh , deltat = adt, type=FILT$type , proto=FILT$proto , RM=FILT$RM, zp=FILT$zp ) } else { fy = ked } jed = fy[(ipad+1):(ipad+L) ] fy = jed } } fy = fy-mean(fy, na.rm=TRUE) miny[i] = min(fy, na.rm=TRUE) maxy[i] = max(fy, na.rm=TRUE) JJ$sigs[[i]] = fy } bigmax = max(maxy, na.rm=TRUE) bigmin = min(miny, na.rm=TRUE) if(SCALE>0) rat = abs(bigmax-bigmin)/SCALE for(i in 1:24 ) { a1 = m1 + (i-1)/24 a2 = m1 + (i)/24 y1 = -a1 fy = JJ$sigs[[i]] zna = JJ$zna[[i]] icol = RCOLS[cols[i]] if(length(fy)>2) { if(SCALE==0) { zee = RPMG::RESCALE(fy, -1, 1, miny[i], maxy[i]) } else { zee = RPMG::RESCALE(fy, -1 , 1, bigmin, bigmax) } tmean = mean(zee, na.rm=TRUE) zee = dy*(zee-tmean) zee[ zna ] = NA tix[i] = y1 lines(c(mx1, 50) , c(y1, y1) , col=bcol ) lines(xa,y1+zee, col=icol, xpd=TRUE) } else { y1 = -a1 lines(c(mx1, 50) , c(y1, y1) , col=bcol ) } } axis(1) days = JJ$jd modays = getmoday(days, JJ$yr[1]) tlocs = abs(tix[!is.na(tix)]) labs4 = format.default(1+round(24*(tlocs - floor(tlocs))), digits=2) labs2 = format.default(round(24*(tlocs - floor(tlocs))), digits=2) axis(4, at=tix[!is.na(tix)], labels=labs4, las=1) axis(2, at=tix[!is.na(tix)], labels=labs2, las=1) modays = getmoday(JJ$jd[1], JJ$yr[1]) idate = ISOdate(JJ$yr[1], modays$mo, modays$dom, hour = 0, min = 0, sec = 0, tz = "GMT") adate = format(idate, format = "%Y-%b-%d GMT", tz = "GMT" ) mtext(adate, 3, line=1, at=0, adj=0) if(FILT$ON==TRUE) { fl = FILT$fl unitlow = "Hz" fh = FILT$fh unithi = "Hz" ftype= FILT$type if(fl<1) { fl = 1/fl unitlow = "s" } if(fh<1) { fh = 1/fh unithi = "s" } filttag = paste(sep= " ", ftype,fl, unitlow, fh, unithi ) mtext(filttag, 3, line=1, at=mx2, adj=1) } if(SCALE>0) { mtext("Scaled by window", 1, line=3, at=0, adj=0) } invisible(list( x=xa, y=tix, yr=JJ$yr[1], jd=JJ$jd[1] )) }
bbc_style <- function() { font <- "Helvetica" ggplot2::theme( plot.title = ggplot2::element_text(family=font, size=28, face="bold", color=" plot.subtitle = ggplot2::element_text(family=font, size=22, margin=ggplot2::margin(9,0,9,0)), plot.caption = ggplot2::element_blank(), legend.position = "top", legend.text.align = 0, legend.background = ggplot2::element_blank(), legend.title = ggplot2::element_blank(), legend.key = ggplot2::element_blank(), legend.text = ggplot2::element_text(family=font, size=18, color=" axis.title = ggplot2::element_blank(), axis.text = ggplot2::element_text(family=font, size=18, color=" axis.text.x = ggplot2::element_text(margin=ggplot2::margin(5, b = 10)), axis.ticks = ggplot2::element_blank(), axis.line = ggplot2::element_blank(), panel.grid.minor = ggplot2::element_blank(), panel.grid.major.y = ggplot2::element_line(color=" panel.grid.major.x = ggplot2::element_blank(), panel.background = ggplot2::element_blank(), strip.background = ggplot2::element_rect(fill="white"), strip.text = ggplot2::element_text(size = 22, hjust = 0) ) }
initialize_simulation_object <- function(options, net_list, edge_loc, mutual_loc) { sim_obj <- list(burnin = options$sim_param$burnin, interval = options$sim_param$interval, net_list = net_list, edge_loc = edge_loc, mutual_loc = mutual_loc, par_n_cores = options$est_param$par_n_cores) return(sim_obj) }
snr_signal2baseline <- function(int, baseline) { SNR <- -Inf x_apex <- which.max(int)[1] Max_sig <- int[x_apex] if (Max_sig > 0) { Median_baseline <- baseline[x_apex] if (Median_baseline == 0) { Median_baseline <- 1 Max_sig <- Max_sig/length(int) } SNR <- Max_sig/Median_baseline } return(SNR) }
cm_df.fill <- function(dataframe, ranges, value = 1, text.var = NULL, code.vars = NULL, transform = FALSE) { if (transform) { dataframe <- cm_df.transform(dataframe = dataframe, text.var = text.var, code.vars = code.vars) } if (!is.null(text.var) && !is.numeric(text.var)) { text.var <- which(colnames(DF) == text.var) } if (!is.null(code.vars) && !is.numeric(code.vars)) { code.vars <- which(colnames(DF) %in% c(code.vars)) } if (is.null(text.var)) { text.var <- which(colnames(dataframe) == "text") } if (is.null(code.vars)) { code.vars <- (text.var + 2):ncol(dataframe) } left.overs <- which(!1:ncol(dataframe) %in% c(code.vars, text.var)) dataframe[, text.var] <- as.character(dataframe[, text.var]) if (length(value) == 1) { value <- rep(value, length(code.vars)) } CV <- dataframe[, code.vars] inds <- which(colnames(CV) %in% names(ranges)) lapply(inds, function(i) { CV[ ranges[[colnames(CV)[i]]], colnames(CV)[i]] <<- value[i] return(CV) } ) DF <- data.frame(dataframe[, 1:(text.var + 1)], CV, stringsAsFactors = FALSE) return(DF) }
