code
stringlengths
1
13.8M
plotfplsr <- function(x, xlab1 = x$ypred$xname, ylab1 = "Basis function", xlab2 = "Time", ylab2 = "Coefficient", mean.lab = "Mean", interaction.title = "Interaction") { scores = x$T order = dim(scores)[2] pred = x$P resp = x$Q par(mfrow = c(3, (order + 1))) plot(x$y1, x$meanX$y, type = "l", xlab = xlab1, ylab = mean.lab, main = "Predictor") for(i in 1:order) { plot(x$y1, pred[,i], type = "l", xlab = xlab1, ylab = paste(ylab1, i, sep = " ")) } plot(x$y1, x$meanY$y, type = "l", xlab = xlab1, ylab = mean.lab, main = "Response") for(i in 1:order) { plot(x$y1, resp[,i], type = "l", xlab = xlab1, ylab = paste(ylab1, i, sep = " ")) } plot(x$y1, resp[,1], type = "n", xlab = "", ylab = "", xaxt = "n", yaxt = "n", bty = "n") for(i in 1:order) { plot(x$x1, scores[,i], type = "l", xlab = xlab2, ylab = paste(ylab2, i, sep = " ")) } }
SurveyQ<-function(data, Longitude=NULL, Latitude=NULL, cell=60, Areas=NULL, variables = c("Slope","Completeness","Ratio"), completeness=c(50,90), slope=c(0.02,0.3), ratio=c(3,15), shape=NULL, shapenames=NULL, admAreas=TRUE, Area="World", minLon, maxLon, minLat, maxLat, main=NULL, PLOTP=NULL, PLOTB=NULL, POINTS=NULL, XLAB=NULL, YLAB=NULL, XLIM=NULL, YLIM=NULL, palette=c("blue","green","red"), COLOR=c("red","green","blue"), colm="black", labels=TRUE, sizelabels=1, LEGENDP=NULL, LEGENDM=NULL, file="Polar coordinates.csv", na="NA", dec=",", row.names=FALSE, jpg=FALSE, filejpg="Map.jpg"){ if(missing(Latitude) & missing(Longitude) & missing(Areas)){ stop("It is necessary to specify the arguments Latitude and Longitude, if the file 'Estimators' was obtained with the function KnowB, or the argument Areas if the file 'Estimators' was obtained with the function KnowBPolygon") } "%ni%" <- Negate( "%in%" ) TE<- function(datosL=datosL, dim=dim, COLOR=NULL,sizelabels=1){ h<-0 for(z in 1:dim[1]){ if(h==6) h<-1 else h<-h+1 c<-plotrix::draw.circle(datosL[z,2], datosL[z,3], rangeX*1/100, nv = 6, border = "transparent", col = "transparent") datosL[z,2]<-c$x[h] datosL[z,3]<-c$y[h] text(x = datosL[z,2] , y = datosL[z,3] , labels = datosL[z,1] , col = COLOR, cex=sizelabels) } } Bubbles<-function(data, varY, varX, varColor=NULL, palette= "cm.colors", digitsC=0, ncolor=10, transparency=1, PLOTB=NULL, POINTS=NULL, COLEGEND=NULL, XLAB=NULL, YLAB=NULL, XLIM=NULL, YLIM=NULL, LEGENDS=NULL){ datos<-data datosT<-data.frame(subset(datos, select=varX), subset(datos, select=varY)) if(!is.null(varColor)){ datosT<-data.frame(datosT, subset(datos, select=varColor)) } datos<-na.exclude(datosT) par(font.lab=2, mar=c(4.5,4.5,3,5),cex.lab=1.5) if(!is.null(XLAB)) xlab<-XLAB else xlab<-varX if(!is.null(YLAB)) ylab<-YLAB else ylab<-varY if(!is.null(XLIM)){ minsx<-XLIM[1] maxsx<-XLIM[2] } else{ minsx<-min(datos[,varX]) maxsx<-max(datos[,varX]) XLIM<-c(minsx,maxsx) } if(!is.null(YLIM)){ minsy<-YLIM[1] maxsy<-YLIM[2] } else{ minsy<-min(datos[,varY]) maxsy<-max(datos[,varY]) YLIM<-c(minsy,maxsy) } if(!is.null(varColor)){ maxC<-max(datos[,varColor]) minC<-min(datos[,varColor]) matriz<-matrix(c(maxC,minC, 1, ncolor),nrow = 2 , ncol = 2) regC<-lm(matriz[,2]~matriz[,1]) } if(palette== "heat.colors"){ rampa<-heat.colors(n=ncolor, alpha=transparency) } if(palette== "terrain.colors"){ rampa<-terrain.colors(n=ncolor, alpha=transparency) } if(palette== "gray.colors"){ rampa<-gray.colors(n=ncolor, alpha=transparency) } if(palette== "topo.colors"){ rampa<-topo.colors(n=ncolor, alpha=transparency) } if(palette== "cm.colors"){ rampa<-cm.colors(n=ncolor, alpha=transparency) } if(palette!= "heat.colors" & palette!= "topo.colors" & palette!= "gray.colors" & palette!= "cm.colors" & palette!= "terrain.colors"){ ramp <- colorRamp(palette) rampa<-rgb(ramp(seq(0, 1, length = ncolor)), maxColorValue = 255) } cex<-1 if(!is.null(varColor)){ color<-round(regC$coefficients[1]+regC$coefficients[2]*datos[1,varColor]) pch<-16 } else{ rampa<-"black" pch<-1 color<-1 } if(!is.null(PLOTB)){ scatterplotexe<-paste("plot(","x=datos[1,varX],", "y=datos[1,varY],", toString(x=PLOTB), ")") eval(parse(text=scatterplotexe)) } else{ scatterplotexe<-paste("plot(","x=datos[1,varX],", "y=datos[1,varY],","cex=cex,", "col=rampa[color],", "xlim=XLIM,","ylim=YLIM,", "xlab=xlab,","ylab=ylab,", "pch=pch", ")") eval(parse(text=scatterplotexe)) } dimS<-dim(datos) for(zz in 2:dimS[1]){ cex=1 if(!is.null(varColor)){ color<-round(regC$coefficients[1]+regC$coefficients[2]*datos[zz,varColor]) } if(!is.null(POINTS)){ scatterplotexe<-paste("points(","x=datos[zz,varX],", "y=datos[zz,varY],", toString(x=POINTS), ")") eval(parse(text=scatterplotexe)) } else{ scatterplotexe<-paste("points(","x=datos[zz,varX],", "y=datos[zz,varY],","cex=cex,", "col=rampa[color],", "xlim=XLIM,","ylim=YLIM,", "pch=pch", ")") eval(parse(text=scatterplotexe)) } } ranX<-abs(XLIM[2]-XLIM[1]) ranY<-abs(YLIM[2]-YLIM[1]) x1<-XLIM[2]+ranX*8/100 x2<-XLIM[2]+ranX*12/100 if(palette== "heat.colors"){ rampa<-heat.colors(n=100, alpha=transparency) } if(palette== "terrain.colors"){ rampa<-terrain.colors(n=100, alpha=transparency) } if(palette== "gray.colors"){ rampa<-gray.colors(n=100, alpha=transparency) } if(palette== "topo.colors"){ rampa<-topo.colors(n=100, alpha=transparency) } if(palette== "cm.colors"){ rampa<-cm.colors(n=100, alpha=transparency) } if(palette!= "heat.colors" & palette!= "topo.colors" & palette!= "gray.colors" & palette!= "cm.colors" & palette!= "terrain.colors"){ ramp <- colorRamp(palette) rampa<-rgb(ramp(seq(0, 1, length = 100)), maxColorValue = 255) } if(!is.null(varColor)){ int<-as.numeric(format((maxC-minC)/ncolor, digits=digitsC)) maxC<-as.numeric(format(maxC,digits=digitsC)) minC<-as.numeric(format(minC,digits=digitsC)) color<-minC valor<-minC for(zz in 1:ncolor){ valor<-valor+int color<-append(color,valor) } y1<-YLIM[1]-YLIM[1]*3/100 y2<-YLIM[2]+YLIM[2]*1.5/100 if(!is.null(COLEGEND)){ scatterplotexe<-paste("plotrix::color.legend(","xl=x1,", "yb=y1,", "xr=x2,", "yt=y2,", toString(x=COLEGEND), ")") eval(parse(text=scatterplotexe)) } else{ scatterplotexe<-paste("plotrix::color.legend(","xl=x1,", "yb=y1,", "xr=x2,", "yt=y2,", "legend=color,","gradient='y',", "align='rb',", "cex=1,", "rect.col=rev(rampa)", ")") eval(parse(text=scatterplotexe)) } } } adareas<-function(data, Area="World", minLon, maxLon, minLat, maxLat, colbg=" exclude = NULL, colexc = NULL, colfexc="black", colscale=rev(heat.colors(100)), legend.pos="y", breaks=10, xl=0, xr=0, yb=0, yt=0, asp, lab = NULL, xlab = "Longitude", ylab = "Latitude", main=NULL, cex.main = 1.2, cex.lab = 1, cex.axis = 0.9, cex.legend=0.9, family = "sans", font.main = 2, font.lab = 1, font.axis = 1, lwdP=0.6, lwdC=0.1, trans=c(1,1), log=c(0,0), ndigits=0, ini=NULL, end=NULL, jpg=FALSE, filejpg="Map.jpg"){ if(class(data)=="data.frame"){ data<-as.matrix(data) } if(class(data)=="RasterLayer"){ if(round(raster::xmin(data))==-180 & round(raster::ymin(data))==-90 & round(raster::xmax(data))==180 & round(raster::ymax(data))==90){ m1<-raster::as.matrix(data) dimm<-dim(m1) long<-seq(from=(-180+360/dimm[2]), to = 180 , by = 360/dimm[2]) m1<-rbind(long,m1) lat<-seq(from=(90-180/dimm[1]), to = -90 , by = -180/dimm[1]) lat<-c(0,lat) data<-cbind(lat,m1, deparse.level=0) } else{ reso<-raster::res(data) r1<-raster::raster(xmn=-180, xmx=180, ymn=-90, ymx=90, resolution=reso) data<-raster::resample(data,r1) m1<-raster::as.matrix(data) dimm<-dim(m1) long<-seq(from=(raster::xmin(data)+(raster::xmax(data)-raster::xmin(data))/dimm[2]), to = raster::xmax(data) , by = (raster::xmax(data)-raster::xmin(data))/dimm[2]) m1<-rbind(long,m1) lat<-seq(from=(raster::ymax(data)+(raster::ymin(data)-raster::ymax(data))/dimm[1]), to = raster::ymin(data) , by = (raster::ymin(data)-raster::ymax(data))/dimm[1]) lat<-c(0,lat) data<-cbind(lat,m1, deparse.level=0) } } if(exists("adworld")==FALSE){ adworld<-1 stop("It is necessary to load data(adworld)") } if(Area!="World" & exists("adworld1")==FALSE){ stop("It is necessary to use RWizard and replace data(adworld) by @_Build_AdWorld_, for using administative areas") } if(Area!="World" & exists("adworld2")==FALSE){ stop("It is necessary to use RWizard and replace data(adworld) by @_Build_AdWorld_, for using administative areas") } if(exists("adworld1")==FALSE){ adworld1<-1 } if(exists("adworld2")==FALSE){ adworld2<-1 } varscale<-data if(!is.null(end)){ datos1<-replace(data, data>=end, end) datos1[1,]<-varscale[1,] datos1[,1]<-varscale[,1] varscale<-datos1 rm(datos1) codlegend<-paste(">",end) } d<-length(Area) AA<-Area[1] if (AA=="World"){ datos1<-adworld[2:5,] } else{ datos1<-rbind(adworld1,adworld2) } datos1<-na.exclude(datos1) if (AA=="World"){ if (missing(minLat)) minLat<--90 else minLat<-minLat if (missing(maxLat)) maxLat<-90 else maxLat<-maxLat if (missing(minLon)) minLon<--180 else minLon<-minLon if (missing(maxLon)) maxLon<-180 else maxLon<-maxLon } else{ if (missing(maxLon)){ if(max(datos1$Lon)<0) maxLon<-(max(datos1$Lon)-max(datos1$Lon)*inc) else maxLon<-(max(datos1$Lon)+max(datos1$Lon)*inc) } else { maxLon<-maxLon } if (missing(minLon)){ if(min(datos1$Lon)<0) minLon<-(min(datos1$Lon)+min(datos1$Lon)*inc) else minLon<-(min(datos1$Lon)-min(datos1$Lon)*inc) } else { minLon<-minLon } if (missing(maxLat)){ if(max(datos1$Lat)<0) maxLat<-(max(datos1$Lat)-max(datos1$Lat)*inc) else maxLat<-(max(datos1$Lat)+max(datos1$Lat)*inc) } else { maxLat<-maxLat } if (missing(minLat)){ if(min(datos1$Lat)<0) minLat<-(min(datos1$Lat)+min(datos1$Lat)*inc) else minLat<-(min(datos1$Lat)-min(datos1$Lat)*inc) } else { minLat<-minLat } } Lon<-as.numeric(varscale[1,-1]) varLon<-as.numeric(varscale[1,-1]) a<-length(Lon) for (i in 1:a){ if(i==1) varLon[i]<-((-180+Lon[i])/2) else varLon[i]<-((Lon[i-1]+Lon[i])/2) } Lat<-as.numeric(varscale[-1,1]) varLat<-as.numeric(varscale[-1,1]) a<-length(Lat) for (i in 1:a){ if(i==1) varLat[i]<-((90+Lat[i])/2) else varLat[i]<-((Lat[i-1]+Lat[i])/2) } varLat<-(-varLat) firstrow<-varscale[1,] ajuste<-varscale[varscale[,1]<=maxLat&varscale[,1]>=minLat,] ifelse(firstrow==ajuste[1,], yes=ajuste<-ajuste, no=ajuste<-rbind(firstrow,ajuste)) ajuste<-ajuste[,ajuste[1,]<=maxLon&ajuste[1,]>=minLon] ajuste<-ajuste[-1,-1] ajuste<-as.matrix(ajuste) if(trans[1]==0){ ajuste<-replace(ajuste, ajuste==-9999,NA) ajuste<-ajuste/trans[2] ajuste<-replace(ajuste, is.na(ajuste),-9999) } else{ ajuste<-replace(ajuste, ajuste==-9999,NA) ajuste<-ajuste*trans[2] ajuste<-replace(ajuste, is.na(ajuste),-9999) } if(log[1]==0){ ajuste<-ajuste } else{ ajuste<-replace(ajuste, ajuste==-9999,NA) ajuste<-log(ajuste+log[2]) ajuste<-replace(ajuste, is.na(ajuste),-9999) } ajuste<- ajuste[nrow(ajuste):1,] varscale<-varscale[-1,-1] varscale<-as.matrix(varscale) if(trans[1]==0){ varscale<-replace(varscale, varscale==-9999,NA) varscale<-varscale/trans[2] varscale<-replace(varscale, is.na(varscale),-9999) } else{ varscale<-replace(varscale, varscale==-9999,NA) varscale<-varscale*trans[2] varscale<-replace(varscale, is.na(varscale),-9999) } if(log[1]==0){ varscale<-varscale } else{ varscale<-replace(varscale, varscale==-9999,NA) varscale<-log(varscale+log[2]) varscale<-replace(varscale, is.na(varscale),-9999) } varscale<- varscale[nrow(varscale):1,] varscale<-t(varscale) if (maxLon>=180) maxLon<-180 else maxLon<-maxLon if (minLon<=-180) minLon<--180 else minLon<-minLon if (maxLat>=90) maxLat<-90 else maxLat<-maxLat if (minLat<=-90) minLat<--90 else minLat<-minLat if (missing(Area)) Area="World" else Area=Area if (missing(colbg)) colbg="transparent" else colbg=colbg if (missing(colcon)) colcon="transparent" else colcon=colcon if (missing(colf)) colf="black" else colf=colf if (missing(colfexc)) colfexc="black" else colfexc=colfexc if (missing(varscale)) varscale=NULL else varscale=varscale color<-rev(heat.colors(100)) if (missing(colscale)) colscale<-color else colscale=colscale legend.max=max(ajuste) if(legend.max<=10){ legend.min=(if(min(ajuste[!ajuste==-9999])==0) min(ajuste[!ajuste==-9999])+(max(ajuste)/(length(colscale)-1)) else min(ajuste[!ajuste==-9999])) } else{ legend.min=min(ajuste[!ajuste==-9999]) } if(legend.min<0) legend.min<-legend.min+legend.min*0.1/100 else legend.min<-legend.min-legend.min*0.1/100 if(legend.max<0) legend.max<-legend.max-legend.max*0.1/100 else legend.max<-legend.max+legend.max*0.1/100 Lati<-(maxLat+minLat)/2 if (pro==TRUE) aspe=(1/cos(Lati*pi/180)) else aspe=1 if (missing(asp)) asp=aspe else asp=asp x<-0 y<-0 rm(datos1) if(jpg==TRUE) jpeg(filename = filejpg, width = 8000, height = 4000, units = "px", pointsize = 14, quality = 1200, bg = "white", res = 600) else hhjhk<-1 squishplot <- function(xlim,ylim,asp=1){ if(length(xlim) < 2) stop('xlim must be a vector of length 2') if(length(ylim) < 2) stop('ylim must be a vector of length 2') tmp <- par(c('plt','pin','xaxs','yaxs')) if( tmp$xaxs == 'i' ){ xlim <- range(xlim) } else { tmp.r <- diff(range(xlim)) xlim <- range(xlim) + c(-1,1)*0.04*tmp.r } if( tmp$yaxs == 'i' ){ ylim <- range(ylim) } else { tmp.r <- diff(range(ylim)) ylim <- range(ylim) + c(-1,1)*0.04*tmp.r } tmp2 <- (ylim[2]-ylim[1])/(xlim[2]-xlim[1]) tmp.y <- tmp$pin[1] * tmp2 * asp if(tmp.y < tmp$pin[2]){ par(pin=c(tmp$pin[1], tmp.y)) par(plt=c(tmp$plt[1:2], par('plt')[3:4])) } else { tmp.x <- tmp$pin[2]/tmp2/asp par(pin=c(tmp.x, tmp$pin[2])) par(plt=c(par('plt')[1:2], tmp$plt[3:4])) } return(invisible(tmp['plt'])) } if (missing(ini)){ if(min(varscale[!varscale==-9999])==0) ini<-0 else ini<-legend.min } else{ ini<-ini } par(lwd=lwdP,fg="black",family=family) tmp<-squishplot(xlim=c(minLon,maxLon), ylim=c(minLat,maxLat), asp=aspe) if(!is.null(end)){ legend.max<-end } legend.freq1=abs((legend.max-ini)/(length(colscale)-1)) legend.freq=abs((legend.max-ini)/(breaks-1)) if(missing(legend.pos)){ if((maxLon-minLon)>260 & (maxLon-minLon)/(maxLat-minLat)>2.265) legend.pos="x" else legend.pos=legend.pos } if (legend.pos=="y") par(oma=c(0,0,0,1)) else par(oma=c(0,0,2,0)) image(varLon, varLat,varscale,xlim=c(minLon,maxLon),ylim=c(minLat,maxLat), axes=F, xaxs="i", yaxs="i", xlab="",ylab="", col=colscale, breaks=c(ini,seq(ini,legend.max,by=legend.freq1))) par(new=T,lwd=lwdP) plot(x,y,xlim=c(minLon,maxLon),ylim=c(minLat,maxLat),xlab=xlab, main="", axes=TRUE, ylab = ylab, cex.lab=cex.lab, type="n",bty="l", font.lab=font.lab, font.axis=font.axis,lab=lab,yaxs="i",xaxs="i",yaxt="n",xaxt="n") mtext(text=main,side=3, line=0.3, cex=cex.main, font=font.main) axis(side=1,xlim=c(minLon,maxLon),lwd=lwdP, cex.axis=cex.axis) axis(side=2,ylim=c(minLat,maxLat),lwd=lwdP, cex.axis=cex.axis) if (colbg==" if (legend.pos=="y"){ if (xl==0){ x1<-(maxLon-minLon)*(-0.00106495)+0.747382095+maxLon x2<-(maxLon-minLon)*(-0.003194851)+2.060146284+maxLon } else{ x1<-xl x2<-xr } if(legend.max<=10){ sequ<-(seq(ini,legend.max,by=legend.freq)) sequ<-round(sequ, digits=ndigits) } else{ if(ini==0){ legend.freq=abs((legend.max-ini)/(breaks-1)) sequ<-(seq(ini,legend.max,by=legend.freq)) sequ<-round(sequ, digits=ndigits) } else{ sequ<-(seq(ini,legend.max,by=legend.freq)) sequ<-round(sequ, digits=ndigits) } } if(!is.null(end)){ lensequ<-length(sequ) sequ[lensequ]<-codlegend } plotrix::color.legend(xl=x1, yb=minLat, xr= x2, yt=maxLat, sequ, gradient="y", align="rb", cex=cex.legend, rect.col=colscale[-1]) } else{ if (yb==0){ if(!is.null(main)){ y1<-maxLat+(maxLat-minLat)*(0.101851852)-1.333333333 y2<-maxLat+(maxLat-minLat)*(0.157407407)-1.333333333 } else{ y1<-maxLat+(maxLat-minLat)*(0.027777778) y2<-maxLat+(maxLat-minLat)*(0.083333333) } } else{ y1<-yb y2<-yt } if(legend.max<=10){ sequ<-(seq(ini,legend.max,by=legend.freq)) sequ<-round(sequ, digits=ndigits) } else{ sequ<-(seq(ini,legend.max,by=legend.freq)) sequ<-round(sequ, digits=ndigits) } if(!is.null(end)){ lensequ<-length(sequ) sequ[lensequ]<-codlegend } plotrix::color.legend(xl=minLon, yb=y1, xr=maxLon, yt=y2, sequ, gradient="x", align="lt", cex=cex.legend, rect.col=colscale[-1]) } if (AA=="World") { polygon(adworld$Lon,adworld$Lat,col=colcon, border=colf) if(!is.null(exclude)){ polygon(adworld2$Lon,adworld2$Lat,col=colexc, border=colfexc) } } else { polygon(adworld1$Lon,adworld1$Lat,col=colcon, border=colf) polygon(adworld2$Lon,adworld2$Lat,col=colexc, border=colfexc) } par(tmp) if(jpg==TRUE) dev.off() else hhjk<-1 } n<-length(variables) var<-variables if(!is.null(Areas)){ datosT<-data.frame(subset(data, select=Areas), subset(data, select=var)) datos<-na.exclude(datosT) selection<-datos[,-1] } if(!is.null(Longitude)){ datosT<-data.frame(subset(data, select=Longitude), subset(data, select=Latitude), subset(data, select=var)) datos<-na.exclude(datosT) selection<-datos[,c(-1,-2)] } var<-colnames(selection) datosE<-selection for (z in 1:3){ matrixE<-matrix(c(-1, 1, min(selection[,z],na.rm=TRUE),max(selection[,z],na.rm=TRUE)), nrow = 2 , ncol = 2) reg<-lm(matrixE[,1]~matrixE[,2]) datosC<-reg$coefficients[1]+selection[,z]*reg$coefficients[2] datosE<-cbind(datosE,datosC) } datosE<-datosE[,-c(1:3)] colnames(datosE)<-colnames(selection) selection<-datosE angle<-pi/3 datosX<-selection[,1] h<-0 for (z in 1:3){ h<-h+1 datosC<- ifelse(selection[,z] <=0, abs(selection[,z])*cos(angle*h+pi), abs(selection[,z])*cos(angle*h)) datosX<-data.frame(datosX,datosC) } datosX<-datosX[,-1] XX<-apply(datosX,1,sum) RX<-(max(XX)-min(XX)) datosY<-selection[,1] h<-0 for (z in 1:3){ h<-h+1 datosC<- ifelse(selection[,z] <=0, abs(selection[,z])*sin(angle*h+pi), abs(selection[,z])*sin(angle*h)) datosY<-cbind(datosY,datosC) } datosY<-datosY[,-1] YY<-apply(datosY,1,sum) RY<-(max(YY)-min(YY)) datosF<-data.frame(XX,YY) if(!is.null(Areas)){ datosF<-data.frame(datos[,1], datosF) colnames(datosF)<-c("Area", "X","Y") } if(!is.null(Longitude)){ datosF<-data.frame(datos[,c(1,2)], datosF) colnames(datosF)<-c("Longitude","Latitude", "X","Y") } if(dec=="."){ write.csv(x=datosF,file = file, fileEncoding = "", row.names=row.names,na=na) } else{ write.csv2(x = datosF,file = file, fileEncoding = "", row.names=row.names,na=na) } if(dec=="."){ datosF<-read.csv(file=file ,header=TRUE) } else{ datosF<-read.csv2(file=file ,header=TRUE) } if(!is.null(XLAB)) xlab<-XLAB else xlab<-"POLAR COORDINATES X" if(!is.null(YLAB)){ ylab<-YLAB } else{ ylab<-"POLAR COORDINATES Y" } if(is.null(Longitude)){ xx=datosF[,2] yy=datosF[,3] } else{ xx=datosF[,3] yy=datosF[,4] } if(is.null(XLIM)){ XLIM<-c(min(xx),max(xx)) } if(is.null(YLIM)){ YLIM<-c(min(yy),max(yy)) } rangeX<-abs(XLIM[2]-XLIM[1]) dev.new() par(font.lab=2, mar=c(5,5,3,2),cex.lab=1.5) if(!is.null(PLOTP)){ plotexe<-paste("plot(","x=xx,", "y=yy,", toString(x=PLOTP), ")") eval(parse(text=plotexe)) } else{ plotexe<-paste("plot(","x=xx,", "y=yy,", "xlab=xlab,","ylab=ylab,","xlim=XLIM,","ylim=YLIM,", "cex=0",")") eval(parse(text=plotexe)) } if(!is.null(Areas)){ datosT<-cbind(datosF,datos) datosL<-subset(datosT,datosT[,variables[1]]<slope[1] & datosT[,variables[2]]>completeness[2] & datosT[,variables[3]]>ratio[2]) datosL<-datosL[,c(1,2,3)] datosL<-datosL[order(datosL[,2]),] dim<-dim(datosL) eti<-rep("Good",dim[1]) datosL<-cbind(datosL,eti) names(datosL)<-c("Area","X","Y","Survey") ldata<-datosL if(dim[1]>0){ if(labels==FALSE | !is.null(Longitude)) { points(x = datosL[,2] , y = datosL[,3], pch=16, col=COLOR[1],cex=sizelabels) } else{ TE(datosL=datosL, dim=dim, COLOR=COLOR[1],sizelabels=sizelabels) } } datosL<-subset(datosT,datosT[,variables[1]]>slope[2] & datosT[,variables[2]]<completeness[1] & datosT[,variables[3]]<ratio[1]) datosL<-datosL[,c(1,2,3)] datosL<-datosL[order(datosL[,2]),] dim<-dim(datosL) eti<-rep("Poor",dim[1]) datosP<-cbind(datosL,eti) names(datosP)<-c("Area","X","Y","Survey") if(dim[1]>0){ if(labels==FALSE | !is.null(Longitude)) { points(x = datosP[,2] , y = datosP[,3], pch=16, col=COLOR[3],cex=sizelabels) } else{ TE(datosL=datosP, dim=dim, COLOR=COLOR[3],sizelabels=sizelabels) } } datosL<-subset(datosT,(datosT[,variables[1]]>=slope[1] & datosT[,variables[1]]<=slope[2]) | (datosT[,variables[2]]>=completeness[1] & datosT[,variables[2]]<=completeness[2] ) | (datosT[,variables[3]]>=ratio[1] & datosT[,variables[3]]<=ratio[2])) datosL<-datosL[,c(1,2,3)] datosL<-datosL[order(datosL[,2]),] dim<-dim(datosL) eti<-rep("Fair",dim[1]) datosFF<-cbind(datosL,eti) names(datosFF)<-c("Area","X","Y","Survey") if(dim[1]>0){ if(labels==FALSE | !is.null(Longitude)) { points(x = datosFF[,2] , y = datosFF[,3], pch=16, col=COLOR[2],cex=sizelabels) } else{ TE(datosL=datosFF, dim=dim, COLOR=COLOR[2],sizelabels=sizelabels) } } ldata<-rbind(ldata,datosFF, datosP) if(!is.null(LEGENDP)){ legendexe<-paste("legend(",toString(x=LEGENDP), ")") eval(parse(text=legendexe)) } else{ legendexe<-paste("legend(","x='bottomleft',", "legend=c('High quality survey','Fair quality survey','Poor quality survey'),", "pch=15,", "col=COLOR,", "bty='n'", ")") eval(parse(text=legendexe)) } dim<-dim(ldata) valor<-rep(1, dim[1]) ldata<-cbind(ldata,valor) names(ldata)<-c("Area","X","Y","Survey","Survey2") ldata$Survey2[which(ldata$Survey=="Good")]<-3 ldata$Survey2[which(ldata$Survey=="Fair")]<-2 ldata$Survey2[which(ldata$Survey=="Poor")]<-1 ldata[,"Survey2"]<-as.numeric(ldata[,"Survey"]) catcol<-as.character(unique(ldata[,4])) if(any(catcol=="Good")==TRUE) vp1="" else vp1=COLOR[1] if(any(catcol=="Fair")==TRUE) vp2="" else vp2=COLOR[2] if(any(catcol=="Poor")==TRUE) vp3="" else vp3=COLOR[3] COLORF<-COLOR[ COLOR %ni% c(vp1,vp2,vp3)] datosT<-ldata if(!is.null(shape)){ if(class(shape)=="list"){ data<-shape[[1]] lsh<-length(shape) if(lsh>1){ ss<-seq(2,lsh) hh<-as.character(shape[ss]) shapeT<-eval(parse(text=paste("subset(data,",noquote(shapenames), " %in% hh)", sep=""))) } } else{ shapeT<-shape if(class(shapeT)=="character"){ shapeT<-eval(parse(text=paste(".GlobalEnv$", shapeT, sep=""))) } } AreasT<-data.frame(eval(parse(text=paste("shapeT$",noquote(shapenames),sep="")))) names(AreasT)<-"Area" datosT<-merge(AreasT,ldata, sort=FALSE) } if(jpg==TRUE){ jpeg(filename = filejpg, width = 8000, height = 4000, units = "px", pointsize = 14, quality = 1200, bg = "white", res = 600) } else{ dev.new() } KnowBR::MapPolygon(data=datosT, polygonname="Area", Area=Area, var="Survey2", colscale=COLORF, jpg=FALSE, xl=500, xr=500, shape=shape, shapenames=shapenames, minLon=minLon, maxLon=maxLon,minLat=minLat, maxLat=maxLat, admAreas=admAreas, main=main, colm=colm) if(!is.null(LEGENDM)){ legendexe<-paste("legend(",toString(x=LEGENDM), ")") eval(parse(text=legendexe)) } else{ legendexe<-paste("legend(","x='bottomleft',", "legend=c('High quality survey','Fair quality survey','Poor quality survey'),", "pch=15,", "col=COLOR,", "bty='n'", ")") eval(parse(text=legendexe)) } if(jpg==TRUE){ dev.off() } ldata<-ldata[,-5] } if(!is.null(Longitude)){ datosT<-cbind(datosF,datos) datosL<-subset(datosT,datosT[,variables[1]]<slope[1] & datosT[,variables[2]]>completeness[2] & datosT[,variables[3]]>ratio[2]) datosL<-datosL[,c(1,2,3,4)] dim<-dim(datosL) eti<-rep("Good",dim[1]) datosL<-cbind(datosL,eti) names(datosL)<-c("Longitude","Latitude","X","Y","Survey") ldata<-datosL points(x = datosL[,3] , y = datosL[,4], pch=16, col=COLOR[1],cex=sizelabels) datosL<-subset(datosT,datosT[,variables[1]]>slope[2] & datosT[,variables[2]]<completeness[1] & datosT[,variables[3]]<ratio[1]) datosL<-datosL[,c(1,2,3,4)] dim<-dim(datosL) eti<-rep("Poor",dim[1]) datosP<-cbind(datosL,eti) names(datosP)<-c("Longitude","Latitude","X","Y","Survey") points(x = datosP[,3] , y = datosP[,4], pch=16, col=COLOR[3],cex=sizelabels) datosL<-subset(datosT,(datosT[,variables[1]]>=slope[1] & datosT[,variables[1]]<=slope[2]) | (datosT[,variables[2]]>=completeness[1] & datosT[,variables[2]]<=completeness[2] ) | (datosT[,variables[3]]>=ratio[1] & datosT[,variables[3]]<=ratio[2])) datosL<-datosL[,c(1,2,3,4)] dim<-dim(datosL) eti<-rep("Fair",dim[1]) datosFF<-cbind(datosL,eti) names(datosFF)<-c("Longitude","Latitude","X","Y","Survey") ldata<-rbind(ldata,datosFF, datosP) points(x = datosFF[,3] , y = datosFF[,4], pch=16, col=COLOR[2],cex=sizelabels) if(!is.null(LEGENDP)){ legendexe<-paste("legend(",toString(x=LEGENDP), ")") eval(parse(text=legendexe)) } else{ legendexe<-paste("legend(","x='bottomleft',", "legend=c('High quality survey','Fair quality survey','Poor quality survey'),", "pch=15,", "col=COLOR,", "bty='n'", ")") eval(parse(text=legendexe)) } dim<-dim(ldata) valor<-rep(1, dim[1]) ldata<-cbind(ldata,valor) names(ldata)<-c("Longitude","Latitude","X","Y","Survey","Survey2") ldata$Survey2[which(ldata$Survey=="Good")]<-3 ldata$Survey2[which(ldata$Survey=="Fair")]<-2 ldata$Survey2[which(ldata$Survey=="Poor")]<-1 ldata[,"Survey2"]<-as.numeric(ldata[,"Survey"]) catcol<-as.character(unique(ldata[,5])) if(any(catcol=="Good")==TRUE) vp1="" else vp1=COLOR[1] if(any(catcol=="Fair")==TRUE) vp2="" else vp2=COLOR[2] if(any(catcol=="Poor")==TRUE) vp3="" else vp3=COLOR[3] COLORF<-COLOR[ COLOR %ni% c(vp1,vp2,vp3)] if(jpg==TRUE){ jpeg(filename = filejpg, width = 8000, height = 4000, units = "px", pointsize = 14, quality = 1200, bg = "white", res = 600) } else{ dev.new() } f<-cell/60 ff<-180/f cc<-ff*2 matriz<-matrix(-9999, nrow=ff, ncol=cc) col<-c(0,seq(from=-180+f, to=180, by=f)) row<-c(seq(from=-90, to=90-f, by=f)) names(matriz)<-NULL matriz<-cbind(row,matriz) matriz<-rbind(col,matriz) colnames(matriz)<-NULL le<-length(ldata[,1]) x<-matriz[1,-1] y<-matriz[-1,1] for(z in 1:le){ vx<-findInterval(ldata[z,1], x) vy<-findInterval(ldata[z,2], y) matriz[vy+1,vx+2]<-ldata[z,6] } matriz <- matriz[ nrow(matriz):2, ] matriz<-rbind(col,matriz) adareas(data=matriz, Area=Area, jpg=FALSE, minLon=minLon, maxLon=maxLon,minLat=minLat, maxLat=maxLat, colcon="transparent", xl=500, xr=500, colscale=append("transparent",COLORF)) rm(matriz) if(!is.null(LEGENDM)){ legendexe<-paste("legend(",toString(x=LEGENDM), ")") eval(parse(text=legendexe)) } else{ legendexe<-paste("legend(","x='bottomleft',", "legend=c('High quality survey','Fair quality survey','Poor quality survey'),", "pch=15,", "col=COLOR,", "bty='n'", ")") eval(parse(text=legendexe)) } if(jpg==TRUE){ dev.off() } ldata<-ldata[,-6] } if(dec=="."){ write.csv(x=ldata,file = file, fileEncoding = "", row.names=row.names,na=na) } else{ write.csv2(x = ldata,file = file, fileEncoding = "", row.names=row.names,na=na) } dev.new() LRatio<-log(data[,variables[3]]) data<-cbind(data,LRatio) Bubbles(data = data , varY = variables[2] , varX = "LRatio" , XLAB="log Ratio",varColor = variables[1] , digitsC = 1, PLOTB=PLOTB, palette=palette, POINTS=POINTS) }
