code
stringlengths 1
13.8M
|
---|
GetRowCol <- function(Index, dim1, dim2) {
Col1 <- ceiling(Index / dim1)
Row1 <- Index - (Col1 - 1) * dim1
return(c(Row1, Col1))
} |
context("mz_bbox")
test_that("mz_bbox gets bounding box for vector tiles", {
bbox <- mz_bbox(ca_tiles)
expect_is(bbox, "data.frame")
expect_true(setequal(
names(bbox),
c("min_lon", "min_lat", "max_lon", "max_lat")
))
sdlon <- -117.1534
sdlat <- 32.80151
saclon <- -121.4668
saclat <- 38.57873
expect_lt(bbox$min_lon, sdlon)
expect_gt(bbox$max_lon, sdlon)
expect_lt(bbox$min_lat, sdlat)
expect_gt(bbox$max_lat, sdlat)
expect_lt(bbox$min_lon, saclon)
expect_gt(bbox$max_lon, saclon)
expect_lt(bbox$min_lat, saclat)
expect_gt(bbox$max_lat, saclat)
})
test_that("mz_bbox gets bounding box for isochrones", {
bbox <- mz_bbox(marina_walks)
expect_is(bbox, "data.frame")
expect_true(setequal(
names(bbox),
c("min_lon", "min_lat", "max_lon", "max_lat")
))
marinalon <- -122.3151
marinalat <- 37.86613
expect_lt(bbox$min_lon, marinalon)
expect_gt(bbox$max_lon, marinalon)
expect_lt(bbox$min_lat, marinalat)
expect_gt(bbox$max_lat, marinalat)
})
test_that("mz_bbox gets bounding box for search results", {
bbox <- mz_bbox(oakland_public)
coords <- mz_coordinates(oakland_public)
within <- function(lon, lat, bbox) {
expect_lte(bbox$min_lon, lon)
expect_gte(bbox$max_lon, lon)
expect_lte(bbox$min_lat, lat)
expect_gte(bbox$max_lat, lat)
}
Map(function(x, y) within(x, y, bbox), coords$lon, coords$lat)
})
test_that("mz_bbox works for sf and sp objects", {
oakland_sf <- as_sf(oakland_public)
oakland_sp <- as_sp(oakland_public)
expect_is(mz_bbox(oakland_sf), "mz_bbox")
expect_is(mz_bbox(oakland_sp), "mz_bbox")
}) |
knitr::opts_chunk$set(fig.width = 4, fig.align = 'center',
echo = TRUE, warning = FALSE, message = FALSE,
eval = FALSE, tidy = FALSE) |
setMethod("getQuan", "PcaClassic", function(obj) [email protected])
PcaClassic <- function (x, ...) UseMethod("PcaClassic")
PcaClassic.formula <- function (formula, data = NULL, subset, na.action, ...)
{
cl <- match.call()
mt <- terms(formula, data = data)
if (attr(mt, "response") > 0)
stop("response not allowed in formula")
mf <- match.call(expand.dots = FALSE)
mf$... <- NULL
mf[[1]] <- as.name("model.frame")
mf <- eval.parent(mf)
if (.check_vars_numeric(mf))
stop("PCA applies only to numerical variables")
na.act <- attr(mf, "na.action")
mt <- attr(mf, "terms")
attr(mt, "intercept") <- 0
x <- model.matrix(mt, mf)
res <- PcaClassic.default(x, ...)
cl[[1]] <- as.name("PcaClassic")
res@call <- cl
res
}
PcaClassic.default <- function(x, k=ncol(x), kmax=ncol(x),
scale=FALSE, signflip=TRUE, crit.pca.distances=0.975, trace=FALSE, ...)
{
cl <- match.call()
if(missing(x)){
stop("You have to provide at least some data")
}
data <- as.matrix(x)
n <- nrow(data)
p <- ncol(data)
Xsvd <- .classPC(data, scale=scale, signflip=signflip, scores=TRUE)
if(Xsvd$rank == 0) {
stop("All data points collapse!")
}
myrank <- Xsvd$rank
if(is.logical(scale) && !scale)
Xsvd$scale <- vector('numeric', p) + 1
if(trace)
{
cat("\nDimension of the input matrix x:\n", dim(x))
cat("\nInput parameters [k, kmax, rank(x)]: ", k, kmax, Xsvd$rank, "\n")
}
kmax <- max(min(kmax, Xsvd$rank),1)
if((k <- floor(k)) < 0)
k <- 0
else if(k > kmax) {
warning(paste("The number of principal components k = ", k, " is larger then kmax = ", kmax, "; k is set to ", kmax,".", sep=""))
k <- kmax
}
if(k != 0)
k <- min(k, ncol(data))
else {
test <- which(Xsvd$eigenvalues/Xsvd$eigenvalues[1] <= 1.E-3)
k <- if(length(test) != 0) min(min(Xsvd$rank, test[1]), kmax)
else min(Xsvd$rank, kmax)
cumulative <- cumsum(Xsvd$eigenvalues[1:k])/sum(Xsvd$eigenvalues)
if(cumulative[k] > 0.8) {
k <- which(cumulative >= 0.8)[1]
}
if(trace)
cat("\n k, kmax, rank, p: ", k, kmax, Xsvd$rank, ncol(data), "\n")
if(trace)
cat("The number of principal components is defined by the algorithm. It is set to ", k,".\n", sep="")
}
if(trace)
cat("\nTo be used [k, kmax, ncol(data), rank(data)]=",k, kmax, ncol(data), Xsvd$rank, "\n")
loadings <- Xsvd$loadings[, 1:k, drop=FALSE]
eigenvalues <- as.vector(Xsvd$eigenvalues[1:k])
center <- as.vector(Xsvd$center)
scores <- Xsvd$scores[, 1:k, drop=FALSE]
scale <- Xsvd$scale
eig0 <- as.vector(Xsvd$eigenvalues)
totvar0 <- sum(eig0)
if(is.list(dimnames(data)) && !is.null(dimnames(data)[[1]]))
{
dimnames(scores)[[1]] <- dimnames(data)[[1]]
} else {
dimnames(scores)[[1]] <- 1:n
}
dimnames(scores)[[2]] <- as.list(paste("PC", seq_len(ncol(scores)), sep = ""))
dimnames(loadings) <- list(colnames(data), paste("PC", seq_len(ncol(loadings)), sep = ""))
cl[[1]] <- as.name("PcaClassic")
res <- new("PcaClassic", call=cl,
rank=myrank,
loadings=loadings,
eigenvalues=eigenvalues,
center=center,
scale=scale,
scores=scores,
k=k,
n.obs=n,
eig0=eig0,
totvar0=totvar0)
res <- pca.distances(res, data, Xsvd$rank, crit.pca.distances)
return(res)
} |
rc.qc<-function(ramclustObj=NULL,
qc.tag="QC",
remove.qc = FALSE,
npc=4,
scale="pareto",
outfile.basename ="ramclustQC",
view.hist = TRUE
){
if(is.null(ramclustObj)) {
stop("must supply ramclustObj as input. i.e. ramclustObj = RC", '\n')
}
if(is.null(qc.tag)) {
stop("qc.tag = NULL; qc.tag must be defined to enable QC variance examination.", '\n')
}
if(is.null(outfile.basename)) {
outfile.basename <- "ramclustQC"
}
do.sets <- c("MSdata", "SpecAbund")
if(is.null(ramclustObj$SpecAbund)) {
do.sets <- do.sets[!(do.sets %in% "SpecAbund")]
}
do.sets.rows <- sapply(
c(do.sets, "phenoData"),
FUN = function(x) {
nrow(ramclustObj[[x]])
})
if(!sd(do.sets.rows) == 0) {
stop("number of rows in MSdata, SpecAbund, and phenoData sets are not identical.")
}
if(length(qc.tag) == 1) {
qc <- grepl(qc.tag[1], ramclustObj$phenoData$sample.names)
}
if(length(qc.tag) == 2) {
qc <- grepl(qc.tag[1], ramclustObj$phenoData[[qc.tag[2]]])
}
if(length(which(qc)) == 0) {
stop("no QC samples found using the qc.tag ", "'", qc.tag, "'", '\n')
}
dir.create("QC")
if(!is.null(ramclustObj$SpecAbund)) {
if(!is.null(ramclustObj$cmpd.use)) {
cmpd.use <- ramclustObj$cmpd.use
} else {
cmpd.use <- rep(TRUE, length(ramclustObj$ann))
}
}
if(!is.null(ramclustObj$clrt)) {
pdf(file=paste("QC/", "ramclust_clustering_diagnostic.pdf", sep=""),
useDingbats=FALSE, width=8, height=8)
o<-order(ramclustObj$clrt[cmpd.use])
c<-cor(ramclustObj$SpecAbund[,cmpd.use][,o])
d<-diag(as.matrix((c[2:(nrow(c)), 1:ncol(c)-1])))
hist(d, breaks=50, main="")
title(main="histogram of pearson's r for each cluster to its adjacent cluster (by time)", cex.main=0.8,
sub=paste("skew =", round(e1071::skewness(d), digits=3), " :values near zero are better", '\n',
'WARNING:metabolic relationships will confound interpretation of this plot'), cex.sub=0.6)
gplots::heatmap.2(c^2, trace="none", dendrogram="none", Rowv=FALSE, Colv=FALSE, main="pearsons r^2, clusters sorted by rt", cex.main=0.5,
cexRow=0.02 + 1/log10(length(o)), cexCol=0.02 + 1/log10(length(o)))
dev.off()
}
qc <- which(qc)
cols<-rep(8, nrow(ramclustObj$phenoData))
cols[qc]<-2
for(x in do.sets) {
if(x == "SpecAbund") {
td <- ramclustObj[[x]][,cmpd.use]
} else {
td <- ramclustObj[[x]]
}
if(min(dim(td)) < npc) {npc <- min(dim(td))}
PCA<-pcaMethods::pca(td, scale=scale, nPcs=npc, center=TRUE)
sc<-PCA@scores
write.csv(sc, file = paste0("QC/", outfile.basename, "_", x, "_pcascores.csv"))
pdf(file = paste0("QC/", outfile.basename, "_", x, "_qc_diagnostic.pdf"), useDingbats=FALSE, width=8, height=8)
ld<-PCA@loadings
for(i in 1:(ncol(sc)-1)) {
plot(sc[,i], sc[,i+1], col=cols, pch=19, main=paste(
"PCA analysis:", x, if(x == "SpecAbund") {
"(compounds)"
} else {"(features)"}
),
xlab=paste("PC", i, ":: r^2 =", round(PCA@R2[i], digits=2), ":: QC(rel sd) = ",
round(sd(sc[qc,i])/sd(sc[,i]), digits=2) ),
ylab=paste("PC", i+1, ":: r^2 =", round(PCA@R2[i+1], digits=2), ":: QC(rel sd) = ",
round(sd(sc[qc,i+1])/sd(sc[,i+1]), digits=2) )
)
legend(qc.tag, text.col=2, x="topright", bty="n")
}
sds<-apply(td[qc,], 2, FUN="sd", na.rm=TRUE)
means<-apply(td[qc,], 2, FUN="mean", na.rm=TRUE)
cvs<-sds/means
if(x == "MSdata") {
ramclustObj$qc.cv.feature <- cvs
ramclustObj$qc.cv.feature.msdata <- cvs
if(!is.null(ramclustObj$MSMSdata)) {
sds<-apply(ramclustObj$MSMSdata[qc,], 2, FUN="sd", na.rm=TRUE)
means<-apply(ramclustObj$MSMSdata[qc,], 2, FUN="mean", na.rm=TRUE)
msms.cvs<-sds/means
ramclustObj$qc.cv.feature.msmsdata <- msms.cvs
cvs <- pmin(ramclustObj$qc.cv.feature.msdata, msms.cvs)
ramclustObj$qc.cv.feature <- cvs
}
} else {
ramclustObj$qc.cv.cmpd <- cvs
}
qs<-quantile(cvs, probs=seq(0,1,0.2), na.rm=TRUE)
hist(cvs, breaks=50, main="")
title(paste("histogram of", x, "CVs from QC samples"), line=2.7)
title("20% quantiles in red on top axis", col.main =2, cex.main=0.7, line=2)
axis(side=3, col=2, col.ticks=2, col.axis=2, round(qs, digits=3), labels=TRUE, las=2, cex.axis=0.4)
dev.off()
if(view.hist) {
hist(cvs, breaks=50, main="")
title(paste("histogram of", x, "CVs from QC samples"), line=2.7)
title("20% quantiles in red on top axis", col.main =2, cex.main=0.7, line=2)
axis(side=3, col=2, col.ticks=2, col.axis=2, round(qs, digits=3), labels=TRUE, las=2, cex.axis=0.4)
}
if(x == "SpecAbund") {
out <- data.frame(
"cmpd" = ramclustObj$cmpd[cmpd.use],
"annotation" = ramclustObj$ann[cmpd.use],
"rt" = ramclustObj$clrt[cmpd.use],
"rdsd" = ramclustObj$clrtsd[cmpd.use],
"mean.int" = means,
"cv" = cvs
)
} else {
out <- data.frame(
"mz" = ramclustObj$fmz,
"rt" = ramclustObj$frt,
"mean.int" = means,
"cv" = cvs
)
if(length(ramclustObj$labels) > 0) {
out <- data.frame(
out,
"feature" = ramclustObj$labels,
"cluster" = ramclustObj$featclus
)
}
}
write.csv(out, file = paste0("QC/", outfile.basename, "_", x, "_cv_summar.csv"))
}
if(remove.qc) {
ramclustObj$qc <- list()
for(x in c("phenoData", do.sets)) {
ramclustObj$qc[[x]] <- ramclustObj[[x]][qc,]
ramclustObj[[x]] <- ramclustObj[[x]][-qc,]
}
}
ramclustObj$history$qc.summary <- paste(
"Variance in quality control samples was described using the",
"rc.qc function within ramclustR. Summary statistics are provided",
"including the relative standard deviation of QC samples to all",
"samples in PCA space, as well as the relative standard deviation",
"of each feature/compound in QC samples, plotted as a histogram.",
if(!is.null(ramclustObj$cmpd.use)) {" Only compounds which passed the CV filter are reported."}
)
return(ramclustObj)
} |
api_historicals_options <- function(RH, chain_symbol, type, strike_price, expiration_date,
interval = NULL, span = NULL) {
dta <- api_instruments_options(RH, method = "symbol",
chain_symbol = chain_symbol,
type = type,
strike_price = strike_price,
expiration_date = expiration_date)
url <- paste0(api_endpoints("historicals_options"), dta$id,
"/?interval=", interval,
"&span=", span)
token <- paste("Bearer", RH$tokens.access_token)
dta <- GET(url,
add_headers("Accept" = "application/json",
"Content-Type" = "application/json",
"Authorization" = token))
dta <- mod_json(dta, "fromJSON")
dta <- dta$data_points
dta <- dta %>%
dplyr::mutate_at("begins_at", lubridate::ymd_hms) %>%
dplyr::mutate_at(c("open_price", "close_price", "high_price", "low_price", "volume"), as.numeric)
return(dta)
} |
source("ESEUR_config.r")
pal_col=rainbow(3)
q1=read.csv(paste0(ESEUR_dir, "regression/Q1_udd.csv.xz"), as.is=TRUE)
q10=read.csv(paste0(ESEUR_dir, "regression/Q10_udd.csv.xz"), as.is=TRUE)
udd=merge(q1, q10)
plot(udd$age, udd$insts, log="y", col=point_col,
xaxs="i",
xlim=c(0, max(udd$age)),
xlab="Age (days)", ylab="Installations\n")
i_mod=glm(insts ~ age, data=udd, family=poisson)
i_pred=predict(i_mod, newdata=data.frame(age=1:6000), type="link", se.fit=TRUE)
lines(exp(i_pred$fit), col=pal_col[1])
lines(exp(i_pred$fit+1.96*i_pred$se.fit), col=pal_col[2])
lines(exp(i_pred$fit-1.96*i_pred$se.fit), col=pal_col[2])
lines(loess.smooth(udd$age, udd$insts, family="gaussian", span=0.2), col=pal_col[3]) |
if (Sys.getenv("RunAllRcppTests") != "yes") exit_file("Set 'RunAllRcppTests' to 'yes' to run.")
Rcpp::sourceCpp("cpp/S4.cpp")
setClass("track", representation(x="numeric", y="numeric"))
tr <- new( "track", x = 2, y = 2 )
expect_equal(S4_methods(tr), list( TRUE, TRUE, FALSE, 2.0, 2.0 ), info = "slot management" )
S4_getslots( tr )
expect_equal( tr@x, 10.0 , info = "slot('x') = 10" )
expect_equal( tr@y, 20.0 , info = "slot('y') = 20" )
expect_error( S4_setslots( tr ), info = "slot does not exist" )
expect_error( S4_setslots_2( tr ), info = "slot does not exist" )
setClass("track", representation(x="numeric", y="numeric"))
tr <- new( "track", x = 2, y = 3 )
expect_equal( S4_get_slot_x( tr ), 2, info = "S4( SEXP )" )
expect_error( S4_get_slot_x( list( x = 2, y = 3 ) ), info = "not S4" )
expect_error( S4_get_slot_x( structure( list( x = 2, y = 3 ), class = "track" ) ), info = "S3 is not S4" )
tr <- S4_ctor( "track" )
expect_true( inherits( tr, "track" ) )
expect_equal( tr@x, numeric(0) )
expect_equal( tr@y, numeric(0) )
expect_error( S4_ctor( "someclassthatdoesnotexist" ) )
setClass("track", representation(x="numeric", y="numeric"))
setClass("trackCurve", representation(smooth = "numeric"), contains = "track")
tr1 <- new( "track", x = 2, y = 3 )
tr2 <- new( "trackCurve", x = 2, y = 3, smooth = 5 )
expect_true( S4_is_track( tr1 ), info = 'track is track' )
expect_true( S4_is_track( tr2 ), info = 'trackCurve is track' )
expect_true( !S4_is_trackCurve( tr1 ), info = 'track is not trackCurve' )
expect_true( S4_is_trackCurve( tr2 ), info = 'trackCurve is trackCurve' )
setClass("track", representation(x="numeric", y="numeric"))
setClass("trackCurve", representation(smooth = "numeric"), contains = "track")
tr1 <- new( "track", x = 2, y = 3 )
expect_equal( S4_get_slot_x(tr1), 2, info="Vector( SlotProxy ) ambiguity" )
x <- 1:10
attr( x, "foo" ) <- "bar"
expect_equal( S4_get_attr_x(x), "bar", info="Vector( AttributeProxy ) ambiguity" )
setClass( "Foo", contains = "character", representation( x = "numeric" ) )
foo <- S4_dotdata( new( "Foo", "bla", x = 10 ) )
expect_equal( as.character( foo) , "foooo" )
setClass("Foo", list(data="integer"))
foo <- new("Foo", data=1:3)
expect_equal( S4_proxycoerce(foo), c(1, 2, 3) ) |
peakTrough <- function(spec, freqBounds=c(10, 30), dbMin=-15, smooth=5, plot=FALSE) {
if(max(spec[, 1] > 1e3)) {
message(paste0('Expected kHz, but frequency units appear to be in hertz.',
'Converting before calculation, note that result is in kHz.'))
spec[, 1] <- spec[, 1] / 1e3
}
peak2 <- 0; peak2dB <- dbMin
trough <- 0; troughdB <- dbMin
peak3 <- 0; peak3dB <- dbMin
trough2 <- 0; trough2dB <- dbMin
spec[,2] <- spec[,2] - max(spec[,2], na.rm = TRUE)
extend <- floor(smooth/2)
spec[,2] <- roll_mean(c(rep(spec[1,2], extend), spec[,2], rep(spec[nrow(spec), 2], extend)), smooth)
wherePeak <- which.max(spec[-1*c(1, nrow(spec)), 2]) + 1
peak <- spec[wherePeak, 1]
peakdB <- spec[wherePeak, 2]
if(length(peak)==0) {
peak <- 0; peakdB <- dbMin
}
before <- spec[c(1, 1:nrow(spec)-1), 2]
after <- spec[c(2:nrow(spec), nrow(spec)), 2]
isPeak <- (spec[, 2] > before) & (spec[, 2] >= after)
inRange1 <- ((spec[, 1] >= (peak + freqBounds[1])) & (spec[, 1] <= (peak + freqBounds[2]))) |
((spec[, 1] <= (peak - freqBounds[1])) & (spec[, 1] >= (peak - freqBounds[2])))
notPeak1 <- spec[, 1] != peak
inDbRange <- spec[, 2] >= dbMin
peak2Spec <- spec[isPeak & inRange1 & notPeak1 & inDbRange, ]
if(length(peak2Spec)==2) {
peak2Spec <- matrix(peak2Spec, ncol=2)
}
if(nrow(peak2Spec) > 0) {
wherePeak2 <- which.max(peak2Spec[, 2])
peak2 <- peak2Spec[wherePeak2, 1]
peak2dB <- peak2Spec[wherePeak2, 2]
inRange2 <- (peak2Spec[, 1] >= (peak2 + freqBounds[1])) |
(peak2Spec[, 1] <= (peak2 - freqBounds[1]))
notPeak2 <- peak2Spec[, 1] != peak2
peak3Spec <- peak2Spec[inRange2 & notPeak2, ]
if(length(peak3Spec)==2) {
peak3Spec <- matrix(peak3Spec, ncol=2)
}
if(nrow(peak3Spec) > 0) {
wherePeak3 <- which.max(peak3Spec[, 2])
peak3 <- peak3Spec[wherePeak3, 1]
peak3dB <- peak3Spec[wherePeak3, 2]
}
}
allPeaks <- sort(c(peak, peak2, peak3))
allPeaks <- allPeaks[allPeaks != 0]
if(length(allPeaks)==2) {
inTrough <- (spec[, 1] > allPeaks[1]) & (spec[, 1] < allPeaks[2])
troughMat <- spec[inTrough, ]
if(length(troughMat) == 2) {
troughMat <- matrix(troughMat, ncol = 2)
}
whereTrough <- which.min(troughMat[, 2])
trough <- troughMat[whereTrough, 1]
troughdB <- troughMat[whereTrough, 2]
} else if(length(allPeaks)==3) {
inTrough <- (spec[, 1] > allPeaks[1]) & (spec[, 1] < allPeaks[2])
troughMat <- spec[inTrough, ]
if(length(troughMat) == 2) {
troughMat <- matrix(troughMat, ncol = 2)
}
whereFirst <- which.min(troughMat[, 2])
first <- troughMat[whereFirst, 1]
firstdB <- troughMat[whereFirst, 2]
inTrough2 <- (spec[, 1] > allPeaks[2]) & (spec[, 1] < allPeaks[3])
troughMat <- spec[inTrough2, ]
if(length(troughMat) == 2) {
troughMat <- matrix(troughMat, ncol = 2)
}
whereSecond <- which.min(troughMat[, 2])
second <- troughMat[whereSecond, 1]
seconddB <- troughMat[whereSecond, 2]
if(firstdB <= seconddB) {
trough <- first
troughdB <- firstdB
trough2 <- second
trough2dB <- seconddB
} else {
trough <- second
troughdB <- seconddB
trough2 <- first
trough2dB <- firstdB
}
}
peakToPeak2 <- ifelse(peak2==0, 0, abs(peak-peak2))
peakToPeak3 <- ifelse(peak3==0, 0, abs(peak-peak3))
peak2ToPeak3 <- ifelse((peak3==0) | (peak2==0), 0, abs(peak2-peak3))
if(plot) {
specDf <- data.frame(Freq = spec[, 1], dB = spec[, 2])
freqLines <- sort(peak + c(freqBounds, -1*freqBounds))
graphDf <- data.frame(Freq = c(peak, peak2, peak3, trough, trough2),
dB = c(max(specDf$dB), peak2dB, peak3dB, troughdB, trough2dB),
Type = c('Highest Peak', 'Second Peak', 'Third Peak', 'Trough / Notch', 'Trough / Notch'))
g <- ggplot() + geom_line(data=specDf, aes_string(x='Freq', y='dB')) +
geom_vline(xintercept=freqLines, color='goldenrod1') +
geom_hline(yintercept=dbMin, color='blue') +
geom_point(data=graphDf, aes_string(x='Freq', y='dB', color='Type'), size=3) +
coord_cartesian(xlim=range(specDf$Freq), ylim=range(specDf$dB)) +
scale_x_continuous(breaks=seq(0,500,20)) +
labs(title='Finding Peaks and Troughs', x='Frequency (kHz)', y='Relative dB') +
geom_rect(aes(xmin=c(freqLines[1], freqLines[3]), xmax=c(freqLines[2], freqLines[4]), ymin=dbMin, ymax=0, fill='a'), alpha=.1) +
geom_rect(aes(xmin=c(-5, freqLines[2], freqLines[4]), xmax=c(freqLines[1], freqLines[3], 150), ymin=dbMin, ymax=0, fill='b'), alpha=.15) +
geom_rect(aes(xmin=c(freqLines[1], freqLines[3]), xmax=c(freqLines[2], freqLines[4]), ymin=-130, ymax=dbMin, fill='c'), alpha=.1) +
scale_fill_manual(values=c('green', 'blue', 'yellow'), labels=c('Range to Search', 'dB Range', 'Frequency Range'), name='') +
theme(plot.title=element_text(hjust=.5))
suppressWarnings(print(g))
}
tryCatch({
structure(list(peak = peak, peak2 = peak2, peak3 = peak3,
trough = trough, trough2 = trough2,
peakToPeak2 = peakToPeak2, peakToPeak3 = peakToPeak3, peak2ToPeak3 = peak2ToPeak3),
row.names=c(NA, -1), class='data.frame')
},
error = function(e) {
message('peakTrough failed with error:\n', e$message)
data.frame(peak = NA, peak2 = NA, peak3 = NA,
trough = NA, trough2 = NA,
peakToPeak2 = NA, peakToPeak3 = NA, peak2ToPeak3 = NA)
})
} |
calcEm <- function(conc = NULL,
calc.method = calcEm_HoribaPitot, analyte = NULL,
..., data = NULL, fun.name = "calcEm", force = FALSE,
this.call = NULL){
dots <- quos(...)
if(is.null(this.call))
this.call <- match.call()
settings <- calcChecks(fun.name, ..., data = data)
conc <- getPEMSElement(!!enquo(conc), data, ref.name="conc")
temp <- attr(conc, "name")
if(!force){
if(length(grep("^conc.", temp))<1)
checkIfMissing(if.missing = settings$if.missing,
reply = paste("'", temp, "' should be concentration, \n\tdenoted conc.[analyte]", sep=""),
suggest = "select suitable input or force if sure ?calcEm", if.warning = NULL,
fun.name = fun.name)
}
temp <- gsub("^conc.", "", temp)
if(is.null(analyte))
analyte <- temp
if(!force){
if(temp != analyte)
checkIfMissing(if.missing = settings$if.missing,
reply = "Input type does not match assigned 'analyte'",
suggest = "select suitable input or force if sure ?calcEm", if.warning = NULL,
fun.name = fun.name)
}
if(is.function(calc.method)){
if("output" %in% names(dots))
dots[[which(names(dots)=="output")]]<-NULL
em <- eval_tidy(quo(calc.method(conc=conc, data=data, fun.name=fun.name,
analyte=analyte, this.call=this.call, !!!dots)))
return(pemsOutput(em, output = settings$output, data = data,
fun.name = fun.name, this.call = this.call))
}
checkIfMissing(if.missing = settings$if.missing,
reply = "could not run calc.method!",
suggest = "check ?calcEm if reason unclear", if.warning = "returning NULL",
fun.name = fun.name)
return(NULL)
}
calcEm_HoribaPitot <- function(conc = NULL, time = local.time,
exflow = exh.flow.rate, extemp = exh.temp,
express = exh.press, analyte = NULL, delay = NULL, mm = NULL,
..., force = force, data = NULL, fun.name = "calcEm_HoribaPitot",
this.call = NULL){
settings <- calcChecks(fun.name, ..., data = data)
time <- getPEMSElement(!!enquo(time), data, if.missing="return")
exflow <- getPEMSElement(!!enquo(exflow), data, if.missing="return")
extemp <- getPEMSElement(!!enquo(extemp), data, if.missing="return")
express <- getPEMSElement(!!enquo(express), data, if.missing="return")
tempGet <- function(..., id=NULL, data=NULL, default=NULL){
extra.args <- list(...)
if(id %in% names(extra.args)) return(extra.args[[id]])
if(!is.null(data)){
if(isPEMS(data))
if(id %in% names(getPEMSConstants(data)))
return(getPEMSConstants(data)[[id]])
if(id %in% names(data)) return(data[[id]])
}
if(!is.null(default)){
if(id %in% names(default)) return(default[[id]])
}
return(NULL)
}
if(is.null(mm))
mm <- tempGet(..., id=paste("mm.", analyte[1], sep=""), data=data, default=ref.chem)
if(is.null(mm) & analyte[1]=="hc"){
mm.h <- tempGet(..., id="mm.h", data=data, default=ref.chem)
alpha.exhaust.hc <- tempGet(..., id="alpha.exhaust.hc", data=data, default=ref.chem)
mm.c <- tempGet(..., id="mm.c", data=data, default=ref.chem)
temp <- mm.h * alpha.exhaust.hc + mm.c
thc.c6 <- tempGet(..., id="thc.c6", data=data, default=ref.chem)
mm <- temp * thc.c6
}
if(is.null(delay))
delay <- tempGet(..., id=paste("delay.", analyte[1], sep=""), data=data)
conc <- convertUnits(conc, to = "vol%",
if.missing = settings$if.missing,
unit.convesions = settings$unit.conversions)
exflow <- convertUnits(exflow, to = "L/min",
if.missing = settings$if.missing,
unit.convesions = settings$unit.conversions)
if(delay[1]>=1){
conc <- c(conc[(floor(delay[1])+1): length(conc)], rep(NA, floor(delay[1])))
}
em <- conc * mm * exflow * (1/60) * (1/100) * (1/22.415) * (273.15/293.15)
em <- pems.element(em, name=paste("em.", analyte[1], sep=""), units="g/s")
pemsOutput(em, output = settings$output, data = data,
fun.name = fun.name, this.call = this.call)
} |
'dse14t' |
distsampOpen <- function(lambdaformula, gammaformula, omegaformula, pformula,
data, keyfun=c("halfnorm", "exp", "hazard", "uniform"),
output=c("abund", "density"), unitsOut=c("ha", "kmsq"),
mixture=c("P", "NB", "ZIP"), K,
dynamics=c("constant", "autoreg", "notrend", "trend", "ricker", "gompertz"),
fix=c("none", "gamma", "omega"), immigration=FALSE, iotaformula = ~1,
starts, method="BFGS", se=TRUE, ...)
{
if(!is(data, "unmarkedFrameDSO"))
stop("Data is not of class unmarkedFrameDSO.")
keyfun <- match.arg(keyfun)
if(!keyfun %in% c("halfnorm", "exp", "hazard", "uniform"))
stop("keyfun must be 'halfnorm', 'exp', 'hazard', or 'uniform'")
if(keyfun == "uniform"){
if(!missing(pformula)){
warning("pformula is ignored when using a uniform key function")
}
pformula <- ~1
}
output <- match.arg(output)
unitsOut <- match.arg(unitsOut)
db <- [email protected]
w <- diff(db)
tlength <- data@tlength
survey <- data@survey
unitsIn <- data@unitsIn
mixture <- match.arg(mixture)
dynamics <- match.arg(dynamics)
if((identical(dynamics, "constant") || identical(dynamics, "notrend")) & immigration)
stop("You can not include immigration in the constant or notrend models")
if(identical(dynamics, "notrend") &
!identical(lambdaformula, omegaformula))
stop("lambdaformula and omegaformula must be identical for notrend model")
fix <- match.arg(fix)
formlist <- mget(c("lambdaformula", "gammaformula", "omegaformula",
"pformula", "iotaformula"))
check_no_support(formlist)
formula <- as.formula(paste(unlist(formlist), collapse=" "))
D <- getDesign(data, formula)
y <- D$y
Xlam <- D$Xlam
Xgam <- D$Xgam
Xom <- D$Xom
Xsig <- D$Xp
Xiota<- D$Xiota
delta <- D$delta; go.dims <- D$go.dims
deltamax <- max(delta, na.rm=TRUE)
M <- nrow(y)
T <- data@numPrimary
J <- ncol(getY(data)) / T
Xlam.offset <- D$Xlam.offset
Xgam.offset <- D$Xgam.offset
Xom.offset <- D$Xom.offset
Xsig.offset <- D$Xp.offset
Xiota.offset<- D$Xiota.offset
y <- array(y, c(M, J, T))
yt <- apply(y, c(1,3), function(x) {
if(all(is.na(x)))
return(NA)
else return(sum(x, na.rm=TRUE))
})
ytna <- apply(is.na(y), c(1,3), all)
ytna <- matrix(ytna, nrow=M)
ytna[] <- as.integer(ytna)
first <- apply(!ytna, 1, function(x) min(which(x)))
last <- apply(!ytna, 1, function(x) max(which(x)))
first1 <- which(first==1)[1]
if(missing(K)) {
K <- max(y, na.rm=T) + 20
warning("K was not specified and was set to ", K, ".")
}
if(K <= max(y, na.rm = TRUE))
stop("specified K is too small. Try a value larger than any observation")
k <- 0:K
lk <- length(k)
lfac.k <- lgamma(k+1)
kmyt <- array(0, c(lk, T, M))
lfac.kmyt <- array(0, c(M, T, lk))
fin <- array(NA, c(M, T, lk))
for(i in 1:M) {
for(t in 1:T) {
fin[i,t,] <- k - yt[i,t] >= 0
if(sum(ytna[i,t])==0) {
kmyt[,t,i] <- k - yt[i,t]
lfac.kmyt[i,t, ] <- lgamma(kmyt[,t,i] + 1)
}
}
}
ua <- getUA(data)
u <- ua$u; a <- ua$a
if(length(D$removed.sites)>0){
u <- ua$u[-D$removed.sites,]
a <- ua$a[-D$removed.sites,]
}
switch(survey,
line = A <- rowSums(a) * 2,
point = A <- rowSums(a))
switch(unitsIn,
m = A <- A / 1e6,
km = A <- A)
switch(unitsOut,
ha = A <- A * 100,
kmsq = A <- A)
if(output=='abund'){
A <- rep(1, M)
}
lamParms <- colnames(Xlam)
gamParms <- colnames(Xgam)
omParms <- colnames(Xom)
nAP <- ncol(Xlam)
nGP <- ncol(Xgam)
nOP <- ncol(Xom)
nDP <- ifelse(keyfun == "uniform", 0, ncol(Xsig))
detParms <- character(0)
if(keyfun != "uniform") detParms <- colnames(Xsig)
nIP <- ifelse(immigration, ncol(Xiota), 0)
iotaParms <- character(0)
if(immigration) iotaParms <- colnames(Xiota)
if(identical(fix, "gamma")) {
if(!identical(dynamics, "constant"))
stop("dynamics must be constant when fixing gamma or omega")
if(nGP > 1){
stop("gamma covariates not allowed when fix==gamma")
}else {
nGP <- 0
gamParms <- character(0)
}
} else if(identical(dynamics, "notrend")) {
if(nGP > 1){
stop("gamma covariates not allowed when dyamics==notrend")
} else {
nGP <- 0
gamParms <- character(0)
}
}
if(identical(fix, "omega")) {
if(!identical(dynamics, "constant"))
stop("dynamics must be constant when fixing gamma or omega")
if(nOP > 1)
stop("omega covariates not allowed when fix==omega")
else {
nOP <- 0
omParms <- character(0)
}
} else if(identical(dynamics, "trend")) {
if(nOP > 1)
stop("omega covariates not allowed when dynamics='trend'")
else {
nOP <- 0
omParms <- character(0)
}
}
nP <- nAP + nGP + nOP + nDP + nIP + (mixture!="P") + (keyfun == "hazard")
if(!missing(starts) && length(starts) != nP)
stop(paste("The number of starting values should be", nP))
nbParm <- character(0)
if(identical(mixture,"NB"))
nbParm <- "alpha"
else if(identical(mixture, "ZIP"))
nbParm <- "psi"
scaleParm <- character(0)
if(identical(keyfun, "hazard")) scaleParm <- "scale"
paramNames <- c(lamParms, gamParms, omParms, detParms,
iotaParms, scaleParm, nbParm)
I <- cbind(rep(k, times=lk), rep(k, each=lk))
I1 <- I[I[,1] <= I[,2],]
lik_trans <- .Call("get_lik_trans", I, I1, PACKAGE="unmarked")
beta_ind <- matrix(NA, 7, 2)
beta_ind[1,] <- c(1, nAP)
beta_ind[2,] <- c(1, nGP) + nAP
beta_ind[3,] <- c(1, nOP) + nAP + nGP
beta_ind[4,] <- c(1, nDP) + nAP + nGP + nOP
beta_ind[5,] <- c(1, nIP) + nAP + nGP + nOP + nDP
beta_ind[6,] <- c(1, 1) + nAP + nGP + nOP + nDP + nIP
beta_ind[7,] <- c(1, 1) + nAP + nGP + nOP + nDP + nIP + (keyfun == "hazard")
fin <- fin*1
u <- t(u)
yperm <- aperm(y, c(1,3,2))
nll <- function(parms) {
.Call("nll_distsampOpen",
yperm, yt,
Xlam, Xgam, Xom, Xsig, Xiota,
parms, beta_ind - 1,
Xlam.offset, Xgam.offset, Xom.offset, Xsig.offset, Xiota.offset,
ytna,
lk, mixture, first - 1, last - 1, first1 - 1, M, T,
delta, dynamics, survey, fix, go.dims, immigration,
I, I1, lik_trans$Ib, lik_trans$Ip,
a, u, w, db,
keyfun, lfac.k, kmyt, lfac.kmyt, fin, A,
PACKAGE = "unmarked")
}
if(missing(starts)){
starts <- rep(0, nP)
if(keyfun != "uniform")
starts[beta_ind[4,1]] <- log(mean(w))
}
fm <- optim(starts, nll, method=method, hessian=se, ...)
ests <- fm$par
names(ests) <- paramNames
covMat <- invertHessian(fm, nP, se)
fmAIC <- 2*fm$value + 2*nP
lamEstimates <- unmarkedEstimate(name = "Abundance", short.name = "lam",
estimates = ests[1:nAP], covMat = as.matrix(covMat[1:nAP,1:nAP]),
invlink = "exp", invlinkGrad = "exp")
estimateList <- unmarkedEstimateList(list(lambda=lamEstimates))
gamName <- switch(dynamics, constant = "gamConst", autoreg = "gamAR",
notrend = "", trend = "gamTrend",
ricker="gamRicker", gompertz = "gamGomp")
if(!(identical(fix, "gamma") | identical(dynamics, "notrend"))){
estimateList@estimates$gamma <- unmarkedEstimate(name =
ifelse(identical(dynamics, "constant") | identical(dynamics, "autoreg"),
"Recruitment", "Growth Rate"), short.name = gamName,
estimates = ests[(nAP+1) : (nAP+nGP)], covMat = as.matrix(covMat[(nAP+1) :
(nAP+nGP), (nAP+1) : (nAP+nGP)]),
invlink = "exp", invlinkGrad = "exp")
}
if(!(identical(fix, "omega") | identical(dynamics, "trend"))) {
if(identical(dynamics, "constant") | identical(dynamics, "autoreg") |
identical(dynamics, "notrend")){
estimateList@estimates$omega <- unmarkedEstimate( name="Apparent Survival",
short.name = "omega", estimates = ests[(nAP+nGP+1) :(nAP+nGP+nOP)],
covMat = as.matrix(covMat[(nAP+nGP+1) : (nAP+nGP+nOP),
(nAP+nGP+1) : (nAP+nGP+nOP)]),
invlink = "logistic", invlinkGrad = "logistic.grad")
} else if(identical(dynamics, "ricker")){
estimateList@estimates$omega <- unmarkedEstimate(name="Carrying Capacity",
short.name = "omCarCap", estimates = ests[(nAP+nGP+1) :(nAP+nGP+nOP)],
covMat = as.matrix(covMat[(nAP+nGP+1) : (nAP+nGP+nOP),
(nAP+nGP+1) : (nAP+nGP+nOP)]),
invlink = "exp", invlinkGrad = "exp")
} else{
estimateList@estimates$omega <- unmarkedEstimate(name="Carrying Capacity",
short.name = "omCarCap", estimates = ests[(nAP+nGP+1) :(nAP+nGP+nOP)],
covMat = as.matrix(covMat[(nAP+nGP+1) : (nAP+nGP+nOP),
(nAP+nGP+1) : (nAP+nGP+nOP)]),
invlink = "exp", invlinkGrad = "exp")
}
}
if(keyfun != "uniform"){
estimateList@estimates$det <- unmarkedEstimate(
name = "Detection", short.name = "sigma",
estimates = ests[(nAP+nGP+nOP+1) : (nAP+nGP+nOP+nDP)],
covMat = as.matrix(covMat[(nAP+nGP+nOP+1) : (nAP+nGP+nOP+nDP),
(nAP+nGP+nOP+1) : (nAP+nGP+nOP+nDP)]),
invlink = "exp", invlinkGrad = "exp")
}
if(immigration) {
estimateList@estimates$iota <- unmarkedEstimate(
name="Immigration", short.name = "iota",
estimates = ests[(nAP+nGP+nOP+nDP+1) :(nAP+nGP+nOP+nDP+nIP)],
covMat = as.matrix(covMat[(nAP+nGP+nOP+nDP+1) : (nAP+nGP+nOP+nDP+nIP),
(nAP+nGP+nOP+nDP+1) : (nAP+nGP+nOP+nDP+nIP)]),
invlink = "exp", invlinkGrad = "exp")
}
if(identical(keyfun, "hazard")) {
estimateList@estimates$scale <- unmarkedEstimate(name = "Hazard-rate(scale)",
short.name = "scale", estimates = ests[nAP+nGP+nOP+nDP+nIP+1],
covMat = as.matrix(covMat[nAP+nGP+nOP+nDP+nIP+1,
nAP+nGP+nOP+nDP+nIP+1]),
invlink = "exp", invlinkGrad = "exp")
}
if(identical(mixture, "NB")) {
estimateList@estimates$alpha <- unmarkedEstimate(name = "Dispersion",
short.name = "alpha", estimates = ests[nP],
covMat = as.matrix(covMat[nP, nP]), invlink = "exp",
invlinkGrad = "exp")
}
if(identical(mixture, "ZIP")) {
estimateList@estimates$psi <- unmarkedEstimate(name = "Zero-inflation",
short.name = "psi", estimates = ests[nP],
covMat = as.matrix(covMat[nP, nP]), invlink = "logistic",
invlinkGrad = "logistic.grad")
}
umfit <- new("unmarkedFitDSO", fitType = "distsampOpen",
call = match.call(), formula = formula, formlist = formlist, data = data,
sitesRemoved=D$removed.sites, estimates = estimateList, AIC = fmAIC,
opt = fm, negLogLike = fm$value, nllFun = nll, K = K, mixture = mixture,
dynamics = dynamics, fix = fix, immigration=immigration, keyfun=keyfun,
unitsOut=unitsOut)
return(umfit)
} |
invert.auto <- function(observed, invert.options,
return.samples = TRUE,
save.samples = NULL,
quiet=FALSE,
parallel=TRUE,
parallel.cores=NULL,
parallel.output = '/dev/null') {
if (parallel == TRUE) {
testForPackage("parallel")
} else {
message("Running in serial mode. Better performance can be achived with `parallel=TRUE`.")
}
ngibbs.max <- invert.options$ngibbs.max
if (is.null(ngibbs.max)) {
ngibbs.max <- 1e6
message("ngibbs.max not provided. ",
"Setting default to ", ngibbs.max)
}
ngibbs.min <- invert.options$ngibbs.min
if (is.null(ngibbs.min)) {
ngibbs.min <- 5000
message("ngibbs.min not provided. ",
"Setting default to ", ngibbs.min)
}
ngibbs.step <- invert.options$ngibbs.step
if (is.null(ngibbs.step)) {
ngibbs.step <- 1000
message("ngibbs.step not provided. ",
"Setting default to ", ngibbs.step)
}
nchains <- invert.options$nchains
if (is.null(nchains)) {
nchains <- 3
message("nchains not provided. ",
"Setting default to ", nchains)
}
inits.function <- invert.options$inits.function
if (is.null(inits.function)) {
stop("invert.options$inits.function is required but missing.")
}
if (is.null(invert.options$do.lsq)) {
invert.options$do.lsq <- FALSE
message("do.lsq not provided. ",
"Setting default to ", invert.options$do.lsq)
}
if (invert.options$do.lsq) {
testForPackage("minpack.lm")
}
iter_conv_check <- invert.options$iter_conv_check
if (is.null(iter_conv_check)) {
iter_conv_check <- 15000
message("iter_conv_check not provided. ",
"Setting default to ", iter_conv_check)
}
threshold <- invert.options$threshold
if (is.null(threshold)) {
threshold <- 1.1
message("threshold not provided. ",
"Setting default to ", threshold)
}
calculate.burnin <- invert.options$calculate.burnin
if (is.null(calculate.burnin)) {
calculate.burnin <- TRUE
message("calculate.burnin not provided. ",
"Setting default to ", calculate.burnin)
}
if (parallel) {
maxcores <- parallel::detectCores()
if (is.null(parallel.cores)) {
parallel.cores <- maxcores - 1
} else {
if (!is.numeric(parallel.cores) | parallel.cores %% 1 != 0) {
stop("Invalid argument to 'parallel.cores'. Must be integer or NULL")
} else if (parallel.cores > maxcores) {
warning(sprintf("Requested %1$d cores but only %2$d cores available. ",
parallel.cores, maxcores),
"Using only available cores.")
parallel.cores <- maxcores
}
}
cl <- parallel::makeCluster(parallel.cores, "FORK", outfile = parallel.output)
on.exit(parallel::stopCluster(cl), add = TRUE)
parallel::clusterSetRNGStream(cl)
message(sprintf("Running %d chains in parallel. ", nchains),
"Progress bar unavailable")
}
invert.function <- function(x) {
invert.options$inits <- x$inits
invert.options$resume <- x$resume
samps <- invert.custom(observed = observed,
invert.options = invert.options,
quiet = quiet,
return.resume = TRUE,
runID = x$runID)
return(samps)
}
runID_list <- seq_len(nchains)
inputs <- list()
for (i in seq_len(nchains)) {
inputs[[i]] <- list(runID = runID_list[i],
inits = inits.function(),
resume = NULL)
}
if (!is.null(invert.options$run_first)) {
if (parallel) {
first <- parallel::parLapply(cl, inputs, invert.options$run_first)
} else {
first <- list()
for (i in seq_len(nchains)) {
first[[i]] <- invert.options$run_first(inputs[[i]])
}
}
}
invert.options$ngibbs <- ngibbs.min
i.ngibbs <- ngibbs.min
if (parallel) {
output.list <- parallel::parLapply(cl, inputs, invert.function)
} else {
output.list <- list()
for (i in seq_along(inputs)) {
print(sprintf("Running chain %d of %d", i, nchains))
output.list[[i]] <- invert.function(inputs[[i]])
}
}
resume <- lapply(output.list, '[[', 'resume')
out <- process_output(output.list = output.list,
iter_conv_check = iter_conv_check,
save.samples = save.samples,
threshold = threshold,
calculate.burnin = calculate.burnin)
invert.options$ngibbs <- ngibbs.step
while (!out$finished & i.ngibbs < ngibbs.max) {
if (!quiet) {
message(sprintf("Running iterations %d to %d", i.ngibbs,
i.ngibbs + ngibbs.step))
}
inits <- lapply(out$samples, getLastRow)
inputs <- list()
for (i in seq_len(nchains)) {
inputs[[i]] <- list(runID = runID_list[i],
inits = inits[[i]],
resume = resume[[i]])
}
if (parallel) {
output.list <- parallel::parLapply(cl, inputs, invert.function)
} else {
output.list <- list()
for (i in seq_along(inputs)) {
message(sprintf('Running chain %d of %d', i, nchains))
output.list[[i]] <- invert.function(inputs[[i]])
}
}
i.ngibbs <- i.ngibbs + ngibbs.step
resume <- lapply(output.list, '[[', 'resume')
out <- process_output(output.list = output.list,
prev_out = out,
iter_conv_check = iter_conv_check,
save.samples = save.samples,
threshold = threshold,
calculate.burnin = calculate.burnin)
}
if (i.ngibbs > ngibbs.max & !out$finished) {
warning("Convergence was not achieved, and max iterations exceeded. ",
"Returning results as 'NA'.")
}
if (!return.samples) {
out$samples <- c('Samples not returned' = NA)
}
return(out)
}
getLastRow <- function(samps, exclude.cols = ncol(samps)) {
cols <- seq_len(ncol(samps))
cols <- cols[-exclude.cols]
last_row <- samps[nrow(samps), cols]
return(last_row)
}
combineChains <- function(samps1, samps2) {
stopifnot(length(samps1) == length(samps2))
nchains <- length(samps1)
sampsfinal <- list()
for (i in seq_len(nchains)) {
sampsfinal[[i]] <- rbind(samps1[[i]], samps2[[i]])
}
stopifnot(length(sampsfinal) == length(samps1))
out <- PEcAn.assim.batch::makeMCMCList(sampsfinal)
return(out)
}
process_output <- function(output.list,
prev_out = NULL,
iter_conv_check,
save.samples,
threshold,
calculate.burnin) {
samples.current <- lapply(output.list, "[[", "results")
deviance_list.current <- lapply(output.list, "[[", "deviance")
n_eff_list.current <- lapply(output.list, "[[", "n_eff")
rm(output.list)
out <- list()
if (is.null(prev_out)) {
out$samples <- PEcAn.assim.batch::makeMCMCList(samples.current)
out$deviance_list <- deviance_list.current
out$n_eff_list <- n_eff_list.current
} else {
out$samples <- combineChains(prev_out$samples, samples.current)
out$deviance_list <- mapply(c, prev_out$deviance_list,
deviance_list.current, SIMPLIFY = F)
out$n_eff_list <- mapply(c, prev_out$n_eff_list, n_eff_list.current,
SIMPLIFY = F)
}
rm(prev_out)
if (!is.null(save.samples)) {
saveRDS(out, file = save.samples)
}
out$nsamp <- coda::niter(out$samples)
nburn <- min(floor(out$nsamp/2), iter_conv_check)
burned_samples <- window(out$samples, start = nburn)
check_initial <- check.convergence(burned_samples,
threshold = threshold,
autoburnin = FALSE)
if (check_initial$error) {
warning("Could not calculate Gelman diag. Assuming no convergence.")
out$finished <- FALSE
return(out)
}
if (!check_initial$converged) {
message("Convergence was not achieved. Continuing sampling.")
out$finished <- FALSE
return(out)
} else {
message("Passed initial convergence check.")
}
if (calculate.burnin) {
burn <- PEcAn.assim.batch::autoburnin(out$samples, return.burnin = TRUE, method = 'gelman.plot')
out$burnin <- burn$burnin
if (out$burnin == 1) {
message("Robust convergence check in autoburnin failed. ",
"Resuming sampling.")
out$finished <- FALSE
return(out)
} else {
message("Converged after ", out$nsamp, "iterations.")
out$results <- summary_simple(do.call(rbind, burn$samples))
}
} else {
message("Skipping robust convergece check (autoburnin) because ",
"calculate.burnin == FALSE.")
out$burnin <- nburn
out$results <- summary_simple(do.call(rbind, burned_samples))
}
message("Burnin = ", out$burnin)
out$finished <- TRUE
return(out)
} |
SimPhase123=function(DoseStart,Dose,PE,PT,Hypermeans,Hypervars,Contour,PiLim,ProbLim,NET,NF,Accrue12,Time12,cohort,betaA,ProbC,betaC,Family,alpha,Nmax,Accrue,Twait,NLookSwitch,NLook,Sup,Fut,nSims){
Doselog = log(Dose)-mean(log(Dose))
Dose1=(Dose-mean(Dose))/sd(Dose)
PH123=matrix(rep(NA,4*nSims),nrow=nSims)
PH12=matrix(rep(NA,4*nSims),nrow=nSims)
B=2000
for(h in 1:nSims){
if(h%%100==0){
cat(h, "Simulations Finished
")
}
Phase12 = RunAdaptiveEffToxTrial(DoseStart,Doselog, Hypermeans, Hypervars, Contour, PiLim, ProbLim, cohort, NET, NF, B, 1, PE, PT )
Opt=Phase12[[1]][1]
Phase12=Phase12[[3]]
Phase12[,1]=Phase12[,1]+1
ACC1=cumsum(rexp(NET,Accrue12))
Grab = rep(NA,NET/cohort)
for(m in 1:length(Grab)){Grab[m]=ACC1[m*3]}
for(m in 1:length(Grab)){ACC1[((m-1)*cohort+1):((m-1)*cohort+cohort)]=rep(Grab[m],cohort)}
Phase12 = cbind(Phase12,ACC1)
Z=SimPhase3(Dose1,Phase12,PE,PT,Hypermeans,Hypervars,betaA,ProbC,betaC,Family,alpha,Nmax,Opt,Accrue,Time12,Twait,NLookSwitch,NLook,Sup,Fut)
Z123=Z[[1]]
Z12=Z[[2]]
PH123[h,]=Z123
PH12[h,]=Z12
}
Z=as.list(c(0,0))
Z[[1]]=PH123
Z[[2]]=PH12
return(Z)
} |
library(lumberjack)
logfile <- tempfile()
data(women)
start_log(women, logger=simple$new(verbose=FALSE))
women[1,1] <- 2*women[1,1]
women$ratio <- women$height/women$weight
dump_log(women, "simple", file=logfile) |
NULL
Milo <- function(..., graph=list(), nhoodDistances=Matrix(0L, sparse=TRUE),
nhoods=Matrix(0L, sparse=TRUE),
nhoodCounts=Matrix(0L, sparse=TRUE),
nhoodIndex=list(),
nhoodExpression=Matrix(0L, sparse=TRUE),
.k=NULL){
old <- S4Vectors:::disableValidity()
if (!isTRUE(old)) {
S4Vectors:::disableValidity(TRUE)
on.exit(S4Vectors:::disableValidity(old))
}
if(length(list(...)) == 0){
milo <- .emptyMilo()
} else if(is(unlist(...), "SingleCellExperiment")){
milo <- .fromSCE(unlist(...))
}
milo
}
.fromSCE <- function(sce, assayName="logcounts"){
out <- new("Milo", sce,
graph=list(),
nhoods=Matrix(0L, sparse=TRUE),
nhoodDistances=NULL,
nhoodCounts=Matrix(0L, sparse=TRUE),
nhoodIndex=list(),
nhoodExpression=Matrix(0L, sparse=TRUE),
.k=NULL)
reducedDims(out) <- reducedDims(sce)
altExps(out) <- list()
out
}
.emptyMilo <- function(...){
out <- new("Milo",
graph=list(),
nhoods=Matrix(0L, sparse=TRUE),
nhoodDistances=NULL,
nhoodCounts=Matrix(0L, sparse=TRUE),
nhoodIndex=list(),
nhoodExpression=Matrix(0L, sparse=TRUE),
.k=NULL)
reducedDims(out) <- SimpleList()
altExps(out) <- SimpleList()
colData(out) <- DataFrame()
if (objectVersion(out) >= "1.11.3"){
colPairs(out) <- SimpleList()
rowPairs(out) <- SimpleList()
}
out
}
setValidity("Milo", function(object){
if (!is(object@nhoodCounts, "matrixORMatrix")){
"@nhoodCounts must be matrix format"
} else{
TRUE
}
if(!is(object@nhoodDistances, "listORNULL")){
"@nhoodDistances must be a list of matrices"
} else{
TRUE
}
if(!is(object@nhoodExpression, "matrixORMatrix")){
"@nhoodExpression must be a matrix format"
} else{
TRUE
}
if (!is_igraph(object@graph)){
if(typeof(object@graph) != "list"){
"@graph must be of type list or igraph"
}
} else{
TRUE
}
}) |
tbl <-
dplyr::tribble(
~dates, ~rows, ~col_1, ~col_2, ~col_3, ~col_4,
"2018-02-10", "1", 767.6, 928.1, 382.0, 674.5,
"2018-02-10", "2", 403.3, 461.5, 15.1, 242.8,
"2018-02-10", "3", 686.4, 54.1, 282.7, 56.3,
"2018-02-10", "4", 662.6, 148.8, 984.6, 928.1,
"2018-02-11", "5", 198.5, 65.1, 127.4, 219.3,
"2018-02-11", "6", 132.1, 118.1, 91.2, 874.3,
"2018-02-11", "7", 349.7, 307.1, 566.7, 542.9,
"2018-02-11", "8", 63.7, 504.3, 152.0, 724.5,
"2018-02-11", "9", 105.4, 729.8, 962.4, 336.4,
"2018-02-11", "10", 924.2, 424.6, 740.8, 104.2
)
check_suggests <- function() {
skip_if_not_installed("rvest")
skip_if_not_installed("xml2")
}
selection_value <- function(html, key) {
selection <- paste0("[", key, "]")
html %>%
rvest::html_nodes(selection) %>%
rvest::html_attr(key)
}
test_that("the `row_group_order()` function works correctly", {
html_tbl <-
tbl %>%
gt(rowname_col = "rows", groupname_col = "dates") %>%
row_group_order(groups = c("2018-02-11", "2018-02-10"))
dt_row_groups_get(data = html_tbl) %>%
expect_equal(c("2018-02-11", "2018-02-10"))
expect_error(
tbl %>%
gt(rowname_col = "rows", groupname_col = "dates") %>%
row_group_order(groups = c(TRUE, FALSE))
)
expect_error(
tbl %>%
gt(rowname_col = "rows", groupname_col = "dates") %>%
row_group_order(groups = c("2018-02-13", "2018-02-10"))
)
})
test_that("styling at various locations is kept when using `row_group_order()`", {
summary_tbl <-
tbl %>%
gt(rowname_col = "rows", groupname_col = "dates") %>%
summary_rows(
groups = TRUE,
columns = everything(),
fns = list("sum")
) %>%
grand_summary_rows(
columns = everything(),
fns = list("sum")
)
summary_tbl_styled_1 <-
summary_tbl %>%
tab_style(
style = cell_text(style = "italic", weight = "bold"),
locations = list(
cells_summary(), cells_stub_summary(),
cells_grand_summary(), cells_stub_grand_summary()
)
) %>%
render_as_html() %>%
xml2::read_html()
summary_tbl_styled_2 <-
summary_tbl %>%
tab_style(
style = cell_text(style = "italic", weight = "bold"),
locations = list(
cells_summary(), cells_stub_summary(),
cells_grand_summary(), cells_stub_grand_summary()
)
) %>%
row_group_order(groups = c("2018-02-11", "2018-02-10")) %>%
render_as_html() %>%
xml2::read_html()
summary_tbl_styled_1 %>%
selection_value("style") %>%
expect_equal(rep("font-style: italic; font-weight: bold;", 15))
summary_tbl_styled_2 %>%
selection_value("style") %>%
expect_equal(rep("font-style: italic; font-weight: bold;", 15))
}) |
.qp.update <- function (ppt,qp,theta,gn,gnge,ppe,ppg,fd,fdge,kd,kr,pgg,alpha1,alpha2,alpha3,darray,x,n,model){
alpha1.t<-qp*alpha1
alpha1.t[alpha1.t<1 & model==1]<-1
qp.star <- .rdirichlet.MCMCpack(1, alpha1.t)
e.t<-1-exp(qp.star[1]*log(1-ppt))
g.t<-1-exp(qp.star[2]*log(1-ppt))
ge.t<-1-exp(qp.star[3]*log(1-ppt))
gg.t<-1-exp(qp.star[4]*log(1-ppt))
if(model[2]==1){
gn.star <- sample(9,1,replace=T)-1
fd.t<-c(runif(1,0,1-sqrt(1-g.t)),array(0,gn.star))
fr.t<-c(0,array(sqrt(1-((1-g.t)/(1-fd.t[1])^2)^(1/gn.star)),gn.star))
} else {
gn.star <-0
fd.t <-c(0,0)
fr.t <-c(0,0)
}
if(model[3]==1){
alpha2.t<-c(log(ppe),log(ppg))/log(1-exp(qp[3]*log(1-ppt)))*alpha2 +1
ge<-.rdirichlet.MCMCpack(1,c(1,1))
ppe.star<-exp(ge[1]*log(ge.t))
ppg.star<-exp(ge[2]*log(ge.t))
gnge.star <- sample(9,1,replace=T)-1
fdge.t<-c(runif(1,0,1-sqrt(1-ppg.star)),array(0,gnge.star))
frge.t<-c(0,array(sqrt(1-((1-ppg.star)/(1-fdge.t[1])^2)^(1/gnge.star)),gnge.star))
} else {
ge<-c(0,0)
ppe.star <-0
ppg.star <-0
gnge.star<-0
fdge.t<-c(0,0)
frge.t<-c(0,0)
}
if(model[4]==1){
kd.star <- sample(9,1,replace=T)-1
if(kd.star==0){ kr.star <- sample(8,1,replace=T) }
if(kd.star>0){ kr.star <- sample(9-kd.star,1,replace=T)-1 }
if(kd.star>0 & kr.star>0){
alpha3.t<-pgg*alpha3+1
pgg.star<-.rdirichlet.MCMCpack(1,c(1,1))
ppd.star<-exp(pgg.star[1]*log(gg.t))
ppr.star<-exp(pgg.star[2]*log(gg.t))
}
if(kd.star==0){
ppr.star<-gg.t
ppd.star<-0
}
if(kr.star==0){
ppd.star<-gg.t
ppr.star<-0
}
frgg.t<-c(array(0,kd.star),array((ppr.star)^(1/2/kr.star),kr.star))
fdgg.t<-c(array(1-sqrt(1-ppd.star^(1/kd.star)),kd.star),array(0,kr.star))
} else{
kd.star<-0
kr.star<-0
pgg.star<-c(0,0)
ppd.star<-0
ppr.star<-0
frgg.t<-c(0,0)
fdgg.t<-c(0,0)
}
temp<-drgegggne(fd.t,fr.t,fdgg.t,frgg.t,fdge.t,frge.t,ppe.star,e.t)
theta.t<-temp[,3]/(temp[,2]+temp[,3])
log.post.old <- .logMCMC.post(x,n,theta[darray])
log.post.star <- .logMCMC.post(x,n,theta.t[darray])
alpha1.tt<-qp.star*alpha1
alpha1.tt[alpha1.tt<1 & model==1]<-1
log.jump <- sum(log(.ddirichlet.MCMCpack(qp[model==1],alpha1.tt[model==1]))) - sum(log(.ddirichlet.MCMCpack(qp.star[model==1],alpha1.t[model==1])))
alpha2.tt<-ge*alpha2+1
if(kd.star>0 & kr.star>0){
alpha3.tt<-pgg.star*alpha3+1
}
r <- exp (log.post.star - log.post.old + log.jump)
if(runif(1)<r){
qp<-qp.star
theta<-theta.t
ppe<-ppe.star
ppg<-ppg.star
if(kd.star>0 & kr.star>0) { pgg<-pgg.star }
kd<-kd.star
kr<-kr.star
gn<-gn.star
fd<-fd.t
gnge<-gnge.star
fdge<-fdge.t
}
list (qp=qp,theta=theta,gn=gn,gnge=gnge,ppe=ppe,ppg=ppg,fd=fd,fdge=fdge,kd=kd,kr=kr,pgg=pgg)
} |
skip_on_cran() |
print.summary.multicut <- function(x, cut, sort, digits, ...) {
if (missing(cut))
cut <- getOption("ocoptions")$cut
if (missing(digits))
digits <- max(3L, getOption("digits") - 3L)
if (missing(sort))
sort <- getOption("ocoptions")$sort
xx <- .summary_opticut(x, cut=cut, sort=sort, multi=TRUE)
Missing <- nrow(x$summary) - nrow(xx)
tmp <- if (nrow(xx) > 1L)
"Species models" else "Species model"
TXT <- paste0(tmp, " with logLR >= ",
format(cut, digits = digits), ":")
cat("Multivariate multticut results, dist = ",
if (is.function(x$dist)) attr(x$dist, "dist") else x$dist,
"\n", sep="")
cat("\nCall:\n", paste(deparse(x$call), sep = "\n", collapse = "\n"),
"\n\n", TXT, "\n", sep = "")
print(format.data.frame(xx, digits=digits), ...)