filtSizeUniq <- function(lst,ref=NULL,minSize=6,maxSize=36,filtUnique=TRUE,byProt=TRUE,inclEmpty=TRUE,silent=FALSE,callFrom=NULL) { fxNa <- .composeCallName(callFrom,newNa="filtSizeUniq") chNa <- grep("\\.$", names(utils::head(lst))) if(!is.list(lst)) {byProt <- FALSE; inclEmpty <- FALSE} if(length(chNa) <= min(2,length(lst))) names(lst) <- paste(names(lst),".",sep="") pep <- unlist(lst) chNa <- max(sapply(lst,length),na.rm=TRUE) if(chNa >1) names(pep) <- sub("\\.$","",names(pep)) nPep <- length(pep) nAA <- nchar(pep) if(length(minSize) <1) minSize <- 0 if(length(maxSize) <1) {maxSize <- 40 if(!silent) message(fxNa," can't understant 'maxSize', setting to default=40")} chAA <- nAA >= minSize & nAA <= maxSize if(any(!chAA)) {pep <- if(all(!chAA)) NULL else pep[which(chAA)] if(!silent) message(fxNa,nPep - length(pep)," out of ",nPep," peptides beyond range (",minSize,"-",maxSize,")")} if(filtUnique) { nPe2 <- length(pep) if(length(ref) >0) {pep0 <- pep; pep <- c(pep,unique(unlist(ref))) } else pep0 <- NULL chDup <- duplicated(pep,fromLast=FALSE) if(any(chDup)) { chDu2 <- duplicated(pep,fromLast=TRUE) if(length(ref) >0) {pep <- pep0; chDup <- chDup[1:nPe2]; chDu2 <- chDu2[1:nPe2]} pep <- list(unique=pep[which(!chDu2 & !chDup)],allRedund=pep[which(!(!chDu2 & !chDup))], firstOfRed=pep[which(chDu2 & !chDup)]) if(!silent) message(fxNa,length(pep$allRedund)," out of ",nPe2," peptides redundant") } else {if(length(ref) >0) {pep <- pep0; chDup <- chDup[1:nPe2]}} } if(byProt) { fac <- sub("\\.[[:digit:]]+$","",names(if(filtUnique) pep$unique else pep)) pep <- tapply(if(filtUnique) pep$unique else pep,fac,function(x) x) if(length(pep) <1) pep <- character() if(inclEmpty) { iniPro <- sub("\\.$","",names(lst)) curPro <- names(pep) newNo <- sum(!iniPro %in% curPro) if(newNo >0){ pep[length(curPro)+(1:newNo)] <- lapply(1:newNo,function(x) character()) names(pep)[length(curPro)+(1:newNo)] <- iniPro[which(!iniPro %in% curPro)]} } } pep } .filtSize <- function(x,minSize=5,maxSize=36) {nCha <- nchar(x); x[which(nCha >= minSize & nCha <= maxSize)]}
test_that("getTaskFormula", { expect_equal(binaryclass.formula, getTaskFormula(binaryclass.task), ignore_formula_env = TRUE) my.binaryclass.formula = paste( binaryclass.target, "~", collapse(colnames(binaryclass.df[, -binaryclass.class.col]), sep = " + ")) expect_equal( as.formula(my.binaryclass.formula), getTaskFormula(binaryclass.task, explicit.features = TRUE), ignore_formula_env = TRUE) expect_equal(multiclass.formula, getTaskFormula(multiclass.task), ignore_formula_env = TRUE) my.multiclass.formula = paste( multiclass.target, "~", collapse(colnames(multiclass.df[, -multiclass.class.col]), sep = " + ")) expect_equal( as.formula(my.multiclass.formula), getTaskFormula(multiclass.task, explicit.features = TRUE)) expect_equal(regr.formula, getTaskFormula(regr.task), ignore_formula_env = TRUE) my.regr.formula = paste( regr.target, "~", collapse(colnames(regr.df[, -regr.class.col]), sep = " + ")) expect_equal( as.formula(my.regr.formula), getTaskFormula(regr.task, explicit.features = TRUE)) expect_equal(regr.num.formula, getTaskFormula(regr.num.task), ignore_formula_env = TRUE) my.regr.num.formula = paste( regr.num.target, "~", collapse(colnames(regr.num.df[, -regr.num.class.col]), sep = " + ")) expect_equal( as.formula(my.regr.num.formula), getTaskFormula(regr.num.task, explicit.features = TRUE)) }) test_that("issue expect_error(getTaskFormula(unclass(iris.task)), "no applicable method") })
x_train <- input_variables_values_training_datasets y_train <- target_variables_values_training_datasets x_test <- input_variables_values_test_datasets x <- cbind(x_train,y_train) linear <- lm(y_train ~ ., data = x) summary(linear) predicted= predict(linear,x_test)
suvC <- function(u,v,irow,pcol){ dd=dim(u) nnrow=as.integer(dd[1]) nncol=as.integer(nrow(v)) nrank=dd[2] storage.mode(u)="double" storage.mode(v)="double" storage.mode(irow)="integer" storage.mode(pcol)="integer" nomega=as.integer(length(irow)) .Fortran("suvC", nnrow,nncol,nrank,u,v,irow,pcol,nomega, r=double(nomega), PACKAGE="softImpute" )$r }
getSimOutput <- function(simAnnealList, num){ costs_all <- unlist(do.call(rbind, lapply(simAnnealList, function(x)x$Cb))) best_cost_index <- which.min(costs_all) allRankOrder <- lapply(simAnnealList, function(x) x$Ordb) names(allRankOrder) <- paste0("SimAnneal", 1:num) allRankOrder_df <- data.frame(allRankOrder) bestRankOrderIndex <- allRankOrder[[best_cost_index]] return(list( costs_all = costs_all, bestRankOrder = bestRankOrderIndex, allRankOrder = allRankOrder_df )) } getAllCosts <- function(costs_all, num){ CostOutput <- data.frame(simAnnealRun = c(1:num), Cost = costs_all) return(CostOutput) } getBestRankOrder <- function(ID_index, bestRankOrder) { bestRankOrder <- data.frame(ID = ID_index[bestRankOrder, "ID"], ranking = 1:nrow(ID_index)) return(bestRankOrder) } getAllRankOrder <- function(ID_index, allRankOrder){ allRankOrder_df <- data.frame(apply(allRankOrder, 2, function(x) ID_index[x, "ID"]), stringsAsFactors = FALSE) return(allRankOrder_df) }