ml_psineglog <- function(param,dat,mlmax=1e+15,fixed=FALSE,...) { loglik = mlmax lik = NULL x = dat[,1] y = dat[,2] if(fixed) param[1]=0 lik = try(dbgpd(x, y, model = "psineglog",mar1 = param[1:3],mar2 = param[4:6],dep = param[7],asy=param[8], p=param[9]), silent=TRUE) if(!is.null(lik)){ if(is.null(attr(lik,"class"))){ loglik = -sum(log(lik)) if(min(1+param[3]*(x-param[1])/param[2])<0) loglik=mlmax if(min(1+param[6]*(y-param[4])/param[5])<0) loglik=mlmax }} loglik }
insertvec<-function(v, ind, val) { sects = list() isects = length(ind)+1 JIND = c(0, ind, length(v)) for(k in 1:isects) { J1 = JIND[k]+1 J2 = JIND[k+1] sects[[k]] = v[J1:J2] } w = sects[[1]] for(k in 2:(isects)) { w = c(w, val, sects[[k]]) } return(w) }
replaceLibrary <- function(lib, value) { envs <- c( as.environment("package:base"), .BaseNamespaceEnv ) for (env in envs) { do.call("unlockBinding", list(lib, env)) assign(lib, value, envir = env) do.call("lockBinding", list(lib, env)) } } hideLibrary <- function(lib) { replaceLibrary(lib, character()) } restoreLibrary <- function(lib) { cachedLib <- if (lib == ".Library") getenv("R_PACKRAT_SYSTEM_LIBRARY") else if (lib == ".Library.site") getenv("R_PACKRAT_SITE_LIBRARY") if (is.null(cachedLib)) { warning("packrat did not properly save the library state; cannot restore") return(invisible(NULL)) } replaceLibrary(lib, cachedLib) } hideSiteLibraries <- function() { hideLibrary(".Library.site") } restoreSiteLibraries <- function() { restoreLibrary(".Library.site") }
test_that("delete_MCAR() calls check_delete_args_MCAR()", { expect_error( delete_MCAR(df_XY_100, 0.1, p_overall = "A"), "p_overall must be logical of length 1" ) }) test_that("delete_MCAR() creates MCAR", { set.seed(123454) df_MCAR <- delete_MCAR(df_XY_100, 0.1) expect_equal(count_NA(df_MCAR), c(X = 10, Y = 10)) df_MCAR <- delete_MCAR(df_XY_100, 1) expect_equal(count_NA(df_MCAR), c(X = 100, Y = 100)) df_MCAR <- delete_MCAR(df_XY_100, 0) expect_equal(count_NA(df_MCAR), c(X = 0, Y = 0)) df_MCAR <- delete_MCAR(df_XY_100, 0.2, cols_mis = 2) expect_equal(count_NA(df_MCAR), c(X = 0, Y = 20)) df_MCAR <- delete_MCAR(df_XY_100, 0.2, cols_mis = "X") expect_equal(count_NA(df_MCAR), c(X = 20, Y = 0)) df_MCAR <- delete_MCAR(df_XY_100, p = 0.5, stochastic = TRUE) expect_true(anyNA(df_MCAR)) df_MCAR <- delete_MCAR(df_XY_100, p = 1, stochastic = TRUE) expect_equal(count_NA(df_MCAR), c(X = 100, Y = 100)) df_MCAR <- delete_MCAR(df_XY_100, p = 0, stochastic = TRUE) expect_equal(count_NA(df_MCAR), c(X = 0, Y = 0)) N <- 1000 res <- 0 for (i in seq_len(N)) { res <- res + sum(count_NA(delete_MCAR(df_XY_100, p = 0.2, stochastic = TRUE))) } expect_true( res / prod(dim(df_XY_100), N) < 0.3 & res / prod(dim(df_XY_100), N) > 0.1 ) df_MCAR <- delete_MCAR(df_XY_100, p = 0.2, p_overall = TRUE) expect_equal(sum(count_NA(df_MCAR)), 40) df_MCAR <- delete_MCAR(df_XY_100, p = 1, p_overall = TRUE) expect_equal(sum(count_NA(df_MCAR)), 200) df_MCAR <- delete_MCAR(df_XY_100, p = 0, p_overall = TRUE) expect_equal(sum(count_NA(df_MCAR)), 0) }) test_that("delete_MCAR() works with matrices", { set.seed(123454) ds_m_MCAR <- delete_MCAR(matrix_100_2, p = 0.4) expect_equal(count_NA(ds_m_MCAR), c(40, 40)) ds_m_MCAR <- delete_MCAR(matrix_100_2, p = 0.4, cols_mis = 2) expect_equal(count_NA(ds_m_MCAR), c(0, 40)) ds_m_MCAR <- delete_MCAR(matrix_20_10, p = c(0.1, 0.2, 0.3), cols_mis = 2:4) expect_equal(count_NA(ds_m_MCAR), c(0, 2, 4, 6, rep(0, 6))) }) test_that("delete_MCAR() works with tibbles", { set.seed(123454) tbl_MCAR <- delete_MCAR(tbl_XY_100, p = 0.4) expect_equal(count_NA(tbl_MCAR), c(X = 40, Y = 40)) tbl_MCAR <- delete_MCAR(tbl_XY_100, p = 0.4, cols_mis = 2) expect_equal(count_NA(tbl_MCAR), c(X = 0, Y = 40)) tbl_MCAR <- delete_MCAR(tbl_XYZ_100, p = c(0.1, 0.2, 0.3), cols_mis = 1:3) expect_equal(count_NA(tbl_MCAR), c(X = 10, Y = 20, Z = 30)) })
plot.Intervals_full <- function( x, y = NULL, axes = TRUE, xlab = "", ylab = "", xlim = NULL, ylim = NULL, col = "black", lwd = 1, cex = 1, use_points = TRUE, use_names = TRUE, names_cex = 1, ... ) { if ( any( is.na( x ) ) ) x <- x[ !is.na(x), ] if ( is.null(xlim) ) xlim <- range( [email protected] ) else x <- x[ x[,2] >= xlim[1] & x[,1] <= xlim[2], ] if ( is.null(y) ) y <- .Call( "_plot_overlap", [email protected], closed(x), is( x, "Intervals_full" ) ) if ( is.null(ylim) ) ylim <- c( 0, max( y ) ) plot( 0, 0, type = "n", xlim = xlim, ylim = ylim, axes = FALSE, xlab = xlab, ylab = ylab, ... ) segments( pmax( x[,1], par("usr")[1] ), y, pmin( x[,2], par("usr")[2] ), y, col = col, lwd = lwd ) if ( use_points ) { adjust <- ( x[,1] == x[,2] ) & !closed(x)[,1] closed(x)[ adjust, 2 ] <- FALSE points( [email protected], rep( y, 2 ), pch = 21, cex = cex, col = col, bg = ifelse( closed(x), col, "white" ) ) } if ( use_names && !is.null( rownames(x) ) ) { mids <- ( x[,1] + x[,2] ) / 2 text( mids, y, rownames( x ), pos = 3, offset = .5, cex = names_cex, xpd = NA ) } if ( axes ) axis( 1 ) } plot.Intervals <- function( x, y = NULL, ... ) { plot( as( x, "Intervals_full" ), y, ... ) } setMethod( "plot", c( "Intervals", "missing" ), function( x, y, ... ) plot.Intervals( x, ... ) ) setMethod( "plot", c( "Intervals", "ANY" ), function( x, y, ... ) plot.Intervals( x, y, ... ) ) setMethod( "plot", c( "Intervals_full", "missing" ), function( x, y, ... ) plot.Intervals_full( x, ... ) ) setMethod( "plot", c( "Intervals_full", "ANY" ), function( x, y, ... ) plot.Intervals_full( x, y, ... ) )
IBM_greenLight_criterion <- function(estim.obj, sample1, sample2, comp.dist = NULL, comp.param = NULL, min_size = NULL, alpha = 0.05) { if (is.null(min_size)) { min_sample_size <- min(length(sample1), length(sample2)) } else { min_sample_size <- min_size } length.support <- length(estim.obj[["integ.supp"]]) z <- estim.obj[["integ.supp"]][round(floor(length.support/2))] varCov_estim <- IBM_estimVarCov_gaussVect(x = z, y = z, estim.obj = estim.obj, fixed.p1 = estim.obj[["p.X.fixed"]], known.p = NULL, sample1 = sample1, sample2 = sample2, min_size = min_size, comp.dist = comp.dist, comp.param = comp.param) if (length(estim.obj[["prop.estim"]]) == 2) { inf_bound.p1 <- estim.obj[["prop.estim"]][1] - sqrt(varCov_estim[1,1]/min_sample_size) * stats::qnorm(p=(1-alpha/4), mean=0, sd=1) sup_bound.p1 <- estim.obj[["prop.estim"]][1] + sqrt(varCov_estim[1,1]/min_sample_size) * stats::qnorm(p=(1-alpha/4), mean=0, sd=1) conf_interval.p1 <- c(inf_bound.p1, sup_bound.p1) inf_bound.p2 <- estim.obj[["prop.estim"]][2] - sqrt(varCov_estim[2,2]/min_sample_size) * stats::qnorm(p=(1-alpha/4), mean=0, sd=1) sup_bound.p2 <- estim.obj[["prop.estim"]][2] + sqrt(varCov_estim[2,2]/min_sample_size) * stats::qnorm(p=(1-alpha/4), mean=0, sd=1) conf_interval.p2 <- c(inf_bound.p2, sup_bound.p2) green_light_crit <- max(conf_interval.p1[1],conf_interval.p2[1]) <= 1 } else { inf_bound.p <- estim.obj[["prop.estim"]][1] - sqrt(varCov_estim[1,1]/min_sample_size) * stats::qnorm(p=(1-alpha/4), mean=0, sd=1) sup_bound.p <- estim.obj[["prop.estim"]][1] + sqrt(varCov_estim[1,1]/min_sample_size) * stats::qnorm(p=(1-alpha/4), mean=0, sd=1) conf_interval.p2 <- c(inf_bound.p, sup_bound.p) conf_interval.p1 <- NULL green_light_crit <- conf_interval.p2[1] <= 1 } return( list(green_light = green_light_crit, conf_interval_p1 = conf_interval.p1, conf_interval_p2 = conf_interval.p2) ) }
source("ESEUR_config.r") library("plyr") pal_col=rainbow(2) full_price=function(df) { df=df[order(df$Date), ] lines(df$Date, df$Full.Price, col=df$col[1]) } cc_cpp=read.csv(paste0(ESEUR_dir, "economics/upgrade-languages.csv.xz"), as.is=TRUE) cc_cpp$OS=(cc_cpp$OS == "Windows") cc_cpp=subset(cc_cpp, !is.na(Full.Price)) cc_cpp$Date=as.Date(paste0("01-", cc_cpp$Date), format="%d-%b-%y") cc=subset(cc_cpp, Cpp == 0) no_Watcom=subset(cc_cpp, Firm != "Watcom") Vis_Cpp=subset(cc_cpp, Product == "Visual C++") Bor_Cpp=subset(cc_cpp, Product == "C++") plot(jitter(no_Watcom$Full.Price), no_Watcom$OS, col=point_col, yaxt="n", xlab="Full retail price ($)", ylab="OS") axis(side=2, at=c(0, 1), label=c("MS-DOS", "Windows")) sl=glm(OS ~ Full.Price, data=no_Watcom) lines(no_Watcom$Full.Price, predict(sl), col=pal_col[1]) b_sl=glm(OS ~ Full.Price, data=no_Watcom, family=binomial) x_vals=min(no_Watcom$Full.Price):max(no_Watcom$Full.Price) lines(x_vals, predict(b_sl, newdata=data.frame(Full.Price=x_vals), type="response"), col=pal_col[2]) prod_b_sl=glm(OS ~ Full.Price:Cpp, data=no_Watcom, family=binomial) summary(prod_b_sl) lines(x_vals, predict(prod_b_sl, newdata=data.frame(Full.Price=x_vals, Cpp=1), type="response"), col=pal_col[2])
invent15 <- stats::ts(c(143, 152, 161, 139, 137, 174, 142, 141, 162, 180, 164, 171, 206, 193, 207, 218, 229, 225, 204, 227, 223, 242, 239, 266),f=12,s=1)
elman <- function(x, ...) UseMethod("elman") elman.default <- function(x, y, size=c(5), maxit=100, initFunc="JE_Weights", initFuncParams=c(1.0, -1.0, 0.3, 1.0, 0.5), learnFunc="JE_BP", learnFuncParams=c(0.2), updateFunc="JE_Order", updateFuncParams=c(0.0), shufflePatterns=FALSE, linOut=TRUE, outContext=FALSE, inputsTest=NULL, targetsTest=NULL, ...) { x <- as.matrix(x) y <- as.matrix(y) checkInput(x,y) nInputs <- dim(x)[2L] nOutputs <- dim(y)[2L] snns <- rsnnsObjectFactory(subclass=c("elman"), nInputs=nInputs, maxit=maxit, initFunc=initFunc, initFuncParams=initFuncParams, learnFunc=learnFunc, learnFuncParams=learnFuncParams, updateFunc=updateFunc, updateFuncParams=updateFuncParams, shufflePatterns=shufflePatterns, computeIterativeError=TRUE) snns$archParams <- list(size=size) snns$snnsObject$setUnitDefaults(1,0,1,0,1,"Act_Logistic","Out_Identity") snns$snnsObject$elman_createNet(c(nInputs, size, nOutputs), seq(1,1,length=(length(size)+2)), outContext) if(linOut) { outputActFunc <- "Act_Identity" } else { outputActFunc <- "Act_Logistic" } snns$snnsObject$setTTypeUnitsActFunc("UNIT_INPUT", "Act_Identity") snns$snnsObject$setTTypeUnitsActFunc("UNIT_OUTPUT", outputActFunc) snns <- train(snns, inputsTrain=x, targetsTrain=y, inputsTest=inputsTest, targetsTest=targetsTest) snns }
rga.environment <- new.env() assign("kMaxPages", 100, envir = rga.environment) assign("kMaxDefaultRows", 10000, envir = rga.environment)
expected <- eval(parse(text="c(TRUE, TRUE, TRUE)")); test(id=0, code={ argv <- eval(parse(text="list(c(\"a\", \"b\", \"c\"))")); do.call(`nzchar`, argv); }, o=expected);
context("Calc longterm mean") test_that("`calc_longterm_mean()` works", { skip_on_cran() skip_on_ci() data <- calc_longterm_mean(station_number = "08NM116", start_year = 1980) expect_true(is.data.frame(data) & ncol(data) == 2 & all(c("LTMAD") %in% colnames(data))) }) test_that("outputs data for two stations", { skip_on_cran() skip_on_ci() data <- calc_longterm_mean(station_number = c("08NM116","08HB048"), start_year = 1980) expect_true(length(unique(data$STATION_NUMBER)) & ncol(data) == 2 & all(c("LTMAD") %in% colnames(data))) }) test_that("percent mad is added correctly", { skip_on_cran() skip_on_ci() data <- calc_longterm_mean(station_number = "08NM116", start_year = 1980, percent_MAD = 25) expect_true(length(unique(data$STATION_NUMBER)) & ncol(data) == 3 & all(c("LTMAD","25%MAD") %in% colnames(data))) }) test_that("it is calculated correctly", { skip_on_cran() skip_on_ci() flow_data <- add_date_variables(station_number = "08NM116") flow_data <- dplyr::filter(flow_data, WaterYear %in% 1980:1990) longterm_mean <- round(mean(flow_data$Value),5) ptile_mean <- round(longterm_mean * .25,5) data <- calc_longterm_mean(data = flow_data, start_year = 1980, end_year = 1990, percent_MAD = 25) expect_true(longterm_mean == round(data[[1,2]],5)) expect_true(ptile_mean == round(data[[1,3]],5)) })
get_collection <- function(x, ...) { UseMethod("get_collection", x) } get_collection.default <- function(x, ...) { get_network_by_id(x, force_collection = TRUE, ...) } get_collection.mgSearchDatasets <- function(x, ...) { net_ids <- unique(unlist(purrr::map(x$networks, "id"))) get_collection.default(net_ids, ...) } get_collection.mgSearchNetworks <- function(x, ...) { get_collection.default(x$id, ...) } get_collection.mgSearchReferences <- function(x, ...) { net_ids <- unique(unlist(purrr::map(x$networks, "id"))) get_collection.default(net_ids, ...) } get_collection.mgSearchNodes <- function(x, ...) { net_ids <- unique(x$network_id) get_collection.default(net_ids, ...) } get_collection.mgSearchTaxonomy <- function(x, ...) { net_ids <- unique(x$network_id) get_collection.default(net_ids, ...) } get_collection.mgSearchInteractions <- function(x, ...) { net_ids <- unique(x$network_id) get_collection.default(net_ids, ...) }
morphomapAlignment<-function(mesh,set,side=c("left","right"), param1=4,iter1=2000,iter2=2000, iter3=2000,from1=180,to1=360, from2=-5,to2=5,from3=-5,to3=5, tol=0.5){ morphomapAlOne<-function(mesh,set,iter,from,to,tol){ pos_1<-aro.clo.points(t(mesh$vb)[,-4],set)$position set_1<-t(mesh$vb)[pos_1, -4] sur_2 <- morphomapAlMesh(rbind(set_1[2, ], colMeans(set_1[c(1,2),]),set_1[1,]),mesh) set_2<-t(sur_2$mesh$vb)[pos_1, -4] sur_2<-sur_2$mesh degrees <- seq(from, to, length = iter) radians <- (degrees * pi)/180 for (i in 1:length(degrees)) { set_3_t <- rotaxis3d(set_2, set_2[2,], c(500,0,0), radians[i]) diff_align_z <- (set_3_t[3, 3] - set_3_t[4, 3]) if (abs(diff_align_z) <= tol) { break } } sur_3 <- rotaxis3d(sur_2, set_2[2,], c(500,0,0), radians[i]) set_3 <- t(sur_3$vb)[pos_1, -4] if((set_3[3,3] >0 & set_3[4,3] >0)==TRUE){ sur_3 <- rotaxis3d(sur_3, set_3[2,], c(500,0,0), (180 * pi)/180) set_3 <- t(sur_3$vb)[pos_1, -4] } dist_1_z<-colMeans(set_3[c(3,4),])[3] dist_2_z<-set_3[1,3] sur_4<-sur_3 sur_4$vb[3,]<-sur_4$vb[3,]+abs(dist_1_z) set_4 <- t(sur_4$vb)[pos_1, -4] out<-list("sur"=sur_4,"coo"=set_4) } morphomapLanDia<-function(sur,side=c("left","right"),param1=4){ sur<-morphomapSegm(sur)$external xaxis<-as.vector(range(sur$vb[1,])) seqs<-seq(xaxis[1],xaxis[2],length.out = 20)[c(4,15)] p1 <- c(seqs[1], 0, 0) p2 <- c(seqs[1], 100, 0) p3 <- c(seqs[1], 0, 100) normal <- crossProduct(p2 - p1, p3 - p1) zeroPro <- points2plane(rep(0,3),p1,normal) sig <- sign(crossprod(-zeroPro,normal)) d <- sig*norm(zeroPro,"2") sect_t1<-meshPlaneIntersect(sur, p1, p2, p3) sect_t2 <- morphomapSort(sect_t1[,c(2,3)]) sect_tp<-cbind(sect_t1[,1],sect_t2) points_1<-morphomapRegradius(sect_tp[,c(2,3)],n = 4,center=colMeans(sect_tp[,c(2,3)])) p1 <- c(seqs[2], 0, 0) p2 <- c(seqs[2], 100, 0) p3 <- c(seqs[2], 0, 100) normal <- crossProduct(p2 - p1, p3 - p1) zeroPro <- points2plane(rep(0,3),p1,normal) sig <- sign(crossprod(-zeroPro,normal)) d <- sig*norm(zeroPro,"2") sect_t1<-meshPlaneIntersect(sur, p1, p2, p3) sect_t2 <- morphomapSort(sect_t1[,c(2,3)]) sect_td<-cbind(sect_t1[,1],sect_t2) points_2<-morphomapRegradius(sect_td[,c(2,3)],n = 4,center=colMeans(sect_td[,c(2,3)])) if(side=="right"){ sets<-rbind(sect_td[points_2[c(1,2)],], sect_tp[points_1[c(1)],]) } if(side=="left"){ sets<-rbind(sect_td[points_2[c(3,2)],], sect_tp[points_1[c(3)],]) } return(sets) } morphomapAlMesh<-function(set,mesh){ eucl<-dist(set,method="euclidean") newP1<-c(0,0,0) newP2<-c(eucl[1],0,0) newP3<-c(((eucl[1]^2)+(eucl[2]^2)-(eucl[3]^2))/(2*eucl[1]), sqrt((eucl[2]^2)-(((eucl[1]^2)+(eucl[2]^2)- (eucl[3]^2))/(2*eucl[1]))^2), 0) newP3[which(is.na(newP3))]<-0 tar<-rbind(newP1,newP2,newP3) rot_mesh<-rotmesh.onto(mesh,as.matrix(set),as.matrix(tar)) return(rot_mesh) } morphomapAlTwo<-function(mesh,set,iter,from,to, tol, iter2, from2, to2){ pos<-aro.clo.points(vert2points(mesh),set)$position set_2<-set for(j in 1:iter2){ if((j>=2)==TRUE){from<-from2} if((j>=2)==TRUE){to<-to2} if((j>=2)==TRUE){tol<-tol} degrees <- seq(from, to, length = iter) degrees<-c(0,degrees) radians <- (degrees * pi)/180 for (i in 1:length(degrees)) { set_2_t <- rotaxis3d(set_2, set_2[2,], c(0,500,500), radians[i]) diff_align_z <- set_2_t[2,3]-set_2_t[5, 3] if (abs(diff_align_z) <= tol) { break } } sur_3<-rotaxis3d(mesh, set_2[2,], c(0,500,500), radians[i]) set_3<-t(sur_3$vb)[pos, -4] sur_4<-sur_3 set_4<-t(sur_4$vb)[pos, -4] degrees <- seq(from, to, length = iter) degrees<-c(0,degrees) radians <- (degrees * pi)/180 for (i in 1:length(degrees)) { set_4_t <- rotaxis3d(set_4, set_4[2,], c(0,0,500), radians[i]) diff_align_z <- set_4_t[2,2]-set_4_t[6, 2] if (abs(diff_align_z) <= tol) { break } } sur_5<-rotaxis3d(sur_4, set_4[2,], c(0,0,500), radians[i]) set_5<-t(sur_5$vb)[pos, -4] degrees <- seq(from, to, length = iter) degrees<-c(0,degrees) radians <- (degrees * pi)/180 for (i in 1:length(degrees)) { set_5_t <- rotaxis3d(set_5, set_5[2,], c(0,500,0), radians[i]) diff_align_z <- set_5_t[5,3]-set_5_t[7,3] if (abs(diff_align_z) <= 0.05) { break } } sur_6<-rotaxis3d(sur_5, set_5[2,], c(0,500,0), radians[i]) set_6<-t(sur_6$vb)[pos, -4] degrees <- seq(from, to, length = iter) degrees<-c(0,degrees) radians <- (degrees * pi)/180 for (i in 1:length(degrees)) { set_6_t <- rotaxis3d(set_6, set_6[2,], c(500,0,0), radians[i]) diff_align_z <- set_6_t[6,2]-set_6_t[2,2] if (abs(diff_align_z) <= 0.05) { break } } sur_7<-rotaxis3d(sur_6, set_6[2,], c(500,0,0), radians[i]) set_7<-t(sur_7$vb)[pos, -4] sur_8<-sur_7 sur_8$vb[1,]<-sur_7$vb[1,]-set_7[2,1] sur_8$vb[2,]<-sur_7$vb[2,]-set_7[2,2] sur_8$vb[3,]<-sur_7$vb[3,]-set_7[2,3] set_8<-t(sur_8$vb)[pos, -4] sur_9<-sur_8 sur_9$vb[1,]<-sur_8$vb[1,]-mean(c(set_8[9,1],set_8[10,1])) set_9<-t(sur_9$vb)[pos,-4] ax1<-(abs(set_9[3,3]-set_9[4,3])) ax2<-(abs(set_9[7,3]-set_9[5,3])) ax3<-(abs(set_9[2,2]-set_9[6,2])) if((ax1<=tol & ax2 <= tol &ax3<= tol)==TRUE){ break } if((ax1<=tol & ax2 <= tol &ax3<= tol)==FALSE){ mesh<-sur_9 set_2<-set_9 } } mech_lengh<-set_9[8,1]-mean(c(set_9[c(9,10),1])) sur_9<-rotaxis3d(sur_9,c(0,0,0),c(0,500,0),(-90 * pi)/180) sur_9 <- rotaxis3d(sur_9, c(0,0,0), c(0,0,500), (270 * pi)/180) set_9 <- t(sur_9$vb)[pos, -4] out<-list("sur"=sur_9,"coo"=set_9,"mech_length"=mech_lengh) return(out) } set0<-set set1<-morphomapAlOne(mesh,set0[c(1,4,2,3),],iter=iter1,from=from1,to=to1,tol=tol) set2<-morphomapLanDia(set1$sur,side,param1=param1) posold<-aro.clo.points(vert2points(mesh),set0[c(1,4,2,3),])$position set_new<-vert2points(set1$sur)[posold,] posold1<-aro.clo.points(vert2points(mesh),set0[c(5:7),])$position set_new1<-vert2points(set1$sur)[posold1,] set_new1<-rbind(set2,set_new1) setf<-morphomapAlTwo(set1$sur,set=rbind(set_new,set_new1), iter=iter2,from=from2,to=to2,tol=tol,iter2=iter3, from2=from3,to2=to3) out<-list("sur"=setf$sur,"mech_length"=setf$mech_length) return(out) }
f_lta_nstarts <- function(S, counts, D, nstarts, tol, maxiter, pdGH) { out <- f_lta(S, counts, D, tol, maxiter, pdGH) if(nstarts > 1){ for(i in 2:nstarts){ out1 <- f_lta(S, counts, D, tol, maxiter, pdGH) if(out1$LL > out$LL) out <- out1 } } out }
erho.bw.p <- function(p,c1) return(chi.int.p(p,2,c1)/2-chi.int.p(p,4,c1)/(2*c1^2)+ 2*chi.int(p,4,c1)/(2*c1^3)+chi.int.p(p,6,c1)/(6*c1^4)- 4*chi.int(p,6,c1)/(6*c1^5)+c1^2*chi.int2.p(p,0,c1)/6 +2*c1*chi.int2(p,0,c1)/6)
