code
stringlengths
1
13.8M
`qbbox` <-structure(function ( lat, lon, TYPE = c("all", "quantile")[1], margin = list(m=c(1,1,1,1), TYPE = c("perc", "abs")[1]), q.lat = c(0.1,0.9), q.lon = c(0.1,0.9), verbose=0 ){ if (TYPE == "all"){ latR <- range(lat,na.rm=TRUE); lonR <- range(lon,na.rm=TRUE) } else if (TYPE == "quantile"){ latR <- quantile(lat, q.lat, na.rm=TRUE); lonR <- quantile(lon, q.lon, na.rm=TRUE); } if (!is.null(margin)){ m <- margin$m; lat.center <- latR[1] + diff(latR)/2; lon.center <- lonR[1] + diff(lonR)/2; if (margin$TYPE == "perc"){ dlon <- c(-1,1)*(1+m[c(2,4)]/100)*diff(lonR)/2; dlat <- c(-1,1)*(1+m[c(1,3)]/100)*diff(latR)/2; } else if (margin$TYPE == "abs"){ dlon <- c(-1,1)*(m[c(2,4)] + diff(lonR)/2); dlat <- c(-1,1)*(m[c(1,3)] + diff(latR)/2); } lonR.margin <- lon.center + dlon; latR.margin <- lat.center + dlat; if (verbose>1) { cat("old/new lon range:");print(lonR);print(lonR.margin); cat("old/new lat range:");print(latR);print(latR.margin); } return(list(latR=latR.margin, lonR=lonR.margin)) } return(list(latR=latR, lonR=lonR)) }, ex = function(){ lat = 37.85 + rnorm(100, sd=0.001); lon = -120.47 + rnorm(100, sd=0.001); lat[1:5] <- lat[1:5] + rnorm(5, sd =.01); lon[1:5] <- lon[1:5] + rnorm(5, sd =.01); qbbox(lat, lon, TYPE = "quantile"); qbbox(lat, lon, TYPE = "all"); qbbox(lat, lon, margin = list(m = c(10, 10, 10, 10), TYPE = c("perc", "abs")[1])); })
archetypes_funct <- function(data, k, weights = NULL, maxIterations = 100, minImprovement = sqrt(.Machine$double.eps), maxKappa = 1000, verbose = FALSE, saveHistory = FALSE, family = archetypesFamily("original"), PM = PM, ...) { mycall <- match.call() famargs <- list(...) memento <- NULL snapshot <- function(i) { a <- list(archetypes = as.archetypes(t(family$rescalefn(x, family$undummyfn(x, zs))), k, alphas = t(alphas), betas = t(betas), rss = rss, kappas = kappas, zas = t(family$rescalefn(x, family$undummyfn(x, zas))), residuals = resid, reweights = reweights, weights = weights, family = list(class = family$class))) memento$save(i, a) } printIter <- function(i) { cat(i, ": rss = ", formatC(rss, 8, format = "f"), ", improvement = ", formatC(imp, 8, format = "f"), "\n", sep = "") } x1 <- t(data) x1 <- family$scalefn(x1, ...) x1 <- family$dummyfn(x1, ...) x0 <- family$globweightfn(x1, weights, ...) x <- x0 n <- ncol(x) m <- nrow(x) init <- family$initfn(x, k, ...) betas <- init$betas alphas <- init$alphas zas <- NULL zs <- x %*% betas resid <- zs[1:(nrow(zs) - 1),] %*% alphas - x[1:(nrow(x) - 1),] rss <- family$normfn(resid, PM, ...)/n reweights <- rep(1, n) kappas <- c(alphas = kappa(alphas), betas = kappa(betas), zas = -Inf, zs = kappa(zs)) isIll <- c(kappas) > maxKappa errormsg <- NULL if (saveHistory) { memento <- new.memento() snapshot(0) } i <- 1 imp <- +Inf tryCatch(while ((i <= maxIterations) & (imp >= minImprovement)) { reweights <- family$reweightsfn(resid, reweights, ...) x <- family$weightfn(x0, reweights, ...) alphas <- family$alphasfn(alphas, zs, x, ...) zas <- family$zalphasfn(alphas, x, ...) resid1n <- zas[1:(nrow(zas) - 1),] %*% alphas - x[1:(nrow(x) - 1),] rss1 <- family$normfn(resid1n, PM, ...)/n kappas[c("alphas", "zas")] <- c(kappa(alphas), kappa(zas)) betas <- family$betasfn(betas, x, zas, ...) zs <- x %*% betas kappas[c("betas", "zs")] <- c(kappa(betas), kappa(zs)) alphas0 <- family$alphasfn(alphas, zs, x0, ...) resid <- zs[1:(nrow(zs) - 1),] %*% alphas0 - x0[1:(nrow(x0) - 1),] rss2 <- family$normfn(resid, PM, ...)/n imp <- rss - rss2 rss <- rss2 kappas <- c(alphas = kappa(alphas), betas = kappa(betas), zas = kappa(zas), zs = kappa(zs)) isIll <- isIll & (kappas > maxKappa) if (verbose) printIter(i) if (saveHistory) snapshot(i) i <- i + 1 }, error = function(e) errormsg <<- e) if (!is.null(errormsg)) { warning("k=", k, ": ", errormsg) return(as.archetypes(NULL, k, NULL, NA, iters = i, call = mycall, history = history, kappas = kappas)) } if (any(isIll)) warning("k=", k, ": ", paste(names(isIll)[isIll], collapse = ", "), " > maxKappa", sep = "") alphas <- family$alphasfn(alphas, zs, x1) betas <- family$betasfn(betas, x1, zs) zs <- family$undummyfn(x1, zs) zs <- family$rescalefn(x1, zs) resid <- zs %*% alphas - t(data) return(as.archetypes(t(zs), k, t(alphas), rss, iters = (i - 1), call = mycall, history = memento, kappas = kappas, betas = t(betas), family = family, familyArgs = famargs, residuals = t(resid), weights = weights, reweights = reweights, scaling = attr(x1, ".Meta"))) }
knitr::opts_chunk$set( collapse = TRUE, comment = " ) library(GlmSimulatoR) library(MASS) set.seed(1) simdata <- simulate_inverse_gaussian(N = 100000, link = "1/mu^2", weights = c(1, 2, 3), unrelated = 3) scopeArg <- list( lower = Y ~ 1, upper = Y ~ X1 + X2 + X3 + Unrelated1 + Unrelated2 + Unrelated3 ) startingModel <- glm(Y ~ 1, data = simdata, family = inverse.gaussian(link = "1/mu^2")) glmSearch <- stepAIC(startingModel, scopeArg, trace = 0) summary(glmSearch) rm(simdata, scopeArg, glmSearch, startingModel) set.seed(2) simdata <- simulate_inverse_gaussian(N = 100000, link = "1/mu^2", weights = c(1, 2, 3), unrelated = 20) scopeArg <- list( lower = Y ~ 1, upper = Y ~ X1 + X2 + X3 + Unrelated1 + Unrelated2 + Unrelated3 + Unrelated3 + Unrelated4 + Unrelated5 + Unrelated6 + Unrelated7 + Unrelated8 + Unrelated9 + Unrelated10 + Unrelated11 + Unrelated12 + Unrelated13 + Unrelated14 + Unrelated15 + Unrelated16 + Unrelated17 + Unrelated18 + Unrelated19 + Unrelated20 ) startingModel <- glm(Y ~ 1, data = simdata, family = inverse.gaussian(link = "1/mu^2")) glmSearch <- stepAIC(startingModel, scopeArg, trace = 0) summary(glmSearch) rm(simdata, scopeArg, glmSearch, startingModel) set.seed(3) simdata <- simulate_inverse_gaussian(N = 1000, link = "1/mu^2", weights = c(1, 2, 3), unrelated = 3) scopeArg <- list( lower = Y ~ 1, upper = Y ~ X1 + X2 + X3 + Unrelated1 + Unrelated2 + Unrelated3 ) startingModel <- glm(Y ~ 1, data = simdata, family = inverse.gaussian(link = "1/mu^2")) glmSearch <- stepAIC(startingModel, scopeArg, trace = 0) summary(glmSearch) rm(simdata, scopeArg, glmSearch, startingModel) set.seed(4) simdata <- simulate_inverse_gaussian(N = 1000, link = "1/mu^2", weights = c(1, 2, 3), unrelated = 20) scopeArg <- list( lower = Y ~ 1, upper = Y ~ X1 + X2 + X3 + Unrelated1 + Unrelated2 + Unrelated3 + Unrelated3 + Unrelated4 + Unrelated5 + Unrelated6 + Unrelated7 + Unrelated8 + Unrelated9 + Unrelated10 + Unrelated11 + Unrelated12 + Unrelated13 + Unrelated14 + Unrelated15 + Unrelated16 + Unrelated17 + Unrelated18 + Unrelated19 + Unrelated20 ) startingModel <- glm(Y ~ 1, data = simdata, family = inverse.gaussian(link = "1/mu^2")) glmSearch <- stepAIC(startingModel, scopeArg, trace = 0) summary(glmSearch) rm(simdata, scopeArg, glmSearch, startingModel)
NULL ml_gbt_classifier <- function(x, formula = NULL, max_iter = 20, max_depth = 5, step_size = 0.1, subsampling_rate = 1, feature_subset_strategy = "auto", min_instances_per_node = 1L, max_bins = 32, min_info_gain = 0, loss_type = "logistic", seed = NULL, thresholds = NULL, checkpoint_interval = 10, cache_node_ids = FALSE, max_memory_in_mb = 256, features_col = "features", label_col = "label", prediction_col = "prediction", probability_col = "probability", raw_prediction_col = "rawPrediction", uid = random_string("gbt_classifier_"), ...) { check_dots_used() UseMethod("ml_gbt_classifier") } ml_gbt_classifier.spark_connection <- function(x, formula = NULL, max_iter = 20, max_depth = 5, step_size = 0.1, subsampling_rate = 1, feature_subset_strategy = "auto", min_instances_per_node = 1L, max_bins = 32, min_info_gain = 0, loss_type = "logistic", seed = NULL, thresholds = NULL, checkpoint_interval = 10, cache_node_ids = FALSE, max_memory_in_mb = 256, features_col = "features", label_col = "label", prediction_col = "prediction", probability_col = "probability", raw_prediction_col = "rawPrediction", uid = random_string("gbt_classifier_"), ...) { .args <- list( max_iter = max_iter, max_depth = max_depth, step_size = step_size, subsampling_rate = subsampling_rate, feature_subset_strategy = feature_subset_strategy, min_instances_per_node = min_instances_per_node, max_bins = max_bins, min_info_gain = min_info_gain, loss_type = loss_type, seed = seed, thresholds = thresholds, checkpoint_interval = checkpoint_interval, cache_node_ids = cache_node_ids, max_memory_in_mb = max_memory_in_mb, features_col = features_col, label_col = label_col, prediction_col = prediction_col, probability_col = probability_col, raw_prediction_col = raw_prediction_col ) %>% c(rlang::dots_list(...)) %>% validator_ml_gbt_classifier() stage_class <- "org.apache.spark.ml.classification.GBTClassifier" jobj <- ( if (spark_version(x) < "2.2.0") { spark_pipeline_stage( x, stage_class, uid, features_col = .args[["features_col"]], label_col = .args[["label_col"]], prediction_col = .args[["prediction_col"]] ) } else { spark_pipeline_stage( x, stage_class, uid, features_col = .args[["features_col"]], label_col = .args[["label_col"]], prediction_col = .args[["prediction_col"]], probability_col = .args[["probability_col"]], raw_prediction_col = .args[["raw_prediction_col"]] ) }) %>% ( function(obj) { do.call( invoke, c(obj, "%>%", Filter( function(x) !is.null(x), list( list("setCheckpointInterval", .args[["checkpoint_interval"]]), list("setMaxBins", .args[["max_bins"]]), list("setMaxDepth", .args[["max_depth"]]), list("setMinInfoGain", .args[["min_info_gain"]]), list("setMinInstancesPerNode", .args[["min_instances_per_node"]]), list("setCacheNodeIds", .args[["cache_node_ids"]]), list("setMaxMemoryInMB", .args[["max_memory_in_mb"]]), list("setLossType", .args[["loss_type"]]), list("setMaxIter", .args[["max_iter"]]), list("setStepSize", .args[["step_size"]]), list("setSubsamplingRate", .args[["subsampling_rate"]]), jobj_set_param_helper(obj, "setFeatureSubsetStrategy", .args[["feature_subset_strategy"]], "2.3.0", "auto"), jobj_set_param_helper(obj, "setThresholds", .args[["thresholds"]]), jobj_set_param_helper(obj, "setSeed", .args[["seed"]]) ) )) ) }) new_ml_gbt_classifier(jobj) } ml_gbt_classifier.ml_pipeline <- function(x, formula = NULL, max_iter = 20, max_depth = 5, step_size = 0.1, subsampling_rate = 1, feature_subset_strategy = "auto", min_instances_per_node = 1L, max_bins = 32, min_info_gain = 0, loss_type = "logistic", seed = NULL, thresholds = NULL, checkpoint_interval = 10, cache_node_ids = FALSE, max_memory_in_mb = 256, features_col = "features", label_col = "label", prediction_col = "prediction", probability_col = "probability", raw_prediction_col = "rawPrediction", uid = random_string("gbt_classifier_"), ...) { stage <- ml_gbt_classifier.spark_connection( x = spark_connection(x), formula = formula, max_iter = max_iter, max_depth = max_depth, step_size = step_size, subsampling_rate = subsampling_rate, feature_subset_strategy = feature_subset_strategy, min_instances_per_node = min_instances_per_node, max_bins = max_bins, min_info_gain = min_info_gain, loss_type = loss_type, seed = seed, thresholds = thresholds, checkpoint_interval = checkpoint_interval, cache_node_ids = cache_node_ids, max_memory_in_mb = max_memory_in_mb, features_col = features_col, label_col = label_col, prediction_col = prediction_col, probability_col = probability_col, raw_prediction_col = raw_prediction_col, uid = uid, ... ) ml_add_stage(x, stage) } ml_gbt_classifier.tbl_spark <- function(x, formula = NULL, max_iter = 20, max_depth = 5, step_size = 0.1, subsampling_rate = 1, feature_subset_strategy = "auto", min_instances_per_node = 1L, max_bins = 32, min_info_gain = 0, loss_type = "logistic", seed = NULL, thresholds = NULL, checkpoint_interval = 10, cache_node_ids = FALSE, max_memory_in_mb = 256, features_col = "features", label_col = "label", prediction_col = "prediction", probability_col = "probability", raw_prediction_col = "rawPrediction", uid = random_string("gbt_classifier_"), response = NULL, features = NULL, predicted_label_col = "predicted_label", ...) { formula <- ml_standardize_formula(formula, response, features) stage <- ml_gbt_classifier.spark_connection( x = spark_connection(x), formula = NULL, max_iter = max_iter, max_depth = max_depth, step_size = step_size, subsampling_rate = subsampling_rate, feature_subset_strategy = feature_subset_strategy, min_instances_per_node = min_instances_per_node, max_bins = max_bins, min_info_gain = min_info_gain, loss_type = loss_type, seed = seed, thresholds = thresholds, checkpoint_interval = checkpoint_interval, cache_node_ids = cache_node_ids, max_memory_in_mb = max_memory_in_mb, features_col = features_col, label_col = label_col, prediction_col = prediction_col, probability_col = probability_col, raw_prediction_col = raw_prediction_col, uid = uid, ... ) if (is.null(formula)) { stage %>% ml_fit(x) } else { ml_construct_model_supervised( new_ml_model_gbt_classification, predictor = stage, formula = formula, dataset = x, features_col = features_col, label_col = label_col, predicted_label_col = predicted_label_col ) } } validator_ml_gbt_classifier <- function(.args) { .args <- ml_validate_decision_tree_args(.args) .args[["thresholds"]] <- cast_nullable_double_list(.args[["thresholds"]]) .args[["max_iter"]] <- cast_scalar_integer(.args[["max_iter"]]) .args[["step_size"]] <- cast_scalar_double(.args[["step_size"]]) .args[["subsampling_rate"]] <- cast_scalar_double(.args[["subsampling_rate"]]) .args[["loss_type"]] <- cast_choice(.args[["loss_type"]], "logistic") .args[["feature_subset_strategy"]] <- cast_string(.args[["feature_subset_strategy"]]) .args } new_ml_gbt_classifier <- function(jobj) { v <- jobj %>% spark_connection() %>% spark_version() if (v < "2.2.0") { new_ml_predictor(jobj, class = "ml_gbt_classifier") } else { new_ml_probabilistic_classifier(jobj, class = "ml_gbt_classifier") } } new_ml_gbt_classification_model <- function(jobj) { v <- jobj %>% spark_connection() %>% spark_version() if (v < "2.2.0") { new_ml_prediction_model( jobj, feature_importances = possibly_null(~ read_spark_vector(jobj, "featureImportances")), num_classes = possibly_null(~ invoke(jobj, "numClasses"))(), total_num_nodes = function() invoke(jobj, "totalNumNodes"), tree_weights = invoke(jobj, "treeWeights"), trees = function() { invoke(jobj, "trees") %>% purrr::map(new_ml_decision_tree_regression_model) }, class = "ml_multilayer_perceptron_classification_model" ) } else { new_ml_probabilistic_classification_model( jobj, feature_importances = possibly_null(~ read_spark_vector(jobj, "featureImportances")), num_classes = possibly_null(~ invoke(jobj, "numClasses"))(), total_num_nodes = function() invoke(jobj, "totalNumNodes"), tree_weights = invoke(jobj, "treeWeights"), trees = function() { invoke(jobj, "trees") %>% purrr::map(new_ml_decision_tree_regression_model) }, class = "ml_gbt_classification_model" ) } }
mcmc_bite <- function(model, log.file = "bite_mcmc.log", sampling.freq = 1000, print.freq = 1000, ncat = 1, beta.param = 0.3, ngen = 5000000, burnin = 0) { it <- ngen/ncat if(burnin < 1) burnin <- burnin*it if (ncat > 1) { beta.class <- heat_par(ncat, beta.param) } else { beta.class <- 1 } if(print.freq > 0){ cat("setting initial conditions\n") } pars.lik0 <- model$lik$init lik0 <- model$lik$model(pars.lik0, model$data$traits, model$data$counts) pars.priors0 <- list() priors0 <- c() hpriors0 <- list() for(p in 1:length(model$priors)){ pars.priors0[[p]] <- model$priors[[p]]$init priors0[p] <- model$priors[[p]]$value hpriors0[[p]] <- unlist(mapply(do.call, model$priors[[p]]$hprior, lapply(pars.priors0[[p]], list))[1,]) } if(print.freq > 0){ cat("generation\tposterior\n") cat(paste(model$header, collapse = "\t"), "\n", append = FALSE, file = log.file) } it.beta <- 1 bet <- beta.class[it.beta] if(ncat > 1) cat("beta = ", bet, "\n") update.freq <- c(model$lik$update.freq, sapply(model$priors, function(x) x$update.freq)) update.freq <- cumsum(update.freq/sum(update.freq)) proposals <- c(0,0,0) proposals.accepted <- c(0,0,0) post0 <- (sum(lik0) + sum(priors0 * bet) + sum(unlist(hpriors0))) for (i in 1:(it*ncat)) { r <- min(which(runif(1) <= update.freq)) proposals[r] <- proposals[r] + 1 if (r == 1) { ind <- sample(1:model$data$n, model$lik$n.u, replace = FALSE) u = runif(1) lik1 <- lik0 pars.lik1 <- pars.lik0 priors1 <- priors0 hasting.ratio <- 0 for(p in 1:length(model$priors)){ tmp <- model$lik$prop[[p]](i = pars.lik0[[p]][ind], d = model$lik$ws[[p]][ind], u) pars.lik0[[p]][ind] <- tmp$v hasting.ratio <- hasting.ratio + tmp$lnHastingsRatio priors0[[p]] <- model$priors[[p]]$model(x = pars.lik0[[p]], n = model$data$n, pars = pars.priors0[[p]], Pi = model$priors[[p]]$Pi, par.n = 0, data = model$priors[[p]]$data, map = model$priors[[p]]$map)$loglik } lik0 <- model$lik$model(pars.lik0, model$data$traits, model$data$counts) } else { p <- r - 1 par.n <- sample(1:length(model$priors[[p]]$prop), 1) u = runif(1) pars.priors1 <- pars.priors0 priors1 <- priors0 hpriors1 <- hpriors0 tmp <- model$priors[[p]]$prop[[par.n]](i = pars.priors0[[p]][par.n], d = model$priors[[p]]$ws[par.n], u) pars.priors0[[p]][par.n] <- tmp$v mat1 <- model$priors[[p]]$data mat0 <- try(model$priors[[p]]$model(x = pars.lik0[[p]], n = model$data$n, pars = pars.priors0[[p]], Pi = model$priors[[p]]$Pi, par.n = par.n, data = model$priors[[p]]$data, map = model$prior[[p]]$map), silent = TRUE) if(any(grepl("Error", mat0))){ priors0[p] <- -Inf } else { model$priors[[p]]$data <- mat0$data priors0[p] <- mat0$loglik hpriors0[[p]] <- unlist(mapply(do.call, model$priors[[p]]$hprior, lapply(pars.priors0[[p]], list))[1,]) } hasting.ratio <- tmp$lnHastingsRatio } post1 <- post0 post0 <- (sum(lik0) + sum(priors0 * bet) + sum(unlist(hpriors0))) if(any(is.infinite(c(lik0, priors0, unlist(hpriors0))))){ pr <- -Inf } else { pr <- post0 - post1 + hasting.ratio } if (pr >= log(runif(1))){ proposals.accepted[r] <- proposals.accepted[r] + 1 } else { post0 <- post1 if (r == 1){ pars.lik0 <- pars.lik1 lik0 <- lik1 priors0 <- priors1 } else { pars.priors0 <- pars.priors1 priors0 <- priors1 hpriors0 <- hpriors1 model$priors[[p]]$data <- mat1 } } if (i %% sampling.freq == 0 & i >= burnin) { cat(paste(c(i, post0, sum(lik0), priors0, unlist(sapply(1:length(model$priors), function(p) c(pars.priors0[[p]], pars.lik0[[p]]))), sum(proposals.accepted)/i, bet), collapse = "\t"), "\n", append=TRUE, file=log.file) } if(print.freq > 0){ if (i %% print.freq == 0) { cat(i,'\t',post0,'\n') } } if(i%%it == 0 & i < ngen){ it.beta = it.beta+1 bet <- beta.class[it.beta] cat("beta = ", bet, "\n") } } if(print.freq > 0){ acceptance.results <- proposals.accepted / proposals names(acceptance.results) <- names(proposals) <- c("Likelihood parameters",sprintf("prior.%s",names(model$priors))) cat("\nEffective proposal frequency\n") print(proposals/ngen) cat("\nAcceptance ratios\n") print(acceptance.results) } }
knitr::opts_chunk$set(echo = TRUE) species_df = data.frame( species = c("a", "b", "c"), trait_value = c(-1, 0, 0.5) ) species_distance = dist(c(a = -1, b = 0, c = 0.5)) species_distance alternative_distinctiveness = function(pres_mat, distance_obj, given_T) { dist_mat = as.matrix(distance_obj) kept_sp = funrar:::species_in_common(pres_mat, dist_mat) dist_mat = dist_mat[kept_sp, kept_sp, drop = FALSE] corr_dist = dist_mat corr_dist[dist_mat > given_T] = 0 corr_dist[dist_mat <= given_T] = 1 diag(corr_dist) = 0 di_mat = apply(pres_mat, 1, function(given_pres) { index_mat = given_pres %*% (dist_mat * corr_dist) denom_mat = given_pres %*% corr_dist index_mat = index_mat / denom_mat index_mat[given_pres == 0] = NA index_mat[is.nan(index_mat)] = 1 return(index_mat) }) di_mat = t(di_mat) dimnames(di_mat) = dimnames(pres_mat) di_df = funrar::matrix_to_stack(di_mat, "Di") di_df$given_range = given_T return(di_df) } presence_matrix = matrix(c(rep(1, 3), 1, 0, 1, 1, 1, 0), nrow = 3, ncol = 3, dimnames = list(site = c("s1", "s2", "s3"), species = c("a", "b", "c"))) all_T = lapply(seq(0.5, 1.5, length.out = 50), function(given_number) alternative_distinctiveness( presence_matrix, species_distance, given_number)) all_T = do.call(rbind.data.frame, all_T) library(ggplot2) ggplot(all_T, aes(given_range, Di, color = species)) + geom_line(size = 1, alpha = 1/2) + facet_grid(~site) + labs(x = "Fixed distance range", y = "Functional Distinctiveness", color = "Species") library("funrar") data("aravo", package = "ade4") mat = as.matrix(aravo$spe) mat[mat > 0] = 1 tra = aravo$traits[, c("Height", "SLA", "N_mass")] dist_mat = compute_dist_matrix(tra, metric = "gower") dist_mat = (dist_mat - min(dist_mat))/diff(range(dist_mat)) names(dimnames(mat)) = c("site", "species") all_ranges = lapply(seq(0, 1, length.out = 50), function(given_range) { alternative_distinctiveness(mat, as.dist(dist_mat), given_range) }) all_ranges = do.call(rbind.data.frame, all_ranges) ggplot(subset(all_ranges, site %in% c("AR07", "AR51", "AR02")), aes(given_range, Di, group = species)) + geom_line(alpha = 1/3) + facet_wrap(~site) + labs(x = "Maximum Distance Range Considered\n(Trait Range)", y = "Functional Distinctiveness") all_ranges$scaled_Di = ifelse( all_ranges$Di != 1, all_ranges$Di / all_ranges$given_range, all_ranges$Di) ggplot(subset(all_ranges, site %in% c("AR07", "AR51", "AR02")), aes(given_range, scaled_Di, group = species)) + geom_line(alpha = 1/4) + facet_wrap(~site) + labs(x = "Considered Trait Range\n(Functional Distance)", y = "Scaled Functional Distinctiveness\n(over trait range)") ab_mat = matrix(c(rep(1/3, 3), 1/6, 1/6, 4/6, 4/6, 1/6, 1/6), nrow = 3, ncol = 3, dimnames = list(site = c("s1", "s2", "s3"), species = c("a", "b", "c")), byrow = TRUE) alternative_distinctiveness_abundance = function(abund_mat, dist_matrix, given_range) { dist_mat = dist_matrix kept_sp = funrar:::species_in_common(abund_mat, dist_mat) dist_mat = dist_mat[kept_sp, kept_sp, drop = FALSE] corr_dist = dist_mat corr_dist[dist_mat > given_range] = 0 corr_dist[dist_mat <= given_range] = 1 diag(corr_dist) = 0 di_mat = apply(abund_mat, 1, function(given_ab) { index_mat = given_ab %*% (dist_mat * corr_dist) denom_mat = given_ab %*% corr_dist index_mat = (index_mat / denom_mat) * (1 - denom_mat) index_mat[given_ab == 0 | is.na(given_ab)] = NA index_mat[is.nan(index_mat)] = 1 return(index_mat) }) di_mat = t(di_mat) dimnames(di_mat) = dimnames(abund_mat) di_df = funrar::matrix_to_stack(di_mat, "Di") di_df$given_range = given_range return(di_df) } ab_di_all_ranges = lapply(seq(0, 1.5, length.out = 50), function(given_number) alternative_distinctiveness_abundance(ab_mat, as.matrix(species_distance), given_number)) ab_di_all_ranges = do.call(rbind.data.frame, ab_di_all_ranges) ggplot(ab_di_all_ranges, aes(given_range, Di, color = species)) + geom_line(size = 1) + facet_wrap(~site, labeller = as_labeller(c(s1 = "s1 (1/3 rel. abund each)", s2 = "s2 (a=1/6, b=1/6, c=4/6)", s3 = "s3 (a=4/6, b=1/6, c=1/6)"))) + labs(x = "Considered Range", y = "Functional Distinctiveness")
print.eefAnalytics <- function(x,...) { Checks <- sum(x$Function %in% c("srtBayes","crtBayes","mstBayes") ) if(Checks==0){Approach="Frequentist"}else{Approach="Bayesian"} cat("\nModel Info:") cat("\n method: ", x$Method) cat("\n Design: ", toupper(substr(x$Function,1,3))) cat("\n Approach: ", Approach ) cat("\n function: ", x$Function) cat("\n---------\n") cat("\n") ES0=x$ES ES1= x$Unconditional$ES cat("Result for: Conditional effect size") cat("\n") print(ES0) cat("\n") cat("Result for: Unconditional effect size") cat("\n") print(ES1) cat("\n") if(sum(x$Function %in% c("srtBayes","crtBayes","mstBayes") )==0){ cat("Please use summary to get more results") }else{ cat("Please use summary to get more results") cat("\nAnd use the model object to check for convergence") } } summary.eefAnalytics <- function(object,...){ Checks <- sum(object$Function %in% c("srtBayes","crtBayes","mstBayes") ) cat("\n method: ", object$Method) cat("\n Design: ", object$Function) if(Checks>0){cat("\n observations: ", length(object$Model$y))} res <- object if(Checks>0){ Beta1 <- data.frame( summary(object$Model,pars=c("alpha","beta"))) res$Beta <- cbind(object$Beta,round(Beta1[,c("sd","n_eff","Rhat")],2)) } cat("\n") Beta <- res$Beta print(Beta) cat("\n") ES0=object$ES ES1= object$Unconditional$ES cat("Result for: Conditional effect size") cat("\n") print(ES0) cat("\n") cat("Result for: Unconditional effect size") cat("\n") print(ES1) cat("\n") class(res) <- "eefAnalyticssummary" invisible(res) }
lab.qcs <- function(x, ...) { if(is.null(x) || !inherits(x, "lab.qcdata")) stop("x must be an objects of class (or extending) 'lab.qcdata'") p <- length(unique(x$laboratory)) m <- length(unique(x$material)) n <- length(unique(x$replicate)) material<-unique(x$material) laboratory<-unique(x$laboratory) stat.material <- data.frame(mean = vector(,length = m), S = vector(,length = m), S_r = vector(,length = m), S_B = vector(,length = m), S_R = vector(,length = m)) statistics <- data.frame(laboratory = vector(,length = p*m), material = vector(,length = p*m), mean.i = vector(,length = p*m), s.i = vector(,length = p*m)) data <- x$x statistics[,1] <- as.factor(rep(laboratory,each = m)) statistics[,2] <- as.factor(rep(material,p)) statistics[,3] <- c(tapply(data,list(x$material,x$laboratory),mean)) statistics[,4] <- c(tapply(data,list(x$material,x$laboratory),sd)) stat.material[,1] <- tapply(statistics$mean.i,statistics$material,mean) stat.material[,2] <- tapply(statistics$s.i,statistics$material,sd) f.S_r <- function(s.i) {sqrt(mean(s.i^2))} S_r <- stat.material[,3] <- tapply(statistics$s.i,statistics$material,f.S_r) S_B <- stat.material[,4] <- tapply(statistics$mean.i,statistics$material,sd) stat.material[,5] <- sqrt(S_B^2 + ((n-1)/n)*S_r^2) rownames(stat.material) <- material result <- list (lab.qcdata = x, statistics.Laboratory = statistics, statistics.material = stat.material, p = p, n = n, m = m ) oldClass(result)<-c("lab.qcs") attr(result, "object.name") <- attributes(x)$data.name attr(result, "type.data") <- "lab.qcs" return(result) } print.lab.qcs <- function(x, ...) str(x,1) summary.lab.qcs <- function(object, ...) { type.data <- attributes(object)$type.data cat("\nNumber of laboratories: ", object$p) cat("\nNumber of materials: ", object$m) cat("\nNumber of replicate: ", object$n) result <- switch(type.data, "lab.qcs" = { cat("\nSummary for Laboratory (means):\n") st <- with(object$lab.qcdata, tapply(x, list(material, laboratory), mean)) print(st) cat("\nSummary for Laboratory (Deviations):\n") st <- with(object$lab.qcdata, tapply(x, list(material, laboratory), sd)) print(st) cat("\nSummary for Material:\n") print(object$statistics.material) }, "h.qcs" = { cat("\nCritical value: ", object[[7]]) cat("\nBeyond limits of control:", "\n") print(object[[8]]) }, "k.qcs" ={ cat("\nCritical value: ", object[[7]]) cat("\nBeyond limits of control:", "\n") print(object[[8]]) }) invisible() } h.qcs <- function(x, ...) { UseMethod("h.qcs") } h.qcs.default <- function(x, var.index=1,replicate.index = 2, material.index = 3, laboratory.index=4, data.name = NULL, alpha = 0.05, ...) { if (is.null(data.name)) data.name <- "Statistical Mandel h" obj<-lab.qcdata(data = x, var.index=var.index,replicate.index = replicate.index, material.index = material.index, laboratory.index=laboratory.index, data.name = data.name) result<-h.qcs.lab.qcdata(x = obj, alpha = alpha) return(result) } h.qcs.lab.qcdata <- function(x, alpha = 0.05, ...) { if(is.null(x) || !inherits(x, "lab.qcdata")) stop("x must be an objects of class (or extending) 'lab.qcdata'") data.name <- attributes(x)$data.name x.lab.qcs <- lab.qcs(x) statistics <- x.lab.qcs$statistics.material mean.i <- x.lab.qcs$statistics.Laboratory$mean.i p <- x.lab.qcs$p n <- x.lab.qcs$n m <- x.lab.qcs$m hcrit <- (p-1)*qt((1-alpha/2),(p-2))/sqrt(p*(p-2+qt((1-alpha/2),(p-2))^2)) material <- row.names(x.lab.qcs$statistics.material) laboratory <- unique(x.lab.qcs[[1]]$laboratory) h.i <- matrix(,nrow = p,ncol = m) for(i in 1:m) { ind <- x.lab.qcs$statistics.Laboratory$material==material[i] h.i[,i] <- (mean.i[ind]-statistics$mean[i])/statistics$S[i] } colnames(h.i) <- material rownames(h.i) <- laboratory violations <- abs(h.i) <= hcrit result <- list (lab.qcdata = x, lab.qcs = x.lab.qcs, p = p, n = n, m = m, h = h.i, h.critial = hcrit, violations = violations, data.name = data.name ) oldClass(result) <- c("lab.qcs") attr(result, "object.name") <- data.name attr(result, "type.data") <- "h.qcs" return(result) } k.qcs <- function(x, ...) { UseMethod("k.qcs") } k.qcs.default <- function(x, var.index=1,replicate.index = 2, material.index = 3, laboratory.index=4, data.name = NULL, alpha = 0.05, ...) { if (is.null(data.name)) data.name <- "Statistical Mandel k" obj<-lab.qcdata(data = x, var.index=var.index,replicate.index = replicate.index, material.index = material.index, laboratory.index=laboratory.index, data.name = data.name) result<-k.qcs.lab.qcdata(x = obj, alpha = alpha) return(result) } k.qcs.lab.qcdata<- function(x, alpha = 0.05, ...) { if(is.null(x) || !inherits(x, "lab.qcdata")) stop("x must be an objects of class (or extending) 'lab.qcdata'") data.name <- attributes(x)$data.name x.lab.qcs <- lab.qcs(x) statistics <- x.lab.qcs$statistics.material s.i <- x.lab.qcs$statistics.Laboratory$s.i p <- x.lab.qcs$p n <- x.lab.qcs$n m <- x.lab.qcs$m v1<-(p-1)*(n-1) v2<-n-1 kcrit <- sqrt(p/(1+(p-1)*qf(alpha,v1,v2,lower.tail=TRUE))) material <- row.names(x.lab.qcs$statistics.material) laboratory <- unique(x.lab.qcs[[1]]$laboratory) k.i<-matrix(,nrow =p ,ncol =m ) for(i in 1:m) { ind <- x.lab.qcs$statistics.Laboratory$material==material[i] k.i[,i] <- s.i[ind]/statistics$S_r[i] } colnames(k.i) <- material row.names(k.i) <- laboratory violations <- k.i <= kcrit result <- list (lab.qcdata = x, lab.qcs = x.lab.qcs, p = p, n = n, m = m, k = k.i, k.critical = kcrit, violations = violations, data.name = data.name ) oldClass(result) <- c("lab.qcs") attr(result, "object.name") <- data.name attr(result, "type.data") <- "k.qcs" return(result) } cochran.test <- function(x, ...) { UseMethod("cochran.test") } cochran.test.default <- function(x, var.index=1,replicate.index = 2, material.index = 3, laboratory.index=4, data.name = NULL, alpha = 0.05, ...) { if (is.null(data.name)) data.name <- "Statistical Mandel k" obj<-lab.qcdata(data = x, var.index=var.index,replicate.index = replicate.index, material.index = material.index, laboratory.index=laboratory.index, data.name = data.name) result<-cochran.test.lab.qcdata(x = obj, alpha = alpha) return(result) } cochran.test.lab.qcdata<-function(x, alpha = 0.05,...){ if(!is.null(x) & !inherits(x, "lab.qcdata") & !is.list(x)) stop("x must be an objects of class (or extending) 'lab.qcdata'") x.lab.qcs <- lab.qcs(x) stat <- x.lab.qcs$statistics.Laboratory material <- row.names(x.lab.qcs$statistics.material) laboratory <- unique(x$laboratory) S2max <- tapply(stat$s.i,stat$material,max) ind.max <- tapply(stat$s.i,stat$material,which.max) laboratory.max <- laboratory[ind.max] p <- x.lab.qcs$p n <- x.lab.qcs$n m <- x.lab.qcs$m C <- vector() p.value <- vector() v1 <- (p-1)*(n-1); v2 <- n-1 Ccrit <- 1/(1+(p-1)*qf(alpha/p,v1,v2,lower.tail=TRUE)) for(i in 1:m){ C[i] <- S2max[i]/sum((stat$s.i[stat$material == material[i]])^2) p.value[i] <- round(pf(C[i],v1,v2,lower.tail=T),4) } result <- list(result = data.frame(Smax = laboratory.max, Material = material, C = C, p.value = p.value),C.critical = Ccrit, alpha.test = alpha/p) oldClass(result) <- c("cochran.test") return(result) } print.cochran.test <- function(x, ...) { cat("\nTest Cochran", "\n") cat("\n Critical value:",x[[2]],"\n") cat("\n Alpha test:",x[[3]],"\n") print(x[[1]])} grubbs.test <- function(x, ...) { UseMethod("grubbs.test") } grubbs.test.default <- function(x, var.index=1,replicate.index = 2, material.index = 3, laboratory.index=4, data.name = NULL, alpha = 0.05, ...) { if (is.null(data.name)) data.name <- "Statistical Mandel k" obj<-lab.qcdata(data = x, var.index=var.index,replicate.index = replicate.index, material.index = material.index, laboratory.index=laboratory.index, data.name = data.name) result<-grubbs.test.lab.qcdata(x = obj, alpha = alpha) return(result) } grubbs.test.lab.qcdata <-function(x, alpha = 0.05,...){ x.lab.qcs <- lab.qcs(x) stat <- x.lab.qcs$statistics.Laboratory material <- row.names(x.lab.qcs$statistics.material) laboratory <- unique(x$laboratory) p <- x.lab.qcs$p n <- x.lab.qcs$n m <- x.lab.qcs$m Gh <- vector() Gl <- vector() S <- vector() ph.value <- vector() pl.value <- vector() mean.i <- stat$mean.i mean <- x.lab.qcs$statistics.material$mean S <- x.lab.qcs$statistics.material$S ind.max <- tapply(stat$mean.i,stat$material,which.max) ind.min <- tapply(stat$mean.i,stat$material,which.min) laboratory.max <- laboratory[ind.max] laboratory.min <- laboratory[ind.min] for(i in 1:m){ Gl[i] <- (mean[i] - mean.i[stat$material == material[i]][ind.min[i]])/S[i] pl.value[i] <- round(pt(Gl[i],(p-1),lower.tail=F),4) Gh[i] <- (mean.i[stat$material == material[i]][ind.max[i]] - mean[i] )/S[i] ph.value[i] <- round(pt(Gh[i],(p-1),lower.tail=F),4) } gcrit <- (n-1)*qt((1-alpha/p),(n-2))/sqrt(n*(n-2+(qt((1-alpha/p),(n-2)))^2)) result <- list(result = data.frame(Material = material, Gmax = laboratory.max, G.max = Gh, p.value.max = ph.value, Gmin = laboratory.min, G.min = Gl, p.value.min = pl.value),G.critical = gcrit, alpha.test = alpha/p) oldClass(result) <- c("grubbs.test") return(result) } print.grubbs.test <- function(x, ...) { cat("\nTest Grubbs", "\n") cat("\n Critical value:",x[[2]],"\n") cat("\n Alpha test:",x[[3]],"\n") print(x[[1]])} lab.aov <- function(x, ...) { UseMethod("lab.aov") } lab.aov.default <- function(x, var.index=1,replicate.index = 2, material.index = 3, laboratory.index=4, data.name = NULL, level = 0.95,plot = FALSE, pages = 0, ...) { if (is.null(data.name)) data.name <- "Statistical Mandel k" obj<-lab.qcdata(data = x, var.index=var.index,replicate.index = replicate.index, material.index = material.index, laboratory.index=laboratory.index, data.name = data.name) result<-lab.aov.lab.qcdata(x = obj, level = level,plot = plot, pages = pages) return(result) } lab.aov.lab.qcdata <- function(x,level = 0.95,plot = FALSE, pages = 0,...){ aovModel <- list() conf <- list() .Pairs <- list() material <- unique(x$material) m <- length(material) if(plot ==TRUE){ n.plots <- m if (pages > 0) if (pages > n.plots) pages <- n.plots if (pages < 0) pages <- 0 if (pages != 0) { ppp <- n.plots%/%pages if (n.plots%%pages != 0) { ppp <- ppp + 1 while (ppp * (pages - 1) >= n.plots) pages <- pages - 1 } c <- r <- trunc(sqrt(ppp)) if (c < 1) r <- c <- 1 if (c * r < ppp) c <- c + 1 if (c * r < ppp) r <- r + 1 oldpar <- par(mfrow = c(r, c)) } else { ppp <- 1 oldpar <- par() } } for (i in 1:m){ indm<-x$material==material[i] y <- x$x[indm] laboratory <- x$laboratory[indm] data <- data.frame(y,laboratory) aovModel[[i]] <- aov(y ~ laboratory,data=data) .Pairs[[i]] <- glht(aovModel[[i]], linfct = mcp(laboratory = "Tukey")) conf[[i]] <- confint(.Pairs[[i]],level = level) } if(plot ==TRUE){ old.oma <- par(oma=c(0,5,0,0)) for (i in 1:m){ title <- paste(level*100,"%"," ","Confidence Level",sep="") subtitle = paste("Material",material[i]) plot(confint(.Pairs[[i]],level = level), main=title,sub = subtitle) } par(old.oma) } par(mfrow=c(1,1)) names(conf)<- paste("Material:",material) names(.Pairs)<-paste("Material:",material) names(aovModel)<-paste("Material:",material) for (i in 1:m) {cat("\n AOV of Material:",material[i]) print(summary(aovModel[[i]])) print(summary(.Pairs[[i]])) print(conf[[i]]) } result <- list(Models = aovModel,Confidence =conf) return(result) invisible() }
jTuffTest <- function(n,v,p,test_significant){ statistic <- -2*log(p*(1-p)^(v-1)/((1/v)*(1-1/v)^(v-1))); Quantile <- qchisq(1-test_significant,1) rslt <- statistic <= Quantile return(c(statistic,Quantile,rslt)) }
pc.sel <- function(target, dataset, threshold = 0.05) { Rfast2::pc.sel(target, dataset, alpha = threshold) }
move_layerInvisible_grob <- function(loon.grob, currentLayer, ...) { obj <- character(0) class(obj) <- names(loon.grob$children) UseMethod("move_layerInvisible_grob", obj) } move_layerInvisible_grob.l_plot <- function(loon.grob, currentLayer, ...) { if(currentLayer == "scatterplot") { args <- list(...) pointsTreeName <- args$pointsTreeName N <- args$N set_deactive_grob(loon.grob, index = seq(N), pointsTreeName = pointsTreeName) } else { grid::setGrob( gTree = loon.grob, gPath = currentLayer, newGrob = set_deactive_layer( currentLayer_grob = grid::getGrob(loon.grob, currentLayer) ) ) } } move_layerInvisible_grob.l_hist <- function(loon.grob, currentLayer, ...) { if(currentLayer == "histogram") { grid::setGrob( gTree = loon.grob, gPath = currentLayer, newGrob = grob(name = "histogram") ) } else { grid::setGrob( gTree = loon.grob, gPath = currentLayer, newGrob = set_deactive_layer( currentLayer_grob = grid::getGrob(loon.grob, currentLayer) ) ) } } move_layerInvisible_grob.l_graph <- function(loon.grob, currentLayer, ...) { args <- list(...) N <- args$N if(currentLayer == "graph") { set_deactive_grob(loon.grob, index = seq(N)) } else { grid::setGrob( gTree = loon.grob, gPath = currentLayer, newGrob = set_deactive_layer( currentLayer_grob = grid::getGrob(loon.grob, currentLayer) ) ) } } set_deactive_layer <- function(currentLayer_grob) { if(grepl(currentLayer_grob$name, pattern = "l_layer_polygon:")) { do.call(grob, getGrobArgs(currentLayer_grob)) } else if(grepl(currentLayer_grob$name,pattern = "l_layer_line:")) { do.call(grob, getGrobArgs(currentLayer_grob)) } else if(grepl(currentLayer_grob$name,pattern = "l_layer_rectangle:")) { do.call(grob, getGrobArgs(currentLayer_grob)) } else if(grepl(currentLayer_grob$name, pattern = "l_layer_oval:")) { do.call(grob, getGrobArgs(currentLayer_grob)) } else if(grepl(currentLayer_grob$name, pattern = "l_layer_text:")) { do.call(grob, getGrobArgs(currentLayer_grob)) } else if(grepl(currentLayer_grob$name,pattern = "l_layer_points:")) { do.call(grob, getGrobArgs(currentLayer_grob)) } else if(grepl(currentLayer_grob$name, pattern = "l_layer_texts:")) { args <- list() lapply(1:length(currentLayer_grob$children), function(i) { args[[i]] <<- getGrobArgs(currentLayer_grob$children[[i]]) } ) gTree( children = do.call( gList, lapply(1:length(currentLayer_grob$children), function(i) { do.call(grob, args[[i]]) }) ), name = currentLayer_grob$name, gp = currentLayer_grob$gp, vp = currentLayer_grob$vp ) } else if(grepl(currentLayer_grob$name,pattern = "l_layer_polygons:")) { args <- list() lapply(1:length(currentLayer_grob$children), function(i) { args[[i]] <<- getGrobArgs(currentLayer_grob$children[[i]]) } ) gTree( children = do.call( gList, lapply(1:length(currentLayer_grob$children), function(i) { do.call(grob, args[[i]]) }) ), name = currentLayer_grob$name, gp = currentLayer_grob$gp, vp = currentLayer_grob$vp ) } else if(grepl(currentLayer_grob$name,pattern = "l_layer_rectangles:")) { args <- list() lapply(1:length(currentLayer_grob$children), function(i) { args[[i]] <<- getGrobArgs(currentLayer_grob$children[[i]]) } ) gTree( children = do.call( gList, lapply(1:length(currentLayer_grob$children), function(i) { do.call(grob, args[[i]]) }) ), name = currentLayer_grob$name, gp = currentLayer_grob$gp, vp = currentLayer_grob$vp ) } else if(grepl(currentLayer_grob$name,pattern = "l_layer_lines:")) { args <- list() lapply(1:length(currentLayer_grob$children), function(i) { args[[i]] <<- getGrobArgs(currentLayer_grob$children[[i]]) } ) gTree( children = do.call( gList, lapply(1:length(currentLayer_grob$children), function(i) { do.call(grob, args[[i]]) }) ), name = currentLayer_grob$name, gp = currentLayer_grob$gp, vp = currentLayer_grob$vp ) } else stop("unspecified layer name") }