context("kgram_freqs_fast") test_that("return value has the correct structure", { f <- kgram_freqs_fast(corpus = "some text", N = 3, dict = c("some", "text"), erase = "", lower_case = FALSE, EOS = "") expect_true(is.list(f)) expect_true(length(f) == 3) expect_true(all( c("N", "dict", ".preprocess", "EOS") %in% names(attributes(f)) )) expect_true(is.integer(attr(f, "N"))) expect_true(is.character(attr(f, "dict"))) expect_true(is.character(attr(f, "EOS"))) expect_true( is.function(attr(f, ".preprocess")) ) expect_identical(f[[1]], as_tibble(f[[1]])) }) test_that("input `N <= 0` produces error", { expect_error(kgram_freqs_fast(corpus = "some text", N = 0, dict = c("some", "text"), erase = "", lower_case = FALSE, EOS = "") ) expect_error(kgram_freqs_fast(corpus = "some text", N = -1, dict = c("some", "text"), erase = "", lower_case = FALSE, EOS = "") ) }) expected_1grams <- tibble(w2 = c(1L, 2L, 3L, 4L), n = c(8L, 6L, 4L, 2L) ) %>% arrange(w2) expected_2grams <- tibble( w1 = c(0L, 0L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 4L, 4L), w2 = c(1L, 2L, 1L, 2L, 3L, 4L, 1L, 2L, 3L, 4L, 1L, 2L), n = c(3L, 1L, 2L, 3L, 2L, 1L, 2L, 1L, 2L, 1L, 1L, 1L) ) %>% arrange(w1, w2) test_that("correct 1-gram and 2-gram counts on simple input", { input <- c("a a b a", "a b b a", "a c b", "b c a a b") dict <- c("a", "b") freqs <- kgram_freqs_fast(corpus = input, N = 2, dict = dict, erase = "", lower_case = FALSE, EOS = "") actual_1grams <- arrange(freqs[[1]], w2) actual_2grams <- arrange(freqs[[2]], w1, w2) expect_identical(expected_1grams, actual_1grams) expect_identical(expected_2grams, actual_2grams) }) test_that("correct 1-gram and 2-gram with some preprocessing", { input <- c("a A b A", "a B b a", "a C B", "b c A a b") dict <- c("a", "b") freqs <- kgram_freqs_fast(corpus = input, N = 2, dict = dict, erase = "", lower_case = TRUE, EOS = "") actual_1grams <- arrange(freqs[[1]], w2) actual_2grams <- arrange(freqs[[2]], w1, w2) expect_identical(expected_1grams, actual_1grams) expect_identical(expected_2grams, actual_2grams) }) test_that("correct 1-gram and 2-gram counts with EOS token", { input <- c("/ a a b a / a b b a / a c b / b c a a b /") dict <- c("a", "b") freqs <- kgram_freqs_fast(corpus = input, N = 2, dict = dict, erase = "", lower_case = FALSE, EOS = "/") actual_1grams <- arrange(freqs[[1]], w2) actual_2grams <- arrange(freqs[[2]], w1, w2) expect_identical(expected_1grams, actual_1grams) expect_identical(expected_2grams, actual_2grams) }) test_that("build dictionary on the fly", { input <- c("a a b a", "a b b a", "a c b", "b c a a b") freqs <- kgram_freqs_fast(corpus = input, N = 2, dict = max_size ~ 2, erase = "", lower_case = FALSE, EOS = "") actual_1grams <- arrange(freqs[[1]], w2) actual_2grams <- arrange(freqs[[2]], w1, w2) expect_identical(expected_1grams, actual_1grams) expect_identical(expected_2grams, actual_2grams) }) test_that("Argument dict = Inf works", { input <- c("a a b a", "a b b a", "a c b", "b c a a b") freqsInf <- kgram_freqs_fast(corpus = input, N = 2, dict = max_size ~ Inf, erase = "", lower_case = FALSE, EOS = "") freqs3 <- kgram_freqs_fast(corpus = input, N = 2, dict = max_size ~ 3, erase = "", lower_case = FALSE, EOS = "") attr(freqs3, ".preprocess") <- attr(freqsInf, ".preprocess") expect_equal(freqs3, freqsInf) }) rm(expected_1grams, expected_2grams) test_that("Error on 'dict' argument not character or numeric", { input <- c("a a b a", "a b b a", "a c b", "b c a a b") expect_error(kgram_freqs_fast(corpus = input, N = 2, dict = TRUE)) }) test_that("Error on 'dict' argument negative numeric", { input <- c("a a b a", "a b b a", "a c b", "b c a a b") expect_error(kgram_freqs_fast(corpus = input, N = 2, dict = max_size ~ -1)) })