samp.dist.snap<-function(parent = NULL, parent2 = NULL, biv.parent = NULL, stat = mean,stat2 = NULL, stat3 = NULL, stat4 = NULL, s.size=c(1,3,6,10,20,50), s.size2 = NULL, R=1000, func = NULL, xlab = expression(bar(x)),show.SE = TRUE, fits = NULL, show.fits = TRUE, xlim = NULL, ylim = NULL,...){ old.par <- par(no.readonly = TRUE) if(!is.null(s.size2)&(length(s.size)!=length(s.size2))) stop("length of s.size must equal length of size2") L <- length(s.size) if(L>12) {stop("L must be <= 12")} else if(L==1) {par(mfrow=c(1,1),mar=c(5,4,1,1.5))} else if(L==2) {par(mfrow=c(2,1),mar=c(5,4,1,1.5))} else if(L==3) {par(mfrow=c(1,3),mar=c(5,4,1.5))} else if(L==4) {par(mfrow=c(2,2),mar=c(5,4,1,1.5))} else if(L==5|L==6) {par(mfrow=c(3,2),mar=c(5,4,2,1.5))} else if(L==7|L==8|L==9) {par(mfrow=c(3,3),mar=c(5,4,2,1.0))}else if(L==10|L==11|L==12) {par(mfrow=c(4,3),mar=c(5,4,2,1.0))} if(L>12)stop("s.size vectors must have length <= 12", call. = FALSE) for(i in 1:L){ if(is.null(xlim)&is.null(ylim)){ samp.dist(parent = parent, parent2 = parent2, biv.parent = biv.parent, stat = stat, stat2 = stat2, stat3 = stat3, stat4 = stat4, s.size = s.size[i], s.size2 = s.size2[i], func = func, R = R, xlab = xlab, show.SE = show.SE, anim = FALSE, ...)} if(!is.null(xlim)&is.null(ylim)){ samp.dist(parent = parent, parent2 = parent2, biv.parent = biv.parent, stat = stat, stat2 = stat2, stat3 = stat3, stat4 = stat4, s.size = s.size[i], s.size2 = s.size2[i], func = func, R = R, xlab = xlab, show.SE = show.SE, anim = FALSE, xlim = xlim, ...)} if(!is.null(xlim)&!is.null(ylim)){ samp.dist(parent = parent, parent2 = parent2, biv.parent = biv.parent, stat = stat, stat2 = stat2, stat3 = stat3, stat4 = stat4, s.size = s.size[i], s.size2 = s.size2[i], func = func, R = R, xlab = xlab, show.SE = show.SE, anim = FALSE, xlim = xlim, ylim = ylim,...)} if(show.fits == TRUE){ if(!is.null(fits))fits(s.size[i], s.size2[i])} } on.exit(par(old.par)) } samp.dist.snap.tck1<-function(statc = "mean"){ local({ have_ttk <- as.character(tcl("info", "tclversion")) >= "8.5" if(have_ttk) { tkbutton <- ttkbutton tkcheckbutton <- ttkcheckbutton tkentry <- ttkentry tkframe <- ttkframe tklabel <- ttklabel tkradiobutton <- ttkradiobutton } tclServiceMode(FALSE) dialog.sd <- function(){ tt <- tktoplevel() tkwm.title(tt,"Sampling distributions") biv.parent.entry <- tkentry(tt, textvariable=Biv.parent, width = 16) parent.entry1 <- tkentry(tt, textvariable=Parent1, width = 16) parent.entry2 <- tkentry(tt, textvariable=Parent2, width = 16) s.size.entry<-tkentry(tt, textvariable=SS, width = 16) s.size.entry2<-tkentry(tt, textvariable=SS2, width = 16) stat.entry1<-tkentry(tt, textvariable=Stat1, width = 16) stat.entry2<-tkentry(tt, textvariable=Stat2, width = 16) stat.entry3<-tkentry(tt, textvariable=Stat3, width = 16) stat.entry4<-tkentry(tt, textvariable=Stat4, width = 16) func.entry<-tkentry(tt, textvariable=Func, width = 16) R.entry<-tkentry(tt, textvariable=Rep, width = 16) x.entry<-tkentry(tt, textvariable=Xlab, width = 16) fits.entry <- tkentry(tt, textvariable=fits, width = 16) x.lim.entry<-tkentry(tt, textvariable=xlim, width = 16) y.lim.entry<-tkentry(tt, textvariable=ylim, width = 16) done <- tclVar(0) show.SE<-tclVar(1) show.fits <- tclVar(1) reset <- function() { tclvalue(Biv.parent)<-"NULL" tclvalue(Parent1)<-"NULL" tclvalue(Parent2)<-"NULL" tclvalue(SS)<-"0" tclvalue(SS2)<-"0" tclvalue(Stat1)<-"NULL" tclvalue(Stat2)<-"NULL" tclvalue(Stat3)<-"NULL" tclvalue(Stat4)<-"NULL" tclvalue(Func)<-"NULL" tclvalue(Rep)<-"NULL" tclvalue(Xlab)<-"NULL" tclvalue(xlim)<-"NULL" tclvalue(ylim)<-"NULL" tclvalue(fits)<-"NULL" } reset.but <- tkbutton(tt, text="Reset", command=reset) submit.but <- tkbutton(tt, text="Submit",command=function()tclvalue(done)<-1) tw <- function(){ tkdestroy(tt) samp.dist.snap.tck2(statc = statc) } add.button <- tkbutton(tt, text="Add 2nd sample",command=tw) build <- function() { parent <-parse(text=tclvalue(Parent1))[[1]] s.size <-parse(text=tclvalue(SS))[[1]] stat <-parse(text=tclvalue(Stat1))[[1]] R <-tclvalue(Rep) x<-parse(text=tclvalue(Xlab))[[1]] R <-tclvalue(Rep) se <- as.logical(tclObj(show.SE)) xlim<-parse(text=tclvalue(xlim))[[1]] ylim<-parse(text=tclvalue(ylim))[[1]] fits <- parse(text=tclvalue(fits))[[1]] show.fits <- as.logical(tclObj(show.fits)) substitute(samp.dist.snap(parent = parent, s.size = s.size, stat = stat, R = as.numeric(R), xlab = x,show.SE = se, xlim = xlim, ylim = ylim, fits = fits, show.fits = show.fits)) } se.cbut <- tkcheckbutton(tt, text="Show SE", variable=show.SE) fits.cbut <- tkcheckbutton(tt, text="Show fits", variable=show.fits) tkgrid(tklabel(tt,text="Sampling distribution snapshots"), columnspan = 2) tkgrid(tklabel(tt,text="")) tkgrid(tklabel(tt,text="Parent",font=c("Helvetica","9","bold"), width = 12),parent.entry1) tkgrid(tklabel(tt,text="Sample sizes ",font=c("Helvetica","9","bold"), width = 12),s.size.entry) tkgrid(tklabel(tt,text="Stat",font=c("Helvetica","9","bold"), width = 12),stat.entry1) tkgrid(tklabel(tt,text="Iterations", width = 12), R.entry) tkgrid(tklabel(tt,text="X-axis label", width = 12), x.entry) tkgrid(tklabel(tt,text="Xlim", width = 12), x.lim.entry) tkgrid(tklabel(tt,text="Ylim", width = 12), y.lim.entry) tkgrid(tklabel(tt,text=""), columnspan = 2) tkgrid(se.cbut, sticky = "w") tkgrid(fits.cbut,sticky="w") tkgrid(tklabel(tt,text="Fit(s)"), fits.entry, sticky = "w") tkgrid(tklabel(tt,text=""), columnspan = 2) tkgrid(add.button, columnspan = 2) tkgrid(submit.but, reset.but) tkbind(tt, "<Destroy>", function()tclvalue(done)<-2) tkwait.variable(done) if(tclvalue(done)=="2") stop("aborted") tkdestroy(tt) cmd <- build() eval.parent(cmd) tclServiceMode(TRUE) } if(statc == "mean"){ Biv.parent<-tclVar("NULL") Parent1<-tclVar("expression(rexp(s.size))") Parent2<-tclVar("NULL") SS<-tclVar("c(1,3,7,10,20,50)") SS2<-tclVar("NULL") Stat1<-tclVar("mean") Stat2<-tclVar("NULL") Stat3<-tclVar("NULL") Stat4<-tclVar("NULL") Func<-tclVar("NULL") Rep<-tclVar("10000") Xlab<- tclVar("expression(bar(x))") ylim <- tclVar("NULL") xlim <- tclVar("NULL") fits <- tclVar("NULL") } if(statc == "median"){ Biv.parent<-tclVar("NULL") Parent1<-tclVar("expression(rexp(s.size))") Parent2<-tclVar("NULL") SS<-tclVar("c(1,3,7,10,20,50)") SS2<-tclVar("NULL") Stat1<-tclVar("median") Stat2<-tclVar("NULL") Stat3<-tclVar("NULL") Stat4<-tclVar("NULL") Func<-tclVar("NULL") Rep<-tclVar("1000") Xlab<- tclVar("expression(Median)") ylim <- tclVar("NULL") xlim <- tclVar("NULL") fits <- tclVar("NULL") } if(statc == "trimmed mean"){ Biv.parent<-tclVar("NULL") Parent1<-tclVar("expression(rexp(s.size))") Parent2<-tclVar("NULL") SS<-tclVar("c(7,10,20,50)") SS2<-tclVar("NULL") tr.mean <- function(x)mean(x,trim = 0.2) Stat1<-tclVar("tr.mean") Stat2<-tclVar("NULL") Stat3<-tclVar("NULL") Stat4<-tclVar("NULL") Func<-tclVar("NULL") Rep<-tclVar("1000") Xlab<- tclVar("expression(Trimmed.mean)") ylim <- tclVar("NULL") xlim <- tclVar("NULL") fits <- tclVar("NULL")} if(statc == "Winsorized mean"){ Biv.parent<-tclVar("NULL") Parent1<-tclVar("expression(rexp(s.size))") Parent2<-tclVar("NULL") SS<-tclVar("c(7,10,20,50)") SS2<-tclVar("NULL") win.mean <- function(x)mean(win(x)) Stat1<-tclVar("win.mean") Stat2<-tclVar("NULL") Stat3<-tclVar("NULL") Stat4<-tclVar("NULL") Func<-tclVar("NULL") Rep<-tclVar("1000") Xlab<- tclVar("expression(Winsorized.mean)") ylim <- tclVar("NULL") xlim <- tclVar("NULL") fits <- tclVar("NULL")} if(statc == "Huber estimator"){ Biv.parent<-tclVar("NULL") Parent1<-tclVar("expression(rexp(s.size))") Parent2<-tclVar("NULL") SS<-tclVar("c(7,10,20,50)") SS2<-tclVar("NULL") Stat1<-tclVar("huber.mu") Stat2<-tclVar("NULL") Stat3<-tclVar("NULL") Stat4<-tclVar("NULL") Func<-tclVar("NULL") Rep<-tclVar("1000") Xlab<- tclVar("expression(Huber.estimator)") ylim <- tclVar("NULL") xlim <- tclVar("NULL") fits <- tclVar("NULL")} if(statc == "H-L estimator"){ Biv.parent<-tclVar("NULL") Parent1<-tclVar("expression(rexp(s.size))") Parent2<-tclVar("NULL") SS<-tclVar("c(7,10,20,50)") SS2<-tclVar("NULL") Stat1<-tclVar("HL.mean") Stat2<-tclVar("NULL") Stat3<-tclVar("NULL") Stat4<-tclVar("NULL") Func<-tclVar("NULL") Rep<-tclVar("1000") Xlab<- tclVar("expression(H-L.estimator)") ylim <- tclVar("NULL") xlim <- tclVar("NULL") fits <- tclVar("NULL")} if(statc == "sd"){ Biv.parent<-tclVar("NULL") Parent1<-tclVar("expression(rnorm(s.size))") Parent2<-tclVar("NULL") SS<-tclVar("c(3,7,10,20)") SS2<-tclVar("NULL") Stat1<-tclVar("sd") Stat2<-tclVar("NULL") Stat3<-tclVar("NULL") Stat4<-tclVar("NULL") Func<-tclVar("NULL") Rep<-tclVar("1000") Xlab<- tclVar("expression(S)") ylim <- tclVar("NULL") xlim <- tclVar("NULL") fits <- tclVar("NULL") } if(statc == "var"){ Biv.parent<-tclVar("NULL") Parent1<-tclVar("expression(rnorm(s.size))") Parent2<-tclVar("NULL") SS<-tclVar("c(3,7,10,20)") SS2<-tclVar("NULL") Stat1<-tclVar("var") Stat2<-tclVar("NULL") Stat3<-tclVar("NULL") Stat4<-tclVar("NULL") Func<-tclVar("NULL") Rep<-tclVar("1000") Xlab<- tclVar("expression(S^2)") ylim <- tclVar("NULL") xlim <- tclVar("NULL") fits <- tclVar("NULL") } if(statc == "MAD"){ Biv.parent<-tclVar("NULL") Parent1<-tclVar("expression(rnorm(s.size))") Parent2<-tclVar("NULL") SS<-tclVar("c(7,10,20,50)") SS2<-tclVar("NULL") Stat1<-tclVar("mad") Stat2<-tclVar("NULL") Stat3<-tclVar("NULL") Stat4<-tclVar("NULL") Func<-tclVar("NULL") Rep<-tclVar("1000") Xlab<- tclVar("expression(MAD)") ylim <- tclVar("NULL") xlim <- tclVar("NULL") fits <- tclVar("NULL") } if(statc == "IQR"){ Biv.parent<-tclVar("NULL") Parent1<-tclVar("expression(rnorm(s.size))") Parent2<-tclVar("NULL") SS<-tclVar("c(7,10,20,50)") SS2<-tclVar("NULL") Stat1<-tclVar("IQR") Stat2<-tclVar("NULL") Stat3<-tclVar("NULL") Stat4<-tclVar("NULL") Func<-tclVar("NULL") Rep<-tclVar("1000") Xlab<- tclVar("expression(IQR)") ylim <- tclVar("NULL") xlim <- tclVar("NULL") fits <- tclVar("NULL") } dialog.sd() }) } samp.dist.snap.tck2<-function (statc = "mean") { local({ have_ttk <- as.character(tcl("info", "tclversion")) >= "8.5" if (have_ttk) { tkbutton <- ttkbutton tkcheckbutton <- ttkcheckbutton tkentry <- ttkentry tkframe <- ttkframe tklabel <- ttklabel tkradiobutton <- ttkradiobutton } tclServiceMode(FALSE) dialog.sd <- function() { tt <- tktoplevel() tkwm.title(tt, "Sampling distributions") biv.parent.entry <- tkentry(tt, textvariable = Biv.parent, width = 16) parent.entry1 <- tkentry(tt, textvariable = Parent1, width = 16) parent.entry2 <- tkentry(tt, textvariable = Parent2, width = 16) s.size.entry <- tkentry(tt, textvariable = SS, width = 16) s.size.entry2 <- tkentry(tt, textvariable = SS2, width = 16) stat.entry1 <- tkentry(tt, textvariable = Stat1, width = 16) stat.entry2 <- tkentry(tt, textvariable = Stat2, width = 16) stat.entry3 <- tkentry(tt, textvariable = Stat3, width = 16) stat.entry4 <- tkentry(tt, textvariable = Stat4, width = 16) func.entry <- tkentry(tt, textvariable = Func, width = 16) R.entry <- tkentry(tt, textvariable = Rep, width = 16) x.entry <- tkentry(tt, textvariable = Xlab, width = 16) fits.entry <- tkentry(tt, textvariable = fits, width = 16) x.lim.entry <- tkentry(tt, textvariable = xlim, width = 16) y.lim.entry <- tkentry(tt, textvariable = ylim, width = 16) done <- tclVar(0) show.SE <- tclVar(1) show.fits <- tclVar(1) reset <- function() { tclvalue(Biv.parent) <- "NULL" tclvalue(Parent1) <- "NULL" tclvalue(Parent2) <- "NULL" tclvalue(SS) <- "0" tclvalue(SS2) <- "0" tclvalue(Stat1) <- "NULL" tclvalue(Stat2) <- "NULL" tclvalue(Stat3) <- "NULL" tclvalue(Stat4) <- "NULL" tclvalue(Func) <- "NULL" tclvalue(Rep) <- "NULL" tclvalue(Xlab) <- "NULL" tclvalue(xlim) <- "NULL" tclvalue(ylim) <- "NULL" tclvalue(fits) <- "NULL" } reset.but <- tkbutton(tt, text = "Reset", command = reset) submit.but <- tkbutton(tt, text = "Submit", command = function() tclvalue(done) <- 1) build <- function() { biv.parent <- parse(text = tclvalue(Biv.parent))[[1]] parent <- parse(text = tclvalue(Parent1))[[1]] parent2 <- parse(text = tclvalue(Parent2))[[1]] s.size <- parse(text = tclvalue(SS))[[1]] stat <- parse(text = tclvalue(Stat1))[[1]] s.size2 <- parse(text = tclvalue(SS2))[[1]] stat2 <- parse(text = tclvalue(Stat2))[[1]] stat3 <- parse(text = tclvalue(Stat3))[[1]] stat4 <- parse(text = tclvalue(Stat4))[[1]] R <- tclvalue(Rep) x <- parse(text = tclvalue(Xlab))[[1]] func <- parse(text = tclvalue(Func))[[1]] se <- as.logical(tclObj(show.SE)) xlim <- parse(text = tclvalue(xlim))[[1]] ylim <- parse(text = tclvalue(ylim))[[1]] fits <- parse(text = tclvalue(fits))[[1]] show.fits <- as.logical(tclObj(show.fits)) substitute(samp.dist.snap(parent = parent, parent2 = parent2, biv.parent = biv.parent, s.size = s.size, s.size2 = s.size2, stat = stat, func = func, stat2 = stat2, stat3 = stat3, stat4 = stat4, R = as.numeric(R), xlab = x, show.SE = se, xlim = xlim, ylim = ylim, show.fits = show.fits, fits = fits)) } se.cbut <- tkcheckbutton(tt, text = "Show SE", variable = show.SE) fits.cbut <- tkcheckbutton(tt, text = "Show fits", variable = show.fits) tkgrid(tklabel(tt, text = "Sampling distribution snapshots"), columnspan = 4) tkgrid(tklabel(tt, text = "")) tkgrid(tklabel(tt, text = ""), tklabel(tt, text = "Bivariate parent"), biv.parent.entry) tkgrid(tklabel(tt, text = "Parent 1", font = c("Helvetica", "9", "bold")), parent.entry1, tklabel(tt, text = "Parent 2"), parent.entry2) tkgrid(tklabel(tt, text = "Sample sizes ", font = c("Helvetica", "9", "bold")), s.size.entry, tklabel(tt, text = "Sample sizes 2"), s.size.entry2) tkgrid(tklabel(tt, text = "Stat", font = c("Helvetica", "9", "bold")), stat.entry1, tklabel(tt, text = "Stat 2"), stat.entry2) tkgrid(tklabel(tt, text = "Stat 3"), stat.entry3, tklabel(tt, text = "Stat 4"), stat.entry4) tkgrid(tklabel(tt, text = "")) tkgrid(tklabel(tt, text = ""), tklabel(tt, text = "Iterations"), R.entry) tkgrid(tklabel(tt, text = ""), tklabel(tt, text = "Function"), func.entry) tkgrid(tklabel(tt, text = ""), tklabel(tt, text = "X-axis label"), x.entry) tkgrid(tklabel(tt, text = ""), tklabel(tt, text = "Xlim"), x.lim.entry) tkgrid(tklabel(tt, text = ""), tklabel(tt, text = "Ylim"), y.lim.entry) tkgrid(tklabel(tt, text = "")) tkgrid(se.cbut) tkgrid(fits.cbut, tklabel(tt, text = "Fit(s)"), fits.entry) tkgrid(tklabel(tt, text = "")) tkgrid(tklabel(tt, text = ""), submit.but, reset.but) tkgrid(tklabel(tt, text = "")) tkbind(tt, "<Destroy>", function() tclvalue(done) <- 2) tkwait.variable(done) if (tclvalue(done) == "2") stop("aborted") tkdestroy(tt) cmd <- build() eval.parent(cmd) tclServiceMode(TRUE) } if (statc == "custom") { Biv.parent <- tclVar("NULL") Parent1 <- tclVar("NULL") Parent2 <- tclVar("NULL") SS <- tclVar("NULL") SS2 <- tclVar("NULL") Stat1 <- tclVar("mean") Stat2 <- tclVar("NULL") Stat3 <- tclVar("NULL") Stat4 <- tclVar("NULL") Func <- tclVar("NULL") Rep <- tclVar("NULL") Xlab <- tclVar("NULL") ylim <- tclVar("NULL") xlim <- tclVar("NULL") fits <- tclVar("NULL") } if (statc == "mean") { Biv.parent <- tclVar("NULL") Parent1 <- tclVar("expression(rexp(s.size))") Parent2 <- tclVar("NULL") SS <- tclVar("c(1,3,7,10,20,50)") SS2 <- tclVar("NULL") Stat1 <- tclVar("mean") Stat2 <- tclVar("NULL") Stat3 <- tclVar("NULL") Stat4 <- tclVar("NULL") Func <- tclVar("NULL") Rep <- tclVar("10000") Xlab <- tclVar("expression(bar(x))") ylim <- tclVar("NULL") xlim <- tclVar("NULL") fits <- tclVar("NULL") } if (statc == "median") { Biv.parent <- tclVar("NULL") Parent1 <- tclVar("expression(rexp(s.size))") Parent2 <- tclVar("NULL") SS <- tclVar("c(1,3,7,10,20,50)") SS2 <- tclVar("NULL") Stat1 <- tclVar("median") Stat2 <- tclVar("NULL") Stat3 <- tclVar("NULL") Stat4 <- tclVar("NULL") Func <- tclVar("NULL") Rep <- tclVar("10000") Xlab <- tclVar("expression(Median)") ylim <- tclVar("NULL") xlim <- tclVar("NULL") fits <- tclVar("NULL") } if (statc == "trimmed mean") { Biv.parent <- tclVar("NULL") Parent1 <- tclVar("expression(rexp(s.size))") Parent2 <- tclVar("NULL") SS <- tclVar("c(7,10,20,50)") SS2 <- tclVar("NULL") tr.mean <- function(x) mean(x, trim = 0.2) Stat1 <- tclVar("tr.mean") Stat2 <- tclVar("NULL") Stat3 <- tclVar("NULL") Stat4 <- tclVar("NULL") Func <- tclVar("NULL") Rep <- tclVar("1000") Xlab <- tclVar("expression(Trimmed.mean)") ylim <- tclVar("NULL") xlim <- tclVar("NULL") fits <- tclVar("NULL") } if (statc == "Winsorized mean") { Biv.parent <- tclVar("NULL") Parent1 <- tclVar("expression(rexp(s.size))") Parent2 <- tclVar("NULL") SS <- tclVar(("c(7,10,20,50)")) SS2 <- tclVar("NULL") win.mean <- function(x) mean(win(x)) Stat1 <- tclVar("win.mean") Stat2 <- tclVar("NULL") Stat3 <- tclVar("NULL") Stat4 <- tclVar("NULL") Func <- tclVar("NULL") Rep <- tclVar("1000") Xlab <- tclVar("expression(Winsorized.mean)") ylim <- tclVar("NULL") xlim <- tclVar("NULL") fits <- tclVar("NULL") } if (statc == "Huberestimator") { Biv.parent <- tclVar("NULL") Parent1 <- tclVar("expression(rexp(s.size))") Parent2 <- tclVar("NULL") SS <- tclVar(("c(7,10,20,50)")) SS2 <- tclVar("NULL") Stat1 <- tclVar("huber.mu") Stat2 <- tclVar("NULL") Stat3 <- tclVar("NULL") Stat4 <- tclVar("NULL") Func <- tclVar("NULL") Rep <- tclVar("1000") Xlab <- tclVar("expression(Huber.estimator)") ylim <- tclVar("NULL") xlim <- tclVar("NULL") fits <- tclVar("NULL") } if (statc == "H-L estimator") { Biv.parent <- tclVar("NULL") Parent1 <- tclVar("expression(rexp(s.size))") Parent2 <- tclVar("NULL") SS <- tclVar(("c(7,10,20,50)")) SS2 <- tclVar("NULL") Stat1 <- tclVar("HL.mean") Stat2 <- tclVar("NULL") Stat3 <- tclVar("NULL") Stat4 <- tclVar("NULL") Func <- tclVar("NULL") Rep <- tclVar("1000") Xlab <- tclVar("expression(H-L.estimator)") ylim <- tclVar("NULL") xlim <- tclVar("NULL") fits <- tclVar("NULL") } if (statc == "sd") { Biv.parent <- tclVar("NULL") Parent1 <- tclVar("expression(rnorm(s.size))") Parent2 <- tclVar("NULL") SS <- tclVar("c(3,7,10,20)") SS2 <- tclVar("NULL") Stat1 <- tclVar("sd") Stat2 <- tclVar("NULL") Stat3 <- tclVar("NULL") Stat4 <- tclVar("NULL") Func <- tclVar("NULL") Rep <- tclVar("1000") Xlab <- tclVar("expression(S)") ylim <- tclVar("NULL") xlim <- tclVar("NULL") fits <- tclVar("NULL") } if (statc == "var") { Biv.parent <- tclVar("NULL") Parent1 <- tclVar("expression(rnorm(s.size))") Parent2 <- tclVar("NULL") SS <- tclVar("c(3,7,10,20)") SS2 <- tclVar("NULL") Stat1 <- tclVar("var") Stat2 <- tclVar("NULL") Stat3 <- tclVar("NULL") Stat4 <- tclVar("NULL") Func <- tclVar("NULL") Rep <- tclVar("1000") Xlab <- tclVar("expression(S^2)") ylim <- tclVar("NULL") xlim <- tclVar("NULL") fits <- tclVar("NULL") } if (statc == "MAD") { Biv.parent <- tclVar("NULL") Parent1 <- tclVar("expression(rnorm(s.size))") Parent2 <- tclVar("NULL") SS <- tclVar(("c(7,10,20,50)")) SS2 <- tclVar("NULL") Stat1 <- tclVar("mad") Stat2 <- tclVar("NULL") Stat3 <- tclVar("NULL") Stat4 <- tclVar("NULL") Func <- tclVar("NULL") Rep <- tclVar("1000") Xlab <- tclVar("expression(MAD)") ylim <- tclVar("NULL") xlim <- tclVar("NULL") fits <- tclVar("NULL") } if (statc == "IQR") { Biv.parent <- tclVar("NULL") Parent1 <- tclVar("expression(rnorm(s.size))") Parent2 <- tclVar("NULL") SS <- tclVar("c(7,10,20,50)") SS2 <- tclVar("NULL") Stat1 <- tclVar("IQR") Stat2 <- tclVar("NULL") Stat3 <- tclVar("NULL") Stat4 <- tclVar("NULL") Func <- tclVar("NULL") Rep <- tclVar("1000") Xlab <- tclVar("expression(IQR)") ylim <- tclVar("NULL") xlim <- tclVar("NULL") fits <- tclVar("NULL") } if (statc == "(n-1)S^2/sigma^2") { Biv.parent <- tclVar("NULL") Parent1 <- tclVar("expression(rnorm(s.size))") Parent2 <- tclVar("NULL") SS <- tclVar("c(3,7,10,20)") SS2 <- tclVar("NULL") Stat1 <- tclVar("var") Stat2 <- tclVar("NULL") Stat3 <- tclVar("NULL") Stat4 <- tclVar("NULL") Func <- tclVar("function(s.dist, s.dist2, s.size, s.size2, sigma.sq = 1)((s.size - 1) * s.dist)/sigma.sq") Rep <- tclVar("10000") Xlab <- tclVar("expression((n - 1)*S^2/sigma^2)") ylim <- tclVar("NULL") xlim <- tclVar("c(0,40)") x <- NULL suppressWarnings(rm(x)) fits <- tclVar("function(s.size, s.size2)curve(dchisq(x, s.size - 1),from = 0, to = 40, add = TRUE, lwd = 2, col = gray(.3))") } if (statc == "F*") { Biv.parent <- tclVar("NULL") Parent1 <- tclVar("expression(rnorm(s.size))") Parent2 <- tclVar("expression(rnorm(s.size2))") SS <- tclVar("c(5,7,12,20)") SS2 <- tclVar("c(7,5,10,15)") Stat1 <- tclVar("var") Stat2 <- tclVar("var") Stat3 <- tclVar("NULL") Stat4 <- tclVar("NULL") Func <- tclVar("function(s.dist, s.dist2, s.size, s.size2) s.dist/s.dist2") Rep <- tclVar("2000") Xlab <- tclVar("expression(F.star)") ylim <- tclVar("c(0, 0.8)") xlim <- tclVar("c(0,20)") x <- NULL suppressWarnings(rm(x)) fits <- tclVar("function(s.size, s.size2)curve(df(x, s.size - 1, s.size2 - 1),from = 0, to = 20, add = TRUE, col = gray(.3), lwd = 2)") } if (statc == "t* (1 sample)") { Biv.parent <- tclVar("NULL") Parent1 <- tclVar("expression(rnorm(s.size))") Parent2 <- tclVar("NULL") SS <- tclVar("c(3,7,10,20)") SS2 <- tclVar("NULL") Stat1 <- tclVar("mean") Stat2 <- tclVar("NULL") Stat3 <- tclVar("var") Stat4 <- tclVar("NULL") Func <- tclVar("function(s.dist, s.dist3, s.size, s.size2)s.dist/sqrt(s.dist3/s.size)") Rep <- tclVar("10000") Xlab <- tclVar("expression(t.star)") ylim <- tclVar("c(0, 0.5)") xlim <- tclVar("c(-5, 5)") x <- NULL suppressWarnings(rm(x)) fits <- tclVar("function(s.size, s.size2)({curve(dnorm(x),from = -10, to = 10, add = TRUE, lty = 2, lwd = 2, col = gray(.3)); curve(dt(x, s.size-1),from = -10,to = 10, add = TRUE, lty = 1, lwd = 2, col = gray(.6))})") } if (statc == "t* (2 sample)") { Biv.parent <- tclVar("NULL") Parent1 <- tclVar("expression(rnorm(s.size))") Parent2 <- tclVar("expression(rnorm(s.size))") SS <- tclVar("c(3,7,10,20)") SS2 <- tclVar("c(5,8,10,30)") Stat1 <- tclVar("mean") Stat2 <- tclVar("mean") Stat3 <- tclVar("var") Stat4 <- tclVar("var") Func <- tclVar("function(s.dist1, s.dist2, s.dist3, s.dist4, s.size = 6, s.size2 = s.size2)({MSE<-(((s.size - 1) * s.dist3) + ((s.size2 - 1) * s.dist4))/((s.size + s.size2) - 2);(s.dist1 - s.dist2)/(sqrt(MSE) * sqrt((1/s.size) + (1/s.size2)))})") Rep <- tclVar("10000") Xlab <- tclVar("expression(t.star)") ylim <- tclVar("c(0, 0.5)") xlim <- tclVar("c(-5, 5)") x <- NULL suppressWarnings(rm(x)) fits <- tclVar("function(s.size, s.size2)({curve(dnorm(x),from = -10, to = 10, add = TRUE, lty = 2, lwd = 2, col = gray(.3)); curve(dt(x, (s.size + s.size2) - 2),from = -10,to = 10, add = TRUE, lty = 1, lwd = 2, col = gray(.6))})") } if (statc == "Pearson correlation") { Biv.parent <- tclVar("expression(rmvnorm(s.size, c(0,0), sigma = matrix(nrow=2,ncol=2, data =c(1,0,0,1))))") Parent1 <- tclVar("NULL") Parent2 <- tclVar("NULL") SS <- tclVar("c(3,5,7,10,20,50)") SS2 <- tclVar("NULL") Stat1 <- tclVar("NULL") Stat2 <- tclVar("NULL") Stat3 <- tclVar("NULL") Stat4 <- tclVar("NULL") Func <- tclVar("cor") Rep <- tclVar("2000") Xlab <- tclVar("expression(r)") ylim <- tclVar("NULL") xlim <- tclVar("NULL") fits <- tclVar("NULL") } if (statc == "covariance") { Biv.parent <- tclVar("expression(rmvnorm(s.size, c(0,0), sigma = matrix(nrow=2,ncol=2, data =c(1,0,0,1))))") Parent1 <- tclVar("NULL") Parent2 <- tclVar("NULL") SS <- tclVar("c(3,5,7,10,20,50)") SS2 <- tclVar("NULL") Stat1 <- tclVar("NULL") Stat2 <- tclVar("NULL") Stat3 <- tclVar("NULL") Stat4 <- tclVar("NULL") Func <- tclVar("cov") Rep <- tclVar("2000") Xlab <- tclVar("expression(Covariance)") ylim <- tclVar("NULL") xlim <- tclVar("NULL") fits <- tclVar("NULL") } dialog.sd() }) }
data(nuclearplants) ( fm1 <- fullmatch(pr ~ t1 + t2, data = nuclearplants) ) summary(fm1) ( fm2 <- fullmatch(pr ~ t1 + t2, min.controls = .5, max.controls = 4, data = nuclearplants) ) summary(fm2) ( fm3 <- fullmatch(pr ~ t1 + t2, omit.fraction = .5, data = nuclearplants) ) summary(fm3) ( fm4 <- fullmatch(pr ~ t1 + t2, max.controls = 1, data=nuclearplants) ) summary(fm4) optmatch_restrictions(fm4) ppty <- glm(pr ~ . - (pr + cost), family = binomial(), data = nuclearplants) mhd <- match_on(pr ~ t1 + t2, data = nuclearplants) + caliper(match_on(ppty), width = 1) ( fm5 <- fullmatch(mhd, data = nuclearplants) ) summary(fm5) if (require(RItools)) summary(fm5,ppty) cbind(nuclearplants, matches = fm5) m1 <- fullmatch(pr ~ t1 + t2, data=nuclearplants, within=exactMatch(pr ~ pt, data=nuclearplants)) m2 <- fullmatch(pr ~ t1 + t2 + strata(pt), data=nuclearplants) m3 <- fullmatch(glm(pr ~ t1 + t2, data=nuclearplants, family=binomial), data=nuclearplants, within=exactMatch(pr ~ pt, data=nuclearplants)) m4 <- fullmatch(glm(pr ~ t1 + t2 + pt, data=nuclearplants, family=binomial), data=nuclearplants, within=exactMatch(pr ~ pt, data=nuclearplants)) m5 <- fullmatch(glm(pr ~ t1 + t2 + strata(pt), data=nuclearplants, family=binomial), data=nuclearplants)