if (Missing)
cat(Missing, "species not shown\n")
cat("\n")
invisible(x)
} |
cov.lo <- function(para, map, data, ref, model, nsample, V, bet0, outcome){
data$'(Intercept)' <- 1
g <- gfunction.lo(para, map, ref)
g.the <- gfunction.the.lo(para, map, ref)
g.alp <- gfunction.alp.lo(para, map, ref)
g.bet <- gfunction.bet.lo(para, map, ref)
nmodel <- length(map$bet)
nlam <- max(map$lam)
n <- nrow(data)
m <- nrow(ref)
r <- m/n
lam <- para[map$lam]
pr <- as.vector(1/(1+g %*% lam))
pr <- pr/sum(pr)
pr0 <- 1/n
J.tt <- -(t(g) %*% (g * pr)) * r
nthe <- length(g.the)
J.tthe <- matrix(0, nrow = nlam, ncol = nthe)
for(i in 1:nthe){
J.tthe[, i] <- t(g.the[[i]]) %*% pr * r
}
nalp <- length(g.alp)
if(nalp > 0){
J.talp <- matrix(0, nrow = nlam, ncol = nalp)
for(i in 1:nalp){
J.talp[, i] <- t(g.alp[[i]]) %*% pr * r
}
}
nbet <- length(g.bet)
J.tbet <- matrix(0, nrow = nlam, ncol = nbet)
for(i in 1:nbet){
J.tbet[, i] <- t(g.bet[[i]]) %*% pr * r
}
the <- para[map$the]
fx <- as.matrix(data[, names(the), drop = FALSE])
elin <- as.vector(exp(fx %*% the))
yh <- elin/(1+elin)
J.the <- t(fx) %*% (fx * (yh * (1-yh) * pr0))
suppressMessages(Sigma0 <- Sigma0.lo(para, map, ref, model, nsample, outcome))
J.bet <- solve(Sigma0)/n
np <- length(para)
Jv <- matrix(0, nrow = np, ncol = np)
Iv <- matrix(0, nrow = np, ncol = np)
Jv[map$lam, map$lam] <- J.tt
Jv[map$lam, map$the] <- J.tthe
Jv[map$the, map$lam] <- t(J.tthe)
if(nalp > 0){
Jv[map$lam, map$all.alp] <- J.talp
Jv[map$all.alp, map$lam] <- t(J.talp)
}
Jv[map$lam, map$all.bet] <- J.tbet
Jv[map$all.bet, map$lam] <- t(J.tbet)
Jv[map$the, map$the] <- J.the
Jv[map$all.bet, map$all.bet] <- J.bet
Iv[map$lam, map$lam] <- -J.tt
Iv[map$the, map$the] <- J.the
Iv[map$all.bet, map$all.bet] <- J.bet
vcov <- solve(Jv) %*% Iv %*% solve(Jv)/n
vcov
Jv0 <- -hess.lo(para, map, data, ref, solve(V), bet0, outcome)/n
Iv0 <- matrix(0, nrow = np, ncol = np)
Iv0[map$lam, map$lam] <- -Jv0[map$lam, map$lam]
Iv0[map$the, map$the] <- Jv0[map$the, map$the]
Iv0[map$all.bet, map$all.bet] <- Jv0[map$all.bet, map$all.bet]
vcov0 <- solve(Jv0) %*% Iv0 %*% solve(Jv0)/n
vcov0
} |
be.zeroinfl <- function(object, data, dist=c("poisson", "negbin", "geometric"), alpha=0.05, trace=FALSE){
if(class(object)!="zeroinfl") stop("object must be zeroinfl\n")
dist <- match.arg(dist)
fit <- object
rhs1 <- attr(fit$terms$count, "term.labels")
rhs2 <- attr(fit$terms$zero, "term.labels")
nj <- length(rhs1)*length(rhs2)
j <- 1
if(trace) {
cat("Initial model\n")
print(summary(fit))
}
RET <- matrix(NA, nrow=nj, ncol=3)
colnames(RET) <- c("loglik", "BIC", "AIC")
while(T){
if(trace) cat("\nstep", j, "\n")
coef <- summary(fit)$coef
d <- dim(coef$count)[1]
if(dist!="negbin")
count.pval <- coef$count[-1,4]
else count.pval <- coef$count[-c(1,d),4]
zero.pval <- coef$zero[-1,4]
nc <- length(count.pval)
nz <- length(zero.pval)
if(dist!="negbin")
count.order <- order(coef$count[-1,4], decreasing=TRUE)
else count.order <- order(coef$count[-c(1,d),4], decreasing=TRUE)
zero.order <- order(coef$zero[-1,4], decreasing=TRUE)
rhs1 <- attr(fit$terms$count, "term.labels")
rhs2 <- attr(fit$terms$zero, "term.labels")
kc <- 1
kz <- 1
count.max <- count.pval[count.order[kc]]
zero.max <- zero.pval[zero.order[kz]]
if(is.na(count.max) && is.na(zero.max)) break
else if(is.na(zero.max)) zero.max <- 0
else if(is.na(count.max)) count.max <- 0
if(count.max > zero.max)
if(count.max > alpha){
newid <- count.order[kc]
if(dist!="negbin")
dropvar <- rownames(coef$count)[-1][newid]
else dropvar <- rownames(coef$count)[-c(1,d)][newid]
if(trace) cat("drop variable in count component: ", rhs1[newid],"\n")
rhs1 <- rhs1[-newid]
kc <- kc + 1
}
else break
else if(zero.max > alpha){
newid <- zero.order[kc]
dropvar <- rownames(coef$zero)[-1][newid]
if(trace) cat("drop variable in zero component: ", rhs2[newid],"\n")
rhs2 <- rhs2[-newid]
}
else break
if(length(rhs1)==0) rhs1tmp <- 1
else {
rhs1tmp <- rhs1[1]
if(length(rhs1) > 1)
for(i in 2:length(rhs1))
rhs1tmp <- paste(rhs1tmp, "+", rhs1[i])
}
if(length(rhs2)==0) rhs2tmp <- 1
else {
rhs2tmp <- rhs2[1]
if(length(rhs2) > 1)
for(i in 2:length(rhs2))
rhs2tmp <- paste(rhs2tmp, "+", rhs2[i])
}
res <- deparse(terms(fit$terms$count)[[2]])
out <- paste(res, "~", rhs1tmp, "|", rhs2tmp)
environment(out) <- parent.frame()
fit <- try(zeroinfl(eval(parse(text=out)), data=data, dist=dist))
if(inherits(fit, "try-error"))
break
if(trace){
print(summary(fit))
cat("\nloglik of zero-inflated model", logLik(fit), "\n")
cat("\nBIC of zero-inflated model", AIC(fit, k=log(dim(data)[1])))
cat("\nAIC of zero-inflated model", AIC(fit))
}
RET[j,1] <- logLik(fit)
RET[j,2] <- AIC(fit, k=log(dim(data)[1]))
RET[j,3] <- AIC(fit)
j <- j + 1
}
if(trace) print(RET[complete.cases(RET),])
return(fit)
} |
print_uncertainty_nd <-
function(model,T,type="pn",lower=NULL,upper=NULL,
resolution=20, nintegpoints=400,cex.lab=1,cex.contourlab=1,cex.axis=1,
nlevels=10,levels=NULL,
xdecal=3,ydecal=3, option="mean",pairs=NULL,...){
d <- model@d
mynames <- colnames(model@X)
if ( (resolution>40) & is.null(pairs) ) resolution <- 40
if(is.null(lower)) lower <- rep(0,times=d)
if(is.null(upper)) upper <- rep(1,times=d)
if (d==1){
print("Error in print_uncertainty_nd, number of dimension is equal to 1. Please use print_uncertainty_1d instead")
return(0)
}
if (d==2){
print("Error in print_uncertainty_nd, number of dimension is equal to 2. Please use print_uncertainty_2d instead")
return(0)
}
sub.d <- d-2
integration.tmp <- matrix(sobol(n=nintegpoints, dim = sub.d),ncol=sub.d)
sbis <- c(1:resolution^2)
numrow <- resolution^2 * nintegpoints
integration.base <- matrix(c(0),nrow=numrow,ncol=sub.d)
for(i in 1:sub.d){
col.i <- as.numeric(integration.tmp[,i])
my.mat <- expand.grid(col.i,sbis)
integration.base[,i] <- my.mat[,1]
}
s <- seq(from=0,to=1,length=resolution)
sbis <- c(1:nintegpoints)
s.base <- expand.grid(sbis,s,s)
s.base <- s.base[,c(2,3)]
prediction.points <- matrix(c(0),nrow=numrow,ncol=d)
if(type=="vorob"){
print("Vorob'ev plot not available in n dimensions.")
print("We switch to a pn plot.")
type <- "pn"
}
if(is.null(pairs)) par(mfrow=c(d-1,d-1))
for (d1 in 1:(d-1)){
for (d2 in 1:d){
if(d2!=d1){
if((d2 < d1) & is.null(pairs)){
plot.new()
}else{
if(is.null(pairs) || all(pairs==c(d1,d2)) ){
myindex <- 1
for (ind in 1:d){
if(ind==d1){
prediction.points[,ind] <- lower[ind] + s.base[,1] * ( upper[ind] - lower[ind] )
scale.x <- lower[ind] + s * ( upper[ind] - lower[ind] )
name.x <- mynames[d1]
}else if(ind==d2){
prediction.points[,ind] <- lower[ind] + s.base[,2] * ( upper[ind] - lower[ind] )
scale.y <- lower[ind] + s * ( upper[ind] - lower[ind] )
name.y <- mynames[d2]
}else{
prediction.points[,ind] <- lower[ind] + integration.base[,myindex] * ( upper[ind] - lower[ind] )
myindex <- myindex + 1
}
}
pred <- predict_nobias_km(object=model,newdata=prediction.points,type="UK",low.memory=TRUE)
pn <- excursion_probability(mn = pred$mean,sn = pred$sd,T = T)
if(type=="pn") {
myvect <- pn
zlim <- c(0,1)
}else if(type=="sur"){
myvect <- pn * (1-pn)
zlim <- c(0,0.25)
}else if(type=="timse"){
sk <- pred$sd
mk <- pred$mean
if(length(T)==1){
Wn <- 1/sqrt(2*pi*sk^2) * exp(-0.5*((mk-T)/sk)^2)
}else{
weight0 <- 1/sqrt(2*pi*sk^2)
Wn <- 0
for(i in 1:length(T)){
Ti <- T[i]
Wn <- Wn + weight0 * exp(-0.5*((mk-Ti)/sk)^2)
}
}
myvect <- sk^2 * Wn
zlim <- NULL
}else if(type=="imse"){
sk <- pred$sd
myvect <- sk^2
zlim <- NULL
}else{
myvect <- pn
zlim <- c(0,1)
}
myvect <- matrix(myvect,nrow=nintegpoints)
if (option == "mean") {myvect <- colMeans(myvect)
}else if(option == "max"){myvect <- apply(X=myvect,MARGIN=2,FUN=max)
}else if(option == "min"){myvect <- apply(X=myvect,MARGIN=2,FUN=min)
}else{myvect <- colMeans(myvect)}
mymatrix <- matrix(myvect, nrow=resolution,ncol=resolution)
if(is.null(zlim)) zlim <- c(min(mymatrix),max(mymatrix))
image(x=scale.x,y=scale.y,z=mymatrix,zlim=zlim,col=grey.colors(10),
xlab="",ylab="",cex.axis=cex.axis,axes=TRUE,...)
mtext(name.x, side=1, line=xdecal,cex=cex.lab )
mtext(name.y, side=2, line=ydecal,cex=cex.lab )
if(!is.null(levels)){
contour(x=scale.x,y=scale.y,z=mymatrix,add=TRUE,labcex=cex.contourlab,levels=levels)
} else {
contour(x=scale.x,y=scale.y,z=mymatrix,add=TRUE,labcex=cex.contourlab,nlevels=nlevels)
}
}
}
}
}
}
return(mean(myvect))
} |
"dataGasSensor" |
get_node_df_ws <- function(graph) {
fcn_name <- get_calling_fcn()
if (graph_object_valid(graph) == FALSE) {
emit_error(
fcn_name = fcn_name,
reasons = "The graph object is not valid")
}
if (graph_contains_node_selection(graph) == FALSE) {
emit_error(
fcn_name = fcn_name,
reasons = "There is no selection of nodes available.")
}
graph$nodes_df %>%
dplyr::filter(id %in% graph$node_selection$node)
} |
connListTwoDimensions = function(dimensions)
{
dimensions=as.integer(dimensions)
if(!is.vector(dimensions) || length(dimensions)>2 || (!is.numeric(dimensions) && !is.integer(dimensions)))
{
stop("dimensions has to be a numeric vector of length 2")
}
if(dimensions[1]<2 || dimensions[2]<2)
{
stop("Each dimension has to have at least length 2")
}
conn = .Call("conn2Dim", dimensions, PACKAGE="PMA")
nodeNumbers = matrix(0:(dimensions[1]*dimensions[2]-1), nrow=dimensions[1])
connList =list(nodes=nodeNumbers, conn=conn)
class(connList) = "connListObj"
return(connList)
}
is.connListObj = function(obj)
{
if(class(obj)!="connListObj")
{
stop("Object does not have the right class")
}
if(!is.integer(obj$nodes))
{
stop("The nodes part has to be a vector of integers")
}
if(!(length(obj$conn)==length(obj$nodes)))
{
stop("The length of the conn part does not correspond to the number of nodes")
}
for(i in 1:length(obj$nodes))
{
if(!(is.null(obj$conn[[i]]) || is.integer(obj$conn[[i]])))
{
stop("All elements of the conn part have to be null or integer vectors")
}
}
for(i in 1:length(obj$nodes))
{
if(sum(!is.element(obj$conn[[i]], obj$nodes))>0)
{
stop(paste("Node",i,"has a connection to a non-existing node"))
}
}
return(TRUE)
}
FLSA = function(y, lambda1=0, lambda2=NULL, connListObj = NULL, splitCheckSize=1e9, verbose=FALSE, thr=10e-10, maxGrpNum=4*length(y))
{
splitCheckSize=as.integer(splitCheckSize)
if(is.null(connListObj))
{
if(is.vector(y))
{
solObj = .Call("FLSA",y, PACKAGE="PMA")
if(!is.null(lambda2))
{
resLambda1Is0 = FLSAOneDimExplicitSolution(solObj,lambda2)
if(lambda1!=0)
{
res = softThresholding(resLambda1Is0,lambda1)
return(res)
}
else
{
return(resLambda1Is0)
}
}
else
{
return(solObj)
}
}
else if(is.matrix(y))
{
connListObj = connListTwoDimensions(dim(y))
if(!is.null(lambda2))
{
lambda2 = checkLambda2(lambda2)
res=.Call("FLSAGeneralMain", connListObj, as.vector(y), lambda2, splitCheckSize, verbose, thr, as.integer(maxGrpNum), PACKAGE="PMA")
res= array(res, dim=c(length(lambda2), dim(y)))
myDimNames = list(lambda2, 1:(dim(y)[1]), 1:(dim(y)[2]))
dimnames(res) = myDimNames
if(lambda1!=0)
{
res = softThresholding(res, lambda1)
}
}
else
{
res=.Call("FLSAGeneralMain", connListObj, as.vector(y), lambda2, splitCheckSize, verbose,thr, as.integer(maxGrpNum), PACKAGE="PMA")
}
return(res)
}
}
else
{
if(!is.null(lambda2))
{
lambda2=checkLambda2(lambda2)
}
if(length(connListObj$nodes)!=length(y))
{
stop("y has to have the same number of nodes as connListObj")
}
res=.Call("FLSAGeneralMain", connListObj, as.vector(y), lambda2, splitCheckSize, verbose, thr, as.integer(maxGrpNum), PACKAGE="PMA")
if(!is.null(lambda2) && (lambda1!=0))
{
res = softThresholding(res, lambda1)
}
return(res)
}
}
FLSAGetSolution = function(solObj, lambda2, lambda1=0, dim=NULL)
{
lambda2 = checkLambda2(lambda2)
if(class(solObj)=="FLSA")
{
res = FLSAOneDimExplicitSolution(solObj, lambda2)
if(lambda1!=0)
{
res = softThresholding(res, lambda1)
}
return(res)
}
else if(class(solObj)=="FLSAGeneral")
{
nodes = as.integer(which(solObj$InitialNodeMap>=0)-1)
res = .Call("FLSAGeneralExplicitSolution",solObj,nodes, lambda2, PACKAGE="PMA")
if(!is.null(dim))
{
if(prod(dim)!=length(nodes))
{
stop("Dimensions are not compatible with solObj")
}
res = array(res, dim=c(length(lambda2),dim))
}
if(lambda1!=0)
{
res = softThresholding(res,lambda1)
}
return(res)
}
else
{
stop("solObj is not of class FLSA or FLSAGeneral")
}
}
checkLambda2 = function(lambda2)
{
if(!is.numeric(lambda2))
{
stop("lambda2 has to be a numeric vector")
}
if(sum(lambda2<0)>0)
{
stop("lambda2 has to be non-negative")
}
lambda2 = sort(unique(lambda2))
return(lambda2)
}
FLSAOneDimExplicitSolution = function(solObj, lambda2)
{
lambda2 = checkLambda2(lambda2)
return(.Call("FLSAexplicitSolution",solObj, lambda2, PACKAGE="PMA"))
}
softThresholding = function(solMat, lambda1)
{
if(!is.numeric(lambda1))
{
stop("lambda1 has to be a numeric vector")
}
if(sum(lambda1<0)>0)
{
stop("lambda1 has to be non-negative")
}
lambda1 = sort(unique(lambda1))
oldDim = dim(solMat)
newDim = c(length(lambda1), oldDim)
oldDimNames = dimnames(solMat)
if(is.null(oldDimNames))
{
oldDimNames = vector("list",2)
}
newDimNames = c(list(lambda1), oldDimNames)
res = array(dim=newDim, dimnames = newDimNames)
if(length(oldDim)==2)
{
for(i in 1:length(lambda1))
{
foo = abs(solMat)-lambda1[i]
foo[foo<0]=0
res[i,,] = sign(solMat) * foo
}
}
else if(length(oldDim)==3)
{
for(i in 1:length(lambda1))
{
foo = abs(solMat)-lambda1[i]
foo[foo<0]=0
res[i,,,] = sign(solMat) * foo
}
}
else
{
stop("Wrong dimension of solMat; please inform the maintainer of this package")
}
return(res)
} |
.onLoad <- function(...) {
shiny::registerInputHandler("f7DatePicker.date", function(f7DatePicker.data, ...) {
if (is.null(f7DatePicker.data) || length(f7DatePicker.data) < 1) {
NULL
} else {
f7DatePicker.date <- unlist(f7DatePicker.data)
if (is.numeric(f7DatePicker.date)) {
f7DatePicker.date <- as.POSIXct(f7DatePicker.date / 1000, tz = "UTC", origin = "1970-01-01")
} else {
f7DatePicker.date <- as.POSIXct(f7DatePicker.date, format = "%Y-%m-%dT%H:%M:%S", tz = "UTC")
}
as.Date(f7DatePicker.date, tz = Sys.timezone())
}
}, force = TRUE)
} |
expected <- eval(parse(text="c(FALSE, FALSE, FALSE)"));
test(id=0, code={
argv <- eval(parse(text="list(structure(1:3, .Label = c(\"1\", \"2\", NA), class = \"factor\"), structure(1:3, .Label = c(\"1\", \"2\", NA), class = \"factor\"))"));
do.call(`!=`, argv);
}, o=expected); |
context("implementation [log-likelihood and coefficients]")
source_files <- dir(system.file("PlackettLuce0", package = "PlackettLuce"),
full.names = TRUE)
for (file0 in source_files) source(file0)
source_files <- dir(system.file("Reference_Implementations",
package = "PlackettLuce"),
full.names = TRUE)
for (file0 in source_files) source(file0)
coef_tol <- 1e-06
loglik_tol <- 1e-12
logLik_poisson.gnm <- function(x) {
n <- nlevels(x$eliminate)
ll <- logLik(x) + n
attr(ll, "df") <- attr(ll, "df") - n
ll
}
R <- matrix(c(1, 2, 0, 0,
4, 1, 2, 3,
2, 1, 1, 1,
1, 2, 3, 0,
2, 1, 1, 0,
1, 0, 3, 2), nrow = 6, byrow = TRUE)
colnames(R) <- c("apple", "banana", "orange", "pear")
R <- as.rankings(R)
if (require("Matrix") & requireNamespace("igraph") &
requireNamespace("RSpectra")) {
model0 <- PlackettLuce0(rankings = R)
model1 <- PlackettLuce(rankings = R, npseudo = 0)
test_that("coef match legacy code [fake partial rankings with ties]", {
expect_equal(as.vector(coef(model0)),
as.vector(coef(model1)), tolerance = coef_tol)
})
test_that("logLik matches legacy code [fake partial rankings with ties]", {
expect_equal(logLik(model0), logLik(model1), tolerance = loglik_tol)
})
dat <- poisson_rankings(R, aggregate = FALSE, as.data.frame = TRUE)
test_that("null deviance matches glm [fake partial rankings with ties]", {
model2 <- glm(y ~ -1 + z, family = poisson, data = dat)
expect_equal(-2*model1$null.loglik, model2$deviance)
expect_equal(model1$df.null, model2$df.residual)
})
}
M <- matrix(c(1, 2,
3, 1,
1, 4,
2, 1,
2, 3,
4, 3), nrow = 6, byrow = TRUE)
R <- as.rankings(M, "ordering")
mod1 <- PlackettLuce(R, npseudo = 0)
dat <- poisson_rankings(R, aggregate = FALSE, as.data.frame = TRUE)
if (require(gnm) & require(BradleyTerry2)){
mod2 <- gnm(y ~ -1 + X, family = poisson, eliminate = z, data = dat,
constrain = 1)
BT_data <- data.frame(p1 = factor(M[,1]), p2 = factor(M[,2]))
mod3 <- BTm(rep(1, 6), p1, p2, data = BT_data)
test_that("estimates match gnm, BTm [fake paired comparisons]", {
expect_equal(unname(coef(mod1)[-1]), unname(coef(mod2)[-1]),
tolerance = coef_tol)
expect_equal(unname(coef(mod2)[-1]), unname(coef(mod3)),
tolerance = coef_tol)
})
test_that("logLik matches gnm, BTm [fake paired comparisons]", {
expect_equal(logLik(mod1), logLik(mod3), check.attributes = FALSE,
tolerance = 1e-12)
expect_equal(attr(logLik(mod3), "df"),
attr(logLik_poisson.gnm(mod2), "df"))
expect_equal(logLik(mod3), logLik_poisson.gnm(mod2),
check.attributes = FALSE,tolerance = 1e-12)
})
mod5 <- glm(y ~ -1 + z, family = poisson, data = dat)
test_that("null deviance matches glm, BTm [fake paired comparisons]", {
expect_equal(-2*mod1$null.loglik, mod3$null.deviance)
expect_equal(-2*mod1$null.loglik, mod5$deviance)
expect_equal(mod1$df.null, mod3$df.null)
expect_equal(mod1$df.null, mod5$df.residual)
})
}
if (require(BradleyTerry2)){
icehockey2 <- subset(icehockey, result != 0.5)
mod_BT <- BTm(outcome = result,
player1 = visitor, player2 = opponent,
id = "team", data = icehockey2)
R <- matrix(0, nrow = nrow(icehockey2),
ncol = nlevels(icehockey2$visitor))
R[cbind(seq_len(nrow(icehockey2)), icehockey2$visitor)] <-
2 - icehockey2$result
R[cbind(seq_len(nrow(icehockey2)), icehockey2$opponent)] <-
icehockey2$result + 1
mod_PL <- PlackettLuce(R, npseudo = 0)
test_that("estimates match BTm [icehockey]", {
expect_equal(unname(coef(mod_BT)), unname(coef(mod_PL))[-1],
tolerance = coef_tol)
})
test_that("log-likelihood matches BTm [icehockey]", {
expect_equal(logLik(mod_BT), logLik(mod_PL), check.attributes = FALSE,
tolerance = loglik_tol)
expect_equal(attr(logLik(mod_BT), "df"), attr(logLik(mod_PL), "df"))
})
}
M <- matrix(c(1, 2, 0, 0,
3, 1, 4, 0,
1, 4, 0, 0,
2, 1, 4, 3,
2, 3, 4, 0,
1, 2, 3, 0), nrow = 6, byrow = TRUE)
gamma <- PL(M)
lambda <- log(c(gamma/sum(gamma)))
lambda <- lambda - lambda[1]
R <- as.rankings(M, "ordering")
mod1 <- PlackettLuce(R, npseudo = 0)
if (require(gnm)){
dat <- dat <- poisson_rankings(R, aggregate = FALSE, as.data.frame = TRUE)
mod2 <- gnm(y ~ -1 + X, family = poisson, eliminate = z, data = dat,
constrain = 1)
test_that("coef match Hunter's MM, gnm [fake partial rankings no ties]", {
expect_equal(unname(coef(mod1))[-1], unname(coef(mod2))[-1],
tolerance = coef_tol)
expect_equal(unname(c(coef(mod1))), lambda, tolerance = coef_tol)
})
test_that("logLik matches gnm [fake partial rankings no ties]",
{
expect_equal(logLik(mod1), logLik_poisson.gnm(mod2),
check.attributes = FALSE, tolerance = loglik_tol)
})
}
if (require(StatRank)){
data(Data.Nascar)
gamma <- PL(Data.Nascar)
lambda <- log(c(gamma/sum(gamma)))
lambda <- lambda - lambda[1]
R <- as.rankings(Data.Nascar, input = "ordering")
mod1 <- PlackettLuce(R, npseudo = 0)
dat <- PlackettLuce:::poisson_rankings(R, aggregate = FALSE,
as.data.frame = TRUE)
mod2 <- gnm(y ~ -1 + X, family = poisson, eliminate = z, data = dat,
constrain = 1)
test_that("coef match Hunter's MM, gnm [nascar]", {
expect_equal(unname(coef(mod1))[-1], unname(coef(mod2))[-1],
tolerance = coef_tol)
expect_equal(unname(c(coef(mod1))), lambda, tolerance = coef_tol,
check.attributes = FALSE)
})
test_that("logLik matches gnm [nascar]",
{
expect_equal(logLik(mod1), logLik_poisson.gnm(mod2),
check.attributes = FALSE, tolerance = loglik_tol)
})
} |
grfx <- function(n, G, incidence = NULL, saveIncidence = FALSE, output = "matrix", stdnorms = NULL, warn = TRUE){
d <- nrow(G)
if(d > 1 && all(G == G[1,1])) warning("variance-covariance matrix 'G' may have caused 'chol.default(G)' error. If so, consider subtracting 0.0001 from the covariances to make correlations < 1 or >-1")
Mg <- as(chol(G), "dtCMatrix")
if(is.null(incidence)){
if(any(ls(envir = globalenv() ) == "nadiv_prev_Mincidence")){
if(warn) warning("using previous incidence matrix")
} else{
if(saveIncidence){
nadiv_prev_Mincidence <<- Diagonal(n, 1)
} else{
nadiv_prev_Mincidence <- Diagonal(n, 1)
}
if(warn) warning("Incidence matrix used = Identity matrix")
}
} else{
if(saveIncidence){
nadiv_prev_Mincidence <<- chol(incidence)
} else{
nadiv_prev_Mincidence <- chol(incidence)
}
}
M <- suppressMessages(kronecker(nadiv_prev_Mincidence, Mg))
if(is.null(stdnorms)){
Z <- Matrix(rnorm(n*d), nrow = 1)
} else{
if(length(stdnorms) != n*d) stop("length(stdnorms) must be equal to 'n' times the order of 'G'")
Z <- Matrix(stdnorms, nrow = 1)
}
X <- Matrix((Z %*% M)@x, ncol = d, byrow = TRUE)
return(as(X, output))
} |
interUniform<-function(AngleLower, AngleUpper)
{
uniformLAD<-function(LeafAngle)
{
(2/pi)*rep(1, length(LeafAngle))
}
pi180<-pi/180.0
fraction<-integrate(uniformLAD, lower=AngleLower*pi180, upper=AngleUpper*pi180)
fraction[[1]]
} |
"ACMx" <- function(y,order=c(1,1),X=NULL,cond.dist="po",ini=NULL){
beta=NULL; k=0; withX=FALSE; nT=length(y)
if(!is.null(X)){
withX=TRUE
if(!is.matrix(X))X=as.matrix(X)
T1=dim(X)[1]
if(nT > T1)nT=T1
if(nT < T1){T1=nT; X=X[1:T1,]}
k=dim(X)[2]
m1=glm(y~X,family=poisson)
m11=summary(m1)
beta=m11$coefficients[-1,1]; se.beta=m11$coefficients[-1,2]
glmresi=m1$residuals
}
mm=glm(y[2:nT]~y[1:(nT-1)],family=poisson)
m22=summary(mm)
ome=m22$coefficients[1,1]; se.ome=m22$coefficients[1,2]
p=order[1]; q=order[2]; S=1.0*10^(-6); params=NULL; loB=NULL; upB=NULL
if(cond.dist=="po"){
if(withX){
params=c(params,beta=beta); loB=c(loB,beta=beta-2*abs(beta)); upB=c(upB,beta=beta+2*abs(beta))
}
params=c(params,omega=ome); loB=c(loB,omega=S); upB=c(upB,omega=ome+10*ome)
if(p > 0){
a1=rep(0.05,p); params=c(params,alpha=a1); loB=c(loB,alpha=rep(S,p)); upB=c(upB,alpha=rep(0.5,p))
}
if(q > 0){
b1=rep(0.5,q)
params=c(params,gamma=b1); loB=c(loB,gamma=rep(S,q)); upB=c(upB,gamma=rep(1-S,q))
}
cat("Initial estimates: ",params,"\n")
cat("loB: ",loB,"\n")
cat("upB: ",upB,"\n")
fit=nlminb(start = params, objective= poX, lower=loB, upper=upB, PCAxY=y, PCAxX=X, PCAxOrd=order,
control=list(rel.tol=1e-6))
epsilon = 0.0001 * fit$par
npar=length(params)
Hessian = matrix(0, ncol = npar, nrow = npar)
for (i in 1:npar) {
for (j in 1:npar) {
x1 = x2 = x3 = x4 = fit$par
x1[i] = x1[i] + epsilon[i]; x1[j] = x1[j] + epsilon[j]
x2[i] = x2[i] + epsilon[i]; x2[j] = x2[j] - epsilon[j]
x3[i] = x3[i] - epsilon[i]; x3[j] = x3[j] + epsilon[j]
x4[i] = x4[i] - epsilon[i]; x4[j] = x4[j] - epsilon[j]
Hessian[i, j] = (poX(x1,PCAxY=y,PCAxX=X,PCAxOrd=order)-poX(x2,PCAxY=y,PCAxX=X,PCAxOrd=order)
-poX(x3,PCAxY=y,PCAxX=X,PCAxOrd=order)+poX(x4,PCAxY=y,PCAxX=X,PCAxOrd=order))/
(4*epsilon[i]*epsilon[j])
}
}
cat("Maximized log-likehood: ",-poX(fit$par,PCAxY=y,PCAxX=X,PCAxOrd=order),"\n")
se.coef = sqrt(diag(solve(Hessian)))
tval = fit$par/se.coef
matcoef = cbind(fit$par, se.coef, tval, 2*(1-pnorm(abs(tval))))
dimnames(matcoef) = list(names(tval), c(" Estimate",
" Std. Error", " t value", "Pr(>|t|)"))
cat("\nCoefficient(s):\n")
printCoefmat(matcoef, digits = 6, signif.stars = TRUE)
est=fit$par; ist=1
bb=rep(1,length(y)); y1=y
if(withX){beta=est[1:k]; bb=exp(X%*%matrix(beta,k,1))}
icnt=k+1
ome=est[icnt]
p=order[1]; q=order[2]; nT=length(y)
if(p > 0){a1=est[(icnt+1):(icnt+p)]; icnt=icnt+p
nobe=nT-p; rate=rep(ome,nobe); ist=p+1
for (i in 1:p){
rate=rate+a1[i]*y1[(ist-i):(nT-i)]
}
}
r1=ome
if(q > 0){g1=est[(icnt+1):(icnt+q)]
r1=filter(rate,g1,"r",init=rep(mean(y/bb),q))
}
rate=bb[ist:nT]*r1
resi=y[ist:nT]-rate
sresi=resi/sqrt(rate)
}
if(cond.dist=="nb"){
if(is.null(ini)){
if(withX){
params=c(params,beta=rep(0.4,k)); loB=c(loB,beta=rep(-3,k)); upB=c(upB,beta=rep(2,k))
}
params=c(params,omega=ome); loB=c(loB,omega=S); upB=c(upB,omega=ome+6*se.ome)
if(p > 0){
a1=rep(0.05,p); params=c(params,alpha=a1); loB=c(loB,alpha=rep(S,p)); upB=c(upB,alpha=rep(0.5,p))
}
if(q > 0){
b1=rep(0.7,q)
params=c(params,gamma=b1); loB=c(loB,gamma=rep(S,q)); upB=c(upB,gamma=rep(1-S,q))
}
}
else{
se.ini=abs(ini/10); jst= k
if(withX){
params=c(params,beta=ini[1:k]); loB=c(loB,beta=ini[1:k]-4*se.ini[1:k]); upB=c(upB,beta=ini[1:k]+4*se.ini[1:k])
}
jst=k+1
params=c(params,omega=ini[jst]); loB=c(loB,omega=ini[jst]-3*se.ini[jst]); upB=c(upB,omega=ini[jst]+3*se.ini[jst])
if(p > 0){a1=ini[(jst+1):(jst+p)]; params=c(params,alpha=a1); loB=c(loB,alpha=rep(S,p))
upB=c(upB,alpha=a1+3*se.ini[(jst+1):(jst+p)]); jst=jst+p
}
if(q > 0){
b1=ini[(jst+1):(jst+q)]
params=c(params,gamma=b1); loB=c(loB,gamma=rep(S,q)); upB=c(upB,gamma=rep(1-S,q))
}
}
meanY=mean(y); varY=var(y); th1=meanY^2/(varY-meanY)*2; if(th1 < 0)th1=meanY*0.1
params=c(params,theta=th1); loB=c(loB,theta=0.5); upB=c(upB,theta=meanY*1.5)
cat("initial estimates: ",params,"\n")
cat("loB: ",loB,"\n")
cat("upB: ",upB,"\n")
fit=nlminb(start = params, objective= nbiX, lower=loB, upper=upB, PCAxY=y,PCAxX=X,PCAxOrd=order,
control=list(rel.tol=1e-6))
epsilon = 0.0001 * fit$par
npar=length(params)
Hessian = matrix(0, ncol = npar, nrow = npar)
for (i in 1:npar) {
for (j in 1:npar) {
x1 = x2 = x3 = x4 = fit$par
x1[i] = x1[i] + epsilon[i]; x1[j] = x1[j] + epsilon[j]
x2[i] = x2[i] + epsilon[i]; x2[j] = x2[j] - epsilon[j]
x3[i] = x3[i] - epsilon[i]; x3[j] = x3[j] + epsilon[j]
x4[i] = x4[i] - epsilon[i]; x4[j] = x4[j] - epsilon[j]
Hessian[i, j] = (nbiX(x1,PCAxY=y,PCAxX=X,PCAxOrd=order)-nbiX(x2,PCAxY=y,PCAxX=X,PCAxOrd=order)
-nbiX(x3,PCAxY=y,PCAxX=X,PCAxOrd=order)+nbiX(x4,PCAxY=y,PCAxX=X,PCAxOrd=order))/
(4*epsilon[i]*epsilon[j])
}
}
cat("Maximized log-likehood: ",-nbiX(fit$par,PCAxY=y,PCAxX=X,PCAxOrd=order),"\n")
se.coef = sqrt(diag(solve(Hessian)))
tval = fit$par/se.coef
matcoef = cbind(fit$par, se.coef, tval, 2*(1-pnorm(abs(tval))))
dimnames(matcoef) = list(names(tval), c(" Estimate",
" Std. Error", " t value", "Pr(>|t|)"))
cat("\nCoefficient(s):\n")
printCoefmat(matcoef, digits = 6, signif.stars = TRUE)
est=fit$par
bb=rep(1,length(y)); y1=y
if(withX){beta=est[1:k]; bb=exp(X%*%matrix(beta,k,1))}
icnt=k+1
ome=est[icnt]
p=order[1]; q=order[2]; nT=length(y)
if(p > 0){a1=est[(icnt+1):(icnt+p)]; icnt=icnt+p
nobe=nT-p; rate=rep(ome,nobe); ist=p+1
for (i in 1:p){
rate=rate+a1[i]*y1[(ist-i):(nT-i)]
}
}
if(q > 0){g1=est[(icnt+1):(icnt+q)]; icnt=icnt+q
r1=filter(rate,g1,"r",init=rep(mean(y/bb),q))
}
rate=bb[ist:nT]*r1
resi=y[ist:nT]-rate
theta=est[icnt+1]
pb=theta/(theta+rate)
v1=theta*(1-pb)/(pb^2)
sresi=resi/sqrt(v1)
}
if(cond.dist=="dp"){
if(withX){
params=c(params,beta=beta); loB=c(loB,beta=beta-2*abs(beta)); upB=c(upB,beta=beta+2*abs(beta))
}
params=c(params,omega=ome*0.3); loB=c(loB,omega=S); upB=c(upB,omega=ome+4*se.ome)
if(p > 0){
a1=rep(0.05,p); params=c(params,alpha=a1); loB=c(loB,alpha=rep(S,p)); upB=c(upB,alpha=rep(1-S,p))
}
if(q > 0){
b1=rep(0.6,q)
params=c(params,gamma=b1); loB=c(loB,gamma=rep(S,q)); upB=c(upB,gamma=rep(1-S,q))
}
meanY=mean(y); varY = var(y); t1=meanY/varY
params=c(params,theta=t1); loB=c(loB,theta=S); upB=c(upB,theta=2)
cat("initial estimates: ",params,"\n")
cat("loB: ",loB,"\n")
cat("upB: ",upB,"\n")
fit=nlminb(start = params, objective= dpX, lower=loB, upper=upB,PCAxY=y,PCAxX=X,PCAxOrd=order,
control=list(rel.tol=1e-6))
epsilon = 0.0001 * fit$par
npar=length(params)
Hessian = matrix(0, ncol = npar, nrow = npar)
for (i in 1:npar) {
for (j in 1:npar) {
x1 = x2 = x3 = x4 = fit$par
x1[i] = x1[i] + epsilon[i]; x1[j] = x1[j] + epsilon[j]
x2[i] = x2[i] + epsilon[i]; x2[j] = x2[j] - epsilon[j]
x3[i] = x3[i] - epsilon[i]; x3[j] = x3[j] + epsilon[j]
x4[i] = x4[i] - epsilon[i]; x4[j] = x4[j] - epsilon[j]
Hessian[i, j] = (dpX(x1,PCAxY=y,PCAxX=X,PCAxOrd=order)-dpX(x2,PCAxY=y,PCAxX=X,PCAxOrd=order)
-dpX(x3,PCAxY=y,PCAxX=X,PCAxOrd=order)+dpX(x4,PCAxY=y,PCAxX=X,PCAxOrd=order))/
(4*epsilon[i]*epsilon[j])
}
}
cat("Maximized log-likehood: ",-dpX(fit$par,PCAxY=y,PCAxX=X,PCAxOrd=order),"\n")
se.coef = sqrt(diag(solve(Hessian)))
tval = fit$par/se.coef
matcoef = cbind(fit$par, se.coef, tval, 2*(1-pnorm(abs(tval))))
dimnames(matcoef) = list(names(tval), c(" Estimate",
" Std. Error", " t value", "Pr(>|t|)"))
cat("\nCoefficient(s):\n")
printCoefmat(matcoef, digits = 6, signif.stars = TRUE)
est=fit$par
bb=rep(1,length(y)); y1=y
if(withX){beta=est[1:k]; bb=exp(X%*%matrix(beta,k,1))}
icnt=k+1
ome=est[icnt]
p=order[1]; q=order[2]; nT=length(y)
if(p > 0){a1=est[(icnt+1):(icnt+p)]; icnt=icnt+p
nobe=nT-p; rate=rep(ome,nobe); ist=p+1
for (i in 1:p){
rate=rate+a1[i]*y1[(ist-i):(nT-i)]
}
}
if(q > 0){g1=est[(icnt+1):(icnt+q)]; icnt=icnt+q
r1=filter(rate,g1,"r",init=rep(mean(y/bb),q))
}
theta=est[icnt+1]
rate=bb[ist:nT]*r1
resi=y[ist:nT]-rate
v1=rate/theta
sresi=resi/sqrt(rate)
}
ACMx <- list(data=y,X=X,estimates=est,residuals=resi,sresi=sresi)
}
"nbiX" <- function(par,PCAxY,PCAxX,PCAxOrd){
y <- PCAxY; X <- PCAxX; order <- PCAxOrd
withX = F; k = 0
if(!is.null(X)){
withX=T; k=dim(X)[2]
}
bb=rep(1,length(y)); y1=y
if(withX){beta=par[1:k]; bb=exp(X%*%matrix(beta,k,1))}
icnt=k+1
ome=par[icnt]
p=order[1]; q=order[2]; nT=length(y)
if(p > 0){a1=par[(icnt+1):(icnt+p)]; icnt=icnt+p
nobe=nT-p; rate=rep(ome,nobe); ist=p+1
for (i in 1:p){
rate=rate+a1[i]*y1[(ist-i):(nT-i)]
}
}
if(q > 0){g1=par[(icnt+1):(icnt+q)]; icnt=icnt+q
r1=filter(rate,g1,"r",init=rep(mean(y/bb),q))
}
theta=par[icnt+1]
rate=bb[ist:nT]*r1
pb=theta/(theta+rate)
lnNBi=dnbinom(y[ist:nT],size=theta,prob=pb,log=T)
nbiX <- -sum(lnNBi)
}
"poX" <- function(par,PCAxY,PCAxX,PCAxOrd){
y <- PCAxY; X <- PCAxX; order <- PCAxOrd
withX = F; k=0
if(!is.null(X)){
withX=T; k=dim(X)[2]
}
bb=rep(1,length(y)); y1=y
if(withX){beta=par[1:k]; bb=exp(X%*%matrix(beta,k,1))}
icnt=k+1; ist=1; nT=length(y); nobe=nT
ome=par[icnt]; rate=rep(ome,nobe)
p=order[1]; q=order[2]
if(p > 0){a1=par[(icnt+1):(icnt+p)]; icnt=icnt+p
nobe=nT-p; rate=rep(ome,nobe); ist=p+1
for (i in 1:p){
rate=rate+a1[i]*y1[(ist-i):(nT-i)]
}
}
r1=rate
if(q > 0){g1=par[(icnt+1):(icnt+q)]
r1=filter(rate,g1,"r",init=rep(mean(y/bb),q))
}
rate=bb[ist:nT]*r1
lnPoi=dpois(y[ist:nT],rate,log=T)
poX <- -sum(lnPoi)
}
"dpX" <- function(par,PCAxY,PCAxX,PCAxOrd){
y <- PCAxY; X <- PCAxX; order <- PCAxOrd
withX=F; k = 0
if(!is.null(X)){
withX=TRUE; k=dim(X)[2]
}
bb=rep(1,length(y)); y1=y
if(withX){beta=par[1:k]; bb=exp(X%*%matrix(beta,k,1))}
icnt=k+1
ome=par[icnt]
p=order[1]; q=order[2]; nT=length(y)
if(p > 0){a1=par[(icnt+1):(icnt+p)]; icnt=icnt+p
nobe=nT-p; rate=rep(ome,nobe); ist=p+1
for (i in 1:p){
rate=rate+a1[i]*y1[(ist-i):(nT-i)]
}
}
if(q > 0){g1=par[(icnt+1):(icnt+q)]; icnt=icnt+q
r1=filter(rate,g1,"r",init=rep(mean(y/bb),q))
}
theta=par[icnt+1]
rate=bb[ist:nT]*r1
yy=y[ist:nT]
rate1 = rate*theta
cinv=1+(1-theta)/(12*rate1)*(1+1/rate1)
lcnt=-log(cinv)
lpd=lcnt+0.5*log(theta)-rate1
idx=c(1:nobe)[yy > 0]
tp=length(idx)
d1=apply(matrix(yy[idx],tp,1),1,factorialOwn)
lpd[idx]=lpd[idx]-d1-yy[idx]+yy[idx]*log(yy[idx])+theta*yy[idx]*(1+log(rate[idx])-log(yy[idx]))
dpX <- -sum(lpd)
}
"factorialOwn" <- function(n,log=T){
x=c(1:n)
if(log){
x=log(x)
y=cumsum(x)
}
else{
y=cumprod(x)
}
y[n]
} |
after_join_all <- function(x, y, by_user, by_time, mode = 'inner', ...){
types <- c(
'first-first', 'first-firstafter', 'lastbefore-firstafter',
'any-firstafter', 'any-any'
)
by_type <- function(type){
after_join(x, y, by_user = by_user,
by_time = by_time, mode = mode, type = type) %>%
dplyr::mutate(!!type := 'Y')
}
join_fun <- match.fun(paste0(mode, '_join'))
all_types <- types %>%
purrr::map(by_type)
join_fun(x, y, by = by_user) %>%
Reduce(dplyr::left_join, all_types, init = .) %>%
dplyr::filter_at(dplyr::vars(dplyr::one_of(types)),
dplyr::any_vars(!is.na(.)))
} |
order_snormal1 <- function(size,k,mu,sigma,nu,tau,n,alpha=0.05,...){
sample <- qST1(initial_order(size,k,n),mu,sigma,nu,tau,...)
pdf <- factorial(size)*cumprod(dST1(sample,mu,sigma,nu,tau,...))[size]
if(size>5){
return(list(sample=sample,pdf=pdf,ci_median=interval_median(size,sample,alpha)))
}
cat("---------------------------------------------------------------------------------------------\n")
cat("We cannot report the confidence interval. The size of the sample is less or equal than five.\n")
return(list(sample=sample,pdf=pdf))
} |
timestamp <- Sys.time()
library(caret)
library(plyr)
library(recipes)
library(dplyr)
model <- "tanSearch"
set.seed(2)
training <- LPH07_1(100, factors = TRUE, class = TRUE)
testing <- LPH07_1(100, factors = TRUE, class = TRUE)
trainX <- training[, -ncol(training)]
trainY <- training$Class
rec_cls <- recipe(Class ~ ., data = training) %>%
step_center(all_predictors()) %>%
step_scale(all_predictors())
cctrl1 <- trainControl(method = "cv", number = 3, returnResamp = "all",
classProbs = TRUE,
summaryFunction = twoClassSummary)
cctrl2 <- trainControl(method = "LOOCV",
classProbs = TRUE, summaryFunction = twoClassSummary)
cctrl3 <- trainControl(method = "none",
classProbs = TRUE, summaryFunction = twoClassSummary)
cctrlR <- trainControl(method = "cv", number = 3, returnResamp = "all", search = "random")
set.seed(849)
test_class_cv_model <- train(trainX, trainY,
method = "tanSearch",
trControl = cctrl1,
metric = "ROC")
test_class_pred <- predict(test_class_cv_model, testing[, -ncol(testing)])
test_class_prob <- predict(test_class_cv_model, testing[, -ncol(testing)], type = "prob")
set.seed(849)
test_class_rand <- train(trainX, trainY,
method = "tanSearch",
trControl = cctrlR,
tuneLength = 4)
set.seed(849)
test_class_loo_model <- train(trainX, trainY,
method = "tanSearch",
trControl = cctrl2,
metric = "ROC")
set.seed(849)
test_class_none_model <- train(trainX, trainY,
method = "tanSearch",
trControl = cctrl3,
tuneGrid = test_class_cv_model$bestTune,
metric = "ROC")
test_class_none_pred <- predict(test_class_none_model, testing[, -ncol(testing)])
test_class_none_prob <- predict(test_class_none_model, testing[, -ncol(testing)], type = "prob")
test_levels <- levels(test_class_cv_model)
if(!all(levels(trainY) %in% test_levels))
cat("wrong levels")
test_class_predictors1 <- predictors(test_class_cv_model)
test_class_imp <- varImp(test_class_cv_model)
tests <- grep("test_", ls(), fixed = TRUE, value = TRUE)
sInfo <- sessionInfo()
timestamp_end <- Sys.time()
save(list = c(tests, "sInfo", "timestamp", "timestamp_end"),
file = file.path(getwd(), paste(model, ".RData", sep = "")))
if(!interactive())
q("no") |
AssignItem = R6Class("AssignItem",
inherit = Item,
public = list(
initialize = function(decl, value){
assertR6(decl, "VarDecl")
assertNull(decl$getValue())
assertR6(value, "Expression")
private$.decl = decl
private$.e = value
},
id = function(){
return(private$.decl$getId()$getName())
},
getValue = function(){
return(private$.e)
},
setValue = function(val){
assertR6(val, "Expression")
private$.e = val
},
getDecl = function(){
return(private$.decl)
},
setDecl = function(decl){
assertR6(decl, "VarDecl")
private$.decl = decl
},
c_str = function(){
return(sprintf("%s = %s;\n", private$.decl$getId()$getName(), private$.e$c_str()))
},
getDeleteFlag = function(){
return(private$.delete_flag)
},
delete = function(){
private$.delete_flag = TRUE
helperDeleteItem("AssignItem")
}
),
private = list(
.decl = NULL,
.e = NULL,
.delete_flag = FALSE
)) |
"fitted.drc" <-
function(object, ...)
{
predict(object, ...)
} |
NULL
show_line_types <- function()
{
lt <- c("blank", "solid", "dashed", "dotted",
"dotdash", "longdash", "twodash")
d <- data.frame(lt = factor(lt, levels = lt))
ggplot() +
scale_x_continuous(name="", limits=c(0,1), breaks=NULL) +
scale_linetype_identity() +
geom_segment(data=d, mapping=aes(x=0, xend=1, y=lt,
yend=lt, linetype=lt))+
labs(title = "Line types available in R", y = "")+
theme(axis.text.y = element_text(face="bold", color="black"))
} |
"puerto_rico_icd" |
foo <- function() {
1
} |
[
{
"title": "BLATting the internet: the most frequent gene?",
"href": "https://nsaunders.wordpress.com/2014/01/24/blatting-the-internet-the-most-frequent-gene/"
},
{
"title": "2013-10 Automatic Conversion of Tables to LongForm Dataframes",
"href": "http://stattech.wordpress.fos.auckland.ac.nz/2013-10-automatic-conversion-of-tables-to-longform-dataframes/"
},
{
"title": "Log File Analysis with R",
"href": "http://www.r-chart.com/2012/02/log-file-analysis-with-r.html"
},
{
"title": "Tuning LaplacesDemon",
"href": "http://wiekvoet.blogspot.com/2014/10/tuning-laplacesdemon.html"
},
{
"title": "The Social Dynamics of the R Core Team",
"href": "http://www.johnmyleswhite.com/notebook/2012/08/12/the-social-dynamics-of-the-r-core-team/"
},
{
"title": "Estimating ODE’s parameters",
"href": "https://web.archive.org/web/http://anotherrblog.blogspot.com/2013/07/estimating-odes-parameters.html"
},
{
"title": "Computing for Data Analysis Returns",
"href": "http://simplystatistics.org/2012/12/14/computing-for-data-analysis-returns/"
},
{
"title": "Statistical Models with a Point of View: First vs. Third Person",
"href": "http://joelcadwell.blogspot.com/2015/06/statistical-models-with-point-of-view.html"
},
{
"title": "Clustering analysis and its implementation in R",
"href": "http://onetipperday.sterding.com/2012/04/clustering-analysis-2.html"
},
{
"title": "Reminder: useR! 2011 abstracts, earlybird registration deadline April 1",
"href": "http://blog.revolutionanalytics.com/2011/03/reminder-user-2011-abstracts-earlybird-registration-deadline-april-1.html"
},
{
"title": "Migrating from SPSS/Excel to R",
"href": "https://psychwire.wordpress.com/2011/07/10/migrating-from-spssexcel-to-r/"
},
{
"title": "Images as x-axis labels (updated)",
"href": "http://jcarroll.com.au/2016/06/03/images-as-x-axis-labels-updated/"
},
{
"title": "R, drug development and the FDA",
"href": "http://blog.revolutionanalytics.com/2013/08/r-drug-development-and-the-fda.html"
},
{
"title": "My first… web application with Shiny",
"href": "http://www.milanor.net/blog/my-first-web-application-with-shiny/"
},
{
"title": "Here’s an improved system.time function for R",
"href": "http://userprimary.net/posts/2006/05/14/heres-an-improved-systemtime-function-for-r/"
},
{
"title": "When the “reorder” function just isn’t good enough…",
"href": "https://rforwork.info/2013/05/06/when-the-reorder-function-just-isnt-good-enough/"
},
{
"title": "(Semi-)automating the R markdown to blogger workflow",
"href": "https://web.archive.org/web/http://metvurst.blogspot.com/2013/01/automating-r-markdown-to-blogger.html"
},
{
"title": "The animation package",
"href": "http://sgsong.blogspot.com/2009/12/animation-package.html"
},
{
"title": "Where’s Waldo? Image Analysis in R",
"href": "http://blog.revolutionanalytics.com/2012/05/wheres-waldo-image-analysis-in-r.html"
},
{
"title": "Wanted: A Perfect Scatterplot (with Marginals)",
"href": "http://www.win-vector.com/blog/2015/06/wanted-a-perfect-scatterplot-with-marginals/"
},
{
"title": "Quantitative link strength for APE cophyloplot",
"href": "https://rtricks.wordpress.com/2009/11/17/quantitative-link-strength-for-ape-cophyloplot/"
},
{
"title": "The making of cricket package yorkr – Part 3",
"href": "https://gigadom.wordpress.com/2016/03/17/the-making-of-cricket-package-yorkr-part-3/"
},
{
"title": "Probabilistic Momentum with Intraday data",
"href": "https://systematicinvestor.wordpress.com/2014/03/31/probabilistic-momentum-with-intraday-data/"
},
{
"title": "Web-Scraper for Google Scholar Updated!",
"href": "http://thebiobucket.blogspot.com/2012/08/web-scraper-for-google-scholar-updated.html"
},
{
"title": "Personal CRAN-repository",
"href": "http://gforge.se/2012/11/personal-cran-repository/"
},
{
"title": "Better decision tree graphics for rpart via party and partykit",
"href": "http://blog.nguyenvq.com/blog/2012/05/29/better-decision-tree-graphics-for-rpart-via-party-and-partykit/"
},
{
"title": "Exponentiation of a matrix (including pseudoinverse)",
"href": "http://menugget.blogspot.com/2012/03/exponentiation-of-matrix-including.html"
},
{
"title": "How many pages in Scott Walker Recall Petition PDF files?",
"href": "http://franklincenterhq.org/3049/how-many-pages-in-scott-walker-recall-petition-pdf-files/"
},
{
"title": "The Zebra Of Riemann",
"href": "https://aschinchon.wordpress.com/2014/07/13/the-zebra-of-riemann/"
},
{
"title": "Converting MATLAB and R date and time values",
"href": "http://lukemiller.org/index.php/2011/02/converting-matlab-and-r-date-and-time-values/"
},
{
"title": "Revisiting MPs’ Expenses",
"href": "https://blog.ouseful.info/2013/04/02/revisiting-mps-expenses/"
},
{
"title": "Reorder factor levels",
"href": "http://quantitative-ecology.blogspot.com/2007/10/reorder-factor-levels.html"
},
{
"title": "Fantasy football (oops, soccer)",
"href": "http://www.rcasts.com/2010/12/fantasy-football-oops-soccer.html"
},
{
"title": "Tapply on steroids – by (climate trends in Scottish seasons)",
"href": "https://scottishsnow.wordpress.com/2015/03/20/tapply-on-steroids-by-climate-trends-in-scottish-seasons/"
},
{
"title": "A Quick and Dirty Guide to Exploratory Data Visualization",
"href": "http://r-datameister.blogspot.com/2013/07/a-quick-and-dirty-guide-to-exploratory.html"
},
{
"title": "New R IDE",
"href": "http://quantitativeecology.blogspot.com/2011/03/new-r-ide.html"
},
{
"title": "Reducing Respondent Burden: Item Sampling",
"href": "http://joelcadwell.blogspot.com/2013/01/reducing-respondent-burden-item-sampling.html"
},
{
"title": "Rchievement of the day",
"href": "https://wkmor1.wordpress.com/2011/08/16/rchievement-of-the-day/"
},
{
"title": "DataCamp for Business – New & Improved",
"href": "https://www.datacamp.com/community/blog/datacamp-for-business-new-improved"
},
{
"title": "Lists of English Words",
"href": "http://www.bytemining.com/2010/10/lists-of-english-words/"
},
{
"title": "Yet another R report generator, and more!",
"href": "http://biostatmatt.com/archives/1000"
},
{
"title": "Give your R charts that Wes Anderson style",
"href": "http://blog.revolutionanalytics.com/2014/03/give-your-r-charts-that-wes-anderson-style.html"
},
{
"title": "Display googleVis charts within RStudio",
"href": "http://www.magesblog.com/2013/11/display-googlevis-charts-within-rstudio.html"
},
{
"title": "Throw some, throw some STATS on that map…(Part 1)",
"href": "http://spatioanalytics.com/2013/07/12/throw-some-throw-some-stats-on-that-map-part-1/"
},
{
"title": "R IDE and debugger now available for 64-bit Windows; Webinar Tuesday",
"href": "https://web.archive.org/web/http://blog.revolution-computing.com/2010/02/r-ide-and-debugger-now-available-for-64bit-windows-webinar-tuesday.html"
},
{
"title": "Spurious correlations and the Lasso",
"href": "https://sieste.wordpress.com/2012/05/13/spurious-correlations-and-the-lasso/"
},
{
"title": "Introduction to my New IKReporting Package",
"href": "https://quantstrattrader.wordpress.com/2015/03/09/introduction-to-my-new-ikreporting-package/"
},
{
"title": "Win Books and T-shirts in Our DataScience.LA Meetup Raffles, Powered by R and dplyr!",
"href": "http://datascience.la/win-books-and-t-shirts-in-our-datascience-la-meetup-raffles-powered-by-r-and-dplyr/"
},
{
"title": "2 New (Draft) Chapters for Intro Fish Science with R",
"href": "https://web.archive.org/web/https://fishr.wordpress.com/2014/11/16/2-new-draft-chapters-for-intro-fish-science-with-r/"
},
{
"title": "Access all UCSC wiggle tracks from R and your terminal",
"href": "http://zvfak.blogspot.com/2011/02/access-all-ucsc-wiggle-tracks-from-r.html"
}
] |
cv.nfeaturesLDA = function(
data = matrix(rnorm(600), 60), cl = gl(3, 20), k = 5, cex.rg = c(0.5, 3),
col.av = c('blue', 'red'), ...
) {
requireNamespace('MASS')
nmax = min(ncol(data), ani.options('nmax'))
cl = as.factor(cl)
dat = data.frame(data, cl)
N = nrow(dat)
n = sample(N)
dat = dat[n, ]
kf = cumsum(c(1, kfcv(k, N)))
aovF = function(x, cl) {
qr.obj <- qr(model.matrix(~cl))
qty.obj <- qr.qty(qr.obj, x)
tab <- table(factor(cl))
dfb <- length(tab) - 1
dfw <- sum(tab) - dfb - 1
ms.between <- apply(qty.obj[2:(dfb + 1), , drop = FALSE]^2, 2, sum)/dfb
ms.within <- apply(qty.obj[-(1:(dfb + 1)), , drop = FALSE]^2, 2, sum)/dfw
Fstat <- ms.between/ms.within
}
acc = matrix(nrow = k, ncol = nmax)
loc = cbind(rep(1:nmax, each = k), rep(1:k, nmax))
op = par(mfrow = c(1, 2))
for (j in 1:nmax) {
for (i in 2:(k + 1)) {
dev.hold()
idx = kf[i - 1]:(kf[i] - 1)
trdat = dat[-idx, ]
slct = order(aovF(
as.matrix(trdat[, -ncol(trdat)]), trdat[, ncol(trdat)]
), decreasing = TRUE) <= j
fit = MASS::lda(as.formula(paste(
colnames(dat)[ncol(dat)], '~', paste(colnames(dat)[-ncol(dat)][slct], collapse = '+')
)), data = dat)
pred = predict(fit, dat[idx, ], dimen = 2)
acc[i - 1, j] = mean(dat[idx, ncol(dat)] == pred$class)
plot(
1, xlim = c(1, nmax), ylim = c(0, k), type = 'n', ylab = 'Fold',
xlab = 'Number of Features', yaxt = 'n', panel.first = grid()
)
axis(2, 1:k)
axis(2, 0, expression(bar(p)))
if ((j - 1) * k + i - 1 < nmax * k)
text(matrix(loc[-(1:((j - 1) * k + i - 1)), ], ncol = 2), '?')
points(matrix(loc[1:((j - 1) * k + i - 1), ], ncol = 2),
cex = c(acc)^2 * diff(cex.rg) + min(cex.rg), col = col.av[1], ...)
points(
1:nmax, rep(0, nmax), col = col.av[2], ...,
cex = apply(acc, 2, mean, na.rm = TRUE) * diff(cex.rg) + min(cex.rg)
)
styl.pch = as.integer(dat[idx, ncol(dat)])
styl.col = 2 - as.integer(dat[idx, ncol(dat)] == pred$class)
plot(pred$x, pch = styl.pch, col = styl.col)
legend('topright', legend = c('correct', 'wrong'), fill = 1:2, bty = 'n', cex = 0.8)
legend('bottomleft', legend = levels(dat[idx, ncol(dat)])[unique(styl.pch)],
pch = unique(styl.pch), bty = 'n', cex = 0.8)
ani.pause()
}
}
par(op)
rownames(acc) = paste('Fold', 1:k, sep = '')
colnames(acc) = 1:nmax
nf = which.max(apply(acc, 2, mean))
names(nf) = NULL
invisible(list(accuracy = acc, optimum = nf))
} |
context("Test logger functions.")
rm(list = ls())
test_that("logging works", {
expect_true({
log_info("the stuff")
TRUE
})
expect_warning({
log_warn("some stuff")
}, regexp = "some stuff")
expect_error({
log_fatal("other stuff")
}, regexp = "other stuff")
})
rm(list = ls())
closeAllConnections() |
global_handle <- function(entrace = TRUE,
prompt_install = TRUE) {
check_bool(entrace)
check_bool(prompt_install)
global_entrace(entrace)
global_prompt_install(prompt_install)
invisible(NULL)
}
global_prompt_install <- function(enable = TRUE) {
check_bool(enable)
if (getRversion() <= "4.0") {
return(invisible(NULL))
}
poke_global_handlers(
enable,
packageNotFoundError = hnd_prompt_install
)
}
hnd_prompt_install <- function(cnd) {
if (!rlang::is_interactive()) {
return(rlang::zap())
}
if (!rlang::is_string(cnd$package) ||
is.null(findRestart("retry_loadNamespace"))) {
return(rlang::zap())
}
rlang::check_installed(cnd$package)
invokeRestart("retry_loadNamespace")
}
environment(hnd_prompt_install) <- baseenv()
try_fetch <- function(expr, ...) {
frame <- environment()
catch <- value <- NULL
delayedAssign("catch", return(value), frame, frame)
throw <- function(x) {
value <<- x
catch
}
.External(ffi_try_fetch, frame)
}
handler_call <- quote(function(cnd) {
{
.__handler_frame__. <- TRUE
.__setup_frame__. <- frame
}
out <- handlers[[i]](cnd)
if (!inherits(out, "rlang_zap")) throw(out)
})
catch_cnd <- function(expr, classes = "condition") {
stopifnot(is_character(classes))
handlers <- rep_named(classes, list(identity))
eval_bare(rlang::expr(
tryCatch(!!!handlers, {
force(expr)
return(NULL)
})
))
}
cnd_muffle <- function(cnd) {
restart <- switch(cnd_type(cnd),
message = "muffleMessage",
warning = "muffleWarning",
interrupt = "resume",
"rlang_muffle"
)
if (!is_null(findRestart(restart))) {
invokeRestart(restart)
}
FALSE
}
if (getRversion() < "4.0") {
utils::globalVariables("globalCallingHandlers")
}
poke_global_handlers <- function(enable, ...) {
check_bool(enable)
handlers <- list2(...)
if (enable) {
inject(globalCallingHandlers(!!!handlers))
} else {
inject(drop_global_handlers(!!!handlers))
}
}
drop_global_handlers <- function(...) {
to_pop <- list(...)
handlers <- globalCallingHandlers()
for (i in seq_along(to_pop)) {
if (loc <- detect_index(handlers, identical, to_pop[[i]])) {
if (is_string(names(to_pop)[[i]], names(handlers)[[loc]])) {
handlers[[loc]] <- NULL
}
}
}
globalCallingHandlers(NULL)
globalCallingHandlers(handlers)
} |
listStabilityMeasures = function() {
l = list(
data.frame(Name = "stabilityDavis", Corrected = FALSE, Adjusted = FALSE,
Minimum = 0, Maximum = 1, stringsAsFactors = FALSE),
list("stabilityDice", FALSE, FALSE, 0, 1),
list("stabilityHamming", FALSE, FALSE, 0, 1),
list("stabilityIntersectionCount", TRUE, TRUE, NA, 1),
list("stabilityIntersectionGreedy", TRUE, TRUE, NA, 1),
list("stabilityIntersectionMBM", TRUE, TRUE, NA, 1),
list("stabilityIntersectionMean", TRUE, TRUE, NA, 1),
list("stabilityJaccard", FALSE, FALSE, 0, 1),
list("stabilityKappa", TRUE, FALSE, -1, 1),
list("stabilityLustgarten", TRUE, FALSE, -1, 1),
list("stabilityNogueira", TRUE, FALSE, -1, 1),
list("stabilityNovovicova", FALSE, FALSE, 0, 1),
list("stabilityOchiai", FALSE, FALSE, 0, 1),
list("stabilityPhi", TRUE, FALSE, -1, 1),
list("stabilitySechidis", FALSE, TRUE, NA, NA),
list("stabilitySomol", TRUE, FALSE, 0, 1),
list("stabilityUnadjusted", TRUE, FALSE, -1, 1),
list("stabilityWald", TRUE, FALSE, "1-p", 1),
list("stabilityYu", TRUE, TRUE, NA, 1),
list("stabilityZucknick", FALSE, TRUE, 0, 1)
)
do.call(rbind, l)
} |
getYear <- function(x, format, ...)