is.Date <- function(x) { inherits(x, "Date") } KM <- function(x) { if (!survival::is.Surv(x)) stop("x must be a Surv object") x <- x[!is.na(x)] obs <- x[, 1] ev <- x[, 2] ce <- 1 - ev if (length(obs) == 0) stop("No data to estimate survival curve") N <- length(obs) if (!any(obs == 0)) { obs <- c(0, obs) ev <- c(0, ev) ce <- c(0, ce) } i <- order(obs, 1 - ev) obs <- obs[i] ev <- ev[i] ce <- ce[i] ev <- rev(cumsum(rev(ev))) ce <- rev(cumsum(rev(ce))) n <- ce + ev i <- !duplicated(obs) obs <- obs[i] n <- n[i] ev <- ev[i] ev <- ev - c(ev[-1], 0) ce <- ce[i] ce <- ce - c(ce[-1], 0) v <- N * cumsum(ev/(n - ev)/n) S <- exp(cumsum(log(1 - ev/n))) if (is.na(S[length(S)])) S[length(S)] <- 0 rslt <- data.frame(t = obs, atrisk = n, events = ev, censored = ce, S = S, v = v) class(rslt) <- c("KM", "data.frame") rslt } sum_KM <- function(x, times, rightCtsCDF = TRUE) { if (!inherits(x, "KM")) stop("x must be a KM object") if (rightCtsCDF) { rslt <- as.vector(apply(matrix(rep(times, each = length(x$t)), length(x$t)) >= x$t, 2, sum)) + 1 } else rslt <- as.vector(apply(matrix(rep(times, each = length(x$t)), length(x$t)) > x$t, 2, sum)) + 1 if (x$S[length(x$S)] > 0) rslt[times > x$t[length(x$t)]] <- NA c(1, x$S)[rslt] } quantile_KM <- function(x, probs) { rslt <- length(probs) for (i in 1:length(probs)) { p <- 1 - probs[i] j <- abs(x$S - p) < 1e-15 & x$events > 0 if (any(j)) { if (abs(p - min(x$S)) < 1e-15) { rslt[i] <- (x$t[j] + max(x$t))/2 } else { rslt[i] <- (x$t[j] + min(x$t[x$t > x$t[j] & x$events > 0]))/2 } } else { j <- sum(x$S > p) if (j == length(x$S) | p == 1) { rslt[i] <- NA } else rslt[i] <- x$t[j + 1] } } rslt } mean_KM <- function(x, restriction = Inf) { if (length(restriction) == 1) restriction <- c(x$t[1] - 1, restriction) if (restriction[2] == Inf) restriction[2] <- x$t[length(x$t)] tms <- c(restriction[1], x$t[x$t > restriction[1] & x$t < restriction[2]], restriction[2]) s <- sum_KM(x, restriction) s <- c(s[1], x$S[x$t > restriction[1] & x$t < restriction[2]], s[2]) ne <- tms <= 0 po <- tms >= 0 neS <- 1 - s[ne] neX <- abs(c(diff(tms[ne]), 0)) neI <- neS != 0 & neX != 0 if (sum(neI) > 0) rslt <- -sum(neS[neI] * neX[neI]) else rslt <- 0 poS <- s[po] poX <- c(diff(tms[po]), 0) poI <- poS != 0 & poX != 0 if (sum(poI) > 0) rslt <- rslt + sum(poS[poI] * poX[poI]) attr(rslt, "restriction") <- restriction rslt } describe_vector <- function(x, probs = c(0.25, 0.5, 0.75), thresholds = NULL, geometricMean = FALSE, geomInclude = FALSE, replaceZeroes = FALSE) { if (is.character(x)) { x <- as.factor(x) } if (is.factor(x) | is.logical(x)) { x <- as.numeric(x) } if (!geomInclude) { geometricMean <- geomInclude } ntholds <- ifelse(is.null(thresholds), 0, dim(thresholds)[1]) probs <- sort(unique(c(probs, 0, 1))) rslt <- length(x) if (rslt == 0) { rslt <- c(rslt, rep(NaN, 7 + length(probs) + ntholds)) } else { u <- is.na(x) rslt <- c(rslt, sum(u)) x <- x[!u] if (length(x) == 0 | is.character(x)) { if (!geomInclude) { rslt <- c(rslt, rep(NA, 6 + length(probs) + ntholds)) } else { rslt <- c(rslt, rep(NA, 7 + length(probs) + ntholds)) } } else { if (geomInclude) { rslt <- c(rslt, mean(x), stats::sd(x), ifelse1( geometricMean, exp(mean(log(ifelse(x == 0, replaceZeroes, x)))), NA ), stats::quantile(x, probs)) } else { rslt <- c(rslt, mean(x), stats::sd(x), stats::quantile(x, probs)) } if (ntholds > 0) { for (j in 1:ntholds) { u <- ifelse1( thresholds[j, 1] == 0, x > thresholds[j, 2], x >= thresholds[j, 2] ) & ifelse1( thresholds[j, 3] == 0, x < thresholds[j, 4], x <= thresholds[j, 4] ) rslt <- c(rslt, mean(u)) } } rslt <- c(rslt, Inf, NA, NA) } } if (length(x) > 0) { rslt <- matrix(c(rslt, 0), 1) } else { rslt <- matrix(rslt, 1) } qnames <- paste(format(100 * probs), "%", sep = "") qnames[probs == 0.5] <- " Mdn" qnames[probs == 0] <- " Min" qnames[probs == 1] <- " Max" tnames <- NULL if (ntholds > 0) { tholds <- thresholds tholds[tholds == Inf | tholds == -Inf] <- 0 tnames <- paste( sep = "", "Pr", ifelse( thresholds[, 2] == -Inf, paste(sep = "", ifelse(thresholds[, 3] == 0, "<", "<="), format(tholds[, 4])), ifelse( thresholds[, 4] == Inf, paste(sep = "", ifelse(thresholds[, 1] == 0, ">", ">="), format(tholds[, 2])), paste( sep = "", ifelse(thresholds[, 1] == 0, "(", "["), format(tholds[, 2]), ",", format(tholds[, 4]), ifelse(thresholds[, 3] == 0, ")", "]") ) ) ) ) } if (geomInclude) { dimnames(rslt) <- list("", c("N", "Msng", "Mean", "Std Dev", "Geom Mn", qnames, tnames, "restriction", "firstEvent", "lastEvent", "isDate")) } else { dimnames(rslt) <- list("", c("N", "Msng", "Mean", "Std Dev", qnames, tnames, "restriction", "firstEvent", "lastEvent", "isDate")) } rslt } describe_surv <- function(x, probs = c(0.25, 0.5, 0.75), thresholds = NULL, geometricMean = FALSE, geomInclude = FALSE, replaceZeroes = FALSE, restriction = Inf) { if (!survival::is.Surv(x)) stop("x must be a Surv object") ntholds <- if (is.null(thresholds)) 0 else dim(thresholds)[1] probs <- sort(unique(c(probs, 0, 1))) rslt <- dim(x)[1] if (rslt == 0) { rslt <- c(rslt, rep(NaN, 7 + length(probs) + ntholds)) } else { u <- is.na(x) rslt <- c(rslt, sum(u)) x <- x[!u] if (dim(x)[1] == 0) { rslt <- c(rslt, rep(NA, 6 + length(probs) + ntholds)) } else { z <- KM(x) tmp1 <- mean_KM(z, restriction) x2 <- x x2[, 1] <- x2[, 1]^2 z2 <- KM(x2) tmp2 <- sqrt(mean_KM(z2, restriction^2) - tmp1^2) if (geometricMean) { x2 <- x x2[, 1] <- ifelse(x2[, 1] == 0, log(replaceZeroes), log(x2[, 1])) z2 <- KM(x2) tmp3 <- exp(mean_KM(z2, log(restriction))) } else tmp3 <- NA if (any(x[, 2] == 1)) { firstEvent <- min(x[x[, 2] == 1, 1]) lastEvent <- max(x[x[, 2] == 1, 1]) } else { firstEvent <- Inf lastEvent <- -Inf } if (geomInclude) { rslt <- c(rslt, tmp1, tmp2, tmp3, min(x[, 1]), quantile_KM(z, probs[-c(1, length(probs))]), max(x[, 1])) } else { rslt <- c(rslt, tmp1, tmp2, min(x[, 1]), quantile_KM(z, probs[-c(1, length(probs))]), max(x[, 1])) } if (ntholds > 0) { for (j in 1:ntholds) { rslt <- c(rslt, ifelse1(thresholds[j, 1] == 0, sum_KM(z, thresholds[j, 2]), sum_KM(z, thresholds[j, 2], FALSE)) - ifelse1(thresholds[j, 4] == Inf, 0, ifelse1(thresholds[j, 3] == 0, sum_KM(z, thresholds[j, 4], FALSE), sum_KM(z, thresholds[j, 4])))) } } rslt <- c(rslt, attr(tmp1, "restriction")[2], firstEvent, lastEvent) } } rslt <- matrix(c(rslt, 0), 1) qnames <- paste(format(100 * probs), "%", sep = "") qnames[probs == 0.5] <- " Mdn" qnames[probs == 0] <- " Min" qnames[probs == 1] <- " Max" tnames <- NULL if (ntholds > 0) { tholds <- thresholds tholds[tholds == Inf | tholds == -Inf] <- 0 tnames <- paste(sep = "", "Pr", ifelse(thresholds[, 2] == -Inf, paste(sep = "", ifelse(thresholds[, 3] == 0, "<", "<="), format(tholds[, 4])), ifelse(thresholds[, 4] == Inf, paste(sep = "", ifelse(thresholds[, 1] == 0, ">", ">="), format(tholds[, 2])), paste(sep = "", ifelse(thresholds[, 1] == 0, "(", "["), format(tholds[, 2]), ",", format(tholds[, 4]), ifelse(thresholds[, 3] == 0, ")", "]"))))) } if (geomInclude) { dimnames(rslt) <- list("", c("N", "Msng", "Mean", "Std Dev", "Geom Mn", qnames, tnames, "restriction", "firstEvent", "lastEvent", "isDate")) } else { dimnames(rslt) <- list("", c("N", "Msng", "Mean", "Std Dev", qnames, tnames, "restriction", "firstEvent", "lastEvent", "isDate")) } rslt } describe_stratified_vector <- function(x, strata, subset, probs = c(0.25, 0.5, 0.75), thresholds = NULL, geomInclude = FALSE, replaceZeroes = FALSE) { if (is.null(subset)) subset <- rep(TRUE, length(x)) if (length(x) != length(subset)) stop("length of variables must match length of subset") if (is.null(strata)) strata <- rep(1, length(x)) if (length(x) != length(strata)) stop("length of variables must match length of strata") x <- x[subset] if (is.factor(x) | all(x[!is.na(x)] %in% c(0, 1))) { geometricMean <- FALSE } else { geometricMean <- !any(x[!is.na(x)] < 0) } if (is.logical(replaceZeroes)) { if (!replaceZeroes | is.factor(x) | all(x[!is.na(x)] %in% c(0, 1))) { replaceZeroes <- NA } else { replaceZeroes <- min(x[!is.na(x) & x > 0])/2 } } strata <- strata[subset] s <- sort(unique(strata)) rslt <- describe_vector(x, probs, thresholds, geometricMean, geomInclude, replaceZeroes) if (length(s) > 1) { for (i in s) rslt <- rbind(rslt, describe_vector(x[strata == i & !is.na(strata)], probs, thresholds, geometricMean, geomInclude, replaceZeroes)) if (any(is.na(strata))) { rslt <- rbind(rslt, describe_vector(x[is.na(strata)], probs, thresholds, geometricMean, geomInclude, replaceZeroes)) dimnames(rslt)[[1]] <- format(c("All", paste(" Str", format(c(format(s), "NA"))))) } else dimnames(rslt)[[1]] <- format(c("All", paste(" Str", format(s)))) } rslt } describe_stratified_date <- function(x, strata, subset, probs = c(0.25, 0.5, 0.75), thresholds = NULL, geomInclude = FALSE, replaceZeroes = FALSE) { if (!is.Date(x)) stop("x must be a Date object") xi <- as.integer(x) rslt <- describe_stratified_vector(xi, strata, subset, probs, thresholds, geomInclude, replaceZeroes) rslt[, "isDate"] <- 1 rslt } describe_stratified_surv <- function(x, strata, subset, probs = c(0.25, 0.5, 0.75), thresholds = NULL, geomInclude = FALSE, replaceZeroes = FALSE, restriction = Inf) { if (!survival::is.Surv(x)) stop("x must be a Surv object") n <- dim(x)[1] if (is.null(subset)) subset <- rep(TRUE, n) if (n != length(subset)) stop("length of variables must match length of subset") if (is.null(strata)) strata <- rep(1, n) if (n != length(strata)) stop("length of variables must match length of strata") x <- x[subset] if (geomInclude) { geometricMean <- !any(x[!is.na(x), 1] < 0) } else { geometricMean <- FALSE } if (is.logical(replaceZeroes)) { if (replaceZeroes) { replaceZeroes <- min(x[!is.na(x) & x[, 1] > 0, 1])/2 } else { replaceZeroes <- NA } } strata <- strata[subset] s <- sort(unique(strata)) rslt <- describe_surv(x, probs, thresholds, geomInclude, geometricMean, replaceZeroes, restriction) if (length(s) > 1) { for (i in