escalc <- function(measure, ai, bi, ci, di, n1i, n2i, x1i, x2i, t1i, t2i, m1i, m2i, sd1i, sd2i, xi, mi, ri, ti, sdi, r2i, ni, yi, vi, sei, data, slab, subset, include, add=1/2, to="only0", drop00=FALSE, vtype="LS", var.names=c("yi","vi"), add.measure=FALSE, append=TRUE, replace=TRUE, digits, ...) { mstyle <- .get.mstyle("crayon" %in% .packages()) if (missing(measure) && missing(yi)) stop(mstyle$stop("Must specify an effect size or outcome measure via the 'measure' argument.")) if (!missing(yi) && missing(measure)) measure <- "GEN" if (!is.character(measure)) stop(mstyle$stop("The 'measure' argument must be a character string.")) if (!is.element(measure, c("RR","OR","PETO","RD","AS","PHI","YUQ","YUY","RTET", "PBIT","OR2D","OR2DN","OR2DL", "MPRD","MPRR","MPOR","MPORC","MPPETO", "IRR","IRD","IRSD", "MD","SMD","SMDH","ROM", "CVR","VR", "RPB","RBIS","D2OR","D2ORN","D2ORL", "COR","UCOR","ZCOR", "PCOR","ZPCOR","SPCOR", "PR","PLN","PLO","PAS","PFT", "IR","IRLN","IRS","IRFT", "MN","MNLN","CVLN","SDLN","SMD1", "MC","SMCC","SMCR","SMCRH","ROMC","CVRC","VRC", "ARAW","AHW","ABT", "GEN"))) stop(mstyle$stop("Unknown 'measure' specified.")) if (!is.element(to, c("all","only0","if0all","none"))) stop(mstyle$stop("Unknown 'to' argument specified.")) if (any(!is.element(vtype, c("UB","LS","LS2","HO","ST","CS","AV","AVHO")), na.rm=TRUE)) stop(mstyle$stop("Unknown 'vtype' argument specified.")) if (add.measure) { if (length(var.names) == 2L) var.names <- c(var.names, "measure") if (length(var.names) != 3L) stop(mstyle$stop("Argument 'var.names' must be of length 2 or 3.")) if (any(var.names != make.names(var.names, unique=TRUE))) { var.names <- make.names(var.names, unique=TRUE) warning(mstyle$warning(paste0("Argument 'var.names' does not contain syntactically valid variable names.\n Variable names adjusted to: var.names = c('", var.names[1], "', '", var.names[2], "', '", var.names[3], "')."))) } } else { if (length(var.names) == 3L) var.names <- var.names[1:2] if (length(var.names) != 2L) stop(mstyle$stop("Argument 'var.names' must be of length 2.")) if (any(var.names != make.names(var.names, unique=TRUE))) { var.names <- make.names(var.names, unique=TRUE) warning(mstyle$warning(paste0("Argument 'var.names' does not contain syntactically valid variable names.\n Variable names adjusted to: var.names = c('", var.names[1], "', '", var.names[2], "')."))) } } if (hasArg(formula) || hasArg(weights)) stop(mstyle$stop("The 'formula interface' to escalc() has been deprecated.")) ddd <- list(...) .chkdots(ddd, c("onlyo1", "addyi", "addvi")) onlyo1 <- ifelse(is.null(ddd$onlyo1), FALSE, ddd$onlyo1) addyi <- ifelse(is.null(ddd$addyi), TRUE, ddd$addyi) addvi <- ifelse(is.null(ddd$addvi), TRUE, ddd$addvi) if (missing(digits)) { digits <- .set.digits(dmiss=TRUE) } else { digits <- .set.digits(digits, dmiss=FALSE) } if (missing(data)) data <- NULL has.data <- !is.null(data) if (is.null(data)) { data <- sys.frame(sys.parent()) } else { if (!is.data.frame(data)) data <- data.frame(data) } mf <- match.call() mf.slab <- mf[[match("slab", names(mf))]] mf.subset <- mf[[match("subset", names(mf))]] mf.include <- mf[[match("include", names(mf))]] slab <- eval(mf.slab, data, enclos=sys.frame(sys.parent())) subset <- eval(mf.subset, data, enclos=sys.frame(sys.parent())) include <- eval(mf.include, data, enclos=sys.frame(sys.parent())) mf.yi <- mf[[match("yi", names(mf))]] yi <- eval(mf.yi, data, enclos=sys.frame(sys.parent())) addval <- mf[[match("add", names(mf))]] if (is.element(measure, c("AS","PHI","RTET","IRSD","PAS","PFT","IRS","IRFT")) && is.null(addval)) add <- 0 if (is.null(yi)) { if (is.element(measure, c("RR","OR","RD","AS","PETO","PHI","YUQ","YUY","RTET","PBIT","OR2D","OR2DN","OR2DL","MPRD","MPRR","MPOR","MPORC","MPPETO"))) { mf.ai <- mf[[match("ai", names(mf))]] if (any("~" %in% as.character(mf.ai))) stop(mstyle$stop("The 'formula interface' to escalc() has been deprecated.")) mf.bi <- mf[[match("bi", names(mf))]] mf.ci <- mf[[match("ci", names(mf))]] mf.di <- mf[[match("di", names(mf))]] mf.n1i <- mf[[match("n1i", names(mf))]] mf.n2i <- mf[[match("n2i", names(mf))]] ai <- eval(mf.ai, data, enclos=sys.frame(sys.parent())) bi <- eval(mf.bi, data, enclos=sys.frame(sys.parent())) ci <- eval(mf.ci, data, enclos=sys.frame(sys.parent())) di <- eval(mf.di, data, enclos=sys.frame(sys.parent())) n1i <- eval(mf.n1i, data, enclos=sys.frame(sys.parent())) n2i <- eval(mf.n2i, data, enclos=sys.frame(sys.parent())) if (is.null(bi)) bi <- n1i - ai if (is.null(di)) di <- n2i - ci k.all <- length(ai) if (length(ai)==0L || length(bi)==0L || length(ci)==0L || length(di)==0L) stop(mstyle$stop("Cannot compute outcomes. Check that all of the required \n information is specified via the appropriate arguments.")) if (!all(k.all == c(length(ai),length(bi),length(ci),length(di)))) stop(mstyle$stop("Supplied data vectors are not all of the same length.")) if (!is.null(subset)) { subset <- .setnafalse(subset, k=k.all) ai <- ai[subset] bi <- bi[subset] ci <- ci[subset] di <- di[subset] } n1i <- ai + bi n2i <- ci + di if (any(c(ai > n1i, ci > n2i), na.rm=TRUE)) stop(mstyle$stop("One or more event counts are larger than the corresponding group sizes.")) if (any(c(ai, bi, ci, di) < 0, na.rm=TRUE)) stop(mstyle$stop("One or more counts are negative.")) if (any(c(n1i < 0, n2i < 0), na.rm=TRUE)) stop(mstyle$stop("One or more group sizes are < 0.")) ni.u <- ai + bi + ci + di k <- length(ai) if (drop00) { id00 <- c(ai == 0L & ci == 0L) | c(bi == 0L & di == 0L) id00[is.na(id00)] <- FALSE ai[id00] <- NA bi[id00] <- NA ci[id00] <- NA di[id00] <- NA } ai.u <- ai bi.u <- bi ci.u <- ci di.u <- di n1i.u <- ai + bi n2i.u <- ci + di if (to == "all") { ai <- ai + add ci <- ci + add if (!onlyo1) { bi <- bi + add di <- di + add } } if (to == "only0" || to == "if0all") { id0 <- c(ai == 0L | ci == 0L | bi == 0L | di == 0L) id0[is.na(id0)] <- FALSE } if (to == "only0") { ai[id0] <- ai[id0] + add ci[id0] <- ci[id0] + add if (!onlyo1) { bi[id0] <- bi[id0] + add di[id0] <- di[id0] + add } } if (to == "if0all") { if (any(id0)) { ai <- ai + add ci <- ci + add if (!onlyo1) { bi <- bi + add di <- di + add } } } n1i <- ai + bi n2i <- ci + di ni <- n1i + n2i p1i.u <- ai.u/n1i.u p2i.u <- ci.u/n2i.u p1i <- ai/n1i p2i <- ci/n2i if (measure == "RR") { if (addyi) { yi <- log(p1i) - log(p2i) } else { yi <- log(p1i.u) - log(p2i.u) } if (addvi) { vi <- 1/ai - 1/n1i + 1/ci - 1/n2i } else { vi <- 1/ai.u - 1/n1i.u + 1/ci.u - 1/n2i.u } } if (is.element(measure, c("OR","OR2D","OR2DN","OR2DL"))) { if (addyi) { yi <- log(p1i/(1-p1i)) - log(p2i/(1-p2i)) } else { yi <- log(p1i.u/(1-p1i.u)) - log(p2i.u/(1-p2i.u)) } if (addvi) { vi <- 1/ai + 1/bi + 1/ci + 1/di } else { vi <- 1/ai.u + 1/bi.u + 1/ci.u + 1/di.u } } if (measure == "RD") { if (addyi) { yi <- p1i - p2i } else { yi <- p1i.u - p2i.u } if (length(vtype) == 1L) vtype <- rep(vtype, k) vi <- rep(NA_real_, k) if (addvi) { mnwp1i <- .wmean(p1i, n1i, na.rm=TRUE) mnwp2i <- .wmean(p2i, n2i, na.rm=TRUE) } else { mnwp1i.u <- .wmean(p1i.u, n1i.u, na.rm=TRUE) mnwp2i.u <- .wmean(p2i.u, n2i.u, na.rm=TRUE) } if (!all(is.element(vtype, c("UB","LS","AV")))) stop(mstyle$stop("For this outcome measure, 'vtype' must be either 'UB', 'LS', or 'AV'.")) for (i in seq_len(k)) { if (vtype[i] == "UB") { if (addvi) { vi[i] <- p1i[i]*(1-p1i[i])/(n1i[i]-1) + p2i[i]*(1-p2i[i])/(n2i[i]-1) } else { vi[i] <- p1i.u[i]*(1-p1i.u[i])/(n1i.u[i]-1) + p2i.u[i]*(1-p2i.u[i])/(n2i.u[i]-1) } } if (vtype[i] == "LS") { if (addvi) { vi[i] <- p1i[i]*(1-p1i[i])/n1i[i] + p2i[i]*(1-p2i[i])/n2i[i] } else { vi[i] <- p1i.u[i]*(1-p1i.u[i])/n1i.u[i] + p2i.u[i]*(1-p2i.u[i])/n2i.u[i] } } if (vtype[i] == "AV") { if (addvi) { vi[i] <- mnwp1i*(1-mnwp1i)/n1i[i] + mnwp2i*(1-mnwp2i)/n2i[i] } else { vi[i] <- mnwp1i.u*(1-mnwp1i.u)/n1i.u[i] + mnwp2i.u*(1-mnwp2i.u)/n2i.u[i] } } } } if (measure == "PETO") { xt <- ai + ci yt <- bi + di Ei <- xt * n1i / ni Vi <- xt * yt * (n1i/ni) * (n2i/ni) / (ni - 1) yi <- (ai - Ei) / Vi vi <- 1/Vi } if (measure == "AS") { yi <- asin(sqrt(p1i)) - asin(sqrt(p2i)) vi <- 1/(4*n1i) + 1/(4*n2i) } if (measure == "PHI") { yi <- (ai*di - bi*ci)/sqrt((ai+bi)*(ci+di)*(ai+ci)*(bi+di)) if (length(vtype) == 1L) vtype <- rep(vtype, k) vi <- rep(NA_real_, k) q1i <- 1 - p1i q2i <- 1 - p2i pi1. <- (ai+bi)/ni pi2. <- (ci+di)/ni pi.1 <- (ai+ci)/ni pi.2 <- (bi+di)/ni if (!all(is.element(vtype, c("ST","LS","CS")))) stop(mstyle$stop("For this outcome measure, 'vtype' must be either 'ST', 'LS', or 'CS'.")) for (i in seq_len(k)) { if (vtype[i] == "ST") { vi[i] <- ((n1i[i]+n2i[i])^2*(4*n1i[i]^3*p1i[i]^2*p2i[i]*q1i[i]^2*q2i[i] + 4*n2i[i]^3*p1i[i]*p2i[i]^2*q1i[i]*q2i[i]^2 + n1i[i]*n2i[i]^2*p2i[i]*q2i[i]*(p2i[i]*q1i[i] + p1i[i]*q2i[i])*(p2i[i]*q1i[i] + p1i[i]*(4*q1i[i] + q2i[i])) + n1i[i]^2*n2i[i]*p1i[i]*q1i[i]*(p2i[i]*q1i[i] + p1i[i]*q2i[i])*(p1i[i]*q2i[i] + p2i[i]*(q1i[i] + 4*q2i[i]))))/(4*(ai[i]+ci[i])^3*(bi[i]+di[i])^3) } if (vtype[i] == "LS" || vtype[i] == "CS") { vi[i] <- 1/ni[i] * (1 - yi[i]^2 + yi[i]*(1+1/2*yi[i]^2) * (pi1.[i]-pi2.[i])*(pi.1[i]-pi.2[i]) / sqrt(pi1.[i]*pi2.[i]*pi.1[i]*pi.2[i]) - 3/4 * yi[i]^2 * ((pi1.[i]-pi2.[i])^2/(pi1.[i]*pi2.[i]) + (pi.1[i]-pi.2[i])^2/(pi.1[i]*pi.2[i]))) } } } if (measure == "YUQ") { yi <- (ai/bi)/(ci/di) yi <- (yi-1)/(yi+1) vi <- 1/4 * (1-yi^2)^2 * (1/ai + 1/bi + 1/ci + 1/di) } if (measure == "YUY") { yi <- (ai/bi)/(ci/di) yi <- (sqrt(yi)-1)/(sqrt(yi)+1) vi <- 1/16 * (1-yi^2)^2 * (1/ai + 1/bi + 1/ci + 1/di) } if (measure == "RTET") { yi <- rep(NA_real_, k) vi <- rep(NA_real_, k) for (i in seq_len(k)) { if (is.na(ai[i]) || is.na(bi[i]) || is.na(ci[i]) || is.na(di[i])) next res <- .rtet(ai[i], bi[i], ci[i], di[i], maxcor=.9999) yi[i] <- res$yi vi[i] <- res$vi } } if (measure == "PBIT") { z1i <- qnorm(p1i) z2i <- qnorm(p2i) yi <- z1i - z2i vi <- 2*pi*p1i*(1-p1i)*exp(z1i^2)/n1i + 2*pi*p2i*(1-p2i)*exp(z2i^2)/n2i } if (is.element(measure, c("OR2D","OR2DL"))) { yi <- sqrt(3) / pi * yi vi <- 3 / pi^2 * vi } if (measure == "OR2DN") { yi <- yi / 1.65 vi <- vi / 1.65^2 } if (is.element(measure, c("MPRD","MPRR","MPOR"))) { pi12 <- bi/ni pi21 <- ci/ni pi1. <- (ai+bi)/ni pi.1 <- (ai+ci)/ni } if (measure == "MPRD") { yi <- pi1. - pi.1 vi <- pi12*(1-pi12)/ni + 2*pi12*pi21/ni + pi21*(1-pi21)/ni } if (measure == "MPRR") { yi <- log(pi1.) - log(pi.1) vi <- (pi12 + pi21) / (ni * pi1. * pi.1) } if (measure == "MPOR") { yi <- log(pi1./(1-pi1.)) - log(pi.1/(1-pi.1)) vi <- (pi12*(1-pi12) + pi21*(1-pi21) + 2*pi12*pi21) / (ni * pi1.*(1-pi1.) * pi.1*(1-pi.1)) } if (measure == "MPORC") { yi <- log(bi) - log(ci) vi <- 1/bi + 1/ci } if (measure == "MPPETO") { Ei <- (bi + ci) / 2 Vi <- (bi + ci) / 4 yi <- (bi - Ei) / Vi vi <- 1/Vi } } if (is.element(measure, c("IRR","IRD","IRSD"))) { mf.x1i <- mf[[match("x1i", names(mf))]] mf.x2i <- mf[[match("x2i", names(mf))]] mf.t1i <- mf[[match("t1i", names(mf))]] mf.t2i <- mf[[match("t2i", names(mf))]] x1i <- eval(mf.x1i, data, enclos=sys.frame(sys.parent())) x2i <- eval(mf.x2i, data, enclos=sys.frame(sys.parent())) t1i <- eval(mf.t1i, data, enclos=sys.frame(sys.parent())) t2i <- eval(mf.t2i, data, enclos=sys.frame(sys.parent())) k.all <- length(x1i) if (length(x1i)==0L || length(x2i)==0L || length(t1i)==0L || length(t2i)==0L) stop(mstyle$stop("Cannot compute outcomes. Check that all of the required \n information is specified via the appropriate arguments.")) if (!all(k.all == c(length(x1i),length(x2i),length(t1i),length(t2i)))) stop(mstyle$stop("Supplied data vectors are not all of the same length.")) if (!is.null(subset)) { subset <- .setnafalse(subset, k=k.all) x1i <- x1i[subset] x2i <- x2i[subset] t1i <- t1i[subset] t2i <- t2i[subset] } if (any(c(x1i, x2i) < 0, na.rm=TRUE)) stop(mstyle$stop("One or more counts are negative.")) if (any(c(t1i, t2i) <= 0, na.rm=TRUE)) stop(mstyle$stop("One or more person-times are <= 0.")) ni.u <- t1i + t2i k <- length(x1i) if (drop00) { id00 <- c(x1i == 0L & x2i == 0L) id00[is.na(id00)] <- FALSE x1i[id00] <- NA x2i[id00] <- NA } x1i.u <- x1i x2i.u <- x2i if (to == "all") { x1i <- x1i + add x2i <- x2i + add } if (to == "only0" || to == "if0all") { id0 <- c(x1i == 0L | x2i == 0L) id0[is.na(id0)] <- FALSE } if (to == "only0") { x1i[id0] <- x1i[id0] + add x2i[id0] <- x2i[id0] + add } if (to == "if0all") { if (any(id0)) { x1i <- x1i + add x2i <- x2i + add } } ir1i.u <- x1i.u/t1i ir2i.u <- x2i.u/t2i ir1i <- x1i/t1i ir2i <- x2i/t2i if (measure == "IRR") { if (addyi) { yi <- log(ir1i) - log(ir2i) } else { yi <- log(ir1i.u) - log(ir2i.u) } if (addvi) { vi <- 1/x1i + 1/x2i } else { vi <- 1/x1i.u + 1/x2i.u } } if (measure == "IRD") { if (addyi) { yi <- ir1i - ir2i } else { yi <- ir1i.u - ir2i.u } if (addvi) { vi <- ir1i/t1i + ir2i/t2i } else { vi <- ir1i.u/t1i + ir2i.u/t2i } } if (measure == "IRSD") { if (addyi) { yi <- sqrt(ir1i) - sqrt(ir2i) } else { yi <- sqrt(ir1i.u) - sqrt(ir2i.u) } vi <- 1/(4*t1i) + 1/(4*t2i) } } if (is.element(measure, c("MD","SMD","SMDH","ROM","RPB","RBIS","D2OR","D2ORN","D2ORL","CVR","VR"))) { mf.m1i <- mf[[match("m1i", names(mf))]] mf.m2i <- mf[[match("m2i", names(mf))]] mf.sd1i <- mf[[match("sd1i", names(mf))]] mf.sd2i <- mf[[match("sd2i", names(mf))]] mf.n1i <- mf[[match("n1i", names(mf))]] mf.n2i <- mf[[match("n2i", names(mf))]] m1i <- eval(mf.m1i, data, enclos=sys.frame(sys.parent())) m2i <- eval(mf.m2i, data, enclos=sys.frame(sys.parent())) sd1i <- eval(mf.sd1i, data, enclos=sys.frame(sys.parent())) sd2i <- eval(mf.sd2i, data, enclos=sys.frame(sys.parent())) n1i <- eval(mf.n1i, data, enclos=sys.frame(sys.parent())) n2i <- eval(mf.n2i, data, enclos=sys.frame(sys.parent())) k.all <- length(n1i) if (is.element(measure, c("MD","SMD","SMDH","ROM","RPB","RBIS","D2OR","D2ORN","D2ORL","CVR"))) { if (length(m1i)==0L || length(m2i)==0L || length(sd1i)==0L || length(sd2i)==0L || length(n1i)==0L || length(n2i)==0L) stop(mstyle$stop("Cannot compute outcomes. Check that all of the required \n information is specified via the appropriate arguments.")) if (!all(k.all == c(length(m1i),length(m2i),length(sd1i),length(sd2i),length(n1i),length(n2i)))) stop(mstyle$stop("Supplied data vectors are not all of the same length.")) } if (is.element(measure, c("VR"))) { if (length(sd1i)==0L || length(sd2i)==0L || length(n1i)==0L || length(n2i)==0L) stop(mstyle$stop("Cannot compute outcomes. Check that all of the required \n information is specified via the appropriate arguments.")) if (!all(k.all == c(length(sd1i),length(sd2i),length(n1i),length(n2i)))) stop(mstyle$stop("Supplied data vectors are not all of the same length.")) } if (!is.null(subset)) { subset <- .setnafalse(subset, k=k.all) m1i <- m1i[subset] m2i <- m2i[subset] sd1i <- sd1i[subset] sd2i <- sd2i[subset] n1i <- n1i[subset] n2i <- n2i[subset] } if (any(c(sd1i, sd2i) < 0, na.rm=TRUE)) stop(mstyle$stop("One or more standard deviations are negative.")) if (any(c(n1i, n2i) < 1, na.rm=TRUE)) stop(mstyle$stop("One or more sample sizes are < 1.")) ni.u <- n1i + n2i k <- length(n1i) ni <- ni.u mi <- ni - 2 sdpi <- sqrt(((n1i-1)*sd1i^2 + (n2i-1)*sd2i^2)/mi) di <- (m1i - m2i) / sdpi if (measure == "MD") { yi <- m1i - m2i if (length(vtype) == 1L) vtype <- rep(vtype, k) vi <- rep(NA_real_, k) if (!all(is.element(vtype, c("UB","LS","HO")))) stop(mstyle$stop("For this outcome measure, 'vtype' must be either 'UB', 'LS', or 'HO'.")) for (i in seq_len(k)) { if (vtype[i] == "UB" || vtype[i] == "LS") vi[i] <- sd1i[i]^2/n1i[i] + sd2i[i]^2/n2i[i] if (vtype[i] == "HO") vi[i] <- sdpi[i]^2 * (1/n1i[i] + 1/n2i[i]) } } if (measure == "SMD") { cmi <- .cmicalc(mi) yi <- cmi * di if (length(vtype) == 1L) vtype <- rep(vtype, k) vi <- rep(NA_real_, k) mnwyi <- .wmean(yi, ni, na.rm=TRUE) if (!all(is.element(vtype, c("UB","LS","LS2","AV")))) stop(mstyle$stop("For this outcome measure, 'vtype' must be either 'UB', 'LS', 'LS2', or 'AV'.")) for (i in seq_len(k)) { if (vtype[i] == "UB") vi[i] <- 1/n1i[i] + 1/n2i[i] + (1 - (mi[i]-2)/(mi[i]*cmi[i]^2)) * yi[i]^2 if (vtype[i] == "LS") vi[i] <- 1/n1i[i] + 1/n2i[i] + yi[i]^2/(2*ni[i]) if (vtype[i] == "AV") vi[i] <- 1/n1i[i] + 1/n2i[i] + mnwyi^2/(2*ni[i]) if (vtype[i] == "LS2") vi[i] <- cmi[i]^2 * (1/n1i[i] + 1/n2i[i] + di[i]^2/(2*ni[i])) } } if (measure == "SMDH") { cmi <- .cmicalc(mi) si <- sqrt((sd1i^2 + sd2i^2)/2) yi <- cmi * (m1i - m2i) / si vi <- yi^2 * (sd1i^4 / (n1i-1) + sd2i^4 / (n2i-1)) / (2*(sd1i^2 + sd2i^2)^2) + (sd1i^2 / (n1i-1) + sd2i^2 / (n2i-1)) / ((sd1i^2 + sd2i^2)/2) vi <- cmi^2 * vi } if (measure == "ROM") { yi <- log(m1i/m2i) if (length(vtype) == 1L) vtype <- rep(vtype, k) vi <- rep(NA_real_, k) mn1wcvi <- .wmean(sd1i/m1i, n1i, na.rm=TRUE) mn2wcvi <- .wmean(sd2i/m2i, n2i, na.rm=TRUE) not.na <- !(is.na(n1i) | is.na(n2i) | is.na(sd1i/m1i) | is.na(sd2i/m2i)) mnwcvi <- (sum(n1i[not.na]*(sd1i/m1i)[not.na]) + sum(n2i[not.na]*(sd2i/m2i)[not.na])) / sum((n1i+n2i)[not.na]) if (!all(is.element(vtype, c("LS","HO","AV","AVHO")))) stop(mstyle$stop("For this outcome measure, 'vtype' must be either 'LS', 'HO', 'AV', or 'AVHO'.")) for (i in seq_len(k)) { if (vtype[i] == "LS") vi[i] <- sd1i[i]^2/(n1i[i]*m1i[i]^2) + sd2i[i]^2/(n2i[i]*m2i[i]^2) if (vtype[i] == "HO") vi[i] <- sdpi[i]^2/(n1i[i]*m1i[i]^2) + sdpi[i]^2/(n2i[i]*m2i[i]^2) if (vtype[i] == "AV") vi[i] <- mn1wcvi^2/n1i[i] + mn2wcvi^2/n2i[i] if (vtype[i] == "AVHO") vi[i] <- mnwcvi^2 * (1/n1i[i] + 1/n2i[i]) } } if (is.element(measure, c("RPB","RBIS"))) { hi <- mi/n1i + mi/n2i yi <- di / sqrt(di^2 + hi) if (measure == "RPB") { if (length(vtype) == 1L) vtype <- rep(vtype, k) vi <- rep(NA_real_, k) if (!all(is.element(vtype, c("ST","LS","CS")))) stop(mstyle$stop("For this outcome measure, 'vtype' must be either 'ST', 'LS', or 'CS'.")) for (i in seq_len(k)) { if (vtype[i] == "ST" || vtype[i] == "LS") vi[i] <- hi[i]^2 / (hi[i] + di[i]^2)^3 * (1/n1i[i] + 1/n2i[i] + di[i]^2/(2*ni[i])) if (vtype[i] == "CS") vi[i] <- (1-yi[i]^2)^2 * (ni[i]*yi[i]^2 / (4*n1i[i]*n2i[i]) + (2-3*yi[i]^2)/(2*ni[i])) } } } if (measure == "RBIS") { p1i <- n1i / ni p2i <- n2i / ni zi <- qnorm(p1i, lower.tail=FALSE) fzi <- dnorm(zi) yi <- sqrt(p1i*p2i) / fzi * yi yi.t <- ifelse(abs(yi) > 1, sign(yi), yi) vi <- 1/(ni-1) * (p1i*p2i/fzi^2 - (3/2 + (1 - p1i*zi/fzi)*(1 + p2i*zi/fzi)) * yi.t^2 + yi.t^4) } if (is.element(measure, c("D2OR","D2ORL"))) { yi <- pi / sqrt(3) * di vi <- pi^2 / 3 * (1/n1i + 1/n2i + di^2/(2*ni)) } if (measure == "D2ORN") { yi <- 1.65 * di vi <- 1.65^2 * (1/n1i + 1/n2i + di^2/(2*ni)) } if (measure == "CVR") { yi <- log(sd1i/m1i) + 1/(2*(n1i-1)) - log(sd2i/m2i) - 1/(2*(n2i-1)) vi <- 1/(2*(n1i-1)) + sd1i^2/(n1i*m1i^2) + 1/(2*(n2i-1)) + sd2i^2/(n2i*m2i^2) } if (measure == "VR") { yi <- log(sd1i/sd2i) + 1/(2*(n1i-1)) - 1/(2*(n2i-1)) vi <- 1/(2*(n1i-1)) + 1/(2*(n2i-1)) } } if (is.element(measure, c("COR","UCOR","ZCOR"))) { mf.ri <- mf[[match("ri", names(mf))]] mf.ni <- mf[[match("ni", names(mf))]] ri <- eval(mf.ri, data, enclos=sys.frame(sys.parent())) ni <- eval(mf.ni, data, enclos=sys.frame(sys.parent())) k.all <- length(ri) if (length(ri)==0L || length(ni)==0L) stop(mstyle$stop("Cannot compute outcomes. Check that all of the required \n information is specified via the appropriate arguments.")) if (length(ri) != length(ni)) stop(mstyle$stop("Supplied data vectors are not of the same length.")) if (!is.null(subset)) { subset <- .setnafalse(subset, k=k.all) ri <- ri[subset] ni <- ni[subset] } if (any(abs(ri) > 1, na.rm=TRUE)) stop(mstyle$stop("One or more correlations are > 1 or < -1.")) if (any(ni < 1, na.rm=TRUE)) stop(mstyle$stop("One or more sample sizes are < 1.")) if (measure != "UCOR" && vtype == "UB") stop(mstyle$stop("Use of vtype='UB' only permitted when measure='UCOR'.")) if (measure == "UCOR" && any(ni <= 4, na.rm=TRUE)) warning(mstyle$warning("Cannot compute the bias-corrected correlation coefficient when ni <= 4."), call.=FALSE) if (measure == "ZCOR" && any(ni <= 3, na.rm=TRUE)) warning(mstyle$warning("Cannot estimate the sampling variance when ni <= 3."), call.=FALSE) ni.u <- ni k <- length(ri) if (measure == "COR") yi <- ri if (measure == "UCOR") { yi <- ri * .Fcalc(1/2, 1/2, (ni-2)/2, 1-ri^2) } if (is.element(measure, c("COR","UCOR"))) { if (length(vtype) == 1L) vtype <- rep(vtype, k) vi <- rep(NA_real_, k) mnwyi <- .wmean(yi, ni, na.rm=TRUE) if (!all(is.element(vtype, c("UB","LS","AV")))) stop(mstyle$stop("For this outcome measure, 'vtype' must be either 'UB', 'LS', or 'AV'.")) for (i in seq_len(k)) { if (vtype[i] == "UB") { vi[i] <- yi[i]^2 - (1 - (ni[i]-3)/(ni[i]-2) * (1-ri[i]^2) * .Fcalc(1, 1, ni[i]/2, 1-ri[i]^2)) } if (vtype[i] == "LS") vi[i] <- (1-yi[i]^2)^2/(ni[i]-1) if (vtype[i] == "AV") vi[i] <- (1-mnwyi^2)^2/(ni[i]-1) } } if (measure == "ZCOR") { yi <- 1/2 * log((1+ri)/(1-ri)) vi <- 1/(ni-3) } vi[ni <= 3] <- NA } if (is.element(measure, c("PCOR","ZPCOR","SPCOR"))) { mf.ti <- mf[[match("ti", names(mf))]] mf.r2i <- mf[[match("r2i", names(mf))]] mf.mi <- mf[[match("mi", names(mf))]] mf.ni <- mf[[match("ni", names(mf))]] ti <- eval(mf.ti, data, enclos=sys.frame(sys.parent())) r2i <- eval(mf.r2i, data, enclos=sys.frame(sys.parent())) mi <- eval(mf.mi, data, enclos=sys.frame(sys.parent())) ni <- eval(mf.ni, data, enclos=sys.frame(sys.parent())) k.all <- length(ti) if (measure=="PCOR" && (length(ti)==0L || length(ni)==0L || length(mi)==0L)) stop(mstyle$stop("Cannot compute outcomes. Check that all of the required \n information is specified via the appropriate arguments.")) if (measure=="SPCOR" && (length(ti)==0L || length(ni)==0L || length(mi)==0L || length(r2i)==0L)) stop(mstyle$stop("Cannot compute outcomes. Check that all of the required \n information is specified via the appropriate arguments.")) if (measure=="PCOR" && !all(k.all == c(length(ni),length(mi)))) stop(mstyle$stop("Supplied data vectors are not all of the same length.")) if (measure=="SPCOR" && !all(k.all == c(length(ni),length(mi),length(r2i)))) stop(mstyle$stop("Supplied data vectors are not all of the same length.")) if (!is.null(subset)) { subset <- .setnafalse(subset, k=k.all) ti <- ti[subset] r2i <- r2i[subset] mi <- mi[subset] ni <- ni[subset] } if (measure=="SPCOR" && any(r2i > 1 | r2i < 0, na.rm=TRUE)) stop(mstyle$stop("One or more R^2 values are > 1 or < 0.")) if (any(ni < 1, na.rm=TRUE)) stop(mstyle$stop("One or more sample sizes are < 1.")) if (any(mi < 0, na.rm=TRUE)) stop(mstyle$stop("One or more mi values are negative.")) if (any(ni - mi - 1 < 1, na.rm=TRUE)) stop(mstyle$stop("One or more dfs are < 1.")) ni.u <- ni k <- length(ti) if (measure == "PCOR") { yi <- ti / sqrt(ti^2 + (ni - mi - 1)) if (length(vtype) == 1L) vtype <- rep(vtype, k) vi <- rep(NA_real_, k) mnwyi <- .wmean(yi, ni, na.rm=TRUE) if (!all(is.element(vtype, c("LS","AV")))) stop(mstyle$stop("For this outcome measure, 'vtype' must be either 'LS' or 'AV'.")) for (i in seq_len(k)) { if (vtype[i] == "LS") vi[i] <- (1 - yi[i]^2)^2 / (ni[i] - mi[i] - 1) if (vtype[i] == "AV") vi[i] <- (1 - mnwyi^2)^2 / (ni[i] - mi[i] - 1) } } if (measure == "ZPCOR") { yi <- ti / sqrt(ti^2 + (ni - mi - 1)) yi <- 1/2 * log((1+yi)/(1-yi)) vi <- 1/(ni-mi-1) } if (measure == "SPCOR") { yi <- ti * sqrt(1 - r2i) / sqrt(ni - mi - 1) if (length(vtype) == 1L) vtype <- rep(vtype, k) vi <- rep(NA_real_, k) mnwyi <- .wmean(yi, ni, na.rm=TRUE) if (!all(is.element(vtype, c("LS","AV")))) stop(mstyle$stop("For this outcome measure, 'vtype' must be either 'LS' or 'AV'.")) for (i in seq_len(k)) { if (vtype[i] == "LS") vi[i] <- (r2i[i]^2 - 2*r2i[i] + (r2i[i] - yi[i]^2) + 1 - (r2i[i] - yi[i]^2)^2) / ni[i] if (vtype[i] == "AV") vi[i] <- (r2i[i]^2 - 2*r2i[i] + (r2i[i] - mnwyi^2) + 1 - (r2i[i] - mnwyi^2)^2) / ni[i] } } } if (is.element(measure, c("PR","PLN","PLO","PAS","PFT"))) { mf.xi <- mf[[match("xi", names(mf))]] mf.mi <- mf[[match("mi", names(mf))]] mf.ni <- mf[[match("ni", names(mf))]] xi <- eval(mf.xi, data, enclos=sys.frame(sys.parent())) mi <- eval(mf.mi, data, enclos=sys.frame(sys.parent())) ni <- eval(mf.ni, data, enclos=sys.frame(sys.parent())) if (is.null(mi)) mi <- ni - xi k.all <- length(xi) if (length(xi)==0L || length(mi)==0L) stop(mstyle$stop("Cannot compute outcomes. Check that all of the required \n information is specified via the appropriate arguments.")) if (length(xi) != length(mi)) stop(mstyle$stop("Supplied data vectors are not all of the same length.")) if (!is.null(subset)) { subset <- .setnafalse(subset, k=k.all) xi <- xi[subset] mi <- mi[subset] } ni <- xi + mi if (any(xi > ni, na.rm=TRUE)) stop(mstyle$stop("One or more event counts are larger than the corresponding group sizes.")) if (any(c(xi, mi) < 0, na.rm=TRUE)) stop(mstyle$stop("One or more counts are negative.")) if (any(ni < 1, na.rm=TRUE)) stop(mstyle$stop("One or more group sizes are < 1.")) ni.u <- ni k <- length(xi) xi.u <- xi mi.u <- mi k <- length(xi) if (to == "all") { xi <- xi + add mi <- mi + add } if (to == "only0" || to == "if0all") { id0 <- c(xi == 0L | mi == 0L) id0[is.na(id0)] <- FALSE } if (to == "only0") { xi[id0] <- xi[id0] + add mi[id0] <- mi[id0] + add } if (to == "if0all") { if (any(id0)) { xi <- xi + add mi <- mi + add } } ni <- xi + mi pri.u <- xi.u/ni.u pri <- xi/ni if (measure == "PR") { if (addyi) { yi <- pri } else { yi <- pri.u } if (length(vtype) == 1L) vtype <- rep(vtype, k) vi <- rep(NA_real_, k) if (addvi) { mnwpri <- .wmean(pri, ni, na.rm=TRUE) } else { mnwpri.u <- .wmean(pri.u, ni.u, na.rm=TRUE) } if (!all(is.element(vtype, c("UB","LS","AV")))) stop(mstyle$stop("For this outcome measure, 'vtype' must be either 'UB', 'LS', or 'AV'.")) for (i in seq_len(k)) { if (vtype[i] == "UB") { if (addvi) { vi[i] <- pri[i]*(1-pri[i])/(ni[i]-1) } else { vi[i] <- pri.u[i]*(1-pri.u[i])/(ni.u[i]-1) } } if (vtype[i] == "LS") { if (addvi) { vi[i] <- pri[i]*(1-pri[i])/ni[i] } else { vi[i] <- pri.u[i]*(1-pri.u[i])/ni.u[i] } } if (vtype[i] == "AV") { if (addvi) { vi[i] <- mnwpri*(1-mnwpri)/ni[i] } else { vi[i] <- mnwpri.u*(1-mnwpri.u)/ni.u[i] } } } } if (measure == "PLN") { if (addyi) { yi <- log(pri) } else { yi <- log(pri.u) } if (length(vtype) == 1L) vtype <- rep(vtype, k) vi <- rep(NA_real_, k) if (addvi) { mnwpri <- .wmean(pri, ni, na.rm=TRUE) } else { mnwpri.u <- .wmean(pri.u, ni.u, na.rm=TRUE) } if (!all(is.element(vtype, c("LS","AV")))) stop(mstyle$stop("For this outcome measure, 'vtype' must be either 'LS' or 'AV'.")) for (i in seq_len(k)) { if (vtype[i] == "LS") { if (addvi) { vi[i] <- 1/xi[i] - 1/ni[i] } else { vi[i] <- 1/xi.u[i] - 1/ni.u[i] } } if (vtype[i] == "AV") { if (addvi) { vi[i] <- 1/(mnwpri*ni[i]) - 1/ni[i] } else { vi[i] <- 1/(mnwpri.u*ni.u[i]) - 1/ni.u[i] } } } } if (measure == "PLO") { if (addyi) { yi <- log(pri/(1-pri)) } else { yi <- log(pri.u/(1-pri.u)) } if (length(vtype) == 1L) vtype <- rep(vtype, k) vi <- rep(NA_real_, k) if (addvi) { mnwpri <- .wmean(pri, ni, na.rm=TRUE) } else { mnwpri.u <- .wmean(pri.u, ni.u, na.rm=TRUE) } if (!all(is.element(vtype, c("LS","AV")))) stop(mstyle$stop("For this outcome measure, 'vtype' must be either 'LS' or 'AV'.")) for (i in seq_len(k)) { if (vtype[i] == "LS") { if (addvi) { vi[i] <- 1/xi[i] + 1/mi[i] } else { vi[i] <- 1/xi.u[i] + 1/mi.u[i] } } if (vtype[i] == "AV") { if (addvi) { vi[i] <- 1/(mnwpri*ni[i]) + 1/((1-mnwpri)*ni[i]) } else { vi[i] <- 1/(mnwpri.u*ni.u[i]) + 1/((1-mnwpri.u)*ni.u[i]) } } } } if (measure == "PAS") { yi <- asin(sqrt(pri)) vi <- 1/(4*ni) } if (measure == "PFT") { yi <- 1/2*(asin(sqrt(xi/(ni+1))) + asin(sqrt((xi+1)/(ni+1)))) vi <- 1/(4*ni + 2) } } if (is.element(measure, c("IR","IRLN","IRS","IRFT"))) { mf.xi <- mf[[match("xi", names(mf))]] mf.ti <- mf[[match("ti", names(mf))]] xi <- eval(mf.xi, data, enclos=sys.frame(sys.parent())) ti <- eval(mf.ti, data, enclos=sys.frame(sys.parent())) k.all <- length(xi) if (length(xi)==0L || length(ti)==0L) stop(mstyle$stop("Cannot compute outcomes. Check that all of the required \n information is specified via the appropriate arguments.")) if (length(xi) != length(ti)) stop(mstyle$stop("Supplied data vectors are not all of the same length.")) if (!is.null(subset)) { subset <- .setnafalse(subset, k=k.all) xi <- xi[subset] ti <- ti[subset] } if (any(xi < 0, na.rm=TRUE)) stop(mstyle$stop("One or more counts are negative.")) if (any(ti <= 0, na.rm=TRUE)) stop(mstyle$stop("One or more person-times are <= 0.")) ni.u <- ti k <- length(xi) xi.u <- xi if (to == "all") { xi <- xi + add } if (to == "only0" || to == "if0all") { id0 <- c(xi == 0L) id0[is.na(id0)] <- FALSE } if (to == "only0") { xi[id0] <- xi[id0] + add } if (to == "if0all") { if (any(id0)) { xi <- xi + add } } iri.u <- xi.u/ti iri <- xi/ti if (measure == "IR") { if (addyi) { yi <- iri } else { yi <- iri.u } if (addvi) { vi <- iri/ti } else { vi <- iri.u/ti } } if (measure == "IRLN") { if (addyi) { yi <- log(iri) } else { yi <- log(iri.u) } if (addvi) { vi <- 1/xi } else { vi <- 1/xi.u } } if (measure == "IRS") { if (addyi) { yi <- sqrt(iri) } else { yi <- sqrt(iri.u) } vi <- 1/(4*ti) } if (measure == "IRFT") { yi <- 1/2*(sqrt(iri) + sqrt(iri+1/ti)) vi <- 1/(4*ti) } } if (is.element(measure, c("MN","MNLN","CVLN","SDLN","SMD1"))) { mf.mi <- mf[[match("mi", names(mf))]] mf.sdi <- mf[[match("sdi", names(mf))]] mf.ni <- mf[[match("ni", names(mf))]] mi <- eval(mf.mi, data, enclos=sys.frame(sys.parent())) sdi <- eval(mf.sdi, data, enclos=sys.frame(sys.parent())) ni <- eval(mf.ni, data, enclos=sys.frame(sys.parent())) k.all <- length(ni) if (is.element(measure, c("MN","MNLN","CVLN","SMD1"))) { if (length(mi)==0L || length(sdi)==0L || length(ni)==0L) stop(mstyle$stop("Cannot compute outcomes. Check that all of the required \n information is specified via the appropriate arguments.")) if (!all(k.all == c(length(mi),length(sdi),length(ni)))) stop(mstyle$stop("Supplied data vectors are not all of the same length.")) } if (is.element(measure, c("SDLN"))) { if (length(sdi)==0L || length(ni)==0L) stop(mstyle$stop("Cannot compute outcomes. Check that all of the required \n information is specified via the appropriate arguments.")) if (length(sdi) != length(ni)) stop(mstyle$stop("Supplied data vectors are not all of the same length.")) } if (!is.null(subset)) { subset <- .setnafalse(subset, k=k.all) mi <- mi[subset] sdi <- sdi[subset] ni <- ni[subset] } if (any(sdi < 0, na.rm=TRUE)) stop(mstyle$stop("One or more standard deviations are negative.")) if (any(ni < 1, na.rm=TRUE)) stop(mstyle$stop("One or more sample sizes are < 1.")) if (is.element(measure, c("MNLN","CVLN")) && any(mi < 0, na.rm=TRUE)) stop(mstyle$stop("One or more means are negative.")) ni.u <- ni k <- length(ni) if (measure == "MN") { yi <- mi vi <- sdi^2/ni } if (measure == "MNLN") { yi <- log(mi) vi <- sdi^2/(ni*mi^2) } if (measure == "CVLN") { yi <- log(sdi/mi) + 1/(2*(ni-1)) vi <- 1/(2*(ni-1)) + sdi^2/(ni*mi^2) } if (measure == "SDLN") { yi <- log(sdi) + 1/(2*(ni-1)) vi <- 1/(2*(ni-1)) } if (measure == "SMD1") { cmi <- .cmicalc(ni-1) yi <- cmi * mi / sdi vi <- 1/ni + yi^2/(2*ni) } } if (is.element(measure, c("MC","SMCC","SMCR","SMCRH","ROMC","CVRC","VRC"))) { mf.m1i <- mf[[match("m1i", names(mf))]] mf.m2i <- mf[[match("m2i", names(mf))]] mf.sd1i <- mf[[match("sd1i", names(mf))]] mf.sd2i <- mf[[match("sd2i", names(mf))]] mf.ni <- mf[[match("ni", names(mf))]] mf.ri <- mf[[match("ri", names(mf))]] m1i <- eval(mf.m1i, data, enclos=sys.frame(sys.parent())) m2i <- eval(mf.m2i, data, enclos=sys.frame(sys.parent())) sd1i <- eval(mf.sd1i, data, enclos=sys.frame(sys.parent())) sd2i <- eval(mf.sd2i, data, enclos=sys.frame(sys.parent())) ni <- eval(mf.ni, data, enclos=sys.frame(sys.parent())) ri <- eval(mf.ri, data, enclos=sys.frame(sys.parent())) k.all <- length(ni) if (is.element(measure, c("MC","SMCC","SMCRH","ROMC","CVRC"))) { if (length(m1i)==0L || length(m2i)==0L || length(sd1i)==0L || length(sd2i)==0L || length(ni)==0L || length(ri)==0L) stop(mstyle$stop("Cannot compute outcomes. Check that all of the required \n information is specified via the appropriate arguments.")) if (!all(k.all == c(length(m1i),length(m2i),length(sd1i),length(sd2i),length(ni),length(ri)))) stop(mstyle$stop("Supplied data vectors are not all of the same length.")) } if (is.element(measure, c("SMCR"))) { if (length(m1i)==0L || length(m2i)==0L || length(sd1i)==0L || length(ni)==0L || length(ri)==0L) stop(mstyle$stop("Cannot compute outcomes. Check that all of the required \n information is specified via the appropriate arguments.")) if (!all(k.all == c(length(m1i),length(m2i),length(sd1i),length(ni),length(ri)))) stop(mstyle$stop("Supplied data vectors are not all of the same length.")) } if (is.element(measure, c("VRC"))) { if (length(sd1i)==0L || length(sd2i)==0L || length(ni)==0L || length(ri)==0L) stop(mstyle$stop("Cannot compute outcomes. Check that all of the required \n information is specified via the appropriate arguments.")) if (!all(k.all == c(length(sd1i),length(sd2i),length(ni),length(ri)))) stop(mstyle$stop("Supplied data vectors are not all of the same length.")) } if (!is.null(subset)) { subset <- .setnafalse(subset, k=k.all) m1i <- m1i[subset] m2i <- m2i[subset] sd1i <- sd1i[subset] sd2i <- sd2i[subset] ni <- ni[subset] ri <- ri[subset] } if (is.element(measure, c("MC","SMCC","SMCRH","ROMC","CVRC","VRC"))) { if (any(c(sd1i, sd2i) < 0, na.rm=TRUE)) stop(mstyle$stop("One or more standard deviations are negative.")) } if (is.element(measure, c("SMCR"))) { if (any(sd1i < 0, na.rm=TRUE)) stop(mstyle$stop("One or more standard deviations are negative.")) } if (any(abs(ri) > 1, na.rm=TRUE)) stop(mstyle$stop("One or more correlations are > 1 or < -1.")) if (any(ni < 1, na.rm=TRUE)) stop(mstyle$stop("One or more sample sizes are < 1.")) ni.u <- ni k <- length(ni) ni <- ni.u mi <- ni - 1 if (measure == "MC") { yi <- m1i - m2i vi <- (sd1i^2 + sd2i^2 - 2*ri*sd1i*sd2i) / ni } if (measure == "SMCC") { cmi <- .cmicalc(mi) sddi <- sqrt(sd1i^2 + sd2i^2 - 2*ri*sd1i*sd2i) di <- (m1i - m2i) / sddi yi <- cmi * di if (length(vtype) == 1L) vtype <- rep(vtype, k) vi <- rep(NA_real_, k) if (!all(is.element(vtype, c("LS","LS2")))) stop(mstyle$stop("For this outcome measure, 'vtype' must be either ''LS' or 'LS2'.")) for (i in seq_len(k)) { if (vtype[i] == "LS") vi[i] <- 1/ni[i] + yi[i]^2 / (2*ni[i]) if (vtype[i] == "LS2") vi[i] <- cmi[i]^2 * (1/ni[i] + di[i]^2 / (2*ni[i])) } } if (measure == "SMCR") { cmi <- .cmicalc(mi) di <- (m1i - m2i) / sd1i yi <- cmi * di if (length(vtype) == 1L) vtype <- rep(vtype, k) vi <- rep(NA_real_, k) if (!all(is.element(vtype, c("LS","LS2")))) stop(mstyle$stop("For this outcome measure, 'vtype' must be either ''LS' or 'LS2'.")) for (i in seq_len(k)) { if (vtype[i] == "LS") vi[i] <- 2*(1-ri[i])/ni[i] + yi[i]^2 / (2*ni[i]) if (vtype[i] == "LS2") vi[i] <- cmi[i]^2 * (2*(1-ri[i])/ni[i] + di[i]^2 / (2*ni[i])) } } if (measure == "SMCRH") { cmi <- .cmicalc(mi) vardi <- sd1i^2 + sd2i^2 - 2*ri*sd1i*sd2i yi <- cmi * (m1i - m2i) / sd1i vi <- vardi/(sd1i^2*(ni-1)) + yi^2 / (2*(ni-1)) vi <- cmi^2 * vi } if (measure == "ROMC") { yi <- log(m1i/m2i) vi <- sd1i^2/(ni*m1i^2) + sd2i^2/(ni*m2i^2) - 2*ri*sd1i*sd2i/(m1i*m2i*ni) } if (measure == "CVRC") { yi <- log(sd1i/m1i) - log(sd2i/m2i) vi <- (1-ri^2)/(ni-1) + (m1i^2*sd2i^2 + m2i^2*sd1i^2 - 2*m1i*m2i*ri*sd1i*sd2i) / (m1i^2*m2i^2*ni) } if (measure == "VRC") { yi <- log(sd1i/sd2i) vi <- (1-ri^2)/(ni-1) } } if (is.element(measure, c("ARAW","AHW","ABT"))) { mf.ai <- mf[[match("ai", names(mf))]] mf.mi <- mf[[match("mi", names(mf))]] mf.ni <- mf[[match("ni", names(mf))]] ai <- eval(mf.ai, data, enclos=sys.frame(sys.parent())) mi <- eval(mf.mi, data, enclos=sys.frame(sys.parent())) ni <- eval(mf.ni, data, enclos=sys.frame(sys.parent())) k.all <- length(ai) if (length(ai)==0L || length(mi)==0L || length(ni)==0L) stop(mstyle$stop("Cannot compute outcomes. Check that all of the required \n information is specified via the appropriate arguments.")) if (!all(k.all == c(length(ai),length(mi),length(ni)))) stop(mstyle$stop("Supplied data vectors are not all of the same length.")) if (!is.null(subset)) { subset <- .setnafalse(subset, k=k.all) ai <- ai[subset] mi <- mi[subset] ni <- ni[subset] } if (any(ai > 1, na.rm=TRUE)) stop(mstyle$stop("One or more alpha values are > 1.")) if (any(mi < 2, na.rm=TRUE)) stop(mstyle$stop("One or more mi values are < 2.")) if (any(ni < 1, na.rm=TRUE)) stop(mstyle$stop("One or more sample sizes are < 1.")) ni.u <- ni k <- length(ai) if (measure == "ARAW") { yi <- ai vi <- 2*mi*(1-ai)^2 / ((mi-1)*(ni-2)) } if (measure == "AHW") { yi <- 1 - (1-ai)^(1/3) vi <- 18*mi*(ni-1)*(1-ai)^(2/3) / ((mi-1)*(9*ni-11)^2) } if (measure == "ABT") { yi <- -log(1-ai) vi <- 2*mi / ((mi-1)*(ni-2)) } } } else { mf.vi <- mf[[match("vi", names(mf))]] mf.sei <- mf[[match("sei", names(mf))]] mf.ni <- mf[[match("ni", names(mf))]] vi <- eval(mf.vi, data, enclos=sys.frame(sys.parent())) sei <- eval(mf.sei, data, enclos=sys.frame(sys.parent())) ni <- eval(mf.ni, data, enclos=sys.frame(sys.parent())) k.all <- length(yi) if (is.null(vi)) { if (is.null(sei)) { stop(mstyle$stop("Must specify 'vi' or 'sei' argument.")) } else { vi <- sei^2 } } if (length(yi) != length(vi)) stop(mstyle$stop("Supplied data vectors are not of the same length.")) if (!is.null(ni) && (length(yi) != length(ni))) stop(mstyle$stop("Supplied data vectors are not of the same length.")) if (!is.null(subset)) { subset <- .setnafalse(subset, k=k.all) yi <- yi[subset] vi <- vi[subset] ni <- ni[subset] } ni.u <- ni k <- length(yi) } yi <- as.vector(yi) vi <- as.vector(vi) is.inf <- is.infinite(yi) | is.infinite(vi) if (any(is.inf)) { warning(mstyle$warning("Some 'yi' and/or 'vi' values equal to +-Inf. Recoded to NAs."), call.=FALSE) yi[is.inf] <- NA vi[is.inf] <- NA } is.NaN <- is.nan(yi) | is.nan(vi) if (any(is.NaN)) { yi[is.NaN] <- NA vi[is.NaN] <- NA } vi[vi < 0] <- NA if (!is.null(slab)) { if (length(slab) != k.all) stop(mstyle$stop("Study labels not of same length as data.")) if (is.factor(slab)) slab <- as.character(slab) if (!is.null(subset)) slab <- slab[subset] if (anyNA(slab)) stop(mstyle$stop("NAs in study labels.")) if (anyDuplicated(slab)) slab <- .make.unique(slab) } if (is.null(include)) include <- rep(TRUE, k.all) if (is.null(subset)) subset <- rep(TRUE, k.all) if (!is.null(include)) include <- .setnafalse(include, arg="include", k=k.all) include <- include[subset] if (has.data && any(!subset)) data <- data[subset,,drop=FALSE] if (has.data && append) { dat <- data.frame(data) if (replace || !is.element(var.names[1], names(dat))) { yi.replace <- rep(TRUE, k) } else { yi.replace <- is.na(dat[[var.names[1]]]) } if (replace || !is.element(var.names[2], names(dat))) { vi.replace <- rep(TRUE, k) } else { vi.replace <- is.na(dat[[var.names[2]]]) } if (replace || !is.element(var.names[3], names(dat))) { measure.replace <- rep(TRUE, k) } else { measure.replace <- is.na(dat[[var.names[3]]]) | dat[[var.names[3]]] == "" } dat[[var.names[1]]][include & yi.replace] <- yi[include & yi.replace] dat[[var.names[2]]][include & vi.replace] <- vi[include & vi.replace] if (add.measure) dat[[var.names[3]]][!is.na(yi) & include & measure.replace] <- measure if (!is.null(ni.u)) attributes(dat[[var.names[1]]])$ni[include & yi.replace] <- ni.u[include & yi.replace] } else { dat <- data.frame(yi=rep(NA_real_, k), vi=rep(NA_real_, k)) dat$yi[include] <- yi[include] dat$vi[include] <- vi[include] if (add.measure) dat$measure[!is.na(yi) & include] <- measure attributes(dat$yi)$ni[include] <- ni.u[include] if (add.measure) { names(dat) <- var.names } else { names(dat) <- var.names[1:2] } } if (add.measure) dat[[var.names[3]]][is.na(dat[[var.names[3]]])] <- "" attr(dat[[var.names[1]]], "slab") <- slab attr(dat[[var.names[1]]], "measure") <- measure attr(dat, "digits") <- digits attr(dat, "yi.names") <- unique(c(var.names[1], attr(data, "yi.names"))) attr(dat, "vi.names") <- unique(c(var.names[2], attr(data, "vi.names"))) attr(dat, "sei.names") <- attr(data, "sei.names") attr(dat, "zi.names") <- attr(data, "zi.names") attr(dat, "pval.names") <- attr(data, "pval.names") attr(dat, "ci.lb.names") <- attr(data, "ci.lb.names") attr(dat, "ci.ub.names") <- attr(data, "ci.ub.names") attr(dat, "yi.names") <- attr(dat, "yi.names")[attr(dat, "yi.names") %in% colnames(dat)] attr(dat, "vi.names") <- attr(dat, "vi.names")[attr(dat, "vi.names") %in% colnames(dat)] class(dat) <- c("escalc", "data.frame") return(dat) }
calc_pI <- function(seq) { pI <- pI(seq) as.data.frame(pI) }
`putBack` <- function(n,blocklist,blockvalues){ x<-rep(0,n);nb<-length(blockvalues) for (i in 1:nb) { x[blocklist[i,1]:blocklist[i,2]]<-blockvalues[i]} return(x) }
colourMatch <- function(colour, colourList=getOption("roloc.colourList"), colourMetric=getOption("roloc.colourMetric"), ...) { if (!inherits(colourList, "colourList")) stop("Invalid colourList") if (is.numeric(colour)) { colour <- col2char(colour) } colourRGB <- hex2RGB(col2hex(colour)) colourDist <- colourMetric(colourRGB, colourList$colours, ...) missing <- is.na(colourDist) unknown <- !missing & colourDist == Inf match <- list(colour=colour, colourList=colourList, colourDist=colourDist) class(match) <- "colourMatch" match } colorMatch <- colourMatch
context("slpCOVIS") load("../data/test_slpcovis.RData") set.seed(7) out <- slpCOVIS(st, tr, crx = TRUE, respt = FALSE, rgive = TRUE, xtdo = FALSE) test_that("slpCOVIS reproduces an arbitrarily chosen short simulation.", { expect_equal(out$foutmat, testres$foutmat) })
c( 1, 16 , 333 , 33 , 1)
source("incl/start.R") library("listenv") message("*** multicore() - terminating workers ...") if (supportsMulticore() && availableCores("multicore") >= 2L) { plan(multicore, workers = 2L) x %<-% tools::pskill(pid = Sys.getpid()) res <- tryCatch(y <- x, error = identity) print(res) stopifnot(inherits(res, "FutureError")) } message("*** multicore() - terminating workers ... DONE") source("incl/end.R")
view <- function(x, method = "viewer", file = "", append = FALSE, report.title = NA, table.classes = NA, bootstrap.css = st_options("bootstrap.css"), custom.css = st_options("custom.css"), silent = FALSE, footnote = st_options("footnote"), max.tbl.height = Inf, collapse = 0, escape.pipe = st_options("escape.pipe"), ...) { if (grepl("\\.r?md$", file, ignore.case = TRUE, perl = TRUE) && method != "pander") { message("Switching method to 'pander'") method <- "pander" } else if (grepl("\\.html$", file, ignore.case = TRUE, perl = TRUE) && method == "pander") { message("Switching method to 'browser'") method <- "browser" } if (inherits(x, "summarytools") && (isTRUE(attr(x, "st_type") %in% c("freq", "ctable", "descr", "dfSummary")))) { print.summarytools(x, method = method, file = file, append = append, report.title = report.title, table.classes = table.classes, bootstrap.css = bootstrap.css, custom.css = custom.css, silent = silent, footnote = footnote, max.tbl.height = max.tbl.height, collapse = collapse, escape.pipe = escape.pipe, ...) } else if (inherits(x = x, what = c("stby","by")) && attr(x[[1]], "st_type") == "descr" && length(attr(x[[1]], "data_info")$by_var) == 1 && ((!attr(x[[1]], "data_info")$transposed && dim(x[[1]])[2] == 1) || (attr(x[[1]], "data_info")$transposed && dim(x[[1]])[1] == 1))) { if (attr(x[[1]], "data_info")$transposed) { xx <- do.call(rbind, x) } else { xx <- do.call(cbind, x) class(xx) <- class(x[[1]]) colnames(xx) <- names(x) } attr(xx, "st_type") <- "descr" attr(xx, "date") <- attr(x[[1]], "date") attr(xx, "fn_call") <- attr(x[[1]], "fn_call") attr(xx, "stats") <- attr(x[[1]], "stats") attr(xx, "data_info") <- attr(x[[1]], "data_info") attr(xx, "data_info")$by_var_special <- sub("^.*\\$(.+)", "\\1", attr(x[[1]], "data_info")$by_var) attr(xx, "data_info")$Group <- NULL attr(xx, "data_info")$by_first <- NULL attr(xx, "data_info")$by_last <- NULL attr(xx, "data_info")$N.Obs <- attr(x[[1]], "data_info")$N.Obs attr(xx, "data_info") <- attr(xx,"data_info")[!is.na(attr(xx, "data_info"))] attr(xx, "format_info") <- attr(x[[1]], "format_info") attr(xx, "user_fmt") <- attr(x[[1]], "user_fmt") attr(xx, "lang") <- attr(x[[1]], "lang") print.summarytools(xx, method = method, file = file, append = append, report.title = report.title, table.classes = table.classes, bootstrap.css = bootstrap.css, custom.css = custom.css, silent = silent, footnote = footnote, collapse = collapse, escape.pipe = escape.pipe, ...) } else if (inherits(x = x, what = c("stby", "by")) && attr(x[[1]], "st_type") %in% c("freq", "ctable", "descr", "dfSummary")) { if (grepl("\\.html$", file, ignore.case = TRUE, perl = TRUE) && !grepl(pattern = tempdir(), x = file, fixed = TRUE) && method == "pander") { method <- "browser" message("Switching method to 'browser'") } null_ind <- which(vapply(x, is.null, TRUE)) if (length(null_ind) > 0) { x <- x[-null_ind] } if (method %in% c("viewer", "browser")) { file <- ifelse(file == "", paste0(tempfile(),".html"), file) footnote_safe <- footnote for (i in seq_along(x)) { if (grepl(tempdir(), file, fixed = TRUE) && i == length(x)) { open.doc <- TRUE } else { open.doc <- FALSE } if (i == length(x)) { footnote <- footnote_safe } else { footnote <- NA } if (i == 1) { if (isTRUE(append) && !is.na(custom.css)) { stop("Can't append existing html file with new custom.css") } if (isTRUE(append) && !is.na(report.title)) { stop("Can't append existing html file with new report.title") } print.summarytools(x[[i]], method = method, file = file, append = append, report.title = report.title, table.classes = table.classes, bootstrap.css = bootstrap.css, custom.css = custom.css, silent = silent, footnote = footnote, collapse = collapse, escape.pipe = escape.pipe, open.doc = open.doc, ...) } else if (i < length(x)) { print.summarytools(x[[i]], method = method, file = file, append = TRUE, table.classes = table.classes, silent = TRUE, footnote = footnote, collapse = collapse, escape.pipe = escape.pipe, group.only = TRUE, open.doc = open.doc, ...) } else { print.summarytools(x[[i]], method = method, file = file, append = TRUE, escape.pipe = escape.pipe, table.classes = table.classes, silent = silent, footnote = footnote, collapse = collapse, group.only = TRUE, open.doc = open.doc, ...) } } } else if (method == "render") { for (i in seq_along(x)) { if (i == 1) { html_content <- list(print.summarytools(x[[i]], method = method, table.classes = table.classes, bootstrap.css = bootstrap.css, custom.css = custom.css, silent = silent, footnote = NA, collapse = collapse, ...)) } else if (i < length(x)) { html_content[[i]] <- print.summarytools(x[[i]], method = method, table.classes = table.classes, silent = silent, footnote = NA, collapse = collapse, group.only = TRUE, ...) } else { html_content[[i]] <- print.summarytools(x[[i]], method = method, table.classes = table.classes, silent = silent, footnote = footnote, collapse = collapse, group.only = TRUE, ...) } } return(tagList(html_content)) } else if (method == "pander") { for (i in seq_along(x)) { if (i == 1) { print.summarytools(x[[1]], method = "pander", silent = silent, file = file, append = append, group.only = FALSE, escape.pipe = escape.pipe, ...) } else { print.summarytools(x[[i]], method = "pander", silent = silent, file = file, append = ifelse(file == "", FALSE, TRUE), group.only = TRUE, escape.pipe = escape.pipe, ...) } } } } else if (inherits(x = x, what = "list") && inherits(x[[1]], "summarytools") && attr(x[[1]], "st_type") == "freq") { if ("ignored" %in% names(attributes(x))) { message("Variable(s) ignored: ", paste(attr(x, "ignored"), collapse = ", ")) } if (method %in% c("viewer", "browser")) { file <- ifelse(file == "", paste0(tempfile(),".html"), file) if (grepl(tempdir(), file, fixed = TRUE)) { open.doc <- TRUE } else { open.doc <- FALSE } for (i in seq_along(x)) { if (i == 1) { print.summarytools(x[[1]], method = method, file = file, silent = silent, footnote = NA, collapse = collapse, append = FALSE, var.only = FALSE, report.title = report.title, escape.pipe = escape.pipe, table.classes = table.classes, bootstrap.css = bootstrap.css, custom.css = custom.css, ...) } else if (i < length(x)) { print.summarytools(x[[i]], method = method, file = file, append = TRUE, var.only = TRUE, silent = TRUE, footnote = NA, collapse = collapse, escape.pipe = escape.pipe, table.classes = table.classes, ...) } else { print.summarytools(x[[i]], method = method, file = file, append = TRUE, var.only = TRUE, silent = silent, footnote = footnote, collapse = collapse, escape.pipe = escape.pipe, table.classes = table.classes, open.doc = open.doc, ...) } } } else if (method == "render") { for (i in seq_along(x)) { if (i == 1) { html_content <- list(print.summarytools(x[[i]], method = method, silent = TRUE, footnote = NA, collapse = collapse, table.classes = table.classes, bootstrap.css = bootstrap.css, custom.css = custom.css, var.only = FALSE, ...)) } else if (i < length(x)) { html_content[[i]] <- print.summarytools(x[[i]], method = method, var.only = TRUE, silent = TRUE, footnote = NA, collapse = collapse, table.classes = table.classes, bootstrap.css = FALSE, var.only = TRUE, ...) } else { html_content[[i]] <- print.summarytools(x[[i]], method = method, var.only = TRUE, silent = silent, footnote = footnote, collapse = collapse, table.classes = table.classes, bootstrap.css = FALSE, var.only = TRUE, ...) } } return(tagList(html_content)) } else if (method == "pander") { var.only <- "headings" %in% names(list(...)) && !isTRUE(list(...)$headings) for (i in seq_along(x)) { if (i == 1) { print.summarytools(x[[1]], method = "pander", file = file, silent = silent, append = append, escape.pipe = escape.pipe, var.only = var.only, ...) } else { print.summarytools(x[[i]], method = "pander", file = file, silent = silent, append = ifelse(file == "", FALSE, TRUE), var.only = TRUE, escape.pipe = escape.pipe, ...) } } } } else { message( paste( "x must either be a summarytools object created with freq(), descr(),", "or a list of summarytools objects created using by()" ) ) } } stview <- view