BrainAtlas <- R6::R6Class( classname = 'brain-atlas', portable = TRUE, cloneable = FALSE, public = list( subject_code = '', atlas_type = 'aparc_aseg', object = NULL, group = NULL, set_subject_code = function( subject_code ){ if( self$has_atlas ){ self$object$subject_code <- subject_code self$group$subject_code <- subject_code self$object$name <- sprintf('Atlas - %s (%s)', self$atlas_type, subject_code) self$group$name <- sprintf('Atlas - %s (%s)', self$atlas_type, subject_code) } self$subject_code <- subject_code }, set_group_position = function(...){ pos <- c(...) stopifnot2(is.numeric(pos) && length(pos) == 3, msg = "Position must be numeric of length 3") self$group$position <- pos }, initialize = function( subject_code, atlas_type, atlas, position = NULL ){ self$object <- atlas self$group <- atlas$group self$set_subject_code( subject_code ) self$atlas_type <- stringr::str_replace_all(atlas_type, '[\\W]', '_') if( length(position) == 3 ){ self$set_group_position( position ) } }, print = function( ... ){ cat('Subject\t\t:', self$subject_code, end = '\n') cat('Atlas type\t:', self$atlas_type, end = '\n') if( !self$has_atlas ){ warning('No atlas found!') } invisible( self ) } ), active = list( has_atlas = function(){ if( !is.null(self$object) && R6::is.R6(self$object) && 'DataCubeGeom2' %in% class(self$object)){ return(TRUE) } return(FALSE) } ) ) NULL add_voxel_cube <- function(brain, name, cube, size = c(256, 256, 256), matrix_world = NULL){ stopifnot2(length(size) == 3 && all(size > 0), msg = "add_voxel_cube: `size` must be length of 3 and all positive") stopifnot2(is.null(matrix_world) || ( length(matrix_world) == 16 && is.matrix(matrix_world) && nrow(matrix_world) == 4 ), msg = "add_voxel_cube: `matrix_world` must be either NULL or a 4x4 matrix") re <- brain if("multi-rave-brain" %in% class(brain)){ brain <- brain$template_object } subject <- brain$subject_code nm <- sprintf("Atlas - %s (%s)", name, subject) group <- GeomGroup$new(name = nm) group$subject_code <- subject if(length(matrix_world) == 16){ group$trans_mat <- matrix_world } geom <- DataCubeGeom2$new( name = nm, dim = dim(cube), half_size = size / 2, group = group, position = c(0,0,0), value = cube) geom$subject_code <- subject obj <- BrainAtlas$new( subject_code = subject, atlas_type = name, atlas = geom, position = c(0, 0, 0 )) brain$add_atlas( atlas = obj ) invisible(re) } create_voxel_cube <- function(mni_ras, value, colormap, keys = colormap$get_key(value), dimension = c(256,256,256)){ stopifnot2(length(dimension) == 3, msg = "`voxel_cube`: dimension length must be 3") stopifnot2(max(abs(mni_ras)) < 128, msg = "`voxel_cube`: mni_ras should range from -127 to 127") stopifnot2(nrow(mni_ras) == length(keys), msg = "`voxel_cube`: data value must be consistent with MNI RAS") if(!is.matrix(mni_ras)){ mni_ras <- as.matrix(mni_ras) } mni_ras <- mni_ras + 128 cube <- array(0L, dimension) ratio <- dimension / c(256, 256, 256) for(i in seq_len(nrow(mni_ras))){ tmp <- round((mni_ras[i,]) * ratio) if(cube[tmp[1], tmp[2], tmp[3]] == 0){ cube[tmp[1], tmp[2], tmp[3]] <- keys[[i]] } } add_to_brain <- function(brain, name){ add_voxel_cube(brain, name, cube) } re <- list( cube = cube, dimension = dimension, add_to_brain = add_to_brain ) if(!missing(colormap)){ re$colormap <- colormap } re }
multi_marginal<-function(weights,costA){ if (!requireNamespace("Rsymphony", quietly = TRUE)) { warning("Package Rsymphony not detected: Please install Rsymphony for optimal performance if you are not using a Mac.") Rsym<-FALSE } else{ Rsym<-TRUE } D<-dim(costA) const<-gen_constraints_multi(D) costVec<-build_MM_costvec(costA,const) rhs<-unlist(weights) if (Rsym){ out<-Rsymphony::Rsymphony_solve_LP(obj=costVec,mat=const,dir=rep("==",sum(D)),rhs=rhs,max=FALSE) } else{ out<-lpSolve::lp("min",costVec,const,rep("==",sum(D)),rhs) } optMMCoupling<-build_MMCoupling(out,const,D) return(list(MMCoupling=optMMCoupling,cost=out$objval)) }
file2pdf=function(file,selected=NULL,...){ data=readCSVComment(file) preprocessing=readComment(file) if(!is.null(selected)){ count=nrow(data) accept=which((selected>0) & (selected<=count)) data<-data[selected[accept],] } data2pdf(data=data,preprocessing=preprocessing,...) } file2HTML=function(file,selected=NULL,...){ data=readCSVComment(file) preprocessing=readComment(file) if(!is.null(selected)){ count=nrow(data) accept=which((selected>0) & (selected<=count)) data<-data[selected[accept],] } data2HTML(data=data,preprocessing=preprocessing,...) } file2pptx=function(file,selected=NULL,...){ data=readCSVComment(file) preprocessing=readComment(file) if(!is.null(selected)){ count=nrow(data) accept=which((selected>0) & (selected<=count)) data<-data[selected[accept],] } data2pptx(data=data,preprocessing=preprocessing,...) } file2pptx2=function(file,selected=NULL,...){ data=readCSVComment(file) preprocessing=readComment(file) if(!is.null(selected)){ count=nrow(data) accept=which((selected>0) & (selected<=count)) data<-data[selected[accept],] } data2pptx2(data=data,preprocessing=preprocessing,...) } file2docx=function(file,selected=NULL,...){ data=readCSVComment(file) preprocessing=readComment(file) if(!is.null(selected)){ count=nrow(data) accept=which((selected>0) & (selected<=count)) data<-data[selected[accept],] } data2docx(data=data,preprocessing=preprocessing,...) } file2docx2=function(file,selected=NULL,...){ data=readCSVComment(file) preprocessing=readComment(file) if(!is.null(selected)){ count=nrow(data) accept=which((selected>0) & (selected<=count)) data<-data[selected[accept],] } data2docx2(data=data,preprocessing=preprocessing,...) } file2plotzip=function(file,selected=NULL,...){ data=readCSVComment(file) preprocessing=readComment(file) if(!is.null(selected)){ count=nrow(data) accept=which((selected>0) & (selected<=count)) data<-data[selected[accept],] } data2plotzip(data=data,preprocessing=preprocessing,...) }
context ("Scenario of un wanted inputs") test_that("NA values are avoided",{ expect_that(dGHGBB(NA,4,0.1,3,3), throws_error("NA or Infinite or NAN values in the Input")) }) test_that("Infinite values are avoided",{ expect_that(dGHGBB(Inf,4,0.1,3,3), throws_error("NA or Infinite or NAN values in the Input")) }) test_that("NAN values are avoided",{ expect_that(dGHGBB(NaN,4,0.1,3,3), throws_error("NA or Infinite or NAN values in the Input")) }) context("Binomial random variable or trial value issues") test_that("Random variable higher than Trial value",{ expect_that(dGHGBB(5,4,0.2,3,3), throws_error("Binomial random variable cannot be greater than binomial trial value")) }) test_that("Negativity",{ expect_that(dGHGBB(-3,4,0.2,3,3), throws_error("Binomial random variable or binomial trial value cannot be negative")) }) test_that("Random variable higher than Trial value",{ expect_that(dGHGBB(-8,-4,0.2,3,3), throws_error("Binomial random variable or binomial trial value cannot be negative")) }) context("Shape parameter issues") test_that("shape parameter a",{ expect_that(dGHGBB(2,4,-3,3,6), throws_error("Shape parameters cannot be less than or equal to zero")) }) test_that("shape parameter b",{ expect_that(dGHGBB(2,4,1,-3,5), throws_error("Shape parameters cannot be less than or equal to zero")) }) test_that("shape parameter c",{ expect_that(dGHGBB(2,4,1,1,-3), throws_error("Shape parameters cannot be less than or equal to zero")) })
library(metacoder) library(testthat) context("Calculations") x = parse_tax_data(hmp_otus, class_cols = "lineage", class_sep = ";", class_key = c(tax_rank = "info", tax_name = "taxon_name"), class_regex = "^(.+)__(.+)$") test_that("Counting the number of samples with reads", { result <- calc_n_samples(x, data = "tax_data") expect_equal(colnames(result), c("taxon_id", "n_samples")) expect_equivalent(unlist(result[1, "n_samples"]), 17) result <- calc_n_samples(x, data = "tax_data", drop = TRUE) expect_true(is.vector(result)) result <- calc_n_samples(x, data = "tax_data", cols = hmp_samples$sample_id[1:5]) expect_equal(colnames(result), c("taxon_id", "n_samples")) result <- calc_n_samples(x, data = "tax_data", groups = hmp_samples$body_site) expect_equal(colnames(result), c("taxon_id", unique(hmp_samples$body_site))) result <- calc_n_samples(x, data = "tax_data", groups = hmp_samples$body_site, out_names = c("A", "B", "C", "D", "E")) expect_equal(colnames(result), c("taxon_id", c("A", "B", "C", "D", "E"))) result <- calc_n_samples(x, data = "tax_data", cols = hmp_samples$sample_id[1]) expect_equal(result, calc_n_samples(x, data = "tax_data", cols = as.factor(hmp_samples$sample_id[1]))) expect_equal(result, calc_n_samples(x, data = "tax_data", cols = colnames(x$data$tax_data) == hmp_samples$sample_id[1])) expect_equal(result, calc_n_samples(x, data = "tax_data", cols = which(colnames(x$data$tax_data) == hmp_samples$sample_id[1]))) }) test_that("Observation proportions", { result <- calc_obs_props(x, "tax_data") expect_equal(colnames(x$data$tax_data)[-(1:3)], colnames(result)[-1]) expect_true(all(result$`700016050` == x$data$tax_data$`700016050` / sum(x$data$tax_data$`700016050`))) col_subset <- c("700035949", "700097855", "700100489") result <- calc_obs_props(x, "tax_data", cols = col_subset) expect_equal(col_subset, colnames(result)[-1]) result <- calc_obs_props(x, "tax_data", cols = 4:6) expect_equal(col_subset, colnames(result)[-1]) result <- calc_obs_props(x, "tax_data", cols = startsWith(colnames(x$data$tax_data), "70001")) expect_equal(colnames(x$data$tax_data)[startsWith(colnames(x$data$tax_data), "70001")], colnames(result)[-1]) expect_warning(result <- calc_obs_props(x, "tax_data", other_cols = TRUE)) expect_true(all(c("otu_id", "lineage") %in% colnames(result))) result <- calc_obs_props(x, "tax_data", cols = col_subset, other_cols = 2:3) expect_true(all(c("otu_id", "lineage") %in% colnames(result))) result <- calc_obs_props(x, "tax_data", cols = col_subset, out_names = c("a", "b", "c")) expect_equal(colnames(result), c("taxon_id", "a", "b", "c")) result <- calc_obs_props(x, data = "tax_data", cols = hmp_samples$sample_id[1]) expect_equal(result, calc_obs_props(x, data = "tax_data", cols = as.factor(hmp_samples$sample_id[1]))) expect_equal(result, calc_obs_props(x, data = "tax_data", cols = colnames(x$data$tax_data) == hmp_samples$sample_id[1])) expect_equal(result, calc_obs_props(x, data = "tax_data", cols = which(colnames(x$data$tax_data) == hmp_samples$sample_id[1]))) }) test_that("Summing counts per taxon", { result <- calc_taxon_abund(x, "tax_data") expect_equivalent(sum(x$data$tax_data$`700035949`), result$`700035949`[1]) expect_equal(calc_taxon_abund(x, "tax_data", cols = 4:5), calc_taxon_abund(x, "tax_data", cols = c("700035949", "700097855"))) result <- calc_taxon_abund(x, "tax_data", groups = hmp_samples$sex) expect_equal(colnames(result), c("taxon_id", "female", "male")) total_counts <- sum(x$data$tax_data[, hmp_samples$sample_id]) result <- calc_taxon_abund(x, "tax_data", groups = hmp_samples$sex, out_names = c("Women", "Men")) expect_equal(colnames(result), c("taxon_id", "Women", "Men")) expect_equal(total_counts, sum(result[1, c("Women", "Men")])) result <- calc_taxon_abund(x, "tax_data", cols = hmp_samples$sample_id, groups = rep("total", nrow(hmp_samples))) expect_equivalent(total_counts, result$total[1]) result <- calc_taxon_abund(x, data = "tax_data", cols = hmp_samples$sample_id[1]) expect_equal(result, calc_taxon_abund(x, data = "tax_data", cols = as.factor(hmp_samples$sample_id[1]))) expect_equal(result, calc_taxon_abund(x, data = "tax_data", cols = colnames(x$data$tax_data) == hmp_samples$sample_id[1])) expect_equal(result, calc_taxon_abund(x, data = "tax_data", cols = which(colnames(x$data$tax_data) == hmp_samples$sample_id[1]))) }) test_that("Comparing groups of samples", { x$data$otu_table <- calc_obs_props(x, data = "tax_data", cols = hmp_samples$sample_id) x$data$tax_table <- calc_taxon_abund(x, data = "otu_table", cols = hmp_samples$sample_id) expect_warning(x$data$diff_table <- compare_groups(x, data = "tax_table", cols = hmp_samples$sample_id, groups = hmp_samples$body_site)) expect_equal(nrow(x$data$diff_table), ncol(combn(length(unique(hmp_samples$body_site)), 2)) * nrow(x$data$tax_table)) }) test_that("Rarefying observation counts", { result <- rarefy_obs(x, "tax_data") expect_equal(length(unique(colSums(result[, hmp_samples$sample_id]))), 1) result <- rarefy_obs(x, data = "tax_data", cols = hmp_samples$sample_id[1]) expect_equal(result, rarefy_obs(x, data = "tax_data", cols = as.factor(hmp_samples$sample_id[1]))) expect_equal(result, rarefy_obs(x, data = "tax_data", cols = colnames(x$data$tax_data) == hmp_samples$sample_id[1])) expect_equal(result, rarefy_obs(x, data = "tax_data", cols = which(colnames(x$data$tax_data) == hmp_samples$sample_id[1]))) }) test_that("Converting low counts to zero", { result <- zero_low_counts(x, "tax_data") expect_equal(sum(result[, hmp_samples$sample_id] == 1), 0) result <- zero_low_counts(x, data = "tax_data", cols = hmp_samples$sample_id[1]) expect_equal(result, zero_low_counts(x, data = "tax_data", cols = as.factor(hmp_samples$sample_id[1]))) expect_equal(result, zero_low_counts(x, data = "tax_data", cols = colnames(x$data$tax_data) == hmp_samples$sample_id[1])) expect_equal(result, zero_low_counts(x, data = "tax_data", cols = which(colnames(x$data$tax_data) == hmp_samples$sample_id[1]))) })
competitions <- function(username, password, version = "v5", baseurl = "https://data.statsbombservices.com/api/"){ comp.url <- paste0(baseurl, version, "/competitions") raw.comp.api <- GET(url = comp.url, authenticate(username, password)) competitions.string <- rawToChar(raw.comp.api$content) comp <- fromJSON(competitions.string, flatten = T) return(comp) }
NULL NULL add_min_largest_shortfall_objective <- function(x, budget) { assertthat::assert_that( inherits(x, "ConservationProblem"), is.numeric(budget), all(is.finite(budget)), all(budget >= 0.0), isTRUE(min(budget) > 0), length(budget) == 1 || length(budget) == number_of_zones(x)) if (length(budget) == 1) { p <- numeric_parameter("budget", budget, lower_limit = 0, upper_limit = sum(x$planning_unit_costs(), na.rm = TRUE)) } else { p <- numeric_parameter_array("budget", budget, x$zone_names(), lower_limit = 0, upper_limit = colSums(x$planning_unit_costs(), na.rm = TRUE)) } x$add_objective(pproto( "MinimumLargestShortfallObjective", Objective, name = "Minimum largest shortfall objective", parameters = parameters(p), apply = function(self, x, y) { assertthat::assert_that(inherits(x, "OptimizationProblem"), inherits(y, "ConservationProblem")) invisible(rcpp_apply_min_largest_shortfall_objective( x$ptr, y$feature_targets(), y$planning_unit_costs(), self$parameters$get("budget")[[1]])) })) }
library(filesstrings) library(xfun) knitr::knit("vignettes/mra-simulation.Rmd.orig", output = "vignettes/mra-simulation.Rmd", envir = new.env()) gsub_file("vignettes/mra-simulation.Rmd", "figure/", "") mra_images <- list.files("figure/")[grep(".png", list.files("figure/"))] file.move(paste0("figure/", mra_images), destinations = "./vignettes/", overwrite = TRUE) if(length(dir("figure/", all.files = TRUE)) ==0) file.remove("./figure/*") file.remove("./figure/") cache_files <- list.files("cache/") file.remove(paste0("cache/", cache_files)) file.remove("./cache") knitr::purl("vignettes/mra-simulation.Rmd.orig", output = "vignettes/mra-simulation.R") devtools::build_vignettes() pkgdown::build_site()
tabPanel('Summary', value = 'tab_summary', fluidPage( fluidRow( column(8, align = 'left', h4('Summary Statistics'), p('Generate descriptive statistics for continuous data.') ), column(4, align = 'right', actionButton(inputId='sumrylink1', label="Help", icon = icon("question-circle"), onclick ="window.open('https://descriptr.rsquaredacademy.com/reference/ds_summary_stats.html', '_blank')"), actionButton(inputId='sumrylink3', label="Demo", icon = icon("video-camera"), onclick ="window.open('https://www.youtube.com/watch?v=cq6_1SQjNmM', '_blank')") ) ), hr(), fluidRow( column(4, align = 'right', br(), br(), h5('Variable:') ), column(2, align = 'left', br(), selectInput("var_summary", label = '', choices = "", selected = "", width = '150px' ), bsTooltip("var_summary", "Select a variable.", "bottom", options = list(container = "body")) ), column(6, align = 'left', br(), br(), actionButton(inputId = 'submit_summary', label = 'Submit', width = '120px', icon = icon('check')), bsTooltip("submit_summary", "Click here to view summary statistics.", "bottom", options = list(container = "body")) ) ), fluidRow( br(), br(), column(12, align = 'center', verbatimTextOutput('summary') ) ) ) )
r_behavior_stream_single <- function(mu, lambda, F_event, F_interim, stream_length, equilibrium, p0, tuning) { start_state <- stats::rbinom(1, 1, p0) if (equilibrium) { if (start_state) { b_stream <- F_event$r_eq(1, mu) } else { b_stream <- F_interim$r_eq(1, lambda) } } else { if (start_state) { b_stream <- F_event$r_gen(1, mu) } else { b_stream <- F_interim$r_gen(1, lambda) } } cum_length <- b_stream cum_size <- 1 while (cum_length < stream_length) { extend_size <- ceiling(tuning * (stream_length - cum_length) / (mu + lambda)) event_times <- F_event$r_gen(n=extend_size, mean = mu) interim_times <- F_interim$r_gen(n=extend_size, mean = lambda) b_stream <- append(b_stream, cum_length + cumsum( if (start_state) c(rbind(interim_times, event_times)) else c(rbind(event_times, interim_times)))) cum_size <- cum_size + 2 * extend_size cum_length <- b_stream[cum_size] } list(start_state=start_state, b_stream = b_stream[b_stream < stream_length]) } r_behavior_stream <- function(n, mu, lambda, F_event, F_interim, stream_length, equilibrium = TRUE, p0 = 0, tuning = 2) { mu_vec <- rep(mu, length.out = n) lambda_vec <- rep(lambda, length.out = n) p0_vec <- if (equilibrium) mu_vec / (mu_vec + lambda_vec) else rep(p0, length.out = n) BS <- list(stream_length = stream_length, b_streams = mapply(r_behavior_stream_single, mu = mu_vec, lambda = lambda_vec, p0 = p0_vec, MoreArgs = list(F_event = F_event, F_interim = F_interim, stream_length = stream_length, equilibrium = equilibrium, tuning = tuning), SIMPLIFY = FALSE)) class(BS) <- "behavior_stream" return(BS) } r_PIR <- function(n, mu, lambda, stream_length, F_event, F_interim, interval_length, rest_length = 0, summarize = FALSE, equilibrium = TRUE, p0 = 0, tuning = 2){ if (equilibrium) p0 <- mu / (mu + lambda) n_intervals <- floor(stream_length / interval_length) start_time <- interval_length * (0:(n_intervals - 1)) end_time <- start_time + interval_length - rest_length samples <- replicate(n, { BS <- r_behavior_stream_single(mu = mu, lambda = lambda, F_event = F_event, F_interim = F_interim, stream_length = stream_length, equilibrium = equilibrium, p0 = p0, tuning = tuning) IntRec_single(b_stream = BS, start_time = start_time, end_time = end_time) }) if (summarize) colMeans(samples) else t(samples) } r_WIR <- function(n, mu, lambda, stream_length, F_event, F_interim, interval_length, rest_length = 0, summarize = FALSE, equilibrium = TRUE, p0 = 0, tuning = 2){ if (equilibrium) p0 <- mu / (mu + lambda) n_intervals <- floor(stream_length / interval_length) start_time <- interval_length * (0:(n_intervals - 1)) end_time <- start_time + interval_length - rest_length samples <- replicate(n, { BS <- r_behavior_stream_single(mu = mu, lambda = lambda, F_event = F_event, F_interim = F_interim, stream_length = stream_length, equilibrium = equilibrium, p0 = p0, tuning = tuning) IntRec_single(b_stream = BS, start_time = start_time, end_time = end_time, partial = FALSE) }) if (summarize) colMeans(samples) else t(samples) } r_MTS <- function(n, mu, lambda, stream_length, F_event, F_interim, interval_length, summarize = FALSE, equilibrium = TRUE, p0 = 0, tuning = 2) { if (equilibrium) p0 <- mu / (mu + lambda) moments <- seq(interval_length * summarize, stream_length, interval_length) samples <- replicate(n, { BS <- r_behavior_stream_single(mu = mu, lambda = lambda, F_event = F_event, F_interim = F_interim, stream_length = stream_length, equilibrium = equilibrium, p0 = p0, tuning = tuning) MTS_single(b_stream = BS, moments = moments) }) if(summarize) colMeans(samples) else t(samples) } r_continuous_recording <- function(n, mu, lambda, stream_length, F_event, F_interim, equilibrium = TRUE, p0 = 0, tuning = 2) { if (equilibrium) p0 <- mu / (mu + lambda) samples <- replicate(n, { BS <- r_behavior_stream_single(mu = mu, lambda = lambda, F_event = F_event, F_interim = F_interim, stream_length = stream_length, equilibrium = equilibrium, p0 = p0, tuning = tuning) CDR_single(b_stream = BS, stream_length = stream_length) }) samples } r_event_counting <- function(n, mu, lambda, stream_length, F_event, F_interim, equilibrium = TRUE, p0 = 0, tuning = 2) { if (equilibrium) p0 <- mu / (mu + lambda) samples <- replicate(n,{ BS <- r_behavior_stream_single(mu = mu, lambda = lambda, F_event = F_event, F_interim = F_interim, stream_length = stream_length, equilibrium = equilibrium, p0 = p0, tuning = tuning) floor((length(BS$b_stream) + 1 - BS$start_state)/2) }) samples } r_AIR <- function(n, mu, lambda, stream_length, F_event, F_interim, interval_length, rest_length = 0, equilibrium = TRUE, p0 = 0, tuning = 2) { if (equilibrium) p0 <- mu / (mu + lambda) moments <- seq(0, stream_length, interval_length) n_intervals <- floor(stream_length / interval_length) start_time <- interval_length * (0:(n_intervals - 1)) end_time <- start_time + interval_length - rest_length samples <- replicate(n, { BS <- r_behavior_stream_single(mu = mu, lambda = lambda, F_event = F_event, F_interim = F_interim, stream_length = stream_length, equilibrium = equilibrium, p0 = p0, tuning = tuning) augmented_recording_single(b_stream = BS, moments = moments, start_time = start_time, end_time = end_time) }) samples }
jNewRapGarch <- function(x0, y){ b <- x0 N <- length(x0) threshold <- 10 ^ (-10) maxloop <- 100 delta <- threshold + 1 numloop <- 1 while (abs(delta) > threshold & numloop < maxloop){ numloop <- numloop + 1 maxvalue <- ham(b, y) Func <- dham(b, y) Grad <- ddham(b, y) Ginv <- solve(Grad) Inov <- Func %*% Ginv a <- b stepp <- 1 if (Inov[1] > 0) { stepp <- min(stepp, b[1] / Inov[1]) } if (Inov[2] > 0) { stepp <- min(stepp, b[2] / Inov[2]) } if (Inov[3] > 0) { stepp <- min(stepp, b[3] / Inov[3]) } if (Inov[1] + Inov[2] < 0) { stepp = min(stepp, (b[1] + b[2] - 0.99999) / (Inov[1] + Inov[2])) } Record <- 0.1 for (i in 1:10){ for (j in 1:N){ b[j] <- a[j] - Inov[j] *(i-1) * stepp / 10 } tam <- ham(b, y) if (tam > maxvalue) { maxvalue <- tam Record <- i } } for (j in 1:N){ b[j] <- a[j] - Inov[j] * (Record - 0.1) * stepp / 10 } delta <- abs(max(Inov)) * Record * stepp / 10 } return(b) }
context("find.clusters tests") test_that("find.clusters works with pre-defined clusters", { skip_on_cran() data(nancycats) f <- file() options(adegenet.testcon = f) twos <- paste(rep(2, nPop(nancycats)), collapse = "\n") write(twos, f) expect_warning(capture.output(res <- find.clusters(nancycats, clust = pop(nancycats), n.pca = 100))) expect_equal(length(levels(res$grp)), nPop(nancycats) * 2) expect_equal(length(res$grp), nInd(nancycats)) options(adegenet.testcon = stdin()) close(f) })
test_that("accu_model", { testthat::skip_if_not_installed("e1071") testthat::expect_true(round( accu_model( f = Sex ~ GOL + NOL + BNL, x = Howells, y = Howells, byPop = FALSE )[[2]][[3]][[1]], 3 ) == 0.789) testthat::expect_true(round( accu_model( f = Sex ~ GOL + NOL + BNL, x = Howells, y = Howells, byPop = TRUE, Pop = 2 )[[2]][[1]][[3]][[1]], 3 ) == 0.91) set.seed(123) testthat::expect_true(round( accu_model( f = Sex ~ GOL + NOL + BNL, x = Howells, byPop = FALSE )[[2]][[3]][[1]], 3 ) == 0.811) set.seed(123) testthat::expect_true(round( accu_model( f = Sex ~ GOL + NOL + BNL, x = Howells, byPop = TRUE, Pop = 2 )[[2]][[3]][[3]][[1]], 3 ) == 0.762) testthat::expect_error( accu_model( f = Sex ~ GOL + NOL + BNL, x = matrix(NA), byPop = 50, Pop = 200, y = matrix(NA), plot = 98, Sex = 500, post. = "ll", ref. = "kl" ) ) testthat::expect_warning(accu_model( f = Sex ~ GOL + NOL + BNL, x = Howells, byPop = TRUE, Pop = NULL )) })
parseRayStation <- function(x, planInfo=FALSE, courseAsID=FALSE, ...) { planInfo <- as.character(planInfo) getElem <- function(pattern, ll, trim=TRUE, iCase=FALSE, collWS=TRUE) { line <- ll[grep(pattern, ll)] elem <- sub("^.+?:[[:blank:]]*([[:alnum:][:punct:][:blank:]]+$)", "\\1", line, ignore.case=iCase, perl=TRUE) elem <- if(trim) { trimWS(elem, side="both") } else { elem } if(collWS) { collWS(elem) } else { elem } } getDoseUnit <- function(ll) { line <- ll[grep("^ elem <- sub("^.+:[[:blank:]]+(GY|CGY)$", "\\1", line, perl=TRUE, ignore.case=TRUE) toupper(trimWS(elem)) } sStart <- grep("^ sLen <- diff(c(sStart, length(x)+1)) if((length(sLen) < 1L) || all(sLen < 1L)) { stop("No structures found") } structList <- Map(function(start, len) x[start:(start+len-1)], sStart, sLen) header <- x[seq_len(sStart[1]-1)] patName <- getElem(" patID <- getElem("^ plan <- getElem("^ DVHdate <- NA_character_ doseRx <- if(tolower(planInfo) == "doserx") { doseRxUnit <- toupper(sub("^.+[[:blank:]][.[:digit:]]+(c?Gy).*$", "\\1", plan, perl=TRUE, ignore.case=TRUE)) if(!grepl("^(GY|CGY)$", doseRxUnit)) { warning("Could not determine dose Rx unit") doseRxUnit <- NA_character_ } drx <- sub("^.+[[:blank:]]([.[:digit:]]+)c?Gy.*$", "\\1", plan, perl=TRUE, ignore.case=TRUE) as.numeric(drx) } else { doseRxUnit <- NA_character_ warning("No info on prescribed dose") NA_real_ } isoDoseRx <- if(tolower(planInfo) == "doserx") { warning("Iso-dose-Rx is assumed to be 100") 100 } else { warning("No info on % for dose") NA_real_ } getDVH <- function(strct, info) { doseRx <- info$doseRx doseRxUnit <- info$doseRxUnit isoDoseRx <- info$isoDoseRx structure <- getElem("^ structVol <- NA_real_ doseMin <- NA_real_ doseMax <- NA_real_ doseAvg <- NA_real_ doseMed <- NA_real_ doseMode <- NA_real_ doseSD <- NA_real_ volumeUnit <- "CC" doseUnit <- getDoseUnit(strct) if(!grepl("^(GY|CGY)$", doseUnit)) { warning("Could not determine dose measurement unit") doseUnit <- NA_character_ } if(!is.na(doseUnit) && !is.na(doseRxUnit)) { if((doseUnit == "GY") && (doseRxUnit == "CGY")) { doseRx <- doseRx/100 } else if((doseUnit == "CGY") && (doseRxUnit == "GY")) { doseRx <- doseRx*100 } } colHead <- grep("^ dvhStart <- colHead+1 dvhLen <- length(strct) - dvhStart + 1 if((length(dvhLen) < 1L) || dvhLen < 1L) { stop("No DVH data found") } if(all(!nzchar(strct[dvhStart:length(strct)]))) { return(NULL) } dvh <- data.matrix(read.table(text=strct[dvhStart:length(strct)], header=FALSE, stringsAsFactors=FALSE, colClasses=rep("numeric", 2), comment.char="", nrows=dvhLen)) colnames(dvh) <- c("dose", "volumeRel") dvh <- cbind(dvh, volume=structVol*(dvh[ , "volumeRel"]/100)) dvh <- cbind(dvh, doseRel=dvh[ , "dose"]*isoDoseRx / doseRx) stopifnot(isIncreasing(dvh)) DVHtype <- dvhType(dvh) DVH <- list(dvh=dvh, patName=info$patName, patID=info$patID, date=info$date, DVHtype=DVHtype, plan=info$plan, course=info$course, quadrant=info$quadrant, structure=structure, structVol=structVol, doseUnit=doseUnit, volumeUnit=volumeUnit, doseMin=doseMin, doseMax=doseMax, doseRx=doseRx, doseRxUnit=doseRxUnit, isoDoseRx=isoDoseRx, doseAvg=doseAvg, doseMed=doseMed, doseMode=doseMode, doseSD=doseSD) if(DVHtype == "differential") { warning("I assume differential DVH is per unit dose\nbut I have no information on this") DVH$dvh <- convertDVH(dvh, toType="cumulative", toDoseUnit="asis", perDose=TRUE) DVH$dvhDiff <- dvh } class(DVH) <- "DVHs" return(DVH) } info <- list(patID=patID, patName=patName, date=DVHdate, plan=plan, doseRx=doseRx, doseRxUnit=doseRxUnit, isoDoseRx=isoDoseRx) dvhL <- lapply(structList, getDVH, info=info) dvhL <- Filter(Negate(is.null), dvhL) names(dvhL) <- sapply(dvhL, function(y) y$structure) if(length(unique(names(dvhL))) < length(dvhL)) { warning("Some structures have the same name - this can lead to problems") } class(dvhL) <- "DVHLst" attr(dvhL, which="byPat") <- TRUE return(dvhL) }
tvPhi<- function (x, nstep = 10, ...) { if (!inherits(x, "tvvar")) stop("\nPlease provide an object of class 'tvvar', generated by 'tvVAR()'.\n") nstep <- abs(as.integer(nstep)) neq <- x$neq p <- x$p obs <- x$obs A <- tvAcoef(x) if (nstep >= p) { As <- array(0, dim = c(obs,neq, neq, nstep + 1)) for (i in (p + 1):(nstep + 1)) { As[,, , i] <- array(0, dim=c(obs,neq, neq)) } } else { As <- array(0, dim = c(obs, neq, neq, p)) } for (i in 1:p) { As[,, , i] <- A[[i]] } Phi <- array(0, dim = c(obs, neq, neq, nstep + 1)) for ( t in 1:obs) { Phi[t, , , 1] <- diag(neq) Phi[t, , , 2] <- Phi[t,,,1] %*% As[t, , , 1] if (nstep > 1) { for (i in 3:(nstep + 1)) { tmp1 <- Phi[t, , , 1] %*% As[t,,,i-1] tmp2 <- matrix(0, nrow = neq, ncol = neq) idx <- (i - 2):1 for (j in 1:(i - 2)) { tmp2 <- tmp2 + Phi[t,, , j + 1] %*% As[t,, , idx[j]] } Phi[t, , , i] <- tmp1 + tmp2 } } } return(Phi) }
FI.brm <- function( params, theta, type = c("expected", "observed"), resp = NULL ) { if( type == "expected" ) resp <- NULL params <- rbind(params) if( is.null(resp) & type == "observed" ) stop( "need response scalar/vector to calculate observed information" ) if( mode(params) != "numeric" | mode(theta) != "numeric" ) stop( "params and theta need to be numeric" ) if( !is.null(resp) & mode(resp) != "numeric" ) stop( "resp needs to be numeric" ) if( type == "expected" ){ p <- p.brm(theta, params) q <- 1 - p pder1 <- pder1.brm(theta, params) info <- pder1^2 / ( p * q ) } if( type == "observed" ){ info <- -lder2.brm(resp, theta, params) } if( length(theta) == 1 ){ i.info <- info t.info <- sum(info) } else{ i.info <- info t.info <- rowSums(i.info) } sem <- ifelse(test = signif(t.info) > 0, yes = sqrt( 1 / t.info ), no = NA) return( list( item = drop(i.info), test = t.info, sem = sem, type = type ) ) }
test_that("example works", { df <- adnimerge %>% dplyr::filter(VISCODE == 'bl') model <- df %>% aba_model() %>% set_groups(everyone()) %>% set_outcomes(PET_ABETA_STATUS_bl) %>% set_predictors( PLASMA_PTAU181_bl, PLASMA_NFL_bl, c(PLASMA_PTAU181_bl, PLASMA_NFL_bl) ) %>% set_covariates(AGE, GENDER, EDUCATION) %>% set_stats('glm') %>% fit() model_summary <- model %>% aba_summary() expect_error( model_screen <- model %>% aba_screen( threshold = seq(0.25, 0.75, by = 0.25), cost_multiplier = c(4, 8), include_n = 1000, ntrials = 3, verbose = TRUE ), NA ) })
grid.pattern_rose <- function(x = c(0, 0, 1, 1), y = c(1, 0, 0, 1), id = 1L, ..., colour = gp$col %||% "grey20", fill = gp$fill %||% "grey80", angle = 30, density = 0.2, spacing = 0.05, xoffset = 0, yoffset = 0, frequency = 0.1, grid = "square", type = NULL, subtype = NULL, rot = 0, alpha = gp$alpha %||% NA_real_, linetype = gp$lty %||% 1, size = gp$lwd %||% 1, use_R4.1_clipping = getOption("ggpattern_use_R4.1_clipping", getOption("ggpattern_use_R4.1_features")), png_device = NULL, res = getOption("ggpattern_res", 72), default.units = "npc", name = NULL, gp = gpar(), draw = TRUE, vp = NULL) { if (missing(colour) && hasName(l <- list(...), "color")) colour <- l$color grid.pattern("rose", x, y, id, colour = colour, fill = fill, angle = angle, density = density, spacing = spacing, xoffset = xoffset, yoffset = yoffset, scale = scale, frequency = frequency, grid = grid, type = type, subtype = subtype, rot = rot, use_R4.1_clipping = use_R4.1_clipping, png_device = png_device, res = res, alpha = alpha, linetype = linetype, size = size, default.units = default.units, name = name, gp = gp , draw = draw, vp = vp) } create_pattern_rose <- function(params, boundary_df, aspect_ratio, legend = FALSE) { default.units <- "bigpts" boundary_df <- convert_polygon_df_units(boundary_df, default.units) params <- convert_params_units(params, default.units) vpm <- get_vp_measurements(default.units) spacing <- params$pattern_spacing grid <- params$pattern_grid grid_xy <- get_xy_grid(params, vpm) fill <- alpha(params$pattern_fill, params$pattern_alpha) col <- alpha(params$pattern_colour, params$pattern_alpha) lwd <- params$pattern_size * .pt lty <- params$pattern_linetype density <- params$pattern_density rot <- params$pattern_rot frequency <- params$pattern_frequency n_par <- max(lengths(list(fill, col, lwd, lty, density, rot, frequency))) fill <- rep(fill, length.out = n_par) col <- rep(col, length.out = n_par) lwd <- rep(lwd, length.out = n_par) lty <- rep(lty, length.out = n_par) density <- rep(density, length.out = n_par) rot <- rep(rot, length.out = n_par) frequency <- rep(frequency, length.out = n_par) density_max <- max(density) radius_mult <- switch(grid, hex = 0.578, 0.5) radius_max <- radius_mult * spacing * density_max if (is.null(params$pattern_type) || is.na(params$pattern_type)) params$pattern_type <- switch(grid, square = "square", "hex") m_pat <- get_pattern_matrix(params$pattern_type, params$pattern_subtype, grid_xy, n_par) gl <- gList() for (i_par in seq(n_par)) { radius_outer <- radius_mult * spacing * density[i_par] xy_rose <- get_xy_rose(frequency[i_par], params, radius_outer, rot[i_par]) xy_par <- get_xy_par(grid_xy, i_par, m_pat, grid, spacing) if (length(xy_par$x) == 0) next xy_par <- rotate_xy(xy_par$x, xy_par$y, params$pattern_angle, vpm$x, vpm$y) gp <- gpar(fill = fill[i_par], col = col[i_par], lwd = lwd[i_par], lty = lty[i_par]) name <- paste0("rose.", i_par) grob <- points_to_rose_grob(xy_par, xy_rose, gp, default.units, name) gl <- append_gList(gl, grob) } clippee <- gTree(children = gl) clipper <- convert_polygon_df_to_polygon_grob(boundary_df, default.units = "bigpts") clippingPathGrob(clippee, clipper, use_R4.1_clipping = params$pattern_use_R4.1_clipping, png_device = params$pattern_png_device, res = params$pattern_res, name = "rose") } get_xy_rose <- function(frequency, params, radius_outer, rot) { theta <- to_radians(seq.int(from = 0, to = 12 * 360, by = 3)) x <- radius_outer * cos(frequency * theta) * cos(theta) y <- radius_outer * cos(frequency * theta) * sin(theta) rose_angle <- rot + params$pattern_angle rotate_xy(x, y, rose_angle, 0, 0) } points_to_rose_grob <- function(xy_par, xy_rose, gp, default.units, name) { points_mat <- as.data.frame(xy_par) df_polygon <- as.data.frame(xy_rose) l_xy <- lapply(seq(nrow(points_mat)), function(i_r) { x0 <- points_mat[i_r, 1] y0 <- points_mat[i_r, 2] df <- df_polygon df$x <- df$x + x0 df$y <- df$y + y0 df }) df <- do.call(rbind, l_xy) if (is.null(df)) { nullGrob() } else { df$id <- rep(seq(nrow(points_mat)), each = nrow(df_polygon)) pathGrob(x = df$x, y = df$y, id = df$id, default.units = default.units, gp = gp, name = name) } }
generate_blin <- function(S, L, tmax, lag=1, tau=1, sigmaY=1, muAB=0, sigmaAB=1, rankA=S, rankB=L, use_cov=TRUE, seed=NA, sparse=NA) { binary <- FALSE gen_type="biten" if(is.numeric(seed)){ set.seed(seed) } Y <- array(rnorm(S*L*tmax, 0, sigmaY), c(S, L, tmax)) if(tmax <= lag){ stop("Input 'tmax' must be larger than lag.") } if(use_cov){ X1 <- array(1, c(S,L,tmax,1)) X2 <- array(sample(c(0,1), S*L*tmax, replace=T), c(S,L,tmax,1)) X3 <- array(rnorm(S*L*tmax), c(S,L,tmax,1)) X <- abind::abind(X1,X2,X3) p <- dim(X)[4] beta_true <- matrix(rep(1,p), nrow=1) Xbeta <- drop(amprod(X, beta_true, 4)) } else { X <- NULL Xbeta <- 0 beta_true <- NA } U_true <- matrix(rnorm(S*rankA, muAB, sigmaAB), S, rankA) V_true <- matrix(rnorm(S*rankA, muAB, sigmaAB), S, rankA) W_true <- matrix(rnorm(L*rankB, muAB, sigmaAB), L, rankB) Z_true <- matrix(rnorm(L*rankB, -muAB, sigmaAB), L, rankB) A_true <- tcrossprod(U_true, V_true) BT_true <- tcrossprod(Z_true, W_true) if(is.numeric(sparse)){ if(sparse >=0 & sparse <= 1){ Aind <- matrix(sample(c(0,1), S^2, replace=T, prob=c(1-sparse, sparse)), S, S) Bind <- matrix(sample(c(0,1), L^2, replace=T, prob=c(1-sparse, sparse)), L, L) A_true <- Aind*A_true BT_true <- Bind*BT_true } else {stop("Input 'sparse' must be a numeric between zero and 1 or FALSE")} } if (strtrim(gen_type,3) == "bit") { A_true <- A_true*S^1.5/rankA BT_true <- BT_true*L^1.5/rankB A_true <- A_true / 2 / max(abs(A_true)) BT_true <- BT_true / 2 / max(abs(BT_true)) E <- tau*array(rnorm(S*L*tmax), c(S,L,tmax)) for(t in (lag+1):tmax){ if(lag>1){ D <- apply(Y[,,(t-lag):(t-1),drop=FALSE], 1:2, sum) } else { D <- Y[,,t-1,drop=TRUE] } if(use_cov){ Xbt <- Xbeta[,,t, drop=TRUE] } else { Xbt <- 0 } Y[,,t] <- Xbt + A_true %*%D + D %*% t(BT_true) + E[,,t,drop=TRUE] } } else { stop("Invalid model type for prediction")} return(list(Y=Y, X=X, E=E, beta=beta_true, A=t(A_true), B=t(BT_true), call=match.call())) }
print.occurrence.threshold <- function(x, ...) { cat("Evaluation statistic:", x$statistic, "\n") cat("\n") cat("Moments for thresholds:", "\n") cat("\n") print( summary(x$thresholds) ) cat("\n") if(x$statistic == "delta.ss") { cat("Probability threshold with minimum delta sensitivity/specificity = ", names(x$thresholds)[min(which(x$thresholds == min(x$thresholds)))], "\n") } else if (x$statistic == "sum.ss") { cat("Probability threshold with maximum cummlative sensitivity/specificity = ", names(x$thresholds)[min(which(x$thresholds == max(x$thresholds)))], "\n") } else if (x$statistic == "kappa") { cat("Probability threshold with maximum kappa = ", names(x$thresholds)[min(which(x$thresholds == max(x$thresholds)))], "\n") } }
NULL qqplot_RMAWGEN_Tx <- function (Tx_mes,Tx_gen,Tn_gen,Tn_mes,Tx_spline=NULL,Tn_spline=NULL,xlab="observed",ylab="simulated",when=1:nrow(Tx_mes),main=names(Tx_gen),station,pdf=NULL,xlim=range(Tx_mes),ylim=xlim,cex=0.4,cex.main=1.0,cex.lab=1.0,cex.axis=1.0){ if (!is.null(pdf)) pdf(pdf) N <- length(main) Q <- as.integer(N/2) par(mfrow=c(Q,Q)) for(i in 1:N) { if (is.null(Tx_spline)) { qqplot(Tx_mes[when,station],Tx_gen[[i]][when,station],xlab=xlab,ylab=ylab,main=main[i],cex=cex,cex.main=cex.main,cex.lab=cex.lab,cex.axis=cex.axis,xlim=xlim,ylim=ylim) } else { qqplot(Tx_mes[when,station]-Tx_spline[when,station],Tx_gen[[i]][when,station]-Tx_spline[when,station],xlab=xlab,ylab=ylab,main=main[i],cex=cex,cex.main=cex.main,cex.lab=cex.lab,cex.axis=cex.axis,xlim=xlim,ylim=ylim) } abline(0,1) } if (!is.null(pdf)) dev.off() } NULL qqplot_RMAWGEN_Tn <- function (Tx_mes,Tx_gen,Tn_gen,Tn_mes,Tx_spline=NULL,Tn_spline=NULL,xlab="observed",ylab="simulated",when=1:nrow(Tn_mes),main=names(Tn_gen),station,pdf=NULL,xlim=range(Tn_mes),ylim=xlim,cex=0.4,cex.main=1.0,cex.lab=1.0,cex.axis=1.0){ if (!is.null(pdf)) pdf(pdf) N <- length(main) Q <- as.integer(N/2) par(mfrow=c(Q,Q)) for(i in 1:N) { if (is.null(Tn_spline)) { qqplot(Tn_mes[when,station],Tn_gen[[i]][when,station],xlab=xlab,ylab=ylab,main=main[i],cex=cex,cex.main=cex.main,cex.lab=cex.lab,cex.axis=cex.axis,xlim=xlim,ylim=ylim) } else { qqplot(Tn_mes[when,station]-Tn_spline[when,station],Tn_gen[[i]][when,station]-Tn_spline[when,station],xlab=xlab,ylab=ylab,main=main[i],cex=cex,cex.main=cex.main,cex.lab=cex.lab,cex.axis=cex.axis,xlim=xlim,ylim=ylim) } abline(0,1) } if (!is.null(pdf)) dev.off() } NULL qqplot_RMAWGEN_deltaT <- function (Tx_mes,Tx_gen,Tn_gen,Tn_mes,xlab="observed",ylab="simulated",when=1:nrow(Tx_mes),main=names(Tx_gen),station,pdf=NULL,xlim=range(Tx_mes-Tn_mes),ylim=xlim,cex=0.4,cex.main=1.0,cex.lab=1.0,cex.axis=1.0){ if (!is.null(pdf)) pdf(pdf) N <- length(main) Q <- as.integer(N/2) par(mfrow=c(Q,Q)) for(i in 1:N) { qqplot(Tx_mes[when,station]-Tn_mes[when,station],Tx_gen[[i]][when,station]-Tn_gen[[i]][when,station],xlab=xlab,ylab=ylab,main=main[i],cex=cex,cex.main=cex.main,cex.lab=cex.lab,cex.axis=cex.axis,xlim=xlim,ylim=ylim) abline(0,1) } if (!is.null(pdf)) dev.off() } NULL qqplot_RMAWGEN_prec <- function (prec_mes,prec_gen,xlab="observed",ylab="simulated",when=1:nrow(prec_mes),main=names(prec_gen),station,pdf=NULL,xlim=range(prec_mes),ylim=xlim,cex=0.4,cex.main=1.0,cex.lab=1.0,cex.axis=1.0,lag=1){ if (!is.null(pdf)) pdf(pdf) N <- length(main) Q <- as.integer(N/2) par(mfrow=c(Q,Q)) for(i in 1:N) { qqplot.lagged(x=prec_mes[when,station],y=prec_gen[[i]][when,station],lag=lag,xlab=xlab,ylab=ylab,main=main[i],cex=cex,cex.main=cex.main,cex.lab=cex.lab,cex.axis=cex.axis,xlim=xlim,ylim=ylim) abline(0,1) } if (!is.null(pdf)) dev.off() }