s) { rslt <- rbind(rslt, describe_surv(x[strata == i & !is.na(strata)], probs, thresholds, geomInclude, geometricMean, replaceZeroes, restriction)) } if (any(is.na(strata))) { rslt <- rbind(rslt, describe_surv(x[is.na(strata)], probs, thresholds, geomInclude, geometricMean, replaceZeroes, restriction)) dimnames(rslt)[[1]] <- format(c("All", paste(" Str", format(c(format(s), "NA"))))) } else { dimnames(rslt)[[1]] <- format(c("All", paste(" Str", format(s)))) } } rslt } describe_stratified_matrix <- function(x, strata, subset, probs = c(0.25, 0.5, 0.75), thresholds = NULL, geomInclude = FALSE, replaceZeroes = FALSE) { if (!is.matrix(x)) { stop("x must be a matrix") } p <- dim(x)[2] nms <- dimnames(x)[[2]] if (is.null(nms)) { nms <- paste("V", 1:p, sep = "") } rslt <- NULL for (i in 1:p) { rslt <- rbind( rslt, describe_stratified_vector(x[, i], strata, subset, probs, thresholds, geomInclude, replaceZeroes) ) } dimnames(rslt)[[1]] <- paste(format(rep(nms, each = (dim(rslt)[1])/p)), dimnames(rslt)[[1]]) rslt } describe_stratified_list <- function(x, strata, subset, probs = c(0.25, 0.5, 0.75), thresholds = NULL, geomInclude = FALSE, replaceZeroes = FALSE, restriction = Inf) { if (!is.list(x)) { stop("x must be a list") } p <- length(x) nms <- names(x) if (is.null(nms)) { nms <- paste("V", 1:p, sep = "") } rslt <- NULL for (i in 1:p) { if (survival::is.Surv(x[[i]])) { rslt <- rbind(rslt, describe_stratified_surv(x[[i]], strata, subset, probs, thresholds, geomInclude, replaceZeroes, restriction)) } else if (is.Date(x[[i]])) { rslt <- rbind(rslt, describe_stratified_date(x[[i]], strata, subset, probs, thresholds, geomInclude, replaceZeroes)) } else { rslt <- rbind(rslt, describe_stratified_vector(x[[i]], strata, subset, probs, thresholds, geomInclude, replaceZeroes)) } } dimnames(rslt)[[1]] <- paste(format(rep(nms, each = (dim(rslt)[1])/p)), dimnames(rslt)[[1]]) rslt } print.uDescriptives <- function (x, ..., sigfigs=max(3,getOption("digits")-3),width=9,nonsci.limit=5, print.it= TRUE) { cmptRoundDigits <- function (x, sf) { y <- max(abs(x),na.rm=TRUE) if (y==0) { sf } else { y <- trunc(log(y) / log(10)) - (y < 1) max(0,sf - y - (y < sf)) } } frmtCol <- function (x, sf, nonsci.limit, colwidth=9, append="") { rslt <- NULL for (i in 1:length(x)) { if (is.na(x[i])) { tmp <- "NA" } else { rd <- cmptRoundDigits (x[i], sf) if (rd <= nonsci.limit & abs(x[i]) < 10^nonsci.limit) { tmp <- format(round(x[i],rd),nsmall=rd,width=1) } else { tmp <- format(round(x[i],rd), digits=sf, scientific=TRUE, width=1) } } rslt <- c(rslt,ifelse(x[i]<0,tmp,paste(" ",tmp,sep=""))) } rslt <- paste(rslt,append,sep="") format(rslt, justify="centre", width=colwidth) } ncol <- dim(x)[2] meancol <- (1:ncol)[dimnames(x)[[2]]=="Mean"] mincol <- (1:ncol)[dimnames(x)[[2]]==" Min"] maxcol <- (1:ncol)[dimnames(x)[[2]]==" Max"] censMin <- x[,"firstEvent"] > x[,mincol] censMin[is.na(censMin)] <- FALSE censMax <- x[,"lastEvent"] < x[,maxcol] censMax[is.na(censMax)] <- FALSE if (!any(censMax)) { restriction <- NULL } else { restriction <- frmtCol(x[,"restriction"],sigfigs,nonsci.limit,1,")") restriction <- paste("(R",restriction,sep="") restriction[!censMax] <- "" restriction <- format(restriction, justify="left") } frmtCoefficients <- format(x[,1:(ncol-4),drop=FALSE]) for (j in 1:2) frmtCoefficients[,j] <- format (x[,j],justify="right",width=5) frmtCoefficients[,mincol] <- frmtCol (x[,mincol],sigfigs,nonsci.limit,width,ifelse(censMin,"+","")) for (j in 3:5) frmtCoefficients[,j] <- frmtCol (x[,j],sigfigs,nonsci.limit,width,ifelse(censMax,"+","")) if(any(dimnames(x)[[2]] == "Geom Mn")){ indx <- 7:(ncol-4) } else { indx <- 6:(ncol-4) } indx <- indx[indx != maxcol] for (j in indx) frmtCoefficients[,j] <- frmtCol (x[,j],sigfigs,nonsci.limit,width) frmtCoefficients[,maxcol] <- frmtCol (x[,maxcol],sigfigs,nonsci.limit,width,ifelse(censMax,"+","")) dateBool <- any(is.na(x[,"isDate"])) if(dateBool){ } else { if (any(x[,"isDate"]==1)) { xformCol <- c(3,5:(dim(x)[2]-4)) for (j in 1:length(xformCol)) { if (substring(dimnames(x)[[2]][xformCol[j]],1,2)=="Pr") xformCol[j] <- NA } xformCol <- xformCol[!is.na(xformCol)] orgn <- "1970-01-01" frmtCoefficients[x[,"isDate"]==1,xformCol] <- format(as.Date(x[x[,"isDate"]==1,xformCol],orgn)) } } if (!is.null(restriction)) frmtCoefficients <- cbind(frmtCoefficients[,1:2,drop=FALSE], "Restrict"=restriction,frmtCoefficients[,-(1:2),drop=FALSE]) if(print.it) print(frmtCoefficients,quote=FALSE) invisible(frmtCoefficients) }