UseMethod("getYear")
getYear.default <- function(x, format, ...)
stop("'getYear' can only be used on objects of a date/time class")
getYear.Date <-
getYear.POSIXct <-
getYear.POSIXlt <- function(x, format="%Y", ...)
format(x=x, format=format, ...)
getMonth <- function(x, format, ...)
UseMethod("getMonth")
getMonth.default <- function(x, format, ...)
stop("'getMonth' can only be used on objects of a date/time class")
getMonth.Date <-
getMonth.POSIXct <-
getMonth.POSIXlt <- function(x, format="%m", ...)
format(x=x, format=format)
getDay <- function(x, format, ...)
UseMethod("getDay")
getDay.default <- function(x, format, ...)
stop("'getDay' can only be used on objects of a date/time class")
getDay.Date <-
getDay.POSIXct <-
getDay.POSIXlt <- function(x, format="%d", ...)
format(x=x, format=format)
getHour <- function(x, format, ...)
UseMethod("getHour")
getHour.default <- function(x, format, ...)
stop("'getHour' can only be used on objects of a date/time class")
getMin <- function(x, format, ...)
UseMethod("getMin")
getMin.default <- function(x, format, ...)
stop("'getMin' can only be used on objects of a date/time class")
getSec <- function(x, format, ...)
UseMethod("getSec")
getSec.default <- function(x, format, ...)
stop("'getSec' can only be used on objects of a date/time class") |
svychu <-
function(formula, design, ...) {
if( !( 'g' %in% names(list(...)) ) ) stop( "g= parameter must be specified" )
warning("The svychu function is experimental and is subject to changes in later versions.")
if( !is.na( list(...)[["g"]] ) && !( list(...)[["g"]] <= 1 & list(...)[["g"]] >= 0 ) ) stop( "g= must be in the [0, 1] interval." )
if( 'type_thresh' %in% names( list( ... ) ) && !( list(...)[["type_thresh"]] %in% c( 'relq' , 'abs' , 'relm' ) ) ) stop( 'type_thresh= must be "relq" "relm" or "abs". see ?svychu for more detail.' )
if( length( attr( terms.formula( formula ) , "term.labels" ) ) > 1 ) stop( "convey package functions currently only support one variable in the `formula=` argument" )
UseMethod("svychu", design)
}
svychu.survey.design <-
function(formula, design, g, type_thresh="abs", abs_thresh=NULL, percent = .60, quantiles = .50, na.rm = FALSE, thresh = FALSE, ...){
if (is.null(attr(design, "full_design"))) stop("you must run the ?convey_prep function on your linearized survey design object immediately after creating it with the svydesign() function.")
if( type_thresh == "abs" & is.null( abs_thresh ) ) stop( "abs_thresh= must be specified when type_thresh='abs'" )
if ("logical" %in% class(attr(design, "full_design"))) full_design <- design else full_design <- attr(design, "full_design")
h <- function( y , thresh , g ) if (g==0) ifelse( y != 0 , ifelse( y <= thresh , log( thresh / y ) , 0 ) , 0 ) else ifelse( y <= thresh , ( 1 - ( y / thresh )^g ) / g , 0 )
ht <- function( y , thresh , g ) if (g==0) ifelse( y != 0 , ifelse( y <= thresh , 1/thresh , 0 ) , 0 ) else ifelse( y <= thresh , (y^g / thresh^(g + 1) ) , 0 )
incvar <- model.frame(formula, design$variables, na.action = na.pass)[[1]]
if(na.rm){
nas<-is.na(incvar)
design<-design[!nas,]
if (length(nas) > length(design$prob))incvar <- incvar[!nas] else incvar[nas] <- 0
}
w <- 1/design$prob
if( any( incvar[w > 0] <= 0 , na.rm = TRUE ) ){
nps<-incvar <= 0
design<-design[!nps,]
if (length(nps) > length(design$prob))incvar <- incvar[!nps] else incvar[nps] <- 0
w <- 1/design$prob
}
if( is.null( names( design$prob ) ) ) ind <- as.character( seq( length( design$prob ) ) ) else ind <- names(design$prob)
N <- sum(w)
if ("logical" %in% class(attr(design, "full_design"))) full_design <- design else full_design <- attr(design, "full_design")
incvec <- model.frame(formula, full_design$variables, na.action = na.pass)[[1]]
if(na.rm){
nas<-is.na(incvec)
full_design<-full_design[!nas,]
if (length(nas) > length(full_design$prob)) incvec <- incvec[!nas] else incvec[nas] <- 0
}
wf <- 1/full_design$prob
if( any( incvec[wf > 0] <= 0 , na.rm = TRUE ) ){
warning("keeping strictly positive incomes only.")
nps <- incvec <= 0
full_design<-full_design[!nps,]
if (length(nps) > length(full_design$prob)) incvec <- incvec[!nps] else incvec[nps] <- 0
wf <- 1/full_design$prob
}
if( is.null( names( full_design$prob ) ) ) ncom <- as.character( seq( length( full_design$prob ) ) ) else ncom <- names(full_design$prob)
htot <- h_fun(incvar, w)
if (sum(1/design$prob==0) > 0) ID <- 1*(1/design$prob!=0) else ID <- 1 * ( ncom %in% ind )
if( type_thresh == 'relq' ){
ARPT <- svyarpt(formula = formula, full_design, quantiles=quantiles, percent=percent, na.rm=na.rm, ...)
th <- coef(ARPT)
arptlin <- attr(ARPT, "lin")
rval <- sum(w*h(incvar,th,g))/N
ahat <- sum(w*ht(incvar,th,g))/N
chulin <-ID*( h( incvec , th , g ) - rval ) / N + ( ahat * arptlin )
if ( g == 0 ) {
estimate <- contrastinf( quote(1 - exp(-watts) ) , list( watts = list( value = rval , lin = chulin ) ) )
rval <- estimate$value
chulin <- estimate$lin
rm(estimate)
}
}
if( type_thresh == 'relm'){
th <- percent*sum(incvec*wf)/sum(wf)
rval <- sum(w*h(incvar,th,g))/N
ahat <- sum(w*ht(incvar,th,g))/N
chulin <-ID*( h( incvec , th , g ) - rval + ( ( percent * incvec ) - th ) * ahat ) / N
if ( g == 0 ) {
estimate <- contrastinf( quote(1 - exp(-watts) ) , list( watts = list( value = rval , lin = chulin ) ) )
rval <- estimate$value
chulin <- estimate$lin
rm(estimate)
}
}
if( type_thresh == 'abs' ){
th <- abs_thresh
rval <- sum( w*h( incvar , th , g ) ) / N
chulin <- ID*( h( incvec , th , g ) - rval ) / N
if ( g == 0 ) {
estimate <- contrastinf( quote(1 - exp(-watts) ) , list( watts = list( value = rval , lin = chulin ) ) )
rval <- estimate$value
chulin <- estimate$lin
rm(estimate)
}
}
variance <- survey::svyrecvar(chulin/full_design$prob, full_design$cluster, full_design$strata, full_design$fpc, postStrata = full_design$postStrata)
colnames( variance ) <- rownames( variance ) <- names( rval ) <- strsplit( as.character( formula )[[2]] , ' \\+ ' )[[1]]
class(rval) <- c( "cvystat" , "svystat" )
attr(rval, "var") <- variance
attr(rval, "statistic") <- paste0("chu",g)
attr(rval, "lin") <- chulin
if(thresh) attr(rval, "thresh") <- th
rval
}
svychu.svyrep.design <-
function(formula, design, g, type_thresh="abs", abs_thresh=NULL, percent = .60, quantiles = .50, na.rm = FALSE, thresh = FALSE,...) {
if (is.null(attr(design, "full_design"))) stop("you must run the ?convey_prep function on your replicate-weighted survey design object immediately after creating it with the svrepdesign() function.")
if( type_thresh == "abs" & is.null( abs_thresh ) ) stop( "abs_thresh= must be specified when type_thresh='abs'" )
if ("logical" %in% class(attr(design, "full_design"))) full_design <- design else full_design <- attr(design, "full_design")
h <- function( y , thresh , g ) if (g==0) ifelse( y != 0 , ifelse( y <= thresh , log( thresh / y ) , 0 ) , 0 ) else ifelse( y <= thresh , ( 1 - ( y / thresh )^g ) / g , 0 )
ComputeCHU <-
function( y , w , thresh , g ){
N <- sum(w)
if (g == 0) {
1 - exp( -sum( w * h( y , thresh , g ) ) / N )
} else {
sum( w * h( y , thresh , g ) ) / N
}
}
df <- model.frame(design)
incvar <- model.frame(formula, design$variables, na.action = na.pass)[[1]]
if(na.rm){
nas<-is.na(incvar)
design<-design[!nas,]
df <- model.frame(design)
incvar <- incvar[!nas]
}
ws <- weights(design, "sampling")
if( any(incvar[ ws > 0 ] <= 0 , na.rm = TRUE ) ){
nps<-incvar <= 0
design<-design[!nps,]
df <- model.frame(design)
incvar <- incvar[!nps]
ws <- weights(design, "sampling")
}
df_full<- model.frame(full_design)
incvec <- model.frame(formula, full_design$variables, na.action = na.pass)[[1]]
if(na.rm){
nas<-is.na(incvec)
full_design<-full_design[!nas,]
df_full <- model.frame(full_design)
incvec <- incvec[!nas]
}
wsf <- weights(full_design,"sampling")
if( any(incvec[ wsf > 0 ] <= 0 , na.rm = TRUE ) ){
warning("keeping strictly positive incomes only.")
nps<-incvec <= 0
full_design<-full_design[!nps,]
df_full <- model.frame(full_design)
incvec <- incvec[!nps]
wsf <- weights(full_design,"sampling")
}
names(incvec) <- names(wsf) <- row.names(df_full)
ind<- row.names(df)
if(type_thresh=='relq') th <- percent * computeQuantiles( incvec, wsf, p = quantiles)
if(type_thresh=='relm') th <- percent*sum(incvec*wsf)/sum(wsf)
if(type_thresh=='abs') th <- abs_thresh
rval <- ComputeCHU(incvar, ws, thresh = th , g = g)
wwf <- weights(full_design, "analysis")
qq <-
apply(wwf, 2, function(wi){
names(wi)<- row.names(df_full)
wd<-wi[ind]
incd <- incvec[ind]
ComputeCHU( incd, wd, thresh = th , g = g )}
)
if(anyNA(qq))variance <- NA
else variance <- survey::svrVar(qq, design$scale, design$rscales, mse = design$mse, coef = rval)
variance <- as.matrix( variance )
colnames( variance ) <- rownames( variance ) <- names( rval ) <- strsplit( as.character( formula )[[2]] , ' \\+ ' )[[1]]
class(rval) <- c( "cvystat" , "svrepstat" )
attr(rval, "var") <- variance
attr(rval, "statistic") <- paste0("chu",g)
attr(rval, "lin") <- NA
if(thresh) attr(rval, "thresh") <- th
rval
}
svychu.DBIsvydesign <-
function (formula, design, ...){
if (!( "logical" %in% class(attr(design, "full_design"))) ){
full_design <- attr( design , "full_design" )
full_design$variables <-
getvars(
formula,
attr( design , "full_design" )$db$connection,
attr( design , "full_design" )$db$tablename,
updates = attr( design , "full_design" )$updates,
subset = attr( design , "full_design" )$subset
)
attr( design , "full_design" ) <- full_design
rm( full_design )
}
design$variables <-
getvars(
formula,
design$db$connection,
design$db$tablename,
updates = design$updates,
subset = design$subset
)
NextMethod("svychu", design)
} |
make_planar_pair <- function(x, y = NULL, epsg = 3857) {
if (is.null(epsg) || isFALSE(epsg)) {
return(list(x = x, y = y))
}
x_is_ll <- isTRUE(sf::st_is_longlat(x))
y_is_ll <- isTRUE(sf::st_is_longlat(y))
x_crs <- sf::st_crs(x)
y_crs <- sf::st_crs(y)
if (is.null(x_crs) || is.na(x_crs)) {
cli::cli_warn('Planarizing skipped. {.arg x} missing CRS.')
return(list(x = x, y = y))
}
if ((is.null(y_crs) || is.na(y_crs)) & !is.null(y)) {
cli::cli_warn('Planarizing skipped. {.arg y} missing CRS.')
return(list(x = x, y = y))
}
if (!is.null(y)) {
if (!x_is_ll && !y_is_ll) {
if (x_crs != y_crs) {
y <- sf::st_transform(y, x_crs)
}
} else if (!x_is_ll) {
y <- sf::st_transform(y, x_crs)
} else if (!y_is_ll) {
x <- sf::st_transform(x, y_crs)
} else {
x <- sf::st_transform(x, epsg)
y <- sf::st_transform(y, epsg)
}
} else {
if (x_is_ll) {
x <- sf::st_transform(x, epsg)
}
}
list(x = x, y = y)
} |
options.validation <- function(options){
if(is.null(options$id.str)){
warning("options$id.str is NULL")
}
if(!any(options$method %in% 1:3)){
stop("method should be 1 (AdaJoint), 2 (AdaJoint2), or 3 (ARTP)")
}
if(!is.numeric(options$huge.gene.size) || options$huge.gene.size < 0){
stop("huge.gene.size should be non-negative integer")
}
if(!is.numeric(options$huge.chr.size) || options$huge.chr.size < 0){
stop("huge.chr.size should be non-negative integer")
}
if(is.null(options$nperm)){
stop("nperm cannot be NULL")
}
if(!is.null(options$nperm) && options$nperm < 1000){
warning("nperm is too small")
}
if(!is.null(options$excluded.regions)){
excluded.regions <- options$excluded.regions
tmp <- (c("data.frame", "matrix") %in% class(excluded.regions))
if(!any(tmp)){
msg <- "options$excluded.regions should be either a data frame or a matrix"
stop(msg)
}else{
if("matrix" %in% class(excluded.regions)){
excluded.regions <- as.data.frame(excluded.regions)
}
}
header1 <- c('Chr', 'Pos', 'Radius')
header2 <- c('Chr', 'Start', 'End')
if(all(header1 %in% colnames(excluded.regions))){
excluded.regions <- excluded.regions[, header1, drop = FALSE]
if(!any(c('integer', 'numeric') %in% class(excluded.regions$Pos))){
msg <- 'options$excluded.regions should have integer Pos'
stop(msg)
}
if(!any(c('integer', 'numeric') %in% class(excluded.regions$Radius))){
msg <- 'options$excluded.regions should have integer Radius'
stop(msg)
}
}else{
if(all(header2 %in% colnames(excluded.regions))){
excluded.regions <- excluded.regions[, header2, drop = FALSE]
if(!any(c('integer', 'numeric') %in% class(excluded.regions$Start))){
msg <- 'options$excluded.regions should have integer Start'
stop(msg)
}
if(!any(c('integer', 'numeric') %in% class(excluded.regions$End))){
msg <- 'options$excluded.regions should have integer End'
stop(msg)
}
}else{
msg <- 'Invalid options$excluded.regions. Please refer to ?ARTP2::options'
stop(msg)
}
}
}
if(options$snp.miss.rate > .1 && !options$turn.off.filters){
msg <- paste0("options$snp.miss.rate = ", options$snp.miss.rate, " might be too large")
warning(msg)
}
if(options$inspect.snp.n <= 0){
stop("options$inspect.snp.n should be a positive integer")
}
if(options$inspect.snp.percent < 0 || options$inspect.snp.percent > 1){
stop("option$inspect.snp.percent should be in [0, 1]")
}
if(options$inspect.gene.n <= 0){
stop("options$inspect.gene.n should be a positive integer")
}
if(options$inspect.gene.percent < 0 || options$inspect.gene.percent > 1){
stop("option$inspect.gene.percent should be in [0, 1]")
}
if(length(intersect(options$excluded.snps, options$selected.snps)) > 0){
stop("Some SNPs are specified in both options$excluded.snps and options$selected.snps")
}
if(!is.null(options$excluded.subs) && !is.null(options$selected.subs)){
if(intersect(options$excluded.subs, options$selected.subs) > 0){
stop("Some subject IDs are specified in both options$excluded.subs and options$selected.subs")
}
}
if(options$gene.R2 <= 0){
stop("gene.R2 should be in (0, 1]")
}
if(options$chr.R2 <= 0){
stop("chr.R2 should be in (0, 1]")
}
if(options$huge.gene.R2 <= 0){
stop("huge.gene.R2 should be in (0, 1]")
}
if(options$huge.chr.R2 <= 0){
stop("huge.chr.R2 should be in (0, 1]")
}
} |
reactlog_module_ui <- function(include_refresh = TRUE, id = "reactlog_module") {
ns <- shiny::NS(id)
shiny::tagList(
if (isTRUE(include_refresh))
shiny::actionButton(
ns("refresh"),
"",
icon = shiny::icon("refresh"),
class = "btn-sm btn-warning"
),
shiny::uiOutput(ns("iframe"))
)
}
reactlog_module_server <- function(
id = "reactlog_module",
width = "100%",
height = 600,
...
) {
assert_shiny_version()
shiny::moduleServer(
id,
function(input, output, session) {
ns <- shiny::NS(id)
output$iframe <- shiny::renderUI({
input$refresh
test_mode_txt <-
if (isTRUE(getOption("shiny.testmode"))) {
"&test=1"
} else {
""
}
random_id <- ns(paste0(
"reactlog_iframe_",
as.hexmode(floor(stats::runif(1, 1, 16^7)))
))
htmltools::tagList(
htmltools::tags$iframe(
id = random_id,
width = width,
height = height,
...
),
htmltools::tags$script(htmltools::HTML(paste0("
(function() {
var src =
'reactlog?w=' + window.escape(window.Shiny.shinyapp.config.workerId) +
'&s=' + window.escape(window.Shiny.shinyapp.config.sessionId) + '",
test_mode_txt, "';
$('
})()
")))
)
})
}
)
}
shiny_version_required <- function() {
desc_file <- system.file("DESCRIPTION", package = "reactlog")
suggests <- read.dcf(desc_file)[1, "Suggests"]
pkgs <- strsplit(suggests, ",")[[1]]
shiny_version <- gsub("[^.0-9]", "", pkgs[grepl("^shiny ", pkgs)])
package_version(shiny_version)
}
test_shiny_version <- function() {
tryCatch({
utils::packageVersion("shiny") >= shiny_version_required()
}, error = function() {
FALSE
})
}
assert_shiny_version <- function() {
if (!test_shiny_version()) {
stop("`shiny` v", shiny_version_required, " or greater must be installed")
}
} |
lipsitz.test <-
function (model, g = 10) {
oldmodel <- model
if (class(oldmodel) == "polr") {
yhat <- as.data.frame(fitted(oldmodel))
} else if (class(oldmodel) == "clm") {
predprob <- oldmodel$model[, 2:ncol(oldmodel$model), drop = F]
yhat <- as.data.frame(predict(oldmodel, newdata = predprob, type = "prob")$fit)
} else warning("Model is not of class polr or clm. Test may fail.")
formula <- formula(oldmodel$terms)
DNAME <- paste("formula: ", deparse(formula))
METHOD <- "Lipsitz goodness of fit test for ordinal response models"
obs <- oldmodel$model[1]
if (g < 6) warning("g < 6. Running this test when g < 6 is not recommended.")
if (g >= nrow(obs) / (5 * ncol(yhat))) warning("g >= n/5c. Running this test when g >= n/5c is not recommended.")
yhat$score <- apply(sapply(1:ncol(yhat), function(i) {
yhat[, i] * i
}), 1, sum)
yhat$tmp <- 1:nrow(yhat)
yhat <- yhat[order(yhat$score), ]
cutyhats <- cut(1:nrow(yhat), breaks = g, include.lowest = T)
cutyhats <- cutyhats[order(yhat$tmp)]
yhat <- yhat[order(yhat$tmp), ]
yhat$score <- NULL
yhat$tmp <- NULL
dfobs <- data.frame(obs, cutyhats)
dfobsmelt <- melt(dfobs, id.vars = 2)
observed <- cast(dfobsmelt, cutyhats ~ value, length)
if (g != nrow(observed)) {
warning(paste("Not possible to compute", g, "rows. There might be too few observations."))
}
oldmodel$model <- cbind(oldmodel$model, cutyhats = dfobs$cutyhats)
oldmodel$model$grp <- as.factor(vapply(oldmodel$model$cutyhats,
function(x) which(observed[, 1] == x), 1))
newmodel <- update(oldmodel, . ~ . + grp, data = oldmodel$model)
if (class(oldmodel) == "polr") {
LRstat <- oldmodel$deviance - newmodel$deviance
} else if (class(oldmodel) == "clm") {
LRstat <- abs(-2 * (newmodel$logLik - oldmodel$logLik))
}
PARAMETER <- g - 1
PVAL <- 1 - pchisq(LRstat, PARAMETER)
names(LRstat) <- "LR statistic"
names(PARAMETER) <- "df"
structure(list(statistic = LRstat, parameter = PARAMETER,
p.value = PVAL, method = METHOD, data.name = DNAME, newmoddata = oldmodel$model,
predictedprobs = yhat), class = "htest")
} |
UTM_zone_hemisphere <- function(x, y) {
value1 <- (floor((x + 180) / 6) %% 60) + 1
value2 <- ifelse(y > 0, "north", "south")
value3 <- paste0(value1," +",value2)
return(value3)
} |
agent_returnSpeciesResultData <-
function(xmlResultData)
{
allSpecies<-list()
for(species in 2:xmlSize(xmlResultData[[1]]))
{
speciesResult<-NULL
speciesName<-xmlAttrs(xmlResultData[[1]][[species]])[1]
headers<-strsplit(xmlAttrs(xmlResultData[[1]][[species]])[[2]],",")
if(length(xmlResultData[[1]][[species]])>0)
{
result<- toString(xmlResultData[[1]][[species]][[1]])
result<- strsplit(result,";")
for(agent in 1:length(result[[1]]))
{
if(agent>1)
{
result[[1]][agent]<- substr(result[[1]][agent], 2, nchar(result[[1]][agent]))
}
resultsSplit<-strsplit(result[[1]][agent],",")
resultRow<-read.csv(textConnection(resultsSplit[[1]]),header=F)
speciesResult<-rbind(speciesResult,t(resultRow))
}
colnames(speciesResult)<-headers[[1]]
}
else
{
speciesResult<-rbind(speciesResult,headers[[1]])
speciesResult<-rbind(speciesResult,headers[[1]])
colnames(speciesResult)<-headers[[1]]
speciesResult<-speciesResult[0,]
}
specieslist <- list()
specieslist[[speciesName]]<-speciesResult
allSpecies<-append(allSpecies,specieslist)
}
return(allSpecies)
} |
nd.extremal <- function(A, out.dist=TRUE, k=ceiling(nrow(A)/5)){
if ((!is.list(A))||(length(A)<=1)){
stop("* nd.extremal : input 'A' should be a list of length larger than 1.")
}
listA = list_transform(A, NIflag="not")
k = as.integer(k)
if ((length(as.vector(k))!=1)||(k<1)||(k>=nrow(listA[[1]]))){
stop("* nd.extremal : parameter 'k' should be [1,
}
N = length(listA)
mat_eigs = array(0,c(N,k))
mat_dist = array(0,c(N,N))
for (i in 1:N){
L = as.matrix(laplacian_unnormalized(listA[[i]]))
mat_eigs[i,] = as.vector(RSpectra::eigs(L,k)$values)
}
for (i in 1:(N-1)){
eig1 = mat_eigs[i,]
for (j in (i+1):N){
eig2 = mat_eigs[j,]
numerator = sum((eig1-eig2)^2)
denominator = min(sum(eig1^2),sum(eig2^2))
if (denominator==0){
solution = NA
} else {
solution = sqrt(numerator/denominator)
}
mat_dist[i,j] = solution
mat_dist[j,i] = solution
}
}
if (out.dist){
mat_dist = as.dist(mat_dist)
}
result = list()
result$D= mat_dist
result$spectra = mat_eigs
return(result)
} |
standard_routes <- function() {
dat <- wmata_api(
path = "TrainPositions/StandardRoutes",
query = list(contentType = "json"),
flatten = TRUE,
level = 1
)
dat$TrackCircuits <- lapply(dat$TrackCircuits, FUN = tibble::as_tibble)
tibble::as_tibble(dat)
} |
setClassUnion("DateTime", c("Date", "POSIXct")) |
context("Encodings")
test_that("Encodings work on Windows", {
input <- "César Moreira Nuñez"
reference <- c("césar", "moreira", "nuñez")
reference_enc <- c("UTF-8", "unknown", "UTF-8")
output_n1 <- tokenize_ngrams(input, n = 1, simplify = TRUE)
output_words <- tokenize_words(input, simplify = TRUE)
output_skip <- tokenize_skip_ngrams(input, n = 1, k = 0, simplify = TRUE)
expect_equal(output_n1, reference)
expect_equal(output_words, reference)
expect_equal(output_skip, reference)
expect_equal(Encoding(output_n1), reference_enc)
expect_equal(Encoding(output_words), reference_enc)
expect_equal(Encoding(output_skip), reference_enc)
}) |
NM2winNM <- function(x, pos, maxbp, winsize = 100L, depr = TRUE) {
if( depr ){
myMsg <- "The function NM2winNM was deprecated in vcfR version 1.6.0. If you use this function and would like to advocate for its persistence, please contact the maintainer of vcfR. The maintainer can be contacted at maintainer('vcfR')"
stop(myMsg)
}
.NM2winNM(x, pos, maxbp, winsize)
}
z.score <- function(x){
winave <- apply(x, MARGIN=2, mean, na.rm=TRUE)
winsd <- apply(x, MARGIN=2, stats::sd, na.rm=TRUE)
zsc <- sweep(x, MARGIN=2, STATS=winave, FUN="-")
zsc <- sweep(zsc, MARGIN=2, STATS=winsd, FUN="/")
zsc
}
windowize.NM <- function(x, pos, starts, ends, summary="mean", depr = TRUE){
if( depr ){
myMsg <- "The function windowizeNM was deprecated in vcfR version 1.6.0. If you use this function and would like to advocate for its persistence, please contact the maintainer of vcfR. The maintainer can be contacted at maintainer('vcfR')"
stop(myMsg)
}
.windowize_NM(x, pos, starts, ends, summary=summary)
} |
gLRT3 <-
function(A, k=2, rho=0, gamma=0, EMstep=TRUE, ICMstep=TRUE, tol=1e-06, maxiter=1000, inf=Inf)
{
A[A[,2]==inf,2] = Inf
if(ncol(A) == 3 && all(A[,2] >= A[,1]) && length(unique(A[,3])) == k && all(A[,3]>=0) && all(A[,3]< k) )
{
AA = A[,-3]
trt = A[,3]
est = ModifiedEMICM(AA, EMstep=EMstep, ICMstep=ICMstep, tol=tol, maxiter=maxiter)
tiny = .Machine$double.eps*100
est$sigma = ifelse(abs(est$sigma) < tiny, 0, est$sigma)
est$sigma = ifelse(abs(1.0 - est$sigma) < tiny, 1.0, est$sigma)
cens = CensorType(AA, inf=inf)
temp = cens
temp[temp != 4] = 5
counts = table(c(0, 0, trt), c(5, 4, temp))
counts[1,] = counts[1,] - 1
u = Teststat3(trt, k, cens, counts, est, rho=rho, gamma=gamma, c0=1)
v = Var3(trt, k, cens, counts, est, rho=rho, gamma=gamma, c0=1)
chisq = Chisqstat3(u, v, counts)
chisqstat = chisq[1]
df = chisq[2]
p = 1-pchisq(chisqstat, df)
}
else
{
stop("Please Verify data format,
}
out = data.frame()
class(out) = "glrt3"
out$method = "Generalized log-rank test (Zhao, Zhao, Sun, and Kim, 2008)"
out$u = u
out$var = v
out$chisq = chisqstat
out$df = df
out$p = p
out
} |
execute_function <- function(object, requri, objectname="FUN"){
if(!is.function(object)){
stop(objectname, "is not a function.")
}
fnargs <- req$post();
dotargs <- parse_dots(fnargs[["..."]]);
fnargs["..."] <- NULL;
fnargs <- lapply(fnargs, parse_arg);
fileargs <- structure(lapply(req$files(), function(x){as.expression(basename(x$name))}), names=names(req$files()));
fnargs <- c(fnargs, fileargs);
argn <- lapply(names(fnargs), as.name);
names(argn) <- names(fnargs);
exprargs <- sapply(fnargs, is.expression);
if(length(exprargs) > 0){
argn[names(fnargs[exprargs])] <-lapply(fnargs[exprargs], function(z){if(length(z)) z[[1]] else substitute()});
fnargs[exprargs] <- NULL
}
argn <- c(argn, dotargs)
mycall <- as.call(c(list(as.name(objectname)), argn));
fnargs <- c(fnargs, structure(list(object), names=objectname));
session_eval(mycall, fnargs, storeval=TRUE, format=requri[1])
} |
genotyping_global_error <- function(x, ploidy, restricted = TRUE, error = 0.01, th.prob = 0.95)
{
if(restricted){
x1 <- x[1:(ploidy+1)]
if(sum(x1 > th.prob) == 1){
x2 <- x[ploidy + 2:3]
id <- segreg_poly(ploidy, dP = x2[1], dQ = x2[2]) > 0
x3 <- x1[id]
o <- which.max(x3)
x3[o] <- 1-error
x3[-o] <- error/(sum(id)-1)
x1[match(names(x3), names(x1))] <- x3
return(x1)
}
return(x1)
} else {
x1 <- x[1:(ploidy+1)]
if(sum(x1 > th.prob) == 1){
o <- which.max(x1)
x1[o] <- 1-error
x1[-o] <- error/(length(x1)-1)
return(x1)
}
return(x1)
}
}
est_full_hmm_with_global_error <- function(input.map, error = NULL, tol = 10e-4,
restricted = TRUE,
th.prob = 0.95,
verbose = FALSE)
{
if (!inherits(input.map, "mappoly.map")) {
stop(deparse(substitute(input.map)), " is not an object of class 'mappoly.map'")
}
output.seq <- input.map
mrk.names <- get(input.map$info$data.name, pos = 1)$mrk.names[input.map$maps[[1]]$seq.num]
if(!mappoly::is.prob.data(get(input.map$info$data.name, pos = 1))){
geno.temp <- get(input.map$info$data.name, pos = 1)$geno.dose[mrk.names,]
ind.names <- get(input.map$info$data.name, pos = 1)$ind.names
gen <- vector("list", length(ind.names))
names(gen) <- ind.names
mrk <- ind <- NULL
dp <- get(input.map$info$data.name, pos = 1)$dosage.p1[input.map$maps[[1]]$seq.num]
dq <- get(input.map$info$data.name, pos = 1)$dosage.p2[input.map$maps[[1]]$seq.num]
names(dp) <- names(dq) <- mrk.names
d.pq <- data.frame(dp = dp,
dq = dq)
d.pq$mrk <- mrk.names
for(i in names(gen))
{
a <- matrix(0, nrow(geno.temp), input.map$info$ploidy+1, dimnames = list(mrk.names, 0:input.map$info$ploidy))
for(j in rownames(a)){
if(geno.temp[j,i] == input.map$info$ploidy+1){
a[j,] <- segreg_poly(ploidy = input.map$info$ploidy, dP = dp[j], dQ = dq[j])
} else {
a[j,geno.temp[j,i]+1] <- 1
}
}
a <- as.data.frame(a)
a$mrk <- rownames(a)
a.temp <- t(merge(a, d.pq, sort = FALSE)[,-c(1)])
if(!is.null(error))
a.temp <- apply(a.temp, 2, genotyping_global_error, ploidy = input.map$info$ploidy,
restricted = restricted, error = error, th.prob = th.prob)
else
a.temp <- a.temp[1:(input.map$info$ploidy+1), ]
colnames(a.temp) <- a[,1]
gen[[i]] <- a.temp
}
}
else {
geno.temp <- subset(get(input.map$info$data.name, pos = 1)$geno, mrk%in%mrk.names)
ind.names <- get(input.map$info$data.name, pos = 1)$ind.names
gen <- vector("list", length(ind.names))
names(gen) <- ind.names
mrk <- ind <- NULL
d.pq <- data.frame(dp = get(input.map$info$data.name, pos = 1)$dosage.p1[input.map$maps[[1]]$seq.num],
dq = get(input.map$info$data.name, pos = 1)$dosage.p2[input.map$maps[[1]]$seq.num])
d.pq$mrk <- mrk.names
for(i in names(gen))
{
a <- subset(geno.temp, ind%in%i)
a <- a[match(mrk.names, a$mrk),]
a.temp <- t(merge(a, d.pq, sort = FALSE)[,-c(1:2)])
if(!is.null(error))
a.temp <- apply(a.temp, 2, genotyping_global_error, ploidy = input.map$info$ploidy,
restricted = restricted, error = error, th.prob = th.prob)
else
a.temp <- a.temp[1:(input.map$info$ploidy+1), ]
colnames(a.temp) <- a[,1]
gen[[i]] <- a.temp
}
}
if (verbose) cat("
----------------------------------------------
INFO: running HMM using full transition space:
this operation may take a while.
-----------------------------------------------\n")
for(i in 1:length(input.map$maps))
{
YP <- input.map$maps[[i]]$seq.ph$P
YQ <- input.map$maps[[i]]$seq.ph$Q
map <- poly_hmm_est(ploidy = as.numeric(input.map$info$ploidy),
n.mrk = as.numeric(input.map$info$n.mrk),
n.ind = as.numeric(length(gen)),
p = as.numeric(unlist(YP)),
dp = as.numeric(cumsum(c(0, sapply(YP, function(x) sum(length(x)))))),
q = as.numeric(unlist(YQ)),
dq = as.numeric(cumsum(c(0, sapply(YQ, function(x) sum(length(x)))))),
g = as.double(unlist(gen)),
rf = as.double(input.map$maps[[i]]$seq.rf),
verbose = verbose,
tol = tol)
output.seq$maps[[i]]$seq.rf <- map$rf
output.seq$maps[[i]]$loglike <- map$loglike
}
return(output.seq)
} |
context("genome_join")
library(dplyr)
x1 <- tibble(id = 1:4,
chromosome = c("chr1", "chr1", "chr2", "chr2"),
start = c(100, 200, 300, 400),
end = c(150, 250, 350, 450))
x2 <- tibble(id = 1:4,
chromosome = c("chr1", "chr2", "chr2", "chr1"),
start = c(140, 210, 400, 300),
end = c(160, 240, 415, 320))
test_that("Can join genomes on chromosomes and intervals", {
skip_if_not_installed("IRanges")
j <- genome_inner_join(x1, x2, by = c("chromosome", "start", "end"))
expect_equal(j$chromosome.x, j$chromosome.y)
expect_equal(j$chromosome.x, c("chr1", "chr2"))
expect_equal(j$id.x, c(1, 4))
expect_equal(j$id.y, c(1, 3))
expect_equal(colnames(j), c("id.x", "chromosome.x", "start.x", "end.x",
"id.y", "chromosome.y", "start.y", "end.y"))
x3 <- x1
x3$chromosome <- "chr1"
x4 <- x2
x4$chromosome <- "chr1"
j2 <- genome_inner_join(x3, x4, by = c("chromosome", "start", "end"))
expect_equal(nrow(j2), 4)
expect_equal(j2$id.x, 1:4)
expect_equal(j2$id.y, c(1, 2, 4, 3))
j3 <- genome_left_join(x1, x2, by = c("chromosome", "start", "end"))
expect_equal(nrow(j3), 4)
expect_equal(sum(is.na(j3$start.x)), 0)
expect_equal(sum(is.na(j3$start.y)), 2)
expect_true(all(j3$chromosome.x == j3$chromosome.y, na.rm = TRUE))
j4 <- genome_right_join(x1, x2, by = c("chromosome", "start", "end"))
expect_equal(nrow(j4), 4)
expect_equal(sum(is.na(j4$start.x)), 2)
expect_true(all(j4$chromosome.x == j4$chromosome.y, na.rm = TRUE))
})
test_that("genome_join throws an error if not given three columns", {
skip_if_not_installed("IRanges")
expect_error(genome_inner_join(x1, x2, by = c("start", "end")), "three columns")
}) |
streaks=function(y){
n = length(y)
where = c(0, y, 0) == 0
location.zeros = (0:(n+1))[where]
streak.lengths = diff(location.zeros) - 1
streak.lengths[streak.lengths > 0]
} |
.onAttach <- function(libname, pkgname){
if (check_v8_major_version() < 6L) {
packageStartupMessage(
"Warning: v8 Engine is version ", V8::engine_info()[["version"]],
" but version >=6 is required for full functionality. Some rmapshaper",
" functions, notably ms_clip() and ms_erase(), may not work. See",
" https://github.com/jeroen/V8 for help installing a modern version",
" of v8 on your operating system.")
}
} |
tam_mml_mfr_inits_beta <- function(Y, formulaY, dataY, G, group, groups, nstud,
pweights, ridge, beta.fixed, xsi.fixed, constraint, ndim, beta.inits,
tp, gresp, pid0)
{
nullY <- is.null(Y)
if ( ! is.null( formulaY ) ){
formulaY <- stats::as.formula( formulaY )
Y <- stats::model.matrix( formulaY, dataY )[,-1]
nullY <- FALSE
}
if (! nullY){
Y <- as.matrix(Y)
nreg <- ncol(Y)
if ( is.null( colnames(Y) ) ){
colnames(Y) <- paste("Y", 1:nreg, sep="")
}
if ( ! nullY ){
Y <- cbind(1,Y)
colnames(Y)[1] <- "Intercept"
}
} else {
Y <- matrix( 1, nrow=nstud, ncol=1 )
nreg <- 0
}
if ( G > 1 & nullY ){
Y <- matrix( 0, nstud, G )
colnames(Y) <- paste("group", groups, sep="")
for (gg in 1:G){
Y[,gg] <- 1*(group==gg)
}
nreg <- G - 1
}
if (tp>1){
if ( nrow(gresp) !=nrow(Y) ){
Ypid <- rowsum( Y, pid0 )
Y <- Ypid / Ypid[,1]
}
}
W <- crossprod(Y * pweights, Y )
if (ridge > 0){
diag(W) <- diag(W) + ridge
}
YYinv <- solve(W)
if ( is.null(beta.fixed) & ( is.null(xsi.fixed) ) ){
beta.fixed <- matrix( c(1,1,0), nrow=1)
if ( ndim > 1){
for ( dd in 2:ndim){
beta.fixed <- rbind( beta.fixed, c( 1, dd, 0 ) )
}
}
}
if( ! is.matrix(beta.fixed) ){
if ( ! is.null(beta.fixed) ){
if ( ! beta.fixed ){
beta.fixed <- NULL
}
}
}
beta <- matrix(0, nrow=nreg+1, ncol=ndim)
if ( ! is.null( beta.inits ) ){
beta[ beta.inits[,1:2] ] <- beta.inits[,3]
}
res <- list(Y=Y, nullY=nullY, formulaY=formulaY, nreg=nreg, W=W, YYinv=YYinv,
beta.fixed=beta.fixed, beta=beta)
return(res)
} |
totCophI <- function(tree){
if (!inherits(tree, "phylo")) stop("The input tree must be in phylo-format.")
n <- length(tree$tip.label)
if(n == 1 || n==2) {return(0)}
nv_vec <- get.subtreesize(tree)[(n+2):(n+tree$Nnode)]
tci_val <- sapply(nv_vec, function(x) choose(x,2))
return(sum(tci_val))
} |
predict.coxph.penal <- function(object, newdata,
type=c("lp", "risk", "expected", "terms"),
se.fit=FALSE, terms=names(object$assign),
collapse, safe=FALSE, ...) {
type <- match.arg(type)
n <- object$n
pterms <- object$pterms
if (!any(pterms==2) ||
(missing(newdata) && se.fit==FALSE && type!='terms'))
NextMethod('predict',object,...)
else {
termname <- names(object$pterms)
sparsename <- termname[object$pterms==2]
nvar <- length(termname)
na.action <- object$na.action
object$na.action <- NULL
if (missing(newdata) && (se.fit || type=='terms')) {
x <- object[['x']]
if (is.null(x)) {
temp <- coxph.getdata(object, y=TRUE, x=TRUE, stratax=TRUE)
if (is.null(object$y)) object$y <- temp$y
if (is.null(object$strata)) object$strata <- temp$strata
x <- temp$x
}
xvar <- match(sparsename, dimnames(x)[[2]])
indx <- as.numeric(as.factor(x[,xvar]))
object$x <- x[, -xvar, drop=FALSE]
}
if (nvar==1) {
if (!missing(newdata)) {
n <- nrow(as.data.frame(newdata))
pred <- rep(0,n)
se <- rep(0,n)
}
else {
if (se.fit) se <- sqrt(object$fvar[indx])
pred <- object$linear.predictor
}
if (type=='risk') pred <- exp(pred)
if (type=='expected') {
pred <- object$y[,ncol(object$y)] -object$residuals
se.fit=FALSE
}
}
else {
oldTerms <- object$terms
temp <- attr(object$terms, 'term.labels')
object$terms <- object$terms[-match(sparsename, temp)]
pred <- NextMethod('predict',object,terms=terms,...)
object$terms<- oldTerms
if (se.fit) {
se <- pred$se.fit
pred <- pred$fit
}
if (type=='terms' && missing(newdata)) {
spterm <- object$frail[indx]
spstd <- sqrt(object$fvar[indx])
if (nvar==2) {
if (xvar==2) {
pred <- cbind(pred, spterm)
if (se.fit) se <- cbind(se, spstd)
}
else {
pred <- cbind(spterm, pred)
if (se.fit) se <- cbind(spstd, se)
}
}
else {
first <- if (xvar==1) 0 else 1:(xvar-1)
secnd <- if (xvar==nvar) 0 else (xvar+1):nvar
pred <- cbind(pred[,first], spterm, pred[,secnd])
if (se.fit)
se <- cbind(se[,first], spstd, se[,secnd])
}
dimnames(pred) <- list(dimnames(x)[[1]], termname)
if (se.fit) dimnames(se) <- dimnames(pred)
}
}
if (missing(newdata) && !is.null(na.action)) {
pred <- naresid(na.action, pred)
if (is.matrix(pred)) n <- nrow(pred)
else n <- length(pred)
if(se.fit) se <- naresid(na.action, se)
}
if (!missing(collapse)) {
if (length(collapse) != n)
stop("Collapse vector is the wrong length")
pred <- drop(rowsum(pred, collapse))
if (se.fit) se <- sqrt(drop(rowsum(se^2, collapse)))
}
if (se.fit) list(fit=pred, se.fit=se)
else pred
}
}
|
parse_Rd <- function(file, srcfile = NULL, encoding = "unknown",
verbose = FALSE, fragment = FALSE,
warningCalls = TRUE,
macros = file.path(R.home("share"), "Rd", "macros", "system.Rd"),
permissive = FALSE)
{
if(is.character(file)) {
file0 <- file
if(file == "") {
file <- stdin()
} else {
if (missing(srcfile))
srcfile <- srcfile(file)
}
} else file0 <- "<connection>"
lines <- readLines(file, warn = FALSE)
if(is.character(macros))
macros <- initialRdMacros(macros = macros)
lines[lines == "\\non_function{}"] <- ""
enc <- grep("\\encoding{", lines, fixed = TRUE, useBytes=TRUE, value=TRUE)
enc <- grep("^[[:space:]]*\\\\encoding\\{([^}]*)\\}.*", enc, value = TRUE)
if(length(enc)) {
if(length(enc) > 1L)
warning(file0, ": multiple \\encoding lines, using the first",
domain = NA, call. = warningCalls)
enc <- enc[1L]
enc <- sub("^[[:space:]]*\\\\encoding\\{([^}]*)\\}.*", "\\1", enc)
if(verbose) message("found encoding ", enc, domain = NA)
encoding <- if(enc %in% c("UTF-8", "utf-8", "utf8")) "UTF-8" else enc
}
if (length(encoding) != 1L || encoding == "unknown") encoding <- ""
if (!inherits(srcfile, "srcfile"))
srcfile <- srcfile(file0)
basename <- basename(srcfile$filename)
srcfile$encoding <- encoding
srcfile$Enc <- "UTF-8"
if (encoding == "ASCII") {
if (anyNA(iconv(lines, "", "ASCII")))
stop(file0, ": non-ASCII input and no declared encoding",
domain = NA, call. = warningCalls)
} else {
if (encoding != "UTF-8")
lines <- iconv(lines, encoding, "UTF-8", sub = "byte")
bytes <- charToRaw(lines[1L])
if(identical(as.integer(bytes[1L : 3L]),
c(0xefL, 0xbbL, 0xbfL)))
lines[1L] <- rawToChar(bytes[-(1L : 3L)])
}
tcon <- file()
writeLines(lines, tcon, useBytes = TRUE)
on.exit(close(tcon))
warndups <- config_val_to_logical(Sys.getenv("_R_WARN_DUPLICATE_RD_MACROS_", "FALSE"))
result <- if(permissive)
withCallingHandlers(.External2(C_parseRd, tcon, srcfile, "UTF-8",
verbose, basename, fragment,
warningCalls, macros, warndups),
warning = function(w)
if (grepl("unknown macro", conditionMessage(w)))
tryInvokeRestart("muffleWarning"))
else
.External2(C_parseRd, tcon, srcfile, "UTF-8",
verbose, basename, fragment, warningCalls,
macros, warndups)
result <- expandDynamicFlags(result)
if (permissive)
permissify(result)
else
result
}
print.Rd <- function(x, deparse = FALSE, ...)
{
cat(as.character.Rd(x, deparse = deparse), sep = "")
invisible(x)
}
as.character.Rd <- function(x, deparse = FALSE, ...)
{
ZEROARG <- c("\\cr", "\\dots", "\\ldots", "\\R", "\\tab")
TWOARG <- c("\\section", "\\subsection", "\\item", "\\enc",
"\\method", "\\S3method", "\\S4method", "\\tabular",
"\\if", "\\href")
USERMACROS <- c("USERMACRO", "\\newcommand", "\\renewcommand")
EQN <- c("\\deqn", "\\eqn", "\\figure")
modes <- c(RLIKE = 1L, LATEXLIKE = 2L, VERBATIM = 3L, INOPTION = 4L, COMMENTMODE = 5L, UNKNOWNMODE = 6L)
tags <- c(RCODE = 1L, TEXT = 2L, VERB = 3L, COMMENT = 5L, UNKNOWN = 6L)
state <- c(braceDepth = 0L, inRString = 0L)
needBraces <- FALSE
inEqn <- 0L
pr <- function(x, quoteBraces) {
tag <- attr(x, "Rd_tag")
if (is.null(tag) || tag == "LIST") tag <- ""
if (is.list(x)) {
savestate <- state
state <<- c(0L, 0L)
needBraces <<- FALSE
if (tag == "Rd") {
result <- character()
for (i in seq_along(x))
result <- c(result, pr(x[[i]], quoteBraces))
} else if (startsWith(tag, "
if (deparse) {
dep <- deparseRdElement(x[[1L]][[1L]],
c(state, modes["LATEXLIKE"],
inEqn,
as.integer(quoteBraces)))
result <- c(tag, dep[[1L]])
} else
result <- c(tag, x[[1L]][[1L]])
for (i in seq_along(x[[2L]]))
result <- c(result, pr(x[[2L]][[i]], quoteBraces))
result <- c(result, "
} else if (tag %in% ZEROARG) {
result <- tag
needBraces <<- TRUE
} else if (tag %in% TWOARG) {
result <- tag
for (i in seq_along(x))
result <- c(result, pr(x[[i]], quoteBraces))
} else if (tag %in% EQN) {
result <- tag
inEqn <<- 1L
result <- c(result, pr(x[[1L]], quoteBraces))
inEqn <<- 0L
if (length(x) > 1L)
result <- c(result, pr(x[[2L]], quoteBraces))
} else {
result <- tag
if (!is.null(option <- attr(x, "Rd_option")))
result <- c(result, "[", pr(option, quoteBraces), "]")
result <- c(result, "{")
for (i in seq_along(x))
result <- c(result, pr(x[[i]], quoteBraces))
result <- c(result, "}")
}
if (state[1L])
result <- pr(x, TRUE)
state <<- savestate
} else if (tag %in% USERMACROS) {
result <- c()
} else {
if (deparse) {
dep <- deparseRdElement(as.character(x), c(state, tags[tag], inEqn, as.integer(quoteBraces)))
result <- dep[[1L]]
state <<- dep[[2L]][1L:2L]
} else {
if (inherits(x, "Rd"))
class(x) <- setdiff(class(x), "Rd")
result <- as.character(x)
}
if (needBraces) {
if (grepl("^[[:alpha:]]", result)) result <- c("{}", result)
needBraces <<- FALSE
}
}
result
}
if (is.null(attr(x, "Rd_tag"))) attr(x, "Rd_tag") <- "Rd"
pr(x, quoteBraces = FALSE)
}
deparseRdElement <- function(element, state)
.Call(C_deparseRd, element, state)
permissify <- function(Rd)
{
tags <- RdTags(Rd)
oldclass <- class(Rd)
oldsrcref <- utils::getSrcref(Rd)
oldtag <- attr(Rd, "Rd_tag")
i <- 0
while (i < length(tags)) {
i <- i+1
if (tags[i] == "UNKNOWN") {
Rd[[i]] <- tagged(Rd[[i]], "TEXT", utils::getSrcref(Rd[[i]]))
while (i < length(tags)) {
if (tags[i+1] == "LIST") {
Rd <- c(Rd[seq_len(i)],
list(tagged("{", "TEXT", utils::getSrcref(Rd[[i+1]]))),
permissify(Rd[[i+1]]),
list(tagged("}", "TEXT", utils::getSrcref(Rd[[i+1]]))),
Rd[seq_along(Rd)[-seq_len(i+1)]])
tags <- RdTags(Rd)
i <- i+3
} else if (tags[i+1] == "TEXT" && grepl("^ *$", Rd[[i+1]]))
i <- i + 1
else
break
}
} else if (is.recursive(Rd[[i]]))
Rd[[i]] <- permissify(Rd[[i]])
}
class(Rd) <- oldclass
attr(Rd, "srcref") <- oldsrcref
attr(Rd, "Rd_tag") <- oldtag
Rd
} |
project = function(x, xmin, xmax) {
pmin(pmax(x, xmin), xmax)
}
logSumExp = function(a, b) {
A = max(a,b)
B = min(a,b)
A + log1p(exp(B-A))
}
fdsa = function(x, N, model=c("gk", "gh"), logB=FALSE, theta0, batch_size=100, alpha=1, gamma=0.49, a0=1, c0=NULL, A=100,
theta_min=c(-Inf,ifelse(logB, -Inf, 1E-5),-Inf,0), theta_max=c(Inf,Inf,Inf,Inf),
silent=FALSE, plotEvery=100) {
if (!is.numeric(x)) stop("x must be numeric (a vector of observations)")
if (!silent) { oldask = par(ask=FALSE) }
cnames = c("A", ifelse(logB, "log B", "B"), "g", ifelse(model[1]=="gk", "k", "h"), "estimated log likelihood")
if (model[1] == "gk") {
if (logB) {
get_log_densities = function(x, theta) dgk(batch, theta[1], exp(theta[2]), theta[3], theta[4], log=TRUE)
} else {
get_log_densities = function(x, theta) dgk(batch, theta[1], theta[2], theta[3], theta[4], log=TRUE)
}
} else {
if (logB) {
get_log_densities = function(x, theta) dgh(batch, theta[1], exp(theta[2]), theta[3], theta[4], log=TRUE)
} else {
get_log_densities = function(x, theta) dgh(batch, theta[1], theta[2], theta[3], theta[4], log=TRUE)
}
}
nobs = length(x)
batch_size = min(batch_size, nobs)
nm_ratio = nobs/batch_size
theta = theta0
estimates = matrix(nrow=N+1, ncol=5)
colnames(estimates) = cnames
estimates[1,] = c(theta, NA)
if (missing(c0)) {
batch = x[sample(nobs, 100, replace=TRUE)]
density_sample = get_log_densities(batch, theta0)
c0 = stats::sd(density_sample) / sqrt(batch_size)
c0 = pmin(c0, (theta_max - theta_min)/2)
} else if (any(c0 > (theta_max-theta_min)/2)) {
stop("c0 too large compared to parameter constraints")
}
if (!silent) { prog_bar = progress::progress_bar$new(total = N, format = "[:bar] :percent eta: :eta") }
for (t in seq(0,N-1)) {
at = a0*(t+1+A)^-alpha
ct = c0*(t+1)^-gamma
indices = sample(nobs, batch_size)
batch = x[indices]
gt = rep(0,4)
for (i in 1:4) {
delta = rep(0,4)
delta[i] = 1
theta1 = project(theta+ct*delta, theta_min, theta_max)
theta2 = project(theta-ct*delta, theta_min, theta_max)
hatL1 = -nm_ratio*sum(get_log_densities(batch, theta1))
hatL2 = -nm_ratio*sum(get_log_densities(batch, theta2))
if (is.infinite(hatL1) || is.infinite(hatL2)) {
stop(paste("Log likelihoods too small to calculate! Parameters probably became too extreme. Last values were", toString(theta), ". Try tighter theta_min or theta_max values."))
}
gt[i] = (hatL1 - hatL2)/(theta1[i]-theta2[i])
}
theta = project(theta-at*gt, theta_min, theta_max)
estimates[t+2,1:4] = theta
estimates[t+2,5] = log(2) - logSumExp(hatL1, hatL2)
if (!silent && ((t+1) %% plotEvery == 0)) {
graphics::par(mfrow=c(2,3))
for (i in 1:5) {
ylim = range(estimates[ceiling(t/10):(t+1),i])
graphics::plot(estimates[,i], type='l', xlim=c(1,N), ylim=ylim, xlab="FDSA iteration", ylab=cnames[i])
}
}
if (!silent) { prog_bar$tick() }
}
if (!silent) { par(ask=oldask) }
return(estimates)
} |
species.from.file <- function(filename, species.col = "species"){
input.df <- read.csv(filename, header = TRUE)
if(!species.col %in% colnames(input.df)){
stop(paste("Column", species.col, "not found in", filename))
}
sp.names <- unique(input.df[,species.col])
if(length(sp.names) == 1){
this.species <- enmtools.species(species.name = as.character(sp.names[1]),
presence.points = input.df[input.df[,species.col] == sp.names[1],])
this.species <- check.species(this.species)
return(this.species)
} else {
species.list <- list()
for(i in sp.names){
this.species <- enmtools.species(species.name = i,
presence.points = input.df[input.df[,species.col] == i,])
this.species <- check.species(this.species)
species.list[[i]] <- this.species
}
return(species.list)
}
} |
if (require(effectsize) && require(testthat)) {
test_that("plot methods", {
skip_if_not_installed("see", "0.6.8")
skip_if_not_installed("ggplot2")
expect_error(plot(d <- cohens_d(mpg ~ am, data = mtcars)), NA)
expect_s3_class(plot(d), "ggplot")
expect_error(plot(eqi <- equivalence_test(d)), NA)
expect_s3_class(plot(eqi), "ggplot")
})
} |
make_layer <- function(x, type=c("final_centers", "original_centers", "centers_translation", "final_graticule", "original_graticule")) {
if (!inherits(x, "cartogramR")) stop(paste(deparse(substitute(x)), "must be a cartogramR object"))
type <- match.arg(type)
if (type=="final_centers") {
y_geom <- st_sfc(sf::st_multipoint(x$final_centers))
st_crs(y_geom) <- st_crs(x$cartogram)
return(y_geom)
}
if (type=="original_centers") {
y_geom <- st_sfc(sf::st_multipoint(x$orig_centers))
st_crs(y_geom) <- st_crs(x$cartogram)
return(y_geom)
}
if (type=="original_graticule") {
if (!(x$details["method"] %in% c("gsm", "gn"))) stop("cartogram method should be either 'gsm' or 'gn'")
bbox <- sf::st_bbox(x$initial_data)
LL <- x$options$paramsint[1]
pf <- x$options$paramsdouble[3]
graticule <- .Call(carto_makeoriggraticule, pf, as.integer(LL), bbox)
sf::st_crs(graticule) <- sf::st_crs(x$cartogram)
return(graticule)
}
if (type=="final_graticule") {
if (!(x$details["method"] %in% c("gsm", "gn"))) stop("cartogram method should be either 'gsm' or 'gn'")
bbox <- sf::st_bbox(x$initial_data)
if (x$options$options["gridexport"]==0)
stop("cartogram does not include grid\n Rerun cartogramR with options=list(grid=TRUE)")
LL <- x$options$paramsint[1]
pf <- x$options$paramsdouble[3]
graticule <- .Call(carto_makefinalgraticule, pf, as.integer(LL), bbox, x$gridx, x$gridy)
sf::st_crs(graticule) <- sf::st_crs(x$cartogram)
return(graticule)
}
if (type=="centers_translation") {
coordLine <-lapply(1:nrow(x$orig_centers), function(n) { sf::st_linestring(rbind(x$orig_centers[n,],x$final_centers[n,]))})
movement <- sf::st_sfc(coordLine)
sf::st_crs(movement) <- sf::st_crs(x$cartogram)
return(movement)
}
} |
residuals.mat <- function(object, k, weighted = FALSE, ...)
{
auto <- FALSE
if(missing(k))
{
auto <- TRUE
if(weighted)
k <- which.min(object$weighted$rmse)
else
k <- which.min(object$standard$rmse)
}
if(weighted)
res <- object$weighted$resid[k, ]
else
res <- object$standard$resid[k, ]
retval <- list(residuals = res, k = k, weighted = weighted,
auto = auto)
class(retval) <- "residuals.mat"
return(retval)
}
print.residuals.mat <- function(x,
digits = 3, ...)
{
k <- x$k
cat("\n")
writeLines(strwrap("Modern Analogue Technique Residuals", prefix = "\t"))
cat("\n")
cat(paste("No. of analogues (k) :", k, "\n"))
cat(paste("User supplied k? :", !x$auto, "\n"))
cat(paste("Weighted analysis? :", x$weighted, "\n\n"))
print.default(x$residuals, digits = digits)
invisible(x)
} |
`gowdis` <-
function(x, w, asym.bin = NULL, ord = c("podani", "metric", "classic") ){
if (length(dx <- dim(x)) != 2 || !(is.data.frame(x) || is.numeric(x))) stop("x is not a dataframe or a numeric matrix\n")
n <- dx[1]
p <- dx[2]
ord <- match.arg(ord)
varnames <- dimnames(x)[[2]]
if (!missing(w)){
if (length(w) != p | !is.numeric(w) ) stop("w needs to be a numeric vector of length = number of variables in x\n")
if (all(w == 0) ) stop("Cannot have only 0's in 'w'\n")
w <- w / sum(w)
}
else w <- rep(1, p) / sum(rep(1, p))
if (is.data.frame(x)) {
type <- sapply(x, data.class)
}
else {
type <- rep("numeric", p)
names(type) <- colnames(x)
}
if (any(type == "character") ) for (i in 1:p) if (type[i] == "character") x[,i] <- as.factor(x[,i])
is.bin <- function(k) all(k[!is.na(k)] %in% c(0,1))
bin.var <- rep(NA,p); names(bin.var) <- varnames
for (i in 1:p) bin.var[i] <- is.bin(x[,i])
if (any(type[bin.var] != "numeric")) stop("Binary variables should be of class 'numeric'\n")
type[type %in% c("numeric", "integer")] <- 1
type[type == "ordered"] <- 2
type[type %in% c("factor", "character")] <- 3
type[bin.var] <- 4
if (!is.null(asym.bin) ){
if (!all(bin.var[asym.bin])) stop("Asymetric binary variables must only contain 0 or 1\n")
else type[asym.bin] <- 5
}
type <- as.numeric(type)
x <- data.matrix(x)
if (any(type == 2) ) {
if (ord != "classic") for (i in 1:p) if (type[i] == 2) x[,i] <- rank(x[,i], na.last = "keep")
else for (i in 1:p) if (type[i] == 2) x[,i] <- as.numeric(x[,i])
}
range.Data <- function(v){
r.Data <- range(v, na.rm = T)
res <- r.Data[2]-r.Data[1]
return(res)
}
range2<- apply(x, 2, range.Data)
comp.Timax <- function(v){
Ti.max <- max(v, na.rm = T)
no.na <- v[!is.na(v)]
res <- length(no.na[no.na == Ti.max])
return(res)
}
Timax <- apply(x, 2, comp.Timax)
comp.Timin <- function(v){
Ti.min <- min(v, na.rm = T)
no.na <- v[!is.na(v)]
res <- length(no.na[no.na == Ti.min])
return(res)
}
Timin <- apply(x, 2, comp.Timin)
if (ord == "podani") pod <- 1 else pod <- 2
res <- .C("gowdis", as.double(x), as.double(w), as.integer(type), as.integer(n), as.integer(p), as.double(range2), as.integer(pod), as.double(Timax), as.double(Timin), res = double(n*(n-1)/2), NAOK = T, PACKAGE = "FD")$res
type[type == 1] <- "C"
type[type == 2] <- "O"
type[type == 3] <- "N"
type[type == 4] <- "B"
type[type == 5] <- "A"
if (any(is.na(res) ) ) attr(res, "NA.message") <- "NA's in the dissimilarity matrix!"
attr(res, "Labels") <- dimnames(x)[[1]]
attr(res, "Size") <- n
attr(res, "Metric") <- "Gower"
attr(res, "Types") <- type
class(res) <- "dist"
return(res)
} |
print.composite.desire.function <- function(x, ...) {
message("Composite desirability: ")
message("Inner function:")
message(" ", attr(x, "composite.desc"))
message("Desirability:")
print(attr(x, "desire.function"), ...)