gnlmm3 <- function(y=NULL, distribution="normal", mu=NULL, shape=NULL, nest=NULL, family=NULL, linear=NULL, pmu=NULL, pshape=NULL, pfamily=NULL, psd=NULL, exact=FALSE, wt=1, scale=NULL, points=10, common=FALSE, delta=1, envir=parent.frame(), print.level=0, typsize=abs(p), ndigit=10, gradtol=0.00001, stepmax=10*sqrt(p%*%p), steptol=0.00001, iterlim=100, fscale=1){ pburr <- function(q, m, s, f) 1-(1+(q/m)^s)^-f pglogis <- function(y, m, s, f) (1+exp(-sqrt(3)*(y-m)/(s*pi)))^-f pgweibull <- function(y, s, m, f) (1-exp(-(y/m)^s))^f phjorth <- function(y, m, s, f) 1-(1+s*y)^(-f/s)*exp(-(y/m)^2/2) pginvgauss <- function(y, m, s, f) .C("pginvgauss_c", as.double(y), as.double(m), as.double(s), as.double(f), len=as.integer(n), eps=as.double(1.0e-6), pts=as.integer(5), max=as.integer(16), err=integer(1), res=double(n), PACKAGE="repeated")$res ppowexp <- function(y, m, s, f){ z <- .C("ppowexp_c", as.double(y), as.double(m), as.double(s), as.double(f), len=as.integer(n), eps=as.double(1.0e-6), pts=as.integer(5), max=as.integer(16), err=integer(1), res=double(n), PACKAGE="repeated")$res ifelse(y-m>0,0.5+z,0.5-z)} dpvfpois <- function(y, m, s, f) .C("dpvfp_c", as.integer(y), as.double(m), as.double(s), as.double(f), as.integer(length(y)), as.double(rep(1,length(y))), res=double(length(y)), PACKAGE="repeated")$res pskewlaplace <- function(q,m,s,f){ u <- (q-m)/s ifelse(u>0,1-exp(-f*abs(u))/(1+f^2),f^2*exp(-abs(u)/f)/(1+f^2))} call <- sys.call() distribution <- match.arg(distribution,c("normal","inverse Gauss", "logistic","Hjorth","gamma","Burr","Weibull","extreme value", "Student t","power exponential","power variance function Poisson", "skew Laplace")) if(common){ if(sum(is.function(mu)+is.function(shape)+is.function(family))<2&&sum(inherits(mu,"formula")+inherits(shape,"formula")+inherits(family,"formula"))<2) stop("with common parameters, at least two of mu, shape, and family must be functions or formulae") if((!is.function(mu)&&!inherits(mu,"formula")&&!is.null(mu))||(!is.function(shape)&&!inherits(shape,"formula")&&!is.null(shape))||(!is.function(family)&&!inherits(family,"formula")&&!is.null(family))) stop("with common parameters, mu, shape, and family must either be functions, formulae, or NULL") if(!is.null(linear))stop("linear cannot be used with common parameters")} if(!is.null(scale))scale <- match.arg(scale,c("identity","log", "reciprocal","exp")) npl <- length(pmu) nps <- length(pshape) npf <- length(pfamily) if(is.null(psd))stop("An initial value of psd must be supplied") np <- npl+nps+npf+1 n <- if(inherits(envir,"repeated")||inherits(envir,"response"))sum(nobs(envir)) else if(inherits(envir,"data.frame"))dim(envir)[1] else if(is.vector(y,mode="numeric"))length(y) else if(is.matrix(y))dim(y)[1] else sum(nobs(y)) if(n==0)stop(paste(deparse(substitute(y)),"not found or of incorrect type")) respenv <- exists(deparse(substitute(y)),envir=parent.frame())&& inherits(y,"repeated")&&!inherits(envir,"repeated") if(respenv){ if(dim(y$response$y)[2]>1) stop("gnlr3 only handles univariate responses") if(!is.null(y$NAs)&&any(y$NAs)) stop("gnlr3 does not handle data with NAs")} envname <- if(respenv)deparse(substitute(y)) else if(inherits(envir,"repeated")||inherits(envir,"response")) deparse(substitute(envir)) else NULL lin1 <- lin2 <- lin3 <- NULL if(is.list(linear)){ lin1 <- linear[[1]] lin2 <- linear[[2]] lin3 <- linear[[3]]} else lin1 <- linear if(inherits(lin1,"formula")&&is.null(mu)){ mu <- lin1 lin1 <- NULL} if(inherits(lin2,"formula")&&is.null(shape)){ shape <- lin2 lin2 <- NULL} if(inherits(lin3,"formula")&&is.null(family)){ family <- lin3 lin3 <- NULL} if(inherits(lin1,"formula")){ lin1model <- if(respenv){ if(!is.null(attr(finterp(lin1,.envir=y,.name=envname),"parameters"))) attr(finterp(lin1,.envir=y,.name=envname),"model")} else {if(!is.null(attr(finterp(lin1,.envir=envir,.name=envname),"parameters"))) attr(finterp(lin1,.envir=envir,.name=envname),"model")}} else lin1model <- NULL if(inherits(lin2,"formula")){ lin2model <- if(respenv){ if(!is.null(attr(finterp(lin2,.envir=y,.name=envname),"parameters"))) attr(finterp(lin2,.envir=y,.name=envname),"model")} else {if(!is.null(attr(finterp(lin2,.envir=envir,.name=envname),"parameters"))) attr(finterp(lin2,.envir=envir,.name=envname),"model")}} else lin2model <- NULL if(inherits(lin3,"formula")){ lin3model <- if(respenv){ if(!is.null(attr(finterp(lin3,.envir=y,.name=envname),"parameters"))) attr(finterp(lin3,.envir=y,.name=envname),"model")} else {if(!is.null(attr(finterp(lin3,.envir=envir,.name=envname),"parameters"))) attr(finterp(lin3,.envir=envir,.name=envname),"model")}} else lin3model <- NULL if(inherits(lin1,"formula")){ tmp <- attributes(if(respenv)finterp(lin1,.envir=y,.name=envname) else finterp(lin1,.envir=envir,.name=envname)) lf1 <- length(tmp$parameters) if(!is.character(tmp$model))stop("linear must be a W&R formula") if(length(tmp$model)==1){ if(is.null(mu))mu <- ~1 else stop("linear must contain covariates")} rm(tmp)} else lf1 <- 0 if(inherits(lin2,"formula")){ tmp <- attributes(if(respenv)finterp(lin2,.envir=y,.name=envname) else finterp(lin2,.envir=envir,.name=envname)) lf2 <- length(tmp$parameters) if(!is.character(tmp$model))stop("linear must be a W&R formula") if(length(tmp$model)==1){ if(is.null(shape))shape <- ~1 else stop("linear must contain covariates")} rm(tmp)} else lf2 <- 0 if(inherits(lin3,"formula")){ tmp <- attributes(if(respenv)finterp(lin3,.envir=y,.name=envname) else finterp(lin3,.envir=envir,.name=envname)) lf3 <- length(tmp$parameters) if(!is.character(tmp$model))stop("linear must be a W&R formula") if(length(tmp$model)==1){ if(is.null(family))family <- ~1 else stop("linear must contain covariates")} rm(tmp)} else lf3 <- 0 mu2 <- sh2 <- fa2 <- NULL if(respenv||inherits(envir,"repeated")||inherits(envir,"tccov")||inherits(envir,"tvcov")||inherits(envir,"data.frame")){ if(inherits(mu,"formula")){ mu2 <- if(respenv)finterp(mu,.envir=y,.name=envname) else finterp(mu,.envir=envir,.name=envname)} if(inherits(shape,"formula")){ sh2 <- if(respenv)finterp(shape,.envir=y,.name=envname) else finterp(shape,.envir=envir,.name=envname)} if(inherits(family,"formula")){ fa2 <- if(respenv)finterp(family,.envir=y,.name=envname) else finterp(family,.envir=envir,.name=envname)} if(is.function(mu)){ if(is.null(attr(mu,"model"))){ tmp <- parse(text=deparse(mu)[-1]) mu <- if(respenv)fnenvir(mu,.envir=y,.name=envname) else fnenvir(mu,.envir=envir,.name=envname) mu2 <- mu attr(mu2,"model") <- tmp} else mu2 <- mu} if(is.function(shape)){ if(is.null(attr(shape,"model"))){ tmp <- parse(text=deparse(shape)[-1]) shape <- if(respenv)fnenvir(shape,.envir=y,.name=envname) else fnenvir(shape,.envir=envir,.name=envname) sh2 <- shape attr(sh2,"model") <- tmp} else sh2 <- shape} if(is.function(family)){ if(is.null(attr(family,"model"))){ tmp <- parse(text=deparse(family)[-1]) family <- if(respenv)fnenvir(family,.envir=y,.name=envname) else fnenvir(family,.envir=envir,.name=envname) fa2 <- family attr(fa2,"model") <- tmp} else fa2 <- family}} else { if(is.function(mu)&&is.null(attr(mu,"model")))mu <- fnenvir(mu) if(is.function(shape)&&is.null(attr(shape,"model"))) shape <- fnenvir(shape) if(is.function(family)&&is.null(attr(family,"model"))) family <- fnenvir(family)} if(inherits(mu,"formula")){ if(npl==0)stop("formula for mu cannot be used if no parameters are estimated") linarg <- if(lf1>0) "linear" else NULL mu3 <- if(respenv)finterp(mu,.envir=y,.name=envname,.args=linarg) else finterp(mu,.envir=envir,.name=envname,.args=linarg) npt1 <- length(attr(mu3,"parameters")) if(is.character(attr(mu3,"model"))){ if(length(attr(mu3,"model"))==1){ tmp <- attributes(mu3) mu3 <- function(p) p[1]*rep(1,n) attributes(mu3) <- tmp}} else { if(npl!=npt1&&!common&&lf1==0){ cat("\nParameters are ") cat(attr(mu3,"parameters"),"\n") stop(paste("pmu should have",npt1,"estimates"))} if(is.list(pmu)){ if(!is.null(names(pmu))){ o <- match(attr(mu3,"parameters"),names(pmu)) pmu <- unlist(pmu)[o] if(sum(!is.na(o))!=length(pmu))stop("invalid estimates for mu - probably wrong names")} else pmu <- unlist(pmu)}}} else if(!is.function(mu)){ mu3 <- function(p) p[1]*rep(1,n) npt1 <- 1} else { mu3 <- mu npt1 <- length(attr(mu3,"parameters"))-(lf1>0)} if(lf1>0){ if(is.character(attr(mu3,"model"))) stop("mu cannot be a W&R formula if linear is supplied") dm1 <- if(respenv)wr(lin1,data=y)$design else wr(lin1,data=envir)$design if(is.null(mu2))mu2 <- mu3 mu1 <- function(p)mu3(p,dm1%*%p[(npt1+1):(npt1+lf1)])} else { if(lf1==0&&length(mu3(pmu))==1){ mu1 <- function(p) mu3(p)*rep(1,n) attributes(mu1) <- attributes(mu3)} else { mu1 <- mu3 rm(mu3)}} if(is.null(attr(mu1,"parameters"))){ attributes(mu1) <- if(is.function(mu)){ if(!inherits(mu,"formulafn")){ if(respenv)attributes(fnenvir(mu,.envir=y)) else attributes(fnenvir(mu,.envir=envir))} else attributes(mu)} else attributes(fnenvir(mu1))} nlp <- npt1+lf1 if(!common&&nlp!=npl)stop(paste("pmu should have",nlp,"initial estimates")) npl <- if(common) 1 else npl+1 npl1 <- if(common&&!inherits(lin2,"formula")) 1 else nlp+2 np1 <- npl+nps if(inherits(shape,"formula")){ if(nps==0&&!common) stop("formula for shape cannot be used if no parameters are estimated") old <- if(common)mu1 else NULL linarg <- if(lf2>0) "linear" else NULL sh3 <- if(respenv)finterp(shape,.envir=y,.start=npl1,.name=envname,.old=old,.args=linarg) else finterp(shape,.envir=envir,.start=npl1,.name=envname,.old=old,.args=linarg) npt2 <- length(attr(sh3,"parameters")) if(is.character(attr(sh3,"model"))){ if(length(attr(sh3,"model"))==1){ tmp <- attributes(sh3) sh3 <- function(p) p[npl1]*rep(1,n) sh2 <- fnenvir(function(p) p[1]*rep(1,n)) attributes(sh3) <- tmp}} else { if(nps!=npt2&&!common&&lf2==0){ cat("\nParameters are ") cat(attr(sh3,"parameters"),"\n") stop(paste("pshape should have",npt2,"estimates"))} if(is.list(pshape)){ if(!is.null(names(pshape))){ o <- match(attr(sh3,"parameters"),names(pshape)) pshape <- unlist(pshape)[o] if(sum(!is.na(o))!=length(pshape))stop("invalid estimates for shape - probably wrong names")} else pshape <- unlist(pshape)}}} else if(!is.function(shape)){ sh3 <- function(p) p[npl1]*rep(1,n) sh2 <- fnenvir(function(p) p[1]*rep(1,n)) npt2 <- 1} else { sh3 <- function(p) shape(p[npl1:np]) attributes(sh3) <- attributes(shape) npt2 <- length(attr(sh3,"parameters"))-(lf2>0)} if(lf2>0){ if(is.character(attr(sh3,"model"))) stop("shape cannot be a W&R formula if linear is supplied") dm2 <- if(respenv)wr(lin2,data=y)$design else wr(lin2,data=envir)$design if(is.null(sh2))sh2 <- sh3 sh1 <- sh3(p,dm2%*%p[(npl1+lf2-1):np])} else { sh1 <- sh3 rm(sh3)} if(is.null(attr(sh1,"parameters"))){ attributes(sh1) <- if(is.function(shape)){ if(!inherits(shape,"formulafn")){ if(respenv)attributes(fnenvir(shape,.envir=y)) else attributes(fnenvir(shape,.envir=envir))} else attributes(shape)} else attributes(fnenvir(sh1))} nlp <- npt2+lf2 if(!common&&nlp!=nps)stop(paste("pshape should have",nlp,"initial estimates")) nps1 <- if(common&&!inherits(family,"formula")) 1 else if(common&&inherits(family,"formula")) length(attr(mu1,"parameters"))+nlp+1 else np1+1 if(inherits(family,"formula")){ if(npf==0&&!common) stop("formula for family cannot be used if no parameters are estimated") old <- if(common)c(mu1,sh1) else NULL linarg <- if(lf3>0) "linear" else NULL fa3 <- if(respenv)finterp(family,.envir=y,.start=nps1,.name=envname,.old=old,.args=linarg) else finterp(family,.envir=envir,.start=nps1,.name=envname,.old=old,.args=linarg) npt3 <- length(attr(fa3,"parameters")) if(is.character(attr(fa3,"model"))){ if(length(attr(fa3,"model"))==1){ tmp <- attributes(fa3) fa3 <- function(p) p[nps1]*rep(1,n) fa2 <- fnenvir(function(p) p[1]*rep(1,n)) attributes(fa3) <- tmp}} else { if(npf!=npt3&&!common&&lf3==0){ cat("\nParameters are ") cat(attr(fa3,"parameters"),"\n") stop(paste("pfamily should have",npt3,"estimates"))} if(is.list(pfamily)){ if(!is.null(names(pfamily))){ o <- match(attr(fa3,"parameters"),names(pfamily)) pfamily <- unlist(pfamily)[o] if(sum(!is.na(o))!=length(pfamily))stop("invalid estimates for family - probably wrong names")} else pfamily <- unlist(pfamily)}}} else if(!is.function(family)){ fa3 <- function(p) p[nps1]*rep(1,n) fa2 <- fnenvir(function(p) p[1]*rep(1,n)) npt3 <- 1} else { fa3 <- function(p) family(p[nps1:np]) attributes(fa3) <- attributes(family) npt3 <- length(attr(fa3,"parameters"))-(lf3>0)} if(lf3>0){ if(is.character(attr(fa3,"model"))) stop("family cannot be a W&R formula if linear is supplied") dm3 <- if(respenv)wr(lin3,data=y)$design else wr(lin3,data=envir)$design if(is.null(fa2))fa2 <- fa3 fa1 <- fa3(p,dm3%*%p[(nps1+lf3-1):np])} else { fa1 <- fa3 rm(fa3)} if(is.null(attr(fa1,"parameters"))){ attributes(fa1) <- if(is.function(family)){ if(!inherits(family,"formulafn")){ if(respenv)attributes(fnenvir(family,.envir=y)) else attributes(fnenvir(family,.envir=envir))} else attributes(family)} else attributes(fnenvir(fa1))} nlp <- npt3+lf3 if(!common&&nlp!=npf)stop(paste("pfamily should have",nlp,"initial estimates")) if(common){ nlp <- length(unique(c(attr(mu1,"parameters"),attr(sh1,"parameters"),attr(fa1,"parameters")))) if(nlp!=npl)stop(paste("with a common parameter model, pmu should contain",nlp,"estimates"))} pmu <- c(pmu,psd) p <- c(pmu,pshape,pfamily) type <- "unknown" if(respenv){ if(inherits(envir,"repeated")&&(length(nobs(y))!=length(nobs(envir))||any(nobs(y)!=nobs(envir)))) stop("y and envir objects are incompatible") if(!is.null(y$response$wt)&&any(!is.na(y$response$wt))) wt <- as.vector(y$response$wt) if(!is.null(y$response$delta)) delta <- as.vector(y$response$delta) type <- y$response$type respname <- colnames(y$response$y) y <- response(y)} else if(inherits(envir,"repeated")){ if(!is.null(envir$NAs)&&any(envir$NAs)) stop("gnlr3 does not handle data with NAs") cn <- deparse(substitute(y)) if(length(grep("\"",cn))>0)cn <- y if(length(cn)>1)stop("only one y variable allowed") col <- match(cn,colnames(envir$response$y)) if(is.na(col))stop(paste("response variable",cn,"not found")) type <- envir$response$type[col] respname <- colnames(envir$response$y)[col] y <- envir$response$y[,col] if(!is.null(envir$response$n)&&!all(is.na(envir$response$n[,col]))) y <- cbind(y,envir$response$n[,col]-y) else if(!is.null(envir$response$censor)&&!all(is.na(envir$response$censor[,col]))) y <- cbind(y,envir$response$censor[,col]) if(!is.null(envir$response$wt))wt <- as.vector(envir$response$wt) if(!is.null(envir$response$delta)) delta <- as.vector(envir$response$delta[,col])} else if(inherits(envir,"data.frame")){ respname <- deparse(substitute(y)) y <- envir[[deparse(substitute(y))]]} else if(inherits(y,"response")){ if(dim(y$y)[2]>1)stop("gnlr3 only handles univariate responses") if(!is.null(y$wt)&&any(!is.na(y$wt)))wt <- as.vector(y$wt) if(!is.null(y$delta))delta <- as.vector(y$delta) type <- y$type respname <- colnames(y$y) y <- response(y)} else respname <- deparse(substitute(y)) if(any(is.na(y)))stop("NAs in y - use rmna") censor <- length(dim(y))==2&&dim(y)[2]==2 if(censor&&all(y[,2]==1)){ y <- y[,1] censor <- FALSE} if(censor){ y[,2] <- as.integer(y[,2]) if(any(y[,2]!=-1&y[,2]!=0&y[,2]!=1)) stop("Censor indicator must be -1s, 0s, and 1s") cc <- ifelse(y[,2]==1,1,0) rc <- ifelse(y[,2]==0,1,ifelse(y[,2]==-1,-1,0)) lc <- ifelse(y[,2]==-1,0,1) if(any(delta<=0&y[,2]==1)) stop("All deltas for uncensored data must be positive") else { delta <- ifelse(delta<=0,0.000001,delta) delta <- ifelse(y[,1]-delta/2<=0,delta-0.00001,delta)}} else { if(!is.vector(y,mode="numeric"))stop("y must be a vector") if(min(delta)<=0)stop("All deltas for must be positive")} if(distribution=="power variance function Poisson"){ if(type!="unknown"&&type!="discrete") stop("discrete data required") if(censor)stop("censoring not allowed for power variance function Poisson") if(any(y<0))stop("All response values must be >= 0")} else if(distribution!="logistic"&&distribution!="Student t"&& distribution!="power exponential"&&distribution!="skew Laplace"){ if(type!="unknown"&&type!="duration"&&type!="continuous") stop("duration data required") if((censor&&any(y[,1]<=0))||(!censor&&any(y<=0))) stop("All response values must be > 0")} else if(type!="unknown"&&type!="continuous"&&type!="duration") stop("continuous data required") if(min(wt)<0)stop("All weights must be non-negative") if(length(wt)==1)wt <- rep(wt,n) if(length(delta)==1)delta <- rep(delta,n) if(is.null(nest))stop("A nest vector must be supplied") else if(length(nest)!=n)stop("nest must be the same length as the other variables") if(is.factor(nest))nest <- as.numeric(nest) nind <- length(unique(nest)) od <- length(nest)==nind i <- rep(1:n,points) ii <- rep(1:nind,points) k <- NULL for(j in 1:points)k <- c(k,nest+(j-1)*max(nest)) k <- as.integer(k) quad <- gauss.hermite(points) sd <- quad[rep(1:points,rep(n,points)),1] qw <- quad[rep(1:points,rep(nind,points)),2] if(is.null(scale)){ if(distribution=="normal"||distribution=="logistic"|| distribution=="Student t"||distribution=="power exponential"|| distribution=="skew Laplace")scale <- "identity" else scale <- "log"} mu4 <- if(scale=="identity") function(p) mu1(p)[i]+p[npl]*sd else if(scale=="log") function(p) exp(log(mu1(p))[i]+p[npl]*sd) else if(scale=="reciprocal") function(p) 1/(1/mu1(p)[i]+p[npl]*sd) else if(scale=="exp") function(p) log(exp(mu1(p))[i]+p[npl]*sd) if(any(is.na(mu1(pmu))))stop("The location regression returns NAs: probably invalid initial values") if(any(is.na(sh1(p))))stop("The shape regression returns NAs: probably invalid initial values") if(any(is.na(fa1(p))))stop("The family regression returns NAs: probably invalid initial values") if (!censor){ ret <- switch(distribution, normal={ if(exact){ fcn <- function(p) { m <- mu4(p) s <- exp(0.5*sh1(p)) f <- fa1(p) y <- y^f/f jy <- y^(2*f-1)*delta/(2*f) norm <- sign(f)*pnorm(0,m,s) -wt*(log((pnorm(y+jy,m,s)-pnorm(y-jy,m,s))) -log(1-(f<0)-norm))} const <- 0} else { fcn <- function(p) { m <- mu4(p) s <- exp(0.5*sh1(p)) f <- fa1(p) norm <- sign(f)*pnorm(0,m,s) -wt*((f-1)*log(y)+log(dnorm(y^f/f,m,s)) -log(1-(f<0)-norm))} const <- -wt*log(delta)}}, "power exponential"={ if(exact){ fcn <- function(p) { m <- mu4(p) s <- exp(0.5*sh1(p)) f <- exp(fa1(p)) -wt*log(ppowexp(y+delta/2,m,s) -ppowexp(y-delta/2,m,s,f))} const <- 0} else { fcn <- function(p) { t <- 0.5*sh1(p) f <- exp(fa1(p)) b <- 1+1/(2*f) wt*(t+(abs(y-mu4(p))/exp(t))^(2*f)/2+ lgamma(b)+b*log(2))} const <- -wt*log(delta)}}, "inverse Gauss"={ if(exact){ fcn <- function(p) { m <- mu4(p) s <- exp(sh1(p)) f <- fa1(p) -wt*log(pginvgauss(y+delta/2,m,s,f) -pginvgauss(y-delta/2,m,s,f))} const <- 0} else { fcn <- function(p) { m <- mu4(p) s <- exp(sh1(p)) f <- fa1(p) -wt*(-f*log(m)+(f-1)*log(y)- log(2*besselK(1/(s*m),abs(f)))- (1/y+y/m^2)/(2*s))} const <- -wt*log(delta)}}, logistic={ if(exact){ fcn <- function(p) { m <- mu4(p) s <- exp(sh1(p)) f <- exp(fa1(p)) -wt*log(pglogis(y+delta/2,m,s,f) -pglogis(y-delta/2,m,s,f))} const <- 0} else { fcn <- function(p) { t <- sh1(p) m <- (y-mu4(p))/exp(t)*sqrt(3)/pi wt*(-fa1(p)+m+t+(exp(fa1(p))+1)* log(1+exp(-m)))} const <- -wt*(log(delta*sqrt(3)/pi))}}, Hjorth={ if(exact){ fcn <- function(p) { m <- mu4(p) s <- exp(sh1(p)) f <- fa1(p) -wt*log(phjorth(y+delta/2,m,s,f)- phjorth(y-delta/2,m,s,f))} const <- 0} else { fcn <- function(p) { m <- mu4(p) s <- exp(sh1(p)) f <- fa1(p) -wt*(-f*log(1+s*y)/s-(y/m)^2/2+ log(y/m^2+f/(1+s*y)))} const <- -wt*log(delta)}}, gamma={ if(exact){ fcn <- function(p) { m <- mu4(p) s <- exp(sh1(p)) f <- exp(fa1(p)) u <- (m/s)^f -wt*log(pgamma((y+delta/2)^f,s,scale=u) -pgamma((y-delta/2)^f,s,scale=u))} const <- 0} else { fcn <- function(p) { m <- mu4(p) t <- sh1(p) s <- exp(t) u <- fa1(p) f <- exp(u) v <- s*f -wt*(v*(t-log(m))-(s*y/m)^f+u+(v-1)*log(y) -lgamma(s))} const <- -wt*log(delta)}}, Burr={ if(exact){ fcn <- function(p) { m <- mu4(p) s <- exp(sh1(p)) f <- exp(fa1(p)) -wt*log(pburr(y+delta/2,m,s,f)- pburr(y-delta/2,m,s,f))} const <- 0} else { fcn <- function(p) { m <- mu4(p) s <- exp(sh1(p)) f <- exp(fa1(p)) y1 <- y/m -wt*(log(f*s/m)+(s-1)*log(y1) -(f+1)*log(1+y1^s))} const <- -wt*log(delta)}}, Weibull={ if(exact){ fcn <- function(p) { m <- mu4(p) s <- exp(sh1(p)) f <- exp(fa1(p)) -wt*log(pgweibull(y+delta/2,s,m,f) -pgweibull(y-delta/2,s,m,f))} const <- 0} else { fcn <- function(p) { m <- mu4(p) t <- sh1(p) s <- exp(t) u <- fa1(p) f <- exp(u) y1 <- (y/m)^s -wt*(t+u+(s-1)*log(y)-s*log(m)+ (f-1)*log(1-exp(-y1))-y1)} const <- -wt*log(delta)}}, "Student t"={ if(exact){ fcn <- function(p) { m <- mu4(p) s <- exp(0.5*sh1(p)) f <- exp(fa1(p)) -wt*log(pt((y+delta/2-m)/s,f)- pt((y-delta/2-m)/s,f))} const <- 0} else { fcn <- function(p) { s <- exp(0.5*sh1(p)) -wt*log(dt((y-mu4(p))/s,exp(fa1(p)))/s)} const <- -wt*(log(delta))}}, "extreme value"={ if(exact){ fcn <- function(p) { m <- mu4(p) s <- exp(sh1(p)) f <- fa1(p) y1 <- y^f/f ey <- exp(y1) jey <- y^(f-1)*ey*delta/2 norm <- sign(f)*exp(-m^-s) -wt*(log((pweibull(ey+jey,s,m) -pweibull(ey-jey,s,m))/ (1-(f>0)+norm)))} const <- 0} else { fcn <- function(p) { m <- mu4(p) t <- sh1(p) s <- exp(t) f <- fa1(p) y1 <- y^f/f norm <- sign(f)*exp(-m^-s) -wt*(t+s*(y1-log(m))-(exp(y1)/m)^s +(f-1)*log(y)-log(1-(f>0)+norm))} const <- -wt*log(delta)}}, "power variance function Poisson"={ fcn <- function(p) { m <- mu4(p) -wt*log(dpvfpois(y,m,exp(sh1(p))/m, fa1(p)))} const <- 0}, "skew Laplace"={ if(exact){ fcn <- function(p) { m <- mu4(p) s <- exp(sh1(p)) f <- exp(fa1(p)) -wt*log(pskewlaplace(y+delta/2,m,s,f) -pskewlaplace(y-delta/2,m,s,f))} const <- 0} else { fcn <- function(p) { m <- mu4(p) s <- exp(sh1(p)) t <- sh1(p) u <- fa1(p) f <- exp(u) -wt*(u+ifelse(y>m,-f*(y-m),(y-m)/f)/ s-log(1+f^2)-t)} const <- -wt*log(delta)}})} else { ret <- switch(distribution, normal={ if(exact){ fcn <- function(p) { m <- mu4(p) s <- exp(0.5*sh1(p)) f <- fa1(p) yy <- y[,1]^f/f jy <- y[,1]^(2*f-1)*delta/(2*f) norm <- sign(f)*pnorm(0,m,s) -wt*(cc*log((pnorm(yy+jy,m,s)- pnorm(yy-jy,m,s)))+log(lc-rc*(pnorm(yy, m,s)-(f>0)*norm)))/(1-(f<0)-norm)} const <- 0} else { fcn <- function(p) { m <- mu4(p) t <- sh1(p) s <- exp(0.5*t) f <- fa1(p) norm <- sign(f)*pnorm(0,m,s) -wt*(cc*(-(t+((y[,1]^f/f-m)/s)^2)/2+(f-1)* log(y[,1]))+log(lc-rc *(pnorm(y[,1]^f/f,m,s) -(f>0)*norm)))/(1-(f<0)-norm)} const <- wt*cc*(log(2*pi)/2-log(delta))}}, "power exponential"={ if(exact){ fcn <- function(p) { m <- mu4(p) s <- exp(0.5*sh1(p)) f <- fa1(p) -wt*(cc*log(ppowexp(y[,1]+delta/2,m,s,f)- ppowexp(y[,1]-delta/2,m,s,f)) +log(lc-rc*ppowexp(y[,1],m,s,f)))} const <- 0} else { fcn <- function(p) { m <- mu4(p) t <- 0.5*sh1(p) s <- exp(t) f <- exp(fa1(p)) b <- 1+1/(2*f) -wt*(cc*(-t-(abs(y[,1]-mu4(p))/s)^(2*f)/2- lgamma(b)-b*log(2))+log(lc-rc *ppowexp(y[,1],m,s,f)))} const <- -wt*cc*(log(delta))}}, "inverse Gauss"={ if(exact){ fcn <- function(p) { m <- mu4(p) s <- exp(sh1(p)/2) f <- fa1(p) -wt*(cc*log(pginvgauss(y[,1]+delta/2,m,s,f) -pginvgauss((y[,1]-delta/2)^f/f,m,s,f))+ log(lc-rc*pginvgauss(y[,1]^f/f,m,s,f)))} const <- 0} else { fcn <- function(p) { m <- mu4(p) s <- exp(sh1(p)) f <- fa1(p) -wt*(cc*(-f*log(m)+(f-1)*log(y[,1])- log(2*besselK(1/(s*m),abs(f)))- (1/y[,1]+y[,1]/m^2)/(2*s))+log(lc-rc *pginvgauss(y[,1],m,s,f)))} const <- -wt*cc*(log(delta))}}, logistic={ if(exact){ fcn <- function(p) { m <- mu4(p) s <- exp(sh1(p))*sqrt(3)/pi f <- exp(fa1(p)) -wt*(cc*log(pglogis(y[,1]+delta/2,m,s,f)- pglogis(y[,1]-delta/2,m,s,f)) +log(lc-rc*pglogis(y[,1],m,s,f)))} const <- 0} else { fcn <- function(p) { m <- mu4(p) s <- exp(sh1(p))*sqrt(3)/pi y1 <- (y[,1]-m)/s u <- fa1(p) f <- exp(u) -wt*(cc*(u-y1-log(s)-(f+1)*log(1+exp(-y1))) +log(lc-rc*pglogis(y[,1],m,s,f)))} const <- -wt*cc*log(delta)}}, Hjorth={ if(exact){ fcn <- function(p) { m <- mu4(p) s <- exp(sh1(p)) f <- fa1(p) -wt*(cc*log(phjorth(y[,1]+delta/2,m,s,f)- phjorth(y[,1]-delta/2,m,s,f)) +log(lc-rc*phjorth(y[,1],m,s,f)))} const <- 0} else { fcn <- function(p) { m <- mu4(p) s <- exp(sh1(p)) f <- fa1(p) -wt*(cc*(-f*log(1+s*y[,1])/s-(y[,1]/m)^2/2+ log(y[,1]/m^2+f/(1+s*y[,1])))+ log(lc-rc*phjorth(y[,1],m,s,f)))} const <- -wt*cc*log(delta)}}, gamma={ if(exact){ fcn <- function(p) { m <- mu4(p) s <- exp(sh1(p)) f <- exp(fa1(p)) u <- (m/s)^f -wt*(cc*log(pgamma((y[,1]+delta/2)^f,s, scale=u)-pgamma((y[,1]-delta/2)^f,s, scale=u))+log(lc-rc*pgamma(y[,1]^f,s, scale=u)))} const <- 0} else { fcn <- function(p) { m <- mu4(p) t <- sh1(p) s <- exp(t) u <- fa1(p) f <- exp(u) v <- s*f -wt*(cc*(v*(t-log(m))-(s*y[,1]/m)^f+u+(v-1) *log(y[,1])-lgamma(s))+log(lc-rc *pgamma(y[,1]^f,s,scale=(m/s)^f)))} const <- -wt*cc*log(delta)}}, Burr={ if(exact){ fcn <- function(p) { m <- mu4(p) s <- exp(sh1(p)) f <- exp(fa1(p)) -wt*(cc*log(pburr(y[,1]+delta/2,m,s,f)- pburr(y[,1]-delta/2,m,s,f)) +log(lc-rc*pburr(y[,1],m,s,f)))} const <- 0} else { fcn <- function(p) { m <- mu4(p) s <- exp(sh1(p)) f <- exp(fa1(p)) y1 <- y[,1]/m -wt*(cc*(log(f*s/m)+(s-1)*log(y1) -(f+1)*log(1+y1^s))+ log(lc-rc*pburr(y[,1],m,s,f)))} const <- -wt*cc*log(delta)}}, Weibull={ if(exact){ fcn <- function(p) { m <- mu4(p) s <- exp(sh1(p)) f <- exp(fa1(p)) -wt*(cc*log(pgweibull(y[,1]+delta/2,s,m,f)- pgweibull(y[,1]-delta/2,s,m,f)) +log(lc-rc*pgweibull(y[,1],s,m,f)))} const <- 0} else { fcn <- function(p) { m <- mu4(p) t <- sh1(p) s <- exp(t) u <- fa1(p) f <- exp(u) y1 <- (y[,1]/m)^s -wt*(cc*(t+u+(s-1)*log(y[,1])-s*log(m)+ (f-1)*log(1-exp(-y1))-y1)+log(lc-rc* pgweibull(y[,1],s,m,f)))} const <- -wt*cc*log(delta)}}, "Student t"={ if(exact){ fcn <- function(p) { m <- mu4(p) s <- exp(0.5*sh1(p)) f <- exp(fa1(p)) -wt*(cc*log(pt((y[,1]+delta/2-m)/s,f)- pt((y[,1]-delta/2-m)/s,f)) +log(lc-rc*pt((y[,1]-m)/s,f)))} const <- 0} else { fcn <- function(p) { m <- mu4(p) s <- exp(0.5*sh1(p)) f <- exp(fa1(p)) -wt*(cc*log(dt((y[,1]-m)/s,f)/s) +log(lc-rc*pt((y[,1]-m)/s,f)))} const <- -wt*cc*(log(delta))}}, "extreme value"={ if(exact){ fcn <- function(p) { m <- mu4(p) s <- exp(sh1(p)) f <- fa1(p) y1 <- y[,1]^f/f ey <- exp(y1) jey <- y[,1]^(f-1)*ey*delta/2 norm <- sign(f)*exp(-m^-s) ind <- f>0 -wt*(cc*log(pweibull(ey+jey,s,m)- pweibull(ey-jey,s,m)) +log(lc-rc*(pweibull(ey,s,m)-ind+ (f>0)*norm))-log(1-ind+norm))} const <- 0} else { fcn <- function(p) { m <- mu4(p) t <- sh1(p) s <- exp(t) f <- fa1(p) y1 <- y[,1]^f/f ey <- exp(y1) norm <- sign(f)*exp(-m^-s) ind <- f>0 -wt*(cc*(t+s*(y1-log(m))-(ey/m)^s +(f-1)*log(y[,1]))+log(lc-rc* (pweibull(ey,s,m)-ind+(f>0)*norm))- log(1-ind+norm))} const <- -wt*cc*log(delta)}}, "skew Laplace"={ if(exact){ fcn <- function(p) { m <- mu4(p) s <- exp(sh1(p)) f <- exp(fa1(p)) -wt*(cc*log(pskewlaplace(y[,1]+delta/2,m,s,f) -pskewlaplace(y[,1]-delta/2,m,s,f)) +log(lc-rc*pskewlaplace(y[,1],m,s,f)))} const <- 0} else { fcn <- function(p) { m <- mu4(p) t <- sh1(p) s <- exp(t) u <- fa1(p) f <- exp(u) -wt*(cc*(u+ifelse(y>m,-f*(y-m),(y-m)/f)/ s-log(1+f^2)-t)+log(lc-rc *pskewlaplace(y[,1],m,s,f)))} const <- -wt*cc*log(delta)}})} fn <- function(p) { under <- 0 if(od)pr <- -fcn(p) else { pr <- NULL for(i in split(fcn(p),k))pr <- c(pr,-sum(i))} if(any(is.na(pr)))stop("NAs - unable to calculate probabilities.\n Try other initial values.") if(max(pr)-min(pr)>1400){ if(print.level==2)cat("Log probabilities:\n",pr,"\n\n") stop("Product of probabilities is too small to calculate.\n Try fewer points.")} if(any(pr > 700))under <- 700-max(pr) else if(any(pr < -700))under <- -700-min(pr) tmp <- NULL for(i in split(qw*exp(pr+under),ii))tmp <- c(tmp,sum(i)) -sum(log(tmp)-under)} if(fscale==1)fscale <- fn(p) if(is.na(fn(p))) stop("Likelihood returns NAs: probably invalid initial values") z0 <- nlm(fn,p=p,hessian=TRUE,print.level=print.level,typsize=typsize, ndigit=ndigit,gradtol=gradtol,stepmax=stepmax,steptol=steptol, iterlim=iterlim,fscale=fscale) z0$minimum <- z0$minimum+sum(const) fitted.values <- as.vector(mu4(z0$estimate)) residuals <- y-fitted.values if(np==0)cov <- NULL else if(np==1){ cov <- 1/z0$hessian se <- as.vector(sqrt(cov))} else { a <- if(any(is.na(z0$hessian))||any(abs(z0$hessian)==Inf))0 else qr(z0$hessian)$rank if(a==np)cov <- solve(z0$hessian) else cov <- matrix(NA,ncol=np,nrow=np) se <- sqrt(diag(cov))} if(!is.null(mu2))mu1 <- mu2 if(!is.null(sh2))sh1 <- sh2 if(!is.null(fa2))fa1 <- fa2 z1 <- list( call=call, delta=delta, distribution=distribution, likefn=fcn, respname=respname, mu=mu1, shape=sh1, family=fa1, linear=list(lin1,lin2,lin3), linmodel=list(lin1model,lin2model,lin3model), common=common, scale=scale, points=points, prior.weights=wt, censor=censor, maxlike=z0$minimum, fitted.values=fitted.values, residuals=residuals, aic=z0$minimum+np, df=sum(wt)-np, coefficients=z0$estimate, npl=npl, npm=0, nps=nps, npf=npf, se=se, cov=cov, corr=cov/(se%o%se), gradient=z0$gradient, iterations=z0$iterations, code=z0$code) class(z1) <- "gnlm" return(z1)}
library(nsRFA) data(FEH1000) sitedata <- am[am[,1]==69023, ] serieplot(sitedata[,4], sitedata[,3], ylim=c(0,200), xlab="year", ylab="Max annual peak [m3/s]") MSC <- MSClaio2008(sitedata[,4], crit="AIC") MSC summary(MSC) MSC <- MSClaio2008(sitedata[,4], crit="AICc") MSC summary(MSC) MSC <- MSClaio2008(sitedata[,4], crit="BIC") MSC summary(MSC) MSC <- MSClaio2008(sitedata[,4], crit="ADC") MSC summary(MSC) MSC <- MSClaio2008(sitedata[,4]) MSC summary(MSC) plot(MSC)
quiet <- function(expr, all=TRUE) { if (Sys.info()["sysname"] == "Windows") { file <- "NUL" } else { file <- "/dev/null" } if (all) { suppressWarnings(suppressMessages( suppressPackageStartupMessages(capture.output(expr, file=file)))) } else { capture.output(expr, file=file) } }
library(rAltmetric) library(magrittr) library(purrr) ids <- list(c( "10.1038/nature09210", "10.1126/science.1187820", "10.1016/j.tree.2011.01.009", "10.1086/664183" )) alm <- function(x) altmetrics(doi = x) %>% altmetric_data() results <- pmap_df(ids, alm) library(dplyr) knitr::kable(results %>% select(title, doi, starts_with("cited")))
drybrush <- function(raster_dem, aggregation_factor = 10, max_colour_altitude = 30, opacity = 0.5, elevation_palette = c(" rasterBase <- raster::aggregate(raster_dem, fun = min, fact = 10) rasterBase <- raster::resample(rasterBase, raster_dem) drybrush_distance <- raster_dem - rasterBase drybrush_distance[is.na(drybrush_distance)] <- 0 drybrush_distance[drybrush_distance < 0] <- 0 drybrush_distance_std <- drybrush_distance / max_colour_altitude drybrush_distance_std[drybrush_distance_std > 1] <- 1 elevation_overlay <- elevation_shade(drybrush_distance_std, elevation_palette = elevation_palette) elevation_overlay[,,4] <- opacity elevation_overlay }
gregElasticNet <- function( y, xsample, xpop, pi = NULL, alpha=1, model="linear", pi2 = NULL, var_est =FALSE, var_method="LinHB", datatype = "raw", N = NULL, lambda = "lambda.min", B = 1000, cvfolds = 10){ if(!(typeof(y) %in% c("numeric", "integer", "double"))){ stop("Must supply numeric y. For binary variable, convert to 0/1's.") } if(!is.element(var_method, c("LinHB", "LinHH", "LinHTSRS", "LinHT", "bootstrapSRS"))){ message("Variance method input incorrect. It has to be \"LinHB\", \"LinHH\", \"LinHT\", \"LinHTSRS\", or \"bootstrapSRS\".") return(NULL) } if(!is.element(model, c("linear","logistic"))){ message("Method input incorrect, has to be either \"linear\" or \"logistic\"") return(NULL) } if(is.null(N)){ if(datatype=="raw"){ N <- dim(as.matrix(xpop))[1] }else{ N <- sum(pi^(-1)) message("Assuming N can be approximated by the sum of the inverse inclusion probabilities.") } } xsample.d <- model.matrix(~., data = data.frame(xsample)) xsample <- data.frame(xsample.d[,-1]) xsample.dt <- t(xsample.d) y <- as.vector(y) n <- length(y) if(is.null(pi)){ message("Assuming simple random sampling") } if (is.null(pi)) { pi <- rep(length(y)/N, length(y)) } weight <- as.vector(pi^(-1)) if(model=="linear"){ fam <- "gaussian" } else{ fam <- "binomial" } cv <- cv.glmnet(x = as.matrix(xsample), y = y, alpha = alpha, weights = weight, nfolds = cvfolds,family=fam, standardize=FALSE) if(lambda=="lambda.min"){ lambda_opt <- cv$lambda.min } if(lambda=="lambda.1se"){ lambda_opt <- cv$lambda.1se } pred.mod <- glmnet(x = as.matrix(xsample), y = y, alpha = alpha, family=fam, standardize = FALSE, weights=weight) elasticNet_coef <- predict(pred.mod,type = "coefficients",s = lambda_opt)[1:dim(xsample.d)[2],] y.hats.s <- predict(cv,newx = as.matrix(xsample), s = lambda_opt, type="response") if (model == "logistic") { if (datatype != "raw"){ message("For the Logistic Elastic Net Estimator, user must supply all x values for population. Populations totals or means for x are not enough.") return(NULL) } xpop <- data.frame(model.matrix(~., data = xpop))[,-1] xpop <- dplyr::select_(xpop, .dots=names(xsample)) xpop_d <- model.matrix(~., data = xpop) y.hats.U <- predict(cv,newx = xpop_d[,-1], s = lambda_opt, type = "response") t <- sum(y.hats.U) + t(y-y.hats.s)%*%pi^(-1) if ( var_est == TRUE){ if (var_method != "bootstrapSRS") { varEst <- varMase(y = (y - y.hats.s),pi = pi,pi2 = pi2,method = var_method, N = N) } if(var_method == "bootstrapSRS"){ dat <- cbind(y,pi, xsample.d) t_boot <- boot(data = dat, statistic = logisticGregElasticNett, R = B, xpopd = xpop_d, alpha=alpha, lambda=lambda_opt, parallel = "multicore", ncpus = 2) varEst <- var(t_boot$t)*n/(n-1)*(N-n)/(N-1) } } } if (model == "linear") { if (datatype=="raw"){ xpop <- data.frame(model.matrix(~., data = xpop))[,-1] xpop <- dplyr::select_(xpop, .dots=names(xsample)) xpop_d <- model.matrix(~., data = xpop) xpop_d <- apply(xpop_d,2,sum) } if (datatype=="totals"){ xpop_d <- unlist(c(N,xpop[names(xsample)])) } if (datatype=="means"){ xpop_d <- unlist(c(N,xpop[names(xsample)]*N)) } t <- elasticNet_coef %*% (xpop_d) + t(y-y.hats.s)%*%pi^(-1) if ( var_est == TRUE ) { if ( var_method != "bootstrapSRS") { varEst <- varMase(y = (y-y.hats.s),pi = pi,pi2 = pi2,method = var_method, N = N) } if ( var_method == "bootstrapSRS"){ dat <- cbind(y,pi, xsample.d) t_boot <- boot(data = dat, statistic = gregElasticNett, R = B, xpopd = xpop_d, alpha=alpha, lambda=lambda_opt, parallel = "multicore", ncpus = 2) varEst <- var(t_boot$t)*n/(n-1)*(N-n)/(N-1) } } } if(var_est==TRUE){ return(list( pop_total = as.numeric(t), pop_mean = as.numeric(t)/N, pop_total_var=varEst, pop_mean_var=varEst/N^2, coefficients = elasticNet_coef)) }else{ return(list( pop_total = as.numeric(t), pop_mean = as.numeric(t)/N, coefficients = elasticNet_coef)) } }
library(openintro) library(usethis) openintro_colors <- IMSCOL[, 1] openintro_palettes <- list( main = openintro_cols("blue", "green", "pink", "yellow", "red"), two = openintro_cols("blue", "green"), three = openintro_cols("blue", "green", "pink"), four = openintro_cols("blue", "green", "pink", "yellow"), five = openintro_cols("blue", "green", "pink", "yellow", "red"), six = openintro_cols("blue", "green", "pink", "yellow", "red", "gray"), cool = openintro_cols("blue", "green"), hot = openintro_cols("pink", "yellow", "red"), gray = openintro_cols("lgray", "gray", "black") ) use_data(openintro_colors, overwrite = TRUE) use_data(openintro_palettes, overwrite = TRUE)
'dse15b'
ORRRR <- function(y, x, z = NULL, mu = TRUE, r = 1, initial_size = 100, addon = 10, method = c("SMM", "SAA"), SAAmethod = c("optim", "MM"), ..., initial_A = matrix(rnorm(P*r), ncol = r), initial_B = matrix(rnorm(Q*r), ncol = r), initial_D = matrix(rnorm(P*R), ncol = R), initial_mu = matrix(rnorm(P)), initial_Sigma = diag(P), ProgressBar = requireNamespace("lazybar"), return_data = TRUE){ if (ProgressBar && !requireNamespace("lazybar", quietly = TRUE)) { stop("Package \"lazybar\" needed for progress bar to work. Please install it.", call. = FALSE) } method <- method[[1]] if(!method %in% c("SMM", "SAA")) stop("Unrecognised method") if(method == "SAA") SAAmethod <- SAAmethod[[1]] else SAAmethod <- "NULL" if(method == "SAA" && !SAAmethod %in% c("optim", "MM")) stop("Unrecognised SAAmethod") if(SAAmethod == "MM"){ RRRR_argument <- list(...) if(is.null(RRRR_argument$itr)) RRRR_argument$itr <- 10 if(is.null(RRRR_argument$earlystop)) RRRR_argument$earlystop <- 1e-4 } if(return_data){ returned_data <- list(y=y, x=x, z=z) } else { returned_data <- NULL } N <- nrow(y) P <- ncol(y) Q <- ncol(x) if(NCOL(initial_A) != r) stop("Mismatched dimension. The column number of initial_A is not the same as r.") if(NCOL(initial_B) != r) stop("Mismatched dimension. The column number of initial_B is not the same as r.") if(NROW(initial_A) != P) stop("Mismatched dimension. The row number of initial_A is not the same as P.") if(NROW(initial_mu) != P) stop("Mismatched dimension. The row number (length) of initial_mu is not the same as P.") if(NROW(initial_B) != Q) stop("Mismatched dimension. The row number of initial_B is not the same as Q.") if(!is.null(z)){ z <- as.matrix(z) R <- ncol(z) if(NCOL(initial_D) != R) stop("Mismatched dimension. The column number of initial_D is not the same as the column number of variable z.") if(NROW(initial_D) != P) stop("Mismatched dimension. The row number of initial_D is not the same as P.") if(mu){ if(SAAmethod != "MM"){ z <- cbind(z, 1) initial_D <- cbind(initial_D, initial_mu) } } znull <- FALSE } else { R <- 0 znull <- TRUE if (mu){ if(SAAmethod != "MM") z <- matrix(rep(1, N)) initial_D <- initial_mu } } muorz <- mu || !znull if(nrow(y) != nrow(x)){ if(!is.null(z) && nrow(y) != ncol(z)) stop("The numbers of realizations are not consistant in the inputs.") } yy <- y xx <- x if(SAAmethod != "MM"|| (SAAmethod=="MM" && !znull)) zz <- z if(method=="SMM" || SAAmethod=="MM"){ A <- list() B <- list() Pi <- list() D <- list() MM_mu <- list() Sigma <- list() A[[1]] <- initial_A B[[1]] <- initial_B Pi[[1]] <- A[[1]] %*% t(B[[1]]) if(muorz) D[[1]] <- initial_D if(SAAmethod == "MM") MM_mu[[1]] <- initial_mu Sigma[[1]] <- initial_Sigma ybar <- list() xbar <- list() zbar <- list() Mbar <- list() } else if(method=="SAA"){ if(SAAmethod == "optim"){ make_symm <- function(m) { m[upper.tri(m)] <- t(m)[upper.tri(m)] return(m) } para <- list() if(muorz){ para[[1]] <- c(initial_A, initial_B, initial_D, initial_Sigma[lower.tri(initial_Sigma, diag = TRUE)]) } else { para[[1]] <- c(initial_A, initial_B, initial_Sigma[lower.tri(initial_Sigma, diag = TRUE)]) } } } xk <- list() wk <- list() itr <- (N-initial_size)/addon +1 obj <- numeric(itr+1) runtime <- vector("list",itr+1) if(ProgressBar) pb <- lazybar::lazyProgressBar(itr, method = "drift") runtime[[1]] <- Sys.time() for (k in seq_len(itr)) { if(k==1){ y <- t(yy[seq(1, k*initial_size), ]) x <- t(xx[seq(1, k*initial_size), ]) if(muorz && (SAAmethod != "MM" || (SAAmethod=="MM" && !znull))) z <- t(zz[seq(1, k*initial_size), ]) } else { if(floor(itr) < itr && k==floor(itr)){ y <- t(yy) x <- t(xx) if(muorz && (SAAmethod != "MM" || (SAAmethod=="MM" && !znull))) z <- t(zz) } else { y <- t(yy[seq(1, initial_size+(k-1)*addon),]) x <- t(xx[seq(1, initial_size+(k-1)*addon),]) if(muorz && (SAAmethod != "MM" || (SAAmethod=="MM" && !znull))) z <- t(zz[seq(1, initial_size+(k-1)*addon),]) } } N <- ncol(y) if(method == "SMM"){ if(muorz){ temp <- t(y - Pi[[k]] %*% x - D[[k]] %*% z) %>% split(seq_len(nrow(.))) } else { temp <- t(y - Pi[[k]] %*% x) %>% split(seq_len(nrow(.))) } xk[[k]] <- sapply(temp, function(tem) t(tem) %*% solve(Sigma[[k]]) %*% tem) wk[[k]] <- 1/(1 + xk[[k]]) dwk <- diag(sqrt(wk[[k]])) ybar[[k]] <- y %*% dwk xbar[[k]] <- x %*% dwk if(muorz){ zbar[[k]] <- z %*% dwk Mbar[[k]] <- diag(1, N) - t(zbar[[k]]) %*% solve(zbar[[k]] %*% t(zbar[[k]])) %*% zbar[[k]] R_0 <- ybar[[k]] %*% Mbar[[k]] R_1 <- xbar[[k]] %*% Mbar[[k]] } else { R_0 <- ybar[[k]] R_1 <- xbar[[k]] } S_01 <- 1/N * R_0 %*% t(R_1) S_10 <- 1/N * R_1 %*% t(R_0) S_00 <- 1/N * R_0 %*% t(R_0) S_11 <- 1/N * R_1 %*% t(R_1) SSSSS <- solve(expm::sqrtm(S_11)) %*% S_10 %*% solve(S_00) %*% S_01 %*% solve(expm::sqrtm(S_11)) V <- eigen(SSSSS)$vectors[, seq_len(r)] B[[k + 1]] <- solve(expm::sqrtm(S_11)) %*% V A[[k + 1]] <- S_01 %*% B[[k + 1]] Pi[[k + 1]] <- A[[k + 1]] %*% t(B[[k + 1]]) if(muorz){ D[[k + 1]] <- (ybar[[k]] - A[[k + 1]] %*% t(B[[k + 1]]) %*% xbar[[k]]) %*% t(zbar[[k]]) %*% solve(zbar[[k]] %*% t(zbar[[k]])) Sigma[[k + 1]] <- (P + 1)/(N - 2) * (ybar[[k]] - A[[k + 1]] %*% t(B[[k + 1]]) %*% xbar[[k]] - D[[k + 1]] %*% zbar[[k]]) %*% t(ybar[[k]] - A[[k + 1]] %*% t(B[[k + 1]]) %*% xbar[[k]] - D[[k + 1]] %*% zbar[[k]]) } else { Sigma[[k + 1]] <- (P + 1)/(N - 2) * (ybar[[k]] - A[[k + 1]] %*% t(B[[k + 1]]) %*% xbar[[k]]) %*% t(ybar[[k]] - A[[k + 1]] %*% t(B[[k + 1]]) %*% xbar[[k]]) } obj[[k]] <- 1/2 * log(det(Sigma[[k]])) +(1+P)/(2*(N)) * sum(log(1+xk[[k]])) } else if(method=="SAA"){ if(SAAmethod == "optim"){ if(muorz){ ne_log_likihood_loss <- function(para){ A <- matrix(para[1:(P*r)], nrow = P) B <- matrix(para[(P*r+1):(2*P*r)], nrow = P) D <- matrix(para[(2*P*r+1):(P*r*2+length(initial_D))], nrow = P) Sigma <- matrix(nrow = P, ncol = P) Sigma[lower.tri(Sigma,diag=TRUE)] <- para[(P*r*2+length(initial_D)+1):(length(para))] Sigma <- make_symm(Sigma) if(!matrixcalc::is.positive.definite(Sigma)) return(Inf) Pi <- A %*% t(B) temp <- t(y - Pi %*% x - D %*% z) %>% split(seq_len(nrow(.))) xk <- sapply(temp, function(tem) t(tem) %*% solve(Sigma) %*% tem) return(1/2 * log(det(Sigma)) +(1+P)/(2*(N-2)) * sum(log(1+xk))) } } else { ne_log_likihood_loss <- function(para){ A <- matrix(para[1:(P*r)], nrow = P) B <- matrix(para[(P*r+1):(2*P*r)], nrow = P) Sigma <- matrix(nrow = P, ncol = P) Sigma[lower.tri(Sigma,diag=TRUE)] <- para[(2*P*r+1):(length(para))] Sigma <- make_symm(Sigma) if(!matrixcalc::is.positive.definite(Sigma)) return(Inf) Pi <- A %*% t(B) temp <- t(y - Pi %*% x ) %>% split(seq_len(nrow(.))) xk <- sapply(temp, function(tem) t(tem) %*% solve(Sigma) %*% tem) return(1/2 * log(det(Sigma)) +(1+P)/(2*(N)) * sum(log(1+xk))) } } sub_res <- stats::optim(para[[k]], ne_log_likihood_loss, ...) para[[k+1]] <- sub_res$par obj[[k+1]] <- sub_res$value } else if(SAAmethod == "MM"){ if(!znull){ sub_res <- RRRR(y=t(y), x=t(x), z = t(z), mu = mu, r=r, initial_A = A[[k]], initial_B = B[[k]], initial_D = D[[k]], initial_mu = MM_mu[[k]], initial_Sigma = Sigma[[k]], itr = RRRR_argument$itr, earlystop = RRRR_argument$earlystop) D[[k+1]] <- sub_res$D } else { sub_res <- RRRR(y=t(y), x=t(x), mu = mu, r=r, initial_A = A[[k]], initial_B = B[[k]], initial_D = NULL, initial_mu = MM_mu[[k]], initial_Sigma = Sigma[[k]], itr = RRRR_argument$itr, earlystop = RRRR_argument$earlystop) } MM_mu[[k+1]] <- sub_res$mu A[[k+1]] <- sub_res$A B[[k+1]] <- sub_res$B Sigma[[k+1]] <- sub_res$Sigma obj[[k+1]] <- sub_res$obj } if(k==1){ if(SAAmethod != "MM"){ initial_Pi <- initial_A %*% t(initial_B) if(muorz){ temp <- t(y - initial_Pi %*% x - initial_D %*% z) %>% split(seq_len(nrow(.))) } else { temp <- t(y - initial_Pi %*% x ) %>% split(seq_len(nrow(.))) } xk <- sapply(temp, function(tem) t(tem) %*% solve(initial_Sigma) %*% tem) obj[[1]] <- 1/2 * log(det(initial_Sigma)) +(1+P)/(2*(N)) * sum(log(1+xk)) } else { initial_Pi <- initial_A %*% t(initial_B) if(mu && znull){ temp <- t(y - initial_Pi %*% x - initial_mu %*% matrix(rep(1, ncol(x)), nrow = 1)) %>% split(seq_len(nrow(.))) } else if(!mu && !znull){ temp <- t(y - initial_Pi %*% x - initial_D %*% z) %>% split(seq_len(nrow(.))) } else { temp <- t(y - initial_Pi %*% x ) %>% split(seq_len(nrow(.))) } xk <- sapply(temp, function(tem) t(tem) %*% solve(initial_Sigma) %*% tem) obj[[1]] <- 1/2 * log(det(initial_Sigma)) +(1+P)/(2*(N)) * sum(log(1+xk)) } } } if(ProgressBar) pb$tick()$print() runtime[[k+1]] <- Sys.time() } if(method == "SMM"){ if(muorz){ temp <- t(y - Pi[[k+1]] %*% x - D[[k+1]] %*% z) %>% split(seq_len(nrow(.))) } else { temp <- t(y - Pi[[k+1]] %*% x) %>% split(seq_len(nrow(.))) } xkk <- sapply(temp, function(tem) t(tem) %*% solve(Sigma[[k+1]]) %*% tem) obj[[k+1]] <- 1/2 * log(det(Sigma[[k+1]])) +(1+P)/(2*(N)) * sum(log(1+xkk)) } else if(method == "SAA"){ if(SAAmethod == "optim"){ A <- lapply(para, function(para) matrix(para[1:(P*r)], nrow = P)) B <- lapply(para, function(para) matrix(para[(P*r+1):(2*P*r)], nrow = P)) if(muorz){ D <- lapply(para, function(para) matrix(para[(2*P*r+1):(P*r*2+length(initial_D))], nrow = P)) Sigma <- lapply(para, function(para){ Sigma <- matrix(nrow = P, ncol = P) Sigma[lower.tri(Sigma,diag=TRUE)] <- para[(P*r*2+length(initial_D)+1):(length(para))] Sigma <- make_symm(Sigma) return(Sigma) }) } else { Sigma <- lapply(para, function(para){ Sigma <- matrix(nrow = P, ncol = P) Sigma[lower.tri(Sigma,diag=TRUE)] <- para[(2*P*r+1):(length(para))] Sigma <- make_symm(Sigma) return(Sigma) }) } } } if(SAAmethod != "MM"){ if(mu){ mu <- lapply(D[sapply(D, function(x) !is.null(x))], function(x) x[,ncol(x)]) if(!znull) D <- lapply(D[sapply(D, function(x) !is.null(x))], function(x) x[,seq_len(ncol(x)-1)]) } else { mu <- NULL } } else { if(mu){ mu <- MM_mu } else { mu <- NULL } } if(znull){ D <- NULL } history <- list(mu = mu, A = A, B = B, D = D, Sigma = Sigma, obj = obj, runtime = c(0,diff(do.call(base::c,runtime)))) output <- list(method = method, SAAmethod = SAAmethod, spec = list(N = N, P = P, R = R, r = r, initial_size = initial_size, addon = addon), history = history, mu = mu[[length(mu)]], A = A[[length(A)]], B = B[[length(B)]], D = D[[length(D)]], Sigma = Sigma[[length(Sigma)]], obj = obj[[length(obj)]], data = returned_data) return(new_ORRRR(output)) }