Xs <- mwTensor::toyModel("coupled_Complex_Hard") Xs[[3]] <- Xs[[3]] + array(rbinom(20*23*24,1000,0.1), dim=c(20,23,24)) A1 <- mwTensor:::.randMat(5, 15) A2 <- mwTensor:::.randMat(5, 20) A3 <- mwTensor:::.randMat(5, 25) A4 <- mwTensor:::.randMat(5, 30) A5 <- mwTensor:::.randMat(5, 15) A6 <- mwTensor:::.randMat(5, 21) A7 <- mwTensor:::.randMat(5, 22) A8 <- mwTensor:::.randMat(5, 20) A9 <- mwTensor:::.randMat(5, 23) A10 <- mwTensor:::.randMat(5, 24) A11 <- mwTensor:::.randMat(5, 25) A12 <- mwTensor:::.randMat(5, 25) A13 <- mwTensor:::.randMat(5, 26) A14 <- mwTensor:::.randMat(5, 30) A15 <- mwTensor:::.randMat(5, 27) A16 <- mwTensor:::.randMat(5, 28) A17 <- mwTensor:::.randMat(5, 21) A18 <- mwTensor:::.randMat(5, 11) A19 <- mwTensor:::.randMat(5, 22) A20 <- mwTensor:::.randMat(5, 12) A21 <- mwTensor:::.randMat(5, 23) A22 <- mwTensor:::.randMat(5, 13) A23 <- mwTensor:::.randMat(5, 24) A24 <- mwTensor:::.randMat(5, 14) A25 <- mwTensor:::.randMat(5, 25) A26 <- mwTensor:::.randMat(5, 15) A27 <- mwTensor:::.randMat(5, 26) A28 <- mwTensor:::.randMat(5, 16) A29 <- mwTensor:::.randMat(5, 27) A30 <- mwTensor:::.randMat(5, 17) A31 <- mwTensor:::.randMat(5, 28) A32 <- mwTensor:::.randMat(5, 18) params <- new("CoupledMWCAParams", Xs=Xs, mask=list(X1=NULL, X2=NULL, X3=NULL, X4=NULL, X5=NULL, X6=NULL, X7=NULL, X8=NULL, X9=NULL, X10=NULL, X11=NULL, X12=NULL, X13=NULL), weights=list(X1=1, X2=1, X3=1, X4=1, X5=1, X6=1, X7=1, X8=1, X9=1, X10=1, X11=1, X12=1, X13=1), common_model=list(X1=list(I1="A1", I2="A2", I3="A3", I4="A4"), X2=list(I5="A5", I6="A6", I7="A7"), X3=list(I8="A8", I9="A9", I10="A10"), X4=list(I11="A11", I12="A12", I13="A13"), X5=list(I14="A14", I15="A15", I16="A16"), X6=list(I17="A17", I18="A18"), X7=list(I19="A19", I20="A20"), X8=list(I21="A21", I22="A22"), X9=list(I23="A23", I24="A24"), X10=list(I25="A25", I126="A26"), X11=list(I27="A27", I28="A28"), X12=list(I29="A29", I30="A30"), X13=list(I31="A31", I32="A32")), common_initial=list(A1=A1, A2=A2, A3=A3, A4=A4, A5=A5, A6=A6, A7=A7, A8=A8, A9=A9, A10=A10, A11=A11, A12=A12, A13=A13, A14=A14, A15=A15, A16=A16, A17=A17, A18=A18, A19=A19, A20=A20, A21=A21, A22=A22, A23=A23, A24=A24, A25=A25, A26=A26, A27=A27, A28=A28, A29=A29, A30=A30, A31=A31, A32=A32), common_algorithms=list(A1="myNMF", A2="myNMF", A3="myNMF", A4="myNMF", A5="myNMF", A6="myNMF", A7="myNMF", A8="myNMF", A9="myNMF", A10="myNMF", A11="myNMF", A12="myNMF", A13="myNMF", A14="myNMF", A15="myNMF", A16="myNMF", A17="myNMF", A18="myNMF", A19="myNMF", A20="myNMF", A21="myNMF", A22="myNMF", A23="myNMF", A24="myNMF", A25="myNMF", A26="myNMF", A27="myNMF", A28="myNMF", A29="myNMF", A30="myNMF", A31="myNMF", A32="myNMF"), common_iteration=list(A1=20, A2=20, A3=20, A4=20, A5=20, A6=20, A7=20, A8=20, A9=20, A10=20, A11=20, A12=20, A13=20, A14=20, A15=20, A16=20, A17=20, A18=20, A19=20, A20=20, A21=20, A22=20, A23=20, A24=20, A25=20, A26=20, A27=20, A28=20, A29=20, A30=20, A31=20, A32=20), common_decomp=list(A1=TRUE, A2=TRUE, A3=TRUE, A4=TRUE, A5=TRUE, A6=TRUE, A7=TRUE, A8=TRUE, A9=TRUE, A10=TRUE, A11=TRUE, A12=TRUE, A13=TRUE, A14=TRUE, A15=TRUE, A16=TRUE, A17=TRUE, A18=TRUE, A19=TRUE, A20=TRUE, A21=TRUE, A22=TRUE, A23=TRUE, A24=TRUE, A25=TRUE, A26=TRUE, A27=TRUE, A28=TRUE, A29=TRUE, A30=TRUE, A31=TRUE, A32=TRUE), common_fix=list(A1=FALSE, A2=FALSE, A3=FALSE, A4=FALSE, A5=FALSE, A6=FALSE, A7=FALSE, A8=FALSE, A9=FALSE, A10=FALSE, A11=FALSE, A12=FALSE, A13=FALSE, A14=FALSE, A15=FALSE, A16=FALSE, A17=FALSE, A18=FALSE, A19=FALSE, A20=FALSE, A21=FALSE, A22=FALSE, A23=FALSE, A24=FALSE, A25=FALSE, A26=FALSE, A27=FALSE, A28=FALSE, A29=FALSE, A30=FALSE, A31=FALSE, A32=FALSE), common_dims=list(A1=5, A2=5, A3=5, A4=5, A5=5, A6=5, A7=5, A8=5, A9=5, A10=5, A11=5, A12=5, A13=5, A14=5, A15=5, A16=5, A17=5, A18=5, A19=5, A20=5, A21=5, A22=5, A23=5, A24=5, A25=5, A26=5, A27=5, A28=5, A29=5, A30=5, A31=5, A32=5), common_transpose=list(A1=FALSE, A2=FALSE, A3=FALSE, A4=FALSE, A5=FALSE, A6=FALSE, A7=FALSE, A8=FALSE, A9=FALSE, A10=FALSE, A11=FALSE, A12=FALSE, A13=FALSE, A14=FALSE, A15=FALSE, A16=FALSE, A17=FALSE, A18=FALSE, A19=FALSE, A20=FALSE, A21=FALSE, A22=FALSE, A23=FALSE, A24=FALSE, A25=FALSE, A26=FALSE, A27=FALSE, A28=FALSE, A29=FALSE, A30=FALSE, A31=FALSE, A32=FALSE), common_coretype="Tucker", specific=FALSE, thr=1e-10, viz=TRUE, verbose=TRUE) out <- CoupledMWCA(params) expect_equal(is(out), "CoupledMWCAResult") rec <- mwTensor:::.recTensors(out@common_cores, out@common_factors, out@common_model) expect_equal(length(rec), 13)
mergeReport <- function(INFO, Daily, Sample = NA, surfaces=NA, verbose = TRUE, interactive=NULL){ if(!is.null(interactive)) { warning("The argument 'interactive' is deprecated. Please use 'verbose' instead") verbose <- interactive } if (verbose & all(!is.na(Sample))){ dataOverview(Daily, Sample) } if(exists("Daily") && !all(is.na(Daily)) && !("Q" %in% names(Daily))){ message("Please double check that the Daily dataframe is correctly defined.") } if(exists("INFO") && !any(c("param.units", "shortName", "paramShortName", "constitAbbrev", "drainSqKm") %in% names(INFO))){ message("Please double check that the INFO dataframe is correctly defined.") } if(all(!is.na(surfaces))){ if(!isTRUE(dim(surfaces)[3] == 3 && dim(surfaces)[1] == 14)){ message("Please double check that the surfaces matrix is correctly defined.") } } if(!all(is.na(Sample))){ if(!all((c("ConcLow","ConcHigh","Uncen","ConcAve") %in% names(Sample)))){ message("Please double check that the Sample dataframe is correctly defined.") } if(!all(is.na(Daily))){ if(all(c("Q","LogQ") %in% names(Sample))){ if(all(c("yHat","SE","ConcHat") %in% names(Sample))){ message("Merging new flow data will require modelEstimation to be rerun.") } Sample <- Sample[,!(names(Sample) %in% c("Q","LogQ"))] } Sample <- merge(Daily[,c("Date","Q","LogQ")],Sample,by = "Date",all.y = TRUE) if(any(is.na(Sample$Q))){ message("Some Sample dates do not have corresponding flow data. Not all EGRET functions will work correctly.") } } eList <- as.egret(INFO, Daily, Sample, surfaces) } else { eList <- as.egret(INFO, Daily, Sample = NA, surfaces = NA) } return(eList) }
foo = list(A = c(1, 2, 3, 4, 5), B = c(3, 4, 5, 6, 7), C = c(5, 6, 7, 8, 9), D = c(7, 8, 9, 10, 11)) test_that("encrihment_test: p-value", { expect_equal(class(enrichment_test(Venn(foo), "A", "B")), "list") expect_equal(class(enrichment_test(Venn(foo), 1, 2)), "list") expect_equal(class(enrichment_test(Venn(foo), 1, 2, univ = 1:1000)), "list") } ) test_that("enrichment_test: error", { expect_error(enrichment_test(Venn(foo), 1, 2, n = 100)) } )
G3DHFun<-function(df,model,G3DHtext2){ data<-sapply(df,as.character) dP1<-data[-1,which(data[1,]=="P1")];P1<-as.numeric(dP1[which(is.na(as.numeric(dP1))==FALSE)]);df11<-as.data.frame(P1) dP2<-data[-1,which(data[1,]=="P2")];P2<-as.numeric(dP2[which(is.na(as.numeric(dP2))==FALSE)]);df21<-as.data.frame(P2) dDH<-data[-1,which(data[1,]=="DH")];DH<-as.numeric(dDH[which(is.na(as.numeric(dDH))==FALSE)]);df31<-as.data.frame(DH) G3DHcolname <- c("Model","Log_Max_likelihood_Value","AIC","mean[P1]","mean[P2]","Var(P1 & P2)","mean[1]","mean[2]","mean[3]","mean[4]","mean[5]","mean[6]","mean[7]","mean[8]","mean[9]","mean[10]", "mean[11]","mean[12]","mean[13]","mean[14]","mean[15]","mean[16]","Var(Residual+Polygene)","Proportion[1]","Proportion[2]","Proportion[3]","Proportion[4]","Proportion[5]", "Proportion[6]","Proportion[7]","Proportion[8]","Proportion[9]","Proportion[10]","Proportion[11]","Proportion[12]","Proportion[13]","Proportion[14]","Proportion[15]","Proportion[16]", "m(m1)","m2","m3","d(da)","db","dc","dd","iab(i*)","iac","iad","ibc","ibd","icd","iabc","[d]","Major-Gene Var","Heritability(Major-Gene)(%)","Polygenes Var","Heritability(Polygenes-Var)(%)", "U1 square-P1","P(U1 square-P1)","U2 square-P1","P(U2 square-P1)","U3 square-P1","P(U3 square-P1)","nW square-P1","P(nW square-P1)","Dn-P1","P(Dn-P1)","U1 square-P2","P(U1 square-P2)","U2 square-P2","P(U2 square-P2)","U3 square-P2","P(U3 square-P2)","nW square-P2","P(nW square-P2)","Dn-P2","P(Dn-P2)", "U1 square-DH","P(U1 square-DH)","U2 square-DH","P(U2 square-DH)","U3 square-DH","P(U3 square-DH)","nW square-DH","P(nW square-DH)","Dn-DH","P(Dn-DH)") G3DHModelFun<-list(NA) G3DHModelFun[[1]] <- function(K1,logL,df11,df21,df31,G3DHtext2){ dataP1 <- as.matrix(as.numeric(df11[,1]));dataP2 <- as.matrix(as.numeric(df21[,1]));dataDH <- as.matrix(as.numeric(df31[,1])) n_samP1<-dim(dataP1)[1]; n_samP2<-dim(dataP2)[1];n_samDH<-dim(dataDH)[1] mean11<-mean(dataP1);mean12<-mean(dataP2) sigmaP1<- as.numeric(var(dataP1)); sigmaP2<- as.numeric(var(dataP2)) ss1<-(n_samP1-1)*sigmaP1; ss2<-(n_samP2-1)*sigmaP2 sigma0<-(ss1+ss2)/(n_samP1+n_samP2-2);sigma_dh<-as.numeric(var(dataDH)) m_esp<- 0.0001 ;m_fam<- as.numeric(G3DHtext2) mi <- as.matrix(1); mix_pi <-1.0; meanA<-mean(dataDH); sigma <-2.0*sigma0; sigmaA <-sigma_dh/2 abc <-logL(n_samP1,1,mix_pi,mean11,sigma,dataP1)+logL(n_samP2,1,mix_pi,mean12,sigma,dataP2)+logL(n_samDH,1,mix_pi,meanA,sigmaA,dataDH) AIC <- -2.0*abc+2.0*2.0 dataP1<-sort(dataP1) bmw_P1 <- matrix(0,n_samP1,1); bmwsl_P1 <- matrix(0,n_samP1,1) gg_P1 <- (dataP1 - mean11)/sqrt(as.vector(sigma)) bmw_P1[which(gg_P1>=0)] <- pnorm(gg_P1[gg_P1>=0]) bmw_P1[which(gg_P1<0)] <- 1 - pnorm(abs(gg_P1[gg_P1<0])) bmwsl_P1[,1] <- bmw_P1 P2_P1 <- rowSums(bmwsl_P1) nn<-dim(as.matrix(unique(P2_P1)))[1] if(nn<n_samP1){P2_P1<-P2_P1+runif(n_samP1)/1e4} dd_P1 <- as.matrix(c(sum(P2_P1),sum(P2_P1^2),sum((P2_P1-0.5)^2))) WW2_P1 <- 1/(12*n_samP1) + sum((P2_P1 - (as.matrix(c(1:n_samP1)) - 0.5)/n_samP1)^2) u_P1 <- as.matrix(c(12*n_samP1*((dd_P1[1]/n_samP1-0.5)^2),((45*n_samP1)/4)*((dd_P1[2]/n_samP1-1/3)^2),180*n_samP1*((dd_P1[3]/n_samP1-1/12)^2))) D_P1 <- as.numeric(ks.test(P2_P1,"punif")[[1]][1]) tt_P1 <- as.matrix(c((1 - pchisq(u_P1[1],1)),(1 - pchisq(u_P1[2],1)),(1 - pchisq(u_P1[3],1)),K1(WW2_P1),(1-pkolm(D_P1,n_samP1)))) dataP2<-sort(dataP2);bmw_P2 <- matrix(0,n_samP2,1); bmwsl_P2 <- matrix(0,n_samP2,1) gg_P2 <- (dataP2 - mean12)/sqrt(as.vector(sigma)) bmw_P2[which(gg_P2>=0)] <- pnorm(gg_P2[gg_P2>=0]) bmw_P2[which(gg_P2<0)] <- 1 - pnorm(abs(gg_P2[gg_P2<0])) bmwsl_P2[,1] <- bmw_P2 P2_P2 <- rowSums(bmwsl_P2) nn<-dim(as.matrix(unique(P2_P2)))[1] if(nn<n_samP2){P2_P2<-P2_P2+runif(n_samP2)/1e4} dd_P2 <- as.matrix(c(sum(P2_P2),sum(P2_P2^2),sum((P2_P2-0.5)^2))) WW2_P2 <- 1/(12*n_samP2) + sum((P2_P2 - (as.matrix(c(1:n_samP2)) - 0.5)/n_samP2)^2) u_P2 <- as.matrix(c(12*n_samP2*((dd_P2[1]/n_samP2-0.5)^2),((45*n_samP2)/4)*((dd_P2[2]/n_samP2-1/3)^2),180*n_samP2*((dd_P2[3]/n_samP2-1/12)^2))) D_P2 <- as.numeric(ks.test(P2_P2,"punif")[[1]][1]) tt_P2 <- as.matrix(c((1 - pchisq(u_P2[1],1)),(1 - pchisq(u_P2[2],1)),(1 - pchisq(u_P2[3],1)),K1(WW2_P2),(1-pkolm(D_P2,n_samP2)))) dataDH<-sort(dataDH);bmw <- matrix(0,n_samDH,1); bmwsl <- matrix(0,n_samDH,1) gg <- (dataDH - meanA)/sqrt(as.vector(sigmaA)) bmw[which(gg>=0)] <- pnorm(gg[gg>=0]) bmw[which(gg<0)] <- 1 - pnorm(abs(gg[gg<0])) bmwsl[,1] <- bmw*mix_pi P2 <- rowSums(bmwsl) nn<-dim(as.matrix(unique(P2)))[1] if(nn<n_samDH){P2<-P2+runif(n_samDH)/1e4} dd <- as.matrix(c(sum(P2),sum(P2^2),sum((P2-0.5)^2))) WW2 <- 1/(12*n_samDH) + sum((P2 - (as.matrix(c(1:n_samDH)) - 0.5)/n_samDH)^2) u <- as.matrix(c(12*n_samDH*((dd[1]/n_samDH-0.5)^2),((45*n_samDH)/4)*((dd[2]/n_samDH-1/3)^2),180*n_samDH*((dd[3]/n_samDH-1/12)^2))) D <- as.numeric(ks.test(P2,"punif")[[1]][1]) tt <- as.matrix(c((1 - pchisq(u[1],1)),(1 - pchisq(u[2],1)),(1 - pchisq(u[3],1)),K1(WW2),(1-pkolm(D,n_samDH)))) tt_P1[which(tt_P1>=10e-4)]<-round(tt_P1[which(tt_P1>=10e-4)],4);tt_P1[which(tt_P1<10e-4)]<-format(tt_P1[which(tt_P1<10e-4)],scientific=TRUE,digit=4) tt_P2[which(tt_P2>=10e-4)]<-round(tt_P2[which(tt_P2>=10e-4)],4);tt_P2[which(tt_P2<10e-4)]<-format(tt_P2[which(tt_P2<10e-4)],scientific=TRUE,digit=4) tt[which(tt>=10e-4)]<-round(tt[which(tt>=10e-4)],4);tt[which(tt<10e-4)]<-format(tt[which(tt<10e-4)],scientific=TRUE,digit=4) output <- data.frame("0MG",round(abc,4),round(AIC,4),round(mean11,4),round(mean12,4),round(sigma,4),round(t(meanA),4)," "," "," "," "," "," "," "," "," "," "," "," "," "," "," ",round(sigmaA,4),round(t(mix_pi),4), " "," "," "," "," "," "," "," "," "," "," "," "," "," "," "," "," "," "," "," "," "," "," "," "," "," "," "," "," "," "," "," "," "," ",round(u_P1[1],4),tt_P1[1],round(u_P1[2],4), tt_P1[2],round(u_P1[3],4),tt_P1[3],round(WW2_P1,4),tt_P1[4],round(D_P1,4),tt_P1[5],round(u_P2[1],4),tt_P2[1],round(u_P2[2],4), tt_P2[2],round(u_P2[3],4),tt_P2[3],round(WW2_P2,4),tt_P2[4],round(D_P2,4),tt_P2[5],round(u[1],4),tt[1],round(u[2],4), tt[2],round(u[3],4),tt[3],round(WW2,4),tt[4],round(D,4),tt[5]) output<-as.matrix(output) OUTPUT<-list(output,mi) return(OUTPUT) } G3DHModelFun[[2]] <- function(K1,logL,df11,df21,df31,G3DHtext2){ dataP1 <- as.matrix(as.numeric(df11[,1]));dataP2 <- as.matrix(as.numeric(df21[,1]));dataDH <- as.matrix(as.numeric(df31[,1])) n_samP1<-dim(dataP1)[1]; n_samP2<-dim(dataP2)[1];n_samDH<-dim(dataDH)[1] mean11<-mean(dataP1);mean12<-mean(dataP2) sigmaP1<- as.numeric(var(dataP1)); sigmaP2<- as.numeric(var(dataP2)) ss1<-(n_samP1-1)*sigmaP1; ss2<-(n_samP2-1)*sigmaP2 sigma0<-(ss1+ss2)/(n_samP1+n_samP2-2);sigma_dh<-as.numeric(var(dataDH)) m_esp<- 0.0001 ;m_fam<- as.numeric(G3DHtext2) d2<-2 ; mi <- as.matrix(c(0.5,0.5)); meanA<-mean(dataDH); sigma <- 2.0*sigma0; sigmaA <- matrix((sigma_dh/2),d2,1) a1 <- sqrt(sigma_dh/n_samDH) if(mean11<mean12){a1=-a1} meanA <- as.matrix(c((meanA+1.5*a1),(meanA-1.5*a1))) iteration <- 0; stopa <- 1000 WW <- matrix(0,d2,n_samDH); swx <- matrix(0,d2,1) L0 <- logL(n_samP1,1,1,mean11,sigma,dataP1)+logL(n_samP2,1,1,mean12,sigma,dataP2)+sum(log(dmixnorm(dataDH,meanA,sqrt(sigmaA),mi))) while(stopa > m_esp && iteration<=1000){ iteration <- iteration + 1 for(i in 1:d2) { WW[i,] <- mi[i]*dnorm(dataDH,meanA[i],sqrt(sigmaA[i]))/dmixnorm(dataDH,meanA,sqrt(sigmaA),mi) } mix_pi <- as.matrix(rowSums(WW)/n_samDH) sumwx <- WW%*%dataDH n0 <- n_samDH*mix_pi n0[n0<0.000001] <- 0.000001 mean11<-(sum(dataP1)+sumwx[1]*m_fam)/(n_samP1+n0[1]*m_fam) mean12<-(sum(dataP2)+sumwx[2]*m_fam)/(n_samP2+n0[2]*m_fam) meanA <- as.matrix(c(mean11,mean12)) ss1<- sum((dataP1-mean11)^2) ss2<- sum((dataP2-mean12)^2) for(i in 1:d2) { swx[i] <- WW[i,]%*%(dataDH-meanA[i])^2 } sigma<-(ss1+ss2+sum(swx)*m_fam)/(n_samP1+n_samP2+n_samDH) sigmaA<-matrix((sigma/m_fam),d2,1) L1 <- logL(n_samP1,1,1,mean11,sigma,dataP1)+logL(n_samP2,1,1,mean12,sigma,dataP2)+sum(log(dmixnorm(dataDH,meanA,sqrt(sigmaA),mix_pi))) stopa <- L1 - L0 L0 <- L1 if(stopa < 0) {stopa <- -stopa} } abc <- L1 AIC <- -2*abc + 2*3 aa<- matrix(c(1,1,1,-1),2,2) b_line1 <- meanA B1 <- solve(aa,b_line1) jj <- sigma_dh - sigmaA[1] if(jj < 0) {jj <- 0} ll <- jj/sigma_dh dataP1<-sort(dataP1);bmw_P1 <- matrix(0,n_samP1,1); bmwsl_P1 <- matrix(0,n_samP1,1) gg_P1 <- (dataP1 - mean11)/sqrt(as.vector(sigma)) bmw_P1[which(gg_P1>=0)] <- pnorm(gg_P1[gg_P1>=0]) bmw_P1[which(gg_P1<0)] <- 1 - pnorm(abs(gg_P1[gg_P1<0])) bmwsl_P1[,1] <- bmw_P1 P2_P1 <- rowSums(bmwsl_P1) nn<-dim(as.matrix(unique(P2_P1)))[1] if(nn<n_samP1){P2_P1<-P2_P1+runif(n_samP1)/1e4} dd_P1 <- as.matrix(c(sum(P2_P1),sum(P2_P1^2),sum((P2_P1-0.5)^2))) WW2_P1 <- 1/(12*n_samP1) + sum((P2_P1 - (as.matrix(c(1:n_samP1)) - 0.5)/n_samP1)^2) u_P1 <- as.matrix(c(12*n_samP1*((dd_P1[1]/n_samP1-0.5)^2),((45*n_samP1)/4)*((dd_P1[2]/n_samP1-1/3)^2),180*n_samP1*((dd_P1[3]/n_samP1-1/12)^2))) D_P1 <- as.numeric(ks.test(P2_P1,"punif")[[1]][1]) tt_P1 <- as.matrix(c((1 - pchisq(u_P1[1],1)),(1 - pchisq(u_P1[2],1)),(1 - pchisq(u_P1[3],1)),K1(WW2_P1),(1-pkolm(D_P1,n_samP1)))) dataP2<-sort(dataP2);bmw_P2 <- matrix(0,n_samP2,1); bmwsl_P2 <- matrix(0,n_samP2,1) gg_P2 <- (dataP2 - mean12)/sqrt(as.vector(sigma)) bmw_P2[which(gg_P2>=0)] <- pnorm(gg_P2[gg_P2>=0]) bmw_P2[which(gg_P2<0)] <- 1 - pnorm(abs(gg_P2[gg_P2<0])) bmwsl_P2[,1] <- bmw_P2 P2_P2 <- rowSums(bmwsl_P2) nn<-dim(as.matrix(unique(P2_P2)))[1] if(nn<n_samP2){P2_P2<-P2_P2+runif(n_samP2)/1e4} dd_P2 <- as.matrix(c(sum(P2_P2),sum(P2_P2^2),sum((P2_P2-0.5)^2))) WW2_P2 <- 1/(12*n_samP2) + sum((P2_P2 - (as.matrix(c(1:n_samP2)) - 0.5)/n_samP2)^2) u_P2 <- as.matrix(c(12*n_samP2*((dd_P2[1]/n_samP2-0.5)^2),((45*n_samP2)/4)*((dd_P2[2]/n_samP2-1/3)^2),180*n_samP2*((dd_P2[3]/n_samP2-1/12)^2))) D_P2 <- as.numeric(ks.test(P2_P2,"punif")[[1]][1]) tt_P2 <- as.matrix(c((1 - pchisq(u_P2[1],1)),(1 - pchisq(u_P2[2],1)),(1 - pchisq(u_P2[3],1)),K1(WW2_P2),(1-pkolm(D_P2,n_samP2)))) dataDH<-sort(dataDH);bmw <- matrix(0,n_samDH,1); bmwsl <- matrix(0,n_samDH,d2) for(i in 1:d2){ gg <- (dataDH - meanA[i])/sqrt(sigmaA[i]) bmw[which(gg>=0)] <- pnorm(gg[gg>=0]) bmw[which(gg<0)] <- 1 - pnorm(abs(gg[gg<0])) bmwsl[,i] <- bmw*mix_pi[i] } P2 <- rowSums(bmwsl) nn<-dim(as.matrix(unique(P2)))[1] if(nn<n_samDH){P2<-P2+runif(n_samDH)/1e4} dd <- as.matrix(c(sum(P2),sum(P2^2),sum((P2-0.5)^2))) WW2 <- 1/(12*n_samDH) + sum((P2 - (as.matrix(c(1:n_samDH)) - 0.5)/n_samDH)^2) u <- as.matrix(c(12*n_samDH*((dd[1]/n_samDH-0.5)^2),((45*n_samDH)/4)*((dd[2]/n_samDH-1/3)^2),180*n_samDH*((dd[3]/n_samDH-1/12)^2))) D <- as.numeric(ks.test(P2,"punif")[[1]][1]) tt <- as.matrix(c((1 - pchisq(u[1],1)),(1 - pchisq(u[2],1)),(1 - pchisq(u[3],1)),K1(WW2),(1-pkolm(D,n_samDH)))) tt_P1[which(tt_P1>=10e-4)]<-round(tt_P1[which(tt_P1>=10e-4)],4);tt_P1[which(tt_P1<10e-4)]<-format(tt_P1[which(tt_P1<10e-4)],scientific=TRUE,digit=4) tt_P2[which(tt_P2>=10e-4)]<-round(tt_P2[which(tt_P2>=10e-4)],4);tt_P2[which(tt_P2<10e-4)]<-format(tt_P2[which(tt_P2<10e-4)],scientific=TRUE,digit=4) tt[which(tt>=10e-4)]<-round(tt[which(tt>=10e-4)],4);tt[which(tt<10e-4)]<-format(tt[which(tt<10e-4)],scientific=TRUE,digit=4) output <- data.frame("1MG-A",round(abc,4),round(AIC,4),round(mean11,4),round(mean12,4),round(sigma,4),round(t(meanA),4)," "," "," "," "," "," "," "," "," "," "," "," "," "," ",round(sigmaA[1],4),round(t(mix_pi),4), " "," "," "," "," "," "," "," "," "," "," "," "," "," ",round(B1[1],4)," "," ",round(B1[2],4)," "," "," "," "," "," "," "," "," "," "," ",round(jj,4),round(ll*100,4)," "," ",round(u_P1[1],4),tt_P1[1],round(u_P1[2],4), tt_P1[2],round(u_P1[3],4),tt_P1[3],round(WW2_P1,4),tt_P1[4],round(D_P1,4),tt_P1[5],round(u_P2[1],4),tt_P2[1],round(u_P2[2],4), tt_P2[2],round(u_P2[3],4),tt_P2[3],round(WW2_P2,4),tt_P2[4],round(D_P2,4),tt_P2[5],round(u[1],4),tt[1],round(u[2],4), tt[2],round(u[3],4),tt[3],round(WW2,4),tt[4],round(D,4),tt[5]) output<-as.matrix(output) OUTPUT<-list(output,mi) return(OUTPUT) } G3DHModelFun[[3]] <- function(K1,logL,df11,df21,df31,G3DHtext2){ dataP1 <- as.matrix(as.numeric(df11[,1]));dataP2 <- as.matrix(as.numeric(df21[,1]));dataDH <- as.matrix(as.numeric(df31[,1])) n_samP1<-dim(dataP1)[1]; n_samP2<-dim(dataP2)[1];n_samDH<-dim(dataDH)[1] mean11<-mean(dataP1);mean12<-mean(dataP2) sigmaP1<- as.numeric(var(dataP1)); sigmaP2<- as.numeric(var(dataP2)) ss1<-(n_samP1-1)*sigmaP1; ss2<-(n_samP2-1)*sigmaP2 sigma0<-(ss1+ss2)/(n_samP1+n_samP2-2);sigma_dh<-as.numeric(var(dataDH)) m_esp<- 0.0001 ;m_fam<- as.numeric(G3DHtext2) d2<-4 ; mi <- as.matrix(c(0.25,0.25,0.25,0.25)) meanB<-mean(dataDH); sigmaB <- matrix((sigma_dh/2),d2,1); sigma <- sigma0 a1 <- sqrt(sigma_dh/n_samDH) if(mean11<mean12){a1=-a1} meanB <- as.matrix(c((meanB+3*a1),(meanB+a1),(meanB-a1),(meanB-3*a1))) iteration <- 0; stopa <- 1000 WW <- matrix(0,d2,n_samDH); swx <- matrix(0,d2,1) L0 <- logL(n_samP1,1,1,mean11,sigma,dataP1)+logL(n_samP2,1,1,mean12,sigma,dataP2)+sum(log(dmixnorm(dataDH,meanB,sqrt(sigmaB),mi))) while(stopa > m_esp && iteration<=1000){ iteration <- iteration + 1 for(i in 1:d2) { WW[i,] <- mi[i]*dnorm(dataDH,meanB[i],sqrt(sigmaB[i]))/dmixnorm(dataDH,meanB,sqrt(sigmaB),mi) } mix_pi <- as.matrix(rowSums(WW)/n_samDH) sumwx <- WW%*%dataDH n0 <- n_samDH*mix_pi n0[n0<0.000001] <- 0.000001 mean11<-(sum(dataP1)+sumwx[1]*m_fam)/(n_samP1+n0[1]*m_fam) mean12<-(sum(dataP2)+sumwx[4]*m_fam)/(n_samP2+n0[4]*m_fam) meanB <- as.matrix(c(mean11,sumwx[2]/n0[2],sumwx[3]/n0[3],mean12)) ss1<- sum((dataP1-mean11)^2) ss2<- sum((dataP2-mean12)^2) for(i in 1:d2) { swx[i] <- WW[i,]%*%(dataDH-meanB[i])^2 } sigma<-(ss1+ss2+sum(swx)*m_fam)/(n_samP1+n_samP2+n_samDH) sigmaB<-matrix((sigma/m_fam),d2,1) L1 <- logL(n_samP1,1,1,mean11,sigma,dataP1)+logL(n_samP2,1,1,mean12,sigma,dataP2)+sum(log(dmixnorm(dataDH,meanB,sqrt(sigmaB),mix_pi))) stopa <- L1 - L0 L0 <- L1 if(stopa < 0) {stopa <- -stopa} } abc <- L1 AIC <- -2*abc + 2*5 aa<- matrix(c(1,1,1,1, 1,1,-1,-1, 1,-1,1,-1, 1,-1,-1,1),4,4) b_line1 <- meanB B1 <- solve(aa,b_line1) jj <- sigma_dh - sigmaB[1] if(jj < 0) {jj <- 0} ll <- jj/sigma_dh dataP1<-sort(dataP1);bmw_P1 <- matrix(0,n_samP1,1); bmwsl_P1 <- matrix(0,n_samP1,1) gg_P1 <- (dataP1 - mean11)/sqrt(as.vector(sigma)) bmw_P1[which(gg_P1>=0)] <- pnorm(gg_P1[gg_P1>=0]) bmw_P1[which(gg_P1<0)] <- 1 - pnorm(abs(gg_P1[gg_P1<0])) bmwsl_P1[,1] <- bmw_P1 P2_P1 <- rowSums(bmwsl_P1) nn<-dim(as.matrix(unique(P2_P1)))[1] if(nn<n_samP1){P2_P1<-P2_P1+runif(n_samP1)/1e4} dd_P1 <- as.matrix(c(sum(P2_P1),sum(P2_P1^2),sum((P2_P1-0.5)^2))) WW2_P1 <- 1/(12*n_samP1) + sum((P2_P1 - (as.matrix(c(1:n_samP1)) - 0.5)/n_samP1)^2) u_P1 <- as.matrix(c(12*n_samP1*((dd_P1[1]/n_samP1-0.5)^2),((45*n_samP1)/4)*((dd_P1[2]/n_samP1-1/3)^2),180*n_samP1*((dd_P1[3]/n_samP1-1/12)^2))) D_P1 <- as.numeric(ks.test(P2_P1,"punif")[[1]][1]) tt_P1 <- as.matrix(c((1 - pchisq(u_P1[1],1)),(1 - pchisq(u_P1[2],1)),(1 - pchisq(u_P1[3],1)),K1(WW2_P1),(1-pkolm(D_P1,n_samP1)))) dataP2<-sort(dataP2);bmw_P2 <- matrix(0,n_samP2,1); bmwsl_P2 <- matrix(0,n_samP2,1) gg_P2 <- (dataP2 - mean12)/sqrt(as.vector(sigma)) bmw_P2[which(gg_P2>=0)] <- pnorm(gg_P2[gg_P2>=0]) bmw_P2[which(gg_P2<0)] <- 1 - pnorm(abs(gg_P2[gg_P2<0])) bmwsl_P2[,1] <- bmw_P2 P2_P2 <- rowSums(bmwsl_P2) nn<-dim(as.matrix(unique(P2_P2)))[1] if(nn<n_samP2){P2_P2<-P2_P2+runif(n_samP2)/1e4} dd_P2 <- as.matrix(c(sum(P2_P2),sum(P2_P2^2),sum((P2_P2-0.5)^2))) WW2_P2 <- 1/(12*n_samP2) + sum((P2_P2 - (as.matrix(c(1:n_samP2)) - 0.5)/n_samP2)^2) u_P2 <- as.matrix(c(12*n_samP2*((dd_P2[1]/n_samP2-0.5)^2),((45*n_samP2)/4)*((dd_P2[2]/n_samP2-1/3)^2),180*n_samP2*((dd_P2[3]/n_samP2-1/12)^2))) D_P2 <- as.numeric(ks.test(P2_P2,"punif")[[1]][1]) tt_P2 <- as.matrix(c((1 - pchisq(u_P2[1],1)),(1 - pchisq(u_P2[2],1)),(1 - pchisq(u_P2[3],1)),K1(WW2_P2),(1-pkolm(D_P2,n_samP2)))) dataDH<-sort(dataDH);bmw <- matrix(0,n_samDH,1); bmwsl <- matrix(0,n_samDH,d2) for(i in 1:d2){ gg <- (dataDH - meanB[i])/sqrt(sigmaB[i]) bmw[which(gg>=0)] <- pnorm(gg[gg>=0]) bmw[which(gg<0)] <- 1 - pnorm(abs(gg[gg<0])) bmwsl[,i] <- bmw*mix_pi[i] } P2 <- rowSums(bmwsl) nn<-dim(as.matrix(unique(P2)))[1] if(nn<n_samDH){P2<-P2+runif(n_samDH)/1e4} dd <- as.matrix(c(sum(P2),sum(P2^2),sum((P2-0.5)^2))) WW2 <- 1/(12*n_samDH) + sum((P2 - (as.matrix(c(1:n_samDH)) - 0.5)/n_samDH)^2) u <- as.matrix(c(12*n_samDH*((dd[1]/n_samDH-0.5)^2),((45*n_samDH)/4)*((dd[2]/n_samDH-1/3)^2),180*n_samDH*((dd[3]/n_samDH-1/12)^2))) D <- as.numeric(ks.test(P2,"punif")[[1]][1]) tt <- as.matrix(c((1 - pchisq(u[1],1)),(1 - pchisq(u[2],1)),(1 - pchisq(u[3],1)),K1(WW2),(1-pkolm(D,n_samDH)))) tt_P1[which(tt_P1>=10e-4)]<-round(tt_P1[which(tt_P1>=10e-4)],4);tt_P1[which(tt_P1<10e-4)]<-format(tt_P1[which(tt_P1<10e-4)],scientific=TRUE,digit=4) tt_P2[which(tt_P2>=10e-4)]<-round(tt_P2[which(tt_P2>=10e-4)],4);tt_P2[which(tt_P2<10e-4)]<-format(tt_P2[which(tt_P2<10e-4)],scientific=TRUE,digit=4) tt[which(tt>=10e-4)]<-round(tt[which(tt>=10e-4)],4);tt[which(tt<10e-4)]<-format(tt[which(tt<10e-4)],scientific=TRUE,digit=4) output <- data.frame("2MG-AI",round(abc,4),round(AIC,4),round(mean11,4),round(mean12,4),round(sigma,4),round(t(meanB),4)," "," "," "," "," "," "," "," "," "," "," "," ",round(sigmaB[1],4),round(t(mix_pi),4), " "," "," "," "," "," "," "," "," "," "," "," ",round(B1[1],4)," "," ",round(B1[2],4),round(B1[3],4)," "," ",round(B1[4],4)," "," "," "," "," "," "," ",round(jj,4),round(ll*100,4)," "," ",round(u_P1[1],4),tt_P1[1],round(u_P1[2],4), tt_P1[2],round(u_P1[3],4),tt_P1[3],round(WW2_P1,4),tt_P1[4],round(D_P1,4),tt_P1[5],round(u_P2[1],4),tt_P2[1],round(u_P2[2],4), tt_P2[2],round(u_P2[3],4),tt_P2[3],round(WW2_P2,4),tt_P2[4],round(D_P2,4),tt_P2[5],round(u[1],4),tt[1],round(u[2],4), tt[2],round(u[3],4),tt[3],round(WW2,4),tt[4],round(D,4),tt[5]) output<-as.matrix(output) OUTPUT<-list(output,mi) return(OUTPUT) } G3DHModelFun[[4]] <- function(K1,logL,df11,df21,df31,G3DHtext2){ dataP1 <- as.matrix(as.numeric(df11[,1]));dataP2 <- as.matrix(as.numeric(df21[,1]));dataDH <- as.matrix(as.numeric(df31[,1])) n_samP1<-dim(dataP1)[1]; n_samP2<-dim(dataP2)[1];n_samDH<-dim(dataDH)[1] mean11<-mean(dataP1);mean12<-mean(dataP2) sigmaP1<- as.numeric(var(dataP1)); sigmaP2<- as.numeric(var(dataP2)) ss1<-(n_samP1-1)*sigmaP1; ss2<-(n_samP2-1)*sigmaP2 sigma0<-(ss1+ss2)/(n_samP1+n_samP2-2);sigma_dh<-as.numeric(var(dataDH)) m_esp<- 0.0001 ;m_fam<- as.numeric(G3DHtext2) d2<-4 ; mi <- as.matrix(c(0.25,0.25,0.25,0.25)) meanB<-mean(dataDH); sigmaB <- matrix((sigma_dh/2),d2,1); sigma <- sigma0 a1 <- sqrt(sigma_dh/n_samDH) if(mean11<mean12){a1=-a1} meanB <- as.matrix(c((meanB+3*a1),(meanB+a1),(meanB-a1),(meanB-3*a1))) iteration <- 0; stopa <- 1000 WW <- matrix(0,d2,n_samDH); swx <- matrix(0,d2,1) L0 <- logL(n_samP1,1,1,mean11,sigma,dataP1)+logL(n_samP2,1,1,mean12,sigma,dataP2)+sum(log(dmixnorm(dataDH,meanB,sqrt(sigmaB),mi))) while(stopa > m_esp && iteration<=1000){ iteration <- iteration + 1 for(i in 1:d2) { WW[i,] <- mi[i]*dnorm(dataDH,meanB[i],sqrt(sigmaB[i]))/dmixnorm(dataDH,meanB,sqrt(sigmaB),mi) } mix_pi <- as.matrix(rowSums(WW)/n_samDH) sumwx <- WW%*%dataDH n0 <- n_samDH*mix_pi n0[n0<0.000001] <- 0.000001 s0<-matrix(0,4,1) s0[1]<-sum(dataP1)+m_fam*sumwx[1]; s0[2]<-n_samP1+m_fam*n0[1] s0[3]<-sum(dataP2)+m_fam*sumwx[4]; s0[4]<-n_samP2+m_fam*n0[4] rr<-(s0[1]/s0[2]+s0[3]/s0[4]-sumwx[2]/n0[2]-sumwx[3]/n0[3])/(sigma/s0[2]+sigma/s0[4]+sigmaB[2]/n0[2]+sigmaB[3]/n0[3]) mean11<-(s0[1]-rr*sigma)/s0[2] mean12<-(s0[3]-rr*sigma)/s0[4] meanB <- as.matrix(c(mean11,(sumwx[2]+sigmaB[2]*rr)/n0[2],(sumwx[3]+sigmaB[3]*rr)/n0[3],mean12)) ss1<- sum((dataP1-mean11)^2) ss2<- sum((dataP2-mean12)^2) for(i