}
compositeDF <- function(expr, d, ...) {
if ("composite.desire.function" %in% class(d))
stop("Cannot recursivly composition desirabilty function.")
sexpr <- substitute(expr)
if (is.call(sexpr)) {
UseMethod("compositeDF", sexpr)
} else {
UseMethod("compositeDF", expr)
}
}
compositeDF.call <- function(expr, d, ...) {
expr <- substitute(expr)
ev <- function(x, ...) {
y <- eval(expr, envir=list(x=x))
d(y, ...)
}
class(ev) <- "composite.desire.function"
attr(ev, "composite.desc") <- paste("Expression: ", deparse(expr))
attr(ev, "desire.function") <- d
return(ev)
}
compositeDF.function <- function(expr, d, ...) {
ev <- function(x, ...)
d(expr(x), ...)
class(ev) <- "composite.desire.function"
attr(ev, "composite.desc") <- paste("Function: ", deparse(substitute(expr)), "(x)", sep="")
attr(ev, "desire.function") <- d
return(ev)
}
compositeDF.lm <- function(expr, d, ...) {
sigma <- summary(expr)$sigma
ev <- function(x, ...) {
if (!is.data.frame(x)) {
if (is.vector(x)) {
names(x) <- pnames
x <- as.data.frame(as.list(x))
} else if (is.matrix(x)) {
colnames(x) <- pnames
x <- as.data.frame(x)
} else {
stop("Cannot convert argument 'x' into a data.frame object.")
}
}
y <- predict(expr, newdata=x)
d(y, sd=sigma, ...)
}
pnames <- all.vars(formula(expr)[[3]])
attr(ev, "composite.desc") <- paste("Linear Model: ", deparse(expr$call))
class(ev) <- "composite.desire.function"
attr(ev, "desire.function") <- d
return(ev)
} |
set_class <- function(x, class = NULL) {
if (is.null(class)) {
return(x)
} else if ("data.table" %in% class) {
if (inherits(x, "data.table")) {
return(x)
}
return(data.table::as.data.table(x))
} else if ("tibble" %in% class || "tbl_df" %in% class || "tbl" %in% class) {
if (inherits(x, "tbl")) {
return(x)
}
return(tibble::as_tibble(x))
}
out <- structure(x, class = "data.frame")
if (!length(rownames(out))) {
rownames(out) <- as.character(seq_len(length(out[,1L,drop = TRUE])))
}
return(out)
} |
context("racusum_beta_crit_sim")
L0 <- 500
RQ <- 1
maxS <- 71
g0 <- -3.6798
g1 <- 0.0768
shape1 <- 1
shape2 <- 3
tol <- .3
test_that("Different input values for RA", {
RAtest <- list(-1, 0, "0", NA)
lapply(RAtest, function(x) {
expect_error(do.call(x, racusum_beta_crit_sim, L0=L0, RQ=RQ, g0=g0, g1=g1, shape1=shape1, shape2=shape2, rs=maxS, RA=x))})
})
test_that("Different simulation algorithms, detecting deterioration", {
skip_on_cran()
skip_if(SKIP == TRUE, "skip this test now")
m <- 1e3
expect_equal(racusum_beta_crit_sim(L0=L0, RA=2, RQ=RQ, g0=g0, g1=g1, shape1=shape1, shape2=shape2, rs=maxS, verbose=TRUE, m=m), 2.5091, tolerance=tol)
expect_equal(racusum_beta_crit_sim(L0=L0, RA=2, RQ=RQ, g0=g0, g1=g1, shape1=shape1, shape2=shape2, rs=maxS, verbose=FALSE, m=m), 2.5091, tolerance=tol)
}) |
grm.input <- function(file) {
if (!file.exists(file)) {
stop(paste("File ", file, " not found."))
}
t <- read.table(file, header = FALSE)
if (ncol(t) != 4) {
stop("Table has to contain 4 columns")
}
ids <- NULL
filebase <- gsub(".gz", "", file)
idfile <- paste0(filebase, ".id")
if (file.exists(idfile)) {
ids <- unique(read.table(idfile)$V2)
}
return(vector2grm(t$V4, ids))
}
vector2grm <- function(v, ids = NULL) {
n <- (sqrt(1 + 8 * length(v)) - 1) / 2
A <- matrix(0, nrow = n, ncol = n)
A[upper.tri(A, diag = TRUE)] <- v
A <- A + t(A)
diag(A) <- .5 * diag(A)
return(A)
} |
gen.label = function(label, altlabel){
paste(ifelse(is.null(label), altlabel, label))
}
gen.tflabel = function(condition, tlabel, flabel){
paste(ifelse(condition,tlabel,flabel))
}
draw.error.bands = function(ex, ely, ehy, lty = 2){
lines(ex,ely,lty=lty)
lines(ex,ehy,lty=lty)
}
draw.error.bars = function(ex, ely, ehy, hbar = TRUE, hbarscale = 0.3, lty = 2){
yy = double(3*length(ex))
jj = 1:length(ex)*3
yy[jj-2] = ely
yy[jj-1] = ehy
yy[jj] = NA
xx = double(3*length(ex))
xx[jj-2] = ex
xx[jj-1] = ex
xx[jj] = NA
lines(xx,yy,lty=lty)
if (hbar){
golden = (1+sqrt(5))/2
hbardist = abs(max(ex) - min(ex))/length(ex)*hbarscale
yg = abs(yy[jj-2]-yy[jj-1])/golden
htest = (hbardist >= yg)
xx[jj-2] = ex - ifelse(htest, yg/2, hbardist/2)
xx[jj-1] = ex + ifelse(htest, yg/2, hbardist/2)
ty = yy[jj-1]
yy[jj-1] = yy[jj-2]
lines(xx,yy)
yy[jj-2] = ty
yy[jj-1] = ty
lines(xx,yy)
}
}
draw.errors =
function(ex, ely, ehy,
plot.errors.style,
plot.errors.bar,
plot.errors.bar.num,
lty){
if (plot.errors.style == "bar"){
ei = seq(1,length(ex),length.out = min(length(ex),plot.errors.bar.num))
draw.error.bars(ex = ex[ei],
ely = ely[ei],
ehy = ehy[ei],
hbar = (plot.errors.bar == "I"),
lty = lty)
} else if (plot.errors.style == "band") {
draw.error.bands(ex = ex,
ely = ely,
ehy = ehy,
lty = lty)
}
}
plotFactor <- function(f, y, ...){
plot(x = f, y = y, lty = "blank", ...)
l.f = rep(f, each=3)
l.f[3*(1:length(f))] = NA
l.y = unlist(lapply(y, function (p) { c(0,p,NA) }))
lines(x = l.f, y = l.y, lty = 2)
points(x = f, y = y)
}
compute.bootstrap.errors = function(...,bws){
UseMethod("compute.bootstrap.errors",bws)
}
compute.bootstrap.errors.rbandwidth =
function(xdat, ydat,
exdat,
gradients,
slice.index,
plot.errors.boot.method,
plot.errors.boot.blocklen,
plot.errors.boot.num,
plot.errors.center,
plot.errors.type,
plot.errors.quantiles,
bws){
boot.err = matrix(data = NA, nrow = dim(exdat)[1], ncol = 3)
is.inid = plot.errors.boot.method=="inid"
strf = ifelse(is.inid, "function(data,indices){", "function(tsb){")
strtx = ifelse(is.inid, "txdat = xdat[indices,],",
"txdat = tsb[,1:(ncol(tsb)-1),drop=FALSE],")
strty = ifelse(is.inid, "tydat = ydat[indices],",
"tydat = tsb[,ncol(tsb)],")
boofun = eval(parse(text=paste(strf, "npreg(", strtx, strty,
"exdat = exdat, bws = bws,",
"gradients = gradients)$",
ifelse(gradients, "grad[,slice.index]", "mean"), "}", sep="")))
if (is.inid){
boot.out = boot(data = data.frame(xdat,ydat), statistic = boofun,
R = plot.errors.boot.num)
} else {
boot.out = tsboot(tseries = data.frame(xdat,ydat), statistic = boofun,
R = plot.errors.boot.num,
l = plot.errors.boot.blocklen,
sim = plot.errors.boot.method)
}
all.bp <- list()
if (slice.index > 0 && (bws$xdati$iord | bws$xdati$iuno)[slice.index]){
boot.frame <- as.data.frame(boot.out$t)
u.lev <- bws$xdati$all.ulev[[slice.index]]
stopifnot(length(u.lev)==ncol(boot.frame))
all.bp$stats <- matrix(data = NA, nrow = 5, ncol = length(u.lev))
all.bp$conf <- matrix(data = NA, nrow = 2, ncol = length(u.lev))
for (i in 1:length(u.lev)){
t.bp <- boxplot.stats(boot.frame[,i])
all.bp$stats[,i] <- t.bp$stats
all.bp$conf[,i] <- t.bp$conf
all.bp$out <- c(all.bp$out,t.bp$out)
all.bp$group <- c(all.bp$group, rep.int(i,length(t.bp$out)))
}
all.bp$n <- rep.int(plot.errors.boot.num, length(u.lev))
all.bp$names <- bws$xdati$all.lev[[slice.index]]
rm(boot.frame)
}
if (plot.errors.type == "standard") {
boot.err[,1:2] = 2.0*sqrt(diag(cov(boot.out$t)))
}
else if (plot.errors.type == "quantiles") {
boot.err[,1:2] = t(sapply(as.data.frame(boot.out$t),
function (y) {
quantile(y,probs = plot.errors.quantiles)
}))
boot.err[,1] = boot.out$t0 - boot.err[,1]
boot.err[,2] = boot.err[,2] - boot.out$t0
}
if (plot.errors.center == "bias-corrected")
boot.err[,3] <- 2*boot.out$t0-colMeans(boot.out$t)
list(boot.err = boot.err, bxp = all.bp)
}
compute.bootstrap.errors.scbandwidth =
function(xdat, ydat, zdat,
exdat, ezdat,
gradients,
slice.index,
plot.errors.boot.method,
plot.errors.boot.blocklen,
plot.errors.boot.num,
plot.errors.center,
plot.errors.type,
plot.errors.quantiles,
bws){
miss.z <- missing(zdat)
boot.err = matrix(data = NA, nrow = dim(exdat)[1], ncol = 3)
is.inid = plot.errors.boot.method=="inid"
xi <- 1:ncol(xdat)
yi <- ncol(xdat)+1
if (!miss.z)
zi <- yi+1:ncol(zdat)
strf = ifelse(is.inid, "function(data,indices){", "function(tsb){")
strtx = ifelse(is.inid, "txdat = xdat[indices,, drop = FALSE],",
"txdat = tsb[,xi,drop=FALSE],")
strty = ifelse(is.inid, "tydat = ydat[indices],",
"tydat = tsb[,yi],")
strtz <-
ifelse(miss.z, '',
ifelse(is.inid, 'tzdat = zdat[indices,, drop = FALSE],',
'tzdat = tsb[,zi, drop = FALSE],'))
boofun = eval(parse(text=paste(strf, "npscoef(", strtx, strty, strtz,
"exdat = exdat,", ifelse(miss.z,"", "ezdat = ezdat,"),
"bws = bws, iterate = FALSE)$",
"mean", "}", sep="")))
boot.out <-
eval(parse(text = paste(ifelse(is.inid, 'boot(data = ',
'tsboot(tseries ='), 'data.frame(xdat,ydat',
ifelse(miss.z,'', ',zdat'),
'), statistic = boofun, R = plot.errors.boot.num',
ifelse(is.inid,'','l = plot.errors.boot.blocklen, sim = plot.errors.boot.method'),')')))
all.bp <- list()
if ((slice.index > 0) && (((slice.index <= ncol(xdat)) && (bws$xdati$iord | bws$xdati$iuno)[slice.index]) ||
((slice.index > ncol(xdat)) && (bws$zdati$iord | bws$zdati$iuno)[slice.index-ncol(xdat)]))) {
boot.frame <- as.data.frame(boot.out$t)
if(slice.index <= ncol(xdat))
u.lev <- bws$xdati$all.ulev[[slice.index]]
else
u.lev <- bws$zdati$all.ulev[[slice.index-ncol(xdat)]]
stopifnot(length(u.lev)==ncol(boot.frame))
all.bp$stats <- matrix(data = NA, nrow = 5, ncol = length(u.lev))
all.bp$conf <- matrix(data = NA, nrow = 2, ncol = length(u.lev))
for (i in 1:length(u.lev)){
t.bp <- boxplot.stats(boot.frame[,i])
all.bp$stats[,i] <- t.bp$stats
all.bp$conf[,i] <- t.bp$conf
all.bp$out <- c(all.bp$out,t.bp$out)
all.bp$group <- c(all.bp$group, rep.int(i,length(t.bp$out)))
}
all.bp$n <- rep.int(plot.errors.boot.num, length(u.lev))
if(slice.index <= ncol(xdat))
all.bp$names <- bws$xdati$all.lev[[slice.index]]
else
all.bp$names <- bws$zdati$all.lev[[slice.index-ncol(xdat)]]
rm(boot.frame)
}
if (plot.errors.type == "standard") {
boot.err[,1:2] = 2.0*sqrt(diag(cov(boot.out$t)))
}
else if (plot.errors.type == "quantiles") {
boot.err[,1:2] = t(sapply(as.data.frame(boot.out$t),
function (y) {
quantile(y,probs = plot.errors.quantiles)
}))
boot.err[,1] = boot.out$t0 - boot.err[,1]
boot.err[,2] = boot.err[,2] - boot.out$t0
}
if (plot.errors.center == "bias-corrected")
boot.err[,3] <- 2*boot.out$t0-colMeans(boot.out$t)
list(boot.err = boot.err, bxp = all.bp)
}
compute.bootstrap.errors.plbandwidth =
function(xdat, ydat, zdat,
exdat, ezdat,
gradients,
slice.index,
plot.errors.boot.method,
plot.errors.boot.blocklen,
plot.errors.boot.num,
plot.errors.center,
plot.errors.type,
plot.errors.quantiles,
bws){
boot.err = matrix(data = NA, nrow = dim(exdat)[1], ncol = 3)
is.inid = plot.errors.boot.method=="inid"
strf = ifelse(is.inid, "function(data,indices){", "function(tsb){")
strtx = ifelse(is.inid, "txdat = xdat[indices,],",
"txdat = tsb[,1:ncol(xdat),drop=FALSE],")
strty = ifelse(is.inid, "tydat = ydat[indices],",
"tydat = tsb[,ncol(xdat)+1],")
strtz = ifelse(is.inid, "tzdat = zdat[indices,],",
"tzdat = tsb[,(ncol(xdat)+2):ncol(tsb), drop=FALSE],")
boofun = eval(parse(text=paste(strf, "npplreg(", strtx, strty, strtz,
"exdat = exdat, ezdat = ezdat, bws = bws)$mean}", sep="")))
if (is.inid){
boot.out = boot(data = data.frame(xdat,ydat,zdat), statistic = boofun,
R = plot.errors.boot.num)
} else {
boot.out = tsboot(tseries = data.frame(xdat,ydat,zdat), statistic = boofun,
R = plot.errors.boot.num,
l = plot.errors.boot.blocklen,
sim = plot.errors.boot.method)
}
all.bp <- list()
if (slice.index <= bws$xndim){
tdati <- bws$xdati
ti <- slice.index
} else {
tdati <- bws$zdati
ti <- slice.index - bws$xndim
}
if (slice.index > 0 && (tdati$iord | tdati$iuno)[ti]){
boot.frame <- as.data.frame(boot.out$t)
u.lev <- tdati$all.ulev[[ti]]
stopifnot(length(u.lev)==ncol(boot.frame))
all.bp$stats <- matrix(data = NA, nrow = 5, ncol = length(u.lev))
all.bp$conf <- matrix(data = NA, nrow = 2, ncol = length(u.lev))
for (i in 1:length(u.lev)){
t.bp <- boxplot.stats(boot.frame[,i])
all.bp$stats[,i] <- t.bp$stats
all.bp$conf[,i] <- t.bp$conf
all.bp$out <- c(all.bp$out,t.bp$out)
all.bp$group <- c(all.bp$group, rep.int(i,length(t.bp$out)))
}
all.bp$n <- rep.int(plot.errors.boot.num, length(u.lev))
all.bp$names <- tdati$all.lev[[ti]]
rm(boot.frame)
}
if (plot.errors.type == "standard") {
boot.err[,1:2] = 2.0*sqrt(diag(cov(boot.out$t)))
}
else if (plot.errors.type == "quantiles") {
boot.err[,1:2] = t(sapply(as.data.frame(boot.out$t),
function (y) {
quantile(y,probs = plot.errors.quantiles)
}))
boot.err[,1] = boot.out$t0 - boot.err[,1]
boot.err[,2] = boot.err[,2] - boot.out$t0
}
if (plot.errors.center == "bias-corrected")
boot.err[,3] <- 2*boot.out$t0-colMeans(boot.out$t)
list(boot.err = boot.err, bxp = all.bp)
}
compute.bootstrap.errors.bandwidth =
function(xdat,
exdat,
cdf,
slice.index,
plot.errors.boot.method,
plot.errors.boot.blocklen,
plot.errors.boot.num,
plot.errors.center,
plot.errors.type,
plot.errors.quantiles,
bws){
boot.err = matrix(data = NA, nrow = dim(exdat)[1], ncol = 3)
is.inid = plot.errors.boot.method=="inid"
strf = ifelse(is.inid, "function(data,indices){", "function(tsb){")
strt = ifelse(is.inid, "tdat = xdat[indices,],",
"tdat = tsb,")
boofun = eval(parse(text=paste(strf,
ifelse(cdf, "npudist(", "npudens("),
strt,
"edat = exdat, bws = bws)$",
ifelse(cdf, "dist", "dens"),
"}", sep="")))
if (is.inid) {
boot.out = boot(data = data.frame(xdat), statistic = boofun,
R = plot.errors.boot.num)
} else {
boot.out = tsboot(tseries = data.frame(xdat), statistic = boofun,
R = plot.errors.boot.num,
l = plot.errors.boot.blocklen,
sim = plot.errors.boot.method)
}
all.bp <- list()
if (slice.index > 0 && (bws$xdati$iord | bws$xdati$iuno)[slice.index]){
boot.frame <- as.data.frame(boot.out$t)
u.lev <- bws$xdati$all.ulev[[slice.index]]
stopifnot(length(u.lev)==ncol(boot.frame))
all.bp$stats <- matrix(data = NA, nrow = 5, ncol = length(u.lev))
all.bp$conf <- matrix(data = NA, nrow = 2, ncol = length(u.lev))
for (i in 1:length(u.lev)){
t.bp <- boxplot.stats(boot.frame[,i])
all.bp$stats[,i] <- t.bp$stats
all.bp$conf[,i] <- t.bp$conf
all.bp$out <- c(all.bp$out,t.bp$out)
all.bp$group <- c(all.bp$group, rep.int(i,length(t.bp$out)))
}
all.bp$n <- rep.int(plot.errors.boot.num, length(u.lev))
all.bp$names <- bws$xdati$all.lev[[slice.index]]
rm(boot.frame)
}
if (plot.errors.type == "standard") {
boot.err[,1:2] = 2.0*sqrt(diag(cov(boot.out$t)))
}
else if (plot.errors.type == "quantiles") {
boot.err[,1:2] = t(sapply(as.data.frame(boot.out$t),
function (y) {
quantile(y,probs = plot.errors.quantiles)
}))
boot.err[,1] = boot.out$t0 - boot.err[,1]
boot.err[,2] = boot.err[,2] - boot.out$t0
}
if (plot.errors.center == "bias-corrected")
boot.err[,3] <- 2*boot.out$t0-colMeans(boot.out$t)
list(boot.err = boot.err, bxp = all.bp)
}
compute.bootstrap.errors.dbandwidth <-
function(xdat,
exdat,
slice.index,
plot.errors.boot.method,
plot.errors.boot.blocklen,
plot.errors.boot.num,
plot.errors.center,
plot.errors.type,
plot.errors.quantiles,
bws){
boot.err = matrix(data = NA, nrow = dim(exdat)[1], ncol = 3)
is.inid = plot.errors.boot.method=="inid"
strf = ifelse(is.inid, "function(data,indices){", "function(tsb){")
strt = ifelse(is.inid, "tdat = xdat[indices,],",
"tdat = tsb,")
boofun = eval(parse(text=paste(strf, "npudist(",
strt, "edat = exdat, bws = bws)$dist}", sep="")))
if (is.inid) {
boot.out = boot(data = data.frame(xdat), statistic = boofun,
R = plot.errors.boot.num)
} else {
boot.out = tsboot(tseries = data.frame(xdat), statistic = boofun,
R = plot.errors.boot.num,
l = plot.errors.boot.blocklen,
sim = plot.errors.boot.method)
}
all.bp <- list()
if (slice.index > 0 && (bws$xdati$iord | bws$xdati$iuno)[slice.index]){
boot.frame <- as.data.frame(boot.out$t)
u.lev <- bws$xdati$all.ulev[[slice.index]]
stopifnot(length(u.lev)==ncol(boot.frame))
all.bp$stats <- matrix(data = NA, nrow = 5, ncol = length(u.lev))
all.bp$conf <- matrix(data = NA, nrow = 2, ncol = length(u.lev))
for (i in 1:length(u.lev)){
t.bp <- boxplot.stats(boot.frame[,i])
all.bp$stats[,i] <- t.bp$stats
all.bp$conf[,i] <- t.bp$conf
all.bp$out <- c(all.bp$out,t.bp$out)
all.bp$group <- c(all.bp$group, rep.int(i,length(t.bp$out)))
}
all.bp$n <- rep.int(plot.errors.boot.num, length(u.lev))
all.bp$names <- bws$xdati$all.lev[[slice.index]]
rm(boot.frame)
}
if (plot.errors.type == "standard") {
boot.err[,1:2] = 2.0*sqrt(diag(cov(boot.out$t)))
}
else if (plot.errors.type == "quantiles") {
boot.err[,1:2] = t(sapply(as.data.frame(boot.out$t),
function (y) {
quantile(y,probs = plot.errors.quantiles)
}))
boot.err[,1] = boot.out$t0 - boot.err[,1]
boot.err[,2] = boot.err[,2] - boot.out$t0
}
if (plot.errors.center == "bias-corrected")
boot.err[,3] <- 2*boot.out$t0-colMeans(boot.out$t)
list(boot.err = boot.err, bxp = all.bp)
}
compute.bootstrap.errors.conbandwidth =
function(xdat, ydat,
exdat, eydat,
cdf,
quantreg,
tau,
gradients,
gradient.index,
slice.index,
plot.errors.boot.method,
plot.errors.boot.blocklen,
plot.errors.boot.num,
plot.errors.center,
plot.errors.type,
plot.errors.quantiles,
bws){
exdat = toFrame(exdat)
boot.err = matrix(data = NA, nrow = dim(exdat)[1], ncol = 3)
tboo =
if(quantreg) "quant"
else if (cdf) "dist"
else "dens"
is.inid = plot.errors.boot.method=="inid"
strf = ifelse(is.inid, "function(data,indices){", "function(tsb){")
strtx = ifelse(is.inid, "txdat = xdat[indices,],",
"txdat = tsb[,1:ncol(xdat),drop=FALSE],")
strty = ifelse(is.inid, "tydat = ydat[indices,],",
"tydat = tsb[,(ncol(xdat)+1):ncol(tsb), drop=FALSE],")
boofun = eval(parse(text=paste(strf,
switch(tboo,
"quant" = "npqreg(",
"dist" = "npcdist(",
"dens" = "npcdens("),
strtx, strty,
"exdat = exdat,",
ifelse(quantreg, "tau = tau", "eydat = eydat"),
", bws = bws, gradients = gradients)$",
switch(tboo,
"quant" = ifelse(gradients, "yqgrad[,gradient.index]", "quantile"),
"dist" = ifelse(gradients, "congrad[,gradient.index]", "condist"),
"dens" = ifelse(gradients, "congrad[,gradient.index]", "condens")),
"}", sep="")))
if (is.inid){
boot.out = boot(data = data.frame(xdat,ydat), statistic = boofun,
R = plot.errors.boot.num)
} else {
boot.out = tsboot(tseries = data.frame(xdat,ydat), statistic = boofun,
R = plot.errors.boot.num,
l = plot.errors.boot.blocklen,
sim = plot.errors.boot.method)
}
all.bp <- list()
if (slice.index <= bws$xndim){
tdati <- bws$xdati
ti <- slice.index
} else {
tdati <- bws$ydati
ti <- slice.index - bws$xndim
}
if (slice.index > 0 && (tdati$iord | tdati$iuno)[ti]){
boot.frame <- as.data.frame(boot.out$t)
u.lev <- tdati$all.ulev[[ti]]
stopifnot(length(u.lev)==ncol(boot.frame))
all.bp$stats <- matrix(data = NA, nrow = 5, ncol = length(u.lev))
all.bp$conf <- matrix(data = NA, nrow = 2, ncol = length(u.lev))
for (i in 1:length(u.lev)){
t.bp <- boxplot.stats(boot.frame[,i])
all.bp$stats[,i] <- t.bp$stats
all.bp$conf[,i] <- t.bp$conf
all.bp$out <- c(all.bp$out,t.bp$out)
all.bp$group <- c(all.bp$group, rep.int(i,length(t.bp$out)))
}
all.bp$n <- rep.int(plot.errors.boot.num, length(u.lev))
all.bp$names <- tdati$all.lev[[ti]]
rm(boot.frame)
}
if (plot.errors.type == "standard") {
boot.err[,1:2] = 2.0*sqrt(diag(cov(boot.out$t)))
}
else if (plot.errors.type == "quantiles") {
boot.err[,1:2] = t(sapply(as.data.frame(boot.out$t),
function (y) {
quantile(y,probs = plot.errors.quantiles)
}))
boot.err[,1] = boot.out$t0 - boot.err[,1]
boot.err[,2] = boot.err[,2] - boot.out$t0
}
if (plot.errors.center == "bias-corrected")
boot.err[,3] <- 2*boot.out$t0-colMeans(boot.out$t)
list(boot.err = boot.err, bxp = all.bp)
}
compute.bootstrap.errors.condbandwidth =
function(xdat, ydat,
exdat, eydat,
cdf,
quantreg,
tau,
gradients,
gradient.index,
slice.index,
plot.errors.boot.method,
plot.errors.boot.blocklen,
plot.errors.boot.num,
plot.errors.center,
plot.errors.type,
plot.errors.quantiles,
bws){
exdat = toFrame(exdat)
boot.err = matrix(data = NA, nrow = dim(exdat)[1], ncol = 3)
tboo =
if(quantreg) "quant"
else if (cdf) "dist"
else "dens"
is.inid = plot.errors.boot.method=="inid"
strf = ifelse(is.inid, "function(data,indices){", "function(tsb){")
strtx = ifelse(is.inid, "txdat = xdat[indices,],",
"txdat = tsb[,1:ncol(xdat),drop=FALSE],")
strty = ifelse(is.inid, "tydat = ydat[indices,],",
"tydat = tsb[,(ncol(xdat)+1):ncol(tsb), drop=FALSE],")
boofun = eval(parse(text=paste(strf,
switch(tboo,
"quant" = "npqreg(",
"dist" = "npcdist(",
"dens" = "npcdens("),
strtx, strty,
"exdat = exdat,",
ifelse(quantreg, "tau = tau", "eydat = eydat"),
", bws = bws, gradients = gradients)$",
switch(tboo,
"quant" = ifelse(gradients, "yqgrad[,gradient.index]", "quantile"),
"dist" = ifelse(gradients, "congrad[,gradient.index]", "condist"),
"dens" = ifelse(gradients, "congrad[,gradient.index]", "condens")),
"}", sep="")))
if (is.inid){
boot.out = boot(data = data.frame(xdat,ydat), statistic = boofun,
R = plot.errors.boot.num)
} else {
boot.out = tsboot(tseries = data.frame(xdat,ydat), statistic = boofun,
R = plot.errors.boot.num,
l = plot.errors.boot.blocklen,
sim = plot.errors.boot.method)
}
all.bp <- list()
if (slice.index <= bws$xndim){
tdati <- bws$xdati
ti <- slice.index
} else {
tdati <- bws$ydati
ti <- slice.index - bws$xndim
}
if (slice.index > 0 && (tdati$iord | tdati$iuno)[ti]){
boot.frame <- as.data.frame(boot.out$t)
u.lev <- tdati$all.ulev[[ti]]
stopifnot(length(u.lev)==ncol(boot.frame))
all.bp$stats <- matrix(data = NA, nrow = 5, ncol = length(u.lev))
all.bp$conf <- matrix(data = NA, nrow = 2, ncol = length(u.lev))
for (i in 1:length(u.lev)){
t.bp <- boxplot.stats(boot.frame[,i])
all.bp$stats[,i] <- t.bp$stats
all.bp$conf[,i] <- t.bp$conf
all.bp$out <- c(all.bp$out,t.bp$out)
all.bp$group <- c(all.bp$group, rep.int(i,length(t.bp$out)))
}
all.bp$n <- rep.int(plot.errors.boot.num, length(u.lev))
all.bp$names <- tdati$all.lev[[ti]]
rm(boot.frame)
}
if (plot.errors.type == "standard") {
boot.err[,1:2] = 2.0*sqrt(diag(cov(boot.out$t)))
}
else if (plot.errors.type == "quantiles") {
boot.err[,1:2] = t(sapply(as.data.frame(boot.out$t),
function (y) {
quantile(y,probs = plot.errors.quantiles)
}))
boot.err[,1] = boot.out$t0 - boot.err[,1]
boot.err[,2] = boot.err[,2] - boot.out$t0
}
if (plot.errors.center == "bias-corrected")
boot.err[,3] <- 2*boot.out$t0-colMeans(boot.out$t)
list(boot.err = boot.err, bxp = all.bp)
}
compute.bootstrap.errors.sibandwidth =
function(xdat, ydat,
gradients,
plot.errors.boot.method,
plot.errors.boot.blocklen,
plot.errors.boot.num,
plot.errors.center,
plot.errors.type,
plot.errors.quantiles,
bws){
boot.err = matrix(data = NA, nrow = nrow(xdat), ncol = 3)
is.inid = plot.errors.boot.method=="inid"
strf = ifelse(is.inid, "function(data,indices){", "function(tsb){")
strtx = ifelse(is.inid, "txdat = xdat[indices,],",
"txdat = tsb[,1:(ncol(tsb)-1),drop=FALSE],")
strty = ifelse(is.inid, "tydat = ydat[indices],",
"tydat = tsb[,ncol(tsb)],")
boofun = eval(parse(text=paste(strf, "npindex(", strtx, strty,
"exdat = xdat, bws = bws,",
"gradients = gradients)$",
ifelse(gradients, "grad[,1]", "mean"), "}", sep="")))
if (is.inid){
boot.out = boot(data = data.frame(xdat,ydat), statistic = boofun,
R = plot.errors.boot.num)
} else {
boot.out = tsboot(tseries = data.frame(xdat,ydat), statistic = boofun,
R = plot.errors.boot.num,
l = plot.errors.boot.blocklen,
sim = plot.errors.boot.method)
}
if (plot.errors.type == "standard") {
boot.err[,1:2] = 2.0*sqrt(diag(cov(boot.out$t)))
}
else if (plot.errors.type == "quantiles") {
boot.err[,1:2] = t(sapply(as.data.frame(boot.out$t),
function (y) {
quantile(y,probs = plot.errors.quantiles)
}))
boot.err[,1] = boot.out$t0 - boot.err[,1]
boot.err[,2] = boot.err[,2] - boot.out$t0
}
if (plot.errors.center == "bias-corrected")
boot.err[,3] <- 2*boot.out$t0-colMeans(boot.out$t)
boot.err
}
uocquantile <- function(x, prob) {
if(any(prob < 0 | prob > 1)) stop("'prob' outside [0,1]")
if(any(is.na(x) | is.nan(x))) stop("missing values and NaN's not allowed")
if (is.ordered(x)){
tq = unclass(table(x))
tq = tq / sum(tq)
tq[length(tq)] <- 1.0
bscape <- sort(unique(x))
tq <- sapply(1:length(tq), function(y){ sum(tq[1:y]) })
j <- sapply(prob, function(p){ which(tq >= p)[1] })
bscape[j]
} else if (is.factor(x)) {
tq = unclass(table(x))
j = which(tq == max(tq))[1]
sort(unique(x))[j]
} else {
quantile(x, probs = prob)
}
}
trim.quantiles <- function(dat, trim){
if (sign(trim) == sign(-1)){
trim <- abs(trim)
tq <- quantile(dat, probs = c(0.0, 0.0+trim, 1.0-trim,1.0))
tq <- c(2.0*tq[1]-tq[2], 2.0*tq[4]-tq[3])
}
else {
tq <- quantile(dat, probs = c(0.0+trim, 1.0-trim))
}
tq
}
npplot <- function(bws = stop("'bws' has not been set"), ..., random.seed = 42){
if(exists(".Random.seed", .GlobalEnv)) {
save.seed <- get(".Random.seed", .GlobalEnv)
exists.seed = TRUE
} else {
exists.seed = FALSE
}
set.seed(random.seed)
on.exit(if(exists.seed) assign(".Random.seed", save.seed, .GlobalEnv))
UseMethod("npplot",bws)
}
npplot.rbandwidth <-
function(bws,
xdat,
ydat,
data = NULL,
xq = 0.5,
xtrim = 0.0,
neval = 50,
common.scale = TRUE,
perspective = TRUE,
gradients = FALSE,
main = NULL,
type = NULL,
border = NULL,
cex.axis = NULL,
cex.lab = NULL,
cex.main = NULL,
cex.sub = NULL,
col = NULL,
ylab = NULL,
xlab = NULL,
zlab = NULL,
sub = NULL,
ylim = NULL,
xlim = NULL,
zlim = NULL,
lty = NULL,
lwd = NULL,
theta = 0.0,
phi = 10.0,
view = c("rotate","fixed"),
plot.behavior = c("plot","plot-data","data"),
plot.errors.method = c("none","bootstrap","asymptotic"),
plot.errors.boot.num = 399,
plot.errors.boot.method = c("inid", "fixed", "geom"),
plot.errors.boot.blocklen = NULL,
plot.errors.center = c("estimate","bias-corrected"),
plot.errors.type = c("standard","quantiles"),
plot.errors.quantiles = c(0.025,0.975),
plot.errors.style = c("band","bar"),
plot.errors.bar = c("|","I"),
plot.errors.bar.num = min(neval,25),
plot.bxp = FALSE,
plot.bxp.out = TRUE,
plot.par.mfrow = TRUE,
...,
random.seed){
if(!is.null(options('plot.par.mfrow')$plot.par.mfrow))
plot.par.mfrow <- options('plot.par.mfrow')$plot.par.mfrow
miss.xy = c(missing(xdat),missing(ydat))
if (any(miss.xy) && !all(miss.xy))
stop("one of, but not both, xdat and ydat was specified")
else if(all(miss.xy) && !is.null(bws$formula)){
tt <- terms(bws)
m <- match(c("formula", "data", "subset", "na.action"),
names(bws$call), nomatch = 0)
tmf <- bws$call[c(1,m)]
tmf[[1]] <- as.name("model.frame")
tmf[["formula"]] <- tt
umf <- tmf <- eval(tmf, envir = environment(tt))
ydat <- model.response(tmf)
xdat <- tmf[, attr(attr(tmf, "terms"),"term.labels"), drop = FALSE]
} else {
if(all(miss.xy) && !is.null(bws$call)){
xdat <- data.frame(eval(bws$call[["xdat"]], environment(bws$call)))
ydat = eval(bws$call[["ydat"]], environment(bws$call))
}
xdat = toFrame(xdat)
goodrows = 1:dim(xdat)[1]
rows.omit = attr(na.omit(data.frame(xdat,ydat)), "na.action")
goodrows[rows.omit] = 0
if (all(goodrows==0))
stop("Data has no rows without NAs")
xdat = xdat[goodrows,,drop = FALSE]
ydat = ydat[goodrows]
}
xq = double(bws$ndim)+xq
xtrim = double(bws$ndim)+xtrim
if (missing(plot.errors.method) &
any(!missing(plot.errors.boot.num), !missing(plot.errors.boot.method),
!missing(plot.errors.boot.blocklen))){
warning(paste("plot.errors.method must be set to 'bootstrap' to use bootstrapping.",
"\nProceeding without bootstrapping."))
}
plot.behavior = match.arg(plot.behavior)
plot.errors.method = match.arg(plot.errors.method)
plot.errors.boot.method = match.arg(plot.errors.boot.method)
plot.errors.center = match.arg(plot.errors.center)
plot.errors.type = match.arg(plot.errors.type)
plot.errors.style = match.arg(plot.errors.style)
plot.errors.bar = match.arg(plot.errors.bar)
common.scale = common.scale | (!is.null(ylim))
if (plot.errors.method == "asymptotic") {
if (plot.errors.type == "quantiles"){
warning("quantiles cannot be calculated with asymptotics, calculating standard errors")
plot.errors.type = "standard"
}
if (plot.errors.center == "bias-corrected") {
warning("no bias corrections can be calculated with asymptotics, centering on estimate")
plot.errors.center = "estimate"
}
}
if (is.element(plot.errors.boot.method, c("fixed", "geom")) &&
is.null(plot.errors.boot.blocklen))
plot.errors.boot.blocklen = b.star(xdat,round=TRUE)[1,1]
plot.errors = (plot.errors.method != "none")
if ((bws$ncon + bws$nord == 2) & (bws$nuno == 0) & perspective & !gradients &
!any(xor(bws$xdati$iord, bws$xdati$inumord))){
view = match.arg(view)
rotate = (view == "rotate")
if (is.ordered(xdat[,1])){
x1.eval = bws$xdati$all.ulev[[1]]
x1.neval = length(x1.eval)
} else {
x1.neval = neval
qi = trim.quantiles(xdat[,1], xtrim[1])
x1.eval = seq(qi[1], qi[2], length.out = x1.neval)
}
if (is.ordered(xdat[,2])){
x2.eval = bws$xdati$all.ulev[[2]]
x2.neval = length(x2.eval)
} else {
x2.neval = neval
qi = trim.quantiles(xdat[,2], xtrim[2])
x2.eval = seq(qi[1], qi[2], length.out = x2.neval)
}
x.eval <- expand.grid(x1.eval, x2.eval)
if (is.ordered(xdat[,1]))
x1.eval <- (bws$xdati$all.dlev[[1]])[as.integer(x1.eval)]
if (is.ordered(xdat[,2]))
x2.eval <- (bws$xdati$all.dlev[[2]])[as.integer(x2.eval)]
tobj = npreg(txdat = xdat, tydat = ydat,
exdat = x.eval, bws = bws)
terr = matrix(data = tobj$merr, nrow = dim(x.eval)[1], ncol = 3)
terr[,3] = NA
treg = matrix(data = tobj$mean,
nrow = x1.neval, ncol = x2.neval, byrow = FALSE)
if (plot.errors.method == "bootstrap"){
terr <- compute.bootstrap.errors(xdat = xdat, ydat = ydat,
exdat = x.eval,
gradients = FALSE,
slice.index = 0,
plot.errors.boot.method = plot.errors.boot.method,
plot.errors.boot.blocklen = plot.errors.boot.blocklen,
plot.errors.boot.num = plot.errors.boot.num,
plot.errors.center = plot.errors.center,
plot.errors.type = plot.errors.type,
plot.errors.quantiles = plot.errors.quantiles,
bws = bws)[["boot.err"]]
pc = (plot.errors.center == "bias-corrected")
lerr = matrix(data = if(pc) {terr[,3]} else {tobj$mean}
-terr[,1],
nrow = x1.neval, ncol = x2.neval, byrow = FALSE)
herr = matrix(data = if(pc) {terr[,3]} else {tobj$mean}
+terr[,2],
nrow = x1.neval, ncol = x2.neval, byrow = FALSE)
} else if (plot.errors.method == "asymptotic") {
lerr = matrix(data = tobj$mean - 2.0*tobj$merr,
nrow = x1.neval, ncol = x2.neval, byrow = FALSE)
herr = matrix(data = tobj$mean + 2.0*tobj$merr,
nrow = x1.neval, ncol = x2.neval, byrow = FALSE)
}
if(is.null(zlim)) {
zlim =
if (plot.errors)
c(min(lerr),max(herr))
else
c(min(tobj$mean),max(tobj$mean))
}
if (plot.behavior != "plot"){
r1 = npregression(bws = bws,
eval = x.eval,
mean = as.double(treg),
merr = terr[,1:2],
ntrain = dim(xdat)[1])
r1$bias = NA
if (plot.errors.center == "bias-corrected")
r1$bias = terr[,3] - treg
if (plot.behavior == "data")
return ( list(r1 = r1) )
}
dtheta = 5.0
dphi = 10.0
persp.col = ifelse(plot.errors, FALSE, ifelse(!is.null(col),col,"lightblue"))
for (i in 0:((360 %/% dtheta - 1)*rotate)*dtheta+theta){
if (plot.errors){
persp(x1.eval,
x2.eval,
lerr,
zlim = zlim,
cex.axis = ifelse(!is.null(cex.axis),cex.axis,par()$cex.axis),
cex.lab = ifelse(!is.null(cex.lab),cex.lab,par()$cex.lab),
cex.main = ifelse(!is.null(cex.main),cex.main,par()$cex.main),
cex.sub = ifelse(!is.null(cex.sub),cex.sub,par()$cex.sub),
col = persp.col,
border = ifelse(!is.null(border),border,"grey"),
ticktype = "detailed",
xlab = "",
ylab = "",
zlab = "",
theta = i,
phi = phi,
lwd = ifelse(!is.null(lwd),lwd,par()$lwd))
par(new = TRUE)
}
persp(x1.eval,
x2.eval,
treg,
zlim = zlim,
col = persp.col,
border = ifelse(!is.null(border),border,"black"),
ticktype = "detailed",
cex.axis = ifelse(!is.null(cex.axis),cex.axis,par()$cex.axis),
cex.lab = ifelse(!is.null(cex.lab),cex.lab,par()$cex.lab),
cex.main = ifelse(!is.null(cex.main),cex.main,par()$cex.main),
cex.sub = ifelse(!is.null(cex.sub),cex.sub,par()$cex.sub),
xlab = ifelse(!is.null(xlab),xlab,gen.label(bws$xnames[1], "X1")),
ylab = ifelse(!is.null(ylab),ylab,gen.label(bws$xnames[2], "X2")),
zlab = ifelse(!is.null(zlab),zlab,gen.label(bws$ynames,"Conditional Mean")),
theta = i,
phi = phi,
main = gen.tflabel(!is.null(main), main, paste("[theta= ", i,", phi= ", phi,"]", sep="")))
if (plot.errors){
par(new = TRUE)
persp(x1.eval,
x2.eval,
herr,
zlim = zlim,
cex.axis = ifelse(!is.null(cex.axis),cex.axis,par()$cex.axis),
cex.lab = ifelse(!is.null(cex.lab),cex.lab,par()$cex.lab),
cex.main = ifelse(!is.null(cex.main),cex.main,par()$cex.main),
cex.sub = ifelse(!is.null(cex.sub),cex.sub,par()$cex.sub),
col = persp.col,
border = ifelse(!is.null(border),border,"grey"),
ticktype = "detailed",
xlab = "",
ylab = "",
zlab = "",
theta = i,
phi = phi,
lwd = ifelse(!is.null(lwd),lwd,par()$lwd))
}
Sys.sleep(0.5)
}
if (plot.behavior == "plot-data")
return ( list(r1 = r1) )
} else {
if (plot.behavior != "data" && plot.par.mfrow)
par(mfrow=n2mfrow(bws$ndim),cex=par()$cex)
ev = xdat[1,,drop = FALSE]
for (i in 1:bws$ndim)
ev[1,i] = uocquantile(xdat[,i], prob=xq[i])
maxneval = max(c(sapply(xdat,nlevels),neval))
exdat = as.data.frame(matrix(data = 0, nrow = maxneval, ncol = bws$ndim))
for (i in 1:bws$ndim)
exdat[,i] = ev[1,i]
if (common.scale){
data.eval = matrix(data = NA, nrow = maxneval, ncol = bws$ndim)
data.err = matrix(data = NA, nrow = maxneval, ncol = 3*bws$ndim)
allei = as.data.frame(matrix(data = NA, nrow = maxneval, ncol = bws$ndim))
all.bxp = list()
}
plot.out = list()
temp.err = matrix(data = NA, nrow = maxneval, ncol = 3)
temp.mean = replicate(maxneval, NA)
plot.bootstrap = plot.errors.method == "bootstrap"
pfunE = expression(ifelse(xi.factor,
ifelse(plot.bootstrap & plot.bxp,"bxp","plotFactor"), "plot"))
pxE = expression(ifelse(common.scale,
ifelse(xi.factor,
ifelse(plot.bootstrap & plot.bxp, "z = all.bxp[[i]],", "f = allei[,i],"),
"x = allei[,i],"),
ifelse(xi.factor,
ifelse(plot.bootstrap & plot.bxp, "z = temp.boot,", "f = ei,"), "x = ei,")))
pyE = expression(ifelse(xi.factor & plot.bootstrap & plot.bxp, "",
ifelse(common.scale,"y = data.eval[,i],", "y = temp.mean,")))
pylimE = ifelse(common.scale, "ylim = c(y.min,y.max),",
ifelse(plot.errors, "ylim = c(min(na.omit(c(temp.mean - temp.err[,1], temp.err[,3] - temp.err[,1]))),
max(na.omit(c(temp.mean + temp.err[,2], temp.err[,3] + temp.err[,2])))),", ""))
pxlabE = "xlab = ifelse(!is.null(xlab),xlab,gen.label(bws$xnames[i], paste('X', i, sep = ''))),"
pylabE = "ylab = ifelse(!is.null(ylab),ylab,paste(ifelse(gradients,
paste('Gradient Component ', i, ' of', sep=''), ''),
gen.label(bws$ynames, 'Conditional Mean'))),"
prestE = expression(ifelse(xi.factor,"", "type = ifelse(!is.null(type),type,'l'), lty = ifelse(!is.null(lty),lty,par()$lty), col = ifelse(!is.null(col),col,par()$col), lwd = ifelse(!is.null(lwd),lwd,par()$lwd), cex.axis = ifelse(!is.null(cex.axis),cex.axis,par()$cex.axis), cex.lab = ifelse(!is.null(cex.lab),cex.lab,par()$cex.lab), cex.main = ifelse(!is.null(cex.main),cex.main,par()$cex.main), cex.sub = ifelse(!is.null(cex.sub),cex.sub,par()$cex.sub),"))
pmainE = "main = ifelse(!is.null(main),main,''), sub = ifelse(!is.null(sub),sub,''),"
plotOnEstimate = (plot.errors.center == "estimate")
efunE = "draw.errors"
eexE = expression(ifelse(common.scale, "ex = as.numeric(na.omit(allei[,i])),",
"ex = as.numeric(na.omit(ei)),"))
eelyE = expression(ifelse(common.scale,
ifelse(plotOnEstimate, "ely = na.omit(data.eval[,i] - data.err[,3*i-2]),",
"ely = na.omit(data.err[,3*i] - data.err[,3*i-2]),"),
ifelse(plotOnEstimate, "ely = na.omit(temp.mean - temp.err[,1]),",
"ely = na.omit(temp.err[,3] - temp.err[,1]),")))
eehyE = expression(ifelse(common.scale,
ifelse(plotOnEstimate, "ehy = na.omit(data.eval[,i] + data.err[,3*i-1]),",
"ehy = na.omit(data.err[,3*i] + data.err[,3*i-1]),"),
ifelse(plotOnEstimate, "ehy = na.omit(temp.mean + temp.err[,2]),",
"ehy = na.omit(temp.err[,3] + temp.err[,2]),")))
erestE = "plot.errors.style = ifelse(xi.factor,'bar',plot.errors.style),
plot.errors.bar = ifelse(xi.factor,'I',plot.errors.bar),
plot.errors.bar.num = plot.errors.bar.num,
lty = ifelse(xi.factor,1,2)"
for (i in 1:bws$ndim){
temp.err[,] = NA
temp.mean[] = NA
temp.boot = list()
xi.factor = is.factor(xdat[,i])
if (xi.factor){
ei = bws$xdati$all.ulev[[i]]
xi.neval = length(ei)
} else {
xi.neval = neval
qi = trim.quantiles(xdat[,i], xtrim[i])
ei = seq(qi[1], qi[2], length.out = neval)
}
if (xi.neval < maxneval){
ei[(xi.neval+1):maxneval] = NA
}
tr = npreg(txdat = xdat, tydat = ydat,
exdat = subcol(exdat,ei,i)[1:xi.neval,, drop = FALSE], bws = bws,
gradients = gradients)
temp.mean[1:xi.neval] = if(gradients) tr$grad[,i] else tr$mean
if (plot.errors){
if (plot.errors.method == "asymptotic")
temp.err[1:xi.neval,1:2] = replicate(2,2.0*(if(gradients) tr$gerr[,i] else tr$merr))
else if (plot.errors.method == "bootstrap"){
temp.boot <- compute.bootstrap.errors(
xdat = xdat, ydat = ydat,
exdat = subcol(exdat,ei,i)[1:xi.neval,, drop = FALSE],
gradients = gradients,
slice.index = i,
plot.errors.boot.method = plot.errors.boot.method,
plot.errors.boot.blocklen = plot.errors.boot.blocklen,
plot.errors.boot.num = plot.errors.boot.num,
plot.errors.center = plot.errors.center,
plot.errors.type = plot.errors.type,
plot.errors.quantiles = plot.errors.quantiles,
bws = bws)
temp.err[1:xi.neval,] = temp.boot[["boot.err"]]
temp.boot <- temp.boot[["bxp"]]
if (!plot.bxp.out){
temp.boot$out <- numeric()
temp.boot$group <- integer()
}
}
}
if (common.scale){
allei[,i] = ei
data.eval[,i] = temp.mean
if (plot.errors){
all.bxp[i] = NA
all.bxp[[i]] = temp.boot
data.err[,c(3*i-2,3*i-1,3*i)] = temp.err
}
} else if (plot.behavior != "data") {
eval(parse(text = paste(eval(pfunE), "(", eval(pxE), eval(pyE),
eval(pylimE), eval(pxlabE), eval(pylabE), eval(prestE),
eval(pmainE), ")")))
if (plot.errors && !(xi.factor & plot.bootstrap & plot.bxp)){
if (!xi.factor && !plotOnEstimate)
lines(na.omit(ei), na.omit(temp.err[,3]), lty = 3)
eval(parse(text = paste(eval(efunE), "(", eval(eexE), eval(eelyE),
eval(eehyE), eval(erestE), ")")))
}
}
if (plot.behavior != "plot") {
plot.out[i] = NA
if (gradients){
plot.out[[i]] =
npregression(bws = bws,
eval = as.data.frame(subcol(exdat,ei,i)[1:xi.neval,]),
mean = tr$mean,
merr = tr$merr,
grad = na.omit(temp.mean),
gerr = na.omit(cbind(-temp.err[,1],
temp.err[,2])),
ntrain = dim(xdat)[1])
plot.out[[i]]$gbias = na.omit(temp.mean - temp.err[,3])
} else {
plot.out[[i]] =
npregression(bws = bws,
eval = as.data.frame(subcol(exdat,ei,i)[1:xi.neval,]),
mean = na.omit(temp.mean),
merr = na.omit(cbind(-temp.err[,1],
temp.err[,2])),
ntrain = dim(xdat)[1])
plot.out[[i]]$bias = na.omit(temp.mean - temp.err[,3])
}
plot.out[[i]]$bxp = temp.boot
}
}
if (common.scale & (plot.behavior != "data")){
jj = 1:bws$ndim*3
if (plot.errors.center == "estimate" | !plot.errors) {
y.max = max(na.omit(as.double(data.eval)) +
if (plot.errors) na.omit(as.double(data.err[,jj-1]))
else 0
)
y.min = min(na.omit(as.double(data.eval)) -
if (plot.errors) na.omit(as.double(data.err[,jj-2]))
else 0
)
} else if (plot.errors.center == "bias-corrected") {
y.max = max(na.omit(as.double(data.err[,jj] + data.err[,jj-1])))
y.min = min(na.omit(as.double(data.err[,jj] - data.err[,jj-2])))
}
if(!is.null(ylim)){
y.min = ylim[1]
y.max = ylim[2]
}
for (i in 1:bws$ndim){
xi.factor = is.factor(xdat[,i])
eval(parse(text = paste(eval(pfunE), "(", eval(pxE), eval(pyE),
eval(pylimE), eval(pxlabE), eval(pylabE), eval(prestE),
eval(pmainE), ")")))
if (plot.errors && !(xi.factor & plot.bootstrap & plot.bxp)){
if (!xi.factor && !plotOnEstimate)
lines(na.omit(allei[,i]), na.omit(data.err[,3*i]), lty = 3)
eval(parse(text = paste(eval(efunE), "(", eval(eexE), eval(eelyE),
eval(eehyE), eval(erestE), ")")))
}
}
}
if (plot.behavior != "data" && plot.par.mfrow)
par(mfrow=c(1,1),cex=par()$cex)
if (plot.behavior != "plot"){
names(plot.out) =
if (gradients)
paste("rg",1:bws$ndim,sep="")
else
paste("r",1:bws$ndim,sep="")
return (plot.out)
}
}
}
npplot.scbandwidth <-
function(bws,
xdat,
ydat,
zdat = NULL,
data = NULL,
xq = 0.5,
zq = 0.5,
xtrim = 0.0,
ztrim = 0.0,
neval = 50,
common.scale = TRUE,
perspective = TRUE,
gradients = FALSE,
main = NULL,
type = NULL,
border = NULL,
cex.axis = NULL,
cex.lab = NULL,
cex.main = NULL,
cex.sub = NULL,
col = NULL,
ylab = NULL,
xlab = NULL,
zlab = NULL,
sub = NULL,
ylim = NULL,
xlim = NULL,
zlim = NULL,
lty = NULL,
lwd = NULL,
theta = 0.0,
phi = 10.0,
view = c("rotate","fixed"),
plot.behavior = c("plot","plot-data","data"),
plot.errors.method = c("none","bootstrap","asymptotic"),
plot.errors.boot.num = 399,
plot.errors.boot.method = c("inid", "fixed", "geom"),
plot.errors.boot.blocklen = NULL,
plot.errors.center = c("estimate","bias-corrected"),
plot.errors.type = c("standard","quantiles"),
plot.errors.quantiles = c(0.025,0.975),
plot.errors.style = c("band","bar"),
plot.errors.bar = c("|","I"),
plot.errors.bar.num = min(neval,25),
plot.bxp = FALSE,
plot.bxp.out = TRUE,
plot.par.mfrow = TRUE,
...,
random.seed){
if(!is.null(options('plot.par.mfrow')$plot.par.mfrow))
plot.par.mfrow <- options('plot.par.mfrow')$plot.par.mfrow
if(!missing(gradients))
stop("gradients not supported with smooth coefficient models.")
miss.xy = c(missing(xdat),missing(ydat))
miss.z = missing(zdat) & is.null(bws$zdati)
if (any(miss.xy) && !all(miss.xy))
stop("one of, but not both, xdat and ydat was specified")
else if(all(miss.xy) && !is.null(bws$formula)){
tt <- terms(bws)
m <- match(c("formula", "data", "subset", "na.action"),
names(bws$call), nomatch = 0)
tmf <- bws$call[c(1,m)]
tmf[[1]] <- as.name("model.frame")
tmf[["formula"]] <- tt
umf <- tmf <- eval(tmf, envir = environment(tt))
ydat <- model.response(tmf)
xdat <- tmf[, bws$chromoly[[2]], drop = FALSE]
if (!miss.z)
zdat <- tmf[, bws$chromoly[[3]], drop = FALSE]
} else {
if(all(miss.xy) && !is.null(bws$call)){
xdat <- data.frame(eval(bws$call[["xdat"]], environment(bws$call)))
ydat <- eval(bws$call[["ydat"]], environment(bws$call))
if (!miss.z)
zdat <- data.frame(eval(bws$call[["zdat"]], environment(bws$call)))
}
xdat = toFrame(xdat)
if(!miss.z)
zdat <- toFrame(zdat)
goodrows = 1:dim(xdat)[1]
rows.omit =
eval(parse(text = paste("attr(na.omit(data.frame(xdat, ydat",
ifelse(miss.z,'',',zdat'),')), "na.action")')))
attr(na.omit(data.frame(xdat,ydat,zdat)), "na.action")
goodrows[rows.omit] = 0
if (all(goodrows==0))
stop("Data has no rows without NAs")
xdat = xdat[goodrows,,drop = FALSE]
if(!miss.z)
zdat <- zdat[goodrows,,drop = FALSE]
ydat = ydat[goodrows]
}
xq = double(ncol(xdat))+xq
xtrim = double(ncol(xdat))+xtrim
if (!miss.z){
zq = double(ncol(zdat))+zq
ztrim = double(ncol(zdat))+ztrim
}
if (missing(plot.errors.method) &
any(!missing(plot.errors.boot.num), !missing(plot.errors.boot.method),
!missing(plot.errors.boot.blocklen))){
warning(paste("plot.errors.method must be set to 'bootstrap' to use bootstrapping.",
"\nProceeding without bootstrapping."))