Best.Index <- function (tree = tree, distribution = distribution, jtip = jtip, replicates=replicates, success=c(success) ) { rank <- Rank.Indices(Calculate.Index(tree = tree,distribution = distribution)) aciertos <- NULL aciertos$I <- aciertos$Ie <- aciertos$Is <- aciertos$Ise <- aciertos$W <- aciertos$We <- aciertos$Ws <- aciertos$Wse <-0 for (i in 1:replicates){ jack <- Rank.Indices(Calculate.Index(tree = tree, distribution = distribution, jtip)) if(all(rank$I[success] == jack$I[success])){ ok = 1}else{ ok=0 } aciertos$I <- aciertos$I+ok if(all(rank$Ie[success] == jack$Ie[success])){ ok = 1}else{ ok=0 } aciertos$Ie <- aciertos$Ie+ok if(all(rank$Is[success] == jack$Is[success])){ ok = 1}else{ ok=0 } aciertos$Is <- aciertos$Is+ok if(all(rank$Ise[success] == jack$Ise[success])){ ok = 1}else{ ok=0 } aciertos$Ise <- aciertos$Ise+ok if(all(rank$W[success] == jack$W[success])){ ok = 1}else{ ok=0 } aciertos$W <- aciertos$I+ok if(all(rank$We[success] == jack$We[success])){ ok = 1}else{ ok=0 } aciertos$We <- aciertos$We+ok if(all(rank$Ws[success] == jack$Ws[success])){ ok = 1}else{ ok=0 } aciertos$Ws <- aciertos$Ws+ok if(all(rank$Wse[success] == jack$Wse[success])){ ok = 1}else{ ok=0 } aciertos$Wse <- aciertos$Wse+ok } aciertos <- as.data.frame(aciertos) aciertos <- aciertos/replicates*100 return(aciertos) }
rd <- lsa[which(lsa[,"domain"] == "reading"),] rd15 <- rd[rd$year == 2015, ] rd15_1 <- rd15[rd15$nest == 1, ] suppressMessages(txt <- capture.output ( m_withoutCross <- repMean(datL = rd15, ID="idstud", type = "JK2", PSU = "jkzone", repInd = "jkrep", imp="imp", nest="nest", groups = c("sex"), group.splits = 0:1, cross.differences = FALSE, dependent = "score", na.rm=FALSE, doCheck=TRUE, linkErr = "leScore", crossDiffSE="old", engine = "BIFIEsurvey"))) suppressMessages(txt2 <- capture.output ( m_oldCross <- repMean(datL = rd15, ID="idstud", type = "JK2", PSU = "jkzone", repInd = "jkrep", imp="imp", nest="nest", groups = c("sex"), group.splits = 0:1, cross.differences = TRUE, dependent = "score", na.rm=FALSE, doCheck=TRUE, linkErr = "leScore", crossDiffSE="old", engine = "BIFIEsurvey"))) test_that("No cross differences", { expect_equal(m_withoutCross[["SE_correction"]], NULL) expect_false("SE_correction" %in% names(m_withoutCross)) }) test_that("Old cross differences", { expect_equal(class(m_oldCross[["SE_correction"]]), c("old", "list")) expect_equal(m_oldCross[["SE_correction"]][[1]], NULL) }) rd15$sex_logic <- as.logical(as.numeric(rd15$sex) - 1) test_that("error for two logical grouping variables", { expect_error(capture.output(repMean(datL = rd15, ID="idstud", type = "JK2", PSU = "jkzone", repInd = "jkrep", imp="imp", nest="nest", groups = c("sex_logic", "mig"), group.splits = 0:1, cross.differences = FALSE, dependent = "score", na.rm=FALSE, doCheck=TRUE, linkErr = "leScore", crossDiffSE="old")), "Factor levels of grouping variables are not disjunct.") }) test_that("error for string with multiple categories to jk2.mean", { rd15_2 <- rd15_1 rd15_2$country <- as.character(rd15_2$country) expect_error(test <- repMean(datL = rd15_2, wgt = "wgt", imp = "imp", dependent = "country", ID = "idstud"), "Dependent variable 'country' has to be of class 'integer' or 'numeric'.") }) test_that("PISA runs through", { expect_silent(suppressWarnings(suppressMessages(txt2 <- capture.output(m_oldCross <- repMean(datL = rd15, ID="idstud", type = "JK2", PSU = "jkzone", repInd = "jkrep", imp="imp", nest="nest", groups = c("sex"), group.splits = 0:1, cross.differences = TRUE, dependent = "score", na.rm=FALSE, doCheck=TRUE, linkErr = "leScore", crossDiffSE="rep"))))) })
checkIndex <- function( findex=NULL, mindex=NULL, gindex=NULL, excludefp=TRUE, fast=FALSE, warn=!quiet, logfile=localtestdir(".", "misc/ExampleTests/warnings.txt"), quiet=rdwdquiet() ) { alldupli <- function(x) duplicated(x) | duplicated(x, fromLast=TRUE) out <- paste0("\ncheckIndex results at ", as.character(Sys.time()), " for\n", dwdbase) itime <- file.mtime("data/fileIndex.rda") if(!is.na(itime)) out <- paste0(out, "\nFile 'data/fileIndex.rda' was last modified ", itime) out <- paste0(out, berryFunctions::traceCall(skip=1), "-------") if(!is.null(findex)){ if(!quiet) message("Checking fileIndex...") duplifile <- findex[!grepl("minute",findex$res),] duplifile <- duplifile[alldupli(duplifile[,1:4]),] duplifile <- duplifile[!is.na(duplifile$id),] duplifile <- duplifile[duplifile$res!="subdaily" & duplifile$var!="standard_format",] if(nrow(duplifile)>0) { rvp <- paste(duplifile$res,duplifile$var,duplifile$per, sep="/") per_folder <- lapply(unique(rvp), function(p) {i <- unique(duplifile$id[rvp==p]) paste0("- ", berryFunctions::round0(length(i), pre=2, flag=" "), " at ", p, "; ", berryFunctions::truncMessage(i, ntrunc=10, prefix="")) }) per_folder <- paste(unlist(per_folder), collapse="\n") out <- c(out, "IDs with duplicate files:", per_folder) } duplifile <- findex[findex$ismeta & grepl("txt$", findex$path) & findex$res != "multi_annual",] duplifile$rvp <- paste(duplifile$res, duplifile$var, duplifile$per, sep="/") duplifile <- duplifile$path[alldupli(duplifile$rvp)] if(length(duplifile)>0) out <- c(out, "Duplicate 'Beschreibung' files:", paste("-",duplifile)) } if(!is.null(mindex)){ if(!quiet) message("Checking metaIndex...") newout <- function(out,ids,colcomp,column,textvar,unit="") { new <- sapply(ids, function(i) {tt <- sort(table(mindex[colcomp==i,column]), decreasing=TRUE) unname(paste0("- ", textvar,"=",i, ": ", paste0(tt,"x",names(tt),unit, collapse=", "))) }) c(out, new) } id_uni <- unique(mindex$Stations_id) eletol <- 2.1 id_ele <- pbapply::pbsapply(id_uni, function(i) any(abs(diff(mindex[mindex$Stations_id==i,"Stationshoehe"]))>eletol)) if(any(id_ele)) { out <- c(out,paste0("Elevation differences >",eletol,"m:")) out <- newout(out, id_uni[id_ele], mindex$Stations_id, "Stationshoehe", "ID", "m") } if(!fast){ loctol <- 0.040 id_loc <- pbapply::pbsapply(id_uni, function(i) maxlldist("geoBreite","geoLaenge", mindex[mindex$Stations_id==i,], each=FALSE)>loctol) mindex$coord <- paste(mindex$geoBreite, mindex$geoLaenge, sep="_") if(any(id_loc)) { out <- c(out, paste0("Location differences >",loctol*1000,"m:")) out <- newout(out, id_uni[id_loc], mindex$Stations_id, "coord", "ID") } } id_name <- pbapply::pbsapply(id_uni, function(i) length(unique(mindex[mindex$Stations_id==i,"Stationsname"]))>1) if(any(id_name)) { out <- c(out, "Different names per id:") out <- newout(out, id_uni[id_name], mindex$Stations_id, "Stationsname", "ID") } name_uni <- unique(mindex$Stationsname) name_id <- pbapply::pbsapply(name_uni, function(n) length(unique(mindex[mindex$Stationsname==n,"Stations_id"]))>1) if(excludefp) name_id[name_uni=="Suderburg"] <- FALSE if(any(name_id)) { out <- c(out, "More than one id per name:") out <- newout(out, name_uni[name_id], mindex$Stationsname,"Stations_id", "Name") } } if(!is.null(findex) & !is.null(mindex) & FALSE){ if(!quiet) message("Comparing fileIndex and metaIndex date ranges...") findex$start <- as.Date(findex$start, "%Y%m%d") findex$end <- as.Date(findex$end, "%Y%m%d") mindex$von_datum <- as.Date(as.character(mindex$von_datum), "%Y%m%d") mindex$bis_datum <- as.Date(as.character(mindex$bis_datum), "%Y%m%d") m2 <- mindex[mindex$res=="annual" & mindex$var=="more_precip" & mindex$per=="historical" & mindex$hasfile,] f2 <- findex[findex$res=="annual" & findex$var=="more_precip" & findex$per=="historical" & !is.na(findex$id),] mf <- merge(m2[,c("Stations_id", "von_datum", "bis_datum")], f2[,c("id", "start", "end")], by.x="Stations_id", by.y="id") rm(m2, f2) mf$diff_von <- round(as.integer(mf$start - mf$von_datum)/365,2) mf$diff_bis <- round(as.integer(mf$end - mf$bis_datum)/365,2) colnames(mf) <- gsub("_datum", "_meta", colnames(mf)) colnames(mf) <- gsub("start", "von_file", colnames(mf)) colnames(mf) <- gsub("end", "bis_file", colnames(mf)) mf[mf$diff_von > 5,] mf[mf$diff_bis < -30,] } if(!is.null(gindex)){ if(!quiet) message("Checking geoIndex...") columns <- !colnames(gindex) %in% c("display","col") fpid <- c(14306,921, 13967,13918, 14317,3024, 2158,7434, 785,787, 15526, 5248,5249, 396,397) gindex_id <- gindex if(excludefp) gindex_id <- gindex[!gindex$id %in% fpid,] coord <- paste(gindex_id$lon, gindex_id$lat, sep="_") if(anyDuplicated(coord)) { out <- c(out, "Coordinates used for more than one station:") new <- sapply(coord[duplicated(coord)], function(c){ g <- gindex_id[coord==c, ] t <- toString(paste0(g$nfiles+g$nonpublic, "x ID=", g$id, " (", g$name, ")")) paste0("- ", c, ": ", t) }) out <- c(out, new) } } logfileprint <- if(!is.null(logfile)) paste0(" openFile('", normalizePath(logfile,winslash="/", mustWork=FALSE),"')") else "" if(length(out)>2 & warn) warning("There are issues in the indexes.", logfileprint) out <- c(out, "\n") out <- paste(out, collapse="\n") if(!is.null(logfile)) cat(out, file=logfile, append=TRUE) return(invisible(out)) }
na.omit.data.frame.mvmeta <- function (object, ...) { n <- length(object) omit <- FALSE omit2 <- TRUE vars <- seq_len(n) if(!is.null(y <- model.response(object))) vars <- vars[-1] for(j in vars) { x <- object[[j]] if (!is.atomic(x)) next x <- is.na(x) d <- dim(x) if (is.null(d)||length(d)!=2L) omit <- omit | x else for(ii in 1L:d[2L]) omit <- omit|x[,ii] } if(!is.null(y)) { y <- is.na(y) d <- dim(y) if (is.null(d)||length(d)!=2L) omit2 <- omit2 & y else for(ii in 1L:d[2L]) omit2 <- omit2&y[,ii] } omit <- omit|omit2 xx <- object[!omit,,drop=FALSE] if (any(omit>0L)) { temp <- seq(omit)[omit] names(temp) <- attr(object,"row.names")[omit] attr(temp,"class") <- "omit" attr(xx,"na.action") <- temp } xx }
owid_map <- function(data = data.frame(), col = 4, palette = "Reds", mode = "plot", year = NULL) { .year <- year if (colnames(data)[3] == "date") { colnames(data)[3] <- "year" } if (is.null(year)) { data <- data %>% filter(year == max(year)) } else { if (!is.numeric(year)) { stop("year must be numeric") } else if (!year %in% unique(data$year)) { stop(paste("There is no data for", year)) } else { data <- data %>% filter(year == .year) } } if (is.numeric(col)) { value <- colnames(data)[col] colnames(data)[col] <- "value" } else { value <- col colnames(data)[colnames(data) == value] <- "value" } title <- attributes(data)$data_info[[1]]$display$name world <- world_map_data() map_data <- world %>% left_join(data, by = c("owid_name" = "entity")) if (mode == "plot") { map_data %>% ggplot2::ggplot(ggplot2::aes(fill = value, id = .data$owid_name)) + ggplot2::geom_sf(size = 0.05, colour = "black") + ggplot2::scale_fill_distiller(palette = palette, direction = 1, na.value = "grey80") + ggplot2::labs(title = title) + theme_owid() + ggplot2::theme(axis.line.x = ggplot2::element_blank(), axis.ticks = ggplot2::element_blank(), panel.grid = ggplot2::element_blank(), panel.grid.major = ggplot2::element_blank(), axis.text = ggplot2::element_blank(), legend.position = "bottom", legend.title = ggplot2::element_blank(), legend.key.width = ggplot2::unit(2, units = "cm"), legend.key.height = ggplot2::unit(0.3, units = "cm"), plot.title = element_text(vjust = 1)) } else if (mode == "view") { pal <- leaflet::colorNumeric( palette = palette, domain = map_data$value ) pal_leg <- leaflet::colorNumeric( palette = palette, domain = map_data$value, na.color = NA ) labels <- sprintf( "<strong>%s</strong><br/>%g", map_data$owid_name, map_data$value ) %>% lapply(htmltools::HTML) map_data %>% leaflet::leaflet() %>% leaflet:: addPolygons( fillColor = ~pal(value), weight = 0.2, opacity = 1, color = "black", dashArray = "1", fillOpacity = 0.7, highlight = leaflet::highlightOptions( weight = 2, color = " dashArray = "", fillOpacity = 0.7, bringToFront = TRUE ), label = labels, labelOptions = leaflet::labelOptions( style = list("font-weight" = "normal", padding = "3px 8px"), textsize = "15px", direction = "auto" ) ) %>% leaflet::addLegend(pal = pal_leg, values = ~value, opacity = 0.7, title = NULL, position = "bottomleft", labFormat = leaflet::labelFormat()) %>% leaflet::addControl(paste0("<b>", title, "<b/>"), position = "topright") %>% leaflet::addTiles("", attribution = "<a href = 'https://ourworldindata.org/' title = 'Research and data to make progress against the world\u2019s largest problems'>Our World In Data | <a/><a href = 'https://www.naturalearthdata.com/' title = 'Made with Natural Earth. Free vector and raster map data'>Natural Earth Data<a/>") } } world_map_data <- function() { world <- readRDS(system.file("extdata", "world_map_sf.rds", package = "owidR")) return(world) }
test_that('parse_phase1_outcomes "" correctly', { x <- parse_phase1_outcomes('', as_list = FALSE) expect_true(is.data.frame(x)) expect_equal(nrow(x), 0) }) test_that('parse_phase1_outcomes parses "" correctly to list', { x <- parse_phase1_outcomes('', as_list = TRUE) expect_true(is.list(x)) expect_equal(x$num_patients, 0) expect_equal(x$dose, integer(length = 0)) expect_equal(x$tox, integer(length = 0)) }) test_that('parse_phase1_outcomes parses "1NNN 3NTT" correctly', { x <- parse_phase1_outcomes('1NNN 3NTT', as_list = FALSE) expect_true(is.data.frame(x)) expect_equal(nrow(x), 6) expect_equal(x$dose, c(1, 1, 1, 3, 3, 3)) expect_equal(x$tox, c(0, 0, 0, 0, 1, 1)) }) test_that('parse_phase1_outcomes parses "1NNN 3NTT" correctly to list', { x <- parse_phase1_outcomes('1NNN 3NTT', as_list = TRUE) expect_true(is.list(x)) expect_equal(x$num_patients, 6) expect_equal(x$dose, c(1, 1, 1, 3, 3, 3)) expect_equal(x$tox, c(0, 0, 0, 0, 1, 1)) }) test_that('parse_phase1_outcomes parses "1N2T2N2N2N" correctly', { x <- parse_phase1_outcomes('1N2T2N2N2N', as_list = FALSE) expect_true(is.data.frame(x)) expect_equal(nrow(x), 5) expect_equal(x$dose, c(1, 2, 2, 2, 2)) expect_equal(x$tox, c(0, 1, 0, 0, 0)) }) test_that('parse_phase1_outcomes parses "1N2T2N2N2N" correctly to list', { x <- parse_phase1_outcomes('1N2T2N2N2N', as_list = TRUE) expect_true(is.list(x)) expect_equal(x$num_patients, 5) expect_equal(x$dose, c(1, 2, 2, 2, 2)) expect_equal(x$tox, c(0, 1, 0, 0, 0)) }) test_that('parse_phase1_outcomes parses "5T" correctly', { x <- parse_phase1_outcomes('5T', as_list = FALSE) expect_true(is.data.frame(x)) expect_equal(nrow(x), 1) expect_equal(x$dose, c(5)) expect_equal(x$tox, c(1)) }) test_that('parse_phase1_outcomes parses "5T" correctly to list', { x <- parse_phase1_outcomes('5T', as_list = TRUE) expect_true(is.list(x)) expect_equal(x$num_patients, 1) expect_equal(x$dose, c(5)) expect_equal(x$tox, c(1)) }) test_that('parse_phase1_outcomes parses "1NTT 2T 2NTNNTN 3N" correctly', { x <- parse_phase1_outcomes('1NTT 2T 2NTNNTN 3N', as_list = FALSE) expect_true(is.data.frame(x)) expect_equal(nrow(x), 11) expect_equal(x$dose, c(1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3)) expect_equal(x$tox, c(0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0)) }) test_that('parse_phase1_outcomes parses "1NTT 2T 2NTNNTN 3N" correctly to list', { x <- parse_phase1_outcomes('1NTT 2T 2NTNNTN 3N', as_list = TRUE) expect_true(is.list(x)) expect_equal(x$num_patients, 11) expect_equal(x$dose, c(1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3)) expect_equal(x$tox, c(0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0)) }) test_that('parse_phase1_outcomes parses "96NTT 40T 1NTNNTN 174N" correctly', { x <- parse_phase1_outcomes('96NTT 40T 1NTNNTN 174N', as_list = FALSE) expect_true(is.data.frame(x)) expect_equal(nrow(x), 11) expect_equal(x$dose, c(96, 96, 96, 40, 1, 1, 1, 1, 1, 1, 174)) expect_equal(x$tox, c(0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0)) }) test_that('parse_phase1_outcomes parses "96NTT 40T 1NTNNTN 174N" correctly to list', { x <- parse_phase1_outcomes('96NTT 40T 1NTNNTN 174N', as_list = TRUE) expect_true(is.list(x)) expect_equal(x$num_patients, 11) expect_equal(x$dose, c(96, 96, 96, 40, 1, 1, 1, 1, 1, 1, 174)) expect_equal(x$tox, c(0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0)) }) test_that('parse_phase1_outcomes parses " 1NTT 2T 2NTNNTN 2N" correctly', { x <- parse_phase1_outcomes(' 1NTT 2T 2NTNNTN 2N', as_list = FALSE) expect_true(is.data.frame(x)) expect_equal(nrow(x), 11) expect_equal(x$dose, c(1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2)) expect_equal(x$tox, c(0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0)) }) test_that('parse_phase1_outcomes parses " 1NTT 2T 2NTNNTN 2N" correctly to list', { x <- parse_phase1_outcomes(' 1NTT 2T 2NTNNTN 2N', as_list = TRUE) expect_true(is.list(x)) expect_equal(x$num_patients, 11) expect_equal(x$dose, c(1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2)) expect_equal(x$tox, c(0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0)) }) test_that('parse_phase1_outcomes parses "12NTT Nigel Farage" with error', { expect_error(parse_phase1_outcomes('12NTT Nigel Farage', as_list = FALSE)) }) test_that('parse_phase1_outcomes parses "12NTT Nigel Farage" to list with error', { expect_error(parse_phase1_outcomes('12NTT Nigel Farage', as_list = TRUE)) }) test_that('parse_phase1_outcomes parses " 1NTT 2.0T 2NTNNTN 2N" with error', { expect_error(parse_phase1_outcomes(' 1NTT 2.0T 2NTNNTN 2N', as_list = FALSE)) }) test_that('parse_phase1_outcomes parses " 1NTT 2.0T 2NTNNTN 2N" to list with error', { expect_error(parse_phase1_outcomes(' 1NTT 2.0T 2NTNNTN 2N', as_list = TRUE)) }) test_that('parse_phase1_outcomes parses ".1NTT 2T 2NTNNTN 2N" with error', { expect_error(parse_phase1_outcomes('.1NTT 2T 2NTNNTN 2N', as_list = FALSE)) }) test_that('parse_phase1_outcomes parses ".1NTT 2T 2NTNNTN 2N" to list with error', { expect_error(parse_phase1_outcomes('.1NTT 2T 2NTNNTN 2N', as_list = TRUE)) }) test_that('parse_phase1_outcomes parses "12NTT 2T 2NTNNTN -1N" with error', { expect_error(parse_phase1_outcomes('12NTT 2T 2NTNNTN -1N', as_list = FALSE)) }) test_that('parse_phase1_outcomes parses "12ETT 2T 2NTNNTN -1N" to list with error', { expect_error(parse_phase1_outcomes('12ETT 2T 2NTNNTN -1N', as_list = TRUE)) }) test_that('parse_phase1_outcomes parses "-12NTT 2T 2NTNNTN 1N" with error', { expect_error(parse_phase1_outcomes('-12NTT 2T 2NTNNTN 1N', as_list = FALSE)) }) test_that('parse_phase1_outcomes parses "-12NTT 2T 2NTNNTN 1N" to list with error', { expect_error(parse_phase1_outcomes('-12NTT 2T 2NTNNTN 1N', as_list = TRUE)) }) test_that('parse_phase1_outcomes parses "12NTT 2T -2NTNNTN 1N" with error', { expect_error(parse_phase1_outcomes('12NTT 2T -2NTNNTN 1N', as_list = FALSE)) }) test_that('parse_phase1_outcomes parses "12NTT 2T -2NTNNTN 1N" to list with error', { expect_error(parse_phase1_outcomes('12NTT 2T -2NTNNTN 1N', as_list = TRUE)) }) test_that('parse_phase1_outcomes parses "1T 0NN" with error', { expect_error(parse_phase1_outcomes('1T 0NN', as_list = FALSE)) }) test_that('parse_phase1_outcomes parses "1T 0NN" to list with error', { expect_error(parse_phase1_outcomes('1T 0NN', as_list = TRUE)) }) test_that('parse_phase1_outcomes parses "0NNTTNNTT" with error', { expect_error(parse_phase1_outcomes('0NNTTNNTT', as_list = FALSE)) }) test_that('parse_phase1_outcomes parses "0NNTTNNTT" to list with error', { expect_error(parse_phase1_outcomes('0NNTTNNTT', as_list = TRUE)) }) test_that('parse_phase1_outcomes parses " " with error', { expect_error(parse_phase1_outcomes(' ', as_list = FALSE)) }) test_that('parse_phase1_outcomes parses " " to list with error', { expect_error(parse_phase1_outcomes(' ', as_list = TRUE)) }) test_that('parse_phase1_outcomes parses "1NT TNT" with error', { expect_error(parse_phase1_outcomes('1NT TNT', as_list = FALSE)) }) test_that('parse_phase1_outcomes parses "1NT TNT" to list with error', { expect_error(parse_phase1_outcomes('1NT TNT', as_list = TRUE)) }) test_that('parse_phase1_outcomes parses "1NT T3NT" with error', { expect_error(parse_phase1_outcomes('1NT T3NT', as_list = FALSE)) }) test_that('parse_phase1_outcomes parses "1NT T3NT" to list with error', { expect_error(parse_phase1_outcomes('1NT T3NT', as_list = TRUE)) }) test_that('parse_phase1_outcomes parses "1NT 3TNT 4" with error', { expect_error(parse_phase1_outcomes('1NT 3TNT 4', as_list = FALSE)) }) test_that('parse_phase1_outcomes parses "1NT 3TNT 4" to list with error', { expect_error(parse_phase1_outcomes('1NT 3TNT 4', as_list = TRUE)) })
mix <- function(formula, data, weights, cWeights=FALSE, center_group=NULL, center_grand=NULL, max_iteration=10, nQuad=13L, run=TRUE, verbose=FALSE, acc0=120, keepAdapting=FALSE, start=NULL, fast=FALSE, family=NULL) { call <- match.call() if(!inherits(formula, "formula")) stop(paste0("The argument ", sQuote("formula"), " must be a formula.")) if(!inherits(data, "data.frame")) stop(paste0("The argument ", sQuote("data"), " must be a data.frame.")) if(length(class(data)) > 1) { data <- as.data.frame(data) } if(nQuad <= 0) stop(paste0("The argument ", sQuote("nQuad"), " must be a positive integer.")) if(!inherits(run, "logical")) stop(paste0("The argument ", sQuote("run"), " must be a logical.")) if(!inherits(verbose, "logical")) stop(paste0("The argument ", sQuote("verbose"), " must be a logical.")) if(!inherits(weights, "character")) stop(paste0("The argument ", sQuote("weights"), " must be a character vector of weight column names in ", sQuote("data"), ".")) if(any(!weights %in% colnames(data))) stop(paste0("The argument ", sQuote("weights"), " must specify valid columns in ", sQuote("data"), ".")) if(acc0 <= 0) stop(paste0("The argument ", sQuote("acc0"), " must be a positive integer.")) if(!missing(fast)) warning(paste0("The ", sQuote("fast"), " argument is deprecated.")) if(any(grepl("[|].*[.]",attributes(terms(formula))$term.labels))) stop("The formula is not valid for mix. The name of conditioning variables must not contain a dot. Try renaming variables after | in the fomrula so they do not contain a dot.") if(any(is.na(data[ , c(all.vars(formula), weights)]))) { cl <- call("model.frame", formula=formula(paste0("~", paste0(unique(c(all.vars(formula), weights)),collapse=" + "))), data=data) dt <- eval(cl, parent.frame(1L)) warning(paste0("There were ", sum(nrow(data) - nrow(dt)), " rows with missing data. These have been removed.")) data <- dt rm(dt) } if(length(weights) == 1) { stop(paste0("The argument ", sQuote("weights"), " must be a list of column names with length equal to levels.")) } data[apply(data[ , weights] <= 0, 1, any), weights] <- NA if(any(is.na(data[ , weights]))) { warning(paste0("There were ", sum(complete.cases(data)==FALSE), " rows with non-positive weights. These have been removed.")) data <- data[complete.cases(data), ] } if(!is.null(family)) { if(inherits(family, "character")) { family <- do.call(family, args=list()) } if(!inherits(family, "family")) { stop(paste0("The family argument must be of class ", dQuote("family"), ".")) } family$lnl <- switch(family$family, binomial = function(y, mu, w, sd) { w * dbinom(x=y, size=rep(1,length(y)), prob=mu, log=TRUE) }, poisson = function(y, mu, w, sd) { w * dpois(x=y, lambda=mu, log=TRUE) }, gaussian = function(y, mu, w, sd) { w * dnorm(x=y, mean=mu, sd=sd, log=TRUE) }, Gamma = function(y, mu, w, sd) { stop("The gamma family is not implemented.") }, inverse.gaussian = function(y, mu, w, sd) { stop("The inverse Gaussian family is not implemented.") }, function(y, mu, w, sd) { stop(paste0("Unknown family.")) } ) } adapter <- "MAP" weights0 <- weights acc0 <- round(acc0) nQuad <- round(nQuad) lformula <- lFormula(formula=formula, data=data) unparsedGroupNames <- names(lformula$reTrms$cnms) groupParser <- function(groupi) { all.vars(formula(paste0("~", groupi))) } groupNames <- rev(unique(unlist(lapply(unparsedGroupNames, groupParser)))) data <- data[do.call(order, lapply(rev(groupNames), function(colN) data[ , colN])), ] if(!is.null(center_group)) { if (any(grep(":|/", names(center_group)))) { nested_groups <- names(center_group)[grep(":|/", names(center_group))] for (var in nested_groups){ vars <- unlist(strsplit(var , ":|/")) data[,var] <- paste0(data[ , vars[1]], ":", data[ , vars[2]]) } } if(!all(names(center_group) %in% names(data))){ stop("Not all centering group variables are found in the data set. ") } else { for(name in names(center_group)) { lev <- min(which(groupNames %in% unlist(strsplit(name,":|/")))) X <- sparse.model.matrix(center_group[[name]],data=data) vars <- colnames(X)[-1] X <- cbind(X, data[ , weights0[lev]]) colnames(X)[ncol(X)] <- weights0[lev] data[ , vars] <- sapply(vars, function(var){ X[ , var] - ave(X[ , var] * X[ , weights0[lev]], data[ , name])/ (nrow(X)/sum(X[ , weights0[lev]])) }) rm(X) } } } if(!is.null(center_grand)){ X <- sparse.model.matrix(center_grand, data=data) vars <- colnames(X)[-1] data[ , vars] <- sapply(vars, function(var){X[ , var] - ave(X[ , var])}) rm(X) } row.names(data) <- NULL if(is.null(family)) { if(verbose) { cat("Using lmer to get an approximate (unweighted) estimate and model structure.\n") } suppressWarnings(lme <- lmer(formula, data, REML=FALSE)) } else { if(verbose) { cat("Using glmer to get an approximate (unweighted) estimate and model structure.\n") } lme <- glmer(formula, data, family=family) } mf <- model.frame(lme) responseCol <- attributes(attributes(mf)$terms)$response y <- as.numeric(mf[ , responseCol]) if(!is.null(family) && family$family == "binomial") { if(length(unique(y)) == 2) { y <- ifelse(y == min(y), 0, 1) } if(any(!y %in% c(0,1))) { stop("For a binomial model the outcomes must be 0 or 1.") } } model_matrix <- getME(lme,"mmList") z_groups <- names(model_matrix) all_groups <- names(summary(lme)$ngrps) groupNames <- all_groups wgts0 <- data[ , weights] if(cWeights) { for(i in (ncol(wgts0)-1):1) { wgts0[ , i] <- wgts0[ , i] * wgts0[ , i+1] } } missingGroupVars <- all_groups[!all_groups %in% names(data)] presentVars <- all_groups[all_groups %in% names(data)] for(i in seq_along(presentVars)) { if(inherits(data[, presentVars[i]], "factor")) { data[, presentVars[i]] <- droplevels(data[, presentVars[i]]) } } all_groups_lowest_level <- all_groups for(mgi in seq_along(missingGroupVars)) { vars <- rownames(attr(terms.formula(as.formula(paste(". ~", paste(missingGroupVars[mgi], collapse="+"))) ), "factors"))[-1] for(i in seq_along(vars)) { if(inherits(data[, vars[i]], "factor")) { data[, vars[i]] <- droplevels(data[, vars[i]]) } } data[ , missingGroupVars[mgi]] <- apply(data[ , vars], 1, function(x) { paste(x, collapse=":") }) vtab <- lapply(vars, function(x) { tab <- table(data[ , x]) sum(tab>0) }) all_groups_lowest_level[all_groups_lowest_level == all_groups[mgi]] <- vars[which.max(unlist(vtab))] } Z <- list(NULL) ZFull <- list(NULL) n_rows <- nrow(data) for (i in 1:length(all_groups)){ z_to_merge <- grepl(paste0("[|]\\W", all_groups[i], "$"), z_groups) Z_i <- matrix( unlist(model_matrix[z_to_merge], use.names=FALSE), nrow=n_rows) ZFull <- c(ZFull, list(Z_i)) if(i > 1) { Z_i <- Z_i[!duplicated(data[ , all_groups[i-1]]), , drop=FALSE] } Z <- c(Z, list(Z_i)) } nz <- list(0) for(i in 1:length(Z)) { if(!is.null(Z[[i]])) { nz[[i]] <- ncol(Z[[i]]) } } levels <- length(Z) if(length(weights) != levels) { stop(paste0("The argument ", sQuote("weights"), " must be a list of column names with length equal to levels.")) } weights <- list() for(i in 1:length(nz)) { df <- data.frame(w=unname(wgts0[ , i]), stringsAsFactors=FALSE) if(i < length(nz)) { df$indexp1 <- data[ , all_groups[i]] } if(i > 1) { df$index <- data[ , all_groups[i-1]] rvar <- function(x) { if(length(x) <=1) { return(0) } else { return(var(x)) } } agg <- aggregate(w ~ index, data=df, FUN=rvar) if(any(agg$w > sqrt(.Machine$double.eps))) { stop(paste0("Some level-", i+1, " weights vary within group.")) } df <- df[!duplicated(df$index), ] } weights[[i]] <- df } y_label <- as.character(formula[[2]]) k <- length(lmeb <- getME(lme, "fixef")) parlme <- c(lmeb) lmesummary <- summary(lme) ngrp <- lmesummary$ngrps if(length(unique(ngrp)) != length(ngrp)) { stop("This does not appear to be a nested model. Some levels of this model have the same number of subject/groups as the level above them.") } ngrpW <- lapply(weights, function(wdf) { return(list(mean=mean(wdf$w), sum=sum(wdf$w), min=min(wdf$w), max=max(wdf$w))) }) lmeVarDF <- data.frame(lmesummary$varcor) parlme <- c(parlme, lmeVarDF$vcov) if(is.null(start)) { est0 <- parlme } else { if(length(start) != length(parlme)) { stop(paste0("Expecting argument ", sQuote("start"), " to have ", length(est0), " elements, found ", length (start), " elements.")) } est0 <- start names(est0) <- names(parlme) } ind <- 1 while(sum(grepl(paste0("\\.", ind, "$"), lmeVarDF$grp)) > 0) { lmeVarDF$grp <- sub(paste0("\\.", ind, "$"), "", lmeVarDF$grp) ind <- ind + 1 } lmeVarDF$sdcor <- NULL lmeVarDF$ngrp <- NA lmeVarDF$grp <- gsub(".", ":", lmeVarDF$grp, fixed=TRUE) for(vari in 1:nrow(lmeVarDF)) { if(lmeVarDF$grp[vari] == "Residual") { lmeVarDF$ngrp[vari] <- nrow(data) } else { lmeVarDF$ngrp[vari] <- ngrp[names(ngrp) == lmeVarDF$grp[vari]] } } ngrp2 <- rev(sort(unique(lmeVarDF$ngrp))) for(grpi in 1:length(ngrp2)) { lmeVarDF$level[ngrp2[grpi] == lmeVarDF$ngrp] <- grpi + ifelse("Residual" %in% lmeVarDF$grp, 0, 1) } varCorrect <- is.na(lmeVarDF$var2) & lmeVarDF$vcov < 1 if(any(varCorrect)) { lmeVarDF$vcov[varCorrect] <- pmax(log(lmeVarDF$vcov[varCorrect]) + 1, -3.59) } names(est0)[-(1:k)] <- lmeVarDF$grp lmeVarDF$fullGroup <- paste0(lmeVarDF$grp, ifelse(!is.na(lmeVarDF$var1), paste0(".", lmeVarDF$var1), "")) covarianceConstructor <- covMat2Cov(lmeVarDF) C <- covarianceConstructor(est0[-(1:k)]) X <- getME(lme, "X") if(is.null(family)){ Z <- getME(lme, "Z") temp_Z <- getME(lme, "Ztlist") z_levels <- unique(lmeVarDF[lmeVarDF$fullGroup%in%names(temp_Z),c("fullGroup","level")]) Zlist <- list() for (i in 2:levels){ z_names <- z_levels[z_levels$level==i,"fullGroup"] Zlist[[i-1]] <- Matrix::t(do.call(rbind, temp_Z[z_names])) } pointers <- getME(lme, "Gp") grp_level <- lmeVarDF$level names(grp_level) <- lmeVarDF$grp ref_comps <- names(getME(lme, "cnms")) Zlevels <- unique(grp_level[ref_comps]) group_id_list <- lapply(all_groups, FUN=function(x){ res <- data.frame(data[,x], as.numeric(as.factor(data[,x]))) colnames(res) <- c(x, "index") res }) group_id <- do.call(cbind, group_id_list) cn <- c() names(all_groups) <- make.names(all_groups) for(i in 1:length(all_groups)) { cn <- c(cn, all_groups[i], paste0(all_groups[i], "_index")) } colnames(group_id) <- cn group_id <- group_id[ , c(all_groups, paste0(all_groups, "_index"))] weights_list <- lapply(1:length(weights), FUN=function(wi) { if(wi == 1) { return(weights[[wi]]$w) } x <- weights[[wi]] x <- x[order( as.numeric(as.factor(x$index)) ), ] x$w }) weights_list_cond <- weights_list if(levels > 2 ){ cWeights <- cbind(group_id, wgts0) for (level in 1:(levels-1)){ cWeights[ , weights0[level]] <- cWeights[ , weights0[level]] / cWeights[ , weights0[level + 1]] } weights_list_cond[[1]] <- cWeights[ , weights0[1]] for (level in 2:levels){ weights_list_cond[[level]] <- cWeights[!duplicated(cWeights[,all_groups[level-1]]), weights0[level]] } } theta <- getME(lme, "theta") theta1 <- theta for(i in 1:length(theta1)) { theta1[i] <- 1 } group_id <- group_id[ , c(paste0(all_groups, "_index"), all_groups)] bsqG <- devG(y, X, Zlist=Zlist, Zlevels=Zlevels, weights=weights_list, weightsC = weights_list_cond, groupID = group_id, lmeVarDF = lmeVarDF, v0=theta1) if(verbose) { message("Fitting weighted model.") } opt <- bobyqa(fn=bsqG, par=theta) names(opt$par) <- names(theta) bsq <- bsqG(opt$par, getBS=TRUE) if(verbose) { message("Estimating covariance.") } bhatq <- bsq(opt$par, robustSE=TRUE) b2 <- function(f, optpar, b, sigma0, inds) { function(x) { sigma <- x[length(x)] x <- x[-length(x)] xp <- optpar xp[inds] <- x names(xp) <- names(optpar) f(v=xp, sigma=sigma, beta=b)$lnl } } varDF <- lmeVarDF[,c("grp", "var1", "var2", "vcov", "ngrp", "level")] varVC <- list(Residual=bhatq$sigma^2) varDF$vcov <- 0 varDF$SEvcov <- NA j_mat_list <- list() for(li in 2:levels) { iDelta <- bhatq$iDelta[[li]] iDeltai <- bhatq$sigma^2 * (iDelta %*% t(iDelta)) varDFi <- varDF[varDF$level %in% c(li,1),] thetaNamesi <- ifelse(is.na(varDFi$var2), paste0(varDFi$grp,".", varDFi$var1), paste0(varDFi$grp, ".", varDFi$var2, ".", varDFi$var1))[-nrow(varDFi)] inds <- names(opt$par) %in% thetaNamesi ihes <- -1*getHessian(b2(f=bsq, optpar=opt$par, b=bhatq$b, sigma0=bhatq$sigma, inds=inds), x=c(opt$par[inds], sigma=bhatq$sigma)) eihes <- eigen(ihes) if(max(eihes$values)/min(eihes$values) >= 1/((.Machine$double.eps)^0.25)) { warning("Numerical instability in estimating the standard error of variance terms. Consider the variance term standard errors approximate.") ihes <- nearPD(ihes, posd.tol=400*sqrt(.Machine$double.eps))$mat } theta_cov_mat <- solve(ihes) colnames(theta_cov_mat) <- rownames(theta_cov_mat) <- c(names(opt$par[inds]),"sigma") J <- bhatq$Jacobian[rownames(theta_cov_mat), colnames(theta_cov_mat)] preVCi <- theta_cov_mat %*% J %*% theta_cov_mat preVCi <- preVCi[c(thetaNamesi, "sigma"), c(thetaNamesi, "sigma")] cn <- colnames(iDeltai) sigma2 <- bhatq$sigma^2 j_list <- list() for(ii in 1:nrow(iDeltai)) { for(jj in ii:ncol(iDeltai)) { varDFi$grad <- 0 if(ii==jj) { varDF[varDF$level==li & varDF$var1==cn[ii] & is.na(varDF$var2),"vcov"] <- iDeltai[ii,ii] varDFi$grad[varDFi$var1 %in% rownames(iDelta)[ii] & is.na(varDFi$var2)] <- sigma2 * 2 * iDelta[ii,ii] if(ii > 1){ for(iii in 1:(ii-1)) { varDFi$grad[(varDFi$var1 %in% rownames(iDelta)[ii] | varDFi$var2 %in% rownames(iDelta)[ii]) & (varDFi$var1 %in% rownames(iDelta)[iii] | varDFi$var2 %in% rownames(iDelta)[iii])] <- sigma2 * 2 * iDelta[ii,iii] } } varDFi$grad[nrow(varDFi)] <- 2 * iDeltai[ii,ii]/sqrt(sigma2) varDF[varDF$level==li & varDF$var1==cn[ii] & is.na(varDF$var2),"SEvcov"] <- sqrt(t(varDFi$grad) %*% preVCi %*% varDFi$grad) j_list <- c(j_list,list(varDFi$grad)) } else { varDF[varDF$level %in% li & varDF$var1 %in% cn[ii] & varDF$var2 %in% cn[jj],"vcov"] <- iDeltai[ii,jj] varDF[varDF$level %in% li & varDF$var1 %in% cn[jj] & varDF$var2 %in% cn[ii],"vcov"] <- iDeltai[ii,jj] if(any(varDF$level==li & (( varDF$var1==cn[ii] & varDF$var2 %in% cn[jj]) | (varDF$var1==cn[jj] & varDF$var2 %in% cn[ii])))) { for(iii in 1:min(ii, jj)) { if(ii == iii) { varDFi$grad[(varDFi$var1 %in% rownames(iDelta)[ii] | varDFi$var2 %in% rownames(iDelta)[ii]) & is.na(varDFi$var2)] <- sigma2 * iDelta[jj,iii] } else { varDFi$grad[(varDFi$var1 %in% rownames(iDelta)[ii] | varDFi$var2 %in% rownames(iDelta)[ii]) & (varDFi$var1 %in% rownames(iDelta)[iii] | varDFi$var2 %in% rownames(iDelta)[iii])] <- sigma2 * iDelta[jj,iii] } if(jj == iii) { varDFi$grad[(varDFi$var1 %in% rownames(iDelta)[jj] | varDFi$var2 %in% rownames(iDelta)[jj]) & is.na(varDFi$var2)] <- sigma2 * iDelta[ii,iii] } else { varDFi$grad[(varDFi$var1 %in% rownames(iDelta)[jj] | varDFi$var2 %in% rownames(iDelta)[jj]) & (varDFi$var1 %in% rownames(iDelta)[iii] | varDFi$var2 %in% rownames(iDelta)[iii])] <- sigma2 * iDelta[ii,iii] } } varDFi$grad[nrow(varDFi)] <- 2 * iDeltai[ii,jj]/sqrt(sigma2) varDF[varDF$level==li & (( varDF$var1==cn[ii] & varDF$var2 %in% cn[jj]) | (varDF$var1==cn[jj] & varDF$var2 %in% cn[ii])),"SEvcov"] <- sqrt(t(varDFi$grad) %*% preVCi %*% varDFi$grad) j_list <- c(j_list,list(varDFi$grad)) } } } } jacobian <- matrix(unlist(j_list),ncol=length(j_list[[1]]),byrow=T) var_mat_var <- jacobian %*% preVCi %*% t(jacobian) rownames(var_mat_var) <-colnames(var_mat_var) <- names(theta)[names(theta) %in% rownames(preVCi)] j_list <- list() j_mat_list[[li-1]] <- var_mat_var if(li==2) { varDF[varDF$level==1,"SEvcov"] <- sqrt((2*sqrt(sigma2))^2*preVCi[nrow(preVCi),ncol(preVCi)]) } varVC <- c(varVC, list(iDeltai)) names(varVC)[li] <- (varDF$grp[varDF$level %in% li])[1] } var_of_var <- bdiag(j_mat_list) rownames(var_of_var) <- colnames(var_of_var) <- unlist(sapply(j_mat_list,FUN=rownames)) varDF$vcov[varDF$grp=="Residual"] <- bhatq$sigma^2 varDF$fullGroup <- paste0(varDF$grp,ifelse(!is.na(varDF$var1),paste0(".",varDF$var1),"")) vars <- varDF$vcov[is.na(varDF$var2)] names(vars) <- varDF$fullGroup[is.na(varDF$var2)] nobs <- nrow(X) names(nobs) <- "Number of obs" ngroups <- c(nobs, ngrp) var_between <- sum(varDF[which(!is.na(varDF$var1) & is.na(varDF$var2)),"vcov"]) var_within <- varDF$vcov[varDF$grp=="Residual"] ICC <- var_between/(var_between+var_within) env <- environment(bsq) covMat <- env$lmeVarDF cc <- function() { } assign("cConstructor", value=cc, envir=env) res <-list(lnlf=bsq, lnl= bhatq$lnl, coef = bhatq$b, ranefs=bhatq$ranef, SE = bhatq$seBetaRobust, vars= vars, theta=bhatq$theta, call=call, levels=levels, CMODE=bhatq$ranef, invHessian=bhatq$cov_mat, ICC=ICC, is_adaptive=FALSE, sigma=bhatq$sigma, cov_mat=bhatq$varBetaRobust, ngroups=ngroups, varDF=varDF, varVC=varVC,var_theta=var_of_var, wgtStats=ngrpW) class(res) <- "WeMixResults" return(res) } if(verbose) { cat("Identifying initial integration locations estimates for random effects.\n") } MAP0 <- MAP(groups=data[ , all_groups, drop=FALSE], y=y, X=X, levels=levels, Z=Z, ZFull=ZFull, weights=weights, k=k, qp=gauss.quad(nQuad, "hermite"), covariance_constructor=covarianceConstructor, verbose=verbose, nlmevar=nrow(lmeVarDF)-1, nz=nz, acc=acc0, family=family) BLUE0 <- BLUE(groups=data[,all_groups,drop=FALSE], y=y, X=X, levels=levels, Z=Z, ZFull=ZFull, weights=weights, k=k, qp=gauss.quad(nQuad, "hermite"), covariance_constructor=covarianceConstructor, verbose=verbose, nlmevar=nrow(lmeVarDF)-1, nz=nz, acc=acc0, family=family) bvec <- getME(lme, "b") bvecCuts <- getME(lme, "Gp") blist <- vector("list", levels) startLoc <- 1 comps <- names(getME(lme,"cnms")) n_rows_z <- list() for (i in 1:length(comps)){ n_rows_z[i] <- lmeVarDF[lmeVarDF$grp == comps[i],"ngrp"][1] } blist <- vector("list", levels) for(cuti in 2:length(bvecCuts)) { bmat <- matrix(bvec[startLoc:bvecCuts[cuti]], nrow=n_rows_z[[cuti-1]]) li <- unique(lmeVarDF$level[lmeVarDF$ngrp==nrow(bmat)]) blist[[li]] <- cbind(blist[[li]], bmat) startLoc <- bvecCuts[cuti] + 1 } omega0 <- blist a0 <- MAP0(omega0=omega0, par0=est0) zScale <- lapply(a0$Qi0, function(Qi0i) { if(is.null(Qi0i)) { return(NULL) } df <- data.frame(detQ=sapply(Qi0i,det)) for(i in 1:length(groupNames)) { if(length(unique(data[,groupNames[i]])) == nrow(df)) { df[,groupNames[i]] <- unique(data[,groupNames[i]]) attr(df,"groups") <- c(attr(df, "groups"), groupNames[i]) } } df }) index <- data.frame(data[,c(groupNames)]) names(index) <- groupNames for(wi in 2:length(weights)) { Zgrps <- attr(zScale[[wi]], "groups") weights[[wi]] <- merge(weights[[wi]],zScale[[wi]][,c(Zgrps, "detQ")],by.x="index", by.y=Zgrps) } est <- est0 qp <- gauss.quad(nQuad,"hermite") fn0 <- param.lnl.quad(y=y, X=X, levels=levels, Z=Z, ZFull=ZFull, Qi=a0$Qi, QiFull=a0$QiFull, omega=a0$omega, omegaFull=a0$omegaFull, W=weights, k=k, qp=qp, cConstructor=covarianceConstructor, acc0=acc0, mappedDefault=FALSE, family=family) fn0R <- param.lnl.quad(y=y, X=X, levels=levels, Z=Z, ZFull=ZFull, Qi=a0$Qi, QiFull=a0$QiFull, omega=a0$omega, omegaFull=a0$omegaFull, W=weights, k=k, qp=qp, cConstructor=covarianceConstructor, acc0=acc0, mappedDefault=TRUE, family=family) if(!run) { return(list(lnlf=fn0R, parlme=parlme, omega0=a0$omega0, lme=lme, adapt=a0, weights=weights)) } d1 <- rep(Inf, length(est)) oldlnl <- fn0(est, varFloor=-3.59) a00 <- a0 if(verbose) { cat("Starting Newton steps.