in 1:d2) { swx[i] <- WW[i,]%*%(dataDH-meanB[i])^2 } sigma<-(ss1+ss2+sum(swx)*m_fam)/(n_samP1+n_samP2+n_samDH) sigmaB<-matrix((sigma/m_fam),d2,1) L1 <- logL(n_samP1,1,1,mean11,sigma,dataP1)+logL(n_samP2,1,1,mean12,sigma,dataP2)+sum(log(dmixnorm(dataDH,meanB,sqrt(sigmaB),mix_pi))) stopa <- L1 - L0 L0 <- L1 if(stopa < 0) {stopa <- -stopa} } abc <- L1 AIC <- -2*abc + 2*4 aa<- matrix(c(1,1,1,1, 1,1,-1,-1, 1,-1,1,-1),4,3) b_line1 <- meanB B1 <- solve(t(aa)%*%aa)%*%(t(aa)%*%b_line1) jj <- sigma_dh - sigmaB[1] if(jj < 0) {jj <- 0} ll <- jj/sigma_dh dataP1<-sort(dataP1);bmw_P1 <- matrix(0,n_samP1,1); bmwsl_P1 <- matrix(0,n_samP1,1) gg_P1 <- (dataP1 - mean11)/sqrt(as.vector(sigma)) bmw_P1[which(gg_P1>=0)] <- pnorm(gg_P1[gg_P1>=0]) bmw_P1[which(gg_P1<0)] <- 1 - pnorm(abs(gg_P1[gg_P1<0])) bmwsl_P1[,1] <- bmw_P1 P2_P1 <- rowSums(bmwsl_P1) nn<-dim(as.matrix(unique(P2_P1)))[1] if(nn<n_samP1){P2_P1<-P2_P1+runif(n_samP1)/1e4} dd_P1 <- as.matrix(c(sum(P2_P1),sum(P2_P1^2),sum((P2_P1-0.5)^2))) WW2_P1 <- 1/(12*n_samP1) + sum((P2_P1 - (as.matrix(c(1:n_samP1)) - 0.5)/n_samP1)^2) u_P1 <- as.matrix(c(12*n_samP1*((dd_P1[1]/n_samP1-0.5)^2),((45*n_samP1)/4)*((dd_P1[2]/n_samP1-1/3)^2),180*n_samP1*((dd_P1[3]/n_samP1-1/12)^2))) D_P1 <- as.numeric(ks.test(P2_P1,"punif")[[1]][1]) tt_P1 <- as.matrix(c((1 - pchisq(u_P1[1],1)),(1 - pchisq(u_P1[2],1)),(1 - pchisq(u_P1[3],1)),K1(WW2_P1),(1-pkolm(D_P1,n_samP1)))) dataP2<-sort(dataP2);bmw_P2 <- matrix(0,n_samP2,1); bmwsl_P2 <- matrix(0,n_samP2,1) gg_P2 <- (dataP2 - mean12)/sqrt(as.vector(sigma)) bmw_P2[which(gg_P2>=0)] <- pnorm(gg_P2[gg_P2>=0]) bmw_P2[which(gg_P2<0)] <- 1 - pnorm(abs(gg_P2[gg_P2<0])) bmwsl_P2[,1] <- bmw_P2 P2_P2 <- rowSums(bmwsl_P2) nn<-dim(as.matrix(unique(P2_P2)))[1] if(nn<n_samP2){P2_P2<-P2_P2+runif(n_samP2)/1e4} dd_P2 <- as.matrix(c(sum(P2_P2),sum(P2_P2^2),sum((P2_P2-0.5)^2))) WW2_P2 <- 1/(12*n_samP2) + sum((P2_P2 - (as.matrix(c(1:n_samP2)) - 0.5)/n_samP2)^2) u_P2 <- as.matrix(c(12*n_samP2*((dd_P2[1]/n_samP2-0.5)^2),((45*n_samP2)/4)*((dd_P2[2]/n_samP2-1/3)^2),180*n_samP2*((dd_P2[3]/n_samP2-1/12)^2))) D_P2 <- as.numeric(ks.test(P2_P2,"punif")[[1]][1]) tt_P2 <- as.matrix(c((1 - pchisq(u_P2[1],1)),(1 - pchisq(u_P2[2],1)),(1 - pchisq(u_P2[3],1)),K1(WW2_P2),(1-pkolm(D_P2,n_samP2)))) dataDH<-sort(dataDH);bmw <- matrix(0,n_samDH,1); bmwsl <- matrix(0,n_samDH,d2) for(i in 1:d2){ gg <- (dataDH - meanB[i])/sqrt(sigmaB[i]) bmw[which(gg>=0)] <- pnorm(gg[gg>=0]) bmw[which(gg<0)] <- 1 - pnorm(abs(gg[gg<0])) bmwsl[,i] <- bmw*mix_pi[i] } P2 <- rowSums(bmwsl) nn<-dim(as.matrix(unique(P2)))[1] if(nn<n_samDH){P2<-P2+runif(n_samDH)/1e4} dd <- as.matrix(c(sum(P2),sum(P2^2),sum((P2-0.5)^2))) WW2 <- 1/(12*n_samDH) + sum((P2 - (as.matrix(c(1:n_samDH)) - 0.5)/n_samDH)^2) u <- as.matrix(c(12*n_samDH*((dd[1]/n_samDH-0.5)^2),((45*n_samDH)/4)*((dd[2]/n_samDH-1/3)^2),180*n_samDH*((dd[3]/n_samDH-1/12)^2))) D <- as.numeric(ks.test(P2,"punif")[[1]][1]) tt <- as.matrix(c((1 - pchisq(u[1],1)),(1 - pchisq(u[2],1)),(1 - pchisq(u[3],1)),K1(WW2),(1-pkolm(D,n_samDH)))) tt_P1[which(tt_P1>=10e-4)]<-round(tt_P1[which(tt_P1>=10e-4)],4);tt_P1[which(tt_P1<10e-4)]<-format(tt_P1[which(tt_P1<10e-4)],scientific=TRUE,digit=4) tt_P2[which(tt_P2>=10e-4)]<-round(tt_P2[which(tt_P2>=10e-4)],4);tt_P2[which(tt_P2<10e-4)]<-format(tt_P2[which(tt_P2<10e-4)],scientific=TRUE,digit=4) tt[which(tt>=10e-4)]<-round(tt[which(tt>=10e-4)],4);tt[which(tt<10e-4)]<-format(tt[which(tt<10e-4)],scientific=TRUE,digit=4) output <- data.frame("2MG-A",round(abc,4),round(AIC,4),round(mean11,4),round(mean12,4),round(sigma,4),round(t(meanB),4)," "," "," "," "," "," "," "," "," "," "," "," ",round(sigmaB[1],4),round(t(mix_pi),4), " "," "," "," "," "," "," "," "," "," "," "," ",round(B1[1],4)," "," ",round(B1[2],4),round(B1[3],4)," "," "," "," "," "," "," "," "," "," ",round(jj,4),round(ll*100,4)," "," ",round(u_P1[1],4),tt_P1[1],round(u_P1[2],4), tt_P1[2],round(u_P1[3],4),tt_P1[3],round(WW2_P1,4),tt_P1[4],round(D_P1,4),tt_P1[5],round(u_P2[1],4),tt_P2[1],round(u_P2[2],4), tt_P2[2],round(u_P2[3],4),tt_P2[3],round(WW2_P2,4),tt_P2[4],round(D_P2,4),tt_P2[5],round(u[1],4),tt[1],round(u[2],4), tt[2],round(u[3],4),tt[3],round(WW2,4),tt[4],round(D,4),tt[5]) output<-as.matrix(output) OUTPUT<-list(output,mi) return(OUTPUT) } G3DHModelFun[[5]] <- function(K1,logL,df11,df21,df31,G3DHtext2){ dataP1 <- as.matrix(as.numeric(df11[,1]));dataP2 <- as.matrix(as.numeric(df21[,1]));dataDH <- as.matrix(as.numeric(df31[,1])) n_samP1<-dim(dataP1)[1]; n_samP2<-dim(dataP2)[1];n_samDH<-dim(dataDH)[1] mean11<-mean(dataP1);mean12<-mean(dataP2) sigmaP1<- as.numeric(var(dataP1)); sigmaP2<- as.numeric(var(dataP2)) ss1<-(n_samP1-1)*sigmaP1; ss2<-(n_samP2-1)*sigmaP2 sigma0<-(ss1+ss2)/(n_samP1+n_samP2-2);sigma_dh<-as.numeric(var(dataDH)) m_esp<- 0.0001 ;m_fam<- as.numeric(G3DHtext2) d2<-3 mi <- as.matrix(c(0.25,0.5,0.25)) meanB<-mean(dataDH) sigmaB <- matrix((sigma_dh/2),d2,1) sigma <- sigma0 a1 <- sqrt(sigma_dh/n_samDH) if(mean11<mean12){a1=-a1} meanB <- as.matrix(c((meanB+2.5*a1),meanB,(meanB-2.5*a1))) iteration <- 0; stopa <- 1000 WW <- matrix(0,d2,n_samDH); swx <- matrix(0,d2,1) L0 <- logL(n_samP1,1,1,mean11,sigma,dataP1)+logL(n_samP2,1,1,mean12,sigma,dataP2)+sum(log(dmixnorm(dataDH,meanB,sqrt(sigmaB),mi))) while(stopa > m_esp && iteration<=1000){ iteration <- iteration + 1 for(i in 1:d2) { WW[i,] <- mi[i]*dnorm(dataDH,meanB[i],sqrt(sigmaB[i]))/dmixnorm(dataDH,meanB,sqrt(sigmaB),mi) } mix_pi <- as.matrix(rowSums(WW)/n_samDH) sumwx <- WW%*%dataDH n0 <- n_samDH*mix_pi n0[n0<0.000001] <- 0.000001 s0<-matrix(0,4,1) s0[1]<-sum(dataP1)+m_fam*sumwx[1];s0[2]=n_samP1+m_fam*n0[1] s0[3]<-sum(dataP2)+m_fam*sumwx[3];s0[4]=n_samP2+m_fam*n0[3] rr<-(s0[1]/s0[2]-2.0*sumwx[2]/n0[2]+s0[3]/s0[4])/(sigma/s0[2]+sigma/s0[4]+4*sigmaB[2]/n0[2]) mean11<-(s0[1]-rr*sigma)/s0[2] mean12<-(s0[3]-rr*sigma)/s0[4] meanB <- as.matrix(c(mean11,(sumwx[2]+2*sigmaB[2]*rr)/n0[2],mean12)) ss1<- sum((dataP1-mean11)^2) ss2<- sum((dataP2-mean12)^2) for(i in 1:d2) { swx[i] <- WW[i,]%*%(dataDH-meanB[i])^2 } sigma<-(ss1+ss2+sum(swx)*m_fam)/(n_samP1+n_samP2+n_samDH) sigmaB<-matrix((sigma/m_fam),d2,1) L1 <- logL(n_samP1,1,1,mean11,sigma,dataP1)+logL(n_samP2,1,1,mean12,sigma,dataP2)+sum(log(dmixnorm(dataDH,meanB,sqrt(sigmaB),mix_pi))) stopa <- L1 - L0 L0 <- L1 if(stopa < 0) {stopa <- -stopa} } abc <- L1 AIC <- -2*abc + 2*3 aa<- matrix(c(1,1,1,2,0,-2),3,2) b_line1 <- meanB B1 <- solve(t(aa)%*%aa)%*%(t(aa)%*%b_line1) jj <- sigma_dh - sigmaB[1] if(jj < 0) {jj <- 0} ll <- jj/sigma_dh dataP1<-sort(dataP1);bmw_P1 <- matrix(0,n_samP1,1); bmwsl_P1 <- matrix(0,n_samP1,1) gg_P1 <- (dataP1 - mean11)/sqrt(as.vector(sigma)) bmw_P1[which(gg_P1>=0)] <- pnorm(gg_P1[gg_P1>=0]) bmw_P1[which(gg_P1<0)] <- 1 - pnorm(abs(gg_P1[gg_P1<0])) bmwsl_P1[,1] <- bmw_P1 P2_P1 <- rowSums(bmwsl_P1) nn<-dim(as.matrix(unique(P2_P1)))[1] if(nn<n_samP1){P2_P1<-P2_P1+runif(n_samP1)/1e4} dd_P1 <- as.matrix(c(sum(P2_P1),sum(P2_P1^2),sum((P2_P1-0.5)^2))) WW2_P1 <- 1/(12*n_samP1) + sum((P2_P1 - (as.matrix(c(1:n_samP1)) - 0.5)/n_samP1)^2) u_P1 <- as.matrix(c(12*n_samP1*((dd_P1[1]/n_samP1-0.5)^2),((45*n_samP1)/4)*((dd_P1[2]/n_samP1-1/3)^2),180*n_samP1*((dd_P1[3]/n_samP1-1/12)^2))) D_P1 <- as.numeric(ks.test(P2_P1,"punif")[[1]][1]) tt_P1 <- as.matrix(c((1 - pchisq(u_P1[1],1)),(1 - pchisq(u_P1[2],1)),(1 - pchisq(u_P1[3],1)),K1(WW2_P1),(1-pkolm(D_P1,n_samP1)))) dataP2<-sort(dataP2);bmw_P2 <- matrix(0,n_samP2,1); bmwsl_P2 <- matrix(0,n_samP2,1) gg_P2 <- (dataP2 - mean12)/sqrt(as.vector(sigma)) bmw_P2[which(gg_P2>=0)] <- pnorm(gg_P2[gg_P2>=0]) bmw_P2[which(gg_P2<0)] <- 1 - pnorm(abs(gg_P2[gg_P2<0])) bmwsl_P2[,1] <- bmw_P2 P2_P2 <- rowSums(bmwsl_P2) nn<-dim(as.matrix(unique(P2_P2)))[1] if(nn<n_samP2){P2_P2<-P2_P2+runif(n_samP2)/1e4} dd_P2 <- as.matrix(c(sum(P2_P2),sum(P2_P2^2),sum((P2_P2-0.5)^2))) WW2_P2 <- 1/(12*n_samP2) + sum((P2_P2 - (as.matrix(c(1:n_samP2)) - 0.5)/n_samP2)^2) u_P2 <- as.matrix(c(12*n_samP2*((dd_P2[1]/n_samP2-0.5)^2),((45*n_samP2)/4)*((dd_P2[2]/n_samP2-1/3)^2),180*n_samP2*((dd_P2[3]/n_samP2-1/12)^2))) D_P2 <- as.numeric(ks.test(P2_P2,"punif")[[1]][1]) tt_P2 <- as.matrix(c((1 - pchisq(u_P2[1],1)),(1 - pchisq(u_P2[2],1)),(1 - pchisq(u_P2[3],1)),K1(WW2_P2),(1-pkolm(D_P2,n_samP2)))) dataDH<-sort(dataDH);bmw <- matrix(0,n_samDH,1); bmwsl <- matrix(0,n_samDH,d2) for(i in 1:d2){ gg <- (dataDH - meanB[i])/sqrt(sigmaB[i]) bmw[which(gg>=0)] <- pnorm(gg[gg>=0]) bmw[which(gg<0)] <- 1 - pnorm(abs(gg[gg<0])) bmwsl[,i] <- bmw*mix_pi[i] } P2 <- rowSums(bmwsl) nn<-dim(as.matrix(unique(P2)))[1] if(nn<n_samDH){P2<-P2+runif(n_samDH)/1e4} dd <- as.matrix(c(sum(P2),sum(P2^2),sum((P2-0.5)^2))) WW2 <- 1/(12*n_samDH) + sum((P2 - (as.matrix(c(1:n_samDH)) - 0.5)/n_samDH)^2) u <- as.matrix(c(12*n_samDH*((dd[1]/n_samDH-0.5)^2),((45*n_samDH)/4)*((dd[2]/n_samDH-1/3)^2),180*n_samDH*((dd[3]/n_samDH-1/12)^2))) D <- as.numeric(ks.test(P2,"punif")[[1]][1]) tt <- as.matrix(c((1 - pchisq(u[1],1)),(1 - pchisq(u[2],1)),(1 - pchisq(u[3],1)),K1(WW2),(1-pkolm(D,n_samDH)))) tt_P1[which(tt_P1>=10e-4)]<-round(tt_P1[which(tt_P1>=10e-4)],4);tt_P1[which(tt_P1<10e-4)]<-format(tt_P1[which(tt_P1<10e-4)],scientific=TRUE,digit=4) tt_P2[which(tt_P2>=10e-4)]<-round(tt_P2[which(tt_P2>=10e-4)],4);tt_P2[which(tt_P2<10e-4)]<-format(tt_P2[which(tt_P2<10e-4)],scientific=TRUE,digit=4) tt[which(tt>=10e-4)]<-round(tt[which(tt>=10e-4)],4);tt[which(tt<10e-4)]<-format(tt[which(tt<10e-4)],scientific=TRUE,digit=4) output <- data.frame("2MG-EA",round(abc,4),round(AIC,4),round(mean11,4),round(mean12,4),round(sigma,4),round(t(meanB),4)," "," "," "," "," "," "," "," "," "," "," "," "," ",round(sigmaB[1],4),round(t(mix_pi),4), " "," "," "," "," "," "," "," "," "," "," "," "," ",round(B1[1],4)," "," ",round(B1[2],4),round(B1[2],4)," "," "," "," "," "," "," "," "," "," ",round(jj,4),round(ll*100,4)," "," ",round(u_P1[1],4),tt_P1[1],round(u_P1[2],4), tt_P1[2],round(u_P1[3],4),tt_P1[3],round(WW2_P1,4),tt_P1[4],round(D_P1,4),tt_P1[5],round(u_P2[1],4),tt_P2[1],round(u_P2[2],4), tt_P2[2],round(u_P2[3],4),tt_P2[3],round(WW2_P2,4),tt_P2[4],round(D_P2,4),tt_P2[5],round(u[1],4),tt[1],round(u[2],4), tt[2],round(u[3],4),tt[3],round(WW2,4),tt[4],round(D,4),tt[5]) output<-as.matrix(output) OUTPUT<-list(output,mi) return(OUTPUT) } G3DHModelFun[[6]] <- function(K1,logL,df11,df21,df31,G3DHtext2){ dataP1 <- as.matrix(as.numeric(df11[,1]));dataP2 <- as.matrix(as.numeric(df21[,1]));dataDH <- as.matrix(as.numeric(df31[,1])) n_samP1<-dim(dataP1)[1]; n_samP2<-dim(dataP2)[1];n_samDH<-dim(dataDH)[1] mean11<-mean(dataP1);mean12<-mean(dataP2) sigmaP1<- as.numeric(var(dataP1)); sigmaP2<- as.numeric(var(dataP2)) ss1<-(n_samP1-1)*sigmaP1; ss2<-(n_samP2-1)*sigmaP2 sigma0<-(ss1+ss2)/(n_samP1+n_samP2-2);sigma_dh<-as.numeric(var(dataDH)) m_esp<- 0.0001 ;m_fam<- as.numeric(G3DHtext2) d2<-3 mi <- as.matrix(c(0.5,0.25,0.25)) meanB<-mean(dataDH) sigmaB <- matrix((sigma_dh/2),d2,1) sigma <- sigma0 a1 <- sqrt(sigma_dh/n_samDH) if(mean11<mean12){a1=-a1} meanB <- as.matrix(c((meanB+2*a1),meanB,(meanB-2*a1))) iteration <- 0; stopa <- 1000 WW <- matrix(0,d2,n_samDH); swx <- matrix(0,d2,1) L0 <- logL(n_samP1,1,1,mean11,sigma,dataP1)+logL(n_samP2,1,1,mean12,sigma,dataP2)+sum(log(dmixnorm(dataDH,meanB,sqrt(sigmaB),mi))) while(stopa > m_esp && iteration<=1000){ iteration <- iteration + 1 for(i in 1:d2) { WW[i,] <- mi[i]*dnorm(dataDH,meanB[i],sqrt(sigmaB[i]))/dmixnorm(dataDH,meanB,sqrt(sigmaB),mi) } mix_pi <- as.matrix(rowSums(WW)/n_samDH) sumwx <- WW%*%dataDH n0 <- n_samDH*mix_pi n0[n0<0.000001] <- 0.000001 mean11<-(sum(dataP1)+m_fam*sumwx[1])/(n_samP1+m_fam*n0[1]) mean12<-(sum(dataP2)+m_fam*sumwx[3])/(n_samP2+m_fam*n0[3]) meanB <- as.matrix(c(mean11,sumwx[2]/n0[2],mean12)) ss1<- sum((dataP1-mean11)^2) ss2<- sum((dataP2-mean12)^2) for(i in 1:d2) { swx[i] <- WW[i,]%*%(dataDH-meanB[i])^2 } sigma<-(ss1+ss2+sum(swx)*m_fam)/(n_samP1+n_samP2+n_samDH) sigmaB<-matrix((sigma/m_fam),d2,1) L1 <- logL(n_samP1,1,1,mean11,sigma,dataP1)+logL(n_samP2,1,1,mean12,sigma,dataP2)+sum(log(dmixnorm(dataDH,meanB,sqrt(sigmaB),mix_pi))) stopa <- L1 - L0 L0 <- L1 if(stopa < 0) {stopa <- -stopa} } abc <- L1 AIC <- -2*abc + 2*4 aa<- matrix(c(1,1,1, 1,-1,-1, 0,1,-1),3,3) b_line1 <- meanB B1 <- solve(aa,b_line1) jj <- sigma_dh - sigmaB[1] if(jj < 0) {jj <- 0} ll <- jj/sigma_dh dataP1<-sort(dataP1);bmw_P1 <- matrix(0,n_samP1,1); bmwsl_P1 <- matrix(0,n_samP1,1) gg_P1 <- (dataP1 - mean11)/sqrt(as.vector(sigma)) bmw_P1[which(gg_P1>=0)] <- pnorm(gg_P1[gg_P1>=0]) bmw_P1[which(gg_P1<0)] <- 1 - pnorm(abs(gg_P1[gg_P1<0])) bmwsl_P1[,1] <- bmw_P1 P2_P1 <- rowSums(bmwsl_P1) nn<-dim(as.matrix(unique(P2_P1)))[1] if(nn<n_samP1){P2_P1<-P2_P1+runif(n_samP1)/1e4} dd_P1 <- as.matrix(c(sum(P2_P1),sum(P2_P1^2),sum((P2_P1-0.5)^2))) WW2_P1 <- 1/(12*n_samP1) + sum((P2_P1 - (as.matrix(c(1:n_samP1)) - 0.5)/n_samP1)^2) u_P1 <- as.matrix(c(12*n_samP1*((dd_P1[1]/n_samP1-0.5)^2),((45*n_samP1)/4)*((dd_P1[2]/n_samP1-1/3)^2),180*n_samP1*((dd_P1[3]/n_samP1-1/12)^2))) D_P1 <- as.numeric(ks.test(P2_P1,"punif")[[1]][1]) tt_P1 <- as.matrix(c((1 - pchisq(u_P1[1],1)),(1 - pchisq(u_P1[2],1)),(1 - pchisq(u_P1[3],1)),K1(WW2_P1),(1-pkolm(D_P1,n_samP1)))) dataP2<-sort(dataP2);bmw_P2 <- matrix(0,n_samP2,1); bmwsl_P2 <- matrix(0,n_samP2,1) gg_P2 <- (dataP2 - mean12)/sqrt(as.vector(sigma)) bmw_P2[which(gg_P2>=0)] <- pnorm(gg_P2[gg_P2>=0]) bmw_P2[which(gg_P2<0)] <- 1 - pnorm(abs(gg_P2[gg_P2<0])) bmwsl_P2[,1] <- bmw_P2 P2_P2 <- rowSums(bmwsl_P2) nn<-dim(as.matrix(unique(P2_P2)))[1] if(nn<n_samP2){P2_P2<-P2_P2+runif(n_samP2)/1e4} dd_P2 <- as.matrix(c(sum(P2_P2),sum(P2_P2^2),sum((P2_P2-0.5)^2))) WW2_P2 <- 1/(12*n_samP2) + sum((P2_P2 - (as.matrix(c(1:n_samP2)) - 0.5)/n_samP2)^2) u_P2 <- as.matrix(c(12*n_samP2*((dd_P2[1]/n_samP2-0.5)^2),((45*n_samP2)/4)*((dd_P2[2]/n_samP2-1/3)^2),180*n_samP2*((dd_P2[3]/n_samP2-1/12)^2))) D_P2 <- as.numeric(ks.test(P2_P2,"punif")[[1]][1]) tt_P2 <- as.matrix(c((1 - pchisq(u_P2[1],1)),(1 - pchisq(u_P2[2],1)),(1 - pchisq(u_P2[3],1)),K1(WW2_P2),(1-pkolm(D_P2,n_samP2)))) dataDH<-sort(dataDH);bmw <- matrix(0,n_samDH,1); bmwsl <- matrix(0,n_samDH,d2) for(i in 1:d2){ gg <- (dataDH - meanB[i])/sqrt(sigmaB[i]) bmw[which(gg>=0)] <- pnorm(gg[gg>=0]) bmw[which(gg<0)] <- 1 - pnorm(abs(gg[gg<0])) bmwsl[,i] <- bmw*mix_pi[i] } P2 <- rowSums(bmwsl) nn<-dim(as.matrix(unique(P2)))[1] if(nn<n_samDH){P2<-P2+runif(n_samDH)/1e4} dd <- as.matrix(c(sum(P2),sum(P2^2),sum((P2-0.5)^2))) WW2 <- 1/(12*n_samDH) + sum((P2 - (as.matrix(c(1:n_samDH)) - 0.5)/n_samDH)^2) u <- as.matrix(c(12*n_samDH*((dd[1]/n_samDH-0.5)^2),((45*n_samDH)/4)*((dd[2]/n_samDH-1/3)^2),180*n_samDH*((dd[3]/n_samDH-1/12)^2))) D <- as.numeric(ks.test(P2,"punif")[[1]][1]) tt <- as.matrix(c((1 - pchisq(u[1],1)),(1 - pchisq(u[2],1)),(1 - pchisq(u[3],1)),K1(WW2),(1-pkolm(D,n_samDH)))) tt_P1[which(tt_P1>=10e-4)]<-round(tt_P1[which(tt_P1>=10e-4)],4);tt_P1[which(tt_P1<10e-4)]<-format(tt_P1[which(tt_P1<10e-4)],scientific=TRUE,digit=4) tt_P2[which(tt_P2>=10e-4)]<-round(tt_P2[which(tt_P2>=10e-4)],4);tt_P2[which(tt_P2<10e-4)]<-format(tt_P2[which(tt_P2<10e-4)],scientific=TRUE,digit=4) tt[which(tt>=10e-4)]<-round(tt[which(tt>=10e-4)],4);tt[which(tt<10e-4)]<-format(tt[which(tt<10e-4)],scientific=TRUE,digit=4) output <- data.frame("2MG-ED",round(abc,4),round(AIC,4),round(mean11,4),round(mean12,4),round(sigma,4),round(t(meanB),4)," "," "," "," "," "," "," "," "," "," "," "," "," ",round(sigmaB[1],4),round(t(mix_pi),4), " "," "," "," "," "," "," "," "," "," "," "," "," ",round(B1[1],4)," "," ",round(B1[2],4),round(B1[3],4)," "," "," "," "," "," "," "," "," "," ",round(jj,4),round(ll*100,4)," "," ",round(u_P1[1],4),tt_P1[1],round(u_P1[2],4), tt_P1[2],round(u_P1[3],4),tt_P1[3],round(WW2_P1,4),tt_P1[4],round(D_P1,4),tt_P1[5],round(u_P2[1],4),tt_P2[1],round(u_P2[2],4), tt_P2[2],round(u_P2[3],4),tt_P2[3],round(WW2_P2,4),tt_P2[4],round(D_P2,4),tt_P2[5],round(u[1],4),tt[1],round(u[2],4), tt[2],round(u[3],4),tt[3],round(WW2,4),tt[4],round(D,4),tt[5]) output<-as.matrix(output) OUTPUT<-list(output,mi) return(OUTPUT) } G3DHModelFun[[7]] <- function(K1,logL,df11,df21,df31,G3DHtext2){ dataP1 <- as.matrix(as.numeric(df11[,1]));dataP2 <- as.matrix(as.numeric(df21[,1]));dataDH <- as.matrix(as.numeric(df31[,1])) n_samP1<-dim(dataP1)[1]; n_samP2<-dim(dataP2)[1];n_samDH<-dim(dataDH)[1] mean11<-mean(dataP1);mean12<-mean(dataP2) sigmaP1<- as.numeric(var(dataP1)); sigmaP2<- as.numeric(var(dataP2)) ss1<-(n_samP1-1)*sigmaP1; ss2<-(n_samP2-1)*sigmaP2 sigma0<-(ss1+ss2)/(n_samP1+n_samP2-2);sigma_dh<-as.numeric(var(dataDH)) m_esp<- 0.0001 ;m_fam<- as.numeric(G3DHtext2) d2<-3 mi <- as.matrix(c(0.25,0.25,0.5)) meanB<-mean(dataDH) sigmaB <- matrix((sigma_dh/2),d2,1) sigma <- sigma0 a1 <- sqrt(sigma_dh/n_samDH) if(mean11<mean12){a1=-a1} meanB <- as.matrix(c((meanB+2*a1),meanB,(meanB-2*a1))) iteration <- 0; stopa <- 1000 WW <- matrix(0,d2,n_samDH); swx <- matrix(0,d2,1) L0 <- logL(n_samP1,1,1,mean11,sigma,dataP1)+logL(n_samP2,1,1,mean12,sigma,dataP2)+sum(log(dmixnorm(dataDH,meanB,sqrt(sigmaB),mi))) while(stopa > m_esp && iteration<=1000){ iteration <- iteration + 1 for(i in 1:d2) { WW[i,] <- mi[i]*dnorm(dataDH,meanB[i],sqrt(sigmaB[i]))/dmixnorm(dataDH,meanB,sqrt(sigmaB),mi) } mix_pi <- as.matrix(rowSums(WW)/n_samDH) sumwx <- WW%*%dataDH n0 <- n_samDH*mix_pi n0[n0<0.000001] <- 0.000001 mean11<-(sum(dataP1)+m_fam*sumwx[1])/(n_samP1+m_fam*n0[1]) mean12<-(sum(dataP2)+m_fam*sumwx[3])/(n_samP2+m_fam*n0[3]) meanB <- as.matrix(c(mean11,sumwx[2]/n0[2],mean12)) ss1<- sum((dataP1-mean11)^2) ss2<- sum((dataP2-mean12)^2) for(i in 1:d2) { swx[i] <- WW[i,]%*%(dataDH-meanB[i])^2 } sigma<-(ss1+ss2+sum(swx)*m_fam)/(n_samP1+n_samP2+n_samDH) sigmaB<-matrix((sigma/m_fam),d2,1) L1 <- logL(n_samP1,1,1,mean11,sigma,dataP1)+logL(n_samP2,1,1,mean12,sigma,dataP2)+sum(log(dmixnorm(dataDH,meanB,sqrt(sigmaB),mix_pi))) stopa <- L1 - L0 L0 <- L1 if(stopa < 0) {stopa <- -stopa} } abc <- L1 AIC <- -2*abc + 2*4 aa<- matrix(c(1,1,1, 1,1,-1, 1,-1,0),3,3) b_line1 <- meanB B1 <- solve(aa,b_line1) jj <- sigma_dh - sigmaB[1] if(jj < 0) {jj <- 0} ll <- jj/sigma_dh dataP1<-sort(dataP1);bmw_P1 <- matrix(0,n_samP1,1); bmwsl_P1 <- matrix(0,n_samP1,1) gg_P1 <- (dataP1 - mean11)/sqrt(as.vector(sigma)) bmw_P1[which(gg_P1>=0)] <- pnorm(gg_P1[gg_P1>=0]) bmw_P1[which(gg_P1<0)] <- 1 - pnorm(abs(gg_P1[gg_P1<0])) bmwsl_P1[,1] <- bmw_P1 P2_P1 <- rowSums(bmwsl_P1) nn<-dim(as.matrix(unique(P2_P1)))[1] if(nn<n_samP1){P2_P1<-P2_P1+runif(n_samP1)/1e4} dd_P1 <- as.matrix(c(sum(P2_P1),sum(P2_P1^2),sum((P2_P1-0.5)^2))) WW2_P1 <- 1/(12*n_samP1) + sum((P2_P1 - (as.matrix(c(1:n_samP1)) - 0.5)/n_samP1)^2) u_P1 <- as.matrix(c(12*n_samP1*((dd_P1[1]/n_samP1-0.5)^2),((45*n_samP1)/4)*((dd_P1[2]/n_samP1-1/3)^2),180*n_samP1*((dd_P1[3]/n_samP1-1/12)^2))) D_P1 <- as.numeric(ks.test(P2_P1,"punif")[[1]][1]) tt_P1 <- as.matrix(c((1 - pchisq(u_P1[1],1)),(1 - pchisq(u_P1[2],1)),(1 - pchisq(u_P1[3],1)),K1(WW2_P1),(1-pkolm(D_P1,n_samP1)))) dataP2<-sort(dataP2);bmw_P2 <- matrix(0,n_samP2,1); bmwsl_P2 <- matrix(0,n_samP2,1) gg_P2 <- (dataP2 - mean12)/sqrt(as.vector(sigma)) bmw_P2[which(gg_P2>=0)] <- pnorm(gg_P2[gg_P2>=0]) bmw_P2[which(gg_P2<0)] <- 1 - pnorm(abs(gg_P2[gg_P2<0])) bmwsl_P2[,1] <- bmw_P2 P2_P2 <- rowSums(bmwsl_P2) nn<-dim(as.matrix(unique(P2_P2)))[1] if(nn<n_samP2){P2_P2<-P2_P2+runif(n_samP2)/1e4} dd_P2 <- as.matrix(c(sum(P2_P2),sum(P2_P2^2),sum((P2_P2-0.5)^2))) WW2_P2 <- 1/(12*n_samP2) + sum((P2_P2 - (as.matrix(c(1:n_samP2)) - 0.5)/n_samP2)^2) u_P2 <- as.matrix(c(12*n_samP2*((dd_P2[1]/n_samP2-0.5)^2),((45*n_samP2)/4)*((dd_P2[2]/n_samP2-1/3)^2),180*n_samP2*((dd_P2[3]/n_samP2-1/12)^2))) D_P2 <- as.numeric(ks.test(P2_P2,"punif")[[1]][1]) tt_P2 <- as.matrix(c((1 - pchisq(u_P2[1],1)),(1 - pchisq(u_P2[2],1)),(1 - pchisq(u_P2[3],1)),K1(WW2_P2),(1-pkolm(D_P2,n_samP2)))) dataDH<-sort(dataDH);bmw <- matrix(0,n_samDH,1); bmwsl <- matrix(0,n_samDH,d2) for(i in 1:d2){ gg <- (dataDH - meanB[i])/sqrt(sigmaB[i]) bmw[which(gg>=0)] <- pnorm(gg[gg>=0]) bmw[which(gg<0)] <- 1 - pnorm(abs(gg[gg<0])) bmwsl[,i] <- bmw*mix_pi[i] } P2 <- rowSums(bmwsl) nn<-dim(as.matrix(unique(P2)))[1] if(nn<n_samDH){P2<-P2+runif(n_samDH)/1e4} dd <- as.matrix(c(sum(P2),sum(P2^2),sum((P2-0.5)^2))) WW2 <- 1/(12*n_samDH) + sum((P2 - (as.matrix(c(1:n_samDH)) - 0.5)/n_samDH)^2) u <- as.matrix(c(12*n_samDH*((dd[1]/n_samDH-0.5)^2),((45*n_samDH)/4)*((dd[2]/n_samDH-1/3)^2),180*n_samDH*((dd[3]/n_samDH-1/12)^2))) D <- as.numeric(ks.test(P2,"punif")[[1]][1]) tt <- as.matrix(c((1 - pchisq(u[1],1)),(1 - pchisq(u[2],1)),(1 - pchisq(u[3],1)),K1(WW2),(1-pkolm(D,n_samDH)))) tt_P1[which(tt_P1>=10e-4)]<-round(tt_P1[which(tt_P1>=10e-4)],4);tt_P1[which(tt_P1<10e-4)]<-format(tt_P1[which(tt_P1<10e-4)],scientific=TRUE,digit=4) tt_P2[which(tt_P2>=10e-4)]<-round(tt_P2[which(tt_P2>=10e-4)],4);tt_P2[which(tt_P2<10e-4)]<-format(tt_P2[which(tt_P2<10e-4)],scientific=TRUE,digit=4) tt[which(tt>=10e-4)]<-round(tt[which(tt>=10e-4)],4);tt[which(tt<10e-4)]<-format(tt[which(tt<10e-4)],scientific=TRUE,digit=4) output <- data.frame("2MG-ER",round(abc,4),round(AIC,4),round(mean11,4),round(mean12,4),round(sigma,4),round(t(meanB),4)," "," "," "," "," "," "," "," "," "," "," "," "," ",round(sigmaB[1],4),round(t(mix_pi),4), " "," "," "," "," "," "," "," "," "," "," "," "," ",round(B1[1],4)," "," ",round(B1[2],4),round(B1[3],4)," "," "," "," "," "," "," "," "," "," ",round(jj,4),round(ll*100,4)," "," ",round(u_P1[1],4),tt_P1[1],round(u_P1[2],4), tt_P1[2],round(u_P1[3],4),tt_P1[3],round(WW2_P1,4),tt_P1[4],round(D_P1,4),tt_P1[5],round(u_P2[1],4),tt_P2[1],round(u_P2[2],4), tt_P2[2],round(u_P2[3],4),tt_P2[3],round(WW2_P2,4),tt_P2[4],round(D_P2,4),tt_P2[5],round(u[1],4),tt[1],round(u[2],4), tt[2],round(u[3],4),tt[3],round(WW2,4),tt[4],round(D,4),tt[5]) output<-as.matrix(output) OUTPUT<-list(output,mi) return(OUTPUT) } G3DHModelFun[[8]] <- function(K1,logL,df11,df21,df31,G3DHtext2){ dataP1 <- as.matrix(as.numeric(df11[,1]));dataP2 <- as.matrix(as.numeric(df21[,1]));dataDH <- as.matrix(as.numeric(df31[,1])) n_samP1<-dim(dataP1)[1]; n_samP2<-dim(dataP2)[1];n_samDH<-dim(dataDH)[1] mean11<-mean(dataP1);mean12<-mean(dataP2) sigmaP1<- as.numeric(var(dataP1)); sigmaP2<- as.numeric(var(dataP2)) ss1<-(n_samP1-1)*sigmaP1; ss2<-(n_samP2-1)*sigmaP2 sigma0<-(ss1+ss2)/(n_samP1+n_samP2-2);sigma_dh<-as.numeric(var(dataDH)) m_esp<- 0.0001 ;m_fam<- as.numeric(G3DHtext2) d2<-3 mi <- as.matrix(c(0.25,0.5,0.25)) meanB<-mean(dataDH) sigmaB <- matrix((sigma_dh/2),d2,1) sigma <- sigma0 a1 <- sqrt(sigma_dh/n_samDH) if(mean11<mean12){a1=-a1} meanB <- as.matrix(c((meanB+2*a1),meanB,(meanB-2*a1))) iteration <- 0; stopa <- 1000 WW <- matrix(0,d2,n_samDH); swx <- matrix(0,d2,1) L0 <- logL(n_samP1,1,1,mean11,sigma,dataP1)+logL(n_samP2,1,1,mean12,sigma,dataP2)+sum(log(dmixnorm(dataDH,meanB,sqrt(sigmaB),mi))) while(stopa > m_esp && iteration<=1000){ iteration <- iteration + 1 for(i in 1:d2) { WW[i,] <- mi[i]*dnorm(dataDH,meanB[i],sqrt(sigmaB[i]))/dmixnorm(dataDH,meanB,sqrt(sigmaB),mi) } mix_pi <- as.matrix(rowSums(WW)/n_samDH) sumwx <- WW%*%dataDH n0 <- n_samDH*mix_pi n0[n0<0.000001] <- 0.000001 mean11<-(sum(dataP1)+m_fam*sumwx[1])/(n_samP1+m_fam*n0[1]) mean12<-(sum(dataP2)+m_fam*sumwx[3])/(n_samP2+m_fam*n0[3]) meanB <- as.matrix(c(mean11,sumwx[2]/n0[2],mean12)) ss1<- sum((dataP1-mean11)^2) ss2<- sum((dataP2-mean12)^2) for(i in 1:d2) { swx[i] <- WW[i,]%*%(dataDH-meanB[i])^2 } sigma<-(ss1+ss2+sum(swx)*m_fam)/(n_samP1+n_samP2+n_samDH) sigmaB<-matrix((sigma/m_fam),d2,1) L1 <- logL(n_samP1,1,1,mean11,sigma,dataP1)+logL(n_samP2,1,1,mean12,sigma,dataP2)+sum(log(dmixnorm(dataDH,meanB,sqrt(sigmaB),mix_pi))) stopa <- L1 - L0 L0 <- L1 if(stopa < 0) {stopa <- -stopa} } abc <- L1 AIC <- -2*abc + 2*4 aa<- matrix(c(1,1,1, 2,0,-2, 1,-1,1),3,3) b_line1 <- meanB B1 <- solve(aa,b_line1) jj <- sigma_dh - sigmaB[1] if(jj < 0) {jj <- 0} ll <- jj/sigma_dh dataP1<-sort(dataP1);bmw_P1 <- matrix(0,n_samP1,1); bmwsl_P1 <- matrix(0,n_samP1,1) gg_P1 <- (dataP1 - mean11)/sqrt(as.vector(sigma)) bmw_P1[which(gg_P1>=0)] <- pnorm(gg_P1[gg_P1>=0]) bmw_P1[which(gg_P1<0)] <- 1 - pnorm(abs(gg_P1[gg_P1<0])) bmwsl_P1[,1] <- bmw_P1 P2_P1 <- rowSums(bmwsl_P1) nn<-dim(as.matrix(unique(P2_P1)))[1] if(nn<n_samP1){P2_P1<-P2_P1+runif(n_samP1)/1e4} dd_P1 <- as.matrix(c(sum(P2_P1),sum(P2_P1^2),sum((P2_P1-0.5)^2))) WW2_P1 <- 1/(12*n_samP1) + sum((P2_P1 - (as.matrix(c(1:n_samP1)) - 