}
plot.behavior = match.arg(plot.behavior)
plot.errors.method = match.arg(plot.errors.method)
plot.errors.boot.method = match.arg(plot.errors.boot.method)
plot.errors.center = match.arg(plot.errors.center)
plot.errors.type = match.arg(plot.errors.type)
plot.errors.style = match.arg(plot.errors.style)
plot.errors.bar = match.arg(plot.errors.bar)
common.scale = common.scale | (!is.null(ylim))
if (plot.errors.method == "asymptotic") {
if (plot.errors.type == "quantiles"){
warning("quantiles cannot be calculated with asymptotics, calculating standard errors")
plot.errors.type = "standard"
}
if (plot.errors.center == "bias-corrected") {
warning("no bias corrections can be calculated with asymptotics, centering on estimate")
plot.errors.center = "estimate"
}
}
if (is.element(plot.errors.boot.method, c("fixed", "geom")) &&
is.null(plot.errors.boot.blocklen))
plot.errors.boot.blocklen = b.star(xdat,round=TRUE)[1,1]
plot.errors = (plot.errors.method != "none")
if ((sum(c(bws$xdati$icon, bws$xdati$iord, bws$zdati$icon, bws$zdati$iord))== 2) & (sum(c(bws$xdati$iuno, bws$zdati$iuno)) == 0) & perspective & !gradients &
!any(xor(c(bws$xdati$iord, bws$zdati$iord), c(bws$xdati$inumord, bws$zdati$inumord)))){
view = match.arg(view)
rotate = (view == "rotate")
if (is.ordered(xdat[,1])){
x1.eval = bws$xdati$all.ulev[[1]]
x1.neval = length(x1.eval)
} else {
x1.neval = neval
qi = trim.quantiles(xdat[,1], xtrim[1])
x1.eval = seq(qi[1], qi[2], length.out = x1.neval)
}
if(!miss.z){
tdat <- zdat[,1]
ti <- 1
tdati <- bws$zdati
ttrim <- ztrim
x2.names <- bws$znames
} else {
tdat <- xdat[,2]
ti <- 2
tdati <- bws$xdati
ttrim <- xtrim
x2.names <- bws$xnames
}
if (is.ordered(tdat)){
x2.eval = tdati$all.ulev[[ti]]
x2.neval = length(x2.eval)
} else {
x2.neval = neval
qi = trim.quantiles(tdat, ttrim[ti])
x2.eval = seq(qi[1], qi[2], length.out = x2.neval)
}
x.eval <- expand.grid(x1.eval, x2.eval)
if (is.ordered(xdat[,1]))
x1.eval <- (bws$xdati$all.dlev[[1]])[as.integer(x1.eval)]
if (is.ordered(tdat))
x2.eval <- (tdati$all.dlev[[ti]])[as.integer(x2.eval)]
tobj <- eval(parse(text = paste('npscoef(txdat = xdat, tydat = ydat,',
ifelse(miss.z,'','tzdat = zdat,'),
ifelse(miss.z,'exdat = x.eval,','exdat = x.eval[,1, drop = FALSE], ezdat = x.eval[,2, drop = FALSE],'),
'bws = bws, iterate = FALSE, errors = plot.errors)')))
terr = matrix(data = tobj$merr, nrow = dim(x.eval)[1], ncol = 3)
terr[,3] = NA
treg = matrix(data = tobj$mean,
nrow = x1.neval, ncol = x2.neval, byrow = FALSE)
if (plot.errors.method == "bootstrap"){
terr <-
eval(parse(text = paste(
'compute.bootstrap.errors(xdat = xdat, ydat = ydat,',
ifelse(miss.z,'','zdat = zdat,'),
ifelse(miss.z, 'exdat = x.eval,',
'exdat = x.eval[,1, drop = FALSE], ezdat = x.eval[,1, drop = FALSE],'),
' gradients = FALSE, slice.index = 0,',
'plot.errors.boot.method = plot.errors.boot.method,',
'plot.errors.boot.blocklen = plot.errors.boot.blocklen,',
'plot.errors.boot.num = plot.errors.boot.num,',
'plot.errors.center = plot.errors.center,',
'plot.errors.type = plot.errors.type,',
'plot.errors.quantiles = plot.errors.quantiles,',
'bws = bws)[["boot.err"]]')))
pc = (plot.errors.center == "bias-corrected")
lerr = matrix(data = if(pc) {terr[,3]} else {tobj$mean}
-terr[,1],
nrow = x1.neval, ncol = x2.neval, byrow = FALSE)
herr = matrix(data = if(pc) {terr[,3]} else {tobj$mean}
+terr[,2],
nrow = x1.neval, ncol = x2.neval, byrow = FALSE)
} else if (plot.errors.method == "asymptotic") {
lerr = matrix(data = tobj$mean - 2.0*tobj$merr,
nrow = x1.neval, ncol = x2.neval, byrow = FALSE)
herr = matrix(data = tobj$mean + 2.0*tobj$merr,
nrow = x1.neval, ncol = x2.neval, byrow = FALSE)
}
if(is.null(zlim)) {
zlim =
if (plot.errors)
c(min(lerr),max(herr))
else
c(min(tobj$mean),max(tobj$mean))
}
if (plot.behavior != "plot"){
r1 <-
eval(parse(text = paste("smoothcoefficient(bws = bws,",
ifelse(miss.z, "eval = x.eval,", "eval = list(exdat = x.eval[,1, drop = FALSE], ezdat = x.eval[,2, drop = FALSE])"),
"mean = as.double(treg),",
"merr = terr[,1:2],",
"ntrain = dim(xdat)[1])")))
r1$bias = NA
if (plot.errors.center == "bias-corrected")
r1$bias = terr[,3] - treg
if (plot.behavior == "data")
return ( list(r1 = r1) )
}
dtheta = 5.0
dphi = 10.0
persp.col = ifelse(plot.errors, FALSE, ifelse(!is.null(col),col,"lightblue"))
for (i in 0:((360 %/% dtheta - 1)*rotate)*dtheta+theta){
if (plot.errors){
persp(x1.eval,
x2.eval,
lerr,
zlim = zlim,
cex.axis = ifelse(!is.null(cex.axis),cex.axis,par()$cex.axis),
cex.lab = ifelse(!is.null(cex.lab),cex.lab,par()$cex.lab),
cex.main = ifelse(!is.null(cex.main),cex.main,par()$cex.main),
cex.sub = ifelse(!is.null(cex.sub),cex.sub,par()$cex.sub),
col = persp.col,
border = ifelse(!is.null(border),border,"grey"),
ticktype = "detailed",
xlab = "",
ylab = "",
zlab = "",
theta = i,
phi = phi,
lwd = ifelse(!is.null(lwd),lwd,par()$lwd))
par(new = TRUE)
}
persp(x1.eval,
x2.eval,
treg,
zlim = zlim,
col = persp.col,
border = ifelse(!is.null(border),border,"black"),
ticktype = "detailed",
cex.axis = ifelse(!is.null(cex.axis),cex.axis,par()$cex.axis),
cex.lab = ifelse(!is.null(cex.lab),cex.lab,par()$cex.lab),
cex.main = ifelse(!is.null(cex.main),cex.main,par()$cex.main),
cex.sub = ifelse(!is.null(cex.sub),cex.sub,par()$cex.sub),
xlab = ifelse(!is.null(xlab),xlab,gen.label(bws$xnames[1], "X1")),
ylab = ifelse(!is.null(ylab),ylab,gen.label(x2.names[1], "X2")),
zlab = ifelse(!is.null(zlab),zlab,gen.label(bws$ynames,"Conditional Mean")),
theta = i,
phi = phi,
main = gen.tflabel(!is.null(main), main, paste("[theta= ", i,", phi= ", phi,"]", sep="")))
if (plot.errors){
par(new = TRUE)
persp(x1.eval,
x2.eval,
herr,
zlim = zlim,
cex.axis = ifelse(!is.null(cex.axis),cex.axis,par()$cex.axis),
cex.lab = ifelse(!is.null(cex.lab),cex.lab,par()$cex.lab),
cex.main = ifelse(!is.null(cex.main),cex.main,par()$cex.main),
cex.sub = ifelse(!is.null(cex.sub),cex.sub,par()$cex.sub),
col = persp.col,
border = ifelse(!is.null(border),border,"grey"),
ticktype = "detailed",
xlab = "",
ylab = "",
zlab = "",
theta = i,
phi = phi,
lwd = ifelse(!is.null(lwd),lwd,par()$lwd))
}
Sys.sleep(0.5)
}
if (plot.behavior == "plot-data")
return ( list(r1 = r1) )
} else {
tot.dim <- (bws$xndim <- length(bws$xdati$icon)) + (bws$zndim <- length(bws$zdati$icon))
if (plot.behavior != "data" && plot.par.mfrow)
par(mfrow=n2mfrow(tot.dim),cex=par()$cex)
maxneval = max(c(sapply(xdat,nlevels), unlist(sapply(zdat,nlevels)), neval))
all.isFactor = c(sapply(xdat, is.factor), unlist(sapply(zdat, is.factor)))
x.ev = xdat[1,,drop = FALSE]
for (i in 1:bws$xndim)
x.ev[1,i] = uocquantile(xdat[,i], prob=xq[i])
exdat = as.data.frame(matrix(data = 0, nrow = maxneval, ncol = bws$xndim))
for (i in 1:bws$xndim)
exdat[,i] = x.ev[1,i]
if (!miss.z){
z.ev = zdat[1,,drop = FALSE]
for (i in 1:bws$zndim)
z.ev[1,i] = uocquantile(zdat[,i], prob=zq[i])
ezdat = as.data.frame(matrix(data = 0, nrow = maxneval, ncol = bws$zndim))
for (i in 1:bws$zndim)
ezdat[,i] = z.ev[1,i]
}
if (common.scale){
data.eval = matrix(data = NA, nrow = maxneval,
ncol = tot.dim)
data.err = matrix(data = NA, nrow = maxneval,
ncol = 3*tot.dim)
allei = as.data.frame(matrix(data = NA, nrow = maxneval,
ncol = tot.dim))
all.bxp = list()
}
plot.out = list()
temp.err = matrix(data = NA, nrow = maxneval, ncol = 3)
temp.mean = replicate(maxneval, NA)
plot.bootstrap = plot.errors.method == "bootstrap"
pfunE = expression(ifelse(xi.factor,
ifelse(plot.bootstrap & plot.bxp,"bxp","plotFactor"), "plot"))
pxE = expression(ifelse(common.scale,
ifelse(xi.factor,
ifelse(plot.bootstrap & plot.bxp, "all.bxp[[plot.index]],",
"f = allei[,plot.index],"),
"x = allei[,plot.index],"),
ifelse(xi.factor,
ifelse(plot.bootstrap & plot.bxp, "z = temp.boot,", "f = ei,"),
"x = ei,")))
pyE = expression(ifelse(xi.factor & plot.bootstrap & plot.bxp, "",
ifelse(common.scale,"y = data.eval[,plot.index],", "y = temp.mean,")))
pylimE = ifelse(common.scale, "ylim = c(y.min,y.max),",
ifelse(plot.errors, "ylim = c(min(na.omit(c(temp.mean - temp.err[,1], temp.err[,3] - temp.err[,1]))),
max(na.omit(c(temp.mean + temp.err[,2], temp.err[,3] + temp.err[,2])))),", ""))
pxlabE = expression(paste("xlab = gen.label(bws$",
xOrZ, "names[i], paste('", toupper(xOrZ),"', i, sep = '')),",sep=''))
pylabE = "ylab = paste(ifelse(gradients,
paste('Gradient Component ', i, ' of', sep=''), ''),
gen.label(bws$ynames, 'Conditional Mean')),"
prestE = expression(ifelse(xi.factor,"", "type = ifelse(!is.null(type),type,'l'), lty = ifelse(!is.null(lty),lty,par()$lty), col = ifelse(!is.null(col),col,par()$col), lwd = ifelse(!is.null(lwd),lwd,par()$lwd), cex.axis = ifelse(!is.null(cex.axis),cex.axis,par()$cex.axis), cex.lab = ifelse(!is.null(cex.lab),cex.lab,par()$cex.lab), cex.main = ifelse(!is.null(cex.main),cex.main,par()$cex.main), cex.sub = ifelse(!is.null(cex.sub),cex.sub,par()$cex.sub),"))
pmainE = "main = ifelse(!is.null(main),main,''), sub = ifelse(!is.null(sub),sub,''),"
txobjE <-
parse(text = paste("npscoef(txdat = xdat, tydat = ydat,",
ifelse(miss.z,"","tzdat = zdat,"),
"exdat = subcol(exdat,ei,i)[1:xi.neval,, drop = FALSE],",
ifelse(miss.z,"","ezdat = ezdat[1:xi.neval,, drop = FALSE],"),
"bws = bws, errors = plot.errors)"))
plotOnEstimate = (plot.errors.center == "estimate")
efunE = "draw.errors"
eexE = expression(ifelse(common.scale, "ex = as.numeric(na.omit(allei[,plot.index])),",
"ex = as.numeric(na.omit(ei)),"))
eelyE = expression(ifelse(common.scale,
ifelse(plotOnEstimate, "ely = na.omit(data.eval[,plot.index] - data.err[,3*plot.index-2]),",
"ely = na.omit(data.err[,3*plot.index] - data.err[,3*plot.index-2]),"),
ifelse(plotOnEstimate, "ely = na.omit(temp.mean - temp.err[,1]),",
"ely = na.omit(temp.err[,3] - temp.err[,1]),")))
eehyE = expression(ifelse(common.scale,
ifelse(plotOnEstimate, "ehy = na.omit(data.eval[,plot.index] + data.err[,3*plot.index-1]),",
"ehy = na.omit(data.err[,3*plot.index] + data.err[,3*plot.index-1]),"),
ifelse(plotOnEstimate, "ehy = na.omit(temp.mean + temp.err[,2]),",
"ehy = na.omit(temp.err[,3] + temp.err[,2]),")))
erestE = "plot.errors.style = ifelse(xi.factor,'bar',plot.errors.style),
plot.errors.bar = ifelse(xi.factor,'I',plot.errors.bar),
plot.errors.bar.num = plot.errors.bar.num,
lty = ifelse(xi.factor,1,2)"
plot.index = 0
xOrZ = "x"
for (i in 1:bws$xndim){
plot.index = plot.index + 1
temp.err[,] = NA
temp.mean[] = NA
temp.boot = list()
xi.factor = all.isFactor[plot.index]
if (xi.factor){
ei = bws$xdati$all.ulev[[i]]
xi.neval = length(ei)
} else {
xi.neval = neval
qi = trim.quantiles(xdat[,i], xtrim[i])
ei = seq(qi[1], qi[2], length.out = neval)
}
if (xi.neval < maxneval){
ei[(xi.neval+1):maxneval] = NA
}
tobj <- eval(txobjE)
temp.mean[1:xi.neval] = tobj$mean
if (plot.errors){
if (plot.errors.method == "asymptotic")
temp.err[1:xi.neval,1:2] = 2.0*tobj$merr
else if (plot.errors.method == "bootstrap"){
temp.boot <- eval(parse(text = paste("compute.bootstrap.errors(",
"xdat = xdat, ydat = ydat,",
ifelse(miss.z, "", "zdat = zdat,"),
"exdat = subcol(exdat,ei,i)[1:xi.neval,, drop = FALSE],",
ifelse(miss.z,"","ezdat = ezdat[1:xi.neval,, drop = FALSE],"),
"gradients = gradients,",
"slice.index = plot.index,",
"plot.errors.boot.method = plot.errors.boot.method,",
"plot.errors.boot.blocklen = plot.errors.boot.blocklen,",
"plot.errors.boot.num = plot.errors.boot.num,",
"plot.errors.center = plot.errors.center,",
"plot.errors.type = plot.errors.type,",
"plot.errors.quantiles = plot.errors.quantiles,",
"bws = bws)")))
temp.err[1:xi.neval,] <- temp.boot[["boot.err"]]
temp.boot <- temp.boot[["bxp"]]
if (!plot.bxp.out){
temp.boot$out <- numeric()
temp.boot$group <- integer()
}
}
}
if (common.scale){
allei[,plot.index] = ei
data.eval[, plot.index] = temp.mean
if (plot.errors){
all.bxp[plot.index] = NA
all.bxp[[plot.index]] = temp.boot
data.err[, c(3*plot.index-2,3*plot.index-1,3*plot.index)] = temp.err
}
} else if (plot.behavior != "data") {
eval(parse(text = paste(eval(pfunE), "(", eval(pxE), eval(pyE),
eval(pylimE), eval(pxlabE), eval(pylabE), eval(prestE),
eval(pmainE), ")")))
if (plot.errors && !(xi.factor & plot.bootstrap & plot.bxp)){
if (!xi.factor && !plotOnEstimate)
lines(na.omit(ei), na.omit(temp.err[,3]), lty = 3)
eval(parse(text = paste(eval(efunE), "(", eval(eexE), eval(eelyE),
eval(eehyE), eval(erestE), ")")))
}
}
if (plot.behavior != "plot") {
plot.out[plot.index] = NA
if (gradients){
} else {
plot.out[[plot.index]] =
eval(parse(text = paste("smoothcoefficient(bws = bws,",
"eval = ", ifelse(miss.z, "subcol(exdat,ei,i)[1:xi.neval,, drop = FALSE],",
"list(exdat = subcol(exdat,ei,i)[1:xi.neval,, drop = FALSE], ezdat = ezdat[1:xi.neval,, drop = FALSE]),"),
"mean = na.omit(temp.mean),",
"ntrain = dim(xdat)[1],",
"trainiseval = FALSE,",
"xtra = c(0, 0, 0, 0, 0, 0))")))
plot.out[[plot.index]]$merr = NA
plot.out[[plot.index]]$bias = NA
if (plot.errors)
plot.out[[plot.index]]$merr = temp.err[,1:2]
if (plot.errors.center == "bias-corrected")
plot.out[[plot.index]]$bias = temp.err[,3] - temp.mean
plot.out[[plot.index]]$bxp = temp.boot
}
}
}
if (!miss.z){
xOrZ = "z"
for (i in 1:bws$zndim){
plot.index = plot.index + 1
temp.err[,] = NA
temp.mean[] = NA
temp.boot = list()
xi.factor = all.isFactor[plot.index]
if (xi.factor){
ei = bws$zdati$all.ulev[[i]]
xi.neval = length(ei)
} else {
xi.neval = neval
qi = trim.quantiles(zdat[,i], ztrim[i])
ei = seq(qi[1], qi[2], length.out = neval)
}
if (xi.neval < maxneval){
ei[(xi.neval+1):maxneval] = NA
}
tobj <- npscoef(txdat = xdat, tydat = ydat, tzdat = zdat,
exdat = exdat[1:xi.neval,, drop = FALSE],
ezdat = subcol(ezdat,ei,i)[1:xi.neval,, drop = FALSE],
bws = bws)
temp.mean[1:xi.neval] = tobj$mean
if (plot.errors){
if (plot.errors.method == "asymptotic")
temp.err[1:xi.neval,1:2] = 2.0*tobj$merr
else if (plot.errors.method == "bootstrap"){
temp.boot <- compute.bootstrap.errors(
xdat = xdat,
ydat = ydat,
zdat = zdat,
exdat = exdat[1:xi.neval,, drop = FALSE],
ezdat = subcol(ezdat,ei,i)[1:xi.neval,, drop = FALSE],
gradients = gradients,
slice.index = plot.index,
plot.errors.boot.method = plot.errors.boot.method,
plot.errors.boot.blocklen = plot.errors.boot.blocklen,
plot.errors.boot.num = plot.errors.boot.num,
plot.errors.center = plot.errors.center,
plot.errors.type = plot.errors.type,
plot.errors.quantiles = plot.errors.quantiles,
bws = bws)
temp.err[1:xi.neval,] <- temp.boot[["boot.err"]]
temp.boot <- temp.boot[["bxp"]]
if (!plot.bxp.out){
temp.boot$out <- numeric()
temp.boot$group <- integer()
}
}
}
if (common.scale){
allei[,plot.index] = ei
data.eval[, plot.index] = temp.mean
if (plot.errors){
all.bxp[plot.index] = NA
all.bxp[[plot.index]] = temp.boot
data.err[, c(3*plot.index-2,3*plot.index-1,3*plot.index)] = temp.err
}
} else if (plot.behavior != "data") {
eval(parse(text = paste(eval(pfunE), "(", eval(pxE), eval(pyE),
eval(pylimE), eval(pxlabE), eval(pylabE), eval(prestE),
eval(pmainE), ")")))
if (plot.errors && !(xi.factor & plot.bootstrap & plot.bxp)){
if (!xi.factor && !plotOnEstimate)
lines(na.omit(ei), na.omit(temp.err[,3]), lty = 3)
eval(parse(text = paste(eval(efunE), "(", eval(eexE), eval(eelyE),
eval(eehyE), eval(erestE), ")")))
}
}
if (plot.behavior != "plot") {
plot.out[plot.index] = NA
if (gradients){
} else {
plot.out[[plot.index]] =
smoothcoefficient(bws = bws,
eval = list(exdat = exdat[1:xi.neval,, drop = FALSE],
ezdat = subcol(ezdat,ei,i)[1:xi.neval,, drop = FALSE]),
mean = na.omit(temp.mean),
ntrain = dim(zdat)[1],
trainiseval = FALSE)
plot.out[[plot.index]]$merr = NA
plot.out[[plot.index]]$bias = NA
if (plot.errors)
plot.out[[plot.index]]$merr = temp.err[,1:2]
if (plot.errors.center == "bias-corrected")
plot.out[[plot.index]]$bias = temp.err[,3] - temp.mean
plot.out[[plot.index]]$bxp = temp.boot
}
}
}
}
if (common.scale & (plot.behavior != "data")){
jj = 1:(bws$xndim + bws$zndim)*3
if (plot.errors.center == "estimate" | !plot.errors) {
y.max = max(na.omit(as.double(data.eval)) +
if (plot.errors) na.omit(as.double(data.err[,jj-1]))
else 0)
y.min = min(na.omit(as.double(data.eval)) -
if (plot.errors) na.omit(as.double(data.err[,jj-2]))
else 0)
} else if (plot.errors.center == "bias-corrected") {
y.max = max(na.omit(as.double(data.err[,jj] + data.err[,jj-1])))
y.min = min(na.omit(as.double(data.err[,jj] - data.err[,jj-2])))
}
if(!is.null(ylim)){
y.min = ylim[1]
y.max = ylim[2]
}
xOrZ = "x"
for (plot.index in 1:(bws$xndim + bws$zndim)){
i = ifelse(plot.index <= bws$xndim, plot.index, plot.index - bws$xndim)
if (plot.index > bws$xndim)
xOrZ <- "z"
xi.factor = all.isFactor[plot.index]
eval(parse(text = paste(eval(pfunE), "(", eval(pxE), eval(pyE),
eval(pylimE), eval(pxlabE), eval(pylabE), eval(prestE),
eval(pmainE), ")")))
if (plot.errors && !(xi.factor & plot.bootstrap & plot.bxp)){
if (!xi.factor && !plotOnEstimate)
lines(na.omit(ei), na.omit(temp.err[,3]), lty = 3)
eval(parse(text = paste(eval(efunE), "(", eval(eexE), eval(eelyE),
eval(eehyE), eval(erestE), ")")))
}
}
}
if (plot.behavior != "data" && plot.par.mfrow)
par(mfrow=c(1,1),cex=par()$cex)
if (plot.behavior != "plot"){
names(plot.out) =
if (gradients){ }
else
paste("sc",1:(bws$xndim+bws$zndim),sep="")
return (plot.out)
}
}
}
npplot.plbandwidth <-
function(bws,
xdat,
ydat,
zdat,
data = NULL,
xq = 0.5,
zq = 0.5,
xtrim = 0.0,
ztrim = 0.0,
neval = 50,
common.scale = TRUE,
perspective = TRUE,
gradients = FALSE,
main = NULL,
type = NULL,
border = NULL,
cex.axis = NULL,
cex.lab = NULL,
cex.main = NULL,
cex.sub = NULL,
col = NULL,
ylab = NULL,
xlab = NULL,
zlab = NULL,
sub = NULL,
ylim = NULL,
xlim = NULL,
zlim = NULL,
lty = NULL,
lwd = NULL,
theta = 0.0,
phi = 10.0,
view = c("rotate","fixed"),
plot.behavior = c("plot","plot-data","data"),
plot.errors.method = c("none","bootstrap","asymptotic"),
plot.errors.boot.method = c("inid", "fixed", "geom"),
plot.errors.boot.blocklen = NULL,
plot.errors.boot.num = 399,
plot.errors.center = c("estimate","bias-corrected"),
plot.errors.type = c("standard","quantiles"),
plot.errors.quantiles = c(0.025,0.975),
plot.errors.style = c("band","bar"),
plot.errors.bar = c("|","I"),
plot.errors.bar.num = min(neval,25),
plot.bxp = FALSE,
plot.bxp.out = TRUE,
plot.par.mfrow = TRUE,
...,
random.seed){
if(!is.null(options('plot.par.mfrow')$plot.par.mfrow))
plot.par.mfrow <- options('plot.par.mfrow')$plot.par.mfrow
if(!missing(gradients))
stop("gradients not supported with partially linear models. Coefficients may be extracted with coef()")
miss.xyz = c(missing(xdat), missing(ydat), missing(zdat))
if (any(miss.xyz) && !all(miss.xyz))
stop("one of, but not both, xdat and ydat was specified")
else if(all(miss.xyz) && !is.null(bws$formula)){
tt <- terms(bws)
m <- match(c("formula", "data", "subset", "na.action"),
names(bws$call), nomatch = 0)
tmf.xf <- tmf.x <- tmf <- bws$call[c(1,m)]
tmf.x[[1]] <- as.name("model.matrix")
tmf.xf[[1]] <- tmf[[1]] <- as.name("model.frame")
tmf[["formula"]] <- tt
umf <- tmf <- eval(tmf, envir = environment(tt))
bronze <- lapply(bws$chromoly, paste, collapse = " + ")
tmf.x[["object"]] <- as.formula(paste(" ~ ", bronze[[2]]),
env = environment(formula))
tmf.x <- eval(tmf.x,parent.frame())
tmf.xf[["formula"]] <- as.formula(paste(" ~ ", bronze[[2]]),
env = environment(formula))
tmf.xf <- eval(tmf.xf,parent.frame())
ydat <- model.response(tmf)
xdat <- as.data.frame(tmf.x[,-1, drop = FALSE])
cc <- attr(tmf.x,'assign')[-1]
for(i in 1:length(cc))
xdat[,i] <- cast(xdat[,i], tmf.xf[,cc[i]], same.levels = FALSE)
zdat <- tmf[, bws$chromoly[[3]], drop = FALSE]
} else {
if(all(miss.xyz) && !is.null(bws$call)){
xdat <- data.frame(eval(bws$call[["xdat"]], environment(bws$call)))
ydat = eval(bws$call[["ydat"]], environment(bws$call))
zdat <- data.frame(eval(bws$call[["zdat"]], environment(bws$call)))
}
xdat = toFrame(xdat)
zdat = toFrame(zdat)
goodrows = 1:dim(xdat)[1]
rows.omit = attr(na.omit(data.frame(xdat,ydat,zdat)), "na.action")
goodrows[rows.omit] = 0
if (all(goodrows==0))
stop("Training data has no rows without NAs")
xdat = xdat[goodrows,,drop = FALSE]
ydat = ydat[goodrows]
zdat = zdat[goodrows,,drop = FALSE]
}
nxcon = sum(bws$xdati$icon)
nxuno = sum(bws$xdati$iuno)
nxord = sum(bws$xdati$iord)
nzcon = sum(bws$zdati$icon)
nzuno = sum(bws$zdati$iuno)
nzord = sum(bws$zdati$iord)
xq = double(bws$xndim)+xq
zq = double(bws$zndim)+zq
xtrim = double(bws$xndim)+xtrim
ztrim = double(bws$zndim)+ztrim
if (missing(plot.errors.method) &
any(!missing(plot.errors.boot.num), !missing(plot.errors.boot.method),
!missing(plot.errors.boot.blocklen))){
warning(paste("plot.errors.method must be set to 'bootstrap' to use bootstrapping.",
"\nProceeding without bootstrapping."))
}
plot.behavior = match.arg(plot.behavior)
plot.errors.method = match.arg(plot.errors.method)
plot.errors.boot.method = match.arg(plot.errors.boot.method)
plot.errors.center = match.arg(plot.errors.center)
plot.errors.type = match.arg(plot.errors.type)
plot.errors.style = match.arg(plot.errors.style)
plot.errors.bar = match.arg(plot.errors.bar)
common.scale = common.scale | (!is.null(ylim))
if (plot.errors.method == "asymptotic") {
warning(paste("asymptotic errors are not supported with partially linear regression.\n",
"Proceeding without calculating errors"))
plot.errors.method = "none"
}
if (is.element(plot.errors.boot.method, c("fixed", "geom")) &&
is.null(plot.errors.boot.blocklen))
plot.errors.boot.blocklen = b.star(xdat,round=TRUE)[1,1]
plot.errors = (plot.errors.method != "none")
if ((nxcon + nxord == 1) & (nzcon + nzord == 1) & (nxuno + nzuno == 0) &
perspective & !gradients & !any(xor(bws$xdati$iord, bws$xdati$inumord)) &
!any(xor(bws$zdati$iord, bws$zdati$inumord))){
view = match.arg(view)
rotate = (view == "rotate")
if (is.ordered(xdat[,1])){
x1.eval = bws$xdati$all.ulev[[1]]
x1.neval = length(x1.eval)
} else {
x1.neval = neval
qi = trim.quantiles(xdat[,1], xtrim[1])
x1.eval = seq(qi[1], qi[2], length.out = x1.neval)
}
if (is.ordered(zdat[,1])){
z1.eval = bws$zdati$all.ulev[[1]]
z1.neval = length(z1.eval)
} else {
z1.neval = neval
qi = trim.quantiles(zdat[,1], ztrim[1])
z1.eval = seq(qi[1], qi[2], length.out = z1.neval)
}
x.eval <- expand.grid(x1.eval, z1.eval)
if (bws$xdati$iord[1])
x1.eval <- (bws$xdati$all.dlev[[1]])[as.integer(x1.eval)]
if (bws$zdati$iord[1])
z1.eval <- (bws$zdati$all.dlev[[1]])[as.integer(z1.eval)]
tobj = npplreg(txdat = xdat, tydat = ydat, tzdat = zdat,
exdat = x.eval[,1], ezdat = x.eval[,2], bws = bws)
terr = matrix(data = NA, nrow = nrow(x.eval), ncol = 3)
treg = matrix(data = tobj$mean,
nrow = x1.neval, ncol = z1.neval, byrow = FALSE)
if (plot.errors.method == "bootstrap"){
terr <- compute.bootstrap.errors(
xdat = xdat, ydat = ydat, zdat = zdat,
exdat = x.eval[,1], ezdat = x.eval[,2],
gradients = FALSE,
slice.index = 0,
plot.errors.boot.method = plot.errors.boot.method,
plot.errors.boot.blocklen = plot.errors.boot.blocklen,
plot.errors.boot.num = plot.errors.boot.num,
plot.errors.center = plot.errors.center,
plot.errors.type = plot.errors.type,
plot.errors.quantiles = plot.errors.quantiles,
bws = bws)[["boot.err"]]
pc = (plot.errors.center == "bias-corrected")
lerr = matrix(data = if(pc) {terr[,3]} else {tobj$mean}
-terr[,1],
nrow = x1.neval, ncol = z1.neval, byrow = FALSE)
herr = matrix(data = if(pc) {terr[,3]} else {tobj$mean}
+terr[,2],
nrow = x1.neval, ncol = z1.neval, byrow = FALSE)
}
if(is.null(zlim)) {
zlim =
if (plot.errors)
c(min(lerr),max(herr))
else
c(min(tobj$mean),max(tobj$mean))
}
if (plot.behavior != "plot"){
r1 = plregression(bws = bws, xcoef = tobj$xcoef,
xcoefvcov = vcov(tobj),
xcoeferr = tobj$xcoeferr,
evalx = x.eval[,1],
evalz = x.eval[,2],
mean = tobj$mean,
ntrain = dim(xdat)[1],
trainiseval = FALSE,
xtra=c(tobj$RSQ,tobj$MSE,0,0,0,0))
r1$merr = NA
r1$bias = NA
if (plot.errors)
r1$merr = terr[,1:2]
if (plot.errors.center == "bias-corrected")
r1$bias = terr[,3] - treg
if (plot.behavior == "data")
return ( list(r1 = r1) )
}
dtheta = 5.0
dphi = 10.0
persp.col = ifelse(plot.errors, FALSE, ifelse(!is.null(col),col,"lightblue"))
for (i in 0:((360 %/% dtheta - 1)*rotate)*dtheta+theta){
if (plot.errors){
persp(x1.eval,
z1.eval,
lerr,
zlim = zlim,
cex.axis = ifelse(!is.null(cex.axis),cex.axis,par()$cex.axis),
cex.lab = ifelse(!is.null(cex.lab),cex.lab,par()$cex.lab),
cex.main = ifelse(!is.null(cex.main),cex.main,par()$cex.main),
cex.sub = ifelse(!is.null(cex.sub),cex.sub,par()$cex.sub),
col = persp.col,
border = ifelse(!is.null(border),border,"grey"),
ticktype = "detailed",
xlab = "",
ylab = "",
zlab = "",
theta = i,
phi = phi,
lwd = ifelse(!is.null(lwd),lwd,par()$lwd))
par(new = TRUE)
}
persp(x1.eval,
z1.eval,
treg,
zlim = zlim,
col = persp.col,
border = ifelse(!is.null(border),border,"black"),
ticktype = "detailed",
cex.axis = ifelse(!is.null(cex.axis),cex.axis,par()$cex.axis),
cex.lab = ifelse(!is.null(cex.lab),cex.lab,par()$cex.lab),
cex.main = ifelse(!is.null(cex.main),cex.main,par()$cex.main),
cex.sub = ifelse(!is.null(cex.sub),cex.sub,par()$cex.sub),
xlab = ifelse(!is.null(xlab),xlab,gen.label(names(xdat)[1], "X1")),
ylab = ifelse(!is.null(ylab),ylab,gen.label(names(xdat)[2], "Z1")),
zlab = ifelse(!is.null(zlab),zlab,gen.label(names(ydat),"Conditional Mean")),
theta = i,
phi = phi,
main = gen.tflabel(!is.null(main), main, paste("[theta= ", i,", phi= ", phi,"]", sep="")))
if (plot.errors){
par(new = TRUE)
persp(x1.eval,
z1.eval,
herr,
zlim = zlim,
cex.axis = ifelse(!is.null(cex.axis),cex.axis,par()$cex.axis),
cex.lab = ifelse(!is.null(cex.lab),cex.lab,par()$cex.lab),
cex.main = ifelse(!is.null(cex.main),cex.main,par()$cex.main),
cex.sub = ifelse(!is.null(cex.sub),cex.sub,par()$cex.sub),
col = persp.col,
border = ifelse(!is.null(border),border,"grey"),
ticktype = "detailed",
xlab = "",
ylab = "",
zlab = "",
theta = i,
phi = phi,
lwd = ifelse(!is.null(lwd),lwd,par()$lwd))
}
Sys.sleep(0.5)
}
if (plot.behavior == "plot-data")
return ( list(r1 = r1) )
} else {
if (plot.behavior != "data" && plot.par.mfrow)
par(mfrow=n2mfrow(bws$xndim + bws$zndim),cex=par()$cex)
x.ev = xdat[1,,drop = FALSE]
z.ev = zdat[1,,drop = FALSE]
for (i in 1:bws$xndim)
x.ev[1,i] = uocquantile(xdat[,i], prob=xq[i])
for (i in 1:bws$zndim)
z.ev[1,i] = uocquantile(zdat[,i], prob=zq[i])
maxneval = max(c(sapply(xdat,nlevels), sapply(zdat,nlevels), neval))
exdat = as.data.frame(matrix(data = 0, nrow = maxneval, ncol = bws$xndim))
ezdat = as.data.frame(matrix(data = 0, nrow = maxneval, ncol = bws$zndim))
for (i in 1:bws$xndim)
exdat[,i] = x.ev[1,i]
for (i in 1:bws$zndim)
ezdat[,i] = z.ev[1,i]
if (common.scale){
data.eval = matrix(data = NA, nrow = maxneval,
ncol = (bws$xndim + bws$zndim))
data.err = matrix(data = NA, nrow = maxneval,
ncol = 3*(bws$xndim + bws$zndim))
allei = as.data.frame(matrix(data = NA, nrow = maxneval,
ncol = bws$xndim + bws$zndim))
all.bxp = list()
}
all.isFactor = c(sapply(xdat, is.factor), sapply(zdat, is.factor))
plot.out = list()
temp.err = matrix(data = NA, nrow = maxneval, ncol = 3)
temp.mean = replicate(maxneval, NA)
plot.bootstrap = plot.errors.method == "bootstrap"
pfunE = expression(ifelse(xi.factor,
ifelse(plot.bootstrap & plot.bxp,"bxp","plotFactor"), "plot"))
pxE = expression(ifelse(common.scale,
ifelse(xi.factor,
ifelse(plot.bootstrap & plot.bxp, "all.bxp[[plot.index]],",
"f = allei[,plot.index],"),
"x = allei[,plot.index],"),
ifelse(xi.factor,
ifelse(plot.bootstrap & plot.bxp, "z = temp.boot,", "f = ei,"),
"x = ei,")))
pyE = expression(ifelse(xi.factor & plot.bootstrap & plot.bxp, "",
ifelse(common.scale,"y = data.eval[,plot.index],", "y = temp.mean,")))
pylimE = ifelse(common.scale, "ylim = c(y.min,y.max),",
ifelse(plot.errors, "ylim = c(min(na.omit(c(temp.mean - temp.err[,1], temp.err[,3] - temp.err[,1]))),
max(na.omit(c(temp.mean + temp.err[,2], temp.err[,3] + temp.err[,2])))),", ""))
pxlabE = expression(paste("xlab = gen.label(bws$",
xOrZ, "names[i], paste('", toupper(xOrZ),"', i, sep = '')),",sep=''))
pylabE = "ylab = paste(ifelse(gradients,
paste('Gradient Component ', i, ' of', sep=''), ''),
gen.label(bws$ynames, 'Conditional Mean')),"
prestE = expression(ifelse(xi.factor,"", "type = ifelse(!is.null(type),type,'l'), lty = ifelse(!is.null(lty),lty,par()$lty), col = ifelse(!is.null(col),col,par()$col), lwd = ifelse(!is.null(lwd),lwd,par()$lwd), cex.axis = ifelse(!is.null(cex.axis),cex.axis,par()$cex.axis), cex.lab = ifelse(!is.null(cex.lab),cex.lab,par()$cex.lab), cex.main = ifelse(!is.null(cex.main),cex.main,par()$cex.main), cex.sub = ifelse(!is.null(cex.sub),cex.sub,par()$cex.sub),"))
pmainE = "main = ifelse(!is.null(main),main,''), sub = ifelse(!is.null(sub),sub,''),"
plotOnEstimate = (plot.errors.center == "estimate")
efunE = "draw.errors"
eexE = expression(ifelse(common.scale, "ex = as.numeric(na.omit(allei[,plot.index])),",
"ex = as.numeric(na.omit(ei)),"))
eelyE = expression(ifelse(common.scale,
ifelse(plotOnEstimate, "ely = na.omit(data.eval[,plot.index] - data.err[,3*plot.index-2]),",
"ely = na.omit(data.err[,3*plot.index] - data.err[,3*plot.index-2]),"),
ifelse(plotOnEstimate, "ely = na.omit(temp.mean - temp.err[,1]),",
"ely = na.omit(temp.err[,3] - temp.err[,1]),")))
eehyE = expression(ifelse(common.scale,
ifelse(plotOnEstimate, "ehy = na.omit(data.eval[,plot.index] + data.err[,3*plot.index-1]),",
"ehy = na.omit(data.err[,3*plot.index] + data.err[,3*plot.index-1]),"),
ifelse(plotOnEstimate, "ehy = na.omit(temp.mean + temp.err[,2]),",
"ehy = na.omit(temp.err[,3] + temp.err[,2]),")))
erestE = "plot.errors.style = ifelse(xi.factor,'bar',plot.errors.style),
plot.errors.bar = ifelse(xi.factor,'I',plot.errors.bar),
plot.errors.bar.num = plot.errors.bar.num,
lty = ifelse(xi.factor,1,2)"
plot.index = 0
xOrZ = "x"
for (i in 1:bws$xndim){
plot.index = plot.index + 1
temp.err[,] = NA
temp.mean[] = NA
temp.boot = list()
xi.factor = all.isFactor[plot.index]
if (xi.factor){
ei = bws$xdati$all.ulev[[i]]
xi.neval = length(ei)
} else {
xi.neval = neval
qi = trim.quantiles(xdat[,i], xtrim[i])
ei = seq(qi[1], qi[2], length.out = neval)
}
if (xi.neval < maxneval){
ei[(xi.neval+1):maxneval] = NA
}
tobj <- npplreg(txdat = xdat, tydat = ydat, tzdat = zdat,
exdat = subcol(exdat,ei,i)[1:xi.neval,, drop = FALSE],
ezdat = ezdat[1:xi.neval,, drop = FALSE],
bws = bws)
temp.mean[1:xi.neval] = tobj$mean
if (plot.errors){
if (plot.errors.method == "bootstrap"){
temp.boot <- compute.bootstrap.errors(
xdat = xdat,
ydat = ydat,
zdat = zdat,
exdat = subcol(exdat,ei,i)[1:xi.neval,, drop = FALSE],
ezdat = ezdat[1:xi.neval,, drop = FALSE],
gradients = gradients,
slice.index = plot.index,
plot.errors.boot.method = plot.errors.boot.method,
plot.errors.boot.blocklen = plot.errors.boot.blocklen,
plot.errors.boot.num = plot.errors.boot.num,
plot.errors.center = plot.errors.center,
plot.errors.type = plot.errors.type,
plot.errors.quantiles = plot.errors.quantiles,
bws = bws)
temp.err[1:xi.neval,] <- temp.boot[["boot.err"]]
temp.boot <- temp.boot[["bxp"]]
if (!plot.bxp.out){
temp.boot$out <- numeric()
temp.boot$group <- integer()
}
}
}
if (common.scale){
allei[,plot.index] = ei
data.eval[, plot.index] = temp.mean
if (plot.errors){
all.bxp[plot.index] = NA
all.bxp[[plot.index]] = temp.boot
data.err[, c(3*plot.index-2,3*plot.index-1,3*plot.index)] = temp.err
}
} else if (plot.behavior != "data") {
eval(parse(text = paste(eval(pfunE), "(", eval(pxE), eval(pyE),
eval(pylimE), eval(pxlabE), eval(pylabE), eval(prestE),
eval(pmainE), ")")))
if (plot.errors && !(xi.factor & plot.bootstrap & plot.bxp)){
if (!xi.factor && !plotOnEstimate)
lines(na.omit(ei), na.omit(temp.err[,3]), lty = 3)
eval(parse(text = paste(eval(efunE), "(", eval(eexE), eval(eelyE),
eval(eehyE), eval(erestE), ")")))
}
}
if (plot.behavior != "plot") {
plot.out[plot.index] = NA
if (gradients){
} else {
plot.out[[plot.index]] =
plregression(bws = bws, xcoef = tobj$xcoef, xcoefvcov = vcov(tobj),
xcoeferr = tobj$xcoeferr,
evalx = subcol(exdat,ei,i)[1:xi.neval,, drop = FALSE],
evalz = ezdat[1:xi.neval,, drop = FALSE],
mean = na.omit(temp.mean),
ntrain = dim(xdat)[1],
trainiseval = FALSE,
xtra = c(tobj$RSQ, tobj$MSE, 0, 0, 0, 0))
plot.out[[plot.index]]$merr = NA
plot.out[[plot.index]]$bias = NA
if (plot.errors)
plot.out[[plot.index]]$merr = temp.err[,1:2]
if (plot.errors.center == "bias-corrected")
plot.out[[plot.index]]$bias = temp.err[,3] - temp.mean
plot.out[[plot.index]]$bxp = temp.boot
}
}
}
xOrZ = "z"
for (i in 1:bws$zndim){
plot.index = plot.index + 1
temp.err[,] = NA
temp.mean[] = NA
temp.boot = list()
xi.factor = all.isFactor[plot.index]
if (xi.factor){
ei = bws$zdati$all.ulev[[i]]
xi.neval = length(ei)
} else {
xi.neval = neval
qi = trim.quantiles(zdat[,i], ztrim[i])
ei = seq(qi[1], qi[2], length.out = neval)
}
if (xi.neval < maxneval){
ei[(xi.neval+1):maxneval] = NA
}
tobj <- npplreg(txdat = xdat, tydat = ydat, tzdat = zdat,
exdat = exdat[1:xi.neval,, drop = FALSE],
ezdat = subcol(ezdat,ei,i)[1:xi.neval,, drop = FALSE],
bws = bws)
temp.mean[1:xi.neval] = tobj$mean
if (plot.errors){
if (plot.errors.method == "bootstrap"){
temp.boot <- compute.bootstrap.errors(
xdat = xdat,
ydat = ydat,
zdat = zdat,
exdat = exdat[1:xi.neval,, drop = FALSE],
ezdat = subcol(ezdat,ei,i)[1:xi.neval,, drop = FALSE],
gradients = gradients,
slice.index = plot.index,
plot.errors.boot.method = plot.errors.boot.method,
plot.errors.boot.blocklen = plot.errors.boot.blocklen,
plot.errors.boot.num = plot.errors.boot.num,
plot.errors.center = plot.errors.center,
plot.errors.type = plot.errors.type,
plot.errors.quantiles = plot.errors.quantiles,
bws = bws)
temp.err[1:xi.neval,] <- temp.boot[["boot.err"]]
temp.boot <- temp.boot[["bxp"]]
if (!plot.bxp.out){
temp.boot$out <- numeric()
temp.boot$group <- integer()
}
}
}
if (common.scale){
allei[,plot.index] = ei
data.eval[, plot.index] = temp.mean
if (plot.errors){
all.bxp[plot.index] = NA
all.bxp[[plot.index]] = temp.boot
data.err[, c(3*plot.index-2,3*plot.index-1,3*plot.index)] = temp.err
}
} else if (plot.behavior != "data") {
eval(parse(text = paste(eval(pfunE), "(", eval(pxE), eval(pyE),
eval(pylimE), eval(pxlabE), eval(pylabE), eval(prestE),
eval(pmainE), ")")))
if (plot.errors && !(xi.factor & plot.bootstrap & plot.bxp)){
if (!xi.factor && !plotOnEstimate)
lines(na.omit(ei), na.omit(temp.err[,3]), lty = 3)
eval(parse(text = paste(eval(efunE), "(", eval(eexE), eval(eelyE),
eval(eehyE), eval(erestE), ")")))
}
}
if (plot.behavior != "plot") {
plot.out[plot.index] = NA
if (gradients){
} else {
plot.out[[plot.index]] =
plregression(bws = bws, xcoef = tobj$xcoef,
xcoeferr = tobj$xcoeferr,
xcoefvcov = vcov(tobj),
evalx = exdat[1:xi.neval,, drop = FALSE],
evalz = subcol(ezdat,ei,i)[1:xi.neval,, drop = FALSE],
mean = na.omit(temp.mean),
ntrain = dim(zdat)[1],
trainiseval = FALSE,
xtra = c(tobj$RSQ, tobj$MSE, 0, 0, 0, 0))
plot.out[[plot.index]]$merr = NA
plot.out[[plot.index]]$bias = NA
if (plot.errors)
plot.out[[plot.index]]$merr = temp.err[,1:2]
if (plot.errors.center == "bias-corrected")
plot.out[[plot.index]]$bias = temp.err[,3] - temp.mean
plot.out[[plot.index]]$bxp = temp.boot
}
}
}
if (common.scale & (plot.behavior != "data")){
jj = 1:(bws$xndim + bws$zndim)*3
if (plot.errors.center == "estimate" | !plot.errors) {
y.max = max(na.omit(as.double(data.eval)) +
if (plot.errors) na.omit(as.double(data.err[,jj-1]))
else 0)
y.min = min(na.omit(as.double(data.eval)) -
if (plot.errors) na.omit(as.double(data.err[,jj-2]))
else 0)
} else if (plot.errors.center == "bias-corrected") {
y.max = max(na.omit(as.double(data.err[,jj] + data.err[,jj-1])))
y.min = min(na.omit(as.double(data.err[,jj] - data.err[,jj-2])))
}
if(!is.null(ylim)){
y.min = ylim[1]
y.max = ylim[2]
}
xOrZ = "x"
for (plot.index in 1:(bws$xndim + bws$zndim)){
i = ifelse(plot.index <= bws$xndim, plot.index, plot.index - bws$xndim)
if (plot.index > bws$xndim)
xOrZ <- "z"
xi.factor = all.isFactor[plot.index]
eval(parse(text = paste(eval(pfunE), "(", eval(pxE), eval(pyE),
eval(pylimE), eval(pxlabE), eval(pylabE), eval(prestE),
eval(pmainE), ")")))
if (plot.errors && !(xi.factor & plot.bootstrap & plot.bxp)){
if (!xi.factor && !plotOnEstimate)
lines(na.omit(ei), na.omit(temp.err[,3]), lty = 3)
eval(parse(text = paste(eval(efunE), "(", eval(eexE), eval(eelyE),
eval(eehyE), eval(erestE), ")")))
}
}
}
if (plot.behavior != "data" && plot.par.mfrow)
par(mfrow=c(1,1),cex=par()$cex)
if (plot.behavior != "plot"){
names(plot.out) =
if (gradients){ }
else
paste("plr",1:(bws$xndim+bws$zndim),sep="")
return (plot.out)
}
}
}
npplot.bandwidth <-
function(bws,
xdat,
data = NULL,
xq = 0.5,
xtrim = 0.0,
neval = 50,
common.scale = TRUE,
perspective = TRUE,
main = NULL,
type = NULL,
border = NULL,
cex.axis = NULL,
cex.lab = NULL,
cex.main = NULL,
cex.sub = NULL,
col = NULL,
ylab = NULL,
xlab = NULL,
zlab = NULL,
sub = NULL,
ylim = NULL,
xlim = NULL,
zlim = NULL,
lty = NULL,
lwd = NULL,
theta = 0.0,
phi = 10.0,
view = c("rotate","fixed"),
plot.behavior = c("plot","plot-data","data"),
plot.errors.method = c("none","bootstrap","asymptotic"),
plot.errors.boot.method = c("inid", "fixed", "geom"),
plot.errors.boot.blocklen = NULL,
plot.errors.boot.num = 399,
plot.errors.center = c("estimate","bias-corrected"),
plot.errors.type = c("standard","quantiles"),
plot.errors.quantiles = c(0.025,0.975),
plot.errors.style = c("band","bar"),
plot.errors.bar = c("|","I"),
plot.errors.bar.num = min(neval,25),
plot.bxp = FALSE,
plot.bxp.out = TRUE,
plot.par.mfrow = TRUE,
...,
random.seed){
if(!is.null(options('plot.par.mfrow')$plot.par.mfrow))
plot.par.mfrow <- options('plot.par.mfrow')$plot.par.mfrow
miss.x <- missing(xdat)
if(miss.x && !is.null(bws$formula)){
tt <- terms(bws)
m <- match(c("formula", "data", "subset", "na.action"),
names(bws$call), nomatch = 0)
tmf <- bws$call[c(1,m)]
tmf[[1]] <- as.name("model.frame")
tmf[["formula"]] <- tt
umf <- tmf <- eval(tmf, envir = environment(tt))
xdat <- tmf[, attr(attr(tmf, "terms"),"term.labels"), drop = FALSE]
} else {
if(miss.x && !is.null(bws$call)){
xdat <- data.frame(eval(bws$call[["dat"]], environment(bws$call)))
}
xdat = toFrame(xdat)
xdat = na.omit(xdat)
}
xq = double(bws$ndim)+xq
xtrim = double(bws$ndim)+xtrim
if (missing(plot.errors.method) &
any(!missing(plot.errors.boot.num), !missing(plot.errors.boot.method),
!missing(plot.errors.boot.blocklen))){
warning(paste("plot.errors.method must be set to 'bootstrap' to use bootstrapping.",
"\nProceeding without bootstrapping."))
}
plot.behavior = match.arg(plot.behavior)
plot.errors.method = match.arg(plot.errors.method)
plot.errors.boot.method = match.arg(plot.errors.boot.method)
plot.errors.center = match.arg(plot.errors.center)
plot.errors.type = match.arg(plot.errors.type)
plot.errors.style = match.arg(plot.errors.style)
plot.errors.bar = match.arg(plot.errors.bar)
common.scale = common.scale | (!is.null(ylim))
if (plot.errors.method == "asymptotic") {
if (plot.errors.type == "quantiles"){
warning("quantiles cannot be calculated with asymptotics, calculating standard errors")
plot.errors.type = "standard"
}
if (plot.errors.center == "bias-corrected") {
warning("no bias corrections can be calculated with asymptotics, centering on estimate")
plot.errors.center = "estimate"
}
}
if (is.element(plot.errors.boot.method, c("fixed", "geom")) &&
is.null(plot.errors.boot.blocklen))
plot.errors.boot.blocklen = b.star(xdat,round=TRUE)[1,1]
plot.errors = (plot.errors.method != "none")
if ((bws$ncon + bws$nord == 2) & (bws$nuno == 0) & perspective &
!any(xor(bws$xdati$iord, bws$xdati$inumord))){
view = match.arg(view)
rotate = (view == "rotate")
if (is.ordered(xdat[,1])){
x1.eval = bws$xdati$all.ulev[[1]]
x1.neval = length(x1.eval)
} else {
x1.neval = neval
qi = trim.quantiles(xdat[,1], xtrim[1])
x1.eval = seq(qi[1], qi[2], length.out = x1.neval)
}
if (is.ordered(xdat[,2])){
x2.eval = bws$xdati$all.ulev[[2]]
x2.neval = length(x2.eval)
} else {
x2.neval = neval
qi = trim.quantiles(xdat[,2], xtrim[2])
x2.eval = seq(qi[1], qi[2], length.out = x2.neval)
}
x.eval <- expand.grid(x1.eval, x2.eval)
if (is.ordered(xdat[,1]))
x1.eval <- (bws$xdati$all.dlev[[1]])[as.integer(x1.eval)]
if (is.ordered(xdat[,2]))
x2.eval <- (bws$xdati$all.dlev[[2]])[as.integer(x2.eval)]
tobj = npudens(tdat = xdat, edat = x.eval, bws = bws)
tcomp = parse(text="tobj$dens")
tdens = matrix(data = eval(tcomp),
nrow = x1.neval, ncol = x2.neval, byrow = FALSE)
terr = matrix(data = tobj$derr, nrow = nrow(x.eval), ncol = 3)
terr[,3] = NA
if (plot.errors.method == "bootstrap"){
terr <- compute.bootstrap.errors(xdat = xdat,
exdat = x.eval,
cdf = FALSE,
slice.index = 0,
plot.errors.boot.method = plot.errors.boot.method,
plot.errors.boot.blocklen = plot.errors.boot.blocklen,
plot.errors.boot.num = plot.errors.boot.num,
plot.errors.center = plot.errors.center,
plot.errors.type = plot.errors.type,
plot.errors.quantiles = plot.errors.quantiles,
bws = bws)[["boot.err"]]
pc = (plot.errors.center == "bias-corrected")
lerr = matrix(data = if(pc) {terr[,3]} else {eval(tcomp)}
-terr[,1],
nrow = x1.neval, ncol = x2.neval, byrow = FALSE)
herr = matrix(data = if(pc) {terr[,3]} else {eval(tcomp)}
+terr[,2],
nrow = x1.neval, ncol = x2.neval, byrow = FALSE)
} else if (plot.errors.method == "asymptotic") {
lerr = matrix(data = eval(tcomp) - 2.0*tobj$derr,
nrow = x1.neval, ncol = x2.neval, byrow = FALSE)
herr = matrix(data = eval(tcomp) + 2.0*tobj$derr,
nrow = x1.neval, ncol = x2.neval, byrow = FALSE)
}
if(is.null(zlim)) {
zlim =
if (plot.errors)
c(min(lerr),max(herr))
else
c(min(eval(tcomp)),max(eval(tcomp)))
}
tret = parse(text=paste(
"npdensity",
"(bws = bws, eval = x.eval,",
"dens",
" = eval(tcomp), derr = terr[,1:2], ntrain = nrow(xdat))", sep=""))
if (plot.behavior != "plot"){
d1 = eval(tret)
d1$bias = NA
if (plot.errors.center == "bias-corrected")
d1$bias = terr[,3] - eval(tcomp)
if (plot.behavior == "data")
return ( list(d1 = d1) )
}
dtheta = 5.0
dphi = 10.0
persp.col = ifelse(plot.errors, FALSE, ifelse(!is.null(col),col,"lightblue"))
for (i in 0:((360 %/% dtheta - 1)*rotate)*dtheta+theta){
if (plot.errors){
persp(x1.eval,
x2.eval,
lerr,
zlim = zlim,
cex.axis = ifelse(!is.null(cex.axis),cex.axis,par()$cex.axis),
cex.lab = ifelse(!is.null(cex.lab),cex.lab,par()$cex.lab),
cex.main = ifelse(!is.null(cex.main),cex.main,par()$cex.main),
cex.sub = ifelse(!is.null(cex.sub),cex.sub,par()$cex.sub),
col = persp.col,
border = ifelse(!is.null(border),border,"grey"),
ticktype = "detailed",
xlab = "",
ylab = "",
zlab = "",
theta = i,
phi = phi,
lwd = ifelse(!is.null(lwd),lwd,par()$lwd))
par(new = TRUE)
}
persp(x1.eval,
x2.eval,
tdens,
zlim = zlim,
col = persp.col,
border = ifelse(!is.null(border),border,"black"),
ticktype = "detailed",
cex.axis = ifelse(!is.null(cex.axis),cex.axis,par()$cex.axis),
cex.lab = ifelse(!is.null(cex.lab),cex.lab,par()$cex.lab),
cex.main = ifelse(!is.null(cex.main),cex.main,par()$cex.main),
cex.sub = ifelse(!is.null(cex.sub),cex.sub,par()$cex.sub),
xlab = ifelse(!is.null(xlab),xlab,gen.label(names(xdat)[1], "X1")),
ylab = ifelse(!is.null(ylab),ylab,gen.label(names(xdat)[2], "X2")),
zlab = ifelse(!is.null(zlab),zlab,"Joint Density"),
theta = i,
phi = phi,
main = gen.tflabel(!is.null(main), main, paste("[theta= ", i,", phi= ", phi,"]", sep="")))
if (plot.errors){
par(new = TRUE)
persp(x1.eval,
x2.eval,
herr,
zlim = zlim,
cex.axis = ifelse(!is.null(cex.axis),cex.axis,par()$cex.axis),
cex.lab = ifelse(!is.null(cex.lab),cex.lab,par()$cex.lab),
cex.main = ifelse(!is.null(cex.main),cex.main,par()$cex.main),
cex.sub = ifelse(!is.null(cex.sub),cex.sub,par()$cex.sub),
col = persp.col,
border = ifelse(!is.null(border),border,"grey"),
ticktype = "detailed",
xlab = "",
ylab = "",
zlab = "",
theta = i,
phi = phi,
lwd = ifelse(!is.null(lwd),lwd,par()$lwd))
}
Sys.sleep(0.5)
}
if (plot.behavior == "plot-data")
return ( list(d1 = d1) )
} else {
if (plot.behavior != "data" && plot.par.mfrow)
par(mfrow=n2mfrow(bws$ndim),cex=par()$cex)
ev = xdat[1,,drop = FALSE]
for (i in 1:bws$ndim)
ev[1,i] = uocquantile(xdat[,i], prob=xq[i])
maxneval = max(c(sapply(xdat,nlevels),neval))
exdat = as.data.frame(matrix(data = 0, nrow = maxneval, ncol = bws$ndim))
for (i in 1:bws$ndim)
exdat[,i] = ev[1,i]
if (common.scale){
data.eval = matrix(data = NA, nrow = maxneval, ncol = bws$ndim)
data.err = matrix(data = NA, nrow = maxneval, ncol = 3*bws$ndim)
allei = as.data.frame(matrix(data = NA, nrow = maxneval, ncol = bws$ndim))
all.bxp = list()
}
plot.out = list()
temp.err = matrix(data = NA, nrow = maxneval, ncol = 3)
temp.dens = replicate(maxneval, NA)
plot.bootstrap = plot.errors.method == "bootstrap"
pfunE = expression(ifelse(xi.factor,
ifelse(plot.bootstrap & plot.bxp,"bxp","plotFactor"), "plot"))
pxE = expression(ifelse(common.scale,
ifelse(xi.factor,
ifelse(plot.bootstrap & plot.bxp, "z = all.bxp[[i]],", "f = allei[,i],"),
"x = allei[,i],"),
ifelse(xi.factor,
ifelse(plot.bootstrap & plot.bxp, "z = temp.boot,", "f = ei,"), "x = ei,")))
pyE = expression(ifelse(xi.factor & plot.bootstrap & plot.bxp, "",
ifelse(common.scale,"y = data.eval[,i],", "y = temp.dens,")))
pylimE = ifelse(common.scale, "ylim = c(y.min,y.max),",
ifelse(plot.errors, "ylim = c(min(na.omit(c(temp.dens - temp.err[,1], temp.err[,3] - temp.err[,1]))),
max(na.omit(c(temp.dens + temp.err[,2], temp.err[,3] + temp.err[,2])))),", ""))
pxlabE = "xlab = ifelse(!is.null(xlab),xlab,gen.label(bws$xnames[i], paste('X', i, sep = ''))),"
pylabE = paste("ylab = ", "ifelse(!is.null(ylab),ylab,'Density')", ",")
prestE = expression(ifelse(xi.factor,"", "type = ifelse(!is.null(type),type,'l'), lty = ifelse(!is.null(lty),lty,par()$lty), col = ifelse(!is.null(col),col,par()$col), lwd = ifelse(!is.null(lwd),lwd,par()$lwd), cex.axis = ifelse(!is.null(cex.axis),cex.axis,par()$cex.axis), cex.lab = ifelse(!is.null(cex.lab),cex.lab,par()$cex.lab), cex.main = ifelse(!is.null(cex.main),cex.main,par()$cex.main), cex.sub = ifelse(!is.null(cex.sub),cex.sub,par()$cex.sub),"))
pmainE = "main = ifelse(!is.null(main),main,''), sub = ifelse(!is.null(sub),sub,''),"
plotOnEstimate = (plot.errors.center == "estimate")
efunE = "draw.errors"
eexE = ifelse(common.scale, "ex = as.numeric(na.omit(allei[,i])),",
"ex = as.numeric(na.omit(ei)),")
eelyE = ifelse(common.scale,
ifelse(plotOnEstimate, "ely = na.omit(data.eval[,i] - data.err[,3*i-2]),",
"ely = na.omit(data.err[,3*i] - data.err[,3*i-2]),"),
ifelse(plotOnEstimate, "ely = na.omit(temp.dens - temp.err[,1]),",
"ely = na.omit(temp.err[,3] - temp.err[,1]),"))
eehyE = ifelse(common.scale,
ifelse(plotOnEstimate, "ehy = na.omit(data.eval[,i] + data.err[,3*i-1]),",
"ehy = na.omit(data.err[,3*i] + data.err[,3*i-1]),"),
ifelse(plotOnEstimate, "ehy = na.omit(temp.dens + temp.err[,2]),",
"ehy = na.omit(temp.err[,3] + temp.err[,2]),"))
erestE = "plot.errors.style = ifelse(xi.factor,'bar',plot.errors.style),
plot.errors.bar = ifelse(xi.factor,'I',plot.errors.bar),
plot.errors.bar.num = plot.errors.bar.num,
lty = ifelse(!is.null(lty),lty,ifelse(xi.factor,1,2))"
devalE = parse(text=paste("npudens",
"(tdat = xdat, edat = subcol(exdat,ei,i)[1:xi.neval,, drop = FALSE], bws = bws)",
sep=""))
dcompE = parse(text="tobj$dens")
doutE = parse(text=paste("npdensity",
"(bws = bws, eval = subcol(exdat,ei,i)[1:xi.neval,, drop = FALSE],",
"dens",
"= na.omit(temp.dens), derr = na.omit(cbind(-temp.err[,1], temp.err[,2])), ntrain = bws$nobs)",
sep=""))
for (i in 1:bws$ndim){
temp.err[,] = NA
temp.dens[] = NA
temp.boot = list()
xi.factor = is.factor(xdat[,i])
if (xi.factor){
ei = bws$xdati$all.ulev[[i]]
xi.neval = length(ei)
} else {
xi.neval = neval
qi = trim.quantiles(xdat[,i], xtrim[i])
ei = seq(qi[1], qi[2], length.out = neval)
}
if (xi.neval < maxneval){
ei[(xi.neval+1):maxneval] = NA
}
tobj = eval(devalE)
temp.dens[1:xi.neval] = eval(dcompE)
if (plot.errors){
if (plot.errors.method == "asymptotic")
temp.err[1:xi.neval,1:2] = replicate(2,2.0*tobj$derr)
else if (plot.errors.method == "bootstrap"){
temp.boot <- compute.bootstrap.errors(
xdat = xdat,
exdat = subcol(exdat,ei,i)[1:xi.neval,, drop = FALSE],
cdf = FALSE,
slice.index = i,
plot.errors.boot.method = plot.errors.boot.method,
plot.errors.boot.blocklen = plot.errors.boot.blocklen,
plot.errors.boot.num = plot.errors.boot.num,
plot.errors.center = plot.errors.center,
plot.errors.type = plot.errors.type,
plot.errors.quantiles = plot.errors.quantiles,
bws = bws)
temp.err[1:xi.neval,] = temp.boot[["boot.err"]]
temp.boot <- temp.boot[["bxp"]]
if (!plot.bxp.out){
temp.boot$out <- numeric()
temp.boot$group <- integer()
}
}
}
if (common.scale){
allei[,i] = ei
data.eval[,i] = temp.dens
if (plot.errors){
all.bxp[i] = NA
all.bxp[[i]] = temp.boot
data.err[,c(3*i-2,3*i-1,3*i)] = temp.err
}
} else if (plot.behavior != "data") {
eval(parse(text = paste(eval(pfunE), "(", eval(pxE), eval(pyE),
eval(pylimE), eval(pxlabE), eval(pylabE), eval(prestE),
eval(pmainE), ")")))
if (plot.errors && !(xi.factor & plot.bootstrap & plot.bxp)){
if (!xi.factor && !plotOnEstimate)
lines(na.omit(ei), na.omit(temp.err[,3]), lty = 3)
eval(parse(text = paste(eval(efunE), "(", eval(eexE), eval(eelyE),
eval(eehyE), eval(erestE), ")")))
}
}
if (plot.behavior != "plot") {
plot.out[i] = NA
plot.out[[i]] = eval(doutE)
plot.out[[i]]$bias = na.omit(temp.dens - temp.err[,3])
plot.out[[i]]$bxp = temp.boot
}
}
if (common.scale & (plot.behavior != "data")){
jj = 1:bws$ndim*3
if (plot.errors.center == "estimate" | !plot.errors) {
y.max = max(na.omit(as.double(data.eval)) +
if (plot.errors) na.omit(as.double(data.err[,jj-1]))
else 0
)
y.min = min(na.omit(as.double(data.eval)) -
if (plot.errors) na.omit(as.double(data.err[,jj-2]))
else 0
)
} else if (plot.errors.center == "bias-corrected") {
y.max = max(na.omit(as.double(data.err[,jj] + data.err[,jj-1])))
y.min = min(na.omit(as.double(data.err[,jj] - data.err[,jj-2])))
}
if(!is.null(ylim)){
y.min = ylim[1]
y.max = ylim[2]
}
for (i in 1:bws$ndim){
xi.factor = is.factor(xdat[,i])
eval(parse(text = paste(eval(pfunE), "(", eval(pxE), eval(pyE),
eval(pylimE), eval(pxlabE), eval(pylabE), eval(prestE),
eval(pmainE), ")")))
if (plot.errors && !(xi.factor & plot.bootstrap & plot.bxp)){
if (!xi.factor && !plotOnEstimate)
lines(na.omit(ei), na.omit(temp.err[,3]), lty = 3)
eval(parse(text = paste(eval(efunE), "(", eval(eexE), eval(eelyE),
eval(eehyE), eval(erestE), ")")))
}
}
}
if (plot.behavior != "data" && plot.par.mfrow)
par(mfrow=c(1,1),cex=par()$cex)
if (plot.behavior != "plot"){
names(plot.out) = paste("d",1:bws$ndim,sep="")
return (plot.out)
}
}
}
npplot.dbandwidth <-
function(bws,
xdat,
data = NULL,
xq = 0.5,
xtrim = 0.0,
neval = 50,
common.scale = TRUE,
perspective = TRUE,
main = NULL,
type = NULL,
border = NULL,
cex.axis = NULL,
cex.lab = NULL,
cex.main = NULL,
cex.sub = NULL,
col = NULL,
ylab = NULL,
xlab = NULL,
zlab = NULL,
sub = NULL,
ylim = NULL,
xlim = NULL,
zlim = NULL,
lty = NULL,
lwd = NULL,
theta = 0.0,
phi = 10.0,
view = c("rotate","fixed"),
plot.behavior = c("plot","plot-data","data"),
plot.errors.method = c("none","bootstrap","asymptotic"),
plot.errors.boot.method = c("inid", "fixed", "geom"),
plot.errors.boot.blocklen = NULL,
plot.errors.boot.num = 399,
plot.errors.center = c("estimate","bias-corrected"),
plot.errors.type = c("standard","quantiles"),
plot.errors.quantiles = c(0.025,0.975),
plot.errors.style = c("band","bar"),
plot.errors.bar = c("|","I"),
plot.errors.bar.num = min(neval,25),
plot.bxp = FALSE,
plot.bxp.out = TRUE,
plot.par.mfrow = TRUE,
...,
random.seed){
if(!is.null(options('plot.par.mfrow')$plot.par.mfrow))
plot.par.mfrow <- options('plot.par.mfrow')$plot.par.mfrow
miss.x <- missing(xdat)
if(miss.x && !is.null(bws$formula)){
tt <- terms(bws)
m <- match(c("formula", "data", "subset", "na.action"),
names(bws$call), nomatch = 0)
tmf <- bws$call[c(1,m)]
tmf[[1]] <- as.name("model.frame")
tmf[["formula"]] <- tt
umf <- tmf <- eval(tmf, envir = environment(tt))
xdat <- tmf[, attr(attr(tmf, "terms"),"term.labels"), drop = FALSE]
} else {
if(miss.x && !is.null(bws$call)){
xdat <- data.frame(eval(bws$call[["dat"]], environment(bws$call)))
}
xdat = toFrame(xdat)
xdat = na.omit(xdat)
}
xq = double(bws$ndim)+xq
xtrim = double(bws$ndim)+xtrim
if (missing(plot.errors.method) &
any(!missing(plot.errors.boot.num), !missing(plot.errors.boot.method),
!missing(plot.errors.boot.blocklen))){
warning(paste("plot.errors.method must be set to 'bootstrap' to use bootstrapping.",
"\nProceeding without bootstrapping."))