\n") } covs_and_vars <- est[-(1:k)] vars <- covs_and_vars[which(is.na(lmeVarDF$var2))] not_0_vars <- which(vars>-3)+k est[-(1:k)] <- ifelse(est[-(1:k)]< -4.6,-4.6,est[-(1:k)]) v <- d1 skipNextHessian <- FALSE defStepsInds <- list(1:length(est0)) stepIndQueue <- list() dd1 <- d1 dd2 <- outer(dd1,dd1) iteration <- 0 varFloorBinding <- FALSE oldest <- est while(all(iteration < max_iteration, any(varFloorBinding & max(est - oldest) > 1e-5 , !varFloorBinding & max(abs(dd1[c(1:k, not_0_vars)]/pmax(abs(est[c(1:k, not_0_vars)]), 1e-5))) > 1E-5) )) { iteration <- iteration + 1 oldest <- est if(length(stepIndQueue)==0) { stepIndQueue <- defStepsInds } thisStepInds <- stepIndQueue[[1]] d1 <- getGrad(fn0, est, thisStepInds) dd1[thisStepInds] <- d1 if(!skipNextHessian) { d2 <- getHessian(fn0, est, thisStepInds) dd2[thisStepInds, thisStepInds] <- d2 } d2 <- dd2[thisStepInds, thisStepInds] fact <- 1 v <- rep(0, length(est0)) v[thisStepInds] <- solve(d2) %*% d1 if(verbose) { cat("step:", iteration, "/", max_iteration, "\n") cat("lnl:", oldlnl, " max (relative) derivative=", max(abs(dd1[c(1:k,not_0_vars)]/pmax(abs(est[c(1:k,not_0_vars)]), 1e-5))), " ") cat("\nCurrent solution, gradient, and Newton step:\n") prnt <- cbind(oldEstimate=est, firstDeriv=dd1, proposedNewtonEstimate=est - v) rownames(prnt) <- c(names(est0)[1:k], paste0("ln var ", names(est0)[-(1:k)], "")) colnames(prnt) <- c("previous Est", "firstDeriv", "Newton Step") print(prnt) } newest <- est - fact * v newlnl <- fn0(newest, varFloor=-3.59) stp <- 0 while(newlnl < oldlnl) { stp <- stp + 1 if(verbose) { cat("Halving step size.\n") } fact <- fact/2 if(stp > 5 & fact > 0) { if(verbose) { cat("Reversing step direction.\n") } fact <- -1 stp <- 0 } if (stp>10) { fact <- 0 oldlnl <- oldlnl - 1 } newest <- est - fact * v newlnl <- fn0(newest, varFloor=-3.59) } if(verbose) { cat("\n") } est <- est - fact * v oldlnl <- newlnl if(any(est[-(1:k)] < -3.59)) { est[-(1:k)] <- ifelse(est[-(1:k)] < -3.59, -3.59, est[-(1:k)]) varFloorBinding <- TRUE } if(keepAdapting) { if(verbose) { cat("Adapting random effect estimates.\n") } if(adapter == "BLUE") { a0 <- BLUE0(omega0=a0$omega0, par0=est0, Qi0=a0$Qi0) } else { a0 <- MAP0(omega0=a0$omega0, par0=est, verb=FALSE) } zScale <- lapply(a0$Qi0, function(Qi0i) { if(is.null(Qi0i)) { return(NULL) } df <- data.frame(detQ=sapply(Qi0i,det)) for(i in 1:length(groupNames)) { if(length(unique(data[,groupNames[i]])) == nrow(df)) { df[,groupNames[i]] <- unique(data[,groupNames[i]]) attr(df,"groups") <- c(attr(df, "groups"), groupNames[i]) } } df }) for(wi in 2:length(weights)) { weights[[wi]]$detQ <- NULL Zgrps <- attr(zScale[[wi]], "groups") weights[[wi]] <- merge(weights[[wi]],zScale[[wi]][,c(Zgrps, "detQ")],by.x="index", by.y=Zgrps) } fn0 <- param.lnl.quad(y=y, X=X, levels=levels, Z=Z, ZFull=ZFull, Qi=a0$Qi, QiFull=a0$QiFull, omega=a0$omega, omegaFull=a0$omegaFull, W=weights, k=k, qp=qp, cConstructor=covarianceConstructor, acc0=acc0, mappedDefault=FALSE, family=family) fn0R <- param.lnl.quad(y=y, X=X, levels=levels, Z=Z, ZFull=ZFull, Qi=a0$Qi, QiFull=a0$QiFull, omega=a0$omega, omegaFull=a0$omegaFull, W=weights, k=k, qp=qp, cConstructor=covarianceConstructor, acc0=acc0, mappedDefault=TRUE, family=family) if(max(abs(a00$omega0[[2]] - a0$omega0[[2]])/pmax(abs(a0$omega0[[2]]),1E-10)) < 1E-2) { if(verbose) { cat("Done adapting; the mode is not changing sufficiently.\n") } keepAdapting <- FALSE } if(keepAdapting & max(abs(d1)) <= 1E-3) { if(verbose) { cat("Done adapting: close to a solution.\n") } keepAdapting <- FALSE } a00 <- a0 oldlnl <- fn0(est, varFloor=-3.59) } covs_and_vars <- est[-(1:k)] vars <- covs_and_vars[which(is.na(lmeVarDF$var2))] not_0_vars <- which(vars > -3) + k if((!skipNextHessian & max(sum(abs(fact*v)/abs(est))) < (.Machine$double.eps)^0.25) & max(abs(dd2)) < Inf) { skipNextHessian <- TRUE } else { skipNextHessian <- FALSE } } if(verbose) { message("Itterations complete.") } if (iteration >= max_iteration){ } hessian <- dd2 MAP <- MAP0(omega0=a0$omega0, par0=est, verb=FALSE)$omega0 BLUE <- BLUE0(omega0=a0$omega0, par0=est, Qi0=a0$Qi0, adapt=FALSE, verb=FALSE) est <- as.numeric(est) names(est) <- names(parlme) covs_and_vars <- est[-(1:k)] vars <- covs_and_vars[which(is.na(lmeVarDF$var2))] need_fix_vars <- which(vars < 1) covs_and_vars[need_fix_vars] <- exp(covs_and_vars[need_fix_vars] - 1) vars <- covs_and_vars names(vars) <- gsub(":NA", "", paste(lmeVarDF$grp, lmeVarDF$var1, lmeVarDF$var2, sep=":")) if (length(need_fix_vars) > 0){ warning(paste0("Group variances too small to estimate accurately. The estimated variance in the group level terms(s) ", paste(dQuote(names(vars)[need_fix_vars]), collapse=", "), " is near zero.", " Very low variance suggests that the data is not hierarchical and that a model without these levels should be considered.", " If this removes all groups then a non-hierarchical model, such as logistic regression, should be considered.")) hessian <- getHessian(fn0R, c(est[1:k], covs_and_vars+0.0002*need_fix_vars)) } var_between <- sum(vars[which(!is.na(lmeVarDF$var1) & is.na(lmeVarDF$var2))]) var_within <- vars[which(lmeVarDF$grp=="Residual")] ICC <- var_between/(var_between+var_within) nobs <- nrow(X) names(nobs) <- "Number of obs" ngroups <- c(nobs, ngrp) varDF <- lmeVarDF[,c("grp", "var1", "var2", "vcov", "ngrp", "level")] varDF$vcov <- 0 varDF$fullGroup <- paste0(varDF$grp,ifelse(!is.na(varDF$var1),paste0(".",varDF$var1),"")) varDF$vcov <- vars res <- list(lnlf=fn0R, lnl=fn0(est, varFloor=-3.59), coef=est[1:k], vars=vars, call=call, levels=levels, ICC=ICC, CMODE=BLUE, invHessian=hessian, is_adaptive=TRUE, ngroups=ngroups, varDF=varDF, wgtStats=ngrpW) class(res) <- "WeMixResults" return(res) } BLUE <- function(groups, y, X, levels, Z, ZFull, weights0, k, qp, covariance_constructor, verbose, nlmevar, nz, acc, family) { function(omega0, par0, Qi=NULL, Qi0=NULL, verb=verbose, adapt=TRUE) { weights <- weights0 if(is.null(Qi)) { Qi <- list(NULL) QiFull <- list(NULL) for( oi in 2:length(omega0)) { map <- groups[,oi-1] umap <- unique(map) nzi <- ncol(Z[[oi]]) Qi[[oi]] <- matrix(0, nrow=nzi, ncol=nzi*nrow(weights[[oi-1]])) for(i in 1:nrow(weights[[oi-1]])) { Qi[[oi]][1:nzi,(i-1)*nzi+1:nzi] <- Qi0[[oi]][[(1:length(umap))[map[i]==umap] ]] } QiFull[[oi]] <- matrix(0, nrow=nzi, ncol=nzi*nrow(X)) for(i in 1:nrow(X)) { QiFull[[oi]][1:nzi,(i-1)*nzi+1:nzi] <- Qi0[[oi]][[(1:length(umap))[map[i]==umap] ]] } } } zScale <- lapply(Qi0, function(Qi0i) { if(is.null(Qi0i)) { return(NULL) } df <- data.frame(detQ=sapply(Qi0i,det)) for(i in 1:ncol(groups)) { if(length(unique(groups[,i])) == nrow(df)) { df[,colnames(groups)[i]] <- unique(groups[,i]) attr(df,"groups") <- c(attr(df, "groups"), colnames(groups)[i]) } } df }) for(wi in 2:length(weights)) { weights[[wi]]$detQ <- NULL Zgrps <- attr(zScale[[wi]], "groups") weights[[wi]] <- merge(weights[[wi]], zScale[[wi]][,c(Zgrps, "detQ")],by.x="index", by.y=Zgrps) } omega <- buildOmega(omega0=omega0, groups=groups, nrowX=nrow(X)) omegaFull <- buildOmega(omega0=omega0, groups=groups, nrowX=nrow(X), full=TRUE) Qi0_ <- list(NULL) Qi_ <- list(NULL) tmpomega <- list(NULL) for( oi in 2:length(omega0)) { omg0 <- omega0[[oi]] omg1 <- 2*omg0 while( max(abs( (omg1 - omg0) / pmax(abs(omg0), 1E-5))) > 1E-3) { omg1 <- omg0 tmpomega_ <- c(tmpomega, list(omg0)) nzi <- ncol(Z[[oi]]) f <- param.lnl.quad(y, X, oi, Z, ZFull=ZFull, Qi=Qi, QiFull=QiFull, omega, omegaFull=omegaFull, W=weights, k, qp, covariance_constructor, bobyqa=FALSE, verbose=TRUE, acc0=acc, mappedDefault=FALSE, family=family) for(ici in 1:ncol(omg0)) { f0 <- f(par0, top=FALSE, integralMultiplierExponent=0, integralZColumn=ici) f1 <- f(par0, top=FALSE, integralMultiplierExponent=1, integralZColumn=ici) omg0[ , ici] <- as.numeric(f1/f0) } omega0p <- c(tmpomega, list(omg0)) while( length(omega0p) < length(omega0)) { omega0p[[length(omega0p)+1]] <- omega0[[length(omega0p)+1]] } omega <- buildOmega(omega0=omega0p, groups=groups, nrowX=nrow(X)) omegaFull <- buildOmega(omega0=omega0p, groups=groups, nrowX=nrow(X), full=TRUE) if(!adapt) { omg1 <- omg0 } } if(verb & adapt) { cat("BLUE estimates:\n") print(omg0) } if(adapt) { omg0Full <- buildOmega(omega0=tmpomega_, groups=groups, nrowX=nrow(X), full=TRUE) derivatives <- genD(adapterLnL(y, X, levels, Z, ZFull, weights, k, qp, covariance_constructor, omega, omg0Full, tmpomega_, par0, verb, Qi, QiFull, oi, acc, family), rep(0,sum(unlist(nz)[1:oi], na.rm=TRUE))) d2 <- derivatives$D[,-(1:nzi),drop=FALSE] drv <- d2 Qi0_[[oi]] <- lapply(1:nrow(drv), function(i) { scaleQuadPoints(drv[i,], nzi) }) map <- groups[,oi-1] umap <- unique(map) Qi_[[oi]] <- matrix(0, nrow=nzi, ncol=nzi*nrow(X)) for(i in 1:nrow(X)) { Qi_[[oi]][1:nzi,(i-1)*nzi+1:nzi] <- Qi0_[[oi]][[(1:length(umap))[map[i]==umap] ]] } QiFull[[oi]] <- matrix(0, nrow=nzi, ncol=nzi*nrow(X)) for(i in 1:nrow(X)) { QiFull[[oi]][1:nz,(i-1)*nz+1:nz] <- Qi0[[oi]][[(1:length(umap))[map[i]==umap] ]] } } tmpomega <- c(tmpomega, list(omg0)) omg0Full <- buildOmega(omega0=tmpomega, groups=groups, nrowX=nrow(X), full=TRUE) } if(adapt) { return(list(omega0=tmpomega, omega=omega, omegaFull=omg0Full, Qi0=Qi0_, Qi=Qi_, QiFull=QiFull)) } else { return(tmpomega) } } } MAP <- function(groups, y, X, levels, Z, ZFull, weights, k, qp, covariance_constructor, verbose, nlmevar, nz, acc, family) { function(omega0, par0, verb=verbose) { omega <- buildOmega(omega0=omega0, groups=groups, nrowX=nrow(X)) omegaFull <- buildOmega(omega0=omega0, groups=groups, nrowX=nrow(X), full=TRUE) Qi0 <- list(NULL) Qi <- list(NULL) QiFull <- list(NULL) tmpomega <- list(NULL) tmpomegaFull <- list(NULL) u0 <- 0 for(oi in 2:length(omega0)) { omg0 <- omega0[[oi]] omg1 <- 1E20*(omg0+1E-15) nzi <- nz[[oi]] iter <- 0 while( iter < 25 & max(abs( (omg1 - omg0) / pmax(abs(omg0), 1E-5))) > 1E-3) { if(iter >= 1) { u0 <- max(c(u0, as.vector(abs( (omg1 - omg0) )))) } iter <- iter + 1 omg1 <- omg0 tmpomega_ <- c(tmpomega, list(omg0)) toF <- buildOmega(omega0=tmpomega_, groups=groups, nrowX=nrow(X), full=TRUE) ofn <- adapterLnL(y, X, levels, Z, ZFull, weights, k, qp, covariance_constructor, omega, toF, tmpomega_, par0, verb, Qi, QiFull, oi, acc, family) d1 <- getJacobian(ofn, rep(0, nz[[oi]], na.rm=TRUE), m=nrow(omg0)) d2 <- getHessian(ofn, rep(0, nz[[oi]], na.rm=TRUE)) omg0 <- lapply(1:length(d2), function(i) { step <- solve(d2[[i]]) %*% d1[[i]] if(iter >= 3) { step <- 1/2 * step ii <- 1 while(any(abs(step) > 3*u0/iter)) { ii <- ii + 1 step <- 1/2 * step if(ii > 20) { stop("Ridiculous Newton step proposed, MAP not converging.") } } } else { step <- 1/2 * step } omg0[i,] - step }) omg0 <- t(do.call(cbind, omg0)) omega0p <- c(tmpomega, list(omg0)) while( length(omega0p) < length(omega0)) { omega0p[[length(omega0p)+1]] <- omega0[[length(omega0p)+1]] } omega <- buildOmega(omega0=omega0p, groups=groups, nrowX=nrow(X)) omegaFull <- buildOmega(omega0=omega0p, groups=groups, nrowX=nrow(X), full=TRUE) } if(verb) { cat("Estimates:\n") print(omg0) } tmpomega <- c(tmpomega, list(omg0)) tmpomegaFull <- omegaFull drv <- d2 Qi0[[oi]] <- lapply(1:length(drv), function(i) { ss <- scaleQuadPoints(drv[[i]], nzi) for(j in 1:nrow(ss)) { if(ss[j,j] > abs(omg0[i,j])) { ss[j,j] <- sqrt(ss[j,j]^2 + omg0[i,j]^2) omg0[i,j] <<- 0 } } ss }) map <- groups[,oi-1] umap <- unique(map) nzi <- ncol(Z[[oi]]) Qi[[oi]] <- matrix(0, nrow=nzi, ncol=nzi*nrow(weights[[oi-1]])) for(i in 1:nrow(weights[[oi-1]])) { Qi[[oi]][1:nzi,(i-1)*nzi+1:nzi] <- Qi0[[oi]][[(1:length(umap))[map[i]==umap] ]] } QiFull[[oi]] <- matrix(0, nrow=nzi, ncol=nzi*nrow(X)) for(i in 1:nrow(X)) { QiFull[[oi]][1:nzi,(i-1)*nzi+1:nzi] <- Qi0[[oi]][[(1:length(umap))[map[i]==umap] ]] } if(oi < length(omega0)) { df <- data.frame(detQ=sapply(Qi0[[oi]],det)) groupNames <- colnames(groups)[oi-1] for(i in 1:length(groupNames)) { df[,groupNames[i]] <- unique(groups[,groupNames[i]]) } weights[[oi]] <- merge(weights[[oi]],df[,c(groupNames, "detQ")],by.x="index", by.y=groupNames) } } list(omega0=tmpomega, omega=omega, omegaFull=tmpomegaFull, Qi0=Qi0, Qi=Qi, QiFull=QiFull) } } scaleQuadPoints <- function(d2, nz){ solved <- solve(-1*d2) res <- NULL tryCatch(res <- chol(solved), error= function(e) { tryCatch(solved <- nearPD(solved)$mat, error=function(e){ solved <<- diag(abs(diag(solved))) }) res <<- chol(solved) }) res } buildOmega <- function(omega0, groups, nrowX, full=FALSE) { omega <- list(NULL) oind <- 1 for(o0i in 2:length(omega0)) { omega0i <- as.matrix(omega0[[o0i]]) res <- matrix(0, nrow=nrowX, ncol=ncol(omega0i)) noind <- ncol(omega0i) map <- groups[,o0i-1] umap <- unique(map) for(i in 1:length(umap)) { for(oindi in 1:noind) { res[which(map==umap[i]),oindi] <- omega0i[i,oindi] } } if(o0i > 2 & !full) { res <- res[!duplicated(groups[,o0i-2]),] } omega <- c(omega, list(res)) oind <- oind + noind } omega } adapterLnL <- function(y, X, levels, Z, ZFull, weights, k, qp, covariance_constructor, omega, omegaFull, omega0, par0, verbose, Qi, QiFull, olvl, acc, family) { function(par, long=FALSE) { yadj <- 0 o0 <- omega0 nzi <- 0 for(i in 1:olvl) { if(!is.null(Z[[i]])) { ki <- ncol(Z[[i]]) if(i == olvl) { nzi <- ki } if(ki >= 1) { zAdjust <- apply(ZFull[[i]] * omegaFull[[i]],1,sum) if(olvl == i) { zAdjust <- zAdjust + ZFull[[i]] %*% par[1:ki] for(kii in 1:ki) { o0[[i]][,kii] <- o0[[i]][,kii] + par[kii] } par <- par[-(1:ki)] } yadj <- yadj + zAdjust } } } beta <- par0[1:k] parC <- covariance_constructor(par0[-(1:k)]) Qi_ <- matrix(0, nrow=nzi, ncol=nzi*nrow(weights[[olvl-1]])) Qi__ <- c(Qi, list(Qi_)) QiFull_ <- matrix(0, nrow=nzi, ncol=nzi*nrow(X)) QiFull__ <- c(Qi, list(QiFull_)) loglikelihoodByGroup <- calc.lin.lnl.quad(y=y, yhat=X %*% beta + yadj, level=olvl, Z, Qi=Qi__, omega=lapply(omega, function(omegai) {0*omegai}), W=weights, C=parC, qp, top=FALSE, atPoint=TRUE, verbose=verbose, acc=acc, ZFull=ZFull, omegaFull=omegaFull, QiFull=QiFull__, family=family) Cl <- parC[[olvl]] posteriorByGroup <- apply(o0[[olvl]], MARGIN=1, function(p) { mvnpdfC(as.matrix(p), rep(0, length = length(p)), varcovM=Cl%*%t(Cl), Log=TRUE) }) if(long) { return(list(res=loglikelihoodByGroup + posteriorByGroup, loglikelihoodByGroup=loglikelihoodByGroup, posteriorByGroup=posteriorByGroup)) } loglikelihoodByGroup + posteriorByGroup } }
corr_diff <- function (r1, n1, r2, n2, conf.int=0.9, plot=FALSE) { if (is.character(r1) == TRUE || is.factor(r1) == TRUE || is.character(n1) == TRUE || is.factor(n1) == TRUE) { error <- "Sorry, data must be numeric or integer values." stop(error) } if (is.character(r2) == TRUE || is.factor(r2) == TRUE || is.character(n2) == TRUE || is.factor(n2) == TRUE) { error <- "Sorry, data must be numeric or integer values." stop(error) } if (length(r1) > 1 || length(n1) > 1 || length(r2) > 1 || length(n2) > 1) { error <- "Please enter only one effect size." stop(error) } diff <- r2 - r1 zcrit <- abs(stats::qnorm((1 - conf.int)/2)) r1.z <- 0.5 * log((1 + r1)/(1 - r1)) r1.sd <- 1/sqrt(n1 - 3) r1.ll <- r1.z - zcrit * r1.sd r1.ul <- r1.z + zcrit * r1.sd r2.z <- 0.5 * log((1 + r2)/(1 - r2)) r2.sd <- 1/sqrt(n2 - 3) r2.ll <- r2.z - zcrit * r2.sd r2.ul <- r2.z + zcrit * r2.sd diff.UL <- diff + sqrt((r2.ul - r2)^2 + (r1 - r1.ll)^2) diff.LL <- diff - sqrt((r2 - r2.ll)^2 + (r1.ul - r1)^2) z.diff <- abs(r1.z - r2.z) z.diff.sd <- sqrt(1/(n1 - 3) + 1/(n2 - 3)) z <- z.diff/z.diff.sd p <- 2 * (1 - stats::pnorm(z)) dir <- ifelse(r2 > r1, ">", "<") level <- paste(as.character(100 * conf.int), "%", sep = "") cat(" Test of Two Correlations:\n") cat(" diff = ", diff, "\n", sep = "") cat(" ", level, " CI ", "[", round(diff.LL, digits = 2), ", ", round(diff.UL, digits = 2), "]\n", sep = "") cat(" p value = ", round(p, digits = 2), "\n\n", sep = "") inference <- ifelse(diff.LL < 0 && diff.UL > 0, paste("Inference: Lacking Evidence, r2 = r1, (CI contains 0).", sep = ""), paste("Inference: Evidence Present, r2 ", dir, " r1, (CI does not contain 0).", sep = "")) if (plot == TRUE) { plot(NA, ylim = c(0, 1), xlim = c(diff.LL - (diff.UL - diff.LL)/10, (diff.UL) + (diff.UL - diff.LL)/10), bty = "l", yaxt = "n", ylab = "", xlab = "Difference in Correlations") graphics::points(x = diff, y = 0.5, pch = 15, cex = 2) graphics::abline(v = 0, lty = 2, col = "grey") graphics::segments(diff.LL, 0.5, diff.UL, 0.5, lwd = 3) graphics::title(main = paste( "difference = ", round(diff, digits = 2), " \n ", 100 * (conf.int), "% CI [", round(diff.LL, digits = 2), ";", round(diff.UL, digits = 2), "] ", " \n ", inference, sep = ""), cex.main = 1) } rval <- list(diff=diff, diff.LL=diff.LL, diff.UL=diff.UL, n1=n1, r1=r1, r1.ll=r1.ll, r1.ul=r1.ul, n2=n2, r2=r2, r2.ll=r2.ll, r2.ul=r2.ul, p.value=p, inference=inference) }
test_that("novel levels can be ignored", { dat <- data.frame( y = 1:4, f = factor(letters[1:4]) ) new <- data.frame( y = 1:5, f = factor(letters[1:5]) ) ptype <- vctrs::vec_ptype(dat) expect_warning( x <- scream(new, ptype, allow_novel_levels = TRUE), NA ) expect_equal(levels(x$f), letters[1:5]) }) test_that("novel levels in a new character vector can be ignored", { dat <- data.frame( y = 1:4, f = factor(letters[1:4]) ) new <- data.frame( y = 1:5, f = letters[1:5], stringsAsFactors = FALSE ) ptype <- vctrs::vec_ptype(dat) expect_warning( x <- scream(new, ptype, allow_novel_levels = TRUE), NA ) expect_equal(levels(x$f), new$f) }) test_that("ignoring novel levels still passes through incompatible classes", { dat <- data.frame(f = factor(letters[1:4])) new <- data.frame(f = 1:5) ptype <- vctrs::vec_ptype(dat) expect_error( scream(new, ptype, allow_novel_levels = TRUE), class = "vctrs_error_incompatible_type" ) })
`second.extinct` <- function(web, participant="higher", method="abun", nrep=10, details=FALSE, ext.row=NULL, ext.col=NULL){ if (participant=="both" & method=="external") stop("Sorry, that won't work. When you specify the sequence, you have to choose one of the two levels. 'both' won't work.") if (!is.null(ext.row) & length(ext.row) != NROW(web)) stop("The length of the external row vector is different from the numbers of rows in the network!") if (!is.null(ext.col) & length(ext.col) != NCOL(web)) stop("The length of the external col vector is different from the numbers of cols in the network!") if (participant == "higher" & method=="external" & is.null(ext.col)) stop("You need to provide an external sequence of extinction for the higher trophic level!") if (participant == "lower" & method=="external" & is.null(ext.row)) stop("You need to provide an external sequence of extinction for the lower trophic level!") one.second.extinct <- function(web=web, participant=participant, method=method, ext.row=ext.row, ext.col=ext.col){ dead <- matrix(nrow=0, ncol=3) colnames(dead) <- c("no", "ext.lower", "ext.higher") m2 <- web i <- 1 repeat { n <- extinction(m2, participant=participant, method=method, ext.row=ext.row, ext.col=ext.col) dead <- rbind(dead, c(i, attributes(m2 <- empty(n, count=TRUE))$empty)) if (participant == "lower" & NROW(m2) < 2) break; if (participant == "higher" & NCOL(m2) < 2) break; if (participant == "both" & min(dim(m2)) < 2) break; if (any(dim(n) == 1)) break; if (method=="external") { ext.col[ext.col > ext.col[1]] <- ext.col[ext.col > ext.col[1]] - 1 ext.row[ext.row > ext.row[1]] <- ext.row[ext.row > ext.row[1]] - 1 ext.row <- ext.row[-1] ext.col <- ext.col[-1] } i <- i + 1 } dead2 <- rbind(dead, c(NROW(dead)+1, NROW(m2), NCOL(m2))) if (participant == "lower" & method== "degree"){ if (length(table(dead[,2])) > 1) dead2[,2] <- 1 } if (nrow(dead)+1 != nrow(dead2)) stop("PANIC! Something went wrong with the extinct sequence! Please contact the author to fix this!!") if (participant == "lower") supposed.length <- NROW(web) if (participant == "higher") supposed.length <- NCOL(web) if (participant == "both") supposed.length <- NROW(dead2) if (NROW(dead2) != supposed.length) { missing <- supposed.length - NROW(dead2) addit1 <- (NROW(dead2)+1):(NROW(dead2)+missing) addit2n3 <- rep(0, times=missing) dead2 <- rbind(dead2, as.matrix(data.frame(addit1, addit2n3, addit2n3))) } return(dead2) } if (is.vector(method)) sequence = method if (pmatch(method, c("abundance", "random", "degree", "external")) %in% c(1,3,4)){ out <- one.second.extinct(web=web, participant=participant, method=method, ext.row=ext.row, ext.col=ext.col) } else { o <- replicate(nrep, one.second.extinct(web=web, participant=participant, method=method, ext.row=ext.row, ext.col=ext.col), simplify=FALSE) if (details){ out <- o } else { lengths <- sapply(o, nrow) z <- o[[which.max(lengths)]] z[,2:3] <- 0 for (k in 1:length(o)) { nr <- nrow(o[[k]]) z[1:nr, ] <- z[1:nr, ] + o[[k]] rm(nr) } out <- z/length(o) out[,1] <- 1:max(lengths) } } class(out) <- "bipartite" attr(out, "exterminated") <- c("both", "lower", "higher")[pmatch(participant, c("both", "lower", "higher"))] out }
do_outline_alpha <- function(rp, alpha) { ah = alphahull::ashape(rp,alpha=alpha) return(ah) } do_outline_ball <- function(rp, radius) { gb = rgeos::gBuffer(sp::SpatialPoints(rp), quadsegs=2, width=radius) return(gb) } do_outline_raster <- function(pts,res) { pts <- as.matrix(pts) pr <- padded_range(pts,multiply.interval.amount=0.25) e <- extent(t(pr)) r <- raster::raster(e, ncol=res, nrow=res) x <- raster::rasterize(pts, r, rep(1, nrow(pts)), fun=mean,background=NA) w <- raster::rasterToPolygons(x,dissolve=TRUE) return(w) } plot.Hypervolume <- function(x, ...) { templist = new("HypervolumeList") templist@HVList=list(x) plot.HypervolumeList(templist, ...) } extendrange <- function(x,factor=0.5) { xmin <- min(x,na.rm=TRUE) xmax <- max(x,na.rm=TRUE) xminf <- xmin - (xmax - xmin)*factor xmaxf <- xmax + (xmax - xmin)*factor result <- c(xminf, xmaxf) return(result) } plot.HypervolumeList <- function(x, show.3d=FALSE,plot.3d.axes.id=NULL, show.axes=TRUE, show.frame=TRUE, show.random=TRUE, show.density=TRUE,show.data=TRUE, names=NULL, show.legend=TRUE, limits=NULL, show.contour=TRUE, contour.lwd=1.5, contour.type='kde', contour.alphahull.alpha=0.25, contour.ball.radius.factor=1, contour.kde.level=1e-4, contour.raster.resolution=100, show.centroid=TRUE, cex.centroid=2, colors=rainbow(floor(length(x@HVList)*1.5),alpha=0.8), point.alpha.min=0.2, point.dark.factor=0.5, cex.random=0.5,cex.data=0.75,cex.axis=0.75,cex.names=1.0,cex.legend=0.75, num.points.max.data = 1000, num.points.max.random = 2000, reshuffle=TRUE, plot.function.additional=NULL, verbose=FALSE, ...) { method_is_occupancy <- FALSE if (class(x) == "Hypervolume") { if(identical(x@Method, "n_occupancy") | identical(x@Method, "n_occupancy_test") | identical(x@Method, "n_occupancy_permute")){ method_is_occupancy <- TRUE } } if (class(x)=="HypervolumeList"){ method_list <- unique(unlist(lapply(x@HVList, function(x) x@Method))) if(identical(method_list, "n_occupancy") | identical(method_list, "n_occupancy_test") | identical(method_list, "n_occupancy_permute")){ method_is_occupancy <- TRUE } } if(method_is_occupancy){ if(identical(class(x)[1], "HypervolumeList")){ for(i in 1:length(x@HVList)){ hv_temp <- x@HVList[[i]] x@HVList[[i]]@RandomPoints <- hv_temp@RandomPoints[! is.na(hv_temp@ValueAtRandomPoints), ] x@HVList[[i]]@ValueAtRandomPoints <- hv_temp@ValueAtRandomPoints[! is.na(hv_temp@ValueAtRandomPoints)] hv_temp <- x@HVList[[i]] x@HVList[[i]]@RandomPoints <- hv_temp@RandomPoints[hv_temp@ValueAtRandomPoints != 0, ] x@HVList[[i]]@ValueAtRandomPoints <- hv_temp@ValueAtRandomPoints[hv_temp@ValueAtRandomPoints != 0] } } } if(method_is_occupancy){ columns_to_remove <- 3 } else { columns_to_remove <- 2 } sapply(x@HVList, function(z) { if (verbose==TRUE) { cat(sprintf("Showing %d random points of %d for %s\n",min(nrow(z@RandomPoints), num.points.max.random), nrow(z@RandomPoints), z@Name)) } if (show.data && length(z@Data) > 0) { npd <- ifelse(all(is.nan(z@Data)), 0, nrow(z@Data)) if (verbose==TRUE) { cat(sprintf("Showing %d data points of %d for %s\n",min(num.points.max.data, npd), npd, z@Name)) } } }) if (!requireNamespace("alphahull", quietly = TRUE)) { warning("The package 'alphahull' is needed for contour plotting with contour.type='alphahull'. Please install it to continue.\n\n *** Temporarily setting contour.type='kde'.", call. = FALSE) contour.type <- 'kde' } alldims = sapply(x@HVList, function(z) { z@Dimensionality }) allnames = sapply(x@HVList, function(z) { z@Name }) stopifnot(all(alldims[1] == alldims)) if(method_is_occupancy){ all <- NULL alldata <- NULL for (i in 1:length(x@HVList)) { ivals = sample(nrow(x@HVList[[i]]@RandomPoints), min(c(num.points.max.random, nrow(x@HVList[[i]]@RandomPoints)))) subsampledpoints = data.frame(x@HVList[[i]]@RandomPoints[ivals,,drop=FALSE]) densityvals = x@HVList[[i]]@ValueAtRandomPoints[ivals] if (nrow(subsampledpoints) > 0) { subsampledpoints = cbind(subsampledpoints, ID=rep(i, nrow(subsampledpoints)), Density=(densityvals-min(densityvals,na.rm=TRUE))/(max(densityvals,na.rm=TRUE)-min(densityvals,na.rm=TRUE)), Occupancy = abs(x@HVList[[i]]@ValueAtRandomPoints[ivals])) subsampledpoints[is.nan(subsampledpoints[,"Density"]),"Density"] <- 1 all <- rbind(all, subsampledpoints) } thisdata=x@HVList[[i]]@Data alldata <- rbind(alldata, cbind(thisdata, ID=rep(i,nrow(thisdata)))) } } else { all <- NULL alldata <- NULL for (i in 1:length(x@HVList)) { ivals = sample(nrow(x@HVList[[i]]@RandomPoints), min(c(num.points.max.random, nrow(x@HVList[[i]]@RandomPoints)))) subsampledpoints = data.frame(x@HVList[[i]]@RandomPoints[ivals,,drop=FALSE]) densityvals = x@HVList[[i]]@ValueAtRandomPoints[ivals] if (nrow(subsampledpoints) > 0) { subsampledpoints = cbind(subsampledpoints, ID=rep(i, nrow(subsampledpoints)), Density=(densityvals-min(densityvals,na.rm=TRUE))/(max(densityvals,na.rm=TRUE)-min(densityvals,na.rm=TRUE))) subsampledpoints[is.nan(subsampledpoints[,"Density"]),"Density"] <- 1 all <- rbind(all, subsampledpoints) } thisdata=x@HVList[[i]]@Data alldata <- rbind(alldata, cbind(thisdata, ID=rep(i,nrow(thisdata)))) } } alldata <- as.data.frame(alldata) if (num.points.max.data < nrow(alldata) && !is.null(num.points.max.data)) { alldata <- alldata[sample(nrow(alldata), min(c(num.points.max.data, nrow(alldata)))),] } if (is.null(all)) { warning('No random points to plot.') if (is.null(dimnames(x@HVList[[1]]@RandomPoints)[[2]])) { all <- matrix(0,ncol=2+alldims,nrow=1,dimnames=list(NULL,c(paste("X",1:alldims,sep=""),"ID","Density"))) } else { all <- matrix(0,ncol=2+alldims,nrow=1,dimnames=list(NULL,c(dimnames(x@HVList[[1]]@RandomPoints)[[2]],"ID","Density"))) } all <- as.data.frame(all) } if (reshuffle==TRUE) { all <- all[sample(nrow(all),replace=FALSE),,drop=FALSE] alldata <- alldata[sample(nrow(alldata),replace=FALSE),,drop=FALSE] } no_names_supplied = FALSE if (is.null(names)) { dn = dimnames(all)[[2]] names = dn[1:(ncol(all)-columns_to_remove)] no_names_supplied = TRUE } if (!is.null(limits) & !is.list(limits)) { varlimlist = vector('list',ncol(all)-2) for (i in 1:length(varlimlist)) { varlimlist[[i]] <- limits } limits = varlimlist } colorlist <- colors[all$ID] alphavals <- (all$Density - quantile(all$Density, 0.025, na.rm=T)) / (quantile(all$Density, 0.975, na.rm=T) - quantile(all$Density,0.025, na.rm=T)) alphavals[is.nan(alphavals)] <- 0.5 alphavals[alphavals < 0] <- 0 alphavals[alphavals > 1] <- 1 alphavals <- point.alpha.min + (1 - point.alpha.min)*alphavals if (show.density==FALSE) { alphavals <- rep(1, length(colorlist)) } for (i in 1:length(colorlist)) { colorlist[i] <- rgb_2_rgba(colorlist[i], alphavals[i]) } colorlistdata = colors[alldata$ID] for (i in 1:length(colorlistdata)) { colorlistdata[i] <- rgb_2_set_hsv(colorlistdata[i], v=1-point.dark.factor) } if (ncol(all) < 2) { stop('Plotting only available in n>=2 dimensions.') } if (show.3d==FALSE) { op = par(no.readonly = T) par(mfrow=c(ncol(all)-columns_to_remove, ncol(all)-columns_to_remove)) par(mar=c(0,0,0,0)) par(oma=c(0.5,0.5,0.5,0.5)) for (i in 1:(ncol(all)-columns_to_remove)) { for (j in 1:(ncol(all)-columns_to_remove)) { if (j > i) { plot(all[,j], all[,i],type="n",axes=FALSE,xlim=limits[[j]], ylim=limits[[i]],bty='n') if(show.random==TRUE) { if(method_is_occupancy){ cex.occupancy <- all[, "Occupancy"] points(all[,j], all[,i], col=colorlist, cex= cex.occupancy / max(cex.occupancy) * cex.random, pch = 16) } else { points(all[,j], all[,i], col=colorlist,cex=cex.random,pch=16) } } if (show.data & nrow(alldata) > 0) { points(alldata[,j], alldata[,i], col=colorlistdata,cex=cex.data,pch=16) } if (show.centroid == TRUE) { for (whichid in 1:length(unique(all$ID))) { allss <- subset(all, all$ID==whichid) if(method_is_occupancy){ centroid_x <- weighted.mean(allss[,j], cex.occupancy[all$ID==whichid], na.rm=TRUE) centroid_y <- weighted.mean(allss[,i], cex.occupancy[all$ID==whichid], na.rm=TRUE) } else{ centroid_x <- mean(allss[,j],na.rm=TRUE) centroid_y <- mean(allss[,i],na.rm=TRUE) } points(centroid_x, centroid_y, col=colors[whichid],cex=cex.centroid,pch=16) points(centroid_x, centroid_y, col='white',cex=cex.centroid,pch=1,lwd=1.5) } } if (show.contour==TRUE) { for (whichid in 1:length(unique(all$ID))) { allss <- subset(all, all$ID==whichid) if (nrow(allss) > 0) { contourx <- allss[,j] contoury <- allss[,i] rp = cbind(contourx, contoury) vol_this = x@HVList[[whichid]]@Volume density_this = nrow(rp) / vol_this dim_this = x@HVList[[whichid]]@Dimensionality radius_critical <- density_this^(-1/dim_this) * contour.ball.radius.factor if (contour.type=='alphahull') { poly_outline = do_outline_alpha(rp=rp, alpha=contour.alphahull.alpha) plot(poly_outline,add=TRUE,wpoints=FALSE,wlines='none',lwd=contour.lwd,col=colors[whichid]) } else if (contour.type=='ball') { poly_outline <- do_outline_ball(rp=rp, radius=radius_critical) sp::plot(poly_outline, add=TRUE,lwd=contour.lwd,col=colors[whichid]) } else if (contour.type=='kde') { if (nrow(rp) > 1) { m_kde = kde2d(rp[,1], rp[,2], n=50, h=radius_critical) contour(m_kde, add=TRUE, levels=contour.kde.level,drawlabels=FALSE,lwd=contour.lwd,col=colors[whichid]) } } else if (contour.type=='raster') { poly_raster <- do_outline_raster(as.matrix(rp),res=contour.raster.resolution) sp::plot(poly_raster, add=TRUE, lwd=contour.lwd,col=colors[whichid]) } } } } if (!is.null(plot.function.additional)) { plot.function.additional(j,i) } if (show.frame==TRUE) { box() } } else if (j == i) { plot(0,0,type="n",xlim=c(0,1),ylim=c(0,1),axes=FALSE) text(0.5, 0.5, names[j],cex=cex.names) } else if (j==1 & i == (ncol(all) - columns_to_remove)) { plot(0,0,type="n",xlim=c(0,1),ylim=c(0,1),axes=FALSE) if (show.legend == TRUE) { legend('topleft',legend=allnames,text.col=colors,bty='n',cex=cex.legend) } } else { plot(0,0,type="n",axes=FALSE) } if (j==i+1) { if (show.axes==TRUE) { axis(side=1,cex.axis=cex.axis) axis(side=2,cex.axis=cex.axis) } } } } par(op) } else { if (is.null(plot.3d.axes.id)) { plot.3d.axes.id=1:3 } if (no_names_supplied==TRUE) { axesnames <- names[plot.3d.axes.id] } else { axesnames <- names } if(length(plot.3d.axes.id)!=3) { stop('Must specify three axes') } if (show.density==TRUE) { for (i in 1:length(colorlist)) { colorlist[i] <- rgb_2_set_hsv(colorlist[i], s=(alphavals[i]^2)) } } rgl::plot3d(all[,plot.3d.axes.id],col=colorlist,expand=1.05, xlab=axesnames[1], ylab=axesnames[2], zlab=axesnames[3], xlim=limits[[1]],ylim=limits[[2]],zlim=limits[[3]],size=cex.random,type='p',box=show.frame,axes=show.axes) if (show.legend==TRUE) { for (i in 1:length(allnames)) { rgl::mtext3d(allnames[i],edge='x-+',line=1+i*cex.legend*1.25,color=colors[i],cex=cex.legend) } } if (show.data) { if (!any(is.nan(as.matrix(alldata[,plot.3d.axes.id])))) { rgl::points3d(x=alldata[,plot.3d.axes.id[1]], y=alldata[,plot.3d.axes.id[2]], z=alldata[,plot.3d.axes.id[3]], col=colorlistdata,cex=cex.data,pch=16) } } if (show.centroid == TRUE) { for (whichid in 1:length(unique(all$ID))) { allss <- subset(all, all$ID==whichid) centroid_1 <- mean(allss[,plot.3d.axes.id[1]],na.rm=TRUE) centroid_2 <- mean(allss[,plot.3d.axes.id[2]],na.rm=TRUE) centroid_3 <- mean(allss[,plot.3d.axes.id[3]],na.rm=TRUE) rgl::points3d(x=centroid_1, y=centroid_2, z=centroid_3, col=colors[whichid],cex=cex.centroid,pch=16) } } } }
med_se = function(x,B){ B_median = rep(0,B) n = length(x) for (i in 1:B) { id = sample(1:n,n,replace=T) B_median[i] = median(x[id]) } return(sd(B_median)/sqrt(B)) } tnorm <- function(x){ s=sum(as.vector(x)*as.vector(x)) return(s) } tinner = function(A,B){ s = sum(as.vector(A)*as.vector(B)) return(s) } krondet = function(X,log=TRUE){ M = length(X) dimen = sapply(X, ncol) p = prod(dimen) logdet = log(sapply(X, det)) mydet = p*sum(logdet/dimen) if(log){ return(mydet) } else{ return(exp(mydet)) } } tensrloglk = function(X, espi, Mu, SIG){ n = length(X) dimen = dim(X[[1]]) M = length(dimen) p = prod(dimen) K = length(Mu) SIGinv = lapply(SIG, MASS::ginv) Siginv = mkronecker(SIGinv) logSIGdet = krondet(SIG,log=TRUE) B = array(list(),K-1) for (k in 2:K) { B[[k-1]] = tensr::atrans(Mu[[k]]-Mu[[1]], SIGinv) } loglk = 0 for (i in 1:n){ x_mu1 = matrix(X[[i]]-Mu[[1]],ncol=1) dis_mu1 = t(x_mu1) %*% Siginv %*% x_mu1 logf1 = -p*log(2*pi)/2 - logSIGdet/2 - dis_mu1/2 for (k in 2:K){ temp = espi[1] logfkoverf1 = tinner(B[[k-1]], X[[i]]-(Mu[[k]]+Mu[[1]])/2) fkoverf1 = exp(logfkoverf1) temp = temp + espi[k]*fkoverf1 } loglk = loglk+log(temp)+logf1 } return(loglk) } distortion <- function(x, y, K){ n=length(y) muall=array(0,dim=dim(x[[1]])) for (i in 1:n){ muall=muall+x[[i]] } muall=muall/n mu=array(list(),K) n.fit=rep(0,K) for (i in 1:K){ mu[[i]]=array(0,dim=dim(x[[1]])) } SSb=0 for (i in 1:n){ mu[[y[i]]]=mu[[y[i]]]+x[[i]] n.fit[y[i]]=n.fit[y[i]]+1 SSb=SSb+tnorm(x[[i]]-muall) } for (i in 1:K){ mu[[i]]=mu[[i]]/n.fit[i] } SSw=0 for (i in 1:n){ SSw=SSw+tnorm(x[[i]]-mu[[y[i]]]) } SSb=SSb-SSw dist=SSw/SSb }
library(lfe) set.seed(43) options(lfe.threads=2,digits=5,warn=1) g1 <- 80 g2 <- 20 g3 <- 12 N <- 1000 clu1 <- sample(g1,N, replace=TRUE) clu2 <- (clu1 + sample(7,N,replace=TRUE)-1) %% g2 clu3 <- (clu2 + sample(3,N,replace=TRUE)-1) %% g3 clu1 <- factor(clu1) clu2 <- factor(clu2) clu3 <- factor(clu3) ceff1 <- rnorm(nlevels(clu1), sd=0.5)[clu1] ceff2 <- rnorm(nlevels(clu2), sd=0.4)[clu2] ceff3 <- rnorm(nlevels(clu3))[clu3] err1 <- rnorm(nlevels(clu1), sd=0.8)[clu1] err2 <- rnorm(nlevels(clu2))[clu2] err3 <- rnorm(nlevels(clu3), sd=0.5)[clu3] x1 <- ceff1 + 0.3*ceff2 + rnorm(N) x2 <- ceff2 + 0.2*ceff3 + rnorm(N) x3e <- ceff3 + 0.2*(ceff2+ceff1) + rnorm(N) f1 <- factor(sample(8,N,replace=TRUE)) x3 <- as.vector(as(f1,'sparseMatrix') %*% x3e)[f1]/tabulate(f1)[f1] err <- err1 + err2 + err3 + abs(x1+x2*x3)*rnorm(N) y <- x1 + x2 + x3 + err data <- data.frame(y,x1,x2,x3,f1,clu1,clu2,clu3) clu <- list('clu1', 'clu2', 'clu3') summary(felm(y ~ x1 + x2 + f1|0|0|clu1+clu2+clu3, data))
context("Visualize clinical data with a static scatterplot") test_that("The axis and color labels are correctly set to the variable names by default in the scatterplot", { data <- data.frame( A = c(1, 1, 2, 3), B = c(2, 4, 1, 3), C = c("trt1", "trt1", "trt2", "trt2"), stringsAsFactors = FALSE ) gPlot <- clinDataReview:::staticScatterplotClinData( data = data, xVar = "A", yVar = "B", aesPointVar = list(color = "C") ) expect_s3_class(gPlot, "ggplot") expect_type(gPlot$labels, "list") expect_equal(object = gPlot$labels$x, expected = "A") expect_equal(object = gPlot$labels$y, expected = "B") expect_equal(object = gPlot$labels$colour, expected = "C") }) test_that("The axis and color labels are correctly extracted from the labels of all variables in the scatterplot", { data <- data.frame( A = c(1, 1, 2, 3), B = c(2, 4, 1, 3), C = c("trt1", "trt1", "trt2", "trt2"), stringsAsFactors = FALSE ) labelVars <- c(A = "var1", B = "var2", C = "colorVar") gPlot <- clinDataReview:::staticScatterplotClinData( data = data, xVar = "A", yVar = "B", aesPointVar = list(color = "C"), labelVars = labelVars ) expect_s3_class(gPlot, "ggplot") expect_type(gPlot$labels, "list") expect_equal(object = gPlot$labels$x, expected = "var1") expect_equal(object = gPlot$labels$y, expected = "var2") expect_equal(object = gPlot$labels$colour, expected = "colorVar") }) test_that("A warning is generated if an axis transformation is specified both in the x-axis transformation and general parameters in the scatterplot", { data <- data.frame( A = c(1, 1, 2, 3), B = c(2, 4, 1, 3), C = c("trt1", "trt1", "trt2", "trt2") ) expect_warning( clinDataReview:::staticScatterplotClinData( data = data, xVar = "A", yVar = "B", aesPointVar = list(color = "C"), xTrans = "log", xPars = list(trans = "log") ), "'trans' in parameters for x axis are ignored" ) })
.getReturns4GARCH <- function() { if ("rugarch" %in% (.packages())) {print("package rugarch is loaded")} else { eval(parse( text="library(rugarch)"))} name <- tclvalue(tkgetOpenFile( filetypes = "{ {RData Files} {.RData} } { {All Files} * }")) if (name == "") return(data.frame()) temp=print(load(name)) dataz=eval(parse(text=temp)) dat=na.omit(diff(log(dataz))) dat=xts::as.xts(dat) assign("retDF", dat, envir = .JFEEnv) cat("Returns data is imported sucessfully","\n") print(tail(dat,2));print(head(dat,2)) cat("\n") } .getRawData4GARCH <- function() { name <- tclvalue(tkgetOpenFile( filetypes = "{ {RData Files} {.RData} {.rda}} { {All Files} * }")) if (name == "") return(data.frame()) temp=print(load(name)) dat=eval(parse(text=temp)) assign("retDF", dat, envir = .JFEEnv) importedFileName=last(unlist(strsplit(name,"/"))) assign("importedFileName", importedFileName, envir = .JFEEnv) print(paste("You are loading ",importedFileName,sep=" ")) print(tail(dat,2));print(head(dat,2)) cat("\n") } .garch <- function(datx0, home,exoInd,exoGARCH,model,distribution,arch,garch,archm,AR,MA,arfima){ dat=datx0 Y=dat[,home] archOrder=as.numeric(arch) garchOrder=as.numeric(garch) arOrder=as.numeric(AR) maOrder=as.numeric(MA) if (archm=="FALSE") {archmTF=eval(parse(text=archm))} else {archmTF=TRUE} if (arfima=="FALSE") {arfimaTF=eval(parse(text=arfima))} else {arfimaTF=TRUE} if (exoInd == "None") { meanSpec=list(armaOrder=c(arOrder,maOrder),include.mean=TRUE,archm=archmTF,archpow = archm, external.regressors = NULL,arfima = arfimaTF)} else { x_mean=dat[,exoInd] meanSpec=list(armaOrder=c(arOrder,maOrder),include.mean=TRUE,archm=archmTF,archpow = archm, external.regressors = as.matrix(x_mean),arfima = arfimaTF) } if (exoGARCH == "None"){ varSpec=list(model=model,garchOrder=c(archOrder,garchOrder),external.regressors=NULL)} else { x_garch=dat[,exoGARCH] varSpec=list(model=model,garchOrder=c(archOrder,garchOrder),external.regressors=as.matrix(x_garch)) } distSpec=distribution mySpec=rugarch::ugarchspec(mean.model=meanSpec, variance.model=varSpec, distribution.model=distSpec) myFit = rugarch::ugarchfit(data= Y, spec=mySpec,solver="hybrid") cat("\n","Parameter Estimates","\n") print(round(myFit@fit$matcoef,4)) cat("\n","Nyblom test","\n") print(rugarch::nyblom(myFit)) cat("\n","Sign Bias Test","\n") print(rugarch::signbias(myFit)) cat("\n","Goodness-of-Fit Test","\n") print(rugarch::gof(myFit,c(20,30,40,50))) cat("\n","Info Criteria","\n") print(rugarch::infocriteria(myFit)) cat("\n","Likelihood","\n") print(rugarch::likelihood(myFit)) savedFile=paste0(model,"_",distSpec,"_",archOrder,garchOrder,".RData") cat("\n","The estimation output is saved as ",savedFile,"\n","at ", getwd()) save(myFit,file=savedFile) } .garchMenu <- function(){ retAS=get("retDF",envir = .JFEEnv) top <- tktoplevel(borderwidth=10) tkwm.title(top, "Univariate GARCH") xBox <- .variableListBox(top, colnames(retAS), title="Pick One") xBoxEXO <- .variableListBox(top, c("None",colnames(retAS)), title="External Xs in MEAN", selectmode = "extended") xBoxVAREXO <- .variableListBox(top, c("None",colnames(retAS)), title="External Xs in GARCH", selectmode = "extended") onOK <- function(){ home <- .getSelection(xBox) exoInd <- .getSelection(xBoxEXO) exoGARCH <- .getSelection(xBoxVAREXO) if (ncol(retAS) == 0){ tkmessageBox(message = "You must import a dataset", icon = "error", type = "ok") return() } FREQtype <- tclvalue(freqVariable) model <- tclvalue(modelVariable) distribution <- tclvalue(distVariable) arch <- tclvalue(archVariable) garch <- tclvalue(garchVariable) archm <- tclvalue(archmVariable) AR <- tclvalue(arVariable) MA <- tclvalue(maVariable) arfima <- tclvalue(arfimaVariable) if (FREQtype=="daily"){ x=retAS } else { transForm=paste0("xts::to.",FREQtype,"(retAS,indexAt='endof',OHLC = FALSE)") x=eval(parse(text=transForm)) } .garch(x,home,exoInd,exoGARCH,model,distribution,arch,garch,archm,AR,MA,arfima) } tkgrid(.getFrame(xBox),.getFrame(xBoxEXO),.getFrame(xBoxVAREXO), sticky="n") rightFrame <- tkframe(top) freqFrame <- tkframe(rightFrame) .radioButtons(top,name="freq", buttons=c("Daily", "Week", "Month","Quarter"), values=c("daily", "weekly", "monthly", "quarterly"), labels=c("Daily Frequency (Default)", "Weekly Frequency", "Monthly Frequency","Quarterly Frequency"), title="Frequency Conversion") freqVariable <- freqVariable tkgrid(freqFrame,rightFrame,sticky="w") models=c("sGARCH","gjrGARCH","eGARCH","iGARCH","apARCH") modelFrame <- tkframe(rightFrame) .radioButtons(top,name="model", buttons=models, values=c("sGARCH","gjrGARCH","eGARCH","iGARCH","apARCH"), labels=c("standard GARCH","gjr GARCH","exponential GARCH","integrated GARCH","asymmetric power GARCH"), title="GARCH models") modelVariable <- modelVariable tkgrid(modelFrame,sticky="w") Dists=c("norm", "snorm", "std", "sstd", "ged","sged", "nig", "jsu") distFrame <- tkframe(rightFrame) .radioButtons(top,name="dist", buttons=Dists, values=Dists, labels=c("Normal Distribution", "skewed Normal Distribution", "Student t Distribution", "skewed Student t Distribution", "GED Distribution","skewed GED Distribution", "Negative Inverse Gaussian Distribution", "Johnson's SU-distribution"), title="Distributions") distVariable <- distVariable tkgrid(distFrame,sticky="w") archFrame <- tkframe(rightFrame) archVariable <- tclVar("1") archField <- tkentry(archFrame,width="4",textvariable=archVariable) tkgrid(tklabel(archFrame,text="ARCH term= ", fg="blue"), archField, sticky="w") tkgrid(archFrame,sticky="w") garchFrame <- tkframe(rightFrame) garchVariable <- tclVar("1") garchField <- tkentry(garchFrame, width="4", textvariable=garchVariable) tkgrid(tklabel(garchFrame, text="GARCH term = ", fg="blue"), garchField, sticky="w") tkgrid(garchFrame, sticky="w") archmFrame <- tkframe(rightFrame) archmVariable <- tclVar("FALSE") archmField <- tkentry(archmFrame, width="6", textvariable=archmVariable) tkgrid(tklabel(archmFrame, text="Garch-in-Mean power. Enter 1 for order", fg="blue"), archmField, sticky="w") tkgrid(archmFrame, sticky="w") arFrame <- tkframe(rightFrame) arVariable <- tclVar("0") arField <- tkentry(arFrame,width="4",textvariable=arVariable) tkgrid(tklabel(arFrame,text="AR in mean= ", fg="blue"), arField, sticky="w") tkgrid(arFrame, sticky="w") maFrame <- tkframe(rightFrame) maVariable <- tclVar("0") maField <- tkentry(maFrame, width="4", textvariable=maVariable) tkgrid(tklabel(maFrame, text="MA in mean = ", fg="blue"), maField, sticky="w") tkgrid(maFrame, sticky="w") arfimaFrame <- tkframe(rightFrame) arfimaVariable <- tclVar("FALSE") arfimaField <- tkentry(arfimaFrame, width="6", textvariable=arfimaVariable) tkgrid(tklabel(arfimaFrame, text="ARFIMA diff. Enter TRUE for yes ", fg="blue"), arfimaField, sticky="w") tkgrid(arfimaFrame, sticky="w") buttonsFrame <- tkframe(top,width=250) tkgrid(buttonsFrame, columnspan=2, sticky="w") okButton <- tkbutton(buttonsFrame, text = "OK", command = onOK, anchor = "center", relief="ridge", width = "9") tkbind(top,"Q",function() tcl(okButton,"invoke")) tkfocus(okButton) tkconfigure(okButton,foreground="red",font=tkfont.create(size=9,weight="bold")) tkpack(okButton, side = "left",fill = "x",ipady=2) quitCMD <- function(){ tkdestroy(top) } quitButton<-tkbutton(buttonsFrame, text = "Quit", command = quitCMD, anchor = "center",relief="ridge",width = "9") tkconfigure(quitButton,foreground="red",font=tkfont.create(size=9,weight="bold")) tkpack(quitButton, side = "left",fill = "x",ipady=2) tkfocus(top) }