regtemplate <- function(x) { get_templatebrain(attr(x, 'regtemplate')) } `regtemplate<-` <- function(x, value) { attr(x, 'regtemplate') <- get_templatebrain(value) x } get_templatebrain <- function(x, strict=FALSE) { if(is.templatebrain(x) || is.null(x)) return(x) b = try(get(x, mode = 'list'), silent = T) if (!is.templatebrain(b) && strict) stop("Unable to find template brain: ", b) if(inherits(b, 'try-error')) NULL else b } brain_details <- function(x, pos) { obj=get(x, pos = pos) if(!is.templatebrain(obj)) return(NULL) env.name=attr(as.environment(pos), 'name') if(is.null(env.name)) env.name=NA_character_ env.name=sub("package:","", env.name) dims=obj[['dims']] if(is.null(dims)) dims=rep(NA_integer_, 3) name=as.character(obj) md5=digest::digest(obj, algo = 'md5') data.frame(package=env.name, name=name, md5=md5, W=dims[1],H=dims[2],D=dims[3], stringsAsFactors = FALSE) } all_templatebrains_tomemo <- function() { ll=utils::apropos(what='.*', mode='list', where=TRUE) df=data.frame(object=ll, pos=as.integer(names(ll)), stringsAsFactors = FALSE) reslist=mapply(brain_details, df$object, df$pos, SIMPLIFY = FALSE) goodvals=sapply(reslist, is.data.frame) details <- do.call(rbind, reslist[goodvals]) df=cbind(df[goodvals,,drop=FALSE], details) rownames(df)=NULL df } all_templatebrains_m <- memoise::memoise(all_templatebrains_tomemo) all_templatebrains <- function(cached=TRUE, remove.duplicates=FALSE) { if(isFALSE(cached)) memoise::forget(all_templatebrains_m) res=all_templatebrains_m() if(remove.duplicates) res[!duplicated(res[['md5']]),,drop=FALSE] else res } guess_templatebrain <- function(x, rval=c("templatebrain", "name"), cached=TRUE, mustWork=FALSE) { dims <- if(is.numeric(x) && length(x)%in%2:3) { paste(x, collapse="x") } else { tx=as.templatebrain(x, regName='dummy') paste(tx$dims, collapse="x") } rval=match.arg(rval) df=all_templatebrains(cached = cached, remove.duplicates = TRUE) if(nrow(df)==0) { candidates=data.frame() } else { df$dims=apply(df[c("W","H","D")],1,paste, collapse="x") candidates=df[pmatch(dims, df$dims, duplicates.ok = TRUE),,drop=FALSE] if(nrow(candidates)>1) { if(mustWork) { print(candidates) stop("Multiple candidates!") } } } if(nrow(candidates)==0) if(mustWork) stop("No candidates found!") if(rval=='name') { unique(candidates$name) } else { if(nrow(candidates)==0) return(NULL) if(nrow(candidates)>1) mapply(get, x=candidates$object, pos=candidates$pos, SIMPLIFY = FALSE) else get(candidates$object, pos = candidates$pos) } }
test.basic<-function(DF, at, display_under, tag) { if(!test.ftree(DF)) stop("first argument must be a fault tree") parent<-which(DF$ID== at) if(length(parent)==0) {stop("connection reference not valid")} thisID<-max(DF$ID)+1 if(DF$Type[parent]<10) {stop("non-gate connection requested")} if(!DF$MOE[parent]==0) { stop("connection cannot be made to duplicate nor source of duplication") } if(tag!="") { if (length(which(DF$Tag == tag) != 0)) { stop("tag is not unique") } prefix<-substr(tag,1,2) if(prefix=="E_" || prefix=="G_" || prefix=="H_") { stop("Prefixes 'E_', 'G_', and 'H_' are reserved for auto-generated tags.") } } if(DF$Type[parent]==15) { if(length(which(DF$CParent==at))>0) { stop("connection slot not available") } } if(DF$Type[parent]==11 && length(which(DF$Parent==at))>2) { warning("More than 3 connections to AND gate.") } condition=0 if(DF$Type[parent]>11 && DF$Type[parent]<15 ) { if(length(which(DF$CParent==at))>1) { stop("connection slot not available") } if( length(which(DF$CParent==at))==0) { if(DF$Cond_Code[parent]<10) { condition=1 } }else{ if(DF$Cond_Code[parent]>9) { condition=1 } } } gp<-at if(length(display_under)!=0) { if(DF$Type[parent]!=10) {stop("Component stacking only permitted under OR gate")} if (is.character(display_under) & length(display_under) == 1) { siblingDF<-DF[which(DF$CParent==DF$ID[parent]),] display_under<-siblingDF$ID[which(siblingDF$Tag==display_under)] } if(!is.numeric(display_under)) { stop("display under request not found") } if(DF$CParent[which(DF$ID==display_under)]!=at) {stop("Must stack at component under same parent")} if(length(which(DF$GParent==display_under))>0 ) { stop("display under connection not available") }else{ gp<-display_under } } info_vec<-c(thisID, parent, gp, condition) info_vec }