}
plot.behavior = match.arg(plot.behavior)
plot.errors.method = match.arg(plot.errors.method)
plot.errors.boot.method = match.arg(plot.errors.boot.method)
plot.errors.center = match.arg(plot.errors.center)
plot.errors.type = match.arg(plot.errors.type)
plot.errors.style = match.arg(plot.errors.style)
plot.errors.bar = match.arg(plot.errors.bar)
common.scale = common.scale | (!is.null(ylim))
if (plot.errors.method == "asymptotic") {
if (plot.errors.type == "quantiles"){
warning("quantiles cannot be calculated with asymptotics, calculating standard errors")
plot.errors.type = "standard"
}
if (plot.errors.center == "bias-corrected") {
warning("no bias corrections can be calculated with asymptotics, centering on estimate")
plot.errors.center = "estimate"
}
}
if (is.element(plot.errors.boot.method, c("fixed", "geom")) &&
is.null(plot.errors.boot.blocklen))
plot.errors.boot.blocklen = b.star(xdat,round=TRUE)[1,1]
plot.errors = (plot.errors.method != "none")
if ((bws$ncon + bws$nord == 2) & (bws$nuno == 0) & perspective &
!any(xor(bws$xdati$iord, bws$xdati$inumord))){
view = match.arg(view)
rotate = (view == "rotate")
if (is.ordered(xdat[,1])){
x1.eval = bws$xdati$all.ulev[[1]]
x1.neval = length(x1.eval)
} else {
x1.neval = neval
qi = trim.quantiles(xdat[,1], xtrim[1])
x1.eval = seq(qi[1], qi[2], length.out = x1.neval)
}
if (is.ordered(xdat[,2])){
x2.eval = bws$xdati$all.ulev[[2]]
x2.neval = length(x2.eval)
} else {
x2.neval = neval
qi = trim.quantiles(xdat[,2], xtrim[2])
x2.eval = seq(qi[1], qi[2], length.out = x2.neval)
}
x.eval <- expand.grid(x1.eval, x2.eval)
if (is.ordered(xdat[,1]))
x1.eval <- (bws$xdati$all.dlev[[1]])[as.integer(x1.eval)]
if (is.ordered(xdat[,2]))
x2.eval <- (bws$xdati$all.dlev[[2]])[as.integer(x2.eval)]
tobj = npudist(tdat = xdat, edat = x.eval, bws = bws)
tdens = matrix(data = tobj$dist,
nrow = x1.neval, ncol = x2.neval, byrow = FALSE)
terr = matrix(data = tobj$derr, nrow = nrow(x.eval), ncol = 3)
terr[,3] = NA
if (plot.errors.method == "bootstrap"){
terr <- compute.bootstrap.errors(xdat = xdat,
exdat = x.eval,
slice.index = 0,
plot.errors.boot.method = plot.errors.boot.method,
plot.errors.boot.blocklen = plot.errors.boot.blocklen,
plot.errors.boot.num = plot.errors.boot.num,
plot.errors.center = plot.errors.center,
plot.errors.type = plot.errors.type,
plot.errors.quantiles = plot.errors.quantiles,
bws = bws)[["boot.err"]]
pc = (plot.errors.center == "bias-corrected")
lerr = matrix(data = if(pc) {terr[,3]} else {tobj$dist}
-terr[,1],
nrow = x1.neval, ncol = x2.neval, byrow = FALSE)
herr = matrix(data = if(pc) {terr[,3]} else {tobj$dist}
+terr[,2],
nrow = x1.neval, ncol = x2.neval, byrow = FALSE)
} else if (plot.errors.method == "asymptotic") {
lerr = matrix(data = tobj$dist - 2.0*tobj$derr,
nrow = x1.neval, ncol = x2.neval, byrow = FALSE)
herr = matrix(data = tobj$dist + 2.0*tobj$derr,
nrow = x1.neval, ncol = x2.neval, byrow = FALSE)
}
if(is.null(zlim)) {
zlim =
if (plot.errors)
c(min(lerr),max(herr))
else
c(min(tobj$dist),max(tobj$dist))
}
if (plot.behavior != "plot"){
d1 <- npdistribution(bws = bws, eval = x.eval,
dist = tobj$dist, derr = terr[,1:2], ntrain = nrow(xdat))
d1$bias = NA
if (plot.errors.center == "bias-corrected")
d1$bias = terr[,3] - tobj$dist
if (plot.behavior == "data")
return ( list(d1 = d1) )
}
dtheta = 5.0
dphi = 10.0
persp.col = ifelse(plot.errors, FALSE, ifelse(!is.null(col),col,"lightblue"))
for (i in 0:((360 %/% dtheta - 1)*rotate)*dtheta+theta){
if (plot.errors){
persp(x1.eval,
x2.eval,
lerr,
zlim = zlim,
cex.axis = ifelse(!is.null(cex.axis),cex.axis,par()$cex.axis),
cex.lab = ifelse(!is.null(cex.lab),cex.lab,par()$cex.lab),
cex.main = ifelse(!is.null(cex.main),cex.main,par()$cex.main),
cex.sub = ifelse(!is.null(cex.sub),cex.sub,par()$cex.sub),
col = persp.col,
border = ifelse(!is.null(border),border,"grey"),
ticktype = "detailed",
xlab = "",
ylab = "",
zlab = "",
theta = i,
phi = phi,
lwd = ifelse(!is.null(lwd),lwd,par()$lwd))
par(new = TRUE)
}
persp(x1.eval,
x2.eval,
tdens,
zlim = zlim,
col = persp.col,
border = ifelse(!is.null(border),border,"black"),
ticktype = "detailed",
cex.axis = ifelse(!is.null(cex.axis),cex.axis,par()$cex.axis),
cex.lab = ifelse(!is.null(cex.lab),cex.lab,par()$cex.lab),
cex.main = ifelse(!is.null(cex.main),cex.main,par()$cex.main),
cex.sub = ifelse(!is.null(cex.sub),cex.sub,par()$cex.sub),
xlab = ifelse(!is.null(xlab),xlab,gen.label(names(xdat)[1], "X1")),
ylab = ifelse(!is.null(ylab),ylab,gen.label(names(xdat)[2], "X2")),
zlab = ifelse(!is.null(zlab),zlab,"Joint Distribution"),
theta = i,
phi = phi,
main = gen.tflabel(!is.null(main), main, paste("[theta= ", i,", phi= ", phi,"]", sep="")))
if (plot.errors){
par(new = TRUE)
persp(x1.eval,
x2.eval,
herr,
zlim = zlim,
cex.axis = ifelse(!is.null(cex.axis),cex.axis,par()$cex.axis),
cex.lab = ifelse(!is.null(cex.lab),cex.lab,par()$cex.lab),
cex.main = ifelse(!is.null(cex.main),cex.main,par()$cex.main),
cex.sub = ifelse(!is.null(cex.sub),cex.sub,par()$cex.sub),
col = persp.col,
border = ifelse(!is.null(border),border,"grey"),
ticktype = "detailed",
xlab = "",
ylab = "",
zlab = "",
theta = i,
phi = phi,
lwd = ifelse(!is.null(lwd),lwd,par()$lwd))
}
Sys.sleep(0.5)
}
if (plot.behavior == "plot-data")
return ( list(d1 = d1) )
} else {
if (plot.behavior != "data" && plot.par.mfrow)
par(mfrow=n2mfrow(bws$ndim),cex=par()$cex)
ev = xdat[1,,drop = FALSE]
for (i in 1:bws$ndim)
ev[1,i] = uocquantile(xdat[,i], prob=xq[i])
maxneval = max(c(sapply(xdat,nlevels),neval))
exdat = as.data.frame(matrix(data = 0, nrow = maxneval, ncol = bws$ndim))
for (i in 1:bws$ndim)
exdat[,i] = ev[1,i]
if (common.scale){
data.eval = matrix(data = NA, nrow = maxneval, ncol = bws$ndim)
data.err = matrix(data = NA, nrow = maxneval, ncol = 3*bws$ndim)
allei = as.data.frame(matrix(data = NA, nrow = maxneval, ncol = bws$ndim))
all.bxp = list()
}
plot.out = list()
temp.err = matrix(data = NA, nrow = maxneval, ncol = 3)
temp.dens = replicate(maxneval, NA)
plot.bootstrap = plot.errors.method == "bootstrap"
pfunE = expression(ifelse(xi.factor,
ifelse(plot.bootstrap & plot.bxp,"bxp","plotFactor"), "plot"))
pxE = expression(ifelse(common.scale,
ifelse(xi.factor,
ifelse(plot.bootstrap & plot.bxp, "z = all.bxp[[i]],", "f = allei[,i],"),
"x = allei[,i],"),
ifelse(xi.factor,
ifelse(plot.bootstrap & plot.bxp, "z = temp.boot,", "f = ei,"), "x = ei,")))
pyE = expression(ifelse(xi.factor & plot.bootstrap & plot.bxp, "",
ifelse(common.scale,"y = data.eval[,i],", "y = temp.dens,")))
pylimE = ifelse(common.scale, "ylim = c(y.min,y.max),",
ifelse(plot.errors, "ylim = c(min(na.omit(c(temp.dens - temp.err[,1], temp.err[,3] - temp.err[,1]))),
max(na.omit(c(temp.dens + temp.err[,2], temp.err[,3] + temp.err[,2])))),", ""))
pxlabE = "xlab = ifelse(!is.null(xlab),xlab,gen.label(bws$xnames[i], paste('X', i, sep = ''))),"
pylabE = "ylab = ifelse(!is.null(ylab),ylab,'Distribution'),"
prestE = expression(ifelse(xi.factor,"", "type = ifelse(!is.null(type),type,'l'), lty = ifelse(!is.null(lty),lty,par()$lty), col = ifelse(!is.null(col),col,par()$col), lwd = ifelse(!is.null(lwd),lwd,par()$lwd), cex.axis = ifelse(!is.null(cex.axis),cex.axis,par()$cex.axis), cex.lab = ifelse(!is.null(cex.lab),cex.lab,par()$cex.lab), cex.main = ifelse(!is.null(cex.main),cex.main,par()$cex.main), cex.sub = ifelse(!is.null(cex.sub),cex.sub,par()$cex.sub),"))
pmainE = "main = ifelse(!is.null(main),main,''), sub = ifelse(!is.null(sub),sub,''),"
plotOnEstimate = (plot.errors.center == "estimate")
efunE = "draw.errors"
eexE = ifelse(common.scale, "ex = as.numeric(na.omit(allei[,i])),",
"ex = as.numeric(na.omit(ei)),")
eelyE = ifelse(common.scale,
ifelse(plotOnEstimate, "ely = na.omit(data.eval[,i] - data.err[,3*i-2]),",
"ely = na.omit(data.err[,3*i] - data.err[,3*i-2]),"),
ifelse(plotOnEstimate, "ely = na.omit(temp.dens - temp.err[,1]),",
"ely = na.omit(temp.err[,3] - temp.err[,1]),"))
eehyE = ifelse(common.scale,
ifelse(plotOnEstimate, "ehy = na.omit(data.eval[,i] + data.err[,3*i-1]),",
"ehy = na.omit(data.err[,3*i] + data.err[,3*i-1]),"),
ifelse(plotOnEstimate, "ehy = na.omit(temp.dens + temp.err[,2]),",
"ehy = na.omit(temp.err[,3] + temp.err[,2]),"))
erestE = "plot.errors.style = ifelse(xi.factor,'bar',plot.errors.style),
plot.errors.bar = ifelse(xi.factor,'I',plot.errors.bar),
plot.errors.bar.num = plot.errors.bar.num,
lty = ifelse(xi.factor,1,2)"
devalE = parse(text="npudist(tdat = xdat, edat = subcol(exdat,ei,i)[1:xi.neval,, drop = FALSE], bws = bws)")
dcompE = parse(text="tobj$dist")
doutE = parse(text="npdistribution(bws = bws, eval = subcol(exdat,ei,i)[1:xi.neval,, drop = FALSE], dist = na.omit(temp.dens), derr = na.omit(cbind(-temp.err[,1], temp.err[,2])), ntrain = bws$nobs)")
for (i in 1:bws$ndim){
temp.err[,] = NA
temp.dens[] = NA
temp.boot = list()
xi.factor = is.factor(xdat[,i])
if (xi.factor){
ei = bws$xdati$all.ulev[[i]]
xi.neval = length(ei)
} else {
xi.neval = neval
qi = trim.quantiles(xdat[,i], xtrim[i])
ei = seq(qi[1], qi[2], length.out = neval)
}
if (xi.neval < maxneval){
ei[(xi.neval+1):maxneval] = NA
}
tobj = eval(devalE)
temp.dens[1:xi.neval] = eval(dcompE)
if (plot.errors){
if (plot.errors.method == "asymptotic")
temp.err[1:xi.neval,1:2] = replicate(2,2.0*tobj$derr)
else if (plot.errors.method == "bootstrap"){
temp.boot <- compute.bootstrap.errors(
xdat = xdat,
exdat = subcol(exdat,ei,i)[1:xi.neval,, drop = FALSE],
slice.index = i,
plot.errors.boot.method = plot.errors.boot.method,
plot.errors.boot.blocklen = plot.errors.boot.blocklen,
plot.errors.boot.num = plot.errors.boot.num,
plot.errors.center = plot.errors.center,
plot.errors.type = plot.errors.type,
plot.errors.quantiles = plot.errors.quantiles,
bws = bws)
temp.err[1:xi.neval,] = temp.boot[["boot.err"]]
temp.boot <- temp.boot[["bxp"]]
if (!plot.bxp.out){
temp.boot$out <- numeric()
temp.boot$group <- integer()
}
}
}
if (common.scale){
allei[,i] = ei
data.eval[,i] = temp.dens
if (plot.errors){
all.bxp[i] = NA
all.bxp[[i]] = temp.boot
data.err[,c(3*i-2,3*i-1,3*i)] = temp.err
}
} else if (plot.behavior != "data") {
eval(parse(text = paste(eval(pfunE), "(", eval(pxE), eval(pyE),
eval(pylimE), eval(pxlabE), eval(pylabE), eval(prestE),
eval(pmainE), ")")))
if (plot.errors && !(xi.factor & plot.bootstrap & plot.bxp)){
if (!xi.factor && !plotOnEstimate)
lines(na.omit(ei), na.omit(temp.err[,3]), lty = 3)
eval(parse(text = paste(eval(efunE), "(", eval(eexE), eval(eelyE),
eval(eehyE), eval(erestE), ")")))
}
}
if (plot.behavior != "plot") {
plot.out[i] = NA
plot.out[[i]] = eval(doutE)
plot.out[[i]]$bias = na.omit(temp.dens - temp.err[,3])
plot.out[[i]]$bxp = temp.boot
}
}
if (common.scale & (plot.behavior != "data")){
jj = 1:bws$ndim*3
if (plot.errors.center == "estimate" | !plot.errors) {
y.max = max(na.omit(as.double(data.eval)) +
if (plot.errors) na.omit(as.double(data.err[,jj-1]))
else 0
)
y.min = min(na.omit(as.double(data.eval)) -
if (plot.errors) na.omit(as.double(data.err[,jj-2]))
else 0
)
} else if (plot.errors.center == "bias-corrected") {
y.max = max(na.omit(as.double(data.err[,jj] + data.err[,jj-1])))
y.min = min(na.omit(as.double(data.err[,jj] - data.err[,jj-2])))
}
if(!is.null(ylim)){
y.min = ylim[1]
y.max = ylim[2]
}
for (i in 1:bws$ndim){
xi.factor = is.factor(xdat[,i])
eval(parse(text = paste(eval(pfunE), "(", eval(pxE), eval(pyE),
eval(pylimE), eval(pxlabE), eval(pylabE), eval(prestE),
eval(pmainE), ")")))
if (plot.errors && !(xi.factor & plot.bootstrap & plot.bxp)){
if (!xi.factor && !plotOnEstimate)
lines(na.omit(ei), na.omit(temp.err[,3]), lty = 3)
eval(parse(text = paste(eval(efunE), "(", eval(eexE), eval(eelyE),
eval(eehyE), eval(erestE), ")")))
}
}
}
if (plot.behavior != "data" && plot.par.mfrow)
par(mfrow=c(1,1),cex=par()$cex)
if (plot.behavior != "plot"){
names(plot.out) = paste("d",1:bws$ndim,sep="")
return (plot.out)
}
}
}
npplot.conbandwidth <-
function(bws,
xdat,
ydat,
data = NULL,
xq = 0.5,
yq = 0.5,
xtrim = 0.0,
ytrim = 0.0,
neval = 50,
gradients = FALSE,
common.scale = TRUE,
perspective = TRUE,
main = NULL,
type = NULL,
border = NULL,
cex.axis = NULL,
cex.lab = NULL,
cex.main = NULL,
cex.sub = NULL,
col = NULL,
ylab = NULL,
xlab = NULL,
zlab = NULL,
sub = NULL,
ylim = NULL,
xlim = NULL,
zlim = NULL,
lty = NULL,
lwd = NULL,
theta = 0.0,
phi = 10.0,
tau = 0.5,
view = c("rotate","fixed"),
plot.behavior = c("plot","plot-data","data"),
plot.errors.method = c("none","bootstrap","asymptotic"),
plot.errors.boot.method = c("inid", "fixed", "geom"),
plot.errors.boot.blocklen = NULL,
plot.errors.boot.num = 399,
plot.errors.center = c("estimate","bias-corrected"),
plot.errors.type = c("standard","quantiles"),
plot.errors.quantiles = c(0.025,0.975),
plot.errors.style = c("band","bar"),
plot.errors.bar = c("|","I"),
plot.errors.bar.num = min(neval,25),
plot.bxp = FALSE,
plot.bxp.out = TRUE,
plot.par.mfrow = TRUE,
...,
random.seed){
if(!is.null(options('plot.par.mfrow')$plot.par.mfrow))
plot.par.mfrow <- options('plot.par.mfrow')$plot.par.mfrow
cdf <- FALSE
quantreg <- FALSE
miss.xy = c(missing(xdat),missing(ydat))
if (any(miss.xy) && !all(miss.xy))
stop("one of, but not both, xdat and ydat was specified")
else if(all(miss.xy) && !is.null(bws$formula)){
tt <- terms(bws)
m <- match(c("formula", "data", "subset", "na.action"),
names(bws$call), nomatch = 0)
tmf <- bws$call[c(1,m)]
tmf[[1]] <- as.name("model.frame")
tmf[["formula"]] <- tt
umf <- tmf <- eval(tmf, envir = environment(tt))
ydat <- tmf[, bws$variableNames[["response"]], drop = FALSE]
xdat <- tmf[, bws$variableNames[["terms"]], drop = FALSE]
} else {
if(all(miss.xy) && !is.null(bws$call)){
xdat <- data.frame(eval(bws$call[["xdat"]], environment(bws$call)))
ydat <- data.frame(eval(bws$call[["ydat"]], environment(bws$call)))
}
xdat = toFrame(xdat)
ydat = toFrame(ydat)
goodrows = 1:dim(xdat)[1]
rows.omit = attr(na.omit(data.frame(xdat,ydat)), "na.action")
goodrows[rows.omit] = 0
if (all(goodrows==0))
stop("Data has no rows without NAs")
xdat = xdat[goodrows,,drop = FALSE]
ydat = ydat[goodrows,,drop = FALSE]
}
if (quantreg & dim(ydat)[2] != 1)
stop("'ydat' must have one column for quantile regression")
xq = double(bws$xndim)+xq
yq = double(bws$yndim)+yq
xtrim = double(bws$xndim)+xtrim
ytrim = double(bws$yndim)+ytrim
if (missing(plot.errors.method) &
any(!missing(plot.errors.boot.num), !missing(plot.errors.boot.method),
!missing(plot.errors.boot.blocklen))){
warning(paste("plot.errors.method must be set to 'bootstrap' to use bootstrapping.",
"\nProceeding without bootstrapping."))
}
plot.behavior = match.arg(plot.behavior)
plot.errors.method = match.arg(plot.errors.method)
plot.errors.boot.method = match.arg(plot.errors.boot.method)
plot.errors.center = match.arg(plot.errors.center)
plot.errors.type = match.arg(plot.errors.type)
plot.errors.style = match.arg(plot.errors.style)
plot.errors.bar = match.arg(plot.errors.bar)
common.scale = common.scale | (!is.null(ylim))
if (plot.errors.method == "asymptotic") {
if (plot.errors.type == "quantiles"){
warning("quantiles cannot be calculated with asymptotics, calculating standard errors")
plot.errors.type = "standard"
}
if (plot.errors.center == "bias-corrected") {
warning("no bias corrections can be calculated with asymptotics, centering on estimate")
plot.errors.center = "estimate"
}
if (quantreg & gradients){
warning(paste("no asymptotic errors available for quantile regression gradients.",
"\nOne must instead use bootstrapping."))
plot.errors.method = "none"
}
}
if (is.element(plot.errors.boot.method, c("fixed", "geom")) &&
is.null(plot.errors.boot.blocklen))
plot.errors.boot.blocklen = b.star(xdat,round=TRUE)[1,1]
plot.errors = (plot.errors.method != "none")
if ((bws$xncon + bws$xnord + bws$yncon + bws$ynord - quantreg == 2) &
(bws$xnuno + bws$ynuno == 0) & perspective & !gradients &
!any(xor(bws$xdati$iord, bws$xdati$inumord))){
view = match.arg(view)
rotate = (view == "rotate")
if (is.ordered(xdat[,1])){
x1.eval = bws$xdati$all.ulev[[1]]
x1.neval = length(x1.eval)
} else {
x1.neval = neval
qi = trim.quantiles(xdat[,1], xtrim[1])
x1.eval = seq(qi[1], qi[2], length.out = x1.neval)
}
if (quantreg){
tx2 <- xdat[,2]
txi <- 2
txdati <- bws$xdati
txtrim <- xtrim
}
else{
tx2 <- ydat[,1]
txi <- 1
txdati <- bws$ydati
txtrim <- ytrim
}
if (txdati$iord[txi]){
x2.eval = txdati$all.ulev[[txi]]
x2.neval = length(x2.eval)
} else {
x2.neval = neval
qi = trim.quantiles(tx2, txtrim[txi])
x2.eval = seq(qi[1], qi[2], length.out = x2.neval)
}
x.eval <- expand.grid(x1.eval, x2.eval)
if (bws$xdati$iord[1])
x1.eval <- (bws$xdati$all.dlev[[1]])[as.integer(x1.eval)]
if (txdati$iord[txi])
x2.eval <- (txdati$all.dlev[[txi]])[as.integer(x2.eval)]
tboo =
if(quantreg) "quant"
else if (cdf) "dist"
else "dens"
tobj = eval(parse(text = paste(
switch(tboo,
"quant" = "npqreg",
"dist" = "npcdist",
"dens" = "npcdens"),
"(txdat = xdat, tydat = ydat, exdat =",
ifelse(quantreg, "x.eval, tau = tau",
"x.eval[,1], eydat = x.eval[,2]"),
", bws = bws)", sep="")))
tcomp = parse(text=paste("tobj$",
switch(tboo,
"quant" = "quantile",
"dist" = "condist",
"dens" = "condens"), sep=""))
tcerr = parse(text=paste(ifelse(quantreg, "tobj$quanterr", "tobj$conderr")))
tex = parse(text=paste(ifelse(quantreg, "x.eval", "x.eval[,1]")))
tey = parse(text=paste(ifelse(quantreg, "NA", "x.eval[,2]")))
tdens = matrix(data = eval(tcomp),
nrow = x1.neval, ncol = x2.neval, byrow = FALSE)
terr = matrix(data = eval(tcerr), nrow = length(eval(tcomp)), ncol = 3)
terr[,3] = NA
if (plot.errors.method == "bootstrap"){
terr <- compute.bootstrap.errors(xdat = xdat, ydat = ydat,
exdat = eval(tex), eydat = eval(tey),
cdf = cdf,
quantreg = quantreg,
tau = tau,
gradients = FALSE,
gradient.index = 0,
slice.index = 0,
plot.errors.boot.method = plot.errors.boot.method,
plot.errors.boot.blocklen = plot.errors.boot.blocklen,
plot.errors.boot.num = plot.errors.boot.num,
plot.errors.center = plot.errors.center,
plot.errors.type = plot.errors.type,
plot.errors.quantiles = plot.errors.quantiles,
bws = bws)[["boot.err"]]
pc = (plot.errors.center == "bias-corrected")
lerr = matrix(data = if(pc) {terr[,3]} else {eval(tcomp)}
-terr[,1],
nrow = x1.neval, ncol = x2.neval, byrow = FALSE)
herr = matrix(data = if(pc) {terr[,3]} else {eval(tcomp)}
+terr[,2],
nrow = x1.neval, ncol = x2.neval, byrow = FALSE)
} else if (plot.errors.method == "asymptotic") {
lerr = matrix(data = eval(tcomp) - 2.0*eval(tcerr),
nrow = x1.neval, ncol = x2.neval, byrow = FALSE)
herr = matrix(data = eval(tcomp) + 2.0*eval(tcerr),
nrow = x1.neval, ncol = x2.neval, byrow = FALSE)
}
if(is.null(zlim)) {
zlim =
if (plot.errors)
c(min(lerr),max(herr))
else
c(min(eval(tcomp)),max(eval(tcomp)))
}
tret = parse(text=paste(
switch(tboo,
"quant" = "qregression",
"dist" = "condistribution",
"dens" = "condensity"),
"(bws = bws, xeval = eval(tex),",
ifelse(quantreg, "tau = tau, quantile = eval(tcomp), quanterr = terr[,1:2]",
paste("yeval = eval(tey),", ifelse(cdf, "condist = ", "condens = "),
"eval(tcomp), conderr = terr[,1:2]")),
", ntrain = dim(xdat)[1])", sep=""))
if (plot.behavior != "plot"){
cd1 = eval(tret)
cd1$bias = NA
if (plot.errors.center == "bias-corrected")
cd1$bias = terr[,3] - eval(tcomp)
if (plot.behavior == "data")
return ( list(cd1 = cd1) )
}
dtheta = 5.0
dphi = 10.0
persp.col = ifelse(plot.errors, FALSE, ifelse(!is.null(col),col,"lightblue"))
for (i in 0:((360 %/% dtheta - 1)*rotate)*dtheta+theta){
if (plot.errors){
persp(x1.eval,
x2.eval,
lerr,
zlim = zlim,
cex.axis = ifelse(!is.null(cex.axis),cex.axis,par()$cex.axis),
cex.lab = ifelse(!is.null(cex.lab),cex.lab,par()$cex.lab),
cex.main = ifelse(!is.null(cex.main),cex.main,par()$cex.main),
cex.sub = ifelse(!is.null(cex.sub),cex.sub,par()$cex.sub),
col = persp.col,
border = ifelse(!is.null(border),border,"grey"),
ticktype = "detailed",
xlab = "",
ylab = "",
zlab = "",
theta = i,
phi = phi,
lwd = ifelse(!is.null(lwd),lwd,par()$lwd))
par(new = TRUE)
}
persp(x1.eval,
x2.eval,
tdens,
zlim = zlim,
col = persp.col,
border = ifelse(!is.null(border),border,"black"),
ticktype = "detailed",
cex.axis = ifelse(!is.null(cex.axis),cex.axis,par()$cex.axis),
cex.lab = ifelse(!is.null(cex.lab),cex.lab,par()$cex.lab),
cex.main = ifelse(!is.null(cex.main),cex.main,par()$cex.main),
cex.sub = ifelse(!is.null(cex.sub),cex.sub,par()$cex.sub),
xlab = ifelse(!is.null(xlab),xlab,gen.label(names(xdat)[1], "X")),
ylab = ifelse(!is.null(ylab),ylab,gen.label(names(ydat)[1], "Y")),
zlab = ifelse(!is.null(zlab),zlab,paste("Conditional", ifelse(cdf,"Distribution", "Density"))),
theta = i,
phi = phi,
main = gen.tflabel(!is.null(main), main, paste("[theta= ", i,", phi= ", phi,"]", sep="")))
if (plot.errors){
par(new = TRUE)
persp(x1.eval,
x2.eval,
herr,
zlim = zlim,
cex.axis = ifelse(!is.null(cex.axis),cex.axis,par()$cex.axis),
cex.lab = ifelse(!is.null(cex.lab),cex.lab,par()$cex.lab),
cex.main = ifelse(!is.null(cex.main),cex.main,par()$cex.main),
cex.sub = ifelse(!is.null(cex.sub),cex.sub,par()$cex.sub),
col = persp.col,
border = ifelse(!is.null(border),border,"grey"),
ticktype = "detailed",
xlab = "",
ylab = "",
zlab = "",
theta = i,
phi = phi,
lwd = ifelse(!is.null(lwd),lwd,par()$lwd))
}
Sys.sleep(0.5)
}
} else {
dsf = ifelse(gradients,bws$xndim,1)
tot.dim = bws$xndim + bws$yndim - quantreg
if (plot.behavior != "data" && plot.par.mfrow)
par(mfrow=n2mfrow(dsf*tot.dim),cex=par()$cex)
x.ev = xdat[1,,drop = FALSE]
y.ev = ydat[1,,drop = FALSE]
for (i in 1:bws$xndim)
x.ev[1,i] = uocquantile(xdat[,i], prob=xq[i])
for (i in 1:bws$yndim)
y.ev[1,i] = uocquantile(ydat[,i], prob=yq[i])
maxneval = max(c(sapply(xdat,nlevels), sapply(ydat,nlevels), neval))
exdat = as.data.frame(matrix(data = 0, nrow = maxneval, ncol = bws$xndim))
eydat = as.data.frame(matrix(data = 0, nrow = maxneval, ncol = bws$yndim))
for (i in 1:bws$xndim)
exdat[,i] = x.ev[1,i]
for (i in 1:bws$yndim)
eydat[,i] = y.ev[1,i]
if (common.scale){
data.eval = matrix(data = NA, nrow = maxneval,
ncol = tot.dim*dsf)
data.err = matrix(data = NA, nrow = maxneval,
ncol = 3*tot.dim*dsf)
allei = as.data.frame(matrix(data = NA, nrow = maxneval,
ncol = tot.dim))
all.bxp = list()
}
all.isFactor = c(sapply(xdat, is.factor), sapply(ydat, is.factor))
plot.out = list()
temp.err = matrix(data = NA, nrow = maxneval, ncol = 3)
temp.dens = replicate(maxneval, NA)
plot.bootstrap = plot.errors.method == "bootstrap"
pfunE = expression(ifelse(xi.factor,
ifelse(plot.bootstrap & plot.bxp,"bxp","plotFactor"), "plot"))
pxE = expression(ifelse(common.scale,
ifelse(xi.factor,
ifelse(plot.bootstrap & plot.bxp, "all.bxp[[plot.index]],",
"f = allei[,plot.index],"),
"x = allei[,plot.index],"),
ifelse(xi.factor,
ifelse(plot.bootstrap & plot.bxp, "z = temp.boot,", "f = ei,"),
"x = ei,")))
pyE = expression(ifelse(xi.factor & plot.bootstrap & plot.bxp, "",
ifelse(common.scale,"y = data.eval[,plot.index],", "y = temp.dens,")))
pylimE = ifelse(common.scale, "ylim = c(y.min,y.max),",
ifelse(plot.errors, "ylim = c(min(na.omit(c(temp.dens - temp.err[,1], temp.err[,3] - temp.err[,1]))),
max(na.omit(c(temp.dens + temp.err[,2], temp.err[,3] + temp.err[,2])))),", ""))
pxlabE = expression(paste("xlab = ifelse(!is.null(xlab),xlab,gen.label(bws$",
xOrY, "names[i], paste('", toupper(xOrY),"', i, sep = ''))),",sep=''))
tylabE = ifelse(quantreg, paste(tau, 'quantile'),
paste('Conditional', ifelse(cdf,'Distribution', 'Density')))
pylabE = paste("ylab =", "ifelse(!is.null(ylab),ylab,paste(", ifelse(gradients,"'GC',j,'of',",''), "tylabE)),")
prestE = expression(ifelse(xi.factor,"", "type = ifelse(!is.null(type),type,'l'), lty = ifelse(!is.null(lty),lty,par()$lty), col = ifelse(!is.null(col),col,par()$col), lwd = ifelse(!is.null(lwd),lwd,par()$lwd), cex.axis = ifelse(!is.null(cex.axis),cex.axis,par()$cex.axis), cex.lab = ifelse(!is.null(cex.lab),cex.lab,par()$cex.lab), cex.main = ifelse(!is.null(cex.main),cex.main,par()$cex.main), cex.sub = ifelse(!is.null(cex.sub),cex.sub,par()$cex.sub),"))
pmainE = "main = ifelse(!is.null(main),main,''), sub = ifelse(!is.null(sub),sub,''),"
plotOnEstimate = (plot.errors.center == "estimate")
efunE = "draw.errors"
eexE = expression(ifelse(common.scale, "ex = as.numeric(na.omit(allei[,plot.index])),",
"ex = as.numeric(na.omit(ei)),"))
eelyE = expression(ifelse(common.scale,
ifelse(plotOnEstimate, "ely = na.omit(data.eval[,plot.index] - data.err[,3*plot.index-2]),",
"ely = na.omit(data.err[,3*plot.index] - data.err[,3*plot.index-2]),"),
ifelse(plotOnEstimate, "ely = na.omit(temp.dens - temp.err[,1]),",
"ely = na.omit(temp.err[,3] - temp.err[,1]),")))
eehyE = expression(ifelse(common.scale,
ifelse(plotOnEstimate, "ehy = na.omit(data.eval[,plot.index] + data.err[,3*plot.index-1]),",
"ehy = na.omit(data.err[,3*plot.index] + data.err[,3*plot.index-1]),"),
ifelse(plotOnEstimate, "ehy = na.omit(temp.dens + temp.err[,2]),",
"ehy = na.omit(temp.err[,3] + temp.err[,2]),")))
erestE = "plot.errors.style = ifelse(xi.factor,'bar',plot.errors.style),
plot.errors.bar = ifelse(xi.factor,'I',plot.errors.bar),
plot.errors.bar.num = plot.errors.bar.num,
lty = ifelse(xi.factor,1,2)"
plot.index = 0
xOrY = "x"
for (i in 1:bws$xndim){
plot.index = plot.index + 1
temp.err[,] = NA
temp.dens[] = NA
temp.boot = list()
xi.factor = all.isFactor[plot.index]
if (xi.factor){
ei = bws$xdati$all.ulev[[i]]
xi.neval = length(ei)
} else {
xi.neval = neval
qi = trim.quantiles(xdat[,i], xtrim[i])
ei = seq(qi[1], qi[2], length.out = neval)
}
if (xi.neval < maxneval){
ei[(xi.neval+1):maxneval] = NA
}
tobj = eval(parse(text=paste(ifelse(cdf, "npcdist",
ifelse(quantreg, "npqreg", "npcdens")),
"(txdat = xdat, tydat = ydat,",
"exdat = subcol(exdat,ei,i)[1:xi.neval,, drop = FALSE],",
ifelse(quantreg, "tau = tau,",
"eydat = eydat[1:xi.neval,, drop = FALSE],"),
"gradients = gradients, bws = bws)",sep="")))
tevalexpr = parse(text=paste("tobj$",ifelse(gradients,
ifelse(quantreg, "quantgrad[,j]","congrad[,j]"),
ifelse(cdf, "condist", ifelse(quantreg, "quantile",
"condens"))), sep=""))
terrexpr = parse(text=paste("tobj$",ifelse(gradients,
"congerr[,j]", ifelse(quantreg,"quanterr",
"conderr")), sep=""))
if (gradients & quantreg)
terrexpr = parse(text="NA")
if (plot.behavior != "plot"){
plot.out[plot.index] = NA
plot.out[[plot.index]] = tobj
}
for (j in 1:dsf){
temp.boot = list()
temp.dens[1:xi.neval] = eval(tevalexpr)
if (plot.errors){
if (plot.errors.method == "asymptotic")
temp.err[1:xi.neval,1:2] = replicate(2,2.0*eval(terrexpr))
else if (plot.errors.method == "bootstrap"){
temp.boot <- compute.bootstrap.errors(
xdat = xdat,
ydat = ydat,
exdat = subcol(exdat,ei,i)[1:xi.neval,, drop = FALSE],
eydat = eydat[1:xi.neval,, drop = FALSE],
cdf = cdf,
quantreg = quantreg,
tau = tau,
gradients = gradients,
gradient.index = j,
slice.index = plot.index,
plot.errors.boot.method = plot.errors.boot.method,
plot.errors.boot.blocklen = plot.errors.boot.blocklen,
plot.errors.boot.num = plot.errors.boot.num,
plot.errors.center = plot.errors.center,
plot.errors.type = plot.errors.type,
plot.errors.quantiles = plot.errors.quantiles,
bws = bws)
temp.err[1:xi.neval,] <- temp.boot[["boot.err"]]
temp.boot <- temp.boot[["bxp"]]
if (!plot.bxp.out){
temp.boot$out <- numeric()
temp.boot$group <- integer()
}
}
}
if (common.scale){
allei[,plot.index] = ei
data.eval[,(plot.index-1)*dsf+j] = temp.dens
if (plot.errors){
all.bxp[plot.index] = NA
all.bxp[[plot.index]] = temp.boot
data.err[,seq(3*((plot.index-1)*dsf+j)-2,length=3)] = temp.err
}
} else if (plot.behavior != "data") {
eval(parse(text = paste(eval(pfunE), "(", eval(pxE), eval(pyE),
eval(pylimE), eval(pxlabE), eval(pylabE), eval(prestE),
eval(pmainE), ")")))
if (plot.errors && !(xi.factor & plot.bootstrap & plot.bxp)){
if (!xi.factor && !plotOnEstimate)
lines(na.omit(ei), na.omit(temp.err[,3]), lty = 3)
eval(parse(text = paste(eval(efunE), "(", eval(eexE), eval(eelyE),
eval(eehyE), eval(erestE), ")")))
}
}
if (plot.behavior != "plot" & plot.errors) {
eval(parse(text=paste("plot.out[[plot.index]]$",ifelse(gradients,
paste("gc",j,"err",sep=""),
ifelse(quantreg, "quanterr", "conderr")),
"= na.omit(cbind(-temp.err[,1], temp.err[,2]))", sep="")))
eval(parse(text=paste("plot.out[[plot.index]]$",
ifelse(gradients, paste("gc",j,"bias",sep=""), "bias"),
"= na.omit(temp.dens - temp.err[,3])", sep="")))
plot.out[[plot.index]]$bxp = temp.boot
}
}
}
if (!quantreg){
xOrY = "y"
for (i in 1:bws$yndim){
plot.index = plot.index + 1
temp.err[,] = NA
temp.dens[] = NA
temp.boot = list()
xi.factor = all.isFactor[plot.index]
if (xi.factor){
ei = bws$ydati$all.ulev[[i]]
xi.neval = length(ei)
} else {
xi.neval = neval
qi = trim.quantiles(ydat[,i], ytrim[i])
ei = seq(qi[1], qi[2], length.out = neval)
}
if (xi.neval < maxneval){
ei[(xi.neval+1):maxneval] = NA
}
tobj = eval(parse(text=paste(ifelse(cdf, "npcdist",
ifelse(quantreg, "npqreg", "npcdens")),
"(txdat = xdat, tydat = ydat,",
ifelse(quantreg, "tau = tau,",
"exdat = exdat[1:xi.neval,, drop = FALSE],"),
"eydat = subcol(eydat,ei,i)[1:xi.neval,, drop = FALSE],",
"gradients = gradients, bws = bws)",sep="")))
tevalexpr = parse(text=paste("tobj$",ifelse(gradients,
ifelse(quantreg, "quantgrad[,j]","congrad[,j]"),
ifelse(cdf, "condist", ifelse(quantreg, "quantile",
"condens"))), sep=""))
terrexpr = parse(text=paste("tobj$",ifelse(gradients,
"congerr[,j]", ifelse(quantreg,"quanterr",
"conderr")), sep=""))
if (gradients & quantreg)
terrexpr = parse(text="NA")
if (plot.behavior != "plot"){
plot.out[plot.index] = NA
plot.out[[plot.index]] = tobj
}
for (j in 1:dsf){
temp.boot = list()
temp.dens[1:xi.neval] = eval(tevalexpr)
if (plot.errors){
if (plot.errors.method == "asymptotic")
temp.err[1:xi.neval,1:2] = replicate(2,2.0*eval(terrexpr))
else if (plot.errors.method == "bootstrap"){
temp.boot <- compute.bootstrap.errors(
xdat = xdat,
ydat = ydat,
exdat = exdat[1:xi.neval,, drop = FALSE],
eydat = subcol(eydat,ei,i)[1:xi.neval,, drop = FALSE],
cdf = cdf,
quantreg = quantreg,
tau = tau,
gradients = gradients,
gradient.index = j,
slice.index = plot.index,
plot.errors.boot.method = plot.errors.boot.method,
plot.errors.boot.blocklen = plot.errors.boot.blocklen,
plot.errors.boot.num = plot.errors.boot.num,
plot.errors.center = plot.errors.center,
plot.errors.type = plot.errors.type,
plot.errors.quantiles = plot.errors.quantiles,
bws = bws)
temp.err[1:xi.neval,] <- temp.boot[["boot.err"]]
temp.boot <- temp.boot[["bxp"]]
if (!plot.bxp.out){
temp.boot$out <- numeric()
temp.boot$group <- integer()
}
}
}
if (common.scale){
allei[,plot.index] = ei
data.eval[,(plot.index-1)*dsf+j] = temp.dens
if (plot.errors){
all.bxp[plot.index] = NA
all.bxp[[plot.index]] = temp.boot
data.err[,seq(3*((plot.index-1)*dsf+j)-2,length=3)] = temp.err
}
} else if (plot.behavior != "data") {
eval(parse(text = paste(eval(pfunE), "(", eval(pxE), eval(pyE),
eval(pylimE), eval(pxlabE), eval(pylabE), eval(prestE),
eval(pmainE), ")")))
if (plot.errors && !(xi.factor & plot.bootstrap & plot.bxp)){
if (!xi.factor && !plotOnEstimate)
lines(na.omit(ei), na.omit(temp.err[,3]), lty = 3)
eval(parse(text = paste(eval(efunE), "(", eval(eexE), eval(eelyE),
eval(eehyE), eval(erestE), ")")))
}
}
if (plot.behavior != "plot" & plot.errors) {
eval(parse(text=paste("plot.out[[plot.index]]$",ifelse(gradients,
paste("gc",j,"err",sep=""),
ifelse(quantreg, "quanterr", "conderr")),
"= na.omit(cbind(-temp.err[,1], temp.err[,2]))", sep="")))
eval(parse(text=paste("plot.out[[plot.index]]$",
ifelse(gradients, paste("gc",j,"bias",sep=""), "bias"),
"= na.omit(temp.dens - temp.err[,3])", sep="")))
plot.out[[plot.index]]$bxp = temp.boot
}
}
}
}
if (common.scale & (plot.behavior != "data")){
jj = 1:(dsf*tot.dim)*3
if (plot.errors.center == "estimate" | !plot.errors) {
y.max = max(na.omit(as.double(data.eval)) +
if (plot.errors) na.omit(as.double(data.err[,jj-1]))
else 0)
y.min = min(na.omit(as.double(data.eval)) -
if (plot.errors) na.omit(as.double(data.err[,jj-2]))
else 0)
} else if (plot.errors.center == "bias-corrected") {
y.max = max(na.omit(as.double(data.err[,jj] + data.err[,jj-1])))
y.min = min(na.omit(as.double(data.err[,jj] - data.err[,jj-2])))
}
if(!is.null(ylim)){
y.min = ylim[1]
y.max = ylim[2]
}
xOrY = "x"
for (plot.index in 1:tot.dim){
i = ifelse(plot.index <= bws$xndim, plot.index, plot.index - bws$xndim)
if (plot.index > bws$xndim)
xOrY <- "y"
xi.factor = all.isFactor[plot.index]
for (j in 1:dsf){
eval(parse(text = paste(eval(pfunE), "(", eval(pxE), eval(pyE),
eval(pylimE), eval(pxlabE), eval(pylabE), eval(prestE),
eval(pmainE), ")")))
if (plot.errors && !(xi.factor & plot.bootstrap & plot.bxp)){
if (!xi.factor && !plotOnEstimate)
lines(na.omit(ei), na.omit(temp.err[,3]), lty = 3)
eval(parse(text = paste(eval(efunE), "(", eval(eexE), eval(eelyE),
eval(eehyE), eval(erestE), ")")))
}
}
}
}
if (plot.behavior != "data" && plot.par.mfrow)
par(mfrow=c(1,1),cex=par()$cex)
if (plot.behavior != "plot"){
names(plot.out) = paste("cd", 1:tot.dim, sep="")
return (plot.out)
}
}
}
npplot.condbandwidth <-
function(bws,
xdat,
ydat,
data = NULL,
xq = 0.5,
yq = 0.5,
xtrim = 0.0,
ytrim = 0.0,
neval = 50,
quantreg = FALSE,
gradients = FALSE,
common.scale = TRUE,
perspective = TRUE,
main = NULL,
type = NULL,
border = NULL,
cex.axis = NULL,
cex.lab = NULL,
cex.main = NULL,
cex.sub = NULL,
col = NULL,
ylab = NULL,
xlab = NULL,
zlab = NULL,
sub = NULL,
ylim = NULL,
xlim = NULL,
zlim = NULL,
lty = NULL,
lwd = NULL,
theta = 0.0,
phi = 10.0,
tau = 0.5,
view = c("rotate","fixed"),
plot.behavior = c("plot","plot-data","data"),
plot.errors.method = c("none","bootstrap","asymptotic"),
plot.errors.boot.method = c("inid", "fixed", "geom"),
plot.errors.boot.blocklen = NULL,
plot.errors.boot.num = 399,
plot.errors.center = c("estimate","bias-corrected"),
plot.errors.type = c("standard","quantiles"),
plot.errors.quantiles = c(0.025,0.975),
plot.errors.style = c("band","bar"),
plot.errors.bar = c("|","I"),
plot.errors.bar.num = min(neval,25),
plot.bxp = FALSE,
plot.bxp.out = TRUE,
plot.par.mfrow = TRUE,
...,
random.seed){
if(!is.null(options('plot.par.mfrow')$plot.par.mfrow))
plot.par.mfrow <- options('plot.par.mfrow')$plot.par.mfrow
cdf <- TRUE
miss.xy = c(missing(xdat),missing(ydat))
if (any(miss.xy) && !all(miss.xy))
stop("one of, but not both, xdat and ydat was specified")
else if(all(miss.xy) && !is.null(bws$formula)){
tt <- terms(bws)
m <- match(c("formula", "data", "subset", "na.action"),
names(bws$call), nomatch = 0)
tmf <- bws$call[c(1,m)]
tmf[[1]] <- as.name("model.frame")
tmf[["formula"]] <- tt
umf <- tmf <- eval(tmf, envir = environment(tt))
ydat <- tmf[, bws$variableNames[["response"]], drop = FALSE]
xdat <- tmf[, bws$variableNames[["terms"]], drop = FALSE]
} else {
if(all(miss.xy) && !is.null(bws$call)){
xdat <- data.frame(eval(bws$call[["xdat"]], environment(bws$call)))
ydat <- data.frame(eval(bws$call[["ydat"]], environment(bws$call)))
}
xdat = toFrame(xdat)
ydat = toFrame(ydat)
goodrows = 1:dim(xdat)[1]
rows.omit = attr(na.omit(data.frame(xdat,ydat)), "na.action")
goodrows[rows.omit] = 0
if (all(goodrows==0))
stop("Data has no rows without NAs")
xdat = xdat[goodrows,,drop = FALSE]
ydat = ydat[goodrows,,drop = FALSE]
}
if (quantreg & dim(ydat)[2] != 1)
stop("'ydat' must have one column for quantile regression")
xq = double(bws$xndim)+xq
yq = double(bws$yndim)+yq
xtrim = double(bws$xndim)+xtrim
ytrim = double(bws$yndim)+ytrim
if (missing(plot.errors.method) &
any(!missing(plot.errors.boot.num), !missing(plot.errors.boot.method),
!missing(plot.errors.boot.blocklen))){
warning(paste("plot.errors.method must be set to 'bootstrap' to use bootstrapping.",
"\nProceeding without bootstrapping."))
}
plot.behavior = match.arg(plot.behavior)
plot.errors.method = match.arg(plot.errors.method)
plot.errors.boot.method = match.arg(plot.errors.boot.method)
plot.errors.center = match.arg(plot.errors.center)
plot.errors.type = match.arg(plot.errors.type)
plot.errors.style = match.arg(plot.errors.style)
plot.errors.bar = match.arg(plot.errors.bar)
common.scale = common.scale | (!is.null(ylim))
if (plot.errors.method == "asymptotic") {
if (plot.errors.type == "quantiles"){
warning("quantiles cannot be calculated with asymptotics, calculating standard errors")
plot.errors.type = "standard"
}
if (plot.errors.center == "bias-corrected") {
warning("no bias corrections can be calculated with asymptotics, centering on estimate")
plot.errors.center = "estimate"
}
if (quantreg & gradients){
warning(paste("no asymptotic errors available for quantile regression gradients.",
"\nOne must instead use bootstrapping."))
plot.errors.method = "none"
}
}
if (is.element(plot.errors.boot.method, c("fixed", "geom")) &&
is.null(plot.errors.boot.blocklen))
plot.errors.boot.blocklen = b.star(xdat,round=TRUE)[1,1]
plot.errors = (plot.errors.method != "none")
if ((bws$xncon + bws$xnord + bws$yncon + bws$ynord - quantreg == 2) &
(bws$xnuno + bws$ynuno == 0) & perspective & !gradients &
!any(xor(bws$xdati$iord, bws$xdati$inumord))){
view = match.arg(view)
rotate = (view == "rotate")
if (is.ordered(xdat[,1])){
x1.eval = bws$xdati$all.ulev[[1]]
x1.neval = length(x1.eval)
} else {
x1.neval = neval
qi = trim.quantiles(xdat[,1], xtrim[1])
x1.eval = seq(qi[1], qi[2], length.out = x1.neval)
}
if (quantreg){
tx2 <- xdat[,2]
txi <- 2
txdati <- bws$xdati
txtrim <- xtrim
}
else{
tx2 <- ydat[,1]
txi <- 1
txdati <- bws$ydati
txtrim <- ytrim
}
if (txdati$iord[txi]){
x2.eval = txdati$all.ulev[[txi]]
x2.neval = length(x2.eval)
} else {
x2.neval = neval
qi = trim.quantiles(tx2, txtrim[txi])
x2.eval = seq(qi[1], qi[2], length.out = x2.neval)
}
x.eval <- expand.grid(x1.eval, x2.eval)
if (bws$xdati$iord[1])
x1.eval <- (bws$xdati$all.dlev[[1]])[as.integer(x1.eval)]
if (txdati$iord[txi])
x2.eval <- (txdati$all.dlev[[txi]])[as.integer(x2.eval)]
tboo =
if(quantreg) "quant"
else if (cdf) "dist"
else "dens"
tobj = eval(parse(text = paste(
switch(tboo,
"quant" = "npqreg",
"dist" = "npcdist",
"dens" = "npcdens"),
"(txdat = xdat, tydat = ydat, exdat =",
ifelse(quantreg, "x.eval, tau = tau",
"x.eval[,1], eydat = x.eval[,2]"),
", bws = bws)", sep="")))
tcomp = parse(text=paste("tobj$",
switch(tboo,
"quant" = "quantile",
"dist" = "condist",
"dens" = "condens"), sep=""))
tcerr = parse(text=paste(ifelse(quantreg, "tobj$quanterr", "tobj$conderr")))
tex = parse(text=paste(ifelse(quantreg, "x.eval", "x.eval[,1]")))
tey = parse(text=paste(ifelse(quantreg, "NA", "x.eval[,2]")))
tdens = matrix(data = eval(tcomp),
nrow = x1.neval, ncol = x2.neval, byrow = FALSE)
terr = matrix(data = eval(tcerr), nrow = length(eval(tcomp)), ncol = 3)
terr[,3] = NA
if (plot.errors.method == "bootstrap"){
terr <- compute.bootstrap.errors(xdat = xdat, ydat = ydat,
exdat = eval(tex), eydat = eval(tey),
cdf = cdf,
quantreg = quantreg,
tau = tau,
gradients = FALSE,
gradient.index = 0,
slice.index = 0,
plot.errors.boot.method = plot.errors.boot.method,
plot.errors.boot.blocklen = plot.errors.boot.blocklen,
plot.errors.boot.num = plot.errors.boot.num,
plot.errors.center = plot.errors.center,
plot.errors.type = plot.errors.type,
plot.errors.quantiles = plot.errors.quantiles,
bws = bws)[["boot.err"]]
pc = (plot.errors.center == "bias-corrected")
lerr = matrix(data = if(pc) {terr[,3]} else {eval(tcomp)}
-terr[,1],
nrow = x1.neval, ncol = x2.neval, byrow = FALSE)
herr = matrix(data = if(pc) {terr[,3]} else {eval(tcomp)}
+terr[,2],
nrow = x1.neval, ncol = x2.neval, byrow = FALSE)
} else if (plot.errors.method == "asymptotic") {
lerr = matrix(data = eval(tcomp) - 2.0*eval(tcerr),
nrow = x1.neval, ncol = x2.neval, byrow = FALSE)
herr = matrix(data = eval(tcomp) + 2.0*eval(tcerr),
nrow = x1.neval, ncol = x2.neval, byrow = FALSE)
}
zlim =
if (plot.errors)
c(min(lerr),max(herr))
else
c(min(eval(tcomp)),max(eval(tcomp)))
tret = parse(text=paste(
switch(tboo,
"quant" = "qregression",
"dist" = "condistribution",
"dens" = "condensity"),
"(bws = bws, xeval = eval(tex),",
ifelse(quantreg, "tau = tau, quantile = eval(tcomp), quanterr = terr[,1:2]",
paste("yeval = eval(tey),", ifelse(cdf, "condist = ", "condens = "),
"eval(tcomp), conderr = terr[,1:2]")),
", ntrain = dim(xdat)[1])", sep=""))
if (plot.behavior != "plot"){
cd1 = eval(tret)
cd1$bias = NA
if (plot.errors.center == "bias-corrected")
cd1$bias = terr[,3] - eval(tcomp)
if (plot.behavior == "data")
return ( list(cd1 = cd1) )
}
dtheta = 5.0
dphi = 10.0
persp.col = ifelse(plot.errors, FALSE, ifelse(!is.null(col),col,"lightblue"))
for (i in 0:((360 %/% dtheta - 1)*rotate)*dtheta+theta){
if (plot.errors){
persp(x1.eval,
x2.eval,
lerr,
zlim = zlim,
cex.axis = ifelse(!is.null(cex.axis),cex.axis,par()$cex.axis),
cex.lab = ifelse(!is.null(cex.lab),cex.lab,par()$cex.lab),
cex.main = ifelse(!is.null(cex.main),cex.main,par()$cex.main),
cex.sub = ifelse(!is.null(cex.sub),cex.sub,par()$cex.sub),
col = persp.col,
border = ifelse(!is.null(border),border,"grey"),
ticktype = "detailed",
xlab = "",
ylab = "",
zlab = "",
theta = i,
phi = phi,
lwd = ifelse(!is.null(lwd),lwd,par()$lwd))
par(new = TRUE)
}
persp(x1.eval,
x2.eval,
tdens,
zlim = zlim,
col = persp.col,
border = ifelse(!is.null(border),border,"black"),
ticktype = "detailed",
cex.axis = ifelse(!is.null(cex.axis),cex.axis,par()$cex.axis),
cex.lab = ifelse(!is.null(cex.lab),cex.lab,par()$cex.lab),
cex.main = ifelse(!is.null(cex.main),cex.main,par()$cex.main),
cex.sub = ifelse(!is.null(cex.sub),cex.sub,par()$cex.sub),
xlab = ifelse(!is.null(xlab),xlab,gen.label(names(xdat)[1], "X")),
ylab = ifelse(!is.null(ylab),ylab,gen.label(names(ydat)[1], "Y")),
zlab = ifelse(!is.null(zlab),zlab,paste("Conditional", ifelse(cdf,"Distribution", "Density"))),
theta = i,
phi = phi,
main = gen.tflabel(!is.null(main), main, paste("[theta= ", i,", phi= ", phi,"]", sep="")))
if (plot.errors){
par(new = TRUE)
persp(x1.eval,
x2.eval,
herr,
zlim = zlim,
cex.axis = ifelse(!is.null(cex.axis),cex.axis,par()$cex.axis),
cex.lab = ifelse(!is.null(cex.lab),cex.lab,par()$cex.lab),
cex.main = ifelse(!is.null(cex.main),cex.main,par()$cex.main),
cex.sub = ifelse(!is.null(cex.sub),cex.sub,par()$cex.sub),
col = persp.col,
border = ifelse(!is.null(border),border,"grey"),
ticktype = "detailed",
xlab = "",
ylab = "",
zlab = "",
theta = i,
phi = phi,
lwd = ifelse(!is.null(lwd),lwd,par()$lwd))
}
Sys.sleep(0.5)
}
} else {
dsf = ifelse(gradients,bws$xndim,1)
tot.dim = bws$xndim + bws$yndim - quantreg
if (plot.behavior != "data" && plot.par.mfrow)
par(mfrow=n2mfrow(dsf*tot.dim),cex=par()$cex)
x.ev = xdat[1,,drop = FALSE]
y.ev = ydat[1,,drop = FALSE]
for (i in 1:bws$xndim)
x.ev[1,i] = uocquantile(xdat[,i], prob=xq[i])
for (i in 1:bws$yndim)
y.ev[1,i] = uocquantile(ydat[,i], prob=yq[i])
maxneval = max(c(sapply(xdat,nlevels), sapply(ydat,nlevels), neval))
exdat = as.data.frame(matrix(data = 0, nrow = maxneval, ncol = bws$xndim))
eydat = as.data.frame(matrix(data = 0, nrow = maxneval, ncol = bws$yndim))
for (i in 1:bws$xndim)
exdat[,i] = x.ev[1,i]
for (i in 1:bws$yndim)
eydat[,i] = y.ev[1,i]
if (common.scale){
data.eval = matrix(data = NA, nrow = maxneval,
ncol = tot.dim*dsf)
data.err = matrix(data = NA, nrow = maxneval,
ncol = 3*tot.dim*dsf)
allei = as.data.frame(matrix(data = NA, nrow = maxneval,
ncol = tot.dim))
all.bxp = list()
}
all.isFactor = c(sapply(xdat, is.factor), sapply(ydat, is.factor))
plot.out = list()
temp.err = matrix(data = NA, nrow = maxneval, ncol = 3)
temp.dens = replicate(maxneval, NA)
plot.bootstrap = plot.errors.method == "bootstrap"
pfunE = expression(ifelse(xi.factor,
ifelse(plot.bootstrap & plot.bxp,"bxp","plotFactor"), "plot"))
pxE = expression(ifelse(common.scale,
ifelse(xi.factor,
ifelse(plot.bootstrap & plot.bxp, "all.bxp[[plot.index]],",
"f = allei[,plot.index],"),
"x = allei[,plot.index],"),
ifelse(xi.factor,
ifelse(plot.bootstrap & plot.bxp, "z = temp.boot,", "f = ei,"),
"x = ei,")))
pyE = expression(ifelse(xi.factor & plot.bootstrap & plot.bxp, "",
ifelse(common.scale,"y = data.eval[,plot.index],", "y = temp.dens,")))
pylimE = ifelse(common.scale, "ylim = c(y.min,y.max),",
ifelse(plot.errors, "ylim = c(min(na.omit(c(temp.dens - temp.err[,1], temp.err[,3] - temp.err[,1]))),
max(na.omit(c(temp.dens + temp.err[,2], temp.err[,3] + temp.err[,2])))),", ""))
pxlabE = expression(paste("xlab = ifelse(!is.null(xlab),xlab,gen.label(bws$",
xOrY, "names[i], paste('", toupper(xOrY),"', i, sep = ''))),",sep=''))
tylabE = ifelse(quantreg, paste(tau, 'quantile'),
paste('Conditional', ifelse(cdf,'Distribution', 'Density')))
pylabE = paste("ylab =", "paste(", ifelse(gradients,"'GC',j,'of',",''), "tylabE),")
prestE = expression(ifelse(xi.factor,"", "type = ifelse(!is.null(type),type,'l'), lty = ifelse(!is.null(lty),lty,par()$lty), col = ifelse(!is.null(col),col,par()$col), lwd = ifelse(!is.null(lwd),lwd,par()$lwd), cex.axis = ifelse(!is.null(cex.axis),cex.axis,par()$cex.axis), cex.lab = ifelse(!is.null(cex.lab),cex.lab,par()$cex.lab), cex.main = ifelse(!is.null(cex.main),cex.main,par()$cex.main), cex.sub = ifelse(!is.null(cex.sub),cex.sub,par()$cex.sub),"))
pmainE = "main = ifelse(!is.null(main),main,''), sub = ifelse(!is.null(sub),sub,''),"
plotOnEstimate = (plot.errors.center == "estimate")
efunE = "draw.errors"
eexE = expression(ifelse(common.scale, "ex = as.numeric(na.omit(allei[,plot.index])),",
"ex = as.numeric(na.omit(ei)),"))
eelyE = expression(ifelse(common.scale,
ifelse(plotOnEstimate, "ely = na.omit(data.eval[,plot.index] - data.err[,3*plot.index-2]),",
"ely = na.omit(data.err[,3*plot.index] - data.err[,3*plot.index-2]),"),
ifelse(plotOnEstimate, "ely = na.omit(temp.dens - temp.err[,1]),",
"ely = na.omit(temp.err[,3] - temp.err[,1]),")))
eehyE = expression(ifelse(common.scale,
ifelse(plotOnEstimate, "ehy = na.omit(data.eval[,plot.index] + data.err[,3*plot.index-1]),",
"ehy = na.omit(data.err[,3*plot.index] + data.err[,3*plot.index-1]),"),
ifelse(plotOnEstimate, "ehy = na.omit(temp.dens + temp.err[,2]),",
"ehy = na.omit(temp.err[,3] + temp.err[,2]),")))
erestE = "plot.errors.style = ifelse(xi.factor,'bar',plot.errors.style),
plot.errors.bar = ifelse(xi.factor,'I',plot.errors.bar),
plot.errors.bar.num = plot.errors.bar.num,
lty = ifelse(xi.factor,1,2)"
plot.index = 0
xOrY = "x"
for (i in 1:bws$xndim){
plot.index = plot.index + 1
temp.err[,] = NA
temp.dens[] = NA
temp.boot = list()
xi.factor = all.isFactor[plot.index]
if (xi.factor){
ei = bws$xdati$all.ulev[[i]]
xi.neval = length(ei)
} else {
xi.neval = neval
qi = trim.quantiles(xdat[,i], xtrim[i])
ei = seq(qi[1], qi[2], length.out = neval)
}
if (xi.neval < maxneval){
ei[(xi.neval+1):maxneval] = NA
}
tobj = eval(parse(text=paste(ifelse(cdf, "npcdist",
ifelse(quantreg, "npqreg", "npcdens")),
"(txdat = xdat, tydat = ydat,",
"exdat = subcol(exdat,ei,i)[1:xi.neval,, drop = FALSE],",
ifelse(quantreg, "tau = tau,",
"eydat = eydat[1:xi.neval,, drop = FALSE],"),
"gradients = gradients, bws = bws)",sep="")))
tevalexpr = parse(text=paste("tobj$",ifelse(gradients,
ifelse(quantreg, "quantgrad[,j]","congrad[,j]"),
ifelse(cdf, "condist", ifelse(quantreg, "quantile",
"condens"))), sep=""))
terrexpr = parse(text=paste("tobj$",ifelse(gradients,
"congerr[,j]", ifelse(quantreg,"quanterr",
"conderr")), sep=""))
if (gradients & quantreg)
terrexpr = parse(text="NA")
if (plot.behavior != "plot"){
plot.out[plot.index] = NA
plot.out[[plot.index]] = tobj
}
for (j in 1:dsf){
temp.boot = list()
temp.dens[1:xi.neval] = eval(tevalexpr)
if (plot.errors){
if (plot.errors.method == "asymptotic")
temp.err[1:xi.neval,1:2] = replicate(2,2.0*eval(terrexpr))
else if (plot.errors.method == "bootstrap"){
temp.boot <- compute.bootstrap.errors(
xdat = xdat,
ydat = ydat,
exdat = subcol(exdat,ei,i)[1:xi.neval,, drop = FALSE],
eydat = eydat[1:xi.neval,, drop = FALSE],
cdf = cdf,
quantreg = quantreg,
tau = tau,
gradients = gradients,
gradient.index = j,
slice.index = plot.index,
plot.errors.boot.method = plot.errors.boot.method,
plot.errors.boot.blocklen = plot.errors.boot.blocklen,
plot.errors.boot.num = plot.errors.boot.num,
plot.errors.center = plot.errors.center,
plot.errors.type = plot.errors.type,
plot.errors.quantiles = plot.errors.quantiles,
bws = bws)
temp.err[1:xi.neval,] <- temp.boot[["boot.err"]]
temp.boot <- temp.boot[["bxp"]]
if (!plot.bxp.out){
temp.boot$out <- numeric()
temp.boot$group <- integer()
}
}
}
if (common.scale){
allei[,plot.index] = ei
data.eval[,(plot.index-1)*dsf+j] = temp.dens
if (plot.errors){
all.bxp[plot.index] = NA
all.bxp[[plot.index]] = temp.boot
data.err[,seq(3*((plot.index-1)*dsf+j)-2,length=3)] = temp.err
}
} else if (plot.behavior != "data") {
eval(parse(text = paste(eval(pfunE), "(", eval(pxE), eval(pyE),
eval(pylimE), eval(pxlabE), eval(pylabE), eval(prestE),
eval(pmainE), ")")))
if (plot.errors && !(xi.factor & plot.bootstrap & plot.bxp)){
if (!xi.factor && !plotOnEstimate)
lines(na.omit(ei), na.omit(temp.err[,3]), lty = 3)
eval(parse(text = paste(eval(efunE), "(", eval(eexE), eval(eelyE),
eval(eehyE), eval(erestE), ")")))
}
}
if (plot.behavior != "plot" & plot.errors) {
eval(parse(text=paste("plot.out[[plot.index]]$",ifelse(gradients,
paste("gc",j,"err",sep=""),
ifelse(quantreg, "quanterr", "conderr")),
"= na.omit(cbind(-temp.err[,1], temp.err[,2]))", sep="")))
eval(parse(text=paste("plot.out[[plot.index]]$",
ifelse(gradients, paste("gc",j,"bias",sep=""), "bias"),
"= na.omit(temp.dens - temp.err[,3])", sep="")))
plot.out[[plot.index]]$bxp = temp.boot
}
}
}
if (!quantreg){
xOrY = "y"
for (i in 1:bws$yndim){
plot.index = plot.index + 1
temp.err[,] = NA
temp.dens[] = NA
temp.boot = list()
xi.factor = all.isFactor[plot.index]
if (xi.factor){
ei = bws$ydati$all.ulev[[i]]
xi.neval = length(ei)
} else {
xi.neval = neval
qi = trim.quantiles(ydat[,i], ytrim[i])
ei = seq(qi[1], qi[2], length.out = neval)
}
if (xi.neval < maxneval){
ei[(xi.neval+1):maxneval] = NA
}
tobj = eval(parse(text=paste(ifelse(cdf, "npcdist",
ifelse(quantreg, "npqreg", "npcdens")),
"(txdat = xdat, tydat = ydat,",
ifelse(quantreg, "tau = tau,",
"exdat = exdat[1:xi.neval,, drop = FALSE],"),
"eydat = subcol(eydat,ei,i)[1:xi.neval,, drop = FALSE],",
"gradients = gradients, bws = bws)",sep="")))
tevalexpr = parse(text=paste("tobj$",ifelse(gradients,
ifelse(quantreg, "quantgrad[,j]","congrad[,j]"),
ifelse(cdf, "condist", ifelse(quantreg, "quantile",
"condens"))), sep=""))
terrexpr = parse(text=paste("tobj$",ifelse(gradients,
"congerr[,j]", ifelse(quantreg,"quanterr",
"conderr")), sep=""))
if (gradients & quantreg)
terrexpr = parse(text="NA")
if (plot.behavior != "plot"){
plot.out[plot.index] = NA
plot.out[[plot.index]] = tobj
}
for (j in 1:dsf){
temp.boot = list()
temp.dens[1:xi.neval] = eval(tevalexpr)
if (plot.errors){
if (plot.errors.method == "asymptotic")
temp.err[1:xi.neval,1:2] = replicate(2,2.0*eval(terrexpr))
else if (plot.errors.method == "bootstrap"){
temp.boot <- compute.bootstrap.errors(
xdat = xdat,
ydat = ydat,
exdat = exdat[1:xi.neval,, drop = FALSE],
eydat = subcol(eydat,ei,i)[1:xi.neval,, drop = FALSE],
cdf = cdf,
quantreg = quantreg,
tau = tau,
gradients = gradients,
gradient.index = j,
slice.index = plot.index,
plot.errors.boot.method = plot.errors.boot.method,
plot.errors.boot.blocklen = plot.errors.boot.blocklen,
plot.errors.boot.num = plot.errors.boot.num,
plot.errors.center = plot.errors.center,
plot.errors.type = plot.errors.type,
plot.errors.quantiles = plot.errors.quantiles,
bws = bws)
temp.err[1:xi.neval,] <- temp.boot[["boot.err"]]
temp.boot <- temp.boot[["bxp"]]
if (!plot.bxp.out){
temp.boot$out <- numeric()
temp.boot$group <- integer()
}
}
}
if (common.scale){
allei[,plot.index] = ei
data.eval[,(plot.index-1)*dsf+j] = temp.dens
if (plot.errors){
all.bxp[plot.index] = NA
all.bxp[[plot.index]] = temp.boot
data.err[,seq(3*((plot.index-1)*dsf+j)-2,length=3)] = temp.err
}
} else if (plot.behavior != "data") {
eval(parse(text = paste(eval(pfunE), "(", eval(pxE), eval(pyE),
eval(pylimE), eval(pxlabE), eval(pylabE), eval(prestE),
eval(pmainE), ")")))
if (plot.errors && !(xi.factor & plot.bootstrap & plot.bxp)){
if (!xi.factor && !plotOnEstimate)
lines(na.omit(ei), na.omit(temp.err[,3]), lty = 3)
eval(parse(text = paste(eval(efunE), "(", eval(eexE), eval(eelyE),
eval(eehyE), eval(erestE), ")")))
}
}
if (plot.behavior != "plot" & plot.errors) {
eval(parse(text=paste("plot.out[[plot.index]]$",ifelse(gradients,
paste("gc",j,"err",sep=""),
ifelse(quantreg, "quanterr", "conderr")),
"= na.omit(cbind(-temp.err[,1], temp.err[,2]))", sep="")))
eval(parse(text=paste("plot.out[[plot.index]]$",
ifelse(gradients, paste("gc",j,"bias",sep=""), "bias"),
"= na.omit(temp.dens - temp.err[,3])", sep="")))
plot.out[[plot.index]]$bxp = temp.boot
}
}
}
}
if (common.scale & (plot.behavior != "data")){
jj = 1:(dsf*tot.dim)*3
if (plot.errors.center == "estimate" | !plot.errors) {
y.max = max(na.omit(as.double(data.eval)) +
if (plot.errors) na.omit(as.double(data.err[,jj-1]))
else 0)
y.min = min(na.omit(as.double(data.eval)) -
if (plot.errors) na.omit(as.double(data.err[,jj-2]))
else 0)
} else if (plot.errors.center == "bias-corrected") {
y.max = max(na.omit(as.double(data.err[,jj] + data.err[,jj-1])))
y.min = min(na.omit(as.double(data.err[,jj] - data.err[,jj-2])))
}
if(!is.null(ylim)){
y.min = ylim[1]
y.max = ylim[2]
}
xOrY = "x"
for (plot.index in 1:tot.dim){
i = ifelse(plot.index <= bws$xndim, plot.index, plot.index - bws$xndim)
if (plot.index > bws$xndim)
xOrY <- "y"
xi.factor = all.isFactor[plot.index]
for (j in 1:dsf){
eval(parse(text = paste(eval(pfunE), "(", eval(pxE), eval(pyE),
eval(pylimE), eval(pxlabE), eval(pylabE), eval(prestE),
eval(pmainE), ")")))
if (plot.errors && !(xi.factor & plot.bootstrap & plot.bxp)){
if (!xi.factor && !plotOnEstimate)
lines(na.omit(ei), na.omit(temp.err[,3]), lty = 3)
eval(parse(text = paste(eval(efunE), "(", eval(eexE), eval(eelyE),
eval(eehyE), eval(erestE), ")")))
}
}
}
}
if (plot.behavior != "data" && plot.par.mfrow)
par(mfrow=c(1,1),cex=par()$cex)
if (plot.behavior != "plot"){
names(plot.out) = paste("cd", 1:tot.dim, sep="")
return (plot.out)
}
}
}
npplot.sibandwidth <-
function(bws,
xdat,
ydat,
data = NULL,
common.scale = TRUE,
gradients = FALSE,
main = NULL,
type = NULL,
cex.axis = NULL,
cex.lab = NULL,
cex.main = NULL,
cex.sub = NULL,
col = NULL,
ylab = NULL,
xlab = NULL,
sub = NULL,
ylim = NULL,
xlim = NULL,
lty = NULL,
lwd = NULL,
plot.behavior = c("plot","plot-data","data"),
plot.errors.method = c("none","bootstrap","asymptotic"),
plot.errors.boot.num = 399,
plot.errors.boot.method = c("inid", "fixed", "geom"),
plot.errors.boot.blocklen = NULL,
plot.errors.center = c("estimate","bias-corrected"),
plot.errors.type = c("standard","quantiles"),
plot.errors.quantiles = c(0.025,0.975),
plot.errors.style = c("band","bar"),
plot.errors.bar = c("|","I"),
plot.errors.bar.num = NULL,
plot.par.mfrow = TRUE,
...,
random.seed){
miss.xy = c(missing(xdat),missing(ydat))
if (any(miss.xy) && !all(miss.xy))
stop("one of, but not both, xdat and ydat was specified")
else if(all(miss.xy) && !is.null(bws$formula)){
tt <- terms(bws)
m <- match(c("formula", "data", "subset", "na.action"),
names(bws$call), nomatch = 0)
tmf <- bws$call[c(1,m)]
tmf[[1]] <- as.name("model.frame")
tmf[["formula"]] <- tt
umf <- tmf <- eval(tmf, envir = environment(tt))
ydat <- model.response(tmf)
xdat <- tmf[, attr(attr(tmf, "terms"),"term.labels"), drop = FALSE]
} else {
if(all(miss.xy) && !is.null(bws$call)){
xdat <- data.frame(eval(bws$call[["xdat"]], environment(bws$call)))
ydat = eval(bws$call[["ydat"]], environment(bws$call))
}
xdat = toFrame(xdat)
goodrows = 1:dim(xdat)[1]
rows.omit = attr(na.omit(data.frame(xdat,ydat)), "na.action")
goodrows[rows.omit] = 0
if (all(goodrows==0))
stop("Data has no rows without NAs")
xdat = xdat[goodrows,,drop = FALSE]
ydat = ydat[goodrows]
}
if (is.null(plot.errors.bar.num))
plot.errors.bar.num = min(length(ydat),25)
if (missing(plot.errors.method) &
any(!missing(plot.errors.boot.num), !missing(plot.errors.boot.method),
!missing(plot.errors.boot.blocklen))){
warning(paste("plot.errors.method must be set to 'bootstrap' to use bootstrapping.",
"\nProceeding without bootstrapping."))