setClass( Class = "KingOfTheFields" ) setClass( Class = "KingOfTheTown" ) setClass( Class = "KingOfTheEarth", contains = c("KingOfTheTown", "KingOfTheFields") ) setClass( Class = "KingOfTheSky", contains = c("KingOfTheEarth") )
library(testthat) library(prodlim) library(data.table) context("Prodlim") test_that("competing risk in case of only one event",{ set.seed(10) d <- SimSurv(10) setDT(d) d[,event:=factor(event,levels=c(0,1),labels=c("0","2"))] f <- prodlim(Hist(time,event)~X1,data=d) predict(f,cause="2",times=4,newdata=data.frame(X1=1)) expect_error(predict(f,cause="1",times=4,newdata=data.frame(X1=1))) set.seed(10) dd <- SimCompRisk(20) F <- prodlim(Hist(time,event)~X1,data=dd) predict(F,cause="1",times=4,newdata=data.frame(X1=0:1)) expect_equal(lapply(predict(F,cause=2,times=4,newdata=data.frame(X1=0:1)),round,4),list(`X1=0`=0.0714,`X1=1`=0)) expect_error(predict(F,cause=3,times=4,newdata=data.frame(X1=0:1))) expect_error(summary(F,cause=3)) expect_error(plot(F,cause=3)) }) test_that("strata",{ d <- data.frame(time=1:3,status=c(1,0,1),a=c(1,9,9),b=factor(c(0,1,0))) expect_output(print(prodlim(Hist(time,status)~b+factor(a),data=d))) }) test_that("prodlim",{ library(lava) library(riskRegression) library(etm) m <- crModel() addvar(m) <- ~X1+X2+X3+X4+X5+X6 distribution(m,"X3") <- binomial.lvm() distribution(m,"X4") <- normal.lvm(mean=50,sd=10) distribution(m,"eventtime1") <- coxWeibull.lvm(scale=1/200) distribution(m,"censtime") <- coxWeibull.lvm(scale=1/1000) m <- categorical(m,K=4,eventtime1~X5,beta=c(1,0,0,0),p=c(0.1,0.2,0.3)) m <- categorical(m,K=3,eventtime1~X1,beta=c(2,1,0),p=c(0.3,0.2)) regression(m,to="eventtime1",from=c("X2","X4")) <- c(0.3,0) regression(m,to="eventtime2",from=c("X2","X4")) <- c(0.6,-0.07) set.seed(17) d <- sim(m,200) d$X1 <- factor(d$X1,levels=c(0,1,2),labels=c("low survival","medium survival","high survival")) d$X5 <- factor(d$X5,levels=c("0","1","2","3"),labels=c("one","two","three","four")) d$Event <- factor(d$event,levels=c("0","1","2"),labels=c("0","cause-1","cause-2")) d$status <- 1*(d$event!=0) head(d) s0 <- prodlim(Hist(time,status)~1,data=d) print(s0) summary(s0,intervals=TRUE) stats::predict(s0,times=1:10) su <- prodlim(Hist(time,status)~1,data=d,subset=d$X1=="medium survival") print(su) s1 <- prodlim(Hist(time,status)~X1,data=d) print(s1) summary(s1,intervals=TRUE,newdata=data.frame(X1=c("medium survival","high survival","low survival"))) stats::predict(s1,times=0:10,newdata=data.frame(X1=c("medium survival","low survival","high survival"))) s2 <- prodlim(Hist(time,status)~X2,data=d) print(s2) summary(s2,intervals=TRUE) stats::predict(s2,times=0:10,newdata=data.frame(X2=quantile(d$X2))) s1a <- prodlim(Hist(time,status)~X1+X3,data=d) print(s1a) summary(s1a,intervals=TRUE) stats::predict(s1a,times=0:10,newdata=expand.grid(X1=levels(d$X1),X3=unique(d$X3))) s3 <- prodlim(Hist(time,status)~X1+X2,data=d) print(s3) summary(s3,intervals=TRUE) stats::predict(s3,times=0:10,newdata=expand.grid(X1=levels(d$X1),X2=c(quantile(d$X2,0.05),median(d$X2)))) f0 <- prodlim(Hist(time,event)~1,data=d) print(f0) summary(f0,intervals=TRUE) stats::predict(f0,times=1:10) f1 <- prodlim(Hist(time,event)~X1,data=d) print(f1) summary(f1,intervals=TRUE,newdata=data.frame(X1=c("medium survival","high survival","low survival"))) stats::predict(f1,times=0:10,newdata=data.frame(X1=c("medium survival","low survival","high survival"))) f2 <- prodlim(Hist(time,event)~X2,data=d) print(f2) summary(f2,intervals=TRUE) stats::predict(f2,times=0:10,newdata=data.frame(X2=quantile(d$X2))) f1a <- prodlim(Hist(time,event)~X1+X3,data=d) print(f1a) summary(f1a,intervals=TRUE) stats::predict(f1a,times=0:10,newdata=expand.grid(X1=levels(d$X1),X3=unique(d$X3))) f3 <- prodlim(Hist(time,event)~X1+X2,data=d) print(f3) summary(f3,intervals=TRUE) stats::predict(f3,times=0:10,newdata=expand.grid(X1=levels(d$X1),X2=c(quantile(d$X2,0.05),median(d$X2)))) data(pbc) prodlim.0 <- prodlim(Hist(time,status!=0)~1,data=pbc) survfit.0 <- survfit(Surv(time,status!=0)~1,data=pbc) ttt <- sort(unique(d$time)[d$event==1]) ttt <- ttt[-length(ttt)] sum0.s <- summary(survfit.0,times=ttt) testdata <- data.frame(time=c(16.107812,3.657545,1.523978),event=c(0,1,1)) sum0 <- summary(survfit(Surv(time,event)~1,data=testdata),times=sort(testdata$time)) testdata$timeR <- round(testdata$time,1) sum1 <- summary(survfit(Surv(timeR,event)~1,data=testdata),times=sort(testdata$time)) sum0 sum1 result.survfit <- data.frame(time=sum0.s$time,n.risk=sum0.s$n.risk,n.event=sum0.s$n.event,surv=sum0.s$surv,std.err=sum0.s$std.err,lower=sum0.s$lower,upper=sum0.s$upper) result.prodlim <- data.frame(summary(prodlim.0,times=ttt)$table[,c("time","n.risk","n.event","n.lost","surv","se.surv","lower","upper")]) cbind(result.survfit[,c("time","n.risk","n.event","surv")],result.prodlim[,c("time","n.risk","n.event","surv")]) a <- round(result.survfit$surv,8) b <- round(result.prodlim$surv[!is.na(result.prodlim$se.surv)],8) if (all(a==b)){cat("\nOK\n")}else{cat("\nERROR\n")} if (all(round(result.survfit$std.err,8)==round(result.prodlim$se.surv[!is.na(result.prodlim$se.surv)],8))){cat("\nOK\n")}else{cat("\nERROR\n")} pbc <- pbc[order(pbc$time,-pbc$status),] set.seed(17) boot <- sample(1:NROW(pbc),size=NROW(pbc),replace=TRUE) boot.weights <- table(factor(boot,levels=1:NROW(pbc))) s1 <- prodlim(Hist(time,status>0)~1,data=pbc,caseweights=boot.weights) s2 <- prodlim(Hist(time,status>0)~1,data=pbc[sort(boot),]) }) test_that("weigths, subset and smoothing",{ d <- SimSurv(100) f1 <- prodlim(Hist(time,status)~X2,data=d) f2 <- prodlim(Hist(time,status)~X2,data=d,caseweights=rep(1,100)) expect_equal(f1$surv,f2$surv) d <- SimSurv(100) d <- data.frame(d, group = c(rep(1, 70), rep(0,30))) f1a <- prodlim(Hist(time,status)~X2,data=d, caseweights = rep(1, 100), subset = d$group==1,bandwidth=0.1) f1b <- prodlim(Hist(time,status)~X2,data=d[d$group==1, ], caseweights = rep(1, 100)[d$group==1], bandwidth=0.1) f1a$call <- f1b$call expect_equal(f1a,f1b) f1 <- prodlim(Hist(time,status)~X1,data=d, subset = d$group==1) f2 <- prodlim(Hist(time,status)~X1,data=d,caseweights=d$group) expect_equal(unique(f1$surv),unique(f2$surv)) expect_equal(predict(f1,newdata = d[1, ], times = 5), predict(f2, newdata = d[1, ], times = 5)) }) test_that("weights and delay",{ library(survival) library(survey) library(SmoothHazard) library(etm) pbc <- pbc[order(pbc$time,-pbc$status),] set.seed(17) pbc$randprob <- abs(rnorm(NROW(pbc))) dpbc <- svydesign(id=~id, weights=~randprob, strata=NULL, data=pbc) survey.1<-svykm(Surv(time,status>0)~1, design=dpbc) prodlim.1 <- prodlim(Hist(time,status>0)~1,data=pbc,caseweights=pbc$randprob) pbc$entry <- round(pbc$time/5) survfit.delay <- survfit(Surv(entry,time,status!=0)~1,data=pbc) prodlim.delay <- prodlim(Hist(time,status!=0,entry=entry)~1,data=pbc) pbc0 <- pbc pbc0$entry <- round(pbc0$time/5) survfit.delay.edema <- survfit(Surv(entry,time,status!=0)~edema,data=pbc0) prodlim.delay.edema <- prodlim(Hist(time,status!=0,entry=entry)~edema,data=pbc0) data(abortion) cif.ab.etm <- etmCIF(Surv(entry, exit, cause != 0) ~ 1,abortion,etype = cause,failcode = 3) cif.ab.prodlim <- prodlim(Hist(time=exit, event=cause,entry=entry) ~ 1,data=abortion) plot(cif.ab.etm,lwd=8,col=3) plot(cif.ab.prodlim,add=TRUE,lwd=4,col=5,cause=3) data(abortion) x <- prodlim(Hist(time=exit, event=cause,entry=entry) ~ 1,data=abortion) x0 <- etmCIF(Surv(entry, exit, cause != 0) ~ 1,abortion,etype = cause) graphics::par(mfrow=c(2,2)) cif.ab.etm <- etmCIF(Surv(entry, exit, cause != 0) ~ 1,abortion,etype = cause,failcode = 3) cif.ab.prodlim <- prodlim(Hist(time=exit, event=cause,entry=entry) ~ 1,data=abortion) data(abortion) cif.ab.etm <- etmCIF(Surv(entry, exit, cause != 0) ~ group,abortion,etype = cause,failcode = 3) names(cif.ab.etm[[1]]) head(cbind(cif.ab.etm[[1]]$time,cif.ab.etm[[1]]$n.risk)) cif.ab.prodlim <- prodlim(Hist(time=exit, event=cause,entry=entry) ~ group,data=abortion) testdata <- data.frame(entry=c(1,5,2,8,5),exit=c(10,6,4,12,33),event=c(0,1,0,1,0)) cif.test.etm <- etmCIF(Surv(entry, exit, event) ~ 1,data=testdata,etype = event,failcode = 1) cif.test.survival <- survfit(Surv(entry, exit, event) ~ 1,data=testdata) cif.test.prodlim <- prodlim(Hist(exit,event,entry=entry)~1,data=testdata) mod <- idmModel(K=10,schedule=0,punctuality=1) regression(mod,from="X",to="lifetime") <- log(2) regression(mod,from="X",to="waittime") <- log(2) regression(mod,from="X",to="illtime") <- log(2) set.seed(137) testdata <- round(sim(mod,250),1) illdata <- testdata[testdata$illstatus==1,] illdata <- illdata[order(illdata$lifetime,-illdata$seen.exit),] survfit.delayed.ill <- survfit(Surv(illtime,lifetime,seen.exit)~1,data=illdata) prodlim.delayed.ill <- prodlim(Hist(lifetime,seen.exit,entry=illtime)~1,data=illdata) }) test_that("interval censored",{ library(SmoothHazard) m <- idmModel(scale.illtime=1/70, shape.illtime=1.8, scale.lifetime=1/50, shape.lifetime=0.7, scale.waittime=1/30, shape.waittime=0.7) d <- round(sim(m,6),1) icens <- prodlim(Hist(time=list(L,R),event=seen.ill)~1,data=d) }) test_that("left truncation: survival",{ library(prodlim) library(data.table) library(survival) dd <- data.table(entry=c(1,1,56,1,1,225,277,1647,1,1), time=c(380,46,217,107,223,277,1638,2164,45,40), status=c(1,0,1,1,0,0,0,1,0,1)) prodlim.delayed <- prodlim(Hist(time,status,entry=entry)~1,data=dd) data.table(time=prodlim.delayed$time,n.risk=prodlim.delayed$n.risk,n.event=prodlim.delayed$n.event,n.lost=prodlim.delayed$n.lost) summary(prodlim.delayed,times=c(0,10,56,267,277,1000,2000)) survfit.delayed <- survfit(Surv(entry,time,status)~1,data=dd) summary(prodlim.delayed,times=c(0,10,40),intervals=TRUE) summary(survfit.delayed,times=c(0,1,10,40,50)) summary.survfit.delayed <- summary(survfit.delayed,times=c(0,10,56,267,277,1000,2000)) summary.prodlim.delayed <- summary(prodlim.delayed,times=c(0,10,56,267,277,1000,2000),intervals=1) expect_equal(as.numeric(summary.survfit.delayed$surv), as.numeric(summary.prodlim.delayed$table[,"surv"])) })
load("EBP/incomedata.RData") load("EBP/incomedata_woTeruel.RData") load("EBP/Xoutsamp_AuxVar.RData") test_that("Does monte_carlo function give benchmark results?", { suppressWarnings(RNGversion("3.5.0")) framework <- framework_ebp(income ~ educ1, Xoutsamp_AuxVar, "provlab", incomedata, "provlab", 4282.081, custom_indicator = NULL, na.rm = TRUE, weights = NULL) ebp_optpar_bc <- read.csv2("EBP/ebp_optpar_bc.csv", sep = ",", stringsAsFactors = TRUE) ebp_shift_bc <- read.csv2("EBP/ebp_shift_bc.csv", sep = ",", stringsAsFactors = TRUE) lambda <- as.numeric(as.character(ebp_optpar_bc[,"Optpar"])) shift <- as.numeric(as.character(ebp_shift_bc)) transformation_par <- data_transformation(fixed = income ~ educ1, smp_data = framework$smp_data, transformation = "box.cox", lambda = lambda ) mixed_model <- lme(fixed = income~educ1, data = transformation_par$transformed_data , random = as.formula(paste0("~ 1 | as.factor(", framework$smp_domains, ")")), method = "REML") est_par <- model_par(mixed_model = mixed_model, framework = framework ) gen_par <- gen_model(model_par = est_par, fixed = income~educ1, framework = framework ) set.seed(100) point <- monte_carlo(transformation = "box.cox", L = 2, framework = framework, lambda = lambda, shift = shift, model_par = est_par, gen_model = gen_par ) ebp_point_bc <- read.csv2("EBP/ebp_point_bc.csv", sep = ",", stringsAsFactors = TRUE) expect_equal(point[,"Quantile_10"], as.numeric(as.character(ebp_point_bc[,"quant10"]))) expect_equal(point[,"Head_Count"], as.numeric(as.character(ebp_point_bc[,"hcr"]))) })
ICSKATwrapper <- function(left_dmat, right_dmat, initValues, lt, rt, obs_ind, tpos_ind, gMat, PH=TRUE, nKnots=1, maxIter=3, eps=10^(-6), runOnce = FALSE, returnNull = FALSE) { xMat <- left_dmat[, 1:(ncol(left_dmat) - nKnots - 2)] counter <- 0 pass <- FALSE while (counter < maxIter) { counter <- counter + 1 if (counter == 1) { init_beta <- initValues } else { init_beta <- stats::runif(n=ncol(left_dmat), min = -1, max = 1) } if (PH) { nullFit <- ICSKAT_fit_null(init_beta=init_beta, lt=lt, rt=rt, left_dmat=left_dmat, right_dmat=right_dmat, obs_ind=obs_ind, tpos_ind=tpos_ind, eps=eps, runOnce=runOnce) } else { nullFit <- ICSKAT_fit_null_PO(init_beta=init_beta, lt=lt, rt=rt, left_dmat=left_dmat, right_dmat=right_dmat, obs_ind=obs_ind, tpos_ind=tpos_ind, eps=eps) } if ( (nullFit$err == 1 | nullFit$diff_beta > eps) & runOnce == FALSE) { next } if (PH) { skatOutput <- ICskat(left_dmat=left_dmat, tpos_ind=tpos_ind, obs_ind=obs_ind, right_dmat=right_dmat, gMat=gMat, lt=lt, rt=rt, null_beta=as.numeric(nullFit$beta_fit), Itt=nullFit$Itt) } else { skatOutput <- ICskatPO(left_dmat=left_dmat, tpos_ind=tpos_ind, obs_ind=obs_ind, right_dmat=right_dmat, gMat=gMat, lt=lt, rt=rt, null_beta=as.numeric(nullFit$beta_fit), Itt=nullFit$Itt) } if ( skatOutput$err == 0 | skatOutput$err == 22 | runOnce == TRUE ) { pass <- TRUE break } } if (!pass) { if (nullFit$err == 1 | nullFit$diff_beta > eps) { skatOutput <- list(p_SKAT=NA, p_burden=NA, complex=NA, err=1, errMsg="Failed null fit") } else { a <- 1 } } if (returnNull) { return(list(skatOutput = skatOutput, nullFit = nullFit)) } else { return(skatOutput) } }
BS.uni.nonpar = function(Y, s, e, N, delta, level = 0){ S = NULL Dval = NULL Level = NULL Parent = NULL if(e-s <= 2*delta){ return(list(S = S, Dval = Dval, Level = Level, Parent = Parent)) }else{ level = level + 1 parent = matrix(c(s, e), nrow = 2) a = rep(0, e-s-2*delta+1) for(t in (s+delta):(e-delta)){ a[t-s-delta+1] = CUSUM.KS(Y, s, e, t, N) } best_value = max(a) best_t = which.max(a) + s + delta - 1 temp1 = BS.uni.nonpar(Y, s, best_t-1, N, delta, level) temp2 = BS.uni.nonpar(Y, best_t, e, N, delta, level) S = c(temp1$S, best_t, temp2$S) Dval = c(temp1$Dval, best_value, temp2$Dval) Level = c(temp1$Level, level, temp2$Level) Parent = cbind(temp1$Parent, parent, temp2$Parent) result = list(S = S, Dval = Dval, Level = Level, Parent = Parent) class(result) = "BS" return(result) } } CUSUM.KS = function(Y, s, e, t, N, vector = FALSE){ n_st = sum(N[s:t]) n_se = sum(N[s:e]) n_te = sum(N[(t+1):e]) aux = as.vector(Y[,s:t]) aux = aux[which(is.na(aux)==FALSE)] temp = ecdf(aux) vec_y = as.vector(Y[,s:e]) vec_y = vec_y[which(is.na(vec_y)==FALSE)] Fhat_st = temp(vec_y) aux = as.vector(Y[,(t+1):e]) aux = aux[which(is.na(aux)==FALSE)] temp = ecdf(aux) Fhat_te = temp(vec_y) if(vector == TRUE){ result = sqrt(n_st * n_te / n_se) * abs(Fhat_te - Fhat_st) }else{ result = sqrt(n_st * n_te / n_se) * max(abs(Fhat_te - Fhat_st)) } return(result) } WBS.uni.nonpar = function(Y, s, e, Alpha, Beta, N, delta, level = 0){ Alpha_new = pmax(Alpha, s) Beta_new = pmin(Beta, e) idx = which(Beta_new - Alpha_new > 2*delta) Alpha_new = Alpha_new[idx] Beta_new = Beta_new[idx] M = length(Alpha_new) S = NULL Dval = NULL Level = NULL Parent = NULL if(M == 0){ return(list(S = S, Dval = Dval, Level = Level, Parent = Parent)) }else{ level = level + 1 parent = matrix(c(s, e), nrow = 2) a = rep(0, M) b = rep(0, M) for(m in 1:M){ temp = rep(0, Beta_new[m] - Alpha_new[m] - 2*delta + 1) for(t in (Alpha_new[m]+delta):(Beta_new[m]-delta)){ temp[t-(Alpha_new[m]+delta)+1] = CUSUM.KS(Y, Alpha_new[m], Beta_new[m], t, N) } best_value = max(temp) best_t = which.max(temp) + Alpha_new[m] + delta - 1 a[m] = best_value b[m] = best_t } m_star = which.max(a) } temp1 = WBS.uni.nonpar(Y, s, b[m_star]-1, Alpha, Beta, N, delta, level) temp2 = WBS.uni.nonpar(Y, b[m_star], e, Alpha, Beta, N, delta, level) S = c(temp1$S, b[m_star], temp2$S) Dval = c(temp1$Dval, a[m_star], temp2$Dval) Level = c(temp1$Level, level, temp2$Level) Parent = cbind(temp1$Parent, parent, temp2$Parent) result = list(S = S, Dval = Dval, Level = Level, Parent = Parent) class(result) = "BS" return(result) } tuneBSuninonpar = function(BS_object, Y, N){ UseMethod("tuneBSuninonpar", BS_object) } tuneBSuninonpar.BS = function(BS_object, Y, N){ obs_num = ncol(Y) Dval = BS_object$Dval aux = sort(Dval, decreasing = TRUE) len_tau = 30 tau_grid = rev(aux[1:min(len_tau,length(Dval))]) - 10^{-30} tau_grid = c(tau_grid, 10) B_list = c() for(j in 1:length(tau_grid)){ aux = thresholdBS(BS_object, tau_grid[j])$cpt_hat[,1] if(length(aux) == 0){ break } B_list[[j]] = sort(aux) } B_list = unique(B_list) if(length(B_list) == 0){ return(NULL) } if(length(B_list[[1]]) == 0){ return(B_list[[1]]) } lambda = log(sum(N))/1.5 for(j in 1:(length(B_list))){ B2 = B_list[[j]] if(j < length(B_list)){ B1 = B_list[[j+1]] }else if(j == length(B_list)){ B1 = NULL } temp = setdiff(B2, B1) st = -10^15 for(l in 1:length(temp)){ eta = temp[l] if(length(B1) == 0){ eta1 = 1 eta2 = obs_num }else if(length(B1) > 0){ for(k in 1:length(B1)){ if(B1[k] > eta){ break } } if(B1[k] > eta){ eta2 = B1[k] if(k == 1) eta1 = 1 if(k > 1) eta1 = B1[k-1] + 1 } if(B1[k] < eta){ eta1 = B1[k] + 1 eta2 = obs_num } } st_aux = CUSUM.KS(Y, eta1, eta2, eta, N)^2 if(st_aux > st){ st = st_aux } } if(st > lambda){ return(B2) } } return(B1) }
nonpar_mstep = function(x, wt, K = 5, lambda0 = 0.5){ nstate = ncol(wt) emission = list(coef = list(), lambda = numeric(nstate)) lambda = numeric(nstate) d = ncol(x) n = nrow(x) tryCatch( { a<-matrix(0,nrow=n,ncol=K^d) if(object.size(a)>1.8e+9) warning("The dimension of the data or the degree of the spline is large! This will result in a very slow progress!") rm(a) }, error=function(cond) { stop("The dimension of the data or the degree of the spline is too large! There is no enough memory for fitting! Try another emission distribution.") }) basis = btensor(lapply(1:d, function(i) x[, i]), df = K, bknots = lapply(1:d, function(i) c(min(x[, i])-0.01, max(x[, i])+0.01))) for(j in 1:nstate){ lambda[j] = lambda0 mloglike_lambda0 = function(beta){ dbeta = beta for(m in 1:2) dbeta = diff(dbeta) omega = exp(beta) / sum(exp(beta)) loglike = t(wt[, j]) %*% log(basis %*% omega)- lambda0/2 * sum(dbeta^2) return(-loglike) } start = runif(K^d) suppressWarnings(fit <- nlm(mloglike_lambda0, start, hessian = T)) H_lambda0 = -fit$hessian difference = 1; eps = 1e-6 cntr = 1 beta_hat = list(rep(1, K)) while(difference > eps){ mloglike = function(beta){ dbeta = beta for(m in 1:2) dbeta = diff(dbeta) omega = exp(beta) / sum(exp(beta)) inf_index = which(is.infinite(log(basis %*% omega))) loglike = t(wt[, j]) %*% log(basis %*% omega) - lambda[j]/2 * sum(dbeta^2) return(-loglike) } start = runif(K^d) suppressWarnings(fit <- nlm(mloglike, start, hessian = T)) H = -fit$hessian beta_hat[[cntr+1]] = fit$estimate df_lambda = tr(ginv(H) %*% H_lambda0) dbeta = beta_hat[[cntr+1]] for(m in 1:2) dbeta = diff(dbeta) lambda[j] = (df_lambda - d)/(sum(dbeta^2)) difference = sum(beta_hat[[cntr+1]] - beta_hat[[cntr]]) cntr = cntr+1 } emission$coef[[j]] = exp(beta_hat[[cntr]]) / sum(exp(beta_hat[[cntr]])) emission$lambda[j] = lambda[j] } emission }
test_that("illegal initializations are rejected", { expect_silent(NormalDistribution$new(0, 1)) expect_error(NormalDistribution$new("0",1), class="mu_not_numeric") expect_error(NormalDistribution$new(0,"1"), class="sigma_not_numeric") }) test_that("distribution name is correct", { sn <- NormalDistribution$new(0, 1) expect_identical(sn$distribution(), "N(0,1)") n <- NormalDistribution$new(42, 1) expect_identical(n$distribution(), "N(42,1)") }) test_that("quantile function checks inputs", { x <- NormalDistribution$new(0, 1) probs <- c(0.1, 0.2, 0.5) expect_silent(x$quantile(probs)) probs <- c(0.1, NA, 0.5) expect_error(x$quantile(probs), class="probs_not_defined") probs <- c(0.1, "boo", 0.5) expect_error(x$quantile(probs), class="probs_not_numeric") probs <- c(0.1, 0.4, 1.5) expect_error(x$quantile(probs), class="probs_out_of_range") probs <- c(0.1, 0.2, 0.5) expect_length(x$quantile(probs),3) }) test_that("pe, mean, sd and quantiles are returned correctly", { sn <- NormalDistribution$new(0, 1) expect_intol(sn$mean(), 0, 0.01) expect_intol(sn$SD(), 1, 0.01) probs <- c(0.025, 0.975) q <- sn$quantile(probs) expect_intol(q[1], -1.96, 0.05) expect_intol(q[2], 1.96, 0.05) }) test_that("random sampling is from a Normal distribution", { mu <- 0 sigma <- 1 sn <- NormalDistribution$new(mu, sigma) sn$sample(TRUE) expect_equal(sn$r(), 0) n <- 1000 samp <- sapply(1:n, FUN=function(i) { sn$sample() rv <- sn$r() return(rv) }) expect_length(samp, n) skip_on_cran() ht <- ks.test(samp, rnorm(n,mean=mu,sd=sigma)) expect_true(ht$p.value > 0.001) })
zz_format <- function(origin = NULL, usr = NULL) { usr <- .zz_get_key(usr = usr) if (is.null(origin) || origin == "") { endpoint <- zz_config[['format']][[1]] } else { endpoint <- paste0(zz_config[['format']][[1]], "/", origin) } response <- httr::GET(endpoint, config = .zz_authenticate(usr = usr), .zz_user_agent() ) content <- .zz_parse_response(response = response) if (!response[['status_code']] %in% c(200, 201)) { stop(sprintf("Whoops! Zamzar responded with: %s, and a status code of: %d", content[['errors']][['message']], response[['status_code']]) ) } container <- data.frame(target = content[['data']][['name']], stringsAsFactors = FALSE) if(length(content[['data']][['name']]) >= 50) { container <- .zz_do_paging(content = content, container = container, endpoint = endpoint, usr = usr) } if (is.null(origin) || origin == "") { res <- container } else { res <- data.frame(target = content[['targets']][['name']], cost = content[['targets']][['credit_cost']], stringsAsFactors = FALSE) } if (response[['status_code']] %in% c(200, 201)) { return(res) } else { stop(sprintf("Whoops! Zamzar responded with: %s, and status code %d.", content[['errors']][['message']], response[['status_code']]) ) } }
suppressWarnings(RNGversion("3.5.0")) set.seed(1, kind = "Mersenne-Twister", normal.kind = "Inversion") n <- 1000 p <- 10 X <- matrix(rnorm(n * p), nrow = n) beta <- c(seq(from = 0.1, to = 1, length.out = 5), rep(0, p-5)) y <- rbinom(n, 1, (1 + exp(-X %*% beta))^(-1)) fit <- gds(X, y, family = "binomial") test_that("gds returns correct object", { expect_s3_class(fit, "gds") expect_equal(fit$family, "binomial") expect_equal(length(fit$beta), 10) expect_equal(round(fit$beta[[1]], 7), 0.1230598) expect_equal(round(fit$beta[[3]], 7), 0.5015788) expect_equal(round(fit$beta[[10]], 7), -0.0454783) expect_equal(round(fit$intercept, 7), -0.1187412) expect_equal(fit$num_non_zero, 8) }) test_that("gds fails when it should", { expect_error(gds(X)) expect_error(gds(X, lambda = 1:10)) expect_error(gds(X, y, family = "gamma")) expect_error(gds(list(X), y)) expect_error(gds(X, y, lambda = -1)) }) test_that("S3 methods for gds work", { expect_output(coef(fit), regexp = "Non-zero coefficients:") expect_output(print(fit), regexp = "Generalized Dantzig Selector with family binomial, with 10 variables fitted with regularization parameter") expect_s3_class(plot(fit), "ggplot") }) suppressWarnings(RNGversion("3.5.0")) set.seed(1, kind = "Mersenne-Twister", normal.kind = "Inversion") n <- 1000 p <- 50 X <- matrix(rnorm(n * p), nrow = n) beta <- c(seq(from = 0.1, to = 1, length.out = 5), rep(0, p-5)) y <- X %*% beta + rnorm(n, sd = 0.5) set.seed(1, kind = "Mersenne-Twister", normal.kind = "Inversion") fit <- gds(X, y) set.seed(1, kind = "Mersenne-Twister", normal.kind = "Inversion") fit2 <- gds(X, y, family = "gaussian") test_that("default family of gds works", expect_equal(fit, fit2)) rm(fit2) test_that("gds returns correct object", { expect_s3_class(fit, "gds") expect_equal(fit$family, "gaussian") expect_equal(length(fit$beta), 50) expect_equal(round(fit$beta[[1]], 7), 0.1056266) expect_equal(round(fit$beta[[30]], 7), 0) expect_equal(fit$num_non_zero, 13) }) test_that("S3 methods for gds work", { expect_output(coef(fit), regexp = "Non-zero coefficients:") expect_output(coef(fit, all = TRUE), regexp = "Coefficient estimates:") expect_output(print(fit), regexp = "Generalized Dantzig Selector with family gaussian") expect_s3_class(plot(fit), "ggplot") }) suppressWarnings(RNGversion("3.5.0")) set.seed(1, kind = "Mersenne-Twister", normal.kind = "Inversion") n <- 50 p <- 15 X <- matrix(rnorm(n * p), nrow = n) beta <- c(rep(.2, 5), rep(0, p-5)) y <- rpois(n, exp(X %*% beta)) fit <- gds(X, y, family = "poisson") test_that("gds returns correct object", { expect_s3_class(fit, "gds") expect_equal(fit$family, "poisson") expect_equal(length(fit$beta), 15) expect_equal(round(fit$beta[[1]], 7), 0) expect_equal(round(fit$beta[[3]], 7), 0.3465382) expect_equal(fit$num_non_zero, 2) }) test_that("S3 methods for gds work", { expect_output(coef(fit), regexp = "Non-zero coefficients:") expect_output(coef(fit, all = TRUE), regexp = "Coefficient estimates:") expect_output(print(fit), regexp = "Generalized Dantzig Selector with family poisson") expect_s3_class(plot(fit), "ggplot") })
logRankDecSim <- function(randSeq, bias, endp){ stopifnot(is(randSeq, "randSeq"), randSeq@K == 2, is(bias, "issue"), is(endp, "endpoint")) biasM <- 1 / getExpectation(randSeq, bias, endp) followUp <- endp@cenTime - endp@accrualTime decision <- sapply(1:dim(randSeq@M)[1], function(i) { timeVar <- rexp(length(biasM[i,]), rate = biasM[i,]) randCenVar <- rexp(length(biasM[i,]), rate = endp@cenRate) endCenVar <- runif(length(biasM[i,]), min = followUp, max = endp@cenTime ) randVar <- pmin(timeVar, randCenVar, endCenVar) status <- (randVar == timeVar)*1 if (sum(randSeq@M[i,]) == 0 || sum(randSeq@M[i,]) == length(biasM[i, ])) { return(FALSE) } else { sdf <- survdiff(Surv(randVar, status) ~ randSeq@M[i, ]) p.value <- 1 - pchisq(sdf$chisq, length(sdf$n) - 1) return(as.numeric(p.value <= bias@alpha)) } }) decision } logRankRejectionProb <- function(randSeq, bias, endp) { stopifnot(is(randSeq, "randSeq"), randSeq@K == 2, is(bias, "issue"), is(endp, "endpoint")) biasM <- 1 / getExpectation(randSeq, bias, endp) alpha <- bias@alpha followUp <- endp@cenTime - endp@accrualTime rej.prob <- sapply(1:dim(randSeq@M)[1], function(i) { phi <- function(t){ sum( (1-randSeq@M[i,]) * dexp(t, rate = biasM[i,]) ) / sum( dexp(t, rate = biasM[i,]) ) } pi <- function(t){ sum( (1-randSeq@M[i,]) * (1-pexp(t, rate = biasM[i,])) ) / sum( (1-pexp(t, rate = biasM[i,])) ) } V <- function(t){ sum( dexp(t, rate = biasM[i,]) ) / randSeq@N * ( 1-pexp(t, rate = endp@cenRate) ) * ( 1-punif(t, min = followUp, max = endp@cenTime) ) } f1 <- function(t){(phi(t)-pi(t))*V(t)} f2 <- function(t){pi(t)*(1-pi(t))*V(t)} up <- endp@cenTime int1 <- integrate(Vectorize(f1),0,up)$value int2 <- integrate(Vectorize(f2),0,up)$value Exp.approx <- int1/sqrt(1/randSeq@N * int2) qlow <- qnorm( alpha/2 ) qup <- qnorm( 1 - alpha/2 ) rej.prob <- pnorm( qlow, Exp.approx, 1 ) + (1 - pnorm(qup, Exp.approx, 1) ) rej.prob return(rej.prob) }) rej.prob }
processLimeSurveyDropouts <- function(lastpage, pagenames = NULL, relevantPagenames = NULL) { if ((!requireNamespace("ggplot2", quietly = TRUE)) || (!requireNamespace("ggrepel", quietly = TRUE))) { stop("To process the LimeSurvey dropouts, you need to have both ", "the {ggplot2} and {ggrepel} packages installed. You can ", "install them with:\n\n install.packages(", "c('ggplot2', 'ggrepel'));\n"); } if (!is.numeric(lastpage)) { stop("Argument 'lastpage' is not a numeric vector but has class ", class(lastpage), ". The first nonmissing values are: ", vecTxtQ(utils::head(stats::complete.cases(lastpage))), "."); } res <- list(); res$specificDropout <- data.frame(lastpage = 0:max(lastpage)); if (is.null(pagenames)) pagenames <- paste('Dropped out at page', seq(from=1, to=max(lastpage + 1))); if (is.null(relevantPagenames)) relevantPagenames <- paste('Page', seq(from=1, to=max(lastpage + 1))); if (length(pagenames) != nrow(res$specificDropout)) { stop("The vector 'pagenames' must have the same length as the number of pages ", "in the 'lastpage' vector - but ", length(pagenames), " pagenames were ", "provided, for ", nrow(res$specificDropout), " lastpages."); } totalParticipants <- length(lastpage); res$specificDropout <- merge(res$specificDropout, as.data.frame(table(lastpage), responseName='frequency'), by='lastpage', all=TRUE); res$specificDropout$frequency[is.na(res$specificDropout$frequency)] <- 0; res$specificDropout <- res$specificDropout[order(as.numeric(res$specificDropout$lastpage)), ]; res$specificDropout$comments <- pagenames; res$progressiveDropout <- data.frame(frequency = totalParticipants - utils::head(c(0, utils::tail(cumsum(res$specificDropout$frequency), -1)), -1)); res$progressiveDropout$percentage <- 100 * res$progressiveDropout$frequency / totalParticipants; res$progressiveDropout$page <- 1:nrow(res$progressiveDropout); res$progressiveDropout$prettyPercentage <- paste0(round(res$progressiveDropout$percentage), "%"); res$plots -> list; res$plots$absoluteDropout <- ggplot2::ggplot( res$progressiveDropout, ggplot2::aes_string(x='page', y='frequency') ) + ggplot2::geom_point(size=4) + ggplot2::geom_line(size=1) + ggplot2::ylab('Number of participants') + ggplot2::xlab('Page in the questionnaire') + ggplot2::theme_bw() + ggrepel::geom_text_repel(ggplot2::aes_string(label='frequency'), point.padding = ggplot2::unit(1, 'lines'), min.segment.length = ggplot2::unit(0.05, "lines"), segment.color=" size=5, nudge_x=1) + ggplot2::scale_x_continuous(breaks=res$progressiveDropout$page); res$plots$relativeDropout <- ggplot2::ggplot( res$progressiveDropout, ggplot2::aes_string(x="page", y="percentage") ) + ggplot2::geom_point(size=4) + ggplot2::geom_line(size=1) + ggplot2::ylab('Percentage of participants') + ggplot2::xlab('Page in the questionnaire') + ggplot2::theme_bw() + ggrepel::geom_text_repel(ggplot2::aes_string(label='prettyPercentage'), point.padding = ggplot2::unit(1, 'lines'), min.segment.length = ggplot2::unit(0.05, "lines"), segment.color=" size=5, nudge_x=1) + ggplot2::scale_x_continuous(breaks=res$progressiveDropout$page); class(res) <- 'limeSurveyDropouts'; return(res); }
computeQuickKrigcov2 <- function(model,integration.points,X.new, precalc.data, F.newdata , c.newdata){ c.xnew.integpoints <- covMat1Mat2(X1=integration.points,X2=X.new, object=model@covariance, nugget.flag=model@[email protected]) cov.std <- c.xnew.integpoints - crossprod(precalc.data$Kinv.c.olddata,c.newdata) if (is.null(F.newdata)) {kn=cov.std } else { second.member <- t(F.newdata - crossprod(c.newdata,precalc.data$Kinv.F)) cov.F <- precalc.data$first.member%*%second.member kn <- cov.F+cov.std} return(kn) }
library(testit) assert('move_leftbrace() works', { (move_leftbrace(c('abc() {', ' }')) %==% c('abc()', '{', ' }')) (move_leftbrace(c(' a() {', '}')) %==% c(' a()', ' {', '}')) (move_leftbrace(rep(c(' a() {', '}'), 5)) %==% rep(c(' a()', ' {', '}'), 5)) (move_leftbrace(c('a', '', 'b')) %==% c('a', '', 'b')) (move_leftbrace(c('if (TRUE) {', ' if (FALSE) {', ' 1', ' }', '}')) %==% c('if (TRUE)', '{', ' if (FALSE)', ' {', ' 1', ' }', '}')) (move_leftbrace(c('if (TRUE) {', ' 1', '} else {', ' 2}')) %==% c('if (TRUE)', '{', ' 1', '} else', '{', ' 2}')) }) assert('reindent_lines() works', { (reindent_lines('') %==% '') (reindent_lines(c('', '')) %==% c('', '')) (reindent_lines(' ', n = 2) %==% ' ') (reindent_lines(c('if (TRUE) {', ' 1', '}'), n = 2) %==% c('if (TRUE) {', ' 1', '}')) })
source("functions.R") for (dir in appdirs()) { snapshotPath <- file.path(dir, "R.out.save") if (upToDate(dir, "R.out.save")) next cat("Snapshotting", dir, "\n") res <- executeApp(dir) writeLines(res, snapshotPath) } invisible()
aseq.Run <- function(bam.files,aseq.path,genotype.dir,out.dir,mbq,mrq,mdc,model.path,cores,bam.chr.encoding) { tryCatch( { model = snpgdsOpen(model.path,readonly = F) snp.list = snpgdsSNPList(model) vcf = cbind(snp.list$chromosome,pos=snp.list$position,snp.list$snp.id, as.character(read.gdsn(index.gdsn(model,"snp.ref"))), as.character(read.gdsn(index.gdsn(model,"snp.alt"))),".",".",".") colnames(vcf)= c("CHR","POS","ID","REF","ALT","QUAL","FILTER","INFO") if(bam.chr.encoding) vcf[,1] = paste("chr",vcf[,1],sep="") write.table(vcf,file.path(out.dir,"ModelPositions.vcf"),sep="\t",quote=F,row.names=F) snpgdsClose(model) if(get.OS()=="linux") { aseq.exec = file.path(aseq.path,"ASEQ") if(!file.exists(aseq.exec)) { download.file("https://github.com/cibiobcg/EthSEQ_Data/raw/master/ASEQ_binaries/linux64/ASEQ",file.path(aseq.path,"ASEQ")) Sys.chmod(aseq.exec, mode = "0755", use_umask = TRUE) } for (b in bam.files) { message.Date(paste("Computing pileup of BAM file ",b,sep="")) command = paste(aseq.exec," vcf=",file.path(out.dir,"ModelPositions.vcf")," bam=",b," mode=GENOTYPE threads=",cores," htperc=0.2 mbq=",mbq, " mrq=",mrq," mdc=",mdc," out=",genotype.dir,sep="") system(command,ignore.stderr = T,ignore.stdout = T) } } if(get.OS()=="osx") { aseq.exec = file.path(aseq.path,"ASEQ") if(!file.exists(aseq.exec)) { download.file("https://github.com/cibiobcg/EthSEQ_Data/raw/master/ASEQ_binaries/macosx/ASEQ",file.path(aseq.path,"ASEQ")) Sys.chmod(aseq.exec, mode = "0755", use_umask = TRUE) } for (b in bam.files) { command = paste(aseq.exec," vcf=",file.path(out.dir,"ModelPositions.vcf")," bam=",b," mode=GENOTYPE threads=",cores," htperc=0.2 mbq=",mbq, " mrq=",mrq," mdc=",mdc," out=",genotype.dir,sep="") system(command,ignore.stderr = T,ignore.stdout = T) } } if(get.OS()=="windows") { aseq.exec = file.path(aseq.path,"ASEQ.exe") if(!file.exists(aseq.exec)) { download.file("https://github.com/cibiobcg/EthSEQ_Data/raw/master/ASEQ_binaries/win32/ASEQ.exe",file.path(aseq.path,"ASEQ.exe")) } for (b in bam.files) { command = paste(aseq.exec," vcf=",file.path(out.dir,"ModelPositions.vcf")," bam=",b," mode=GENOTYPE threads=",cores," htperc=0.2 mbq=",mbq, " mrq=",mrq," mdc=",mdc," out=",genotype.dir,sep="") system(command,ignore.stderr = T,ignore.stdout = T) } } }, error = function(e) { message.Date(e) return(FALSE) }) return(TRUE) }