.joda.times <- matrix(c( '^[0-9]{4}[0-9]{2}([-]|[ ]|[/])?[0-9]{2}$', '^yyyy([-]|[ ]|[/])?MM([-]|[ ]|[/])?dd$', '1988-03-02', '^[0-9]{2}([-]|[ ]|[/])[0-9]{2}([-]|[ ]|[/])?[0-9]{4}$', '^dd([-]|[ ]|[/])?MM([-]|[ ]|[/])?yyyy$', '02-03-1988', '^[0-9]{4}([-]|[ ]|[/])[A-Za-z]{3}([-]|[ ]|[/])?[0-9]{2}$', '^yyyy([-]|[ ]|[/])?MMM([-]|[ ]|[/])?dd$', '1988-Mar-02', '^[0-9]{2}([-]|[ ]|[/])[A-Za-z]{3}([-]|[ ]|[/])?[0-9]{4}$', '^dd([-]|[ ]|[/])?MMM([-]|[ ]|[/])?yyyy$', '02-Mar-1988', '^[0-9]{4}([-]|[ ]|[/])?[0-9]{2}$', '^yyyy([-]|[ ]|[/])?MM$', '1988-03', '^[0-9]{4}([-]|[ ]|[/])?[A-Za-z]{3}$', '^yyyy([-]|[ ]|[/])?MMM$', '1988-Mar', '^[A-Za-z]{3}([-]|[ ]|[/])?[0-9]{4}$', '^MMM([-]|[ ]|[/])?yyyy$', 'Mar-1988', '^[0-9]{2}([-]|[ ]|[/])?[0-9]{4}$', '^MM([-]|[ ]|[/])?yyyy$', '03-1988', '^[0-9]{4}$', '^yyyy$', '1998' ), ncol=3, byrow=T ) colnames(.joda.times) <- c('regex','format','example') .joda.times <- as.data.frame(.joda.times, stringsAsFactors=F) checkTimeFormat <- function(fmt) { result <- lapply( .joda.times[,2], function(X,Y) {grep(pattern=X,x=Y)}, Y=fmt ) result <- sum(unlist(result)) == 1 return(result) }
make_lines = function(heightmap,basedepth=0,linecolor="grey20",zscale=1,alpha=1,linewidth = 2,solid=TRUE) { heightmap = heightmap/zscale heightval3 = heightmap[1,1] heightval4 = heightmap[nrow(heightmap),1] heightval1 = heightmap[1,ncol(heightmap)] heightval2 = heightmap[nrow(heightmap),ncol(heightmap)] heightlist = list() if(all(!is.na(heightmap))) { if(solid) { heightlist[[1]] = matrix(c(1,1,basedepth,heightval3,-1,-1),2,3) heightlist[[2]] = matrix(c(nrow(heightmap),nrow(heightmap),basedepth,heightval4,-1,-1),2,3) heightlist[[3]] = matrix(c(1,1,basedepth,heightval1,-ncol(heightmap),-ncol(heightmap)),2,3) heightlist[[4]] = matrix(c(nrow(heightmap),nrow(heightmap),basedepth,heightval2,-ncol(heightmap),-ncol(heightmap)),2,3) heightlist[[5]] = matrix(c(1,1,basedepth,basedepth,-1,-ncol(heightmap)),2,3) heightlist[[6]] = matrix(c(1,nrow(heightmap),basedepth,basedepth,-ncol(heightmap),-ncol(heightmap)),2,3) heightlist[[7]] = matrix(c(nrow(heightmap),nrow(heightmap),basedepth,basedepth,-ncol(heightmap),-1),2,3) heightlist[[8]] = matrix(c(nrow(heightmap),1,basedepth,basedepth,-1,-1),2,3) } else { basedepth = basedepth/zscale counter = 1 if(basedepth > heightval1) { heightlist[[counter]] = matrix(c(1,1,basedepth,heightval1,-1,-1),2,3) counter = counter + 1 } if(basedepth > heightval2) { heightlist[[counter]] = matrix(c(nrow(heightmap),nrow(heightmap),basedepth,heightval2,-1,-1),2,3) counter = counter + 1 } if(basedepth > heightval3) { heightlist[[counter]] = matrix(c(1,1,basedepth,heightval3,-ncol(heightmap),-ncol(heightmap)),2,3) counter = counter + 1 } if(basedepth > heightval4) { heightlist[[counter]] = matrix(c(nrow(heightmap),nrow(heightmap),basedepth,heightval4,-ncol(heightmap),-ncol(heightmap)),2,3) counter = counter + 1 } } } else { heightlist = make_baselines_cpp(heightmap,is.na(heightmap),basedepth) } if(length(heightlist) > 0) { segmentlist = do.call(rbind,heightlist) segmentlist[,1] = segmentlist[,1] - nrow(heightmap)/2 segmentlist[,3] = -segmentlist[,3] - ncol(heightmap)/2 rgl::segments3d(segmentlist,color=linecolor,lwd=linewidth,alpha=alpha,depth_mask=TRUE, line_antialias=FALSE, depth_test="lequal",ambient = ifelse(solid," } }
SS_read_summary <- function(file="ss_summary.sso"){ if(is.na(file.info(file)$size) || file.info(file)$size == 0){ warning("file is missing or empty: ", file) return(NULL) } read_summary_section <- function(start, end, ncol, nonnumeric=NULL, names){ if(start >= end){ return(NULL) } df <- all_lines[start:end] comment_lines <- grep("^ if(length(comment_lines) > 0){ df <- df[-comment_lines] } df <- strsplit(df, "[[:blank:]]+") df <- as.list(df) df <- do.call("rbind", df) df <- as.data.frame(df[, -1], stringsAsFactors = FALSE, row.names=df[, 1]) if(ncol > 1){ numeric.cols <- which(!(1:ncol) %in% nonnumeric) df[, numeric.cols] <- lapply(df[, numeric.cols], as.numeric) }else{ df[, 1] <- as.numeric(df[, 1]) } names(df) <- names return(df) } all_lines <- readLines(file) like_start <- grep(" param_start <- grep(" derived_quants_start <- grep(" survey_stdev_start <- grep(" biomass_start <- grep(" header <- all_lines[1:(like_start-1)] likelihoods <- read_summary_section(start = like_start+2, end = param_start - 1, ncol = 1, names="logL*Lambda") parameters <- read_summary_section(start = param_start+2, end = derived_quants_start - 1, ncol = 4, nonnumeric = 3, names=c("Value", "SE", "Active?", "Range")) derived_quants <- read_summary_section(start = derived_quants_start+2, end = survey_stdev_start - 1, ncol = 2, names=c("Value", "SE")) survey_stdev <- read_summary_section(start = survey_stdev_start+1, end = biomass_start-1, ncol = 6, nonnumeric = c(3,5), names=c("Value", "SE", "XX", "Exp", "XX", "Q")) survey_stdev <- survey_stdev[names(survey_stdev) != "XX"] biomass <- read_summary_section(start = biomass_start+2, end = length(all_lines), ncol = 2, names=c("Value", "SE")) return(list(header = header, likelihoods = likelihoods, parameters = parameters, derived_quants = derived_quants, survey_stdev = survey_stdev, biomass = biomass)) }