}
plot.behavior = match.arg(plot.behavior)
plot.errors.method = match.arg(plot.errors.method)
plot.errors.boot.method = match.arg(plot.errors.boot.method)
plot.errors.center = match.arg(plot.errors.center)
plot.errors.type = match.arg(plot.errors.type)
plot.errors.style = match.arg(plot.errors.style)
plot.errors.bar = match.arg(plot.errors.bar)
common.scale = common.scale | (!is.null(ylim))
if (plot.errors.method == "asymptotic") {
warning(paste("asymptotic errors are not supported with single index regression.\n",
"Proceeding without calculating errors"))
plot.errors.method = "none"
}
if (is.element(plot.errors.boot.method, c("fixed", "geom")) &&
is.null(plot.errors.boot.blocklen))
plot.errors.boot.blocklen = b.star(xdat,round=TRUE)[1,1]
plot.errors = (plot.errors.method != "none")
if (plot.behavior != "data" && plot.par.mfrow)
par(mfrow=if(gradients) n2mfrow(bws$ndim) else c(1,1),cex=par()$cex)
plot.out = list()
neval = maxneval = length(ydat)
tobj = npindex(txdat = xdat, tydat = ydat,
bws = bws, gradients = gradients)
temp.err = matrix(data = NA, nrow = maxneval, ncol = 3)
temp.mean = replicate(maxneval, NA)
temp.mean[] = if(gradients) tobj$grad[,1] else tobj$mean
if (plot.errors){
if (plot.errors.method == "bootstrap")
temp.err[,] = compute.bootstrap.errors(
xdat = xdat, ydat = ydat,
gradients = gradients,
plot.errors.boot.method = plot.errors.boot.method,
plot.errors.boot.blocklen = plot.errors.boot.blocklen,
plot.errors.boot.num = plot.errors.boot.num,
plot.errors.center = plot.errors.center,
plot.errors.type = plot.errors.type,
plot.errors.quantiles = plot.errors.quantiles,
bws = bws)
}
i.sort = sort(tobj$index, index.return=TRUE)$ix
if (!gradients){
if(!is.null(ylim)){
ymin = ylim[1]
ymax = ylim[2]
} else {
ymin <- eval(parse(text=paste("min(",
ifelse(plot.errors,"na.omit(",""),
"c(temp.mean",
ifelse(plot.errors,"- temp.err[,1]",""),
", temp.err[,3]",
ifelse(plot.errors,"- temp.err[,1]",""),
"))",
ifelse(plot.errors,")",""))))
ymax <- eval(parse(text=paste("max(",
ifelse(plot.errors,"na.omit(",""),
"c(temp.mean",
ifelse(plot.errors,"+ temp.err[,2]",""),
", temp.err[,3]",
ifelse(plot.errors,"+ temp.err[,2]",""),
"))",
ifelse(plot.errors,")",""))))
}
if (plot.behavior != "data"){
if (plot.errors){
plot(tobj$index[i.sort], temp.mean[i.sort],
ylim = ifelse(!is.null(ylim),ylim,c(ymin,ymax)),
xlim = xlim,
cex.axis = ifelse(!is.null(cex.axis),cex.axis,par()$cex.axis),
cex.lab = ifelse(!is.null(cex.lab),cex.lab,par()$cex.lab),
cex.main = ifelse(!is.null(cex.main),cex.main,par()$cex.main),
cex.sub = ifelse(!is.null(cex.sub),cex.sub,par()$cex.sub),
xlab = ifelse(!is.null(xlab),xlab,"index"),
ylab = ifelse(!is.null(ylab),ylab,gen.label(bws$ynames, 'Conditional Mean')),
type = ifelse(!is.null(type),type,'l'),
lty = ifelse(!is.null(lty),lty,par()$lty),
col = ifelse(!is.null(col),col,par()$col),
main = main,
sub = sub,
lwd = ifelse(!is.null(lwd),lwd,par()$lwd))
if (plot.errors.center == "estimate") {
draw.errors(ex = na.omit(tobj$index[i.sort]),
ely = na.omit(temp.mean[i.sort] - temp.err[i.sort,1]),
ehy = na.omit(temp.mean[i.sort] + temp.err[i.sort,2]),
plot.errors.style = plot.errors.style,
plot.errors.bar = plot.errors.bar,
plot.errors.bar.num = plot.errors.bar.num,
lty = 2)
} else if (plot.errors.center == "bias-corrected") {
lines(na.omit(tobj$index[i.sort]), na.omit(temp.err[i.sort,3]), lty = 3)
draw.errors(ex = na.omit(tobj$index[i.sort]),
ely = na.omit(temp.err[i.sort,3] - temp.err[i.sort,1]),
ehy = na.omit(temp.err[i.sort,3] + temp.err[i.sort,2]),
plot.errors.style = plot.errors.style,
plot.errors.bar = plot.errors.bar,
plot.errors.bar.num = plot.errors.bar.num,
lty = 2)
}
} else {
plot(tobj$index[i.sort], temp.mean[i.sort],
cex.axis = ifelse(!is.null(cex.axis),cex.axis,par()$cex.axis),
cex.lab = ifelse(!is.null(cex.lab),cex.lab,par()$cex.lab),
cex.main = ifelse(!is.null(cex.main),cex.main,par()$cex.main),
cex.sub = ifelse(!is.null(cex.sub),cex.sub,par()$cex.sub),
xlab = ifelse(!is.null(xlab),xlab,"Index"),
ylab = ifelse(!is.null(ylab),ylab,gen.label(bws$ynames, 'Conditional Mean')),
type = ifelse(!is.null(type),type,'l'),
lty = ifelse(!is.null(lty),lty,par()$lty),
col = ifelse(!is.null(col),col,par()$col),
main = main,
sub = sub,
xlim = xlim,
ylim = ylim,
lwd = ifelse(!is.null(lwd),lwd,par()$lwd))
}
}
if (plot.behavior != "plot") {
plot.out[1] = NA
plot.out[[1]] = tobj
}
} else {
bmax = max(bws$beta)
bmin = min(bws$beta)
if (plot.errors){
ymax = max(temp.mean + temp.err[,2])
ymin = min(temp.mean - temp.err[,1])
} else {
ymax = max(temp.mean)
ymin = min(temp.mean)
}
ylim = c(min(bmin*ymax,bmax*ymin),max(bmax*ymax,bmin*ymin))
if(!is.null(ylim)){
ymin = ylim[1]
ymax = ylim[2]
}
if (plot.behavior != "plot"){
plot.out[1] = NA
plot.out[[1]] = tobj
plot.out[[1]]$index = tobj$index[i.sort]
plot.out[[1]]$mean = tobj$mean[i.sort]
plot.out[[1]]$grad = matrix(data=0,nrow = nrow(xdat), ncol = ncol(xdat))
plot.out[[1]]$glerr = matrix(data=0,nrow = nrow(xdat), ncol = ncol(xdat))
plot.out[[1]]$gherr = matrix(data=0,nrow = nrow(xdat), ncol = ncol(xdat))
}
for (i in 1:ncol(xdat)){
if (plot.behavior != "data"){
if(!common.scale)
ylim = c(min(temp.mean*bws$beta[i]), max(temp.mean*bws$beta[i]))
plot(tobj$index[i.sort], temp.mean[i.sort]*bws$beta[i],
ylim = ylim,
cex.axis = ifelse(!is.null(cex.axis),cex.axis,par()$cex.axis),
cex.lab = ifelse(!is.null(cex.lab),cex.lab,par()$cex.lab),
cex.main = ifelse(!is.null(cex.main),cex.main,par()$cex.main),
cex.sub = ifelse(!is.null(cex.sub),cex.sub,par()$cex.sub),
xlab = ifelse(!is.null(xlab),xlab,"index"),
ylab = paste("Gradient Component",i, "of", gen.label(bws$ynames, 'Conditional Mean')),
lty = ifelse(!is.null(lty),lty,par()$lty),
col = ifelse(!is.null(col),col,par()$col),
type = ifelse(!is.null(type),type,'l'),
main = main,
sub = sub,
lwd = ifelse(!is.null(lwd),lwd,par()$lwd))
if (plot.errors){
if (plot.errors.center == "estimate") {
draw.errors(ex = na.omit(tobj$index[i.sort]),
ely = na.omit(bws$beta[i]*(temp.mean[i.sort] - temp.err[i.sort,1])),
ehy = na.omit(bws$beta[i]*(temp.mean[i.sort] + temp.err[i.sort,2])),
plot.errors.style = plot.errors.style,
plot.errors.bar = plot.errors.bar,
plot.errors.bar.num = plot.errors.bar.num,
lty = 2)
} else if (plot.errors.center == "bias-corrected") {
lines(na.omit(tobj$index[i.sort]), na.omit(temp.err[i.sort,3]), lty = 3)
draw.errors(ex = na.omit(tobj$index[i.sort]),
ely = na.omit(temp.err[i.sort,3] - temp.err[i.sort,1]),
ehy = na.omit(temp.err[i.sort,3] + temp.err[i.sort,2]),
plot.errors.style = plot.errors.style,
plot.errors.bar = plot.errors.bar,
plot.errors.bar.num = plot.errors.bar.num,
lty = 2)
}
}
}
if (plot.behavior != "plot"){
plot.out[[1]]$grad[,i] = bws$beta[i]*temp.mean[i.sort]
plot.out[[1]]$glerr[,i] = bws$beta[i]*temp.err[i.sort,ifelse(bws$beta >= 0.0,1,2)]
plot.out[[1]]$gherr[,i] = bws$beta[i]*temp.err[i.sort,ifelse(bws$beta < 0.0,1,2)]
plot.out[[1]]$gbias[,i] = bws$beta[i]*temp.err[i.sort,3]
}
}
}
if (plot.behavior != "data" && plot.par.mfrow)
par(mfrow=c(1,1),cex=par()$cex)
if (plot.behavior != "plot"){
names(plot.out) = paste(ifelse(gradients, "si.grad", "si"),1:ncol(xdat),sep="")
return (plot.out)
}
} |
"LSWsim"<-
function(spec){
if (any(spec$D < 0))
stop("All spectral elements must be non-negative")
nlev <- nlevelsWT(spec)
len <- 2^nlev
for(i in (nlev-1):0) {
v <- accessD(spec, level=i)
v <- sqrt(v)*2^(nlev-i)*rnorm(len)
spec <- putD(spec, level=i, v=v)
}
AvBasis(convert(spec))
}
"cns"<-
function(n, filter.number=1, family="DaubExPhase"){
if (is.na(IsPowerOfTwo(n)))
stop("n must be a power of two")
z <- rep(0, n)
zwdS <- wd(z, filter.number=filter.number, family=family, type="station")
zwdS
}
"checkmyews" <- function(spec, nsim=10){
ans <- cns(2^nlevelsWT(spec))
for(i in 1:nsim) {
cat(".")
LSWproc <- LSWsim(spec)
ews <- ewspec(LSWproc, filter.number=1, family="DaubExPhase",
WPsmooth=FALSE)
ans$D <- ans$D + ews$S$D
ans$C <- ans$C + ews$S$C
}
ans$D <- ans$D/nsim
ans$C <- ans$C/nsim
ans
} |
plot(ml.binom2, hline = TRUE) %>%
gf_lims(y = c(-45, -35)) %>%
gf_labs(x = "log odds") |
'_PACKAGE'
localDensity <- function(distance, dc, gaussian = FALSE) {
if (gaussian) {
res <- gaussianLocalDensity(distance, attr(distance, "Size"), dc)
} else {
res <- nonGaussianLocalDensity(distance, attr(distance, "Size"), dc)
}
if (is.null(attr(distance, 'Labels'))) {
names(res) <- NULL
} else {
names(res) <- attr(distance, 'Labels')
}
res
}
distanceToPeak <- function(distance, rho) {
res <- distanceToPeakCpp(distance, rho);
names(res) <- names(rho)
res
}
estimateDc <- function(distance, neighborRateLow = 0.01, neighborRateHigh = 0.02) {
size <- attr(distance, 'Size')
if (size > 448) {
distance <- distance[sample.int(length(distance), 100128)]
size <- 448
}
low <- min(distance)
high <- max(distance)
dc <- 0
while (TRUE) {
dc <- (low + high) / 2
neighborRate <- (((sum(distance < dc) * 2 + (if (0 <= dc) size)) / size - 1)) / size
if (neighborRate >= neighborRateLow && neighborRate <= neighborRateHigh) break
if (neighborRate < neighborRateLow) {
low <- dc
} else {
high <- dc
}
}
cat('Distance cutoff calculated to', dc, '\n')
dc
}
densityClust <- function(distance, dc, gaussian=FALSE, verbose = FALSE, ...) {
if (is.data.frame(distance) || is.matrix(distance)) {
dp_knn_args <- list(mat = distance, verbose = verbose, ...)
res <- do.call(densityClust.knn, dp_knn_args)
} else {
if (missing(dc)) {
if (verbose) message('Calculating the distance cutoff')
dc <- estimateDc(distance)
}
if (verbose) message('Calculating the local density for each sample based on distance cutoff')
rho <- localDensity(distance, dc, gaussian = gaussian)
if (verbose) message('Calculating the minimal distance of a sample to another sample with higher density')
delta <- distanceToPeak(distance, rho)
if (verbose) message('Returning result...')
res <- list(
rho = rho,
delta = delta,
distance = distance,
dc = dc,
threshold = c(rho = NA, delta = NA),
peaks = NA,
clusters = NA,
halo = NA,
knn_graph = NA,
nearest_higher_density_neighbor = NA,
nn.index = NA,
nn.dist = NA
)
class(res) <- 'densityCluster'
}
res
}
plot.densityCluster <- function(x, ...) {
plot(x$rho, x$delta, main = 'Decision graph', xlab = expression(rho),
ylab = expression(delta))
if (!is.na(x$peaks[1])) {
points(x$rho[x$peaks], x$delta[x$peaks], col = 2:(1 + length(x$peaks)),
pch = 19)
}
}
plotMDS <- function(x, ...) {
UseMethod('plotMDS')
}
plotMDS.densityCluster <- function(x, ...) {
if (class(x$distance) %in% c('data.frame', 'matrix')) {
mds <- cmdscale(dist(x$distance))
} else {
mds <- cmdscale(x$distance)
}
plot(mds[,1], mds[,2], xlab = '', ylab = '', main = 'MDS plot of observations')
if (!is.na(x$peaks[1])) {
for (i in 1:length(x$peaks)) {
ind <- which(x$clusters == i)
points(mds[ind, 1], mds[ind, 2], col = i + 1, pch = ifelse(x$halo[ind], 1, 19))
}
legend('topright', legend = c('core', 'halo'), pch = c(19, 1), horiz = TRUE)
}
}
plotTSNE <- function(x, ...) {
UseMethod('plotTSNE')
}
plotTSNE.densityCluster <- function(x, max_components = 2, ...) {
if (class(x$distance) %in% c('data.frame', 'matrix')) {
data <- as.matrix(dist(x$distance))
} else {
data <- as.matrix(x$distance)
}
dup_id <- which(duplicated(data))
if (length(dup_id) > 0) {
data[dup_id, ] <- data[dup_id, ] + rnorm(length(dup_id) * ncol(data), sd = 1e-10)
}
tsne_res <- Rtsne::Rtsne(as.matrix(data), dims = max_components,
pca = T)
tsne_data <- tsne_res$Y[, 1:max_components]
plot(tsne_data[,1], tsne_data[,2], xlab = '', ylab = '', main = 'tSNE plot of observations')
if (!is.na(x$peaks[1])) {
for (i in 1:length(x$peaks)) {
ind <- which(x$clusters == i)
points(tsne_data[ind, 1], tsne_data[ind, 2], col = i + 1, pch = ifelse(x$halo[ind], 1, 19))
}
legend('topright', legend = c('core', 'halo'), pch = c(19, 1), horiz = TRUE)
}
}
print.densityCluster <- function(x, ...) {
if (is.na(x$peaks[1])) {
cat('A densityCluster object with no clusters defined\n\n')
cat('Number of observations:', length(x$rho), '\n')
} else {
cat('A densityCluster object with', length(x$peaks), 'clusters defined\n\n')
cat('Number of observations:', length(x$rho), '\n')
cat('Observations in core: ', sum(!x$halo), '\n\n')
cat('Parameters:\n')
cat('dc (distance cutoff) rho threshold delta threshold\n')
cat(formatC(x$dc, width = -22), formatC(x$threshold[1], width = -22), x$threshold[2])
}
}
findClusters <- function(x, ...) {
UseMethod("findClusters")
}
findClusters.densityCluster <- function(x, rho, delta, plot = FALSE, peaks = NULL, verbose = FALSE, ...) {
if (class(x$distance) %in% c('data.frame', 'matrix')) {
peak_ind <- which(x$rho > rho & x$delta > delta)
x$peaks <- peak_ind
runOrder <- order(x$rho, decreasing = TRUE)
cluster <- rep(NA, length(x$rho))
for (i in x$peaks) {
cluster[i] <- match(i, x$peaks)
}
for (ind in setdiff(runOrder, x$peaks)) {
target_lower_density_samples <- which(x$nearest_higher_density_neighbor == ind)
cluster[ind] <- cluster[x$nearest_higher_density_neighbor[ind]]
}
potential_duplicates <- which(is.na(cluster))
for (ind in potential_duplicates) {
res <- as.integer(names(which.max(table(cluster[x$nn.index[ind, ]]))))
if (length(res) > 0) {
cluster[ind] <- res
} else {
message('try to increase the number of kNN (through argument k) at step of densityClust.')
cluster[ind] <- NA
}
}
x$clusters <- factor(cluster)
border <- rep(0, length(x$peaks))
if (verbose) message('Identifying core and halo for each cluster')
for (i in 1:length(x$peaks)) {
if (verbose) message('the current index of the peak is ', i)
connect_samples_ind <- intersect(unique(x$nn.index[cluster == i, ]), which(cluster != i))
averageRho <- outer(x$rho[cluster == i], x$rho[connect_samples_ind], '+') / 2
if (any(connect_samples_ind)) border[i] <- max(averageRho[connect_samples_ind])
}
x$halo <- x$rho < border[cluster]
x$threshold['rho'] <- rho
x$threshold['delta'] <- delta
}
else {
if (!is.null(peaks)) {
if (verbose) message('peaks are provided, clustering will be performed based on them')
x$peaks <- peaks
} else {
if (missing(rho) || missing(delta)) {
x$peaks <- NA
plot(x)
cat('Click on plot to select thresholds\n')
threshold <- locator(1)
if (missing(rho)) rho <- threshold$x
if (missing(delta)) delta <- threshold$y
plot = TRUE
}
x$peaks <- which(x$rho > rho & x$delta > delta)
x$threshold['rho'] <- rho
x$threshold['delta'] <- delta
}
if (plot) {
plot(x)
}
runOrder <- order(x$rho, decreasing = TRUE)
cluster <- rep(NA, length(x$rho))
if (verbose) message('Assigning each sample to a cluster based on its nearest density peak')
for (i in runOrder) {
if ((i %% round(length(runOrder) / 25)) == 0) {
if (verbose) message(paste('the runOrder index is', i))
}
if (i %in% x$peaks) {
cluster[i] <- match(i, x$peaks)
} else {
higherDensity <- which(x$rho > x$rho[i])
cluster[i] <- cluster[higherDensity[which.min(findDistValueByRowColInd(x$distance, attr(x$distance, 'Size'), i, higherDensity))]]
}
}
x$clusters <- cluster
border <- rep(0, length(x$peaks))
if (verbose) message('Identifying core and halo for each cluster')
for (i in 1:length(x$peaks)) {
if (verbose) message('the current index of the peak is ', i)
averageRho <- outer(x$rho[cluster == i], x$rho[cluster != i], '+')/2
index <- findDistValueByRowColInd(x$distance, attr(x$distance, 'Size'), which(cluster == i), which(cluster != i)) <= x$dc
if (any(index)) border[i] <- max(averageRho[index])
}
x$halo <- x$rho < border[cluster]
}
x$halo <- x$rho < border[cluster]
gamma <- x$rho * x$delta
pk.ordr <- order(gamma[x$peaks], decreasing = TRUE)
x$peaks <- x$peaks[pk.ordr]
x$clusters <- match(x$clusters, pk.ordr)
x
}
clusters <- function(x, ...) {
UseMethod("clusters")
}
clusters.densityCluster <- function(x, as.list = FALSE, halo.rm = TRUE, ...) {
if (!clustered(x)) stop('x must be clustered prior to cluster extraction')
res <- x$clusters
if (halo.rm) {
res[x$halo] <- NA
}
if (as.list) {
res <- split(1:length(res), res)
}
res
}
clustered <- function(x) {
UseMethod("clustered")
}
clustered.densityCluster <- function(x) {
!any(is.na(x$peaks[1]), is.na(x$clusters[1]), is.na(x$halo[1]))
}
labels.densityCluster <- function(object, ...) {
labels(object$distance)
}
densityClust.knn <- function(mat, k = NULL, verbose = F, ...) {
if (is.null(k)) {
k <- round(sqrt(nrow(mat)) / 2)
k <- max(10, k)
}
if (verbose) message('Finding kNN using FNN with ', k, ' neighbors')
dx <- get.knn(mat, k = k, ...)
nn.index <- dx$nn.index
nn.dist <- dx$nn.dist
N <- nrow(nn.index)
knn_graph <- NULL
if (verbose) message('Calculating the local density for each sample based on kNNs ...')
rho <- apply(nn.dist, 1, function(x) {
exp(-mean(x))
})
if (verbose) message('Calculating the minimal distance of a sample to another sample with higher density ...')
rho_order <- order(rho)
delta <- vector(mode = 'integer', length = N)
nearest_higher_density_neighbor <- vector(mode = 'integer', length = N)
delta_neighbor_tmp <- smallest_dist_rho_order_coords(rho[rho_order], as.matrix(mat[rho_order, ]))
delta[rho_order] <- delta_neighbor_tmp$smallest_dist
nearest_higher_density_neighbor[rho_order] <- rho_order[delta_neighbor_tmp$nearest_higher_density_sample + 1]
if (verbose) message('Returning result...')
res <- list(
rho = rho,
delta = delta,
distance = mat,
dc = NULL,
threshold = c(rho = NA, delta = NA),
peaks = NA,
clusters = NA,
halo = NA,
knn_graph = knn_graph,
nearest_higher_density_neighbor = nearest_higher_density_neighbor,
nn.index = nn.index,
nn.dist = nn.dist
)
class(res) <- 'densityCluster'
res
} |
context("plotmap")
test_that("test basic error checking",{
object<-c("this","that","the other")
expect_error(plotmap(object),"Error in plotmap: inclust must be a clust object")
N<-5
Tmax<-100
rho<-0.5
sig<-matrix(rho,N,N)
diag(sig)<-1
d<-t(cbind(copy_rmvnorm(Tmax,mean=rep(0,N),sigma=sig),
copy_rmvnorm(Tmax,mean=rep(0,N),sigma=sig)))
d<-cleandat(d,1:Tmax,1)$cdat
coords<-data.frame(X=runif(N*2,1,10),Y=runif(N*2,1,10))
cl1<-clust(dat=d,times=1:Tmax,coords=coords,method="pearson")
cl1$clusters[[2]]<-1:(N*2)
expect_error(plotmap(cl1),"Error in plotmap: more than 9 modules, plotmap cannot proceed")
})
test_that("tests on clust objects",{
set.seed(101)
N<-20
Tmax<-500
tim<-1:Tmax
ts1<-sin(2*pi*tim/5)
ts1s<-sin(2*pi*tim/5+pi/2)
ts2<-sin(2*pi*tim/12)
ts2s<-sin(2*pi*tim/12+pi/2)
gp1A<-1:5
gp1B<-6:10
gp2A<-11:15
gp2B<-16:20
d<-matrix(NA,Tmax,N)
d[,c(gp1A,gp1B)]<-ts1
d[,c(gp2A,gp2B)]<-ts1s
d[,c(gp1A,gp2A)]<-d[,c(gp1A,gp2A)]+matrix(ts2,Tmax,N/2)
d[,c(gp1B,gp2B)]<-d[,c(gp1B,gp2B)]+matrix(ts2s,Tmax,N/2)
d<-d+matrix(rnorm(Tmax*N,0,2),Tmax,N)
d<-t(d)
d<-cleandat(d,1:Tmax,1)$cdat
coords<-data.frame(X=c(rep(1,10),rep(2,10)),Y=rep(c(1:5,7:11),times=2))
cl1<-clust(dat=d,times=1:Tmax,coords=coords,method="ReXWT",tsrange=c(4,6))
Test_plotmap_1<-function(){plotmap(cl1)}
expect_doppelganger(title="Test-plotmap-1",fig=Test_plotmap_1)
Test_plotmap_2<-function(){plotmap(cl1, spltlvl=1)}
expect_doppelganger(title="Test-plotmap-2",fig=Test_plotmap_2)
Test_plotmap_3<-function(){plotmap(cl1, nodesize=c(1,2))}
expect_doppelganger(title="Test-plotmap-3",fig=Test_plotmap_3)
Test_plotmap_4<-function(){plotmap(cl1, nodesize=c(2,2))}
expect_doppelganger(title="Test-plotmap-4",fig=Test_plotmap_4)
}) |
context("Test for tdc output")
test_that("Adjamatrices: centrality_evolution=FALSE when running tdc", {
expect_is(tdc(As, "M", normalize = T, centrality_evolution = F), "numeric")
expect_length(tdc(As, "M", normalize = T, centrality_evolution = F), numberNodes)
expect_true(all(tdc(As, "M", normalize = T, centrality_evolution = F)<=1))
})
test_that("Adjamatrices: centrality_evolution=TRUE when running tdc", {
expect_is(tdc(As, "M", normalize = T, centrality_evolution = T), "list")
expect_length(tdc(As, "M", normalize = T, centrality_evolution = T), 2)
expect_is(tdc(As, "M", normalize = T, centrality_evolution = T)[[2]], "matrix")
})
test_that("Adjalists: centrality_evolution=FALSE when running tdc", {
expect_is(tdc(Es, "L", normalize = T, centrality_evolution = F), "numeric")
expect_length(tdc(Es, "L", normalize = T, centrality_evolution = F), numberNodes)
expect_true(all(tdc(Es, "L", normalize = T, centrality_evolution = F)<=1))
})
test_that("Adjalists: centrality_evolution=TRUE when running tdc", {
expect_is(tdc(Es, "L", normalize = T, centrality_evolution = T), "list")
expect_length(tdc(Es, "L", normalize = T, centrality_evolution = T), 2)
expect_is(tdc(Es, "L", normalize = T, centrality_evolution = T)[[2]], "matrix")
})
test_that("Adjalists compared to Adjamatrices", {
expect_equal(tdc(Es, "L", normalize = T, centrality_evolution = T),
tdc(As, "M", normalize = T, centrality_evolution = T))
}) |
commarobust <- function(model,
se_type = NULL,
clusters = NULL,
ci = TRUE,
alpha = 0.05) {
if (class(model)[1] != "lm") {
stop("`model` must be an lm object")
}
coefs <- as.matrix(coef(model))
est_exists <- !is.na(coefs)
covs_used <- which(est_exists)
coefs <- coefs[covs_used, , drop = FALSE]
Qr <- qr(model)
p1 <- seq_len(model$rank)
XtX_inv <- chol2inv(Qr$qr[p1, p1, drop = FALSE])
clustered <- !is.null(clusters)
se_type <- check_se_type(se_type = se_type, clustered = clustered)
X <- model.matrix.default(model)
contrasts <- attr(X, "contrasts")
N <- nrow(X)
data <- list(
y = as.matrix(model.response(model$model)),
X = X,
weights = weights(model)
)
weighted <- is.numeric(data[["weights"]])
if (clustered) {
if (is.matrix(clusters) && ncol(clusters) > 1) {
stop("`clusters` must be a single vector or column denoting the clusters.")
}
if (length(clusters) != N) {
stop("`clusters` must be the same length as the model data.")
}
data[["cluster"]] <- as.factor(clusters)
}
data <- prep_data(
data = data,
se_type = se_type,
clustered = clustered,
weighted = weighted,
fes = FALSE,
iv_stage = list(0)
)
ei <- as.matrix(resid(model))
if (clustered) {
ei <- ei[data[["cl_ord"]], , drop = FALSE]
}
if (any(!est_exists)) {
data <- drop_collinear(data, covs_used, weighted, FALSE)
}
if (weighted) {
ei <- data[["weights"]] * ei
XtX_inv <- data[["weight_mean"]] * XtX_inv
if (se_type == "CR2") {
eiunweighted <-
as.matrix(data[["yunweighted"]] - data[["Xunweighted"]] %*% coefs)
data[["X"]] <- data[["weights"]] * data[["X"]]
}
}
vcov_fit <- lm_variance(
X = data[["X"]],
Xunweighted = data[["Xunweighted"]],
XtX_inv = XtX_inv,
ei = if (se_type == "CR2" && weighted) eiunweighted else ei,
weight_mean = data[["weight_mean"]],
cluster = data[["cluster"]],
J = data[["J"]],
ci = ci,
se_type = se_type,
which_covs = rep(TRUE, model$rank),
fe_rank = 0
)
return_list <- list(
coefficients = as.matrix(coef(model)),
std.error = NA,
df = NA,
term = names(coef(model)),
outcome = as.character(rlang::f_lhs(formula(model))),
alpha = alpha,
se_type = se_type,
df.residual = df.residual(model),
weighted = weighted,
fes = FALSE,
clustered = clustered,
nobs = nobs(model),
rank = model$rank,
k = ncol(X),
fitted.values = fitted.values(model),
contrasts = contrasts,
terms = model$terms,
xlevels = model$xlevels,
weights = weights(model)
)
return_list[["std.error"]][est_exists] <- sqrt(diag(vcov_fit$Vcov_hat))
return_list[["df"]][est_exists] <- ifelse(vcov_fit$dof == -99, NA, vcov_fit$dof)
if (clustered) {
return_list[["nclusters"]] <- data[["J"]]
}
return_list[["res_var"]] <- get_resvar(
data = data,
ei = ei,
df.residual = return_list[["df.residual"]],
vcov_fit = vcov_fit,
weighted = weighted
)
return_list <- add_cis_pvals(return_list, alpha, ci && se_type != "none")
tss_r2s <- get_r2s(
y = data[["y"]],
return_list = return_list,
yunweighted = data[["yunweighted"]],
has_int = attr(model$terms, "intercept"),
weights = data[["weights"]],
weight_mean = data[["weight_mean"]]
)
if (clustered) {
dendf <- data[["J"]] - 1
} else {
dendf <- return_list[["df.residual"]]
}
f <- get_fstat(
tss_r2s = tss_r2s,
return_list = return_list,
iv_ei = NULL,
nomdf = model$rank - attr(model$terms, "intercept"),
dendf = dendf,
vcov_fit = vcov_fit,
has_int = attr(model$terms, "intercept"),
iv_stage = list(0)
)
return_list <- c(return_list, tss_r2s)
return_list[["fstatistic"]] <- f
return_list[["vcov"]] <- vcov_fit$Vcov_hat
dimnames(return_list[["vcov"]]) <- list(
return_list$term[est_exists],
return_list$term[est_exists]
)
return_list <- lm_return(return_list, model_data = NULL, formula = NULL)
attr(return_list, "class") <- "lm_robust"
return(return_list)
}
starprep <- function(...,
stat = c("std.error", "statistic", "p.value", "ci", "df"),
se_type = NULL,
clusters = NULL,
alpha = 0.05) {
if (inherits(..1, "list")) {
if (...length() > 1) {
stop("`...` must be one list of model fits or several comma separated model fits")
}
fits <- ..1
} else {
fits <- list(...)
}
is_list_of_lm <- vapply(fits, inherits, what = c("lm","lm_robust"), TRUE)
if (any(!is_list_of_lm)) {
stop("`...` must contain only `lm` or `lm_robust` objects.")
}
fitlist <- lapply(
fits,
function(x) {
if (inherits(x, "lm"))
commarobust(x, se_type = se_type, clusters = clusters, alpha = alpha)
else
x
}
)
stat <- match.arg(stat)
if (stat == "ci") {
out <- lapply(fitlist, function(x) cbind(x[["conf.low"]], x[["conf.high"]]))
} else {
out <- lapply(fitlist, `[[`, stat)
}
return(out)
} |
library(testthat)
escapeString <- function(s) {
t <- gsub("(\\\\)", "\\\\\\\\", s)
t <- gsub("(\n)", "\\\\n", t)
t <- gsub("(\r)", "\\\\r", t)
t <- gsub("(\")", "\\\\\"", t)
return(t)
}
prepStr <- function(s) {
t <- escapeString(s)
u <- eval(parse(text=paste0("\"", t, "\"")))
if(s!=u) stop("Unable to escape string!")