"print.psych" <- function(x,digits=2,all=FALSE,cut=NULL,sort=FALSE,short=TRUE,lower=TRUE,signif=NULL,...) { if(length(class(x)) > 1) { value <- class(x)[2] } else { if((!is.null(x$communality.iterations)) | (!is.null(x$uniquenesses)) | (!is.null(x$rotmat)) | (!is.null(x$Th)) ) {value <- fa } } if(all) value <- "all" if(value == "score.items") value <- "scores" if(value =="set.cor") value <- "setCor" switch(value, esem = {print.psych.esem(x,digits=digits,short=short,cut=cut,...)}, extension = { print.psych.fa(x,digits=digits,all=all,cut=cut,sort=sort,...)}, extend = {print.psych.fa(x,digits=digits,all=all,cut=cut,sort=sort,...)}, fa = {print.psych.fa(x,digits=digits,all=all,cut=cut,sort=sort,...)}, fa.ci = { print.psych.fa.ci(x,digits=digits,all=all,... )}, iclust= { print.psych.iclust(x,digits=digits,all=all,cut=cut,sort=sort,...)}, omega = { print.psych.omega(x,digits=digits,all=all,cut=cut,sort=sort,...)}, omegaSem= {print.psych.omegaSem(x,digits=digits,all=all,cut=cut,sort=sort,...)}, principal ={print.psych.fa(x,digits=digits,all=all,cut=cut,sort=sort,...)}, schmid = { print.psych.schmid(x,digits=digits,all=all,cut=cut,sort=sort,...)}, stats = { print.psych.stats(x,digits=digits,all=all,cut=cut,sort=sort,...)}, vss= { print.psych.vss(x,digits=digits,all=all,cut=cut,sort=sort,...)}, cta = {print.psych.cta(x,digits=digits,all=all,...)}, mediate = {print.psych.mediate(x,digits=digits,short=short,...)}, multilevel = {print.psych.multilevel(x,digits=digits,short=short,...)}, testRetest = {print.psych.testRetest(x,digits=digits,short=short,...)}, bestScales = {print.psych.bestScales(x,digits=digits,short=short,...)}, all= {class(x) <- "list" print(x,digits=digits) }, alpha = { cat("\nReliability analysis ",x$title," \n") cat("Call: ") print(x$call) cat("\n ") print(x$total,digits=digits) if(!is.null(x$total$ase)){ cat("\n lower alpha upper 95% confidence boundaries\n") cat(round(c(x$total$raw_alpha - 1.96* x$total$ase, x$total$raw_alpha,x$total$raw_alpha +1.96* x$total$ase),digits=digits) ,"\n")} if(!is.null(x$boot.ci)) {cat("\n lower median upper bootstrapped confidence intervals\n",round(x$boot.ci,digits=digits))} cat("\n Reliability if an item is dropped:\n") print(x$alpha.drop,digits=digits) cat("\n Item statistics \n") print(x$item.stats,digits=digits) if(!is.null(x$response.freq)) { cat("\nNon missing response frequency for each item\n") print(round(x$response.freq,digits=digits))} }, autoR = {cat("\nAutocorrelations \n") if(!is.null(x$Call)) {cat("Call: ") print(x$Call)} print(round(x$autoR,digits=digits)) }, bassAck = { cat("\nCall: ") print(x$Call) nf <- length(x$bass.ack)-1 for (f in 1:nf) { cat("\n",f, x$sumnames[[f]])} if(!short) { for (f in 1:nf) { cat("\nFactor correlations\n ") print(round(x$bass.ack[[f]],digits=digits))} } else {cat("\nUse print with the short = FALSE option to see the correlations, or use the summary command.")} }, auc = {cat('Decision Theory and Area under the Curve\n') cat('\nThe original data implied the following 2 x 2 table\n') print(x$probabilities,digits=digits) cat('\nConditional probabilities of \n') print(x$conditional,digits=digits) cat('\nAccuracy = ',round(x$Accuracy,digits=digits),' Sensitivity = ',round(x$Sensitivity,digits=digits), ' Specificity = ',round(x$Specificity,digits=digits), '\nwith Area Under the Curve = ', round(x$AUC,digits=digits) ) cat('\nd.prime = ',round(x$d.prime,digits=digits), ' Criterion = ',round(x$criterion,digits=digits), ' Beta = ', round(x$beta,digits=digits)) cat('\nObserved Phi correlation = ',round(x$phi,digits=digits), '\nInferred latent (tetrachoric) correlation = ',round(x$tetrachoric,digits=digits)) }, bestScales = {if(!is.null(x$first.result)) { cat("\nCall = ") print(x$Call) print(x$summary,digits=digits) items <- x$items size <- NCOL(items[[1]]) nvar <- length(items) for(i in 1:nvar) { if(NCOL(items[[i]]) > 3) {items[[i]] <- items[[i]][,-1]} if(length( items[[i]][1]) > 0 ) { items[[i]][,c("mean.r","sd.r")] <- round(items[[i]][,c("mean.r","sd.r")],digits) }} cat("\n Best items on each scale with counts of replications\n") print(items)} else { df <- data.frame(correlation=x$r,n.items = x$n.items) cat("The items most correlated with the criteria yield r's of \n") print(round(df,digits=digits)) if(length(x$value) > 0) {cat("\nThe best items, their correlations and content are \n") print(x$value) } else {cat("\nThe best items and their correlations are \n") for(i in 1:length(x$short.key)) {print(round(x$short.key[[i]],digits=digits))} } } }, bifactor = { cat("Call: ") print(x$Call) cat("Alpha: ",round(x$alpha,digits),"\n") cat("G.6: ",round(x$G6,digits),"\n") cat("Omega Hierarchical: " ,round(x$omega_h,digits),"\n") cat("Omega Total " ,round(x$omega.tot,digits),"\n") print(x$f,digits=digits,sort=sort) }, circ = {cat("Tests of circumplex structure \n") cat("Call:") print(x$Call) res <- data.frame(x[1:4]) print(res,digits=2) }, circadian = {if(!is.null(x$Call)) {cat("Call: ") print(x$Call)} cat("\nCircadian Statistics :\n") if(!is.null(x$F)) { cat("\nCircadian F test comparing groups :\n") print(round(x$F,digits)) if(short) cat("\n To see the pooled and group statistics, print with the short=FALSE option") } if(!is.null(x$pooled) && !short) { cat("\nThe pooled circadian statistics :\n") print( x$pooled)} if(!is.null(x$bygroup) && !short) {cat("\nThe circadian statistics by group:\n") print(x$bygroup)} if(!is.null(x$phase.rel)) { cat("\nSplit half reliabilities are split half correlations adjusted for test length\n") x.df <- data.frame(phase=x$phase.rel,fits=x$fit.rel) print(round(x.df,digits)) } if(is.data.frame(x)) {class(x) <- "data.frame" print(round(x,digits=digits)) } }, cluster.cor = { cat("Call: ") print(x$Call) cat("\n(Standardized) Alpha:\n") print(x$alpha,digits) cat("\n(Standardized) G6*:\n") print(x$G6,digits) cat("\nAverage item correlation:\n") print(x$av.r,digits) cat("\nNumber of items:\n") print(x$size) cat("\nSignal to Noise ratio based upon average r and n \n") print(x$sn,digits=digits) cat("\nScale intercorrelations corrected for attenuation \n raw correlations below the diagonal, alpha on the diagonal \n corrected correlations above the diagonal:\n") print(x$corrected,digits) }, cluster.loadings = { cat("Call: ") print(x$Call) cat("\n(Standardized) Alpha:\n") print(x$alpha,digits) cat("\n(Standardized) G6*:\n") print(x$G6,digits) cat("\nAverage item correlation:\n") print(x$av.r,digits) cat("\nNumber of items:\n") print(x$size) cat("\nScale intercorrelations corrected for attenuation \n raw correlations below the diagonal, alpha on the diagonal \n corrected correlations above the diagonal:\n") print(x$corrected,digits) cat("\nItem by scale intercorrelations\n corrected for item overlap and scale reliability\n") print(x$loadings,digits) }, cohen.d = {cat("Call: ") print(x$Call) cat("Cohen d statistic of difference between two means\n") if(NCOL(x$cohen.d) == 3) {print(round(x$cohen.d,digits=digits))} else {print( data.frame(round(x$cohen.d[1:3],digits=digits),x$cohen.d[4:NCOL(x$cohen.d)]))} cat("\nMultivariate (Mahalanobis) distance between groups\n") print(x$M.dist,digits=digits) cat("r equivalent of difference between two means\n") print(round(x$r,digits=digits)) }, cohen.d.by = {cat("Call: ") print(x$Call) ncases <- length(x) for (i in (1:ncases)) {cat("\n Group levels = ",names(x[i]),"\n") cat("Cohen d statistic of difference between two means\n") print(x[[i]]$cohen.d,digits=digits) cat("\nMultivariate (Mahalanobis) distance between groups\n") print(x[[i]]$M.dist,digits=digits) cat("r equivalent of difference between two means\n") print(x[[i]]$r,digits=digits) } cat("\nUse summary for more compact output") }, comorbid = {cat("Call: ") print(x$Call) cat("Comorbidity table \n") print(x$twobytwo,digits=digits) cat("\nimplies phi = ",round(x$phi,digits), " with Yule = ", round(x$Yule,digits), " and tetrachoric correlation of ", round(x$tetra$rho,digits)) cat("\nand normal thresholds of ",round(-x$tetra$tau,digits)) }, corCi = { cat("\n Correlations and normal theory confidence intervals \n") print(round(x$r.ci,digits=digits)) }, cor.ci = {cat("Call:") print(x$Call) cat("\n Coefficients and bootstrapped confidence intervals \n") lowerMat(x$rho) phis <- x$rho[lower.tri(x$rho)] cci <- data.frame(lower.emp =x$ci$low.e, lower.norm=x$ci$lower,estimate =phis ,upper.norm= x$ci$upper, upper.emp=x$ci$up.e,p = x$ci$p) rownames(cci) <- rownames(x$ci) cat("\n scale correlations and bootstrapped confidence intervals \n") print(round(cci,digits=digits)) }, cor.cip = {class(x) <- NULL cat("\n High and low confidence intervals \n") print(round(x,digits=digits)) }, corr.test = {cat("Call:") print(x$Call) cat("Correlation matrix \n") print(round(x$r,digits)) cat("Sample Size \n") print(x$n) if(x$sym) {cat("Probability values (Entries above the diagonal are adjusted for multiple tests.) \n")} else { if (x$adjust != "none" ) {cat("These are the unadjusted probability values.\n The probability values adjusted for multiple tests are in the p.adj object. \n")}} print(round(x$p,digits)) if(short) cat("\n To see confidence intervals of the correlations, print with the short=FALSE option\n") if(!short) {cat("\n Confidence intervals based upon normal theory. To get bootstrapped values, try cor.ci\n") if(is.null(x$ci.adj)) { ci.df <- data.frame(raw=x$ci) } else { ci.df <- data.frame(raw=x$ci,lower.adj = x$ci.adj$lower.adj,upper.adj=x$ci.adj$upper.adj)} print(round(ci.df,digits)) } }, corr.p = {cat("Call:") print(x$Call) cat("Correlation matrix \n") print(round(x$r,digits)) cat("Sample Size \n") print(x$n) if(x$sym) {cat("Probability values (Entries above the diagonal are adjusted for multiple tests.) \n")} else { if (x$adjust != "none" ) {cat("These are the unadjusted probability values. \n To see the values adjusted for multiple tests see the p.adj object. \n")}} print(round(x$p,digits)) if(short) cat("\n To see confidence intervals of the correlations, print with the short=FALSE option\n") if(!short) {cat("\n Confidence intervals based upon normal theory. To get bootstrapped values, try cor.ci\n") print(round(x$ci,digits)) } }, cortest= {cat("Tests of correlation matrices \n") cat("Call:") print(x$Call) cat(" Chi Square value" ,round(x$chi,digits)," with df = ",x$df, " with probability <", signif(x$p,digits),"\n" ) if(!is.null(x$z)) cat("z of differences = ",round(x$z,digits),"\n") }, cor.wt = {cat("Weighted Correlations \n") cat("Call:") print(x$Call) lowerMat(x$r,digits=digits) }, crossV = {cat("Cross Validation\n") cat("Call:") print(x$Call) cat("\nValidities from raw items and from the correlation matrix\n") cat("Number of unique predictors used = ",x$nvars,"\n") print(x$crossV,digits=digits) cat("\nCorrelations based upon item based regressions \n") lowerMat(x$item.R) cat("\nCorrelations based upon correlation matrix based regressions\n") lowerMat(x$mat.R) }, describe= {if(!is.null(x$signif)) { if( missing(signif) ) signif <-x$signif x$signif <- NULL } if (length(dim(x))==1) {class(x) <- "list" attr(x,"call") <- NULL if(!missing(signif)) x <- signifNum(x,digits=signif) print(round(x,digits=digits)) } else {class(x) <- "data.frame" if(!missing(signif)) x <- signifNum(x,digits=signif) print(round(x,digits=digits)) } }, describeBy = {cat("\n Descriptive statistics by group \n") if(!is.null(x$Call)){ cat("Call: " ) print(x$Call) } class(x) <- "by" print(x,digits=digits) }, describeData = {if (length(dim(x))==1) {class(x) <- "list" attr(x,"call") <- NULL print(round(x,digits=digits)) } else { cat('n.obs = ', x$n.obs, "of which ", x$complete.cases," are complete cases. Number of variables = ",x$nvar," of which all are numeric ",x$all.numeric," \n") print(x$variables) } }, describeFast = { cat("\n Number of observations = " , x$n.obs, "of which ", x$complete.cases," are complete cases. Number of variables = ",x$nvar," of which ",x$numeric," are numeric and ",x$factors," are factors \n") if(!short) {print(x$result.df) } else {cat("\n To list the items and their counts, print with short = FALSE") } }, direct = { cat("Call: ") print(x$Call) cat("\nDirect Schmid Leiman = \n") print(x$direct,cut=cut) } , faBy = { cat("Call: ") print(x$Call) cat("\n Factor analysis by Groups\n") cat("\nAverage standardized loadings (pattern matrix) based upon correlation matrix for all cases as well as each group\n") cat("\nlow and high ", x$quant,"% quantiles\n") print(x$faby.sum,digits) if(!short) { cat("\n Pooled loadings across groups \n") print(x$mean.loading,digits=digits) cat("\n Average factor intercorrelations for all cases and each group\n") print(x$mean.Phi,digits=2) cat("\nStandardized loadings (pattern matrix) based upon correlation matrix for all cases as well as each group\n") print(x$loadings,digits=digits) cat("\n With factor intercorrelations for all cases and for each group\n") print(x$Phi,digits=2) if(!is.null(x$fa)) { cat("\nFactor analysis results for each group\n") print(x$fa,digits) } else {print("For a more informative output, print with short=FALSE")}} }, faCor = { cat("Call: ") print(x$Call) if(!short) { cat("\n Factor Summary for first solution\n") summary(x$f1) cat("\n Factor Summary for second solution\n") summary(x$f2) } cat("\n Factor correlations between the two solutions\n") print(x$r,digits=digits) cat("\n Factor congruence between the two solutions\n") print(x$congruence,digits=digits) }, guttman = { cat("Call: ") print(x$Call) cat("\nAlternative estimates of reliability\n") cat("\nGuttman bounds \nL1 = ",round(x$lambda.1,digits), "\nL2 = ", round(x$lambda.2,digits), "\nL3 (alpha) = ", round(x$lambda.3,digits),"\nL4 (max) = " ,round(x$lambda.4,digits), "\nL5 = ", round(x$lambda.5,digits), "\nL6 (smc) = " ,round(x$lambda.6,digits), "\n") cat("TenBerge bounds \nmu0 = ",round(x$tenberge$mu0,digits), "mu1 = ", round(x$tenberge$mu1,digits), "mu2 = " ,round(x$tenberge$mu2,digits), "mu3 = ",round(x$tenberge$mu3,digits) , "\n") cat("\nalpha of first PC = ",round( x$alpha.pc,digits), "\nestimated greatest lower bound based upon communalities= ", round(x$glb,digits),"\n") cat("\nbeta found by splitHalf = ", round(x$beta,digits),"\n") } , ICC = {cat("Call: ") print(x$Call) cat("\nIntraclass correlation coefficients \n") print(x$results,digits=digits) cat("\n Number of subjects =", x$n.obs, " Number of Judges = ",x$n.judge) cat("\nSee the help file for a discussion of the other 4 McGraw and Wong estimates,") }, iclust.sort = { nvar <- ncol(x$sort) x$sort[4:nvar] <- round(x$sort[4:nvar],digits) print(x$sort) }, irt.fa = { cat("Item Response Analysis using Factor Analysis \n") cat("\nCall: ") print(x$Call) if (!is.null(x$plot)) print(x$plot) if(!short) { nf <- length(x$irt$difficulty) for(i in 1:nf) {temp <- data.frame(discrimination=x$irt$discrimination[,i],location=x$irt$difficulty[[i]]) cat("\nItem discrimination and location for factor ",colnames(x$irt$discrimination)[i],"\n") print(round(temp,digits))} cat("\n These parameters were based on the following factor analysis\n") print(x$fa) } else {summary(x$fa)} }, irt.poly = { cat("Item Response Analysis using Factor Analysis \n") cat("\nCall: ") print(x$Call) if (!is.null(x$plot)) print(x$plot) if(!short) { nf <- length(x$irt$difficulty) for(i in 1:nf) {temp <- data.frame(discrimination=x$irt$discrimination[,i],location=x$irt$difficulty[[i]]) cat("\nItem discrimination and location for factor ",colnames(x$irt$discrimination)[i],"\n") print(round(temp,digits))} cat("\n These parameters were based on the following factor analysis\n") print(x$fa) } else {summary(x$fa) } }, kappa = {if(is.null(x$cohen.kappa)) { cat("Call: ") print(x$Call) cat("\nCohen Kappa and Weighted Kappa correlation coefficients and confidence boundaries \n") print(x$confid,digits=digits) cat("\n Number of subjects =", x$n.obs,"\n")} else { cat("\nCohen Kappa (below the diagonal) and Weighted Kappa (above the diagonal) \nFor confidence intervals and detail print with all=TRUE\n") print(x$cohen.kappa,digits=digits) if(!is.null(x$av.kappa)) cat("\nAverage Cohen kappa for all raters ", round(x$av.kappa,digits=digits)) if(!is.null(x$av.wt)) cat("\nAverage weighted kappa for all raters ",round(x$av.wt,digits=digits)) } }, mardia = { cat("Call: ") print(x$Call) cat("\nMardia tests of multivariate skew and kurtosis\n") cat("Use describe(x) the to get univariate tests") cat("\nn.obs =",x$n.obs," num.vars = ",x$n.var,"\n") cat("b1p = ",round(x$b1p,digits)," skew = ",round(x$skew,digits ), " with probability <= ", signif(x$p.skew,digits)) cat("\n small sample skew = ",round(x$small.skew,digits ), " with probability <= ", signif(x$p.small,digits)) cat("\nb2p = ", round(x$b2p,digits)," kurtosis = ",round(x$kurtosis,digits)," with probability <= ",signif(x$p.kurt,digits )) }, mchoice = { cat("Call: ") print(x$Call) cat("\n(Unstandardized) Alpha:\n") print(x$alpha,digits=digits) cat("\nAverage item correlation:\n") print(x$av.r,digits=digits) if(!is.null(x$item.stats)) { cat("\nitem statistics \n") print(round(x$item.stats,digits=digits))} }, mixed= { cat("Call: ") print(x$Call) if(is.null(x$rho)) {if(lower) {lowerMat(x,digits=digits)} else {print(x,digits)} } else { if(lower) {if(length(x$rho)>1) { lowerMat (x$rho,digits=digits)} else {print(x$rho,digits)}} }}, omegaDirect ={ cat("Call: ") print(x$Call) cat("\nOmega from direct Schmid Leiman = ", round(x$omega.g,digits=digits),"\n") print.psych.fa(x) eigenvalues <- diag(t(x$loadings) %*% x$loadings) cat("\nWith eigenvalues of:\n") print(eigenvalues,digits=2) cat("The degrees of freedom for the model is",x$orth.f$dof," and the fit was ",round(x$orth.f$objective,digits),"\n") if(!is.na(x$orth.f$n.obs)) {cat("The number of observations was ",x$orth.f$n.obs, " with Chi Square = ",round(x$orth.f$STATISTIC,digits), " with prob < ", round(x$orth.f$PVAL,digits),"\n")} if(!is.null(x$orth.f$rms)) {cat("\nThe root mean square of the residuals is ", round(x$orth.f$rms,digits),"\n") } if(!is.null(x$orth.f$crms)) {cat("The df corrected root mean square of the residuals is ", round(x$orth.f$crms,digits),"\n") } if(!is.null(x$orth.f$RMSEA)) {cat("\nRMSEA and the ",x$orth.f$RMSEA[4] ,"confidence intervals are ",round(x$orth.f$RMSEA[1:3],digits+1)) } if(!is.null(x$orth.f$BIC)) {cat("\nBIC = ",round(x$orth.f$BIC,digits))} cat("\n Total, General and Subset omega for each subset\n") colnames(x$om.group) <- c("Omega total for total scores and subscales","Omega general for total scores and subscales ", "Omega group for total scores and subscales") print(round(t(x$om.group),digits))}, paired.r = {cat("Call: ") print(x$Call) print(x$test) if(is.null(x$z)) {cat("t =",round(x$t,digits)) } else {cat("z =",round(x$z,digits)) } cat(" With probability = ",round(x$p,digits)) }, pairwise = {cat("Call: ") print(x$Call) cat("\nMean correlations within/between scales\n") lowerMat(x$av.r) cat("\nPercentage of complete correlations\n") lowerMat(x$percent) cat("\nNumber of complete correlations per scale\n") lowerMat(x$count) if(!is.null(x$size)) {cat("\nAverage number of pairwise observations per scale\n") lowerMat(round(x$size))} cat("\n Imputed correlations (if found) are in the imputed object") }, pairwiseCounts = {cat("Call: ") print(x$Call) cat("\nOverall descriptive statistics\n") if(!is.null(x$description)) print(x$description) cat("\nNumber of item pairs <=", x$cut," = ", dim(x$df)[1]) cat("\nItem numbers with pairs <= ",x$cut, " (row wise)", length(x$rows)) cat("\nItem numbers with pairs <= ",x$cut,"(col wise)", length(x$cols)) cat("\nFor names of the offending items, print with short=FALSE") if(!short) {cat("\n Items names with pairs < ", x$cut," (row wise)\n", names(x$rows)) cat("\n Items names with pairs <=",x$cut," (col wise)\n", names(x$cols))} cat("\nFor even more details examine the rows, cols and df report" ) }, parallel= { cat("Call: ") print(x$Call) if(!is.null(x$fa.values) & !is.null(x$pc.values) ) { parallel.df <- data.frame(fa=x$fa.values,fa.sam =x$fa.simr,fa.sim=x$fa.sim,pc= x$pc.values,pc.sam =x$pc.simr,pc.sim=x$pc.sim) fa.test <- x$nfact pc.test <- x$ncomp cat("Parallel analysis suggests that ") cat("the number of factors = ",fa.test, " and the number of components = ",pc.test,"\n") cat("\n Eigen Values of \n") colnames(parallel.df) <- c("Original factors","Resampled data", "Simulated data","Original components", "Resampled components", "Simulated components") if(any(is.na(x$fa.sim))) parallel.df <- parallel.df[-c(3,6)] } if(is.na(fa.test) ) fa.test <- 0 if(is.na(pc.test)) pc.test <- 0 if(!any(is.na(parallel.df))) {print(round(parallel.df[1:max(fa.test,pc.test),],digits))} else { if(!is.null(x$fa.values)) {cat("\n eigen values of factors\n") print(round(x$fa.values,digits))} if(!is.null(x$fa.sim)){cat("\n eigen values of simulated factors\n") print(round(x$fa.sim,digits))} if(!is.null(x$pc.values)){cat("\n eigen values of components \n") print(round(x$pc.values,digits))} if(!is.null(x$pc.sim)) {cat("\n eigen values of simulated components\n") print(round(x$pc.sim,digits=digits))} } }, partial.r = {cat("partial correlations \n") print(round(unclass(x),digits)) }, phi.demo = {print(x$tetrachoric) cat("\nPearson (phi) below the diagonal, phi2tetras above the diagonal\n") print(round(x$phis,digits)) cat("\nYule correlations") print(x$Yule) }, poly= {cat("Call: ") print(x$Call) cat("Polychoric correlations \n") if(!is.null(x$twobytwo)) { print(x$twobytwo,digits=digits) cat("\n implies tetrachoric correlation of ",round(-x$rho,digits))} else { if(!isSymmetric(x$rho)) lower<- FALSE if(lower) {lowerMat (x$rho,digits) } else {print(x$rho,digits)} cat("\n with tau of \n") print(x$tau,digits) if(!is.null(x$tauy)) print(x$tauy,digits) } }, polydi= {cat("Call: ") print(x$Call) cat("Correlations of polytomous with dichotomous\n") print(x$rho,digits) cat("\n with tau of \n") print(x$tau,digits) }, polyinfo = {cat("Item Response Analysis using Factor Analysis \n") cat("\n Summary information by factor and item") names(x$sumInfo ) <- paste("Factor",1:length(x$sumInfo)) for (f in 1:length(x$sumInfo)) { cat("\n Factor = ",f,"\n") temp <- x$sumInfo[[f]] temps <- rowSums(temp) if(sort) {ord <- order(temps,decreasing=TRUE) temp <- temp[ord,] temps <- temps[ord]} temp <- temp[temps > 0,] summary <- matrix(c(colSums(temp),sqrt(1/colSums(temp)),1-1/colSums(temp)),nrow=3,byrow=TRUE) rownames(summary) <-c("Test Info","SEM", "Reliability") temp <- rbind(temp,summary) if(ncol(temp) == 61) {print(round(temp[,seq(1,61,10)],digits=digits)) } else {print(round(temp,digits=digits))} } if(!short) { cat("\n Average information (area under the curve) \n") AUC <-x$AUC max.info <-x$max.info if(dim(AUC)[2]==1) {item <- 1:length(AUC) } else {item <- 1:dim(AUC)[1]} if(sort) { cluster <- apply(AUC,1,which.max) ord <- sort(cluster,index.return=TRUE) AUC <- AUC[ord$ix,,drop=FALSE] max.info <- max.info[ord$ix,,drop=FALSE] items <- table(cluster) first <- 1 for (i in 1:length(items)) { if(items[i] > 0 ) { last <- first + items[i]- 1 ord <- sort(abs(AUC[first:last,i]),decreasing=TRUE,index.return=TRUE) AUC[first:last,] <- AUC[item[ord$ix+first-1],] max.info[first:last,] <- max.info[item[ord$ix+first-1],] rownames(AUC)[first:last] <- rownames(max.info)[first:last] <- rownames(AUC)[ord$ix+first-1] first <- first + items[i] } } } print(AUC,digits=digits) cat("\nMaximum value is at \n") print(max.info,digits=digits) } }, validity = { cat("Call: ") print(x$Call) cat("\nPredicted Asymptotic Scale Validity:\n") print(x$asymptotic,digits) cat("\n For predicted scale validities, average item validities, or scale reliabilities, print the separate objects") }, overlap = { cat("Call: ") print(x$Call) cat("\n(Standardized) Alpha:\n") print(x$alpha,digits) cat("\n(Standardized) G6*:\n") print(x$G6,digits) cat("\nAverage item correlation:\n") print(x$av.r,digits) cat("\nMedian item correlation:\n") print(x$med.r,digits) cat("\nNumber of items:\n") print(x$size) cat("\nSignal to Noise ratio based upon average r and n \n") print(x$sn,digits=digits) cat("\nScale intercorrelations corrected for item overlap and attenuation \n adjusted for overlap correlations below the diagonal, alpha on the diagonal \n corrected correlations above the diagonal:\n") print(x$corrected,digits) if(short) {cat("\n In order to see the item by scale loadings and frequency counts of the data\n print with the short option = FALSE") } else { if(!is.null(x$item.cor) ) { cat("\nItem by scale correlations:\n corrected for item overlap and scale reliability\n" ) print(round(x$item.cor,digits=digits)) } } }, frequency = { cat("Response frequencies (of non-missing items) \n") print(unclass(x),digits=digits) }, r.test = {cat("Correlation tests \n") cat("Call:") print(x$Call) cat( x$Test,"\n") if(!is.null(x$t)) {cat(" t value" ,round(x$t,digits)," with probability <", signif(x$p,digits) )} if(!is.null(x$z)) {cat(" z value" ,round(x$z,digits)," with probability ", round(x$p,digits) )} if(!is.null(x$ci)) {cat("\n and confidence interval ",round(x$ci,digits) ) } }, reliability ={cat("Measures of reliability \n") if(is.list(x)) { print(x$Call) x <- x$result.df} print(round(unclass(x),digits)) }, residuals = { if(NCOL(x) == NROW(x)) { if (lower) {lowerMat (x,digits=digits)}} else {print(round(unclass(x),digits))} }, scree = { cat("Scree of eigen values \nCall: ") print(x$Call) if(!is.null(x$fv)) {cat("Eigen values of factors ") print(round(x$fv,digits))} if (!is.null(x$pcv)) {cat("Eigen values of Principal Components") print(round(x$pcv,digits))} }, scores = { cat("Call: ") print(x$Call) if(x$raw) { cat("\n(Unstandardized) Alpha:\n") } else {cat("\n(Standardized) Alpha:\n") } print(x$alpha,digits=digits) if(!is.null(x$ase)) {cat("\nStandard errors of unstandardized Alpha:\n") rownames(x$ase) <- "ASE " print(x$ase,digit=digits) } if(!is.null(x$alpha.ob)) {cat("\nStandardized Alpha of observed scales:\n") print(x$alpha.ob,digits=digits)} cat("\nAverage item correlation:\n") print(x$av.r,digits=digits) cat("\nMedian item correlation:\n") print(x$med.r,digits=digits) cat("\n Guttman 6* reliability: \n") print(x$G6,digits=digits) cat("\nSignal/Noise based upon av.r : \n") print(x$sn,digits=digits) cat("\nScale intercorrelations corrected for attenuation \n raw correlations below the diagonal, alpha on the diagonal \n corrected correlations above the diagonal:\n") if(!is.null(x$alpha.ob)) {cat("\nNote that these are the correlations of the complete scales based on the correlation matrix,\n not the observed scales based on the raw items.\n")} print(x$corrected,digits) if(short) {cat("\n In order to see the item by scale loadings and frequency counts of the data\n print with the short option = FALSE") } else { if(!is.null(x$item.cor) ) { cat("\nItem by scale correlations:\n corrected for item overlap and scale reliability\n" ) print(round(x$item.corrected,digits=digits)) } if(!is.null(x$response.freq)) { cat("\nNon missing response frequency for each item\n") print(round(x$response.freq,digits=digits))} } }, setCor= { cat("Call: ") print(x$Call) if(x$raw) {cat("\nMultiple Regression from raw data \n")} else { cat("\nMultiple Regression from matrix input \n")} if(!is.null(x$z)) cat("The following variables were partialed out:", x$z, "\n and are included in the calculation of df1 and df2\n") ny <- NCOL(x$coefficients) for(i in 1:ny) {cat("\n DV = ",colnames(x$coefficients)[i], "\n") if(!is.null(x$se)) {result.df <- data.frame( round(x$coefficients[,i],digits),round(x$se[,i],digits),round(x$t[,i],digits),signif(x$Probability[,i],digits),round(x$ci[,i],digits), round(x$ci[,(i +ny)],digits),round(x$VIF,digits)) colnames(result.df) <- c("slope","se", "t", "p","lower.ci","upper.ci", "VIF") print(result.df) cat("\nResidual Standard Error = ",round(x$SE.resid[i],digits), " with ",x$df[2], " degrees of freedom\n") result.df <- data.frame(R = round(x$R[i],digits), R2 = round(x$R2[i],digits), Ruw = round(x$ruw[i],digits),R2uw = round( x$ruw[i]^2,digits), round(x$shrunkenR2[i],digits),round(x$seR2[i],digits), round(x$F[i],digits),x$df[1],x$df[2], signif(x$probF[i],digits+1)) colnames(result.df) <- c("R","R2", "Ruw", "R2uw","Shrunken R2", "SE of R2", "overall F","df1","df2","p") cat("\n Multiple Regression\n") print(result.df) } else { result.df <- data.frame( round(x$coefficients[,i],digits),round(x$VIF,digits)) colnames(result.df) <- c("slope", "VIF") print(result.df) result.df <- data.frame(R = round(x$R[i],digits), R2 = round(x$R2[i],digits), Ruw = round(x$ruw[i],digits),R2uw = round( x$ruw[i]^2,digits)) colnames(result.df) <- c("R","R2", "Ruw", "R2uw") cat("\n Multiple Regression\n") print(result.df) } } if(!is.null(x$cancor)) { cat("\nVarious estimates of between set correlations\n") cat("Squared Canonical Correlations \n") print(x$cancor2,digits=digits) if(!is.null(x$Chisq)) {cat("Chisq of canonical correlations \n") print(x$Chisq,digits=digits)} cat("\n Average squared canonical correlation = ",round(x$T,digits=digits)) cat("\n Cohen's Set Correlation R2 = ",round(x$Rset,digits=digits)) if(!is.null(x$Rset.shrunk)){ cat("\n Shrunken Set Correlation R2 = ",round(x$Rset.shrunk,digits=digits)) cat("\n F and df of Cohen's Set Correlation ",round(c(x$Rset.F,x$Rsetu,x$Rsetv), digits=digits))} cat("\nUnweighted correlation between the two sets = ",round(x$Ruw,digits)) } }, sim = { if(is.matrix(x)) {x <-unclass(x) round(x,digits) } else { cat("Call: ") print(x$Call) cat("\n $model (Population correlation matrix) \n") print(x$model,digits) if(!is.null(x$reliability)) { cat("\n$reliability (population reliability) \n") print(x$reliability,digits) } if(!is.null(x$N) && !is.null(x$r)) { cat("\n$r (Sample correlation matrix for sample size = ",x$N,")\n") print(x$r,digits)} } }, smoother = {x <- unclass(x) print(x) }, split ={ cat("Split half reliabilities ") cat("\nCall: ") print(x$Call) cat("\nMaximum split half reliability (lambda 4) = ",round(x$maxrb,digits=digits)) cat("\nGuttman lambda 6 = ",round(x$lambda6,digits=digits)) cat("\nAverage split half reliability = ",round(x$meanr,digits=digits)) cat("\nGuttman lambda 3 (alpha) = ",round(x$alpha,digits=digits)) cat("\nGuttman lambda 2 = ", round(x$lambda2,digits=digits)) cat("\nMinimum split half reliability (beta) = ",round(x$minrb,digits=digits)) if(x$covar) { cat("\nAverage interitem covariance = ",round(x$av.r,digits=digits)," with median = ", round(x$med.r,digits=digits))} else { cat("\nAverage interitem r = ",round(x$av.r,digits=digits)," with median = ", round(x$med.r,digits=digits))} if(!is.na(x$ci[1])) {cat("\n ",names(x$ci)) cat("\n Quantiles of split half reliability = ",round(x$ci,digits=digits))} }, statsBy ={ cat("Statistics within and between groups ") cat("\nCall: ") print(x$Call) cat("Intraclass Correlation 1 (Percentage of variance due to groups) \n") print(round(x$ICC1,digits)) cat("Intraclass Correlation 2 (Reliability of group differences) \n") print(round(x$ICC2,digits)) cat("eta^2 between groups \n") print(round(x$etabg^2,digits)) if(short) { cat("\nTo see the correlations between and within groups, use the short=FALSE option in your print statement.")} if(!short) {cat("Correlation between groups \n") lowerMat(x$rbg) cat("Correlation within groups \n") lowerMat(x$rwg) } cat("\nMany results are not shown directly. To see specific objects select from the following list:\n",names(x)) }, tau = {cat("Tau values from dichotomous or polytomous data \n") class(x) <- NULL print(x,digits) }, tetra = {cat("Call: ") print(x$Call) cat("tetrachoric correlation \n") if(!is.null(x$twobytwo)) { print(x$twobytwo,digits=digits) cat("\n implies tetrachoric correlation of ",round(x$rho,digits))} else {if(length(x$rho)>1) { if(!isSymmetric(x$rho)) lower <- FALSE} else {lower<- FALSE} if(is.matrix(x$rho) && lower) {lowerMat (x$rho,digits)} else { print(x$rho,digits)} cat("\n with tau of \n") print(x$tau,digits) if(!is.null(x$tauy)) print(x$tauy,digits) } }, thurstone = { cat("Thurstonian scale (case 5) scale values ") cat("\nCall: ") print(x$Call) print(x$scale) cat("\n Goodness of fit of model ", round(x$GF,digits)) }, KMO = {cat("Kaiser-Meyer-Olkin factor adequacy") cat("\nCall: ") print(x$Call) cat("Overall MSA = ",round(x$MSA,digits)) cat("\nMSA for each item = \n") print(round(x$MSAi,digits)) }, unidim= { cat("\nA measure of unidimensionality \n Call: ") print(x$Call) cat("\nUnidimensionality index = \n" ) print(round(x$uni,digits=digits)) cat("\nunidim adjusted index reverses negatively scored items.") cat("\nalpha "," Based upon reverse scoring some items.") cat ("\naverage and median correlations are based upon reversed scored items") }, yule = {cat("Yule and Generalized Yule coefficients") cat("\nCall: ") print(x$Call) cat("\nYule coefficient \n") print(round(x$rho,digits)) cat("\nUpper and Lower Confidence Intervals = \n") print(round(x$ci,digits)) }, Yule = {cat("Yule and Generalized Yule coefficients") cat("\nLower CI Yule coefficient Upper CI \n") print(round(c(x$lower,x$rho,x$upper),digits)) } ) }
.check_cpp_func_error <- function(obj, func_name) { if (obj[["errmsg"]] != "") { stop(paste0("Internal cpp function (", func_name, "()) failed: ", obj[["errmsg"]]), call. = FALSE) } } .get_obj <- function(obj, obj_name) { if (is.null(obj_name) || is.null(obj) || methods::is(obj, obj_name)) { obj } else { .get_obj(attr(obj, "src"), obj_name) } } .get_obj_arg <- function(obj, obj_name, arg_name) { if (!is.null(obj_name) && !is.na(obj_name)) { obj <- .get_obj(obj, obj_name) } obj_args <- attr(obj, "args") if (is.null(obj_args)) { NULL } else { obj_args[[arg_name]] } } .create_src_obj <- function(obj, obj_name, func, scores, labels, ...) { if (missing(obj)) { if (!is.null(scores) && !is.null(labels)) { obj <- func(scores = scores, labels = labels, ...) } else { stop("The first argument must be specified.", call. = FALSE) } } obj } .get_metric_names <- function(mode) { if (mode == "rocprc" || mode == "prcroc") { mnames <- c("ROC", "PRC") } else if (mode == "basic") { mnames <- c("score", "label", "error", "accuracy", "specificity", "sensitivity", "precision", "mcc", "fscore") } mnames } .load_data_table <- function() { loaded <- TRUE if (!requireNamespace("data.table", quietly = TRUE)) { loaded <- FALSE } loaded } .get_pn_info <- function(object) { nps <- attr(object, "data_info")[["np"]] nns <- attr(object, "data_info")[["nn"]] is_consistant <- TRUE prev_np <- NA prev_nn <- NA np_tot <- 0 nn_tot <- 0 n <- 0 for (i in seq_along(nps)) { np <- nps[i] nn <- nns[i] if ((!is.na(prev_np) && np != prev_np) || (!is.na(prev_nn) && nn != prev_nn)) { is_consistant <- FALSE } np_tot <- np_tot + np nn_tot <- nn_tot + nn prev_np <- np prev_nn <- nn n <- n + 1 } avg_np <- np_tot / n avg_nn <- nn_tot / n prc_base <- avg_np / (avg_np + avg_nn) list(avg_np = avg_np, avg_nn = avg_nn, is_consistant = is_consistant, prc_base = prc_base) }
summary.cv.clogitL1 = function(object, ...){ minInd = which(object$lambda == object$minCV_lambda) minCVBeta = object$beta[minInd,] minCVNZbeta = object$nz_beta[minInd] minInd = which(object$lambda == object$minCV1se_lambda) minCV1seBeta = object$beta[minInd,] minCV1seNZbeta = object$nz_beta[minInd] list(lambda_minCV=exp(object$minCV_lambda), beta_minCV=minCVBeta, nz_beta_minCV=minCVNZbeta, lambda_minCV1se=exp(object$minCV1se_lambda), beta_minCV1se=minCV1seBeta, nz_beta_minCV1se=minCV1seNZbeta) }
"WeatherTask"
NULL stored_account <- R6::R6Class("stored_account", inherit=stored_object, public=list( type="storage", id=NULL, resourceId=NULL, activeKeyName=NULL, autoRegenerateKey=NULL, regenerationPeriod=NULL, delete=NULL, remove=function(confirm=TRUE) { if(delete_confirmed(confirm, self$name, "storage")) invisible(self$do_operation(version=NULL, http_verb="DELETE")) }, regenerate_key=function(key_name) { self$do_operation("regeneratekey", body=list(keyName=key_name), http_verb="POST") }, create_sas_definition=function(sas_name, sas_template, validity_period, sas_type="account", enabled=TRUE, recovery_level=NULL, ...) { attribs <- list( enabled=enabled, recoveryLevel=recovery_level ) attribs <- attribs[!sapply(attribs, is_empty)] body <- list( sasType=sas_type, templateUri=sas_template, validityPeriod=validity_period, attributes=attribs, tags=list(...) ) op <- construct_path("sas", sas_name) self$do_operation(op, body=body, encode="json", http_verb="PUT") }, delete_sas_definition=function(sas_name, confirm=TRUE) { if(delete_confirmed(confirm, sas_name, "SAS definition")) { op <- construct_path("sas", sas_name) invisible(self$do_operation(op, http_verb="DELETE")) } }, get_sas_definition=function(sas_name) { op <- construct_path("sas", sas_name) self$do_operation(op) }, list_sas_definitions=function() { get_vault_paged_list(self$do_operation("sas"), self$token) }, show_sas=function(sas_name) { secret_url <- self$get_sas_definition(sas_name)$sid call_vault_url(self$token, secret_url)$value }, print=function(...) { cat("Key Vault managed storage account '", self$name, "'\n", sep="") cat(" Account:", basename(self$resourceId), "\n") invisible(self) } ))
fit_and_compare_bm_models = function( trees1, tip_states1, trees2, tip_states2, Nbootstraps = 0, Nsignificance = 0, check_input = TRUE, verbose = FALSE, verbose_prefix = ""){ if(verbose) cat(sprintf("%sFitting BM to first tree set..\n",verbose_prefix)) fit1 = fit_bm_model(trees=trees1, tip_states=tip_states1, Nbootstraps=Nbootstraps, check_input=check_input) if(!fit1$success) return(list(success=FALSE, error=sprintf("Failed to fit BM to tree set 1: %s",fit1$error))) if(verbose) cat(sprintf("%sFitting BM to second tree set..\n",verbose_prefix)) fit2 = fit_bm_model(trees=trees2, tip_states=tip_states2, Nbootstraps=Nbootstraps, check_input=check_input) if(!fit2$success) return(list(success=FALSE, error=sprintf("Failed to fit BM to tree set 2: %s",fit2$error))) log_difference = abs(log(fit1$diffusivity) - log(fit2$diffusivity)) if(Nsignificance>0){ if(verbose) cat(sprintf("%sCalculating statistical significance of ratio D1/D2..\n",verbose_prefix)) if("phylo" %in% class(trees1)) trees1 = list(trees1) if("phylo" %in% class(trees2)) trees2 = list(trees2) Ntrees1 = length(trees1) Ntrees2 = length(trees2) if(!("list" %in% class(tip_states1))) tip_states1 = list(tip_states1) if(!("list" %in% class(tip_states2))) tip_states2 = list(tip_states2) if(verbose) cat(sprintf("%s Fitting common BM model to both tree sets..\n",verbose_prefix)) fit_common = fit_bm_model(trees=c(trees1,trees2), tip_states=c(tip_states1,tip_states2), Nbootstraps=0, check_input=FALSE) if(verbose) cat(sprintf("%s Assessing significance over %d BM simulations..\n",verbose_prefix,Nsignificance)) random_tip_states1 = vector(mode="list", Ntrees1) random_tip_states2 = vector(mode="list", Ntrees2) Ngreater = 0 Nsuccess = 0 for(r in 1:Nsignificance){ for(tr in 1:Ntrees1){ random_tip_states1[[tr]] = simulate_bm_model(trees1[[tr]], diffusivity=fit_common$diffusivity, include_tips=TRUE, include_nodes=FALSE, drop_dims=TRUE)$tip_states } for(tr in 1:Ntrees2){ random_tip_states2[[tr]] = simulate_bm_model(trees2[[tr]], diffusivity=fit_common$diffusivity, include_tips=TRUE, include_nodes=FALSE, drop_dims=TRUE)$tip_states } random_fit1 = fit_bm_model(trees=trees1, tip_states=random_tip_states1, Nbootstraps=0, check_input=FALSE) if(!random_fit1$success){ if(verbose) cat(sprintf("%s WARNING: BM fitting failed for random simulation next; } random_fit2 = fit_bm_model(trees=trees2, tip_states=random_tip_states2, Nbootstraps=0, check_input=FALSE) if(!random_fit2$success){ if(verbose) cat(sprintf("%s WARNING: BM fitting failed for random simulation next; } Nsuccess = Nsuccess + 1 random_log_difference = abs(log(random_fit1$diffusivity) - log(random_fit2$diffusivity)) Ngreater = Ngreater + (random_log_difference>=log_difference) } significance = Ngreater / Nsuccess } return(list(success = TRUE, fit1 = fit1, fit2 = fit2, log_difference = log_difference, significance = (if(Nsignificance>0) significance else NULL), fit_common = (if(Nsignificance>0) fit_common else NULL))) }
"confidenceIntervalsPlot" <- function(){ initializeDialog(title=gettextRcmdr("Confidence Intervals in Simple Linear Regression")) variablesFrame <- tkframe(top) .numeric <- Numeric() xBox <- variableListBox(variablesFrame, .numeric, title=gettextRcmdr("Explanatory variables (pick one)")) yBox <- variableListBox(variablesFrame, .numeric, title=gettextRcmdr("Response variable (pick one)")) UpdateModelNumber() modelName <- tclVar(paste("RegModel.", getRcmdr("modelNumber"), sep="")) modelFrame <- tkframe(top) model <- tkentry(modelFrame, width="20", textvariable=modelName) subsetBox() onOK <- function(){ x <- getSelection(xBox) y <- getSelection(yBox) closeDialog() if (0 == length(y)) { UpdateModelNumber(-1) errorCondition(recall=confidenceIntervalsPlot, message=gettextRcmdr("You must select a response variable.")) return() } if (0 == length(x)) { UpdateModelNumber(-1) errorCondition(recall=confidenceIntervalsPlot, message=gettextRcmdr("No explanatory variables selected.")) return() } if (is.element(y, x)) { UpdateModelNumber(-1) errorCondition(recall=confidenceIntervalsPlot, message=gettextRcmdr("Response and explanatory variables must be different.")) return() } subset <- tclvalue(subsetVariable) if (trim.blanks(subset) == gettextRcmdr("<all valid cases>") || trim.blanks(subset) == ""){ subset <- "" putRcmdr("modelWithSubset", FALSE) } else{ subset <- paste(", subset=", subset, sep="") putRcmdr("modelWithSubset", TRUE) } modelValue <- trim.blanks(tclvalue(modelName)) if (!is.valid.name(modelValue)){ UpdateModelNumber(-1) errorCondition(recall=confidenceIntervalsPlot, message=sprintf(gettextRcmdr('"%s" is not a valid name.'), modelValue)) return() } if (is.element(modelValue, listLinearModels())) { if ("no" == tclvalue(checkReplace(modelValue, type=gettextRcmdr("Model")))){ UpdateModelNumber(-1) confidenceIntervalsPlot() return() } } command <- paste("lm(", y, "~", paste(x, collapse="+"), ", data=", ActiveDataSet(), subset, ")", sep="") justDoIt(paste(modelValue, " <- ", command, sep="")) doItAndPrint(paste("summary(", modelValue, ")", sep="")) activeModel(modelValue) doItAndPrint(paste("ci.plot(", modelValue, ")", sep="")) tkfocus(CommanderWindow()) } OKCancelHelp(helpSubject="ci.plot", model=TRUE) tkgrid(tklabel(modelFrame, text=gettextRcmdr("Enter name for model:")), model, sticky="w") tkgrid(modelFrame, sticky="w") tkgrid(getFrame(yBox), tklabel(variablesFrame, text=" "), getFrame(xBox), sticky="nw") tkgrid(variablesFrame, sticky="w") tkgrid(subsetFrame, sticky="w") tkgrid(buttonsFrame, stick="w") tkgrid.configure(helpButton, sticky="e") dialogSuffix(rows=4, columns=1) }
chisq.loglog <- function(st,ot.sq) { A <- matrix(log(-log(st[1]))-log(-log(st[2:length(st)])),1,(length(st)-1)) SIGMA <- array(ot.sq[1]/((log(st[1]))^2),c(length(st)-1,length(st)-1)) diag(SIGMA) <- (ot.sq[1]/((log(st[1]))^2)) + (ot.sq[2:length(st)]/((log(st[2:length(st)]))^2)) chisq <- A %*% solve(SIGMA) %*% t(A) chisq.loglog <- chisq }
knitr::opts_chunk$set( collapse = TRUE, echo = FALSE, comment = " ) use_dt <- FALSE if(requireNamespace("DT", quietly = TRUE)) use_dt <- TRUE DT::datatable(nflreadr::dictionary_rosters, options = list(scrollX = TRUE, pageLength = 25), filter = "top", rownames = FALSE )
error <- function(a,b) { d <- (var(a) - var(b)) * 100/ var(a) d <- as.numeric(d) return(d) }
.scapa.uv.class<-setClass("scapa.uv.class",contains="capa.class",representation()) scapa.uv.class<-function(data,beta,beta_tilde,min_seg_len,max_seg_len,max_lag,type, transform,anomaly_types,anomaly_positions,components,start_lags,end_lags,...) { .scapa.uv.class(capa.class(data=data,beta=beta,beta_tilde=beta_tilde,min_seg_len=min_seg_len,max_seg_len=max_seg_len,max_lag=max_lag,type=type, transform=transform,anomaly_types=anomaly_types,anomaly_positions=anomaly_positions,components=components,start_lags=start_lags,end_lags=end_lags) ,...) } setMethod("point_anomalies",signature=list("scapa.uv.class"), function(object,epoch=nrow(object@data)) { return(callNextMethod(object,epoch=epoch)[,c(1,3)]) }) setMethod("collective_anomalies",signature=list("scapa.uv.class"), function(object,epoch=nrow(object@data)) { return(callNextMethod(object,epoch=epoch)[,c(1:2,6:7)]) }) setMethod("plot",signature=list("scapa.uv.class"),function(x,epoch,variate_name=FALSE) { if(missing(epoch)) { epoch<-nrow(x@data) } return(plot(as(x,"capa.class"),epoch=epoch,variate_names=variate_name)) }) scapa.uv<-function(x,beta=NULL,beta_tilde=NULL,type="meanvar",min_seg_len=10,max_seg_len=Inf,transform=tierney) { x<-to_array(x) if(dim(x)[2] > 1) { stop("data for univariate analysis must have 1 variate. Use capa or capa.mv for multivariate data.") } res<-capa(x=x,beta=beta,beta_tilde=beta_tilde,type=type,min_seg_len=min_seg_len,max_seg_len=max_seg_len,transform=transform) return( scapa.uv.class(data=res@data, beta=res@beta, beta_tilde=res@beta_tilde, min_seg_len=res@min_seg_len, max_seg_len=res@max_seg_len, max_lag=res@max_lag, type=res@type, transform=res@transform, anomaly_types=res@anomaly_types, anomaly_positions=res@anomaly_positions, components=res@components, start_lags=res@start_lags, end_lags=res@end_lags) ) }
callWithoutSumt <- function(theta, fName, ...) { return( callWithoutArgs( theta, fName = fName, args = names(formals(sumt)), ... ) ) }
if(0) { m = matrix(rnorm(100), 10) rownames(m) = 1:10 colnames(m) = 1:10 ht = Heatmap(m) ht = draw(ht) selectArea(ht) ht = Heatmap(m, row_km = 2, column_km = 2) ht = draw(ht) selectArea(ht) ht = Heatmap(m, row_km = 2, column_km = 2) + Heatmap(m, row_km = 2, column_km = 2) ht = draw(ht) selectArea(ht) pdf("~/test.pdf") ht = Heatmap(m) ht = draw(ht) selectArea(ht, pos1 = unit(c(1, 1), "cm"), pos2 = unit(c(4, 4), "cm"), verbose = TRUE) set.seed(123) ht = Heatmap(m, row_km = 2, column_km = 2) ht = draw(ht) selectArea(ht, pos1 = unit(c(1, 1), "cm"), pos2 = unit(c(8, 8), "cm"), verbose = TRUE) dev.off() png("~/test-1.png") ht = Heatmap(m) ht = draw(ht) selectArea(ht, pos1 = unit(c(1, 1), "cm"), pos2 = unit(c(4, 4), "cm"), verbose = TRUE) dev.off() png("~/test-2.png") set.seed(123) ht = Heatmap(m, row_km = 2, column_km = 2) ht = draw(ht) selectArea(ht, pos1 = unit(c(1, 1), "cm"), pos2 = unit(c(8, 8), "cm"), verbose = TRUE) dev.off() }
getauthorrecordraw <- function(id, code = NA) { repec_api_with_id(method = 'getauthorrecordraw', id = id, code = code) } get_author_record_raw <- getauthorrecordraw
overfit_demo <- function(DF,y=NA,seed=NA,aic=TRUE) { if(is.na(y)) { stop(paste("Need to specify y variable in quotes\n")) } if(!is.na(seed)) { set.seed(seed) } n <- nrow(DF) selected <- sample(n,n/2,replace=TRUE) training <- DF[selected,] holdout <- DF[-selected,] form1 <- formula( paste(y,"~1") ) form2 <- formula( paste(y,"~.^2") ) null.model <- lm(form1,data=training) full.model <- lm(form2,data=training) best.model <- step(null.model,scope=list(lower=null.model,upper=full.model),direction="forward",trace=0) M <- step(null.model,scope=list(lower=null.model,upper=full.model),direction="forward",trace=0,steps=1) y.pos <- which(names(holdout)==y) y.holdout <- holdout[,y.pos] pred.holdout <- predict(M,newdata=holdout) RMSE.holdout <- sqrt(mean( (y.holdout-pred.holdout)^2 )) aic.train <- AIC(M) RMSE.train <- summary(M)$sigma for (i in 2:30) { M <- step(M,scope=list(lower=null.model,upper=full.model),direction="both",steps=1,trace=0,k=.001) pred.holdout <- predict(M,newdata=holdout) RMSE.holdout[i] <- sqrt(mean( (y.holdout-pred.holdout)^2 )) aic.train[i] <- AIC(M) RMSE.train[i] <- summary(M)$sigma } RMSE.holdout <- (RMSE.holdout-min(RMSE.holdout))/(max(RMSE.holdout)-min(RMSE.holdout)) aic.train <- (aic.train-min(aic.train))/(max(aic.train)-min(aic.train)) RMSE.train <- (RMSE.train-min(RMSE.train))/(max(RMSE.train)-min(RMSE.train)) if(aic==TRUE) { plot( 1:length(aic.train),RMSE.holdout,xlab=" lines( 1:length(aic.train),aic.train,lwd=2,lty=2) legend("top",c("RMSE(holdout)","AIC(training)"),lwd=2,lty=1:2) } if(aic==FALSE) { plot( 1:length(RMSE.train),RMSE.holdout,xlab=" lines( 1:length(RMSE.train),RMSE.train,lwd=2,lty=2) legend("top",c("RMSE(holdout)","RMSE(training)"),lwd=2,lty=1:2) } }
.cc_core <- function(qx,qy,numb_cc){ if(!is(qx,"qr")) qx=qr(qx) if(!is(qy,"qr")) qy=qr(qy) res <- svd(qr.qty(qx, qr.Q(qy))[1L:qx$rank, ,drop = FALSE], numb_cc, numb_cc) names(res)[1]="cor" return(res) } .svd <- function(...){ sv=svd(...) np=sv$d>1E-12 if(!all(np)){ sv$v=sv$v[,np] sv$u=sv$u[,np] sv$d=sv$d[np] } sv } convert2dummies <- function(Y){ Y=model.matrix(~.+0,data=data.frame(Y)) Y } fillnas <- function(Y){ nas=which(is.na(Y),arr.ind = TRUE) if(nrow(nas)==0) return(Y) Y[nas]=colMeans(Y[,nas[,2],drop=FALSE],na.rm=TRUE) Y } as_named_matrix <- function(Y,root_name="V"){ Y=as.matrix(Y) if(is.null(colnames(Y))) colnames(Y)=paste0(root_name,1:ncol(Y)) Y } .get_explaned_variance_proportion <- function(Y,score){ expl_var=sapply(1:ncol(score),function(i){ sc=score[,i,drop=FALSE] sc=sc/sqrt(sum(sc^2)) proj= sc%*%t(sc) res=sum(diag((t(Y)%*%proj%*%Y))) }) res=expl_var/sum(colSums(Y^2)) names(res)=colnames(score) res } .is_svd <- function(X){ if(!is.list(X)) return(FALSE) setequal(x = names(X),y = c("d","u","v")) } .compute_stats <- function (res,svx,svy) { xscores = res$data$X %*% res$xcoef yscores = res$data$Y %*% res$ycoef if(!is.null(svx)) res$data$X=res$data$X%*%diag(svx$d[1:ncol(res$data$X)])%*%t(svx$v) if(!is.null(svy)) res$data$Y=res$data$Y%*%diag(svy$d[1:ncol(res$data$Y)])%*%t(svy$v) corr.X.xscores = cor(res$data$X, xscores, use = "pairwise") corr.Y.xscores = cor(res$data$Y, xscores, use = "pairwise") corr.X.yscores = cor(res$data$X, yscores, use = "pairwise") corr.Y.yscores = cor(res$data$Y, yscores, use = "pairwise") res$scores=list(xscores = xscores, yscores = yscores) res$corr= list( corr.X.xscores = corr.X.xscores, corr.Y.xscores = corr.Y.xscores, corr.X.yscores = corr.X.yscores, corr.Y.yscores = corr.Y.yscores) res$prop_expl_var= list(X = .get_explaned_variance_proportion(res$data$X,res$scores$xscores), Y = .get_explaned_variance_proportion(res$data$Y,res$scores$yscores)) res } residualize <- function(Y,Z){ HY=Z%*%solve(t(Z)%*%Z)%*%t(Z)%*%Y Y-HY } residualizing_matrix <- function(Z,return_Q=TRUE) { res <- list(IH = diag(nrow(Z)) - Z %*% solve(t(Z)%*%Z) %*% t(Z)) res$IH <- (res$IH + t(res$IH))/2 if(return_Q){ ei = eigen(res$IH) if (any(is.complex(ei$values))) { warning("Data can not be orthoganalized") return(NA) } ei$vectors <- ei$vectors[, (ei$values > 0.1)] res$Q=t(ei$vectors) } return(res) }
rstack <- function() { s <- new.env(parent = emptyenv()) s$head <- NULL s$tail <- NULL s$len <- 0 class(s) <- "rstack" return(s) }
covRob <- function(data, corr = FALSE, distance = TRUE, na.action = na.fail, estim = "auto", control = covRob.control(estim, ...), ...) { data <- na.action(data) if(is.data.frame(data)) data <- data.matrix(data) n <- nrow(data) p <- ncol(data) rowNames <- dimnames(data)[[1]] colNames <- dimnames(data)[[2]] dimnames(data) <- NULL if(is.null(colNames)) colNames <- paste("V", 1:p, sep = "") if(p < 2) stop(sQuote("data"), " must have at least two columns to compute ", "a covariance matrix") if(n < p) stop("not enough observations") estim <- casefold(estim) if(estim == "auto") { if((n < 1000 && p < 10) || (n < 5000 && p < 5)) estim <- "donostah" else if(n < 50000 && p < 20) estim <- "mcd" else estim <- "pairwiseqc" control <- covRob.control(estim) } else { dots <- list(...) dots.names <- names(dots) if(any(dots.names == "quan") && all(dots.names != "alpha")) { dots.names[dots.names == "quan"] <- "alpha" names(dots) <- dots.names } if(any(dots.names == "ntrial") && all(dots.names != "nsamp")) { dots.names[dots.names == "ntrial"] <- "nsamp" names(dots) <- dots.names } control.names <- names(control) if(any(control.names == "init.control")) control.names <- c(control.names, names(control$init.control)) if(any(!is.element(dots.names, control.names))) { bad.args <- sQuote(setdiff(dots.names, control.names)) if(length(bad.args) == 1) stop(sQuote(bad.args), " is not a control argument for the ", dQuote(estim), " estimator") else stop(paste(sQuote(bad.args), collapse = ", "), " are not control ", "arguments for the ", dQuote(estim), " estimator") } } ans <- switch(estim, donostah = { args <- list(x = data) if(control$nresamp != "auto") args$nsamp <- control$nresamp if(control$maxres != "auto") args$maxres <- control$maxres if(!control$random.sample) set.seed(21) args$tune <- control$tune args$prob <- control$prob args$eps <- control$eps ds <- do.call("CovSde", args) list(cov = getCov(ds), center = getCenter(ds), dist = getDistance(ds)) }, pairwiseqc = { x <- CovOgk(data, control = CovControlOgk(smrob = "s_mad", svrob = "qc")) list(center = getCenter(x), cov = getCov(x), dist = getDistance(x), raw.center = [email protected], raw.cov = [email protected], raw.dist = [email protected]) }, pairwisegk = { x <- CovOgk(data) list(center = getCenter(x), cov = getCov(x), dist = getDistance(x), raw.center = [email protected], raw.cov = [email protected], raw.dist = [email protected]) }, m = { mcd.control <- control$init.control control$init.control <- NULL if(mcd.control$alpha > 1) mcd.control$alpha <- mcd.control$alpha / n init <- covMcd(data, cor = FALSE, control = mcd.control) ans <- covMest(data, cor = FALSE, r = control$r, arp = control$arp, eps = control$eps, maxiter = control$maxiter, t0 = init$raw.center, S0 = init$raw.cov) ans$dist <- ans$mah ans$raw.center <- init$raw.center ans$raw.cov <- init$raw.cov ans$raw.dist <- init$raw.mah ans }, mcd = { if(control$alpha > 1) control$alpha <- control$alpha / n ans <- covMcd(data, cor = FALSE, control = control) ans$center <- ans$raw.center ans$cov <- ans$raw.cov ans$dist <- ans$raw.mah ans$raw.cov <- ans$raw.cov / prod(ans$raw.cnp2) ans$raw.dist <- ans$raw.mah * prod(ans$raw.cnp2) ans }, weighted = { if(control$alpha > 1) control$alpha <- control$alpha / n ans <- covMcd(data, cor = FALSE, control = control) ans$dist <- ans$mah ans$raw.cov <- ans$raw.cov / prod(ans$raw.cnp2) ans$raw.dist <- ans$raw.mah * prod(ans$raw.cnp2) ans }, default = stop("Invalid choice of estimator.") ) dimnames(ans$cov) <- list(colNames, colNames) names(ans$center) <- colNames if(is.null(ans$raw.cov)) { ans$raw.cov <- NA ans$raw.center <- NA } else { dimnames(ans$raw.cov) <- list(colNames, colNames) names(ans$raw.center) <- colNames } if(distance) { if(is.null(ans$dist)) ans$dist <- mahalanobis(data, ans$center, ans$cov) if(!is.na(ans$raw.cov[1])) { if(is.null(ans$raw.dist)) ans$raw.dist <- mahalanobis(data, ans$raw.center, ans$raw.cov) } else ans$raw.dist <- NA } else { ans$dist <- NA ans$raw.dist <- NA } if(!is.na(ans$dist[1]) && !is.null(rowNames)) names(ans$dist) <- rowNames if(!is.na(ans$raw.dist[1]) && !is.null(rowNames)) names(ans$raw.dist) <- rowNames if(corr) { std <- sqrt(diag(ans$cov)) ans$cov <- ans$cov / (std %o% std) if(!is.na(ans$raw.cov[1])) { std <- sqrt(diag(ans$raw.cov)) ans$raw.cov <- ans$raw.cov / (std %o% std) } } ans$corr <- corr ans$estim <- estim ans$control <- control ans$call <- match.call() ans <- ans[c("call", "cov", "center", "dist", "raw.cov", "raw.center", "raw.dist", "corr", "estim", "control")] oldClass(ans) <- "covRob" ans }
sample_draws = function(data, ndraws, draw = ".draw", seed = NULL) { .draw = as.name(draw) draw_full = data[[draw]] if (!is.null(seed)) set.seed(seed) draw_sample = sample(unique(draw_full), ndraws) filter(data, !!.draw %in% !!draw_sample) }
context("sf linestring") test_that("various objects converted to sf_linestring",{ m <- matrix(1:4, ncol = 2) m <- cbind(c(1L,1L), m) res <- sfheaders:::rcpp_sf_linestring(m, c(1L,2L), 0L, "", FALSE) expect_true( all( attr(res, "class") == c("sf", "data.frame") ) ) m <- matrix(1:4, ncol = 2) res <- sfheaders:::rcpp_sf_linestring(m, c(0L, 1L), NULL, "", TRUE) expect_true( all( attr(res, "class") == c("sf", "data.frame") ) ) m <- matrix(1:9, ncol = 3) res <- sfheaders:::rcpp_sf_linestring(m, c(0L, 1L), NULL, "", TRUE) expect_true( all( attr(res, "class") == c("sf", "data.frame") ) ) m <- matrix(1:4, ncol = 2) df <- as.data.frame( m ) res <- sfheaders:::rcpp_sf_linestring(df, c(0L,1L), NULL, "", TRUE ) expect_true( all( attr(res, "class") == c("sf", "data.frame") ) ) m <- matrix(1:4, ncol = 2) df <- as.data.frame( m ) m <- as.matrix( df ) res <- sfheaders:::rcpp_sf_linestring(df, c("V1","V2"), NULL, "", TRUE) expect_true( all( attr(res, "class") == c("sf", "data.frame") ) ) m <- matrix(c(1.2,3,4,5), ncol = 2) df <- as.data.frame( m ) m <- as.matrix( df ) res <- sfheaders:::rcpp_sf_linestring(df, c("V1","V2"), NULL, "", TRUE) expect_true( all( attr(res, "class") == c("sf", "data.frame") ) ) m <- matrix(1:4, ncol = 2) df <- as.data.frame( m ) res <- sfheaders:::rcpp_sf_linestring(df, c("V1","V2"), NULL, "", TRUE) expect_true( all( attr(res, "class") == c("sf", "data.frame") ) ) m <- matrix(1:8, ncol = 2) m <- cbind(m, c(1L,1L,2L,2L)) res <- sfheaders:::rcpp_sf_linestring(m, c(0L,1L), 2L, "", TRUE) expect_true( all( attr(res, "class") == c("sf", "data.frame") ) ) m <- matrix(1:8, ncol = 2) m <- cbind(m, c(1,1,2,2)) res <- sfheaders:::rcpp_sf_linestring(m, c(0L,1L), 2L, "", TRUE) expect_true( all( attr(res, "class") == c("sf", "data.frame") ) ) m <- matrix(1:2, ncol = 2) m <- cbind(m, c(1)) res <- sfheaders:::rcpp_sf_linestring(m, c(0L,1L), 2L, "", TRUE) expect_true( all( attr(res, "class") == c("sf", "data.frame") ) ) m <- matrix(1:8, ncol = 2) m <- cbind(m, c(1,1,2,2)) df <- as.data.frame( m ) res <- sfheaders:::rcpp_sf_linestring(df, c(0L,1L), 2L, "", TRUE) expect_true( all( attr(res, "class") == c("sf", "data.frame") ) ) m <- matrix(1:8, ncol = 2) m <- cbind(m, c(1L,1L,2L,2L) ) df <- as.data.frame( m ) m <- as.matrix( df ) res <- sfheaders:::rcpp_sf_linestring(m, c("V1","V2"), NULL, "", TRUE) expect_true( all( attr(res, "class") == c("sf", "data.frame") ) ) m <- matrix(1:8, ncol = 2) m <- cbind(m, c(1,1,2,2) ) df <- as.data.frame( m ) m <- as.matrix( df ) res <- sfheaders:::rcpp_sf_linestring(m, c("V1","V2"), NULL, "", TRUE) expect_true( all( attr(res, "class") == c("sf", "data.frame") ) ) m <- matrix(c(1.2,2:8), ncol = 2) m <- cbind(m, c(1,1,2,2)) df <- as.data.frame( m ) res <- sfheaders:::rcpp_sf_linestring(df, c("V1","V2"), NULL, "", TRUE ) expect_true( all( attr(res, "class") == c("sf", "data.frame") ) ) m <- matrix(1L:4L, ncol = 2) m <- cbind(c(1L,1L), m) df <- as.data.frame( m ) m <- as.matrix( df ) res <- sfheaders:::rcpp_sf_linestring(m, c("V1","V2"), "V3", "", TRUE) expect_true( all( attr(res, "class") == c("sf", "data.frame") ) ) m <- matrix(1:8, ncol = 2) m <- cbind(m, c(1,1,2,2) ) df <- as.data.frame( m ) m <- as.matrix( df ) res <- sfheaders:::rcpp_sf_linestring(m, c("V1","V2"), "V3", "", TRUE ) expect_true( all( attr(res, "class") == c("sf", "data.frame") ) ) m <- matrix(c(1.2,2:8), ncol = 2) m <- cbind(m, c(1,1,2,2)) df <- as.data.frame( m ) res <- sfheaders:::rcpp_sf_linestring(df, c("V1","V2"), "V3", "", TRUE ) expect_true( all( attr(res, "class") == c("sf", "data.frame") ) ) m <- matrix(1:8, ncol = 2) m <- cbind(m, c(1,1,2,2)) df <- as.data.frame( m ) res <- sfheaders:::rcpp_sf_linestring(df, c("V1","V2"), c("V3"), "", TRUE) expect_true( all( attr(res, "class") == c("sf", "data.frame") ) ) m <- matrix(1:2, ncol = 2) m <- cbind(m, c(1)) df <- as.data.frame( m ) res <- sfheaders:::rcpp_sf_linestring(df, c("V1","V2"), c("V3"), "", TRUE) expect_true( all( attr(res, "class") == c("sf", "data.frame") ) ) m <- matrix(1:2, ncol = 2) m <- cbind(m, c(1)) df <- as.data.frame( m ) res <- sfheaders:::rcpp_sf_linestring(df, c(0L,1L), 2L, "", TRUE ) expect_true( all( attr(res, "class") == c("sf", "data.frame") ) ) }) test_that("ineger column indexing works (issue m <- matrix(1:8, ncol = 2) m <- cbind(m, c(1,1,2,2)) res <- sfheaders:::rcpp_to_sf(obj = m, geometry_columns = c(0L,1L), NULL, 1L, NULL, NULL, NULL, NULL, FALSE, TRUE, "", "LINESTRING") res2 <- sfheaders::sf_linestring(m, x = 1, y = 2, linestring_id = 2, keep = T) expect_equal( res, res2 ) expect_true( all( attr(res, "class") == c("sf", "data.frame") ) ) expect_equal( res$V3, c(1,1,2,2) ) expect_true( ncol(res) == 3 ) m <- matrix(1:8, ncol = 2) m <- cbind(m, c(1,1,2,2)) res <- sfheaders:::rcpp_to_sf(obj = m, geometry_columns = c(0L,1L), NULL, 2L, NULL, NULL, NULL, NULL, FALSE, TRUE, "", "LINESTRING") expect_true( all( attr(res, "class") == c("sf", "data.frame") ) ) expect_equal( res$V3, 1:2 ) })
context("plot Words in Topics relative to Words") test_that("plotTopicWord", { suppressWarnings(RNGversion("3.5.0")) set.seed(123) x1 <- matrix(sample(c(rep(0, 20), 1:20), 10000, replace = TRUE), 10, 1000) ldaID <- paste("ID", 1:200) x2 <- list(document_sums = x1) text <- matrix(sample(paste("word", 1:100), 10000, replace = TRUE), 200, 50) text <- lapply(apply(text, 1, list), unlist) names(text) <- paste("ID", 1:200) words <- makeWordlist(text)$words LDAdoc <- LDAprep(text, words) lda <- LDAgen(documents = LDAdoc, K = 3L, vocab = words, num.iterations = 20L, burnin = 70L, seed = 123) meta1 <- as.Date(sample(1:730, 1200, replace = TRUE), origin = "1990-10-03") names(meta1) <- paste("ID", 1:1200) meta <- data.frame(id = paste("ID", 1:1200), date = meta1, title = as.character(NA), stringsAsFactors = FALSE) obj <- textmeta(text = text, meta = meta) res1 <- plotTopicWord(object = obj, docs = LDAdoc, ldaresult = lda, ldaID = ldaID) expect_true(all(res1$date == seq(min(res1$date), max(res1$date), "month"))) res2 <- plotTopicWord(object = obj, docs = LDAdoc, ldaresult = lda, ldaID = ldaID, unit = "week") expect_true(all(res2$date == seq(min(res2$date), max(res2$date), "week"))) res3 <- plotTopicWord(object = obj, docs = LDAdoc, ldaresult = lda, ldaID = ldaID, pages = TRUE) expect_equal(res1, res3) res4 <- plotTopicWord(object = obj, docs = LDAdoc, ldaresult = lda, ldaID = ldaID, mark = FALSE, curves = "both", legend = "none", natozero = FALSE) expect_equal(res1, res4) res5 <- plotTopicWord(object = obj, docs = LDAdoc, ldaresult = lda, ldaID = ldaID, rel = TRUE, link = "or") expect_true(all(res5$date == res1$date), all(colnames(res1) == colnames(res5)), all(res5[, -1] <= 1)) res6 <- plotTopicWord(object = obj, docs = LDAdoc, ldaresult = lda, ldaID = ldaID, file = file.path(tempdir(),"abc.pdf")) expect_equal(res1, res6) res7 <- plotTopicWord(object = obj, docs = LDAdoc, ldaresult = lda, ldaID = ldaID, curves = "smooth") expect_equal(res1, res7) })
library(EnvStats) windows() par(mfrow = c(3, 2), mar = c(3, 3, 3, 1), mgp = c(1.5, 0.5, 0)) pdfPlot(dist = "beta", param.list = list(shape1=2, shape2=4), curve.fill.col = "cyan") pdfPlot(dist = "beta", param.list = list(shape1=1, shape2=1, ncp=1), curve.fill.col = "cyan") pdfPlot(dist = "binom", param.list = list(size=10, prob=0.5), hist.col = "cyan") pdfPlot(dist = "cauchy", param.list = list(location=0, scale=1), left.tail.cutoff = 0.01, right.tail.cutoff = 0.01, curve.fill.col = "cyan") pdfPlot(dist = "chi", param.list = list(df=4), curve.fill.col = "cyan") pdfPlot(dist = "chisq", param.list = list(df=4), curve.fill.col = "cyan") windows() par(mfrow = c(3, 2), mar = c(3, 3, 3, 1), mgp = c(1.5, 0.5, 0)) pdfPlot(dist = "chisq", param.list = list(df=5, ncp=1), curve.fill.col = "cyan") set.seed(21) epdfPlot(rgamma(100, shape=4, scale=5), curve.fill = TRUE, curve.fill.col = "cyan", xlab = "Observations", main = "Empirical Density Based On 100\nGamma(shape=4, scale=5) Random Numbers", cex.main = 1) pdfPlot(dist = "exp", param.list = list(rate=2), curve.fill.col = "cyan") pdfPlot(dist = "evd", param.list = list(location=0, scale=1), curve.fill.col = "cyan") pdfPlot(dist = "gevd", param.list = list(location=0, scale=1, shape = 0.5), curve.fill.col = "cyan", cex.main = 1) pdfPlot(dist = "f", param.list = list(df1=5, df2=10), curve.fill.col = "cyan") windows() par(mfrow = c(3, 2), mar = c(3, 3, 3, 1), mgp = c(1.5, 0.5, 0)) pdfPlot(dist = "f", param.list = list(df1=5, df2=10, ncp=1), curve.fill.col = "cyan") pdfPlot(dist = "gamma", param.list = list(shape=2, scale=1), curve.fill.col = "cyan") pdfPlot(dist = "gammaAlt", param.list = list(mean=10, cv=0.5), curve.fill.col = "cyan") pdfPlot(dist = "geom", param.list = list(prob=0.5), hist.col = "cyan") pdfPlot(dist = "hyper", param.list = list(m=20, n=15, k=7), hist.col = "cyan") pdfPlot(dist = "logis", param.list = list(location=0, scale=1), curve.fill.col = "cyan") windows() par(mfrow = c(3, 2), mar = c(3, 3, 3, 1), mgp = c(1.5, 0.5, 0)) pdfPlot(dist = "lnorm", param.list = list(meanlog=0, sdlog=1), curve.fill.col = "cyan") pdfPlot(dist = "lnormAlt", param.list = list(mean=10, cv=0.5), curve.fill.col = "cyan") pdfPlot(dist = "lnormMix", param.list = list(meanlog1=0, sdlog1=1, meanlog2=3, sdlog2=0.5, p.mix=0.5), right.tail.cutoff = 0.02, curve.fill.col = "cyan", cex.main = 1, main = paste("Lognormal Mixture Density", "(meanlog1=0, sdlog1=1,", "meanlog2=3, sdlog2=0.5, p.mix=0.5)", sep="\n")) pdfPlot(dist = "lnormMixAlt", param.list = list(mean1=5, cv1=1, mean2=20, cv2=0.5, p.mix=0.5), right.tail.cutoff = 0.01, curve.fill.col = "cyan", cex.main=1, main = paste("Lognormal Mixture Density", "(mean1=5, cv1=1,", "mean2=20, cv2=0.5, p.mix=0.5)", sep="\n")) pdfPlot(dist = "lnorm3", param.list = list(meanlog=0, sdlog=1, threshold=5), right.tail.cutoff = 0.01, curve.fill.col = "cyan", cex.main = 1) pdfPlot(dist = "lnormTrunc", param.list = list(meanlog=0, sdlog=1, min=0, max=2), curve.fill.col = "cyan", cex.main = 1) windows() par(mfrow = c(3, 2), mar = c(3, 3, 3, 1), mgp = c(1.5, 0.5, 0)) pdfPlot(dist = "lnormTruncAlt", param.list = list(mean=2, cv=1, min=0, max=3), curve.fill.col = "cyan") pdfPlot(dist = "nbinom", param.list = list(size=4, prob=0.5), hist.col = "cyan") pdfPlot(dist = "norm", param.list = list(mean=0, sd=1), curve.fill.col = "cyan") pdfPlot(dist = "normMix", param.list = list(mean1=0, sd1=1, mean2=4, sd2=2, p.mix=0.5), curve.fill.col = "cyan", cex.main=1, main = paste("Normal Mixture Density", "(mean1=0, sd1=1,", "mean2=4, sd2=2, p.mix=0.5)", sep="\n")) pdfPlot(dist = "normTrunc", param.list = list(mean=10, sd=2, min=8, max=13), curve.fill.col = "cyan", cex.main = 1) pdfPlot(dist = "pareto", param.list = list(location=1, shape=2), curve.fill.col = "cyan", right.tail.cutoff = 0.01) windows() par(mfrow = c(3, 2), mar = c(3, 3, 3, 1), mgp = c(1.5, 0.5, 0)) pdfPlot(dist = "pois", param.list = list(lambda=5), hist.col = "cyan") pdfPlot(dist = "t", param.list = list(df=5), curve.fill.col = "cyan") pdfPlot(dist = "t", param.list = list(df=5, ncp=1), curve.fill.col = "cyan") pdfPlot(dist = "tri", param.list = list(min=0, max=1, mode=0.7), curve.fill.col = "cyan") pdfPlot(dist = "unif", param.list = list(min=0, max=1), curve.fill.col = "cyan") pdfPlot(dist = "weibul", param.list = list(shape=2, scale=1), curve.fill.col = "cyan") windows() par(mfrow = c(3, 2), mar = c(3, 3, 3, 1), mgp = c(1.5, 0.5, 0)) pdfPlot(dist = "wilcox", param.list = list(m=4, n=3), hist.col = "cyan") pdfPlot(dist = "zmlnorm", param.list = list(meanlog=0, sdlog=1, p.zero=0.5), right.tail.cutoff = 0.01, curve.fill.col = "cyan", cex.main = 1) pdfPlot(dist = "zmlnormAlt", param.list = list(mean=2, cv=1, p.zero=0.4), right.tail.cutoff = 0.01, curve.fill.col = "cyan", cex.main = 1) pdfPlot(dist = "zmnorm", param.list = list(mean=5, sd=1, p.zero=0.3), curve.fill.col = "cyan") frame() frame() windows() with(EPA.94b.tccb.df, hist(TcCB[Area == "Reference"], freq = FALSE, xlim = c(0, 2), xlab = "TcCB (ppb)", col = "cyan", main = "Density Histogram of Reference Area TcCB Data")) windows() pdfPlot(distribution = "lnormAlt", param.list = list(mean = 0.6, cv = 0.5), curve.fill.col = "cyan") round(dlnormAlt(seq(0, 2, by = 0.5), mean = 0.6, cv = 0.5), 3) windows() pdfPlot(distribution = "gammaAlt", param.list = list(mean = 0.6, cv = 0.5)) round(dgammaAlt(seq(0, 2, by = 0.5), mean = 0.6, cv = 0.5), 3) windows() cdfPlot(distribution = "lnormAlt", param.list = list(mean = 0.6, cv = 0.5)) round(plnormAlt(seq(0, 2, by = 0.5), mean = 0.6, cv = 0.5), 2) qlnormAlt(c(0.5, 0.95), mean = 0.6, cv = 0.5) set.seed(23) rlnormAlt(5, mean = 0.6, cv = 0.5) library(MASS) set.seed(47) sd.vec <- c(1, 3) cor.mat <- matrix(c(1, 0.5, 0.5, 1), ncol = 2) cov.mat <- diag(sd.vec) %*% cor.mat %*% diag(sd.vec) mvrnorm(n = 3, mu = c(5, 10), Sigma = cov.mat) rm(sd.vec, cor.mat, cov.mat) simulateMvMatrix(n = 3, distributions = c(X1 = "norm", X2 = "lnormAlt"), param.list = list(X1 = list(mean = 5, sd = 1), X2 = list(mean = 10, cv = 2)), cor.mat = matrix(c(1, 0.5, 0.5, 1), ncol=2), seed = 105)
"charity"
context("Test of ODEmorris.default() (and plotting)") FHNmod <- function(Time, State, Pars) { with(as.list(c(State, Pars)), { dVoltage <- s * (Voltage - Voltage^3 / 3 + Current) dCurrent <- - 1 / s *(Voltage - a + b * Current) return(list(c(dVoltage, dCurrent))) }) } FHNstate <- c(Voltage = -1, Current = 1) FHNtimes1 <- seq(0.1, 20, by = 5) FHNtimes2 <- 10 set.seed(2015) FHNres1 <- ODEmorris(mod = FHNmod, pars = c("a", "b", "s"), state_init = FHNstate, times = FHNtimes1, binf = c(0.18, 0.18, 2.8), bsup = c(0.22, 0.22, 3.2), r = 4, design = list(type = "oat", levels = 100, grid.jump = 1), scale = TRUE, ode_method = "adams", parallel_eval = FALSE, parallel_eval_ncores = NA) set.seed(2015) FHNres2 <- ODEmorris(mod = FHNmod, pars = c("a", "b", "s"), state_init = FHNstate, times = FHNtimes2, binf = c(0.18, 0.18, 2.8), bsup = c(0.22, 0.22, 3.2), r = 4, design = list(type = "oat", levels = 100, grid.jump = 1), scale = TRUE, ode_method = "adams", parallel_eval = FALSE, parallel_eval_ncores = NA) FHNmod3 <- function(Time, State, Pars) { with(as.list(c(State, Pars)), { dVoltage <- 3 * (Voltage - Voltage^3 / 3 + Current) dCurrent <- - 1 / 3 *(Voltage - a + 0.3 * Current) return(list(c(dVoltage, dCurrent))) }) } set.seed(2015) FHNres3 <- ODEmorris(mod = FHNmod3, pars = "a", state_init = FHNstate, times = FHNtimes2, binf = 0.18, bsup = 0.22, r = 4, design = list(type = "oat", levels = 100, grid.jump = 1), scale = TRUE, ode_method = "adams", parallel_eval = FALSE, parallel_eval_ncores = NA) set.seed(2015) FHNres_parallel <- ODEmorris(mod = FHNmod, pars = c("a", "b", "s"), state_init = FHNstate, times = FHNtimes1, binf = c(0.18, 0.18, 2.8), bsup = c(0.22, 0.22, 3.2), r = 4, design = list(type = "oat", levels = 100, grid.jump = 1), scale = TRUE, ode_method = "adams", parallel_eval = TRUE, parallel_eval_ncores = 2) set.seed(2015) FHNres_simplex <- ODEmorris(mod = FHNmod, pars = c("a", "b", "s"), state_init = FHNstate, times = FHNtimes1, binf = c(0.18, 0.18, 2.8), bsup = c(0.22, 0.22, 3.2), r = 4, design = list(type = "simplex", scale.factor = 0.01), scale = TRUE, ode_method = "adams", parallel_eval = FALSE, parallel_eval_ncores = NA) test_that("Result type is correct", { expect_true(is.list(FHNres1)) expect_equal(class(FHNres1), "ODEmorris") expect_equal(length(FHNres1), length(FHNstate)) expect_equal(names(FHNres1), names(FHNstate)) expect_true(is.matrix(FHNres1$Voltage)) expect_true(is.matrix(FHNres1$Current)) expect_equal(dim(FHNres1$Voltage), c(1 + 3*length(c("a", "b", "s")), length(FHNtimes1))) expect_equal(dim(FHNres1$Current), c(1 + 3*length(c("a", "b", "s")), length(FHNtimes1))) expect_true(is.list(FHNres2)) expect_equal(class(FHNres2), "ODEmorris") expect_equal(length(FHNres2), length(FHNstate)) expect_equal(names(FHNres2), names(FHNstate)) expect_true(is.matrix(FHNres2$Voltage)) expect_true(is.matrix(FHNres2$Current)) expect_equal(dim(FHNres2$Voltage), c(1 + 3*length(c("a", "b", "s")), length(FHNtimes2))) expect_equal(dim(FHNres2$Current), c(1 + 3*length(c("a", "b", "s")), length(FHNtimes2))) expect_true(is.list(FHNres3)) expect_equal(class(FHNres3), "ODEmorris") expect_equal(length(FHNres3), length(FHNstate)) expect_equal(names(FHNres3), names(FHNstate)) expect_true(is.matrix(FHNres3$Voltage)) expect_true(is.matrix(FHNres3$Current)) expect_equal(dim(FHNres3$Voltage), c(1 + 3*length(c("a")), length(FHNtimes2))) expect_equal(dim(FHNres3$Current), c(1 + 3*length(c("a")), length(FHNtimes2))) expect_equal(FHNres_parallel, FHNres1) expect_true(is.list(FHNres_simplex)) expect_equal(class(FHNres_simplex), "ODEmorris") expect_equal(length(FHNres_simplex), length(FHNstate)) expect_equal(names(FHNres_simplex), names(FHNstate)) expect_true(is.matrix(FHNres_simplex$Voltage)) expect_true(is.matrix(FHNres_simplex$Current)) expect_equal(dim(FHNres_simplex$Voltage), c(1 + 3*length(c("a", "b", "s")), length(FHNtimes1))) expect_equal(dim(FHNres_simplex$Current), c(1 + 3*length(c("a", "b", "s")), length(FHNtimes1))) }) test_that("Errors and warnings are thrown", { set.seed(2015) expect_warning(FHNres_binf_bsup <- ODEmorris(mod = FHNmod, pars = c("a", "b", "s"), state_init = FHNstate, times = FHNtimes1, binf = c(0.22, 0.18, 2.8), bsup = c(0.18, 0.22, 3.2), r = 4, design = list(type = "oat", levels = 100, grid.jump = 1), scale = TRUE, ode_method = "adams", parallel_eval = FALSE, parallel_eval_ncores = NA), paste("At least one element of \"bsup\" was lower than the", "corresponding element of \"binf\".", "Elements were swapped.")) expect_equal(FHNres1, FHNres_binf_bsup) set.seed(2015) expect_warning(ODEmorris(mod = FHNmod, pars = c("a", "b", "s"), state_init = FHNstate, times = FHNtimes2, binf = c(0.18, 0.18, 2.8), bsup = c(0.22, 0.22, 3.2), r = 1, design = list(type = "oat", levels = 100, grid.jump = 1), scale = TRUE, ode_method = "adams", parallel_eval = FALSE, parallel_eval_ncores = NA), "Calculation of sigma requires r >= 2.") set.seed(2015) expect_error(ODEmorris(mod = FHNmod, pars = c("a", "b", "s"), state_init = FHNstate, times = FHNtimes2, binf = c(0.18, 0.18, 2.8), bsup = c(0.22, 0.22, 3.2), r = 0, design = list(type = "oat", levels = 100, grid.jump = 1), scale = TRUE, ode_method = "adams", parallel_eval = FALSE, parallel_eval_ncores = NA)) }) test_that("Plots are generated", { expect_true(plot(FHNres1)) expect_true(plot(FHNres2)) expect_true(plot(FHNres3)) expect_true(plot(FHNres_parallel)) expect_true(plot(FHNres_simplex)) expect_true(plot(FHNres1, kind = "trajec")) expect_true(plot(FHNres2, kind = "trajec")) expect_true(plot(FHNres3, kind = "trajec")) expect_true(plot(FHNres_parallel, kind = "trajec")) expect_true(plot(FHNres_simplex, kind = "trajec")) expect_true(plot(FHNres1, state_plot = "Current", main_title = "Hi!", legendPos = "topleft", type = "b")) my_cols <- c("firebrick", "chartreuse3", "dodgerblue") expect_true(plot(FHNres1, state_plot = "Current", colors_pars = my_cols)) expect_true(plot(FHNres1, state_plot = "Current", cex.axis = 2, cex = 4, main = "Small Title", cex.main = 0.5)) })
test_that("dendrogram plots", { require(ggplot2) hc <- hclust(dist(USArrests), "ave") hcdata <- dendro_data(hc, type = "rectangle") p <- ggplot() + geom_segment(data = segment(hcdata), aes(x = x0, y = y0, xend = x1, yend = y1)) + geom_text(data = label(hcdata), aes(x = x, y = y, label = text)) + coord_flip() + scale_y_reverse(expand = c(0.2, 0)) expect_s3_class(p, "ggplot") })
acontext("mixtureKNN data set") data(mixtureKNN) mixtureKNN$Bayes.error$text.V1.prop <- 0 mixtureKNN$Bayes.error$text.V2.bottom <- -2 mixtureKNN$other.error$text.V1.prop <- 0 mixtureKNN$Bayes.error$text.V1.error <- -2.6 mixtureKNN$other.error$text.V1.error <- -2.6 classifier.linetypes <- c( Bayes="dashed", KNN="solid") label.colors <- c( "0"=" "1"=" set.colors <- c(test=" validation=" Bayes=" train="black") errorPlot <- ggplot()+ ggtitle("Select number of neighbors")+ theme_bw()+ theme_animint(height=500)+ geom_text(aes(min.neighbors, error.prop, color=set, label="Bayes", showSelected=classifier), hjust=1, data=mixtureKNN$Bayes.segment)+ geom_segment(aes(min.neighbors, error.prop, xend=max.neighbors, yend=error.prop, color=set, showSelected=classifier, linetype=classifier), data=mixtureKNN$Bayes.segment)+ scale_color_manual(values=set.colors, breaks=names(set.colors))+ scale_fill_manual(values=set.colors)+ guides(fill="none", linetype="none")+ scale_linetype_manual(values=classifier.linetypes)+ ylab("Misclassification Errors")+ scale_x_continuous( "Number of Neighbors", limits=c(-1, 30), breaks=c(1, 10, 20, 29))+ geom_ribbon(aes(neighbors, ymin=mean-sd, ymax=mean+sd, fill=set, showSelected=classifier, showSelected2=set), alpha=0.5, data=mixtureKNN$validation.error)+ geom_line(aes(neighbors, mean, color=set, showSelected=classifier, linetype=classifier), data=mixtureKNN$validation.error)+ geom_line(aes(neighbors, error.prop, group=set, color=set, showSelected=classifier, linetype=classifier), data=mixtureKNN$other.error)+ geom_tallrect(aes(xmin=neighbors-1, xmax=neighbors+1, clickSelects=neighbors), alpha=0.5, data=mixtureKNN$validation.error) errorPlot scatterPlot <- ggplot()+ ggtitle("Mis-classification errors in train set")+ theme_bw()+ theme_animint(width=500, height=500)+ xlab("Input feature 1")+ ylab("Input feature 2")+ coord_equal()+ scale_color_manual(values=label.colors)+ scale_linetype_manual(values=classifier.linetypes)+ geom_point(aes(V1, V2, color=label, showSelected=neighbors), size=0.2, data=mixtureKNN$show.grid)+ geom_path(aes(V1, V2, group=path.i, linetype=classifier, showSelected=neighbors), size=1, data=mixtureKNN$pred.boundary)+ geom_path(aes(V1, V2, group=path.i, linetype=classifier), color=set.colors[["test"]], size=1, data=mixtureKNN$Bayes.boundary)+ geom_point(aes(V1, V2, color=label, fill=prediction, showSelected=neighbors), size=3, shape=21, data=mixtureKNN$show.points)+ scale_fill_manual(values=c(error="black", correct="transparent"))+ geom_text(aes(text.V1.error, text.V2.bottom, label=paste(set, "Error:")), data=mixtureKNN$Bayes.error, hjust=0)+ geom_text(aes(text.V1.prop, text.V2.bottom, label=sprintf("%.3f", error.prop)), data=mixtureKNN$Bayes.error, hjust=1)+ geom_text(aes(text.V1.error, V2.bottom, label=paste(set, "Error:"), showSelected=neighbors), data=mixtureKNN$other.error, hjust=0)+ geom_text(aes(text.V1.prop, V2.bottom, label=sprintf("%.3f", error.prop), showSelected=neighbors), data=mixtureKNN$other.error, hjust=1)+ geom_text(aes(V1, V2, showSelected=neighbors, label=paste0( neighbors, " nearest neighbor", ifelse(neighbors==1, "", "s"), " classifier")), data=mixtureKNN$show.text) scatterPlot+ facet_wrap("neighbors")+ theme(panel.margin=grid::unit(0, "lines")) viz.neighbors <- list( error=errorPlot, data=scatterPlot, first=list(neighbors=7) ) info <- animint2HTML(viz.neighbors) get_nodes <- function(html=getHTML()){ line.list <- getNodeSet(html, "//g[@class='geom2_segment_error']//line") rect.list <- getNodeSet( html, "//svg[@id='plot_error']//rect[@class='border_rect']") rect.attr.mat <- sapply(rect.list, xmlAttrs) rect.x <- as.numeric(rect.attr.mat["x",]) rect.width <- as.numeric(rect.attr.mat["width",]) rect.right <- rect.x + rect.width line.attr.mat <- sapply(line.list, xmlAttrs) list( ribbon=getNodeSet(html, "//g[@class='geom3_ribbon_error']//path"), validation=getNodeSet(html, "//g[@class='geom4_line_error']//path"), train.test=getNodeSet(html, "//g[@class='geom5_line_error']//path"), Bayes=line.list, Bayes.x2=if(is.matrix(line.attr.mat))as.numeric(line.attr.mat["x2",]), border.right=rect.right, boundary.KNN=getNodeSet(html, "//g[@class='geom8_path_data']//path"), boundary.Bayes=getNodeSet(html, "//g[@class='geom9_path_data']//path") ) } before <- get_nodes(info$html) test_that("1 <path> rendered for validation error band", { expect_equal(length(before$ribbon), 1) }) test_that("1 <path> rendered for validation error mean", { expect_equal(length(before$validation), 1) }) test_that("2 <path> rendered for train/test error", { expect_equal(length(before$train.test), 2) }) test_that("1 <line> rendered for Bayes error", { expect_equal(length(before$Bayes), 1) }) test_that("Bayes error <line> inside of border_rect", { expect_less_than(before$Bayes.x2, before$border.right) }) test_that("6 <path> rendered for KNN boundary", { expect_equal(length(before$boundary.KNN), 6) }) test_that("2 <path> rendered for Bayes boundary", { expect_equal(length(before$boundary.Bayes), 2) }) clickID("plot_data_classifier_variable_Bayes") click1 <- get_nodes() test_that("first click, 1 <path> rendered for validation error band", { expect_equal(length(click1$ribbon), 1) }) test_that("first click, 1 <path> rendered for validation error mean", { expect_equal(length(click1$validation), 1) }) test_that("first click, 2 <path> rendered for train/test error", { expect_equal(length(click1$train.test), 2) }) test_that("first click, Bayes error disappears", { expect_equal(length(click1$Bayes), 0) }) test_that("first click, 6 <path> rendered for KNN boundary", { expect_equal(length(click1$boundary.KNN), 6) }) test_that("first click, Bayes boundary disappears", { expect_equal(length(click1$boundary.Bayes), 0) }) clickID("plot_data_classifier_variable_KNN") click2 <- get_nodes() test_that("second click, validation error band disappears", { expect_equal(length(click2$ribbon), 0) }) test_that("second click, validation error mean disappears", { expect_equal(length(click2$validation), 0) }) test_that("second click, train/test error disappears", { expect_equal(length(click2$train.test), 0) }) test_that("second click, Bayes error still gone", { expect_equal(length(click2$Bayes), 0) }) test_that("second click, KNN boundary disappears", { expect_equal(length(click2$boundary.KNN), 0) }) test_that("second click, Bayes boundary still gone", { expect_equal(length(click2$boundary.Bayes), 0) })
fitted.FPCA <-function (object, K = NULL, derOptns = list(p=0), ciOptns = list(alpha=NULL, cvgMethod=NULL), ...) { ddd <- list(...) if (!is.null(ddd[['k']])) { K <- ddd[['k']] warning("specifying 'k' is deprecated. Use 'K' instead!") } derOptns <- SetDerOptions(fpcaObject = object, derOptns) p <- derOptns[['p']] method <- derOptns[['method']] bw <- derOptns[['bw']] kernelType <- derOptns[['kernelType']] alpha <- ciOptns[['alpha']] if (is.null(alpha)==FALSE) { if (alpha <= 0 || alpha >= 1) { stop("'fitted.FPCA()' is requested to use a significant level between 0 and 1.") } } cvgMethod <- ciOptns[['cvgMethod']] if (is.null(cvgMethod)==TRUE) { cvgMethod <- 'band' } fpcaObj <- object if( is.null(K) ){ K = length( fpcaObj$lambda ) } else { if( ( round(K)>=0) && ( round(K) <= length( fpcaObj$lambda ) ) ){ K = round(K); } else { stop("'fitted.FPCA()' is requested to use more components than it currently has available. (or 'K' is smaller than 0)") } } if( ! (p %in% c(0,1,2))){ stop("'fitted.FPCA()' is requested to use a derivative order other than p = {0,1,2}!") } if( p < 1 ){ ZMFV = fpcaObj$xiEst[, seq_len(K), drop = FALSE] %*% t(fpcaObj$phi[, seq_len(K), drop = FALSE]); IM = fpcaObj$mu if (is.null(alpha)==TRUE || fpcaObj$optns$dataType=='Dense') { return( t(apply( ZMFV, 1, function(x) x + IM))) } else { bwMu <- fpcaObj$bwMu mu = fpcaObj$mu phi = fpcaObj$phi obsGrid = fpcaObj$obsGrid workGrid = fpcaObj$workGrid lambda = fpcaObj$lambda cvgUpper <- cvgLower <- matrix(nrow=nrow(fpcaObj$xiEst), ncol=length(workGrid)) for (i in 1:nrow(fpcaObj$xiEst)) { xHat <- mu + ZMFV[i,] muObs <- Lwls1D(bw = bwMu, kernelType, win = rep(1,length(workGrid)), xin = workGrid, yin = mu, xout = (fpcaObj$inputData)$Lt[[i]]) phiObs <- apply(phi, 2, function(phiI) Lwls1D(bw = bwMu, kernelType, win = rep(1, length(workGrid)), xin = workGrid, yin = phiI, xout = (fpcaObj$inputData)$Lt[[i]])) omegaI <- fpcaObj$xiVar[[i]] tmp <- eigen(omegaI) tmpA <- Re(tmp$vectors) tmpB <- Re(tmp$values) tmpB[which(tmpB<0)] <- 0 if (length(tmpB)==1) { omegaI <- tmpA*tmpB*t(tmpA) } else { omegaI <- tmpA%*%diag(tmpB)%*%t(tmpA) } if (cvgMethod=='interval') { cvgUpper[i,] <- xHat + stats::qnorm(1-alpha/2)*sqrt(diag(phi%*%omegaI%*%t(phi))) cvgLower[i,] <- xHat + stats::qnorm(alpha/2)*sqrt(diag(phi%*%omegaI%*%t(phi))) } else { cvgUpper[i,] <- xHat + sqrt(stats::qchisq(1-alpha,K)*diag(phi%*%omegaI%*%t(phi))) cvgLower[i,] <- xHat - sqrt(stats::qchisq(1-alpha,K)*diag(phi%*%omegaI%*%t(phi))) } } return(list( workGrid = workGrid, fitted = t(apply( ZMFV, 1, function(x) x + IM)), cvgUpper = cvgUpper, cvgLower = cvgLower ) ) } } else { if( K > SelectK( fpcaObj, FVEthreshold=0.95, criterion='FVE')$K ){ warning("Potentially you use too many components to estimate derivatives. \n Consider using SelectK() to find a more informed estimate for 'K'."); } if( is.null(method) ){ method = 'FPC' } mu = fpcaObj$mu phi = fpcaObj$phi obsGrid = fpcaObj$obsGrid workGrid = fpcaObj$workGrid if ( method == 'FPC'){ phi = apply(phi, 2, function(phiI) Lwls1D(bw = bw, kernelType, win = rep(1, length(workGrid)), xin = workGrid, yin = phiI, xout = workGrid, npoly = p, nder = p)) mu = Lwls1D(bw = bw, kernelType, win = rep(1, length(workGrid)), xin = workGrid, yin = mu, xout = workGrid, npoly = p, nder = p) ZMFV = fpcaObj$xiEst[, seq_len(K), drop = FALSE] %*% t(phi[, seq_len(K), drop = FALSE]); IM = mu return( t(apply( ZMFV, 1, function(x) x + IM) )) } if( method == 'QUO'){ impSample <- fitted(fpcaObj, K = K); return( t(apply(impSample, 1, function(curve) Lwls1D(bw = bw, kernelType, win = rep(1, length(workGrid)), xin = workGrid, yin = curve, xout = workGrid, npoly = p, nder = p)))) } else if (method == 'DPC') { if (K > ncol(fpcaObj[['xiDer']])) { stop('fpcaObj does not contain K columns!') } return(tcrossprod(fpcaObj[['xiDer']][, seq_len(K), drop=FALSE], fpcaObj[['phiDer']][, seq_len(K), drop=FALSE])) }else { stop('You asked for a derivation scheme that is not implemented.') } } } getEnlargedGrid <- function(x){ N <- length(x) return ( c( x[1] - 0.1 * diff(x[1:2]), x, x[N] + 0.1 * diff(x[(N-1):N])) ) } getDerivative <- function(y, t, ord=1){ if( length(y) != length(t) ){ stop("getDerivative y/t lengths are unequal.") } newt = getEnlargedGrid(t) newy = Hmisc::approxExtrap(x=t, y=y, xout= newt)$y if (ord == 1) { der <- numDeriv::grad( stats::splinefun(newt, newy) , x = t ) } else if (ord == 2) { der <- sapply(t, function(t0) numDeriv::hessian( stats::splinefun(newt, newy) , x = t0 ) ) } return(der) } getSmoothCurve <- function(t, ft, GCV = FALSE, kernelType = 'epan', mult = 1){ myBw = ifelse( GCV, GCVLwls1D1( yy= ft, tt =t, npoly=1, nder=0, dataType='Sparse', kernel=kernelType)[['bOpt']] , CVLwls1D( y= ft, t = t, npoly=1, nder=0, dataType='Sparse', kernel=kernelType, kFolds = 10)) myBw <- myBw * mult smoothCurve = Lwls1D(bw = myBw, kernel_type= kernelType, win = rep(1, length(t)), yin = ft, xout = t, xin= t) return(smoothCurve) }
.summary_uncertainty <- function(x, sort=TRUE) { uct <- x$uctab if (sort) uct <- uct[order(uct$split, -uct$R, -uct$I),] uct }
geom_exec <- function (geomfunc = NULL, data = NULL, position = NULL, ...) { params <- list(...) mapping <- list() option <- list() allowed_options <- c( "x", "y", "color", "colour", "linetype", "fill", "size", "shape", "width", "alpha", "na.rm", "lwd", "pch", "cex", "position", "stat", "geom", "show.legend", "inherit.aes", "fun.args", "fontface", "stroke", "outlier.colour", "outlier.shape", "outlier.size", "outlier.stroke", "notch", "notchwidth", "varwidth", "binwidth", "binaxis", "method", "binpositions", "stackdir", "stackratio", "dotsize", "trim", "draw_quantiles", "scale", "ymin", "ymax", "xmin", "xmax", "label", "hjust", "vjust", "fontface", "angle", "family", "parse", "segment.size", "force", "se", "level", "fullrange", "conf.int.level", "xintercept", "yintercept", "bins", "weight", "sides", "arrow", "xend", "yend", "fun.data", "fun.y", "fun.ymin", "fun.ymax", "y.position", "tip.length", "label.size", "step.increase", "bracket.nudge.y", "bracket.shorten", "coord.flip" ) columns <- colnames(data) for (key in names(params)) { value <- params[[key]] if (is.null(value)) { } else if (unlist(value)[1] %in% columns & key %in% allowed_options) { mapping[[key]] <- value } else if (key %in% allowed_options) { option[[key]] <- value } else if (key =="group") { mapping[[key]] <- value } else if(key == "step.group.by"){ option[[key]] <- value } } if (!is.null(position)) option[["position"]] <- position option[["data"]] <- data if(is.null(geomfunc)){ res <- list(option = option, mapping = mapping) } else{ option[["mapping"]] <- create_aes(mapping) res <- do.call(geomfunc, option) } res }