t <- paste0("\thtml <- \"", t, "\"")
utils::writeClipboard(t)
return(invisible())
}
evaluationMode <- "sequential"
processingLibrary <- "dplyr"
description <- "test: sequential dplyr"
countFunction <- "n()"
isDevelopmentVersion <- (length(strsplit(packageDescription("pivottabler")$Version, "\\.")[[1]]) > 3)
testScenarios <- function(description="test", releaseEvaluationMode="batch", releaseProcessingLibrary="dplyr", runAllForReleaseVersion=FALSE) {
isDevelopmentVersion <- (length(strsplit(packageDescription("pivottabler")$Version, "\\.")[[1]]) > 3)
if(isDevelopmentVersion||runAllForReleaseVersion) {
evaluationModes <- c("sequential", "batch")
processingLibraries <- c("dplyr", "data.table")
}
else {
evaluationModes <- releaseEvaluationMode
processingLibraries <- releaseProcessingLibrary
}
testCount <- length(evaluationModes)*length(processingLibraries)
c1 <- character(testCount)
c2 <- character(testCount)
c3 <- character(testCount)
c4 <- character(testCount)
testCount <- 0
for(evaluationMode in evaluationModes)
for(processingLibrary in processingLibraries) {
testCount <- testCount + 1
c1[testCount] <- evaluationMode
c2[testCount] <- processingLibrary
c3[testCount] <- paste0(description, ": ", evaluationMode, " ", processingLibrary)
c4[testCount] <- ifelse(processingLibrary=="data.table", ".N", "n()")
}
df <- data.frame(evaluationMode=c1, processingLibrary=c2, description=c3, countFunction=c4, stringsAsFactors=FALSE)
return(df)
}
context("BASIC LAYOUT TESTS")
scenarios <- testScenarios("basic layout tests: empty pivot")
for(i in 1:nrow(scenarios)) {
evaluationMode <- scenarios$evaluationMode[i]
processingLibrary <- scenarios$processingLibrary[i]
description <- scenarios$description[i]
countFunction <- scenarios$countFunction[i]
test_that(description, {
library(pivottabler)
pt <- PivotTable$new(processingLibrary=processingLibrary, evaluationMode=evaluationMode,
compatibility=list(totalStyleIsCellStyle=TRUE, explicitHeaderSpansOfOne=TRUE))
pt$evaluatePivot()
str <- " "
html <- "<table class=\"Table\">\n <tr>\n <td class=\"Cell\" style=\"text-align: center; padding: 6px\">(no data)</td>\n </tr>\n</table>"
expect_identical(pt$print(asCharacter=TRUE), str)
expect_identical(as.character(pt$getHtml()), html)
})
}
scenarios <- testScenarios("basic layout tests: empty pivot plus data")
for(i in 1:nrow(scenarios)) {
if(!isDevelopmentVersion) break
evaluationMode <- scenarios$evaluationMode[i]
processingLibrary <- scenarios$processingLibrary[i]
description <- scenarios$description[i]
countFunction <- scenarios$countFunction[i]
test_that(description, {
library(pivottabler)
pt <- PivotTable$new(processingLibrary=processingLibrary, evaluationMode=evaluationMode,
compatibility=list(totalStyleIsCellStyle=TRUE, explicitHeaderSpansOfOne=TRUE))
pt$addData(bhmtrains)
pt$evaluatePivot()
str <- " "
html <- "<table class=\"Table\">\n <tr>\n <td class=\"Cell\" style=\"text-align: center; padding: 6px\">(no data)</td>\n </tr>\n</table>"
expect_identical(pt$print(asCharacter=TRUE), str)
expect_identical(as.character(pt$getHtml()), html)
})
}
scenarios <- testScenarios("basic layout tests: just a total")
for(i in 1:nrow(scenarios)) {
evaluationMode <- scenarios$evaluationMode[i]
processingLibrary <- scenarios$processingLibrary[i]
description <- scenarios$description[i]
countFunction <- scenarios$countFunction[i]
test_that(description, {
library(pivottabler)
pt <- PivotTable$new(processingLibrary=processingLibrary, evaluationMode=evaluationMode,
compatibility=list(totalStyleIsCellStyle=TRUE, explicitHeaderSpansOfOne=TRUE))
pt$addData(bhmtrains)
pt$defineCalculation(calculationName="TotalTrains", summariseExpression=countFunction)
pt$evaluatePivot()
str <- " TotalTrains \n 83710 "
html <- "<table class=\"Table\">\n <tr>\n <th class=\"RowHeader\" rowspan=\"1\" colspan=\"0\"> </th>\n <th class=\"ColumnHeader\" colspan=\"1\">TotalTrains</th>\n </tr>\n <tr>\n <th class=\"RowHeader\"> </th>\n <td class=\"Cell\">83710</td>\n </tr>\n</table>"
expect_equal(sum(pt$cells$asMatrix()), 83710)
expect_identical(pt$print(asCharacter=TRUE), str)
expect_identical(as.character(pt$getHtml()), html)
})
}
scenarios <- testScenarios("basic layout tests: two measures")
for(i in 1:nrow(scenarios)) {
evaluationMode <- scenarios$evaluationMode[i]
processingLibrary <- scenarios$processingLibrary[i]
description <- scenarios$description[i]
countFunction <- scenarios$countFunction[i]
test_that(description, {
library(pivottabler)
pt <- PivotTable$new(processingLibrary=processingLibrary, evaluationMode=evaluationMode,
compatibility=list(totalStyleIsCellStyle=TRUE, explicitHeaderSpansOfOne=TRUE))
pt$addData(bhmtrains)
pt$defineCalculation(calculationName="TotalTrains", summariseExpression=countFunction)
pt$defineCalculation(calculationName="MaxSchedSpeed", summariseExpression="max(SchedSpeedMPH, na.rm=TRUE)")
pt$evaluatePivot()
str <- " TotalTrains MaxSchedSpeed \n 83710 125 "
html <- "<table class=\"Table\">\n <tr>\n <th class=\"RowHeader\" rowspan=\"1\" colspan=\"0\"> </th>\n <th class=\"ColumnHeader\" colspan=\"1\">TotalTrains</th>\n <th class=\"ColumnHeader\" colspan=\"1\">MaxSchedSpeed</th>\n </tr>\n <tr>\n <th class=\"RowHeader\"> </th>\n <td class=\"Cell\">83710</td>\n <td class=\"Cell\">125</td>\n </tr>\n</table>"
expect_equal(sum(pt$cells$asMatrix()), 83835)
expect_identical(pt$print(asCharacter=TRUE), str)
expect_identical(as.character(pt$getHtml()), html)
})
}
scenarios <- testScenarios("basic layout tests: rows only")
for(i in 1:nrow(scenarios)) {
evaluationMode <- scenarios$evaluationMode[i]
processingLibrary <- scenarios$processingLibrary[i]
description <- scenarios$description[i]
countFunction <- scenarios$countFunction[i]
test_that(description, {
library(pivottabler)
pt <- PivotTable$new(processingLibrary=processingLibrary, evaluationMode=evaluationMode,
compatibility=list(totalStyleIsCellStyle=TRUE))
pt$addData(bhmtrains)
pt$addRowDataGroups("TOC")
pt$evaluatePivot()
str <- "Arriva Trains Wales \nCrossCountry \nLondon Midland \nVirgin Trains \nTotal "
html <- "<table class=\"Table\">\n <tr>\n <th class=\"RowHeader\"> </th>\n <th class=\"ColumnHeader\"> </th>\n </tr>\n <tr>\n <th class=\"RowHeader\">Arriva Trains Wales</th>\n <td class=\"Cell\"></td>\n </tr>\n <tr>\n <th class=\"RowHeader\">CrossCountry</th>\n <td class=\"Cell\"></td>\n </tr>\n <tr>\n <th class=\"RowHeader\">London Midland</th>\n <td class=\"Cell\"></td>\n </tr>\n <tr>\n <th class=\"RowHeader\">Virgin Trains</th>\n <td class=\"Cell\"></td>\n </tr>\n <tr>\n <th class=\"RowHeader\">Total</th>\n <td class=\"Cell\"></td>\n </tr>\n</table>"
expect_identical(pt$print(asCharacter=TRUE), str)
expect_identical(as.character(pt$getHtml()), html)
})
}
scenarios <- testScenarios("basic layout tests: rows plus total")
for(i in 1:nrow(scenarios)) {
evaluationMode <- scenarios$evaluationMode[i]
processingLibrary <- scenarios$processingLibrary[i]
description <- scenarios$description[i]
countFunction <- scenarios$countFunction[i]
test_that(description, {
library(pivottabler)
pt <- PivotTable$new(processingLibrary=processingLibrary, evaluationMode=evaluationMode,
compatibility=list(totalStyleIsCellStyle=TRUE, explicitHeaderSpansOfOne=TRUE))
pt$addData(bhmtrains)
pt$addRowDataGroups("TOC")
pt$defineCalculation(calculationName="TotalTrains", summariseExpression=countFunction)
pt$evaluatePivot()
str <- " TotalTrains \nArriva Trains Wales 3909 \nCrossCountry 22928 \nLondon Midland 48279 \nVirgin Trains 8594 \nTotal 83710 "
html <- "<table class=\"Table\">\n <tr>\n <th class=\"RowHeader\" rowspan=\"1\" colspan=\"1\"> </th>\n <th class=\"ColumnHeader\" colspan=\"1\">TotalTrains</th>\n </tr>\n <tr>\n <th class=\"RowHeader\" rowspan=\"1\">Arriva Trains Wales</th>\n <td class=\"Cell\">3909</td>\n </tr>\n <tr>\n <th class=\"RowHeader\" rowspan=\"1\">CrossCountry</th>\n <td class=\"Cell\">22928</td>\n </tr>\n <tr>\n <th class=\"RowHeader\" rowspan=\"1\">London Midland</th>\n <td class=\"Cell\">48279</td>\n </tr>\n <tr>\n <th class=\"RowHeader\" rowspan=\"1\">Virgin Trains</th>\n <td class=\"Cell\">8594</td>\n </tr>\n <tr>\n <th class=\"RowHeader\" rowspan=\"1\">Total</th>\n <td class=\"Cell\">83710</td>\n </tr>\n</table>"
expect_equal(sum(pt$cells$asMatrix()), 167420)
expect_identical(pt$print(asCharacter=TRUE), str)
expect_identical(as.character(pt$getHtml()), html)
})
}
scenarios <- testScenarios("basic layout tests: rows plus two measures")
for(i in 1:nrow(scenarios)) {
if(!isDevelopmentVersion) break
evaluationMode <- scenarios$evaluationMode[i]
processingLibrary <- scenarios$processingLibrary[i]
description <- scenarios$description[i]
countFunction <- scenarios$countFunction[i]
test_that(description, {
library(pivottabler)
pt <- PivotTable$new(processingLibrary=processingLibrary, evaluationMode=evaluationMode,
compatibility=list(totalStyleIsCellStyle=TRUE, explicitHeaderSpansOfOne=TRUE))
pt$addData(bhmtrains)
pt$addRowDataGroups("TOC")
pt$defineCalculation(calculationName="TotalTrains", summariseExpression=countFunction)
pt$defineCalculation(calculationName="MaxSchedSpeed", summariseExpression="max(SchedSpeedMPH, na.rm=TRUE)")
pt$evaluatePivot()
str <- " TotalTrains MaxSchedSpeed \nArriva Trains Wales 3909 90 \nCrossCountry 22928 125 \nLondon Midland 48279 110 \nVirgin Trains 8594 125 \nTotal 83710 125 "
html <- "<table class=\"Table\">\n <tr>\n <th class=\"RowHeader\" rowspan=\"1\" colspan=\"1\"> </th>\n <th class=\"ColumnHeader\" colspan=\"1\">TotalTrains</th>\n <th class=\"ColumnHeader\" colspan=\"1\">MaxSchedSpeed</th>\n </tr>\n <tr>\n <th class=\"RowHeader\" rowspan=\"1\">Arriva Trains Wales</th>\n <td class=\"Cell\">3909</td>\n <td class=\"Cell\">90</td>\n </tr>\n <tr>\n <th class=\"RowHeader\" rowspan=\"1\">CrossCountry</th>\n <td class=\"Cell\">22928</td>\n <td class=\"Cell\">125</td>\n </tr>\n <tr>\n <th class=\"RowHeader\" rowspan=\"1\">London Midland</th>\n <td class=\"Cell\">48279</td>\n <td class=\"Cell\">110</td>\n </tr>\n <tr>\n <th class=\"RowHeader\" rowspan=\"1\">Virgin Trains</th>\n <td class=\"Cell\">8594</td>\n <td class=\"Cell\">125</td>\n </tr>\n <tr>\n <th class=\"RowHeader\" rowspan=\"1\">Total</th>\n <td class=\"Cell\">83710</td>\n <td class=\"Cell\">125</td>\n </tr>\n</table>"
expect_equal(sum(pt$cells$asMatrix()), 167995)
expect_identical(pt$print(asCharacter=TRUE), str)
expect_identical(as.character(pt$getHtml()), html)
})
}
scenarios <- testScenarios("basic layout tests: columns only")
for(i in 1:nrow(scenarios)) {
evaluationMode <- scenarios$evaluationMode[i]
processingLibrary <- scenarios$processingLibrary[i]
description <- scenarios$description[i]
countFunction <- scenarios$countFunction[i]
test_that(description, {
library(pivottabler)
pt <- PivotTable$new(processingLibrary=processingLibrary, evaluationMode=evaluationMode,
compatibility=list(totalStyleIsCellStyle=TRUE, explicitHeaderSpansOfOne=TRUE))
pt$addData(bhmtrains)
pt$addColumnDataGroups("TOC")
pt$evaluatePivot()
str <- " Arriva Trains Wales CrossCountry London Midland Virgin Trains Total \n "
html <- "<table class=\"Table\">\n <tr>\n <th class=\"RowHeader\" rowspan=\"1\" colspan=\"0\"> </th>\n <th class=\"ColumnHeader\" colspan=\"1\">Arriva Trains Wales</th>\n <th class=\"ColumnHeader\" colspan=\"1\">CrossCountry</th>\n <th class=\"ColumnHeader\" colspan=\"1\">London Midland</th>\n <th class=\"ColumnHeader\" colspan=\"1\">Virgin Trains</th>\n <th class=\"ColumnHeader\" colspan=\"1\">Total</th>\n </tr>\n <tr>\n <th class=\"RowHeader\"> </th>\n <td class=\"Cell\"></td>\n <td class=\"Cell\"></td>\n <td class=\"Cell\"></td>\n <td class=\"Cell\"></td>\n <td class=\"Cell\"></td>\n </tr>\n</table>"
expect_identical(pt$print(asCharacter=TRUE), str)
expect_identical(as.character(pt$getHtml()), html)
})
}
scenarios <- testScenarios("basic layout tests: columns plus total")
for(i in 1:nrow(scenarios)) {
evaluationMode <- scenarios$evaluationMode[i]
processingLibrary <- scenarios$processingLibrary[i]
description <- scenarios$description[i]
countFunction <- scenarios$countFunction[i]
test_that(description, {
library(pivottabler)
pt <- PivotTable$new(processingLibrary=processingLibrary, evaluationMode=evaluationMode,
compatibility=list(totalStyleIsCellStyle=TRUE, explicitHeaderSpansOfOne=TRUE))
pt$addData(bhmtrains)
pt$addColumnDataGroups("TOC")
pt$defineCalculation(calculationName="TotalTrains", summariseExpression=countFunction)
pt$evaluatePivot()
str <- " Arriva Trains Wales CrossCountry London Midland Virgin Trains Total \n 3909 22928 48279 8594 83710 "
html <- "<table class=\"Table\">\n <tr>\n <th class=\"RowHeader\" rowspan=\"1\" colspan=\"0\"> </th>\n <th class=\"ColumnHeader\" colspan=\"1\">Arriva Trains Wales</th>\n <th class=\"ColumnHeader\" colspan=\"1\">CrossCountry</th>\n <th class=\"ColumnHeader\" colspan=\"1\">London Midland</th>\n <th class=\"ColumnHeader\" colspan=\"1\">Virgin Trains</th>\n <th class=\"ColumnHeader\" colspan=\"1\">Total</th>\n </tr>\n <tr>\n <th class=\"RowHeader\"> </th>\n <td class=\"Cell\">3909</td>\n <td class=\"Cell\">22928</td>\n <td class=\"Cell\">48279</td>\n <td class=\"Cell\">8594</td>\n <td class=\"Cell\">83710</td>\n </tr>\n</table>"
expect_equal(sum(pt$cells$asMatrix()), 167420)
expect_identical(pt$print(asCharacter=TRUE), str)
expect_identical(as.character(pt$getHtml()), html)
})
}
scenarios <- testScenarios("basic layout tests: columns plus two totals")
for(i in 1:nrow(scenarios)) {
if(!isDevelopmentVersion) break
evaluationMode <- scenarios$evaluationMode[i]
processingLibrary <- scenarios$processingLibrary[i]
description <- scenarios$description[i]
countFunction <- scenarios$countFunction[i]
test_that(description, {
library(pivottabler)
pt <- PivotTable$new(processingLibrary=processingLibrary, evaluationMode=evaluationMode,
compatibility=list(totalStyleIsCellStyle=TRUE, explicitHeaderSpansOfOne=TRUE))
pt$addData(bhmtrains)
pt$addColumnDataGroups("TOC")
pt$defineCalculation(calculationName="TotalTrains", summariseExpression=countFunction)
pt$defineCalculation(calculationName="MaxSchedSpeed", summariseExpression="max(SchedSpeedMPH, na.rm=TRUE)")
pt$evaluatePivot()
str <- " Arriva Trains Wales CrossCountry London Midland Virgin Trains Total \n TotalTrains MaxSchedSpeed TotalTrains MaxSchedSpeed TotalTrains MaxSchedSpeed TotalTrains MaxSchedSpeed TotalTrains MaxSchedSpeed \n 3909 90 22928 125 48279 110 8594 125 83710 125 "
html <- "<table class=\"Table\">\n <tr>\n <th class=\"RowHeader\" rowspan=\"2\" colspan=\"0\"> </th>\n <th class=\"ColumnHeader\" colspan=\"2\">Arriva Trains Wales</th>\n <th class=\"ColumnHeader\" colspan=\"2\">CrossCountry</th>\n <th class=\"ColumnHeader\" colspan=\"2\">London Midland</th>\n <th class=\"ColumnHeader\" colspan=\"2\">Virgin Trains</th>\n <th class=\"ColumnHeader\" colspan=\"2\">Total</th>\n </tr>\n <tr>\n <th class=\"ColumnHeader\" colspan=\"1\">TotalTrains</th>\n <th class=\"ColumnHeader\" colspan=\"1\">MaxSchedSpeed</th>\n <th class=\"ColumnHeader\" colspan=\"1\">TotalTrains</th>\n <th class=\"ColumnHeader\" colspan=\"1\">MaxSchedSpeed</th>\n <th class=\"ColumnHeader\" colspan=\"1\">TotalTrains</th>\n <th class=\"ColumnHeader\" colspan=\"1\">MaxSchedSpeed</th>\n <th class=\"ColumnHeader\" colspan=\"1\">TotalTrains</th>\n <th class=\"ColumnHeader\" colspan=\"1\">MaxSchedSpeed</th>\n <th class=\"ColumnHeader\" colspan=\"1\">TotalTrains</th>\n <th class=\"ColumnHeader\" colspan=\"1\">MaxSchedSpeed</th>\n </tr>\n <tr>\n <th class=\"RowHeader\"> </th>\n <td class=\"Cell\">3909</td>\n <td class=\"Cell\">90</td>\n <td class=\"Cell\">22928</td>\n <td class=\"Cell\">125</td>\n <td class=\"Cell\">48279</td>\n <td class=\"Cell\">110</td>\n <td class=\"Cell\">8594</td>\n <td class=\"Cell\">125</td>\n <td class=\"Cell\">83710</td>\n <td class=\"Cell\">125</td>\n </tr>\n</table>"
expect_equal(sum(pt$cells$asMatrix()), 167995)
expect_identical(pt$print(asCharacter=TRUE), str)
expect_identical(as.character(pt$getHtml()), html)
})
}
scenarios <- testScenarios("basic layout tests: rows and columns only")
for(i in 1:nrow(scenarios)) {
if(!isDevelopmentVersion) break
evaluationMode <- scenarios$evaluationMode[i]
processingLibrary <- scenarios$processingLibrary[i]
description <- scenarios$description[i]
countFunction <- scenarios$countFunction[i]
test_that(description, {
library(pivottabler)
pt <- PivotTable$new(processingLibrary=processingLibrary, evaluationMode=evaluationMode,
compatibility=list(totalStyleIsCellStyle=TRUE, explicitHeaderSpansOfOne=TRUE))
pt$addData(bhmtrains)
pt$addColumnDataGroups("TrainCategory")
pt$addRowDataGroups("TOC")
pt$evaluatePivot()
str <- " Express Passenger Ordinary Passenger Total \nArriva Trains Wales \nCrossCountry \nLondon Midland \nVirgin Trains \nTotal "
html <- "<table class=\"Table\">\n <tr>\n <th class=\"RowHeader\" rowspan=\"1\" colspan=\"1\"> </th>\n <th class=\"ColumnHeader\" colspan=\"1\">Express Passenger</th>\n <th class=\"ColumnHeader\" colspan=\"1\">Ordinary Passenger</th>\n <th class=\"ColumnHeader\" colspan=\"1\">Total</th>\n </tr>\n <tr>\n <th class=\"RowHeader\" rowspan=\"1\">Arriva Trains Wales</th>\n <td class=\"Cell\"></td>\n <td class=\"Cell\"></td>\n <td class=\"Cell\"></td>\n </tr>\n <tr>\n <th class=\"RowHeader\" rowspan=\"1\">CrossCountry</th>\n <td class=\"Cell\"></td>\n <td class=\"Cell\"></td>\n <td class=\"Cell\"></td>\n </tr>\n <tr>\n <th class=\"RowHeader\" rowspan=\"1\">London Midland</th>\n <td class=\"Cell\"></td>\n <td class=\"Cell\"></td>\n <td class=\"Cell\"></td>\n </tr>\n <tr>\n <th class=\"RowHeader\" rowspan=\"1\">Virgin Trains</th>\n <td class=\"Cell\"></td>\n <td class=\"Cell\"></td>\n <td class=\"Cell\"></td>\n </tr>\n <tr>\n <th class=\"RowHeader\" rowspan=\"1\">Total</th>\n <td class=\"Cell\"></td>\n <td class=\"Cell\"></td>\n <td class=\"Cell\"></td>\n </tr>\n</table>"
expect_identical(pt$print(asCharacter=TRUE), str)
expect_identical(as.character(pt$getHtml()), html)
})
}
scenarios <- testScenarios("basic layout tests: rows, columns and calculation")
for(i in 1:nrow(scenarios)) {
if(!isDevelopmentVersion) break
evaluationMode <- scenarios$evaluationMode[i]
processingLibrary <- scenarios$processingLibrary[i]
description <- scenarios$description[i]
countFunction <- scenarios$countFunction[i]
test_that(description, {
library(pivottabler)
pt <- PivotTable$new(processingLibrary=processingLibrary, evaluationMode=evaluationMode,
compatibility=list(totalStyleIsCellStyle=TRUE, explicitHeaderSpansOfOne=TRUE))
pt$addData(bhmtrains)
pt$addColumnDataGroups("TrainCategory")
pt$addRowDataGroups("TOC")
pt$defineCalculation(calculationName="TotalTrains", summariseExpression=countFunction)
pt$evaluatePivot()
str <- " Express Passenger Ordinary Passenger Total \nArriva Trains Wales 3079 830 3909 \nCrossCountry 22865 63 22928 \nLondon Midland 14487 33792 48279 \nVirgin Trains 8594 8594 \nTotal 49025 34685 83710 "
html <- "<table class=\"Table\">\n <tr>\n <th class=\"RowHeader\" rowspan=\"1\" colspan=\"1\"> </th>\n <th class=\"ColumnHeader\" colspan=\"1\">Express Passenger</th>\n <th class=\"ColumnHeader\" colspan=\"1\">Ordinary Passenger</th>\n <th class=\"ColumnHeader\" colspan=\"1\">Total</th>\n </tr>\n <tr>\n <th class=\"RowHeader\" rowspan=\"1\">Arriva Trains Wales</th>\n <td class=\"Cell\">3079</td>\n <td class=\"Cell\">830</td>\n <td class=\"Cell\">3909</td>\n </tr>\n <tr>\n <th class=\"RowHeader\" rowspan=\"1\">CrossCountry</th>\n <td class=\"Cell\">22865</td>\n <td class=\"Cell\">63</td>\n <td class=\"Cell\">22928</td>\n </tr>\n <tr>\n <th class=\"RowHeader\" rowspan=\"1\">London Midland</th>\n <td class=\"Cell\">14487</td>\n <td class=\"Cell\">33792</td>\n <td class=\"Cell\">48279</td>\n </tr>\n <tr>\n <th class=\"RowHeader\" rowspan=\"1\">Virgin Trains</th>\n <td class=\"Cell\">8594</td>\n <td class=\"Cell\"></td>\n <td class=\"Cell\">8594</td>\n </tr>\n <tr>\n <th class=\"RowHeader\" rowspan=\"1\">Total</th>\n <td class=\"Cell\">49025</td>\n <td class=\"Cell\">34685</td>\n <td class=\"Cell\">83710</td>\n </tr>\n</table>"
expect_equal(sum(pt$cells$asMatrix(), na.rm=TRUE), 334840)
expect_identical(pt$print(asCharacter=TRUE), str)
expect_identical(as.character(pt$getHtml()), html)
})
}
scenarios <- testScenarios("basic layout tests: rows, columns and two calculations")
for(i in 1:nrow(scenarios)) {
evaluationMode <- scenarios$evaluationMode[i]
processingLibrary <- scenarios$processingLibrary[i]
description <- scenarios$description[i]
countFunction <- scenarios$countFunction[i]
test_that(description, {
library(pivottabler)
pt <- PivotTable$new(processingLibrary=processingLibrary, evaluationMode=evaluationMode,
compatibility=list(totalStyleIsCellStyle=TRUE, explicitHeaderSpansOfOne=TRUE))
pt$addData(bhmtrains)
pt$addColumnDataGroups("TrainCategory")
pt$addRowDataGroups("TOC")
pt$defineCalculation(calculationName="TotalTrains", summariseExpression=countFunction)
pt$defineCalculation(calculationName="MaxSchedSpeed", summariseExpression="max(SchedSpeedMPH, na.rm=TRUE)")
pt$evaluatePivot()
str <- " Express Passenger Ordinary Passenger Total \n TotalTrains MaxSchedSpeed TotalTrains MaxSchedSpeed TotalTrains MaxSchedSpeed \nArriva Trains Wales 3079 90 830 90 3909 90 \nCrossCountry 22865 125 63 100 22928 125 \nLondon Midland 14487 110 33792 100 48279 110 \nVirgin Trains 8594 125 8594 125 \nTotal 49025 125 34685 100 83710 125 "
html <- "<table class=\"Table\">\n <tr>\n <th class=\"RowHeader\" rowspan=\"2\" colspan=\"1\"> </th>\n <th class=\"ColumnHeader\" colspan=\"2\">Express Passenger</th>\n <th class=\"ColumnHeader\" colspan=\"2\">Ordinary Passenger</th>\n <th class=\"ColumnHeader\" colspan=\"2\">Total</th>\n </tr>\n <tr>\n <th class=\"ColumnHeader\" colspan=\"1\">TotalTrains</th>\n <th class=\"ColumnHeader\" colspan=\"1\">MaxSchedSpeed</th>\n <th class=\"ColumnHeader\" colspan=\"1\">TotalTrains</th>\n <th class=\"ColumnHeader\" colspan=\"1\">MaxSchedSpeed</th>\n <th class=\"ColumnHeader\" colspan=\"1\">TotalTrains</th>\n <th class=\"ColumnHeader\" colspan=\"1\">MaxSchedSpeed</th>\n </tr>\n <tr>\n <th class=\"RowHeader\" rowspan=\"1\">Arriva Trains Wales</th>\n <td class=\"Cell\">3079</td>\n <td class=\"Cell\">90</td>\n <td class=\"Cell\">830</td>\n <td class=\"Cell\">90</td>\n <td class=\"Cell\">3909</td>\n <td class=\"Cell\">90</td>\n </tr>\n <tr>\n <th class=\"RowHeader\" rowspan=\"1\">CrossCountry</th>\n <td class=\"Cell\">22865</td>\n <td class=\"Cell\">125</td>\n <td class=\"Cell\">63</td>\n <td class=\"Cell\">100</td>\n <td class=\"Cell\">22928</td>\n <td class=\"Cell\">125</td>\n </tr>\n <tr>\n <th class=\"RowHeader\" rowspan=\"1\">London Midland</th>\n <td class=\"Cell\">14487</td>\n <td class=\"Cell\">110</td>\n <td class=\"Cell\">33792</td>\n <td class=\"Cell\">100</td>\n <td class=\"Cell\">48279</td>\n <td class=\"Cell\">110</td>\n </tr>\n <tr>\n <th class=\"RowHeader\" rowspan=\"1\">Virgin Trains</th>\n <td class=\"Cell\">8594</td>\n <td class=\"Cell\">125</td>\n <td class=\"Cell\"></td>\n <td class=\"Cell\"></td>\n <td class=\"Cell\">8594</td>\n <td class=\"Cell\">125</td>\n </tr>\n <tr>\n <th class=\"RowHeader\" rowspan=\"1\">Total</th>\n <td class=\"Cell\">49025</td>\n <td class=\"Cell\">125</td>\n <td class=\"Cell\">34685</td>\n <td class=\"Cell\">100</td>\n <td class=\"Cell\">83710</td>\n <td class=\"Cell\">125</td>\n </tr>\n</table>"
expect_equal(sum(pt$cells$asMatrix(), na.rm=TRUE), 336380)
expect_identical(pt$print(asCharacter=TRUE), str)
expect_identical(as.character(pt$getHtml()), html)
})
}
scenarios <- testScenarios("basic layout tests: columns plus total on row")
for(i in 1:nrow(scenarios)) {
if(!isDevelopmentVersion) break
evaluationMode <- scenarios$evaluationMode[i]
processingLibrary <- scenarios$processingLibrary[i]
description <- scenarios$description[i]
countFunction <- scenarios$countFunction[i]
test_that(description, {
library(pivottabler)
pt <- PivotTable$new(processingLibrary=processingLibrary, evaluationMode=evaluationMode,
compatibility=list(totalStyleIsCellStyle=TRUE, explicitHeaderSpansOfOne=TRUE))
pt$addData(bhmtrains)
pt$addColumnDataGroups("TOC")
pt$defineCalculation(calculationName="TotalTrains", summariseExpression=countFunction)
pt$addRowCalculationGroups()
pt$evaluatePivot()
str <- " Arriva Trains Wales CrossCountry London Midland Virgin Trains Total \nTotalTrains 3909 22928 48279 8594 83710 "
html <- "<table class=\"Table\">\n <tr>\n <th class=\"RowHeader\" rowspan=\"1\" colspan=\"1\"> </th>\n <th class=\"ColumnHeader\" colspan=\"1\">Arriva Trains Wales</th>\n <th class=\"ColumnHeader\" colspan=\"1\">CrossCountry</th>\n <th class=\"ColumnHeader\" colspan=\"1\">London Midland</th>\n <th class=\"ColumnHeader\" colspan=\"1\">Virgin Trains</th>\n <th class=\"ColumnHeader\" colspan=\"1\">Total</th>\n </tr>\n <tr>\n <th class=\"RowHeader\" rowspan=\"1\">TotalTrains</th>\n <td class=\"Cell\">3909</td>\n <td class=\"Cell\">22928</td>\n <td class=\"Cell\">48279</td>\n <td class=\"Cell\">8594</td>\n <td class=\"Cell\">83710</td>\n </tr>\n</table>"
expect_equal(sum(pt$cells$asMatrix()), 167420)
expect_identical(pt$print(asCharacter=TRUE), str)
expect_identical(as.character(pt$getHtml()), html)
})
}
scenarios <- testScenarios("basic layout tests: columns plus two totals on rows")
for(i in 1:nrow(scenarios)) {
if(!isDevelopmentVersion) break
evaluationMode <- scenarios$evaluationMode[i]
processingLibrary <- scenarios$processingLibrary[i]
description <- scenarios$description[i]
countFunction <- scenarios$countFunction[i]
test_that(description, {
library(pivottabler)
pt <- PivotTable$new(processingLibrary=processingLibrary, evaluationMode=evaluationMode,
compatibility=list(totalStyleIsCellStyle=TRUE, explicitHeaderSpansOfOne=TRUE))
pt$addData(bhmtrains)
pt$addColumnDataGroups("TOC")
pt$defineCalculation(calculationName="TotalTrains", summariseExpression=countFunction)
pt$defineCalculation(calculationName="MaxSchedSpeed", summariseExpression="max(SchedSpeedMPH, na.rm=TRUE)")
pt$addRowCalculationGroups()
pt$evaluatePivot()
str <- " Arriva Trains Wales CrossCountry London Midland Virgin Trains Total \nTotalTrains 3909 22928 48279 8594 83710 \nMaxSchedSpeed 90 125 110 125 125 "
html <- "<table class=\"Table\">\n <tr>\n <th class=\"RowHeader\" rowspan=\"1\" colspan=\"1\"> </th>\n <th class=\"ColumnHeader\" colspan=\"1\">Arriva Trains Wales</th>\n <th class=\"ColumnHeader\" colspan=\"1\">CrossCountry</th>\n <th class=\"ColumnHeader\" colspan=\"1\">London Midland</th>\n <th class=\"ColumnHeader\" colspan=\"1\">Virgin Trains</th>\n <th class=\"ColumnHeader\" colspan=\"1\">Total</th>\n </tr>\n <tr>\n <th class=\"RowHeader\" rowspan=\"1\">TotalTrains</th>\n <td class=\"Cell\">3909</td>\n <td class=\"Cell\">22928</td>\n <td class=\"Cell\">48279</td>\n <td class=\"Cell\">8594</td>\n <td class=\"Cell\">83710</td>\n </tr>\n <tr>\n <th class=\"RowHeader\" rowspan=\"1\">MaxSchedSpeed</th>\n <td class=\"Cell\">90</td>\n <td class=\"Cell\">125</td>\n <td class=\"Cell\">110</td>\n <td class=\"Cell\">125</td>\n <td class=\"Cell\">125</td>\n </tr>\n</table>"
expect_equal(sum(pt$cells$asMatrix()), 167995)
expect_identical(pt$print(asCharacter=TRUE), str)
expect_identical(as.character(pt$getHtml()), html)
})
}
scenarios <- testScenarios("basic layout tests: rows, columns and calculation on rows")
for(i in 1:nrow(scenarios)) {
if(!isDevelopmentVersion) break
evaluationMode <- scenarios$evaluationMode[i]
processingLibrary <- scenarios$processingLibrary[i]
description <- scenarios$description[i]
countFunction <- scenarios$countFunction[i]
test_that(description, {
library(pivottabler)
pt <- PivotTable$new(processingLibrary=processingLibrary, evaluationMode=evaluationMode,
compatibility=list(totalStyleIsCellStyle=TRUE, explicitHeaderSpansOfOne=TRUE))
pt$addData(bhmtrains)
pt$addColumnDataGroups("TrainCategory")
pt$addRowDataGroups("TOC")
pt$defineCalculation(calculationName="TotalTrains", summariseExpression=countFunction)
pt$addRowCalculationGroups()
pt$evaluatePivot()
str <- " Express Passenger Ordinary Passenger Total \nArriva Trains Wales 3079 830 3909 \nCrossCountry 22865 63 22928 \nLondon Midland 14487 33792 48279 \nVirgin Trains 8594 8594 \nTotal 49025 34685 83710 "
html <- "<table class=\"Table\">\n <tr>\n <th class=\"RowHeader\" rowspan=\"1\" colspan=\"1\"> </th>\n <th class=\"ColumnHeader\" colspan=\"1\">Express Passenger</th>\n <th class=\"ColumnHeader\" colspan=\"1\">Ordinary Passenger</th>\n <th class=\"ColumnHeader\" colspan=\"1\">Total</th>\n </tr>\n <tr>\n <th class=\"RowHeader\" rowspan=\"1\">Arriva Trains Wales</th>\n <td class=\"Cell\">3079</td>\n <td class=\"Cell\">830</td>\n <td class=\"Cell\">3909</td>\n </tr>\n <tr>\n <th class=\"RowHeader\" rowspan=\"1\">CrossCountry</th>\n <td class=\"Cell\">22865</td>\n <td class=\"Cell\">63</td>\n <td class=\"Cell\">22928</td>\n </tr>\n <tr>\n <th class=\"RowHeader\" rowspan=\"1\">London Midland</th>\n <td class=\"Cell\">14487</td>\n <td class=\"Cell\">33792</td>\n <td class=\"Cell\">48279</td>\n </tr>\n <tr>\n <th class=\"RowHeader\" rowspan=\"1\">Virgin Trains</th>\n <td class=\"Cell\">8594</td>\n <td class=\"Cell\"></td>\n <td class=\"Cell\">8594</td>\n </tr>\n <tr>\n <th class=\"RowHeader\" rowspan=\"1\">Total</th>\n <td class=\"Cell\">49025</td>\n <td class=\"Cell\">34685</td>\n <td class=\"Cell\">83710</td>\n </tr>\n</table>"
expect_equal(sum(pt$cells$asMatrix(), na.rm=TRUE), 334840)
expect_identical(pt$print(asCharacter=TRUE), str)
expect_identical(as.character(pt$getHtml()), html)
})
}
scenarios <- testScenarios("basic layout tests: rows, columns and two calculations on rows")
for(i in 1:nrow(scenarios)) {
evaluationMode <- scenarios$evaluationMode[i]
processingLibrary <- scenarios$processingLibrary[i]
description <- scenarios$description[i]
countFunction <- scenarios$countFunction[i]
test_that(description, {
library(pivottabler)
pt <- PivotTable$new(processingLibrary=processingLibrary, evaluationMode=evaluationMode,
compatibility=list(totalStyleIsCellStyle=TRUE, explicitHeaderSpansOfOne=TRUE))
pt$addData(bhmtrains)
pt$addColumnDataGroups("TrainCategory")
pt$addRowDataGroups("TOC")
pt$defineCalculation(calculationName="TotalTrains", summariseExpression=countFunction)
pt$defineCalculation(calculationName="MaxSchedSpeed", summariseExpression="max(SchedSpeedMPH, na.rm=TRUE)")
pt$addRowCalculationGroups()
pt$evaluatePivot()
str <- " Express Passenger Ordinary Passenger Total \nArriva Trains Wales TotalTrains 3079 830 3909 \n MaxSchedSpeed 90 90 90 \nCrossCountry TotalTrains 22865 63 22928 \n MaxSchedSpeed 125 100 125 \nLondon Midland TotalTrains 14487 33792 48279 \n MaxSchedSpeed 110 100 110 \nVirgin Trains TotalTrains 8594 8594 \n MaxSchedSpeed 125 125 \nTotal TotalTrains 49025 34685 83710 \n MaxSchedSpeed 125 100 125 "
html <- "<table class=\"Table\">\n <tr>\n <th class=\"RowHeader\" rowspan=\"1\" colspan=\"2\"> </th>\n <th class=\"ColumnHeader\" colspan=\"1\">Express Passenger</th>\n <th class=\"ColumnHeader\" colspan=\"1\">Ordinary Passenger</th>\n <th class=\"ColumnHeader\" colspan=\"1\">Total</th>\n </tr>\n <tr>\n <th class=\"RowHeader\" rowspan=\"2\">Arriva Trains Wales</th>\n <th class=\"RowHeader\" rowspan=\"1\">TotalTrains</th>\n <td class=\"Cell\">3079</td>\n <td class=\"Cell\">830</td>\n <td class=\"Cell\">3909</td>\n </tr>\n <tr>\n <th class=\"RowHeader\" rowspan=\"1\">MaxSchedSpeed</th>\n <td class=\"Cell\">90</td>\n <td class=\"Cell\">90</td>\n <td class=\"Cell\">90</td>\n </tr>\n <tr>\n <th class=\"RowHeader\" rowspan=\"2\">CrossCountry</th>\n <th class=\"RowHeader\" rowspan=\"1\">TotalTrains</th>\n <td class=\"Cell\">22865</td>\n <td class=\"Cell\">63</td>\n <td class=\"Cell\">22928</td>\n </tr>\n <tr>\n <th class=\"RowHeader\" rowspan=\"1\">MaxSchedSpeed</th>\n <td class=\"Cell\">125</td>\n <td class=\"Cell\">100</td>\n <td class=\"Cell\">125</td>\n </tr>\n <tr>\n <th class=\"RowHeader\" rowspan=\"2\">London Midland</th>\n <th class=\"RowHeader\" rowspan=\"1\">TotalTrains</th>\n <td class=\"Cell\">14487</td>\n <td class=\"Cell\">33792</td>\n <td class=\"Cell\">48279</td>\n </tr>\n <tr>\n <th class=\"RowHeader\" rowspan=\"1\">MaxSchedSpeed</th>\n <td class=\"Cell\">110</td>\n <td class=\"Cell\">100</td>\n <td class=\"Cell\">110</td>\n </tr>\n <tr>\n <th class=\"RowHeader\" rowspan=\"2\">Virgin Trains</th>\n <th class=\"RowHeader\" rowspan=\"1\">TotalTrains</th>\n <td class=\"Cell\">8594</td>\n <td class=\"Cell\"></td>\n <td class=\"Cell\">8594</td>\n </tr>\n <tr>\n <th class=\"RowHeader\" rowspan=\"1\">MaxSchedSpeed</th>\n <td class=\"Cell\">125</td>\n <td class=\"Cell\"></td>\n <td class=\"Cell\">125</td>\n </tr>\n <tr>\n <th class=\"RowHeader\" rowspan=\"2\">Total</th>\n <th class=\"RowHeader\" rowspan=\"1\">TotalTrains</th>\n <td class=\"Cell\">49025</td>\n <td class=\"Cell\">34685</td>\n <td class=\"Cell\">83710</td>\n </tr>\n <tr>\n <th class=\"RowHeader\" rowspan=\"1\">MaxSchedSpeed</th>\n <td class=\"Cell\">125</td>\n <td class=\"Cell\">100</td>\n <td class=\"Cell\">125</td>\n </tr>\n</table>"
expect_equal(sum(pt$cells$asMatrix(), na.rm=TRUE), 336380)
expect_identical(pt$print(asCharacter=TRUE), str)
expect_identical(as.character(pt$getHtml()), html)
})
}
scenarios <- testScenarios("basic layout tests: more than 10 calculation columns")
for(i in 1:nrow(scenarios)) {
if(!isDevelopmentVersion) break
evaluationMode <- scenarios$evaluationMode[i]
processingLibrary <- scenarios$processingLibrary[i]
description <- scenarios$description[i]
countFunction <- scenarios$countFunction[i]
test_that(description, {
library(pivottabler)
d <- data.frame(a=c("a","b","c"),b=c("a","b","c"),
X1Qty=c(1, 2, 3), X2Qty=c(1, 2, 3), X3Qty=c(1, 2, 3), X4Qty=c(1, 2, 3), X5Qty=c(1, 2, 3),
X6Qty=c(1, 2, 3), X7Qty=c(1, 2, 3), X8Qty=c(1, 2, 3), X9Qty=c(1, 2, 3), X10Qty=c(1, 2, 3),
X11Qty=c(1, 2, 3), X12Qty=c(1, 2, 3))
pt <- PivotTable$new(processingLibrary=processingLibrary, evaluationMode=evaluationMode)
pt$addData(d)
pt$addRowDataGroups("a")
pt$addColumnDataGroups("b")
pt$defineCalculation(calculationName="Jan Sales Qty", summariseExpression="sum(X1Qty)")
pt$defineCalculation(calculationName="Feb Sales Qty", summariseExpression="sum(X2Qty)")
pt$defineCalculation(calculationName="Mar Sales Qty", summariseExpression="sum(X3Qty)")
pt$defineCalculation(calculationName="Apr Sales Qty", summariseExpression="sum(X4Qty)")
pt$defineCalculation(calculationName="May Sales Qty", summariseExpression="sum(X5Qty)")
pt$defineCalculation(calculationName="Jun Sales Qty", summariseExpression="sum(X6Qty)")
pt$defineCalculation(calculationName="Jul Sales Qty", summariseExpression="sum(X7Qty)")
pt$defineCalculation(calculationName="Aug Sales Qty", summariseExpression="sum(X8Qty)")
pt$defineCalculation(calculationName="Sep Sales Qty", summariseExpression="sum(X9Qty)")
pt$defineCalculation(calculationName="Oct Sales Qty", summariseExpression="sum(X10Qty)")
pt$defineCalculation(calculationName="Nov Sales Qty", summariseExpression="sum(X11Qty)")
pt$defineCalculation(calculationName="Dec Sales Qty", summariseExpression="sum(X12Qty)")
pt$evaluatePivot()
str <- " a b c Total \n Jan Sales Qty Feb Sales Qty Mar Sales Qty Apr Sales Qty May Sales Qty Jun Sales Qty Jul Sales Qty Aug Sales Qty Sep Sales Qty Oct Sales Qty Nov Sales Qty Dec Sales Qty Jan Sales Qty Feb Sales Qty Mar Sales Qty Apr Sales Qty May Sales Qty Jun Sales Qty Jul Sales Qty Aug Sales Qty Sep Sales Qty Oct Sales Qty Nov Sales Qty Dec Sales Qty Jan Sales Qty Feb Sales Qty Mar Sales Qty Apr Sales Qty May Sales Qty Jun Sales Qty Jul Sales Qty Aug Sales Qty Sep Sales Qty Oct Sales Qty Nov Sales Qty Dec Sales Qty Jan Sales Qty Feb Sales Qty Mar Sales Qty Apr Sales Qty May Sales Qty Jun Sales Qty Jul Sales Qty Aug Sales Qty Sep Sales Qty Oct Sales Qty Nov Sales Qty Dec Sales Qty \na 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 \nb 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 \nc 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 \nTotal 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 6 6 6 6 6 6 6 6 6 6 6 6 "
html <- "<table class=\"Table\">\n <tr>\n <th class=\"RowHeader\" rowspan=\"2\"> </th>\n <th class=\"ColumnHeader\" colspan=\"12\">a</th>\n <th class=\"ColumnHeader\" colspan=\"12\">b</th>\n <th class=\"ColumnHeader\" colspan=\"12\">c</th>\n <th class=\"ColumnHeader\" colspan=\"12\">Total</th>\n </tr>\n <tr>\n <th class=\"ColumnHeader\">Jan Sales Qty</th>\n <th class=\"ColumnHeader\">Feb Sales Qty</th>\n <th class=\"ColumnHeader\">Mar Sales Qty</th>\n <th class=\"ColumnHeader\">Apr Sales Qty</th>\n <th class=\"ColumnHeader\">May Sales Qty</th>\n <th class=\"ColumnHeader\">Jun Sales Qty</th>\n <th class=\"ColumnHeader\">Jul Sales Qty</th>\n <th class=\"ColumnHeader\">Aug Sales Qty</th>\n <th class=\"ColumnHeader\">Sep Sales Qty</th>\n <th class=\"ColumnHeader\">Oct Sales Qty</th>\n <th class=\"ColumnHeader\">Nov Sales Qty</th>\n <th class=\"ColumnHeader\">Dec Sales Qty</th>\n <th class=\"ColumnHeader\">Jan Sales Qty</th>\n <th class=\"ColumnHeader\">Feb Sales Qty</th>\n <th class=\"ColumnHeader\">Mar Sales Qty</th>\n <th class=\"ColumnHeader\">Apr Sales Qty</th>\n <th class=\"ColumnHeader\">May Sales Qty</th>\n <th class=\"ColumnHeader\">Jun Sales Qty</th>\n <th class=\"ColumnHeader\">Jul Sales Qty</th>\n <th class=\"ColumnHeader\">Aug Sales Qty</th>\n <th class=\"ColumnHeader\">Sep Sales Qty</th>\n <th class=\"ColumnHeader\">Oct Sales Qty</th>\n <th class=\"ColumnHeader\">Nov Sales Qty</th>\n <th class=\"ColumnHeader\">Dec Sales Qty</th>\n <th class=\"ColumnHeader\">Jan Sales Qty</th>\n <th class=\"ColumnHeader\">Feb Sales Qty</th>\n <th class=\"ColumnHeader\">Mar Sales Qty</th>\n <th class=\"ColumnHeader\">Apr Sales Qty</th>\n <th class=\"ColumnHeader\">May Sales Qty</th>\n <th class=\"ColumnHeader\">Jun Sales Qty</th>\n <th class=\"ColumnHeader\">Jul Sales Qty</th>\n <th class=\"ColumnHeader\">Aug Sales Qty</th>\n <th class=\"ColumnHeader\">Sep Sales Qty</th>\n <th class=\"ColumnHeader\">Oct Sales Qty</th>\n <th class=\"ColumnHeader\">Nov Sales Qty</th>\n <th class=\"ColumnHeader\">Dec Sales Qty</th>\n <th class=\"ColumnHeader\">Jan Sales Qty</th>\n <th class=\"ColumnHeader\">Feb Sales Qty</th>\n <th class=\"ColumnHeader\">Mar Sales Qty</th>\n <th class=\"ColumnHeader\">Apr Sales Qty</th>\n <th class=\"ColumnHeader\">May Sales Qty</th>\n <th class=\"ColumnHeader\">Jun Sales Qty</th>\n <th class=\"ColumnHeader\">Jul Sales Qty</th>\n <th class=\"ColumnHeader\">Aug Sales Qty</th>\n <th class=\"ColumnHeader\">Sep Sales Qty</th>\n <th class=\"ColumnHeader\">Oct Sales Qty</th>\n <th class=\"ColumnHeader\">Nov Sales Qty</th>\n <th class=\"ColumnHeader\">Dec Sales Qty</th>\n </tr>\n <tr>\n <th class=\"RowHeader\">a</th>\n <td class=\"Cell\">1</td>\n <td class=\"Cell\">1</td>\n <td class=\"Cell\">1</td>\n <td class=\"Cell\">1</td>\n <td class=\"Cell\">1</td>\n <td class=\"Cell\">1</td>\n <td class=\"Cell\">1</td>\n <td class=\"Cell\">1</td>\n <td class=\"Cell\">1</td>\n <td class=\"Cell\">1</td>\n <td class=\"Cell\">1</td>\n <td class=\"Cell\">1</td>\n <td class=\"Cell\"></td>\n <td class=\"Cell\"></td>\n <td class=\"Cell\"></td>\n <td class=\"Cell\"></td>\n <td class=\"Cell\"></td>\n <td class=\"Cell\"></td>\n <td class=\"Cell\"></td>\n <td class=\"Cell\"></td>\n <td class=\"Cell\"></td>\n <td class=\"Cell\"></td>\n <td class=\"Cell\"></td>\n <td class=\"Cell\"></td>\n <td class=\"Cell\"></td>\n <td class=\"Cell\"></td>\n <td class=\"Cell\"></td>\n <td class=\"Cell\"></td>\n <td class=\"Cell\"></td>\n <td class=\"Cell\"></td>\n <td class=\"Cell\"></td>\n <td class=\"Cell\"></td>\n <td class=\"Cell\"></td>\n <td class=\"Cell\"></td>\n <td class=\"Cell\"></td>\n <td class=\"Cell\"></td>\n <td class=\"Total\">1</td>\n <td class=\"Total\">1</td>\n <td class=\"Total\">1</td>\n <td class=\"Total\">1</td>\n <td class=\"Total\">1</td>\n <td class=\"Total\">1</td>\n <td class=\"Total\">1</td>\n <td class=\"Total\">1</td>\n <td class=\"Total\">1</td>\n <td class=\"Total\">1</td>\n <td class=\"Total\">1</td>\n <td class=\"Total\">1</td>\n </tr>\n <tr>\n <th class=\"RowHeader\">b</th>\n <td class=\"Cell\"></td>\n <td class=\"Cell\"></td>\n <td class=\"Cell\"></td>\n <td class=\"Cell\"></td>\n <td class=\"Cell\"></td>\n <td class=\"Cell\"></td>\n <td class=\"Cell\"></td>\n <td class=\"Cell\"></td>\n <td class=\"Cell\"></td>\n <td class=\"Cell\"></td>\n <td class=\"Cell\"></td>\n <td class=\"Cell\"></td>\n <td class=\"Cell\">2</td>\n <td class=\"Cell\">2</td>\n <td class=\"Cell\">2</td>\n <td class=\"Cell\">2</td>\n <td class=\"Cell\">2</td>\n <td class=\"Cell\">2</td>\n <td class=\"Cell\">2</td>\n <td class=\"Cell\">2</td>\n <td class=\"Cell\">2</td>\n <td class=\"Cell\">2</td>\n <td class=\"Cell\">2</td>\n <td class=\"Cell\">2</td>\n <td class=\"Cell\"></td>\n <td class=\"Cell\"></td>\n <td class=\"Cell\"></td>\n <td class=\"Cell\"></td>\n <td class=\"Cell\"></td>\n <td class=\"Cell\"></td>\n <td class=\"Cell\"></td>\n <td class=\"Cell\"></td>\n <td class=\"Cell\"></td>\n <td class=\"Cell\"></td>\n <td class=\"Cell\"></td>\n <td class=\"Cell\"></td>\n <td class=\"Total\">2</td>\n <td class=\"Total\">2</td>\n <td class=\"Total\">2</td>\n <td class=\"Total\">2</td>\n <td class=\"Total\">2</td>\n <td class=\"Total\">2</td>\n <td class=\"Total\">2</td>\n <td class=\"Total\">2</td>\n <td class=\"Total\">2</td>\n <td class=\"Total\">2</td>\n <td class=\"Total\">2</td>\n <td class=\"Total\">2</td>\n </tr>\n <tr>\n <th class=\"RowHeader\">c</th>\n <td class=\"Cell\"></td>\n <td class=\"Cell\"></td>\n <td class=\"Cell\"></td>\n <td class=\"Cell\"></td>\n <td class=\"Cell\"></td>\n <td class=\"Cell\"></td>\n <td class=\"Cell\"></td>\n <td class=\"Cell\"></td>\n <td class=\"Cell\"></td>\n <td class=\"Cell\"></td>\n <td class=\"Cell\"></td>\n <td class=\"Cell\"></td>\n <td class=\"Cell\"></td>\n <td class=\"Cell\"></td>\n <td class=\"Cell\"></td>\n <td class=\"Cell\"></td>\n <td class=\"Cell\"></td>\n <td class=\"Cell\"></td>\n <td class=\"Cell\"></td>\n <td class=\"Cell\"></td>\n <td class=\"Cell\"></td>\n <td class=\"Cell\"></td>\n <td class=\"Cell\"></td>\n <td class=\"Cell\"></td>\n <td class=\"Cell\">3</td>\n <td class=\"Cell\">3</td>\n <td class=\"Cell\">3</td>\n <td class=\"Cell\">3</td>\n <td class=\"Cell\">3</td>\n <td class=\"Cell\">3</td>\n <td class=\"Cell\">3</td>\n <td class=\"Cell\">3</td>\n <td class=\"Cell\">3</td>\n <td class=\"Cell\">3</td>\n <td class=\"Cell\">3</td>\n <td class=\"Cell\">3</td>\n <td class=\"Total\">3</td>\n <td class=\"Total\">3</td>\n <td class=\"Total\">3</td>\n <td class=\"Total\">3</td>\n <td class=\"Total\">3</td>\n <td class=\"Total\">3</td>\n <td class=\"Total\">3</td>\n <td class=\"Total\">3</td>\n <td class=\"Total\">3</td>\n <td class=\"Total\">3</td>\n <td class=\"Total\">3</td>\n <td class=\"Total\">3</td>\n </tr>\n <tr>\n <th class=\"RowHeader\">Total</th>\n <td class=\"Total\">1</td>\n <td class=\"Total\">1</td>\n <td class=\"Total\">1</td>\n <td class=\"Total\">1</td>\n <td class=\"Total\">1</td>\n <td class=\"Total\">1</td>\n <td class=\"Total\">1</td>\n <td class=\"Total\">1</td>\n <td class=\"Total\">1</td>\n <td class=\"Total\">1</td>\n <td class=\"Total\">1</td>\n <td class=\"Total\">1</td>\n <td class=\"Total\">2</td>\n <td class=\"Total\">2</td>\n <td class=\"Total\">2</td>\n <td class=\"Total\">2</td>\n <td class=\"Total\">2</td>\n <td class=\"Total\">2</td>\n <td class=\"Total\">2</td>\n <td class=\"Total\">2</td>\n <td class=\"Total\">2</td>\n <td class=\"Total\">2</td>\n <td class=\"Total\">2</td>\n <td class=\"Total\">2</td>\n <td class=\"Total\">3</td>\n <td class=\"Total\">3</td>\n <td class=\"Total\">3</td>\n <td class=\"Total\">3</td>\n <td class=\"Total\">3</td>\n <td class=\"Total\">3</td>\n <td class=\"Total\">3</td>\n <td class=\"Total\">3</td>\n <td class=\"Total\">3</td>\n <td class=\"Total\">3</td>\n <td class=\"Total\">3</td>\n <td class=\"Total\">3</td>\n <td class=\"Total\">6</td>\n <td class=\"Total\">6</td>\n <td class=\"Total\">6</td>\n <td class=\"Total\">6</td>\n <td class=\"Total\">6</td>\n <td class=\"Total\">6</td>\n <td class=\"Total\">6</td>\n <td class=\"Total\">6</td>\n <td class=\"Total\">6</td>\n <td class=\"Total\">6</td>\n <td class=\"Total\">6</td>\n <td class=\"Total\">6</td>\n </tr>\n</table>"
expect_equal(sum(pt$cells$asMatrix(), na.rm=TRUE), 288)
expect_identical(pt$print(asCharacter=TRUE), str)
expect_identical(as.character(pt$getHtml()), html)
})
} |
library("matrixStats")
rowMedians_R <- function(x, na.rm = FALSE, ..., useNames = NA) {
res <- apply(x, MARGIN = 1L, FUN = median, na.rm = na.rm)
if (is.na(useNames) || !useNames) names(res) <- NULL
res
}
colMedians_R <- function(x, na.rm = FALSE, ..., useNames = NA) {
res <- apply(x, MARGIN = 2L, FUN = median, na.rm = na.rm)
if (is.na(useNames) || !useNames) names(res) <- NULL
res
}
source("utils/validateIndicesFramework.R")
x <- matrix(runif(6 * 6, min = -3, max = 3), nrow = 6, ncol = 6)
storage.mode(x) <- "integer"
dimnames <- list(letters[1:6], LETTERS[1:6])
for (setDimnames in c(TRUE, FALSE)) {
if (setDimnames) dimnames(x) <- dimnames
else dimnames(x) <- NULL
for (rows in index_cases) {
for (cols in index_cases) {
for (na.rm in c(TRUE, FALSE)) {
for (useNames in c(NA, TRUE, FALSE)) {
validateIndicesTestMatrix(x, rows, cols,
ftest = rowMedians, fsure = rowMedians_R,
na.rm = na.rm, useNames = useNames)
validateIndicesTestMatrix(x, rows, cols,
fcoltest = colMedians, fsure = rowMedians_R,
na.rm = na.rm, useNames = useNames)
}
}
}
}
} |
context("or_glm")
library("mgcv")
library("MASS")
test_that("correct level count of indicator variable for glm", {
data("data_glm")
fit_glm <- glm(admit ~ rank, data = data_glm, family = "binomial")
out <- or_glm(data = data_glm, model = fit_glm)
expect_length(out$predictor, length(levels(data_glm$rank)) - 1)
})
test_that("or_glm works with glmmPQL", {
data(bacteria)
fit_glmmpql <- glmmPQL(y ~ trt + week,
random = ~ 1 | ID,
family = binomial, data = bacteria,
verbose = FALSE
)
out <- or_glm(data = bacteria, model = fit_glmmpql, incr = list(week = 5))
expect_length(out, 5)
}) |
getSeries <- function(series,
start = NULL,
end = format(Sys.Date(), "%Y-%m"),
return.class = "data.frame",
verbose = TRUE,
dest.dir = NULL) {
on.exit(return(invisible(NULL)))
real.time <- grepl("^BBKRT", series)
if (real.time) {
site <- paste0("https://www.bundesbank.de/statistic-rmi/",
"StatisticDownload?tsId=",
series,
"&rtd_csvFormat=en",
"&rtd_fileFormat=csv",
"&mode=rtd")
} else {
if (!is.null(start)) {
if (nchar(as.character(start)) == 4L)
start <- paste0(as.character(start), "-01")
if (nchar(start) != 7L) {
warning("'start' not in format YYYY-MM")
tmp <- as.Date(as.character(start))
if (!is.na(tmp))
start <- strftime(tmp, "%Y-%m")
else
stop("'start' not in required format")
}
}
if (nchar(end) != 7L) {
if (nchar(as.character(end)) == 4L)
end <- paste0(as.character(end), "-12")
warning("'end' not in format YYYY-MM")
tmp <- as.Date(as.character(end))
if (!is.na(tmp))
end <- strftime(tmp, "%Y-%m")
else
stop("'end' not in required format")
}
sstart <- ifelse(is.null(start), "",
paste("&its_from=", start, sep = ""))
sto <- paste("&its_to=", end, sep = "")
site <- paste("http://www.bundesbank.de/cae/servlet/CsvDownload?",
"tsId=", series, "&mode=its&its_csvFormat=en",
"&its_currency=default&its_dateFormat=dateOfDay&",
sstart, "&", sto, sep = "")
}
if (!is.null(dest.dir)) {
filename <- paste0(format(Sys.Date(), "%Y%m%d"),
"__", series,
"__", start,
"__", end, ".csv")
filename <- file.path(dest.dir, filename)
if (!file.exists(filename)) {
if (verbose)
message("Downloading data from Bundesbank ... ", appendLF = FALSE)
download.file(site, filename, quiet = TRUE)
} else
if (verbose)
message("Using cache ... ", appendLF = FALSE)
dats <- try(readLines(filename), silent = TRUE)
em <- geterrmessage()
} else {
if (verbose)
message("Downloading data from Bundesbank ... ", appendLF = FALSE)
con <- url(site)
dats <- try(readLines(con), silent = TRUE)
close(con)
em <- geterrmessage()
}
if (inherits(dats, "try-error")) {
if (verbose) {
message("failed")
message(em)
}
return(invisible(NULL))
} else {
if (verbose)
message("done")
}
if (real.time) {
txt.head <- dats[1:5]
txt.csv <- dats[-c(1:5)]
tb <- read.table(text = txt.csv,
header = FALSE,
sep = ",",
stringsAsFactors = FALSE)
row.names(tb) <- tb[[1L]]
tb <- tb[, -1L]
h.split <- strsplit(txt.head, " *, *")
colnames(tb) <- h.split[[1]][-1L]
attr(tb, "date") <- as.Date(h.split[[1]][-1L])
attr(tb, "unit") <- h.split[[2]][-1L]
attr(tb, "unit multiplier") <- h.split[[3]][-1L]
attr(tb, "Baseyear") <- h.split[[4]][-1L]
attr(tb, "Record meth") <- h.split[[5]][-1L]
result <- tb
} else {
dats <- read.csv(text = dats,
stringsAsFactors = FALSE,
as.is = TRUE)
if (dats[NROW(dats), 1L] == "") {
doc <- dats[NROW(dats), 2L]
dats <- dats[-NROW(dats), ]
} else
doc <- NULL
doc0 <- dats[2:4, ]
doc0 <- paste(doc0[, 1L], doc0[, 2L], sep = ": ")
doc0 <- c(dats[1L, 2L], doc0)
doc <- c(doc0, doc)
dats <- dats[-(1:4), ]
dates <- as.Date(dats[, 1L])
values <- dats[, 2L]
NAs <- is.na(dates)
dates <- dates[!NAs]
values <- values[!NAs]
missing <- values == "."
dates <- dates[!missing]
values <- as.numeric(values[!missing])
if (!is.null(return.class)) {
if (return.class == "zoo")
if (requireNamespace("zoo"))
result <- zoo::zoo(values, dates)
else
stop("package ", sQuote("zoo"), " not available")
else if (return.class == "data.frame")
result <- data.frame(dates = dates, values = values)
else if (return.class == "list")
result <- list(dates = dates, values = values)
} else
result <- list(dates = dates, values = values)
attr(result, "info") <- doc
}
on.exit()
result
} |
MeasureSurvSchmid = R6::R6Class("MeasureSurvSchmid",
inherit = MeasureSurv,
public = list(
initialize = function() {
ps = ps(
integrated = p_lgl(default = TRUE),
times = p_uty(),
t_max = p_dbl(0),
p_max = p_dbl(0, 1),
method = p_int(1L, 2L, default = 2L),
se = p_lgl(default = FALSE),
proper = p_lgl(default = FALSE),
eps = p_dbl(0, 1, default = 1e-3)
)
ps$values = list(
integrated = TRUE, method = 2L, se = FALSE,
proper = FALSE, eps = 1e-3
)
super$initialize(
param_set = ps,
id = "surv.schmid",
range = c(0, Inf),
minimize = TRUE,
packages = "distr6",
predict_type = "distr",
man = "mlr3proba::mlr_measures_surv.schmid",
)
}
),
private = list(
.score = function(prediction, task, train_set, ...) {
ps = self$param_set$values
nok = sum(!is.null(ps$times), !is.null(ps$t_max), !is.null(ps$p_max)) > 1
if (nok) {
stop("Only one of `times`, `t_max`, and `p_max` should be provided")
}
if (!ps$integrated) {
msg = "If `integrated=FALSE` then `times` should be a scalar numeric."
assert_numeric(ps$times, len = 1, .var.name = msg)
} else {
if (!is.null(ps$times) && length(ps$times) == 1) {
ps$integrated = FALSE
}
}
x = as.integer(!is.null(task)) + as.integer(!is.null(train_set))
if (x == 1) {
stop("Either 'task' and 'train_set' should be passed to measure or neither.")
} else if (x) {
train = task$truth(train_set)
} else {
train = NULL
}
score = weighted_survival_score("schmid", truth = prediction$truth,
distribution = prediction$distr, times = ps$times, t_max = ps$t_max,
p_max = ps$p_max, proper = ps$proper, train = train, eps = ps$eps)
if (ps$se) {
integrated_se(score, ps$integrated)
} else {
integrated_score(score, ps$integrated, ps$method)
}
}
)
) |
wfunk <- function(beta = NULL, lambda, p, X = NULL, Y,
offset = rep(0, length(Y)),
ord = 2, pfixed = FALSE){
if (ord < 0) return(NULL)
nn <- NROW(Y)
if (NCOL(Y) == 2) Y <- cbind(rep(0, nn), Y)
if (is.null(X)){
if (pfixed){
bdim <- 1
b <- -log(lambda)
}else{
bdim <- 2
b <- c(-log(lambda), log(p))
}
mb <- 0
fit <- .Fortran("wfuncnull",
as.integer(ord),
as.integer(pfixed),
as.double(p),
as.integer(bdim),
as.double(b),
as.integer(nn),
as.double(Y[, 1]),
as.double(Y[, 2]),
as.integer(Y[, 3]),
f = double(1),
fp = double(bdim),
fpp = double(bdim * bdim),
ok = integer(1),
PACKAGE = "eha"
)
}else{
mb <- NCOL(X)
if (length(beta) != mb) stop("beta mis-specified!")
if (pfixed){
bdim <- mb + 1
b <- c(beta, -log(lambda))
}else{
bdim <- mb + 2
b <- c(beta, -log(lambda), log(p))
}
cat("wfunc\n")
fit <- .Fortran("wfunc",
as.integer(ord),
as.integer(pfixed),
as.double(p),
as.integer(bdim),
as.integer(mb),
as.double(b),
as.integer(nn),
as.double(t(X)),
as.double(Y[, 1]),
as.double(Y[, 2]),
as.integer(Y[, 3]),
as.double(offset),
f = double(1),
fp = double(bdim),
fpp = double(bdim * bdim),
ok = integer(1),
PACKAGE = "eha"
)
}
ret <- list(f = -fit$f)
if (ord >= 1){
xx <- rep(1, bdim)
xx[mb + 1] <- -1
ret$fp <- -xx * fit$fp
if (ord >= 2){
xx <- diag(xx)
ret$fpp <- xx %*% matrix(fit$fpp, ncol = bdim) %*% t(xx)
}
}
ret
} |
ghap.blockgen<-function(
phase,
windowsize=10,
slide=5,
unit="marker",
nsnp=2
){
if(class(phase) != "GHap.phase"){
stop("Argument phase must be a GHap.phase object.")
}
if(unit %in% c("marker","kbp","ibd") == FALSE){
stop("Unit must be specified as 'marker' or 'kbp'")
}
BLOCK <- rep(NA,times=phase$nmarkers.in)
CHR <- rep(NA,times=phase$nmarkers.in)
BP1 <- rep(NA,times=phase$nmarkers.in)
BP2 <- rep(NA,times=phase$nmarkers.in)
SIZE <- rep(NA,times=phase$nmarkers.in)
NSNP <- rep(NA,times=phase$nmarkers.in)
if(unit == "kbp"){
windowsize <- windowsize*1e+3
slide <- slide*1e+3
offset <- 0
for(k in unique(phase$chr)){
cmkr <- which(phase$marker.in & phase$chr == k)
nmkr <- length(cmkr)
bp <- phase$bp[cmkr]
minbp <- bp[1]
maxbp <- bp[nmkr]
id1<-seq(1,maxbp,by=slide)
id2<-id1+(windowsize-1)
id1<-id1[id2 <= maxbp]
id2<-id2[id2 <= maxbp]
for(i in 1:length(id1)){
slice <- cmkr[which(bp >= id1[i] & bp <= id2[i])]
CHR[i+offset] <- phase$chr[slice[1]]
BP1[i+offset] <- id1[i]
BP2[i+offset] <- id2[i]
NSNP[i+offset] <- length(slice)
BLOCK[i+offset] <- paste("CHR",CHR[i+offset],"_B",i,sep="")
}
offset <- offset + length(id1)
}
}else if(unit == "marker"){
offset <- 0
for(k in unique(phase$chr)){
cmkr <- which(phase$marker.in & phase$chr == k)
nmkr <- length(cmkr)
id1<-seq(1,nmkr,by=slide)
id2<-id1+(windowsize-1)
id1<-id1[id2 <= nmkr]
id2<-id2[id2 <= nmkr]
for(i in 1:length(id1)){
slice <- cmkr[id1[i]:id2[i]]
CHR[i+offset] <- phase$chr[slice[1]]
BP1[i+offset] <- phase$bp[slice[1]]
BP2[i+offset] <- phase$bp[slice[length(slice)]]
NSNP[i+offset] <- length(slice)
BLOCK[i+offset] <- paste("CHR",CHR[i+offset],"_B",i,sep="")
}
offset <- offset + length(id1)
}
}
results <- data.frame(BLOCK,CHR,BP1,BP2,NSNP,stringsAsFactors = FALSE)
results <- unique(results)
results$SIZE <- 1 + results$BP2 - results$BP1
results$SIZE[results$NSNP == 1] <- 1
results <- results[order(nchar(results$CHR),results$CHR,results$BP1,results$BP2),]
results <- results[results$NSNP >= nsnp,]
if(nrow(results) == 0){
stop("No blocks could be generated with the specified options. Try setting the nsnp argument to a smaller value.")
}
results <- na.exclude(results)
results <- results[,c("BLOCK","CHR","BP1","BP2","SIZE","NSNP")]
return(results)
} |
knitr::opts_chunk$set(
collapse = TRUE,
comment = "
)
library(ggparliament)
library(dplyr)
library(ggplot2)
require(tidyr)
require(magrittr)
require(purrr)
source("../R/parliament_data.R")
source("../R/geom_parliament_seats.R")
source("../R/geom_highlight_government.R")
source("../R/helper_funcs.R")
source("../R/draw_majoritythreshold.R")
source("../R/draw_partylabels.R")
source("../R/draw_majoritythreshold.R")
source("../R/draw_totalseats.R")
source("../R/theme_ggparliament.R")
load("../R/sysdata.rda")
usa <- election_data %>%
filter(country == "USA" &
house == "Representatives") %>%
split(.$year) %>%
map(~parliament_data(election_data = .,
party_seats = .$seats,
parl_rows = 8,
type = "semicircle")) %>%
bind_rows()
us <- ggplot(usa, aes(x, y, colour = party_short)) +
geom_parliament_seats() +
geom_highlight_government(government == 1) +
labs(colour = NULL,
title = "American Congress",
subtitle = "The party that has control of US Congress is encircled in black.") +
theme_ggparliament() +
scale_colour_manual(values = usa$colour,
limits = usa$party_short) +
theme(legend.position = 'bottom') +
facet_grid(~year, scales = 'free')
us
australia <- election_data %>%
filter(country == "Australia" &
year == "2016") %>%
split(.$house) %>%
map(~parliament_data(election_data = .,
party_seats = .$seats,
parl_rows = 4,
type = "horseshoe")) %>%
bind_rows()
au <- ggplot(australia, aes(x, y, colour=party_short, type = "horseshoe")) +
geom_parliament_seats() +
geom_highlight_government(government == 1) +
labs(colour = NULL,
title = "Australian Parliament",
subtitle = "Government encircled in black.") +
scale_colour_manual(values = australia$colour,
limits = australia$party_short) +
theme_ggparliament() +
theme(legend.position = 'bottom') +
facet_grid(~house, scales = 'free')
au
uk<- election_data %>%
filter(country == "UK") %>%
split(.$year) %>%
map(~parliament_data(election_data = .,
party_seats = .$seats,
group = .$government,
type = "opposing_benches")) %>%
bind_rows()
ggplot(data = uk,
aes(x = x,
y = y,
color = party_long)) +
geom_parliament_seats(size = 1.5) +
coord_flip() +
facet_wrap(~year, ncol = 2) +
scale_color_manual(values = uk$colour,
limits = uk$party_long) +
theme_ggparliament() |
getnorm <- function(x, y, type="pooled"){
type <- match.arg(type, c("pooled","naive"))
if(type=="pooled"){getnorm.pool(x,y)}else{
getnorm.naive(x,y)
}
} |
NULL
michael <- function(...){
get_quote(character = "Michael", ...)
}
jim <- function(...){
get_quote(character = "Jim", ...)
}
dwight <- function(...){
get_quote(character = "Dwight", ...)
}
pam <- function(...){
get_quote(character = "Pam", ...)
}
andy <- function(...){
get_quote(character = "Andy", ...)
}
kevin <- function(...){
get_quote(character = "Kevin", ...)
}
angela <- function(...){
get_quote(character = "Angela", ...)
}
erin <- function(...){
get_quote(character = "Erin", ...)
}
oscar <- function(...){
get_quote(character = "Oscar", ...)
}
ryan <- function(...){
get_quote(character = "Ryan", ...)
}
darryl <- function(...){
get_quote(character = "Darryl", ...)
}
phyllis <- function(...){
get_quote(character = "Phyllis", ...)
}
toby <- function(...){
get_quote(character = "Toby", ...)
}
kelly <- function(...){
get_quote(character = "Kelly", ...)
}
stanley <- function(...){
get_quote(character = "Stanley", ...)
}
meredith <- function(...){
get_quote(character = "Meredith", ...)
}
creed <- function(...){
get_quote(character = "Creed", ...)
} |
lsEspaGetOrderImages<-function(username=NULL,password=NULL,c.handle=NULL,order.list=NULL,verbose=TRUE){
if(is.null(c.handle)){
if(is.null(username)|is.null(username)){
stop("c.handle or username and password are null.")
}else{
stopifnot(class(username)=="character")
stopifnot(class(password)=="character")
c.handle<-lsEspaCreateConnection(username,password)
}
}
if(is.null(order.list))
order.list<-lsEspaGetOrders(c.handle=c.handle)
img.list<-list()
for(ol in order.list){
r <- curl_fetch_memory(paste0(getRGISToolsOpt("LS.ESPA.API"),getRGISToolsOpt("LS.ESPA.API.v"),"/order/",ol), c.handle)
json_data<-fromJSON(rawToChar(r$content))
if(json_data$note==getRGISToolsOpt("LS.ESPA.Request")){
all.response<-unlist(json_data,recursive=TRUE)
img.list[[ol]]<-list(OrderedImages=unname(all.response[grepl("inputs",names(all.response))]),
Status=json_data$status)
}else{
if(verbose)message(paste0(ol," is not an RGISTools request, not adding for downloading..."))
}
}
return(img.list)
} |
las <- random_10_points
test_that("header bbox is updated", {
Zm <- las[["Max Z"]]
las@header@PHB[["Max Z"]] <- 5
las <- las_update(las)
expect_equal(las[["Max Z"]], Zm)
}) |
"wbcel235" |
predictlink.Jointlcmm <- function(x,ndraws=2000,Yvalues,...)
{
if(missing(x)) stop("The model should be specified.")
if(!(inherits(x,"Jointlcmm"))) stop("To use only with \"Jointlcmm\" objects")
if(x$linktype==-1) stop("The model does not define any link function.")
if(x$conv!=1 & ndraws!=0) stop("No confidence intervals can be produced since the program did not converge properly")
if(x$conv %in% c(1,2,3))
{
if(missing(Yvalues))
{
new.transf <- FALSE
Yvalues <- x$estimlink[,1]
}
else
{
new.transf <- TRUE
Yvalues <- na.omit(Yvalues)
if(any(Yvalues<x$estimlink[1,1]) | any(Yvalues>x$estimlink[nrow(x$estimlink),1])) stop("The values specified in \"Yvalues\" are not in the range of the outcome")
Yvalues <- sort(Yvalues)
}
npm <- length(x$best)
best <- x$best
if(x$idiag==0 & x$N[5]>0) best[sum(x$N[1:4])+1:x$N[5]] <- x$cholesky
if(x$idiag==1 & x$N[5]>0) best[sum(x$N[1:4])+1:x$N[5]] <- sqrt(best[sum(x$N[1:4])+1:x$N[5]])
if(x$linktype==0) ntrtot <- 2
if(x$linktype==1) ntrtot <- 4
if(x$linktype==2) ntrtot <- length(x$linknodes)+2
imoins <- sum(x$N[1:7])
zitr <- x$linknodes
maxnbzitr <- ifelse(x$linktype==2,length(x$linknodes),2)
epsY <- x$epsY
minY <- x$estimlink[1,1]
maxY <- x$estimlink[nrow(x$estimlink),1]
ny <- 1
nsim <- length(Yvalues)
if(x$linktype==3)
{
ide <- x$ide
dimide <- length(ide)
}
else
{
ide <- rep(0,1)
dimide <- 1
}
ndraws <- as.integer(ndraws)
posfix <- eval(x$call$posfix)
if(ndraws>0)
{
Mat <- matrix(0,ncol=npm,nrow=npm)
Mat[upper.tri(Mat,diag=TRUE)]<- x$V
if(length(posfix))
{
Mat2 <- Mat[-posfix,-posfix]
Chol2 <- chol(Mat2)
Chol <- matrix(0,npm,npm)
Chol[setdiff(1:npm,posfix),setdiff(1:npm,posfix)] <- Chol2
Chol <- t(Chol)
}
else
{
Chol <- chol(Mat)
Chol <- t(Chol)
}
}
if(isTRUE(new.transf) & ndraws==0)
{
resFortran <- rep(0,nsim)
out0 <- .Fortran(C_calculustransfo,
as.double(best),
as.integer(npm),
as.integer(ny),
as.integer(x$linktype),
as.integer(ntrtot),
as.integer(imoins),
as.double(zitr),
as.integer(maxnbzitr),
as.double(Yvalues),
as.integer(nsim),
as.double(minY),
as.double(maxY),
as.double(epsY),
as.integer(ide),
as.integer(dimide),
transfo=as.double(resFortran))
transfY <- out0$transfo
}
else
{
transfY <- x$estimlink[,2]
}
if(ndraws>0)
{
if(x$conv==1)
{
Hydraws <- NULL
for (j in 1:ndraws)
{
bdraw <- rnorm(npm)
bdraw <- best + Chol %*% bdraw
resFortran <- rep(0,nsim)
out <- .Fortran(C_calculustransfo,
as.double(bdraw),
as.integer(npm),
as.integer(ny),
as.integer(x$linktype),
as.integer(ntrtot),
as.integer(imoins),
as.double(zitr),
as.integer(maxnbzitr),
as.double(Yvalues),
as.integer(nsim),
as.double(minY),
as.double(maxY),
as.double(epsY),
as.integer(ide),
as.integer(dimide),
transfo=as.double(resFortran))
Hydraws <- cbind(Hydraws,out$transfo)
}
f <- function(x)
{
quantile(x[!is.na(x)],probs=c(0.5,0.025,0.975))
}
Hydistr <- apply(Hydraws,1,FUN=f)
borne_inf <- as.vector(Hydistr[2,])
borne_sup <- as.vector(Hydistr[3,])
mediane <- as.vector(Hydistr[1,])
res <- data.frame(Yvalues=Yvalues,transfY_50=mediane,transfY_2.5=borne_inf,transfY_97.5=borne_sup)
}
if(x$conv==2 | x$conv==3)
{
borne_inf <- rep(NA,length(Yvalues))
borne_sup <- rep(NA,length(Yvalues))
mediane <- rep(NA,length(Yvalues))
res <- data.frame(Yvalues=Yvalues,transfY_50=mediane,transfY_2.5=borne_inf,transfY_97.5=borne_sup)
}
}
else
{
res <- data.frame(Yvalues=Yvalues,transY=transfY)
}
}
else
{
cat("Output can not be produced since the program stopped abnormally.")
res <- NA
}
res.list <- NULL
res.list$pred <- res
res.list$object <- x
class(res.list) <- "predictlink"
return(res.list)
} |
expected <- eval(parse(text="NULL"));
test(id=0, code={
argv <- eval(parse(text="list(list(structure(list(srcfile = c(\"/home/lzhao/tmp/RtmpTzriDZ/R.INSTALL30d4108a07be/mgcv/R/gam.fit3.r\", \"/home/lzhao/tmp/RtmpTzriDZ/R.INSTALL30d4108a07be/mgcv/R/gam.fit3.r\"), frow = c(1287L, 1289L), lrow = c(1287L, 1289L)), .Names = c(\"srcfile\", \"frow\", \"lrow\"), row.names = 1:2, class = \"data.frame\"), structure(list(srcfile = \"/home/lzhao/tmp/RtmpTzriDZ/R.INSTALL30d4108a07be/mgcv/R/gam.fit3.r\", frow = 1289L, lrow = 1289L), .Names = c(\"srcfile\", \"frow\", \"lrow\"), row.names = c(NA, -1L), class = \"data.frame\")))"));
do.call(`names`, argv);
}, o=expected); |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.