0.5)/n_samP1)^2) u_P1 <- as.matrix(c(12*n_samP1*((dd_P1[1]/n_samP1-0.5)^2),((45*n_samP1)/4)*((dd_P1[2]/n_samP1-1/3)^2),180*n_samP1*((dd_P1[3]/n_samP1-1/12)^2))) D_P1 <- as.numeric(ks.test(P2_P1,"punif")[[1]][1]) tt_P1 <- as.matrix(c((1 - pchisq(u_P1[1],1)),(1 - pchisq(u_P1[2],1)),(1 - pchisq(u_P1[3],1)),K1(WW2_P1),(1-pkolm(D_P1,n_samP1)))) dataP2<-sort(dataP2);bmw_P2 <- matrix(0,n_samP2,1); bmwsl_P2 <- matrix(0,n_samP2,1) gg_P2 <- (dataP2 - mean12)/sqrt(as.vector(sigma)) bmw_P2[which(gg_P2>=0)] <- pnorm(gg_P2[gg_P2>=0]) bmw_P2[which(gg_P2<0)] <- 1 - pnorm(abs(gg_P2[gg_P2<0])) bmwsl_P2[,1] <- bmw_P2 P2_P2 <- rowSums(bmwsl_P2) nn<-dim(as.matrix(unique(P2_P2)))[1] if(nn<n_samP2){P2_P2<-P2_P2+runif(n_samP2)/1e4} dd_P2 <- as.matrix(c(sum(P2_P2),sum(P2_P2^2),sum((P2_P2-0.5)^2))) WW2_P2 <- 1/(12*n_samP2) + sum((P2_P2 - (as.matrix(c(1:n_samP2)) - 0.5)/n_samP2)^2) u_P2 <- as.matrix(c(12*n_samP2*((dd_P2[1]/n_samP2-0.5)^2),((45*n_samP2)/4)*((dd_P2[2]/n_samP2-1/3)^2),180*n_samP2*((dd_P2[3]/n_samP2-1/12)^2))) D_P2 <- as.numeric(ks.test(P2_P2,"punif")[[1]][1]) tt_P2 <- as.matrix(c((1 - pchisq(u_P2[1],1)),(1 - pchisq(u_P2[2],1)),(1 - pchisq(u_P2[3],1)),K1(WW2_P2),(1-pkolm(D_P2,n_samP2)))) dataDH<-sort(dataDH);bmw <- matrix(0,n_samDH,1); bmwsl <- matrix(0,n_samDH,d2) for(i in 1:d2){ gg <- (dataDH - meanB[i])/sqrt(sigmaB[i]) bmw[which(gg>=0)] <- pnorm(gg[gg>=0]) bmw[which(gg<0)] <- 1 - pnorm(abs(gg[gg<0])) bmwsl[,i] <- bmw*mix_pi[i] } P2 <- rowSums(bmwsl) nn<-dim(as.matrix(unique(P2)))[1] if(nn<n_samDH){P2<-P2+runif(n_samDH)/1e4} dd <- as.matrix(c(sum(P2),sum(P2^2),sum((P2-0.5)^2))) WW2 <- 1/(12*n_samDH) + sum((P2 - (as.matrix(c(1:n_samDH)) - 0.5)/n_samDH)^2) u <- as.matrix(c(12*n_samDH*((dd[1]/n_samDH-0.5)^2),((45*n_samDH)/4)*((dd[2]/n_samDH-1/3)^2),180*n_samDH*((dd[3]/n_samDH-1/12)^2))) D <- as.numeric(ks.test(P2,"punif")[[1]][1]) tt <- as.matrix(c((1 - pchisq(u[1],1)),(1 - pchisq(u[2],1)),(1 - pchisq(u[3],1)),K1(WW2),(1-pkolm(D,n_samDH)))) tt_P1[which(tt_P1>=10e-4)]<-round(tt_P1[which(tt_P1>=10e-4)],4);tt_P1[which(tt_P1<10e-4)]<-format(tt_P1[which(tt_P1<10e-4)],scientific=TRUE,digit=4) tt_P2[which(tt_P2>=10e-4)]<-round(tt_P2[which(tt_P2>=10e-4)],4);tt_P2[which(tt_P2<10e-4)]<-format(tt_P2[which(tt_P2<10e-4)],scientific=TRUE,digit=4) tt[which(tt>=10e-4)]<-round(tt[which(tt>=10e-4)],4);tt[which(tt<10e-4)]<-format(tt[which(tt<10e-4)],scientific=TRUE,digit=4) output <- data.frame("2MG-AE",round(abc,4),round(AIC,4),round(mean11,4),round(mean12,4),round(sigma,4),round(t(meanB),4)," "," "," "," "," "," "," "," "," "," "," "," "," ",round(sigmaB[1],4),round(t(mix_pi),4), " "," "," "," "," "," "," "," "," "," "," "," "," ",round(B1[1],4)," "," ",round(B1[2],4)," "," "," ",round(B1[3],4)," "," "," "," "," "," "," ",round(jj,4),round(ll*100,4)," "," ",round(u_P1[1],4),tt_P1[1],round(u_P1[2],4), tt_P1[2],round(u_P1[3],4),tt_P1[3],round(WW2_P1,4),tt_P1[4],round(D_P1,4),tt_P1[5],round(u_P2[1],4),tt_P2[1],round(u_P2[2],4), tt_P2[2],round(u_P2[3],4),tt_P2[3],round(WW2_P2,4),tt_P2[4],round(D_P2,4),tt_P2[5],round(u[1],4),tt[1],round(u[2],4), tt[2],round(u[3],4),tt[3],round(WW2,4),tt[4],round(D,4),tt[5]) output<-as.matrix(output) OUTPUT<-list(output,mi) return(OUTPUT) } G3DHModelFun[[9]] <- function(K1,logL,df11,df21,df31,G3DHtext2){ dataP1 <- as.matrix(as.numeric(df11[,1]));dataP2 <- as.matrix(as.numeric(df21[,1]));dataDH <- as.matrix(as.numeric(df31[,1])) n_samP1<-dim(dataP1)[1]; n_samP2<-dim(dataP2)[1];n_samDH<-dim(dataDH)[1] mean11<-mean(dataP1);mean12<-mean(dataP2) sigmaP1<- as.numeric(var(dataP1)); sigmaP2<- as.numeric(var(dataP2)) ss1<-(n_samP1-1)*sigmaP1; ss2<-(n_samP2-1)*sigmaP2 sigma0<-(ss1+ss2)/(n_samP1+n_samP2-2);sigma_dh<-as.numeric(var(dataDH)) m_esp<- 0.0001 ;m_fam<- as.numeric(G3DHtext2) d2<-2 mi <- as.matrix(c(0.25,0.75)) meanB<-mean(dataDH) sigmaB <- matrix((sigma_dh/2),d2,1) sigma <- sigma0 a1 <- sqrt(sigma_dh/n_samDH) if(mean11<mean12){a1=-a1} meanB <- as.matrix(c((meanB+2*a1),(meanB-2*a1))) iteration <- 0; stopa <- 1000 WW <- matrix(0,d2,n_samDH); swx <- matrix(0,d2,1) L0 <- logL(n_samP1,1,1,mean11,sigma,dataP1)+logL(n_samP2,1,1,mean12,sigma,dataP2)+sum(log(dmixnorm(dataDH,meanB,sqrt(sigmaB),mi))) while(stopa > m_esp && iteration<=1000){ iteration <- iteration + 1 for(i in 1:d2) { WW[i,] <- mi[i]*dnorm(dataDH,meanB[i],sqrt(sigmaB[i]))/dmixnorm(dataDH,meanB,sqrt(sigmaB),mi) } mix_pi <- as.matrix(rowSums(WW)/n_samDH) sumwx <- WW%*%dataDH n0 <- n_samDH*mix_pi n0[n0<0.000001] <- 0.000001 mean11<-(sum(dataP1)+m_fam*sumwx[1])/(n_samP1+m_fam*n0[1]) mean12<-(sum(dataP2)+m_fam*sumwx[2])/(n_samP2+m_fam*n0[2]) meanB <- as.matrix(c(mean11,mean12)) ss1<- sum((dataP1-mean11)^2) ss2<- sum((dataP2-mean12)^2) for(i in 1:d2) { swx[i] <- WW[i,]%*%(dataDH-meanB[i])^2 } sigma<-(ss1+ss2+sum(swx)*m_fam)/(n_samP1+n_samP2+n_samDH) sigmaB<-matrix((sigma/m_fam),d2,1) L1 <- logL(n_samP1,1,1,mean11,sigma,dataP1)+logL(n_samP2,1,1,mean12,sigma,dataP2)+sum(log(dmixnorm(dataDH,meanB,sqrt(sigmaB),mix_pi))) stopa <- L1 - L0 L0 <- L1 if(stopa < 0) {stopa <- -stopa} } abc <- L1 AIC <- -2*abc + 2*3 aa<- matrix(c(1,1,1,-1),2,2) b_line1 <- meanB B1 <- solve(aa,b_line1) jj <- sigma_dh - sigmaB[1] if(jj < 0) {jj <- 0} ll <- jj/sigma_dh dataP1<-sort(dataP1);bmw_P1 <- matrix(0,n_samP1,1); bmwsl_P1 <- matrix(0,n_samP1,1) gg_P1 <- (dataP1 - mean11)/sqrt(as.vector(sigma)) bmw_P1[which(gg_P1>=0)] <- pnorm(gg_P1[gg_P1>=0]) bmw_P1[which(gg_P1<0)] <- 1 - pnorm(abs(gg_P1[gg_P1<0])) bmwsl_P1[,1] <- bmw_P1 P2_P1 <- rowSums(bmwsl_P1) nn<-dim(as.matrix(unique(P2_P1)))[1] if(nn<n_samP1){P2_P1<-P2_P1+runif(n_samP1)/1e4} dd_P1 <- as.matrix(c(sum(P2_P1),sum(P2_P1^2),sum((P2_P1-0.5)^2))) WW2_P1 <- 1/(12*n_samP1) + sum((P2_P1 - (as.matrix(c(1:n_samP1)) - 0.5)/n_samP1)^2) u_P1 <- as.matrix(c(12*n_samP1*((dd_P1[1]/n_samP1-0.5)^2),((45*n_samP1)/4)*((dd_P1[2]/n_samP1-1/3)^2),180*n_samP1*((dd_P1[3]/n_samP1-1/12)^2))) D_P1 <- as.numeric(ks.test(P2_P1,"punif")[[1]][1]) tt_P1 <- as.matrix(c((1 - pchisq(u_P1[1],1)),(1 - pchisq(u_P1[2],1)),(1 - pchisq(u_P1[3],1)),K1(WW2_P1),(1-pkolm(D_P1,n_samP1)))) dataP2<-sort(dataP2);bmw_P2 <- matrix(0,n_samP2,1); bmwsl_P2 <- matrix(0,n_samP2,1) gg_P2 <- (dataP2 - mean12)/sqrt(as.vector(sigma)) bmw_P2[which(gg_P2>=0)] <- pnorm(gg_P2[gg_P2>=0]) bmw_P2[which(gg_P2<0)] <- 1 - pnorm(abs(gg_P2[gg_P2<0])) bmwsl_P2[,1] <- bmw_P2 P2_P2 <- rowSums(bmwsl_P2) nn<-dim(as.matrix(unique(P2_P2)))[1] if(nn<n_samP2){P2_P2<-P2_P2+runif(n_samP2)/1e4} dd_P2 <- as.matrix(c(sum(P2_P2),sum(P2_P2^2),sum((P2_P2-0.5)^2))) WW2_P2 <- 1/(12*n_samP2) + sum((P2_P2 - (as.matrix(c(1:n_samP2)) - 0.5)/n_samP2)^2) u_P2 <- as.matrix(c(12*n_samP2*((dd_P2[1]/n_samP2-0.5)^2),((45*n_samP2)/4)*((dd_P2[2]/n_samP2-1/3)^2),180*n_samP2*((dd_P2[3]/n_samP2-1/12)^2))) D_P2 <- as.numeric(ks.test(P2_P2,"punif")[[1]][1]) tt_P2 <- as.matrix(c((1 - pchisq(u_P2[1],1)),(1 - pchisq(u_P2[2],1)),(1 - pchisq(u_P2[3],1)),K1(WW2_P2),(1-pkolm(D_P2,n_samP2)))) dataDH<-sort(dataDH);bmw <- matrix(0,n_samDH,1); bmwsl <- matrix(0,n_samDH,d2) for(i in 1:d2){ gg <- (dataDH - meanB[i])/sqrt(sigmaB[i]) bmw[which(gg>=0)] <- pnorm(gg[gg>=0]) bmw[which(gg<0)] <- 1 - pnorm(abs(gg[gg<0])) bmwsl[,i] <- bmw*mix_pi[i] } P2 <- rowSums(bmwsl) nn<-dim(as.matrix(unique(P2)))[1] if(nn<n_samDH){P2<-P2+runif(n_samDH)/1e4} dd <- as.matrix(c(sum(P2),sum(P2^2),sum((P2-0.5)^2))) WW2 <- 1/(12*n_samDH) + sum((P2 - (as.matrix(c(1:n_samDH)) - 0.5)/n_samDH)^2) u <- as.matrix(c(12*n_samDH*((dd[1]/n_samDH-0.5)^2),((45*n_samDH)/4)*((dd[2]/n_samDH-1/3)^2),180*n_samDH*((dd[3]/n_samDH-1/12)^2))) D <- as.numeric(ks.test(P2,"punif")[[1]][1]) tt <- as.matrix(c((1 - pchisq(u[1],1)),(1 - pchisq(u[2],1)),(1 - pchisq(u[3],1)),K1(WW2),(1-pkolm(D,n_samDH)))) tt_P1[which(tt_P1>=10e-4)]<-round(tt_P1[which(tt_P1>=10e-4)],4);tt_P1[which(tt_P1<10e-4)]<-format(tt_P1[which(tt_P1<10e-4)],scientific=TRUE,digit=4) tt_P2[which(tt_P2>=10e-4)]<-round(tt_P2[which(tt_P2>=10e-4)],4);tt_P2[which(tt_P2<10e-4)]<-format(tt_P2[which(tt_P2<10e-4)],scientific=TRUE,digit=4) tt[which(tt>=10e-4)]<-round(tt[which(tt>=10e-4)],4);tt[which(tt<10e-4)]<-format(tt[which(tt<10e-4)],scientific=TRUE,digit=4) output <- data.frame("2MG-CE",round(abc,4),round(AIC,4),round(mean11,4),round(mean12,4),round(sigma,4),round(t(meanB),4)," "," "," "," "," "," "," "," "," "," "," "," "," "," ",round(sigmaB[1],4),round(t(mix_pi),4), " "," "," "," "," "," "," "," "," "," "," "," "," "," ",round(B1[1],4)," "," "," "," "," "," ",round(B1[2],4)," "," "," "," "," "," "," ",round(jj,4),round(ll*100,4)," "," ",round(u_P1[1],4),tt_P1[1],round(u_P1[2],4), tt_P1[2],round(u_P1[3],4),tt_P1[3],round(WW2_P1,4),tt_P1[4],round(D_P1,4),tt_P1[5],round(u_P2[1],4),tt_P2[1],round(u_P2[2],4), tt_P2[2],round(u_P2[3],4),tt_P2[3],round(WW2_P2,4),tt_P2[4],round(D_P2,4),tt_P2[5],round(u[1],4),tt[1],round(u[2],4), tt[2],round(u[3],4),tt[3],round(WW2,4),tt[4],round(D,4),tt[5]) output<-as.matrix(output) OUTPUT<-list(output,mi) return(OUTPUT) } G3DHModelFun[[10]] <- function(K1,logL,df11,df21,df31,G3DHtext2){ dataP1 <- as.matrix(as.numeric(df11[,1]));dataP2 <- as.matrix(as.numeric(df21[,1]));dataDH <- as.matrix(as.numeric(df31[,1])) n_samP1<-dim(dataP1)[1]; n_samP2<-dim(dataP2)[1];n_samDH<-dim(dataDH)[1] mean11<-mean(dataP1);mean12<-mean(dataP2) sigmaP1<- as.numeric(var(dataP1)); sigmaP2<- as.numeric(var(dataP2)) ss1<-(n_samP1-1)*sigmaP1; ss2<-(n_samP2-1)*sigmaP2 sigma0<-(ss1+ss2)/(n_samP1+n_samP2-2);sigma_dh<-as.numeric(var(dataDH)) m_esp<- 0.0001 ;m_fam<- as.numeric(G3DHtext2) d2<-2 mi <- as.matrix(c(0.75,0.25)) meanB<-mean(dataDH) sigmaB <- matrix((sigma_dh/2),d2,1) sigma <- sigma0 a1 <- sqrt(sigma_dh/n_samDH) if(mean11<mean12){a1=-a1} meanB <- as.matrix(c((meanB+2*a1),(meanB-2*a1))) iteration <- 0; stopa <- 1000 WW <- matrix(0,d2,n_samDH); swx <- matrix(0,d2,1) L0 <- logL(n_samP1,1,1,mean11,sigma,dataP1)+logL(n_samP2,1,1,mean12,sigma,dataP2)+sum(log(dmixnorm(dataDH,meanB,sqrt(sigmaB),mi))) while(stopa > m_esp && iteration<=1000){ iteration <- iteration + 1 for(i in 1:d2) { WW[i,] <- mi[i]*dnorm(dataDH,meanB[i],sqrt(sigmaB[i]))/dmixnorm(dataDH,meanB,sqrt(sigmaB),mi) } mix_pi <- as.matrix(rowSums(WW)/n_samDH) sumwx <- WW%*%dataDH n0 <- n_samDH*mix_pi n0[n0<0.000001] <- 0.000001 mean11<-(sum(dataP1)+m_fam*sumwx[1])/(n_samP1+m_fam*n0[1]) mean12<-(sum(dataP2)+m_fam*sumwx[2])/(n_samP2+m_fam*n0[2]) meanB <- as.matrix(c(mean11,mean12)) ss1<- sum((dataP1-mean11)^2) ss2<- sum((dataP2-mean12)^2) for(i in 1:d2) { swx[i] <- WW[i,]%*%(dataDH-meanB[i])^2 } sigma<-(ss1+ss2+sum(swx)*m_fam)/(n_samP1+n_samP2+n_samDH) sigmaB<-matrix((sigma/m_fam),d2,1) L1 <- logL(n_samP1,1,1,mean11,sigma,dataP1)+logL(n_samP2,1,1,mean12,sigma,dataP2)+sum(log(dmixnorm(dataDH,meanB,sqrt(sigmaB),mix_pi))) stopa <- L1 - L0 L0 <- L1 if(stopa < 0) {stopa <- -stopa} } abc <- L1 AIC <- -2*abc + 2*3 aa<- matrix(c(1,1,1,-1),2,2) b_line1 <- meanB B1 <- solve(aa,b_line1) jj <- sigma_dh - sigmaB[1] if(jj < 0) {jj <- 0} ll <- jj/sigma_dh dataP1<-sort(dataP1);bmw_P1 <- matrix(0,n_samP1,1); bmwsl_P1 <- matrix(0,n_samP1,1) gg_P1 <- (dataP1 - mean11)/sqrt(as.vector(sigma)) bmw_P1[which(gg_P1>=0)] <- pnorm(gg_P1[gg_P1>=0]) bmw_P1[which(gg_P1<0)] <- 1 - pnorm(abs(gg_P1[gg_P1<0])) bmwsl_P1[,1] <- bmw_P1 P2_P1 <- rowSums(bmwsl_P1) nn<-dim(as.matrix(unique(P2_P1)))[1] if(nn<n_samP1){P2_P1<-P2_P1+runif(n_samP1)/1e4} dd_P1 <- as.matrix(c(sum(P2_P1),sum(P2_P1^2),sum((P2_P1-0.5)^2))) WW2_P1 <- 1/(12*n_samP1) + sum((P2_P1 - (as.matrix(c(1:n_samP1)) - 0.5)/n_samP1)^2) u_P1 <- as.matrix(c(12*n_samP1*((dd_P1[1]/n_samP1-0.5)^2),((45*n_samP1)/4)*((dd_P1[2]/n_samP1-1/3)^2),180*n_samP1*((dd_P1[3]/n_samP1-1/12)^2))) D_P1 <- as.numeric(ks.test(P2_P1,"punif")[[1]][1]) tt_P1 <- as.matrix(c((1 - pchisq(u_P1[1],1)),(1 - pchisq(u_P1[2],1)),(1 - pchisq(u_P1[3],1)),K1(WW2_P1),(1-pkolm(D_P1,n_samP1)))) dataP2<-sort(dataP2);bmw_P2 <- matrix(0,n_samP2,1); bmwsl_P2 <- matrix(0,n_samP2,1) gg_P2 <- (dataP2 - mean12)/sqrt(as.vector(sigma)) bmw_P2[which(gg_P2>=0)] <- pnorm(gg_P2[gg_P2>=0]) bmw_P2[which(gg_P2<0)] <- 1 - pnorm(abs(gg_P2[gg_P2<0])) bmwsl_P2[,1] <- bmw_P2 P2_P2 <- rowSums(bmwsl_P2) nn<-dim(as.matrix(unique(P2_P2)))[1] if(nn<n_samP2){P2_P2<-P2_P2+runif(n_samP2)/1e4} dd_P2 <- as.matrix(c(sum(P2_P2),sum(P2_P2^2),sum((P2_P2-0.5)^2))) WW2_P2 <- 1/(12*n_samP2) + sum((P2_P2 - (as.matrix(c(1:n_samP2)) - 0.5)/n_samP2)^2) u_P2 <- as.matrix(c(12*n_samP2*((dd_P2[1]/n_samP2-0.5)^2),((45*n_samP2)/4)*((dd_P2[2]/n_samP2-1/3)^2),180*n_samP2*((dd_P2[3]/n_samP2-1/12)^2))) D_P2 <- as.numeric(ks.test(P2_P2,"punif")[[1]][1]) tt_P2 <- as.matrix(c((1 - pchisq(u_P2[1],1)),(1 - pchisq(u_P2[2],1)),(1 - pchisq(u_P2[3],1)),K1(WW2_P2),(1-pkolm(D_P2,n_samP2)))) dataDH<-sort(dataDH);bmw <- matrix(0,n_samDH,1); bmwsl <- matrix(0,n_samDH,d2) for(i in 1:d2){ gg <- (dataDH - meanB[i])/sqrt(sigmaB[i]) bmw[which(gg>=0)] <- pnorm(gg[gg>=0]) bmw[which(gg<0)] <- 1 - pnorm(abs(gg[gg<0])) bmwsl[,i] <- bmw*mix_pi[i] } P2 <- rowSums(bmwsl) nn<-dim(as.matrix(unique(P2)))[1] if(nn<n_samDH){P2<-P2+runif(n_samDH)/1e4} dd <- as.matrix(c(sum(P2),sum(P2^2),sum((P2-0.5)^2))) WW2 <- 1/(12*n_samDH) + sum((P2 - (as.matrix(c(1:n_samDH)) - 0.5)/n_samDH)^2) u <- as.matrix(c(12*n_samDH*((dd[1]/n_samDH-0.5)^2),((45*n_samDH)/4)*((dd[2]/n_samDH-1/3)^2),180*n_samDH*((dd[3]/n_samDH-1/12)^2))) D <- as.numeric(ks.test(P2,"punif")[[1]][1]) tt <- as.matrix(c((1 - pchisq(u[1],1)),(1 - pchisq(u[2],1)),(1 - pchisq(u[3],1)),K1(WW2),(1-pkolm(D,n_samDH)))) tt_P1[which(tt_P1>=10e-4)]<-round(tt_P1[which(tt_P1>=10e-4)],4);tt_P1[which(tt_P1<10e-4)]<-format(tt_P1[which(tt_P1<10e-4)],scientific=TRUE,digit=4) tt_P2[which(tt_P2>=10e-4)]<-round(tt_P2[which(tt_P2>=10e-4)],4);tt_P2[which(tt_P2<10e-4)]<-format(tt_P2[which(tt_P2<10e-4)],scientific=TRUE,digit=4) tt[which(tt>=10e-4)]<-round(tt[which(tt>=10e-4)],4);tt[which(tt<10e-4)]<-format(tt[which(tt<10e-4)],scientific=TRUE,digit=4) output <- data.frame("2MG-DE",round(abc,4),round(AIC,4),round(mean11,4),round(mean12,4),round(sigma,4),round(t(meanB),4)," "," "," "," "," "," "," "," "," "," "," "," "," "," ",round(sigmaB[1],4),round(t(mix_pi),4), " "," "," "," "," "," "," "," "," "," "," "," "," "," ",round(B1[1],4)," "," "," "," "," "," ",round(B1[2],4)," "," "," "," "," "," "," ",round(jj,4),round(ll*100,4)," "," ",round(u_P1[1],4),tt_P1[1],round(u_P1[2],4), tt_P1[2],round(u_P1[3],4),tt_P1[3],round(WW2_P1,4),tt_P1[4],round(D_P1,4),tt_P1[5],round(u_P2[1],4),tt_P2[1],round(u_P2[2],4), tt_P2[2],round(u_P2[3],4),tt_P2[3],round(WW2_P2,4),tt_P2[4],round(D_P2,4),tt_P2[5],round(u[1],4),tt[1],round(u[2],4), tt[2],round(u[3],4),tt[3],round(WW2,4),tt[4],round(D,4),tt[5]) output<-as.matrix(output) OUTPUT<-list(output,mi) return(OUTPUT) } G3DHModelFun[[11]] <- function(K1,logL,df11,df21,df31,G3DHtext2){ dataP1 <- as.matrix(as.numeric(df11[,1]));dataP2 <- as.matrix(as.numeric(df21[,1]));dataDH <- as.matrix(as.numeric(df31[,1])) n_samP1<-dim(dataP1)[1]; n_samP2<-dim(dataP2)[1];n_samDH<-dim(dataDH)[1] mean11<-mean(dataP1);mean12<-mean(dataP2) sigmaP1<- as.numeric(var(dataP1)); sigmaP2<- as.numeric(var(dataP2)) ss1<-(n_samP1-1)*sigmaP1; ss2<-(n_samP2-1)*sigmaP2 sigma0<-(ss1+ss2)/(n_samP1+n_samP2-2);sigma_dh<-as.numeric(var(dataDH)) m_esp<- 0.0001 ;m_fam<- as.numeric(G3DHtext2) d2<-2 mi <- as.matrix(c(0.75,0.25)) meanB<-mean(dataDH) sigmaB <- matrix((sigma_dh/2),d2,1) sigma <- sigma0 a1 <- sqrt(sigma_dh/n_samDH) if(mean11<mean12){a1=-a1} meanB <- as.matrix(c((meanB+2*a1),(meanB-2*a1))) iteration <- 0; stopa <- 1000 WW <- matrix(0,d2,n_samDH); swx <- matrix(0,d2,1) L0 <- logL(n_samP1,1,1,mean11,sigma,dataP1)+logL(n_samP2,1,1,mean12,sigma,dataP2)+sum(log(dmixnorm(dataDH,meanB,sqrt(sigmaB),mi))) while(stopa > m_esp && iteration<=1000){ iteration <- iteration + 1 for(i in 1:d2) { WW[i,] <- mi[i]*dnorm(dataDH,meanB[i],sqrt(sigmaB[i]))/dmixnorm(dataDH,meanB,sqrt(sigmaB),mi) } mix_pi <- as.matrix(rowSums(WW)/n_samDH) sumwx <- WW%*%dataDH n0 <- n_samDH*mix_pi n0[n0<0.000001] <- 0.000001 mean11<-(sum(dataP1)+sum(dataP2)+m_fam*sumwx[1])/(n_samP1+n_samP2+m_fam*n0[1]) mean12<- mean11 meanB <- as.matrix(c(mean11,sumwx[2]/n0[2])) ss1<- sum((dataP1-mean11)^2) ss2<- sum((dataP2-mean12)^2) for(i in 1:d2) { swx[i] <- WW[i,]%*%(dataDH-meanB[i])^2 } sigma<-(ss1+ss2+sum(swx)*m_fam)/(n_samP1+n_samP2+n_samDH) sigmaB<-matrix((sigma/m_fam),d2,1) L1 <- logL(n_samP1,1,1,mean11,sigma,dataP1)+logL(n_samP2,1,1,mean12,sigma,dataP2)+sum(log(dmixnorm(dataDH,meanB,sqrt(sigmaB),mix_pi))) stopa <- L1 - L0 L0 <- L1 if(stopa < 0) {stopa <- -stopa} } abc <- L1 AIC <- -2*abc + 2*3 aa<- matrix(c(1,1,-1,1),2,2) b_line1 <- meanB B1 <- solve(aa,b_line1) jj <- sigma_dh - sigmaB[1] if(jj < 0) {jj <- 0} ll <- jj/sigma_dh dataP1<-sort(dataP1);bmw_P1 <- matrix(0,n_samP1,1); bmwsl_P1 <- matrix(0,n_samP1,1) gg_P1 <- (dataP1 - mean11)/sqrt(as.vector(sigma)) bmw_P1[which(gg_P1>=0)] <- pnorm(gg_P1[gg_P1>=0]) bmw_P1[which(gg_P1<0)] <- 1 - pnorm(abs(gg_P1[gg_P1<0])) bmwsl_P1[,1] <- bmw_P1 P2_P1 <- rowSums(bmwsl_P1) nn<-dim(as.matrix(unique(P2_P1)))[1] if(nn<n_samP1){P2_P1<-P2_P1+runif(n_samP1)/1e4} dd_P1 <- as.matrix(c(sum(P2_P1),sum(P2_P1^2),sum((P2_P1-0.5)^2))) WW2_P1 <- 1/(12*n_samP1) + sum((P2_P1 - (as.matrix(c(1:n_samP1)) - 0.5)/n_samP1)^2) u_P1 <- as.matrix(c(12*n_samP1*((dd_P1[1]/n_samP1-0.5)^2),((45*n_samP1)/4)*((dd_P1[2]/n_samP1-1/3)^2),180*n_samP1*((dd_P1[3]/n_samP1-1/12)^2))) D_P1 <- as.numeric(ks.test(P2_P1,"punif")[[1]][1]) tt_P1 <- as.matrix(c((1 - pchisq(u_P1[1],1)),(1 - pchisq(u_P1[2],1)),(1 - pchisq(u_P1[3],1)),K1(WW2_P1),(1-pkolm(D_P1,n_samP1)))) dataP2<-sort(dataP2);bmw_P2 <- matrix(0,n_samP2,1); bmwsl_P2 <- matrix(0,n_samP2,1) gg_P2 <- (dataP2 - mean12)/sqrt(as.vector(sigma)) bmw_P2[which(gg_P2>=0)] <- pnorm(gg_P2[gg_P2>=0]) bmw_P2[which(gg_P2<0)] <- 1 - pnorm(abs(gg_P2[gg_P2<0])) bmwsl_P2[,1] <- bmw_P2 P2_P2 <- rowSums(bmwsl_P2) nn<-dim(as.matrix(unique(P2_P2)))[1] if(nn<n_samP2){P2_P2<-P2_P2+runif(n_samP2)/1e4} dd_P2 <- as.matrix(c(sum(P2_P2),sum(P2_P2^2),sum((P2_P2-0.5)^2))) WW2_P2 <- 1/(12*n_samP2) + sum((P2_P2 - (as.matrix(c(1:n_samP2)) - 0.5)/n_samP2)^2) u_P2 <- as.matrix(c(12*n_samP2*((dd_P2[1]/n_samP2-0.5)^2),((45*n_samP2)/4)*((dd_P2[2]/n_samP2-1/3)^2),180*n_samP2*((dd_P2[3]/n_samP2-1/12)^2))) D_P2 <- as.numeric(ks.test(P2_P2,"punif")[[1]][1]) tt_P2 <- as.matrix(c((1 - pchisq(u_P2[1],1)),(1 - pchisq(u_P2[2],1)),(1 - pchisq(u_P2[3],1)),K1(WW2_P2),(1-pkolm(D_P2,n_samP2)))) dataDH<-sort(dataDH);bmw <- matrix(0,n_samDH,1); bmwsl <- matrix(0,n_samDH,d2) for(i in 1:d2){ gg <- (dataDH - meanB[i])/sqrt(sigmaB[i]) bmw[which(gg>=0)] <- pnorm(gg[gg>=0]) bmw[which(gg<0)] <- 1 - pnorm(abs(gg[gg<0])) bmwsl[,i] <- bmw*mix_pi[i] } P2 <- rowSums(bmwsl) nn<-dim(as.matrix(unique(P2)))[1] if(nn<n_samDH){P2<-P2+runif(n_samDH)/1e4} dd <- as.matrix(c(sum(P2),sum(P2^2),sum((P2-0.5)^2))) WW2 <- 1/(12*n_samDH) + sum((P2 - (as.matrix(c(1:n_samDH)) - 0.5)/n_samDH)^2) u <- as.matrix(c(12*n_samDH*((dd[1]/n_samDH-0.5)^2),((45*n_samDH)/4)*((dd[2]/n_samDH-1/3)^2),180*n_samDH*((dd[3]/n_samDH-1/12)^2))) D <- as.numeric(ks.test(P2,"punif")[[1]][1]) tt <- as.matrix(c((1 - pchisq(u[1],1)),(1 - pchisq(u[2],1)),(1 - pchisq(u[3],1)),K1(WW2),(1-pkolm(D,n_samDH)))) tt_P1[which(tt_P1>=10e-4)]<-round(tt_P1[which(tt_P1>=10e-4)],4);tt_P1[which(tt_P1<10e-4)]<-format(tt_P1[which(tt_P1<10e-4)],scientific=TRUE,digit=4) tt_P2[which(tt_P2>=10e-4)]<-round(tt_P2[which(tt_P2>=10e-4)],4);tt_P2[which(tt_P2<10e-4)]<-format(tt_P2[which(tt_P2<10e-4)],scientific=TRUE,digit=4) tt[which(tt>=10e-4)]<-round(tt[which(tt>=10e-4)],4);tt[which(tt<10e-4)]<-format(tt[which(tt<10e-4)],scientific=TRUE,digit=4) output <- data.frame("2MG-IE",round(abc,4),round(AIC,4),round(mean11,4),round(mean12,4),round(sigma,4),round(t(meanB),4)," "," "," "," "," "," "," "," "," "," "," "," "," "," ",round(sigmaB[1],4),round(t(mix_pi),4), " "," "," "," "," "," "," "," "," "," "," "," "," "," ",round(B1[1],4)," "," "," "," "," "," ",round(B1[2],4)," "," "," "," "," "," "," ",round(jj,4),round(ll*100,4)," "," ",round(u_P1[1],4),tt_P1[1],round(u_P1[2],4), tt_P1[2],round(u_P1[3],4),tt_P1[3],round(WW2_P1,4),tt_P1[4],round(D_P1,4),tt_P1[5],round(u_P2[1],4),tt_P2[1],round(u_P2[2],4), tt_P2[2],round(u_P2[3],4),tt_P2[3],round(WW2_P2,4),tt_P2[4],round(D_P2,4),tt_P2[5],round(u[1],4),tt[1],round(u[2],4), tt[2],round(u[3],4),tt[3],round(WW2,4),tt[4],round(D,4),tt[5]) output<-as.matrix(output) OUTPUT<-list(output,mi) return(OUTPUT) } G3DHModelFun[[12]] <- function(K1,logL,df11,df21,df31,G3DHtext2){ dataP1 <- as.matrix(as.numeric(df11[,1]));dataP2 <- as.matrix(as.numeric(df21[,1]));dataDH <- as.matrix(as.numeric(df31[,1])) n_samP1<-dim(dataP1)[1]; n_samP2<-dim(dataP2)[1];n_samDH<-dim(dataDH)[1] mean11<-mean(dataP1);mean12<-mean(dataP2) sigmaP1<- as.numeric(var(dataP1)); sigmaP2<- as.numeric(var(dataP2)) ss1<-(n_samP1-1)*sigmaP1; ss2<-(n_samP2-1)*sigmaP2 sigma0<-(ss1+ss2)/(n_samP1+n_samP2-2);sigma_dh<-as.numeric(var(dataDH)) m_esp<- 0.0001 ;m_fam<- as.numeric(G3DHtext2) d2<- 1;mi <- as.matrix(1) sigma <- 2*sigma0 meanC<- mean(dataDH) sigmaC <- sigma_dh/2 mix_pi<-1.0 iteration <- 0; stopa <- 1000 L0 <- logL(n_samP1,1,1,mean11,sigma,dataP1)+logL(n_samP2,1,1,mean12,sigma,dataP2)+logL(n_samDH,1,1,meanC,sigmaC,dataDH) while(stopa > m_esp && iteration<=1000){ iteration <- iteration + 1 ss1<- sum((dataP1-mean11)^2) ss2<- sum((dataP2-mean12)^2) swx<- sum((dataDH-meanC)^2) s0<-matrix(0,2,1) s0[1]<-(ss1+ss2);s0[2]<-swx*m_fam s1<-sigmaC - sigma/m_fam if (s1<0.0){ s1<- 0.0 } abc2<- sigma ; ss1<- 0 ;abc3<-1000 while(abc3>0.0001 && ss1<1000 ){ abc1<- (sigma/m_fam)/(sigma/m_fam+s1) sigma<- (s0[1]+abc1*abc1*s0[2])/(n_samP1+n_samP2+abc1*n_samDH) abc3<- abs(abc2-sigma) abc2<- sigma;ss1<-ss1+1.0 } sigmaC <-s1+ sigma/m_fam s1<- swx/n_samDH-sigma/m_fam; if (s1<0.0) { s1<- 0.0 } sigmaC<- s1+sigma/m_fam L1 <- logL(n_samP1,1,1,mean11,sigma,dataP1)+logL(n_samP2,1,1,mean12,sigma,dataP2)+logL(n_samDH,1,1,meanC,sigmaC,dataDH) stopa <- L1 - L0 L0 <- L1 if(stopa < 0) { stopa <- -stopa } } abc <- L1 AIC <- -2*abc + 2*5 ma1<- mean11 ma2<- mean12 ma3<- meanC B1 <- as.matrix(c(ma1,ma2,ma3)) mm <- sigma_dh-sigma if (mm<0) {mm<- 0} nnn<- mm/sigma_dh dataP1<-sort(dataP1);bmw_P1 <- matrix(0,n_samP1,1); bmwsl_P1 <- matrix(0,n_samP1,1) gg_P1 <- (dataP1 - mean11)/sqrt(as.vector(sigma)) bmw_P1[which(gg_P1>=0)] <- pnorm(gg_P1[gg_P1>=0]) bmw_P1[which(gg_P1<0)] <- 1 - pnorm(abs(gg_P1[gg_P1<0])) bmwsl_P1[,1] <- bmw_P1 P2_P1 <- rowSums(bmwsl_P1) nn<-dim(as.matrix(unique(P2_P1)))[1] if(nn<n_samP1){P2_P1<-P2_P1+runif(n_samP1)/1e4} dd_P1 <- as.matrix(c(sum(P2_P1),sum(P2_P1^2),sum((P2_P1-0.5)^2))) WW2_P1 <- 1/(12*n_samP1) + sum((P2_P1 - (as.matrix(c(1:n_samP1)) - 0.5)/n_samP1)^2) u_P1 <- as.matrix(c(12*n_samP1*((dd_P1[1]/n_samP1-0.5)^2),((45*n_samP1)/4)*((dd_P1[2]/n_samP1-1/3)^2),180*n_samP1*((dd_P1[3]/n_samP1-1/12)^2))) D_P1 <- as.numeric(ks.test(P2_P1,"punif")[[1]][1]) tt_P1 <- as.matrix(c((1 - pchisq(u_P1[1],1)),(1 - pchisq(u_P1[2],1)),(1 - pchisq(u_P1[3],1)),K1(WW2_P1),(1-pkolm(D_P1,n_samP1)))) dataP2<-sort(dataP2);bmw_P2 <- matrix(0,n_samP2,1); bmwsl_P2 <- matrix(0,n_samP2,1) gg_P2 <- (dataP2 - mean12)/sqrt(as.vector(sigma)) bmw_P2[which(gg_P2>=0)] <- pnorm(gg_P2[gg_P2>=0]) bmw_P2[which(gg_P2<0)] <- 1 - pnorm(abs(gg_P2[gg_P2<0])) bmwsl_P2[,1] <- bmw_P2 P2_P2 <- rowSums(bmwsl_P2) nn<-dim(as.matrix(unique(P2_P2)))[1] if(nn<n_samP2){P2_P2<-P2_P2+runif(n_samP2)/1e4} dd_P2 <- as.matrix(c(sum(P2_P2),sum(P2_P2^2),sum((P2_P2-0.5)^2))) WW2_P2 <- 1/(12*n_samP2) + sum((P2_P2 - (as.matrix(c(1:n_samP2)) - 0.5)/n_samP2)^2) u_P2 <- as.matrix(c(12*n_samP2*((dd_P2[1]/n_samP2-0.5)^2),((45*n_samP2)/4)*((dd_P2[2]/n_samP2-1/3)^2),180*n_samP2*((dd_P2[3]/n_samP2-1/12)^2))) D_P2 <- as.numeric(ks.test(P2_P2,"punif")[[1]][1]) tt_P2 <- as.matrix(c((1 - pchisq(u_P2[1],1)),(1 - pchisq(u_P2[2],1)),(1 - pchisq(u_P2[3],1)),K1(WW2_P2),(1-pkolm(D_P2,n_samP2)))) dataDH<-sort(dataDH);bmw <- matrix(0,n_samDH,1); bmwsl <- matrix(0,n_samDH,d2) gg <- (dataDH - meanC)/sqrt(as.vector(sigmaC)) bmw[which(gg>=0)] <- pnorm(gg[gg>=0]) bmw[which(gg<0)] <- 1 - pnorm(abs(gg[gg<0])) bmwsl[,1] <- bmw*mix_pi P2 <- rowSums(bmwsl) nn<-dim(as.matrix(unique(P2)))[1] if(nn<n_samDH){P2<-P2+runif(n_samDH)/1e4} dd <- as.matrix(c(sum(P2),sum(P2^2),sum((P2-0.5)^2))) WW2 <- 1/(12*n_samDH) + sum((P2 - (as.matrix(c(1:n_samDH)) - 0.5)/n_samDH)^2) u <- as.matrix(c(12*n_samDH*((dd[1]/n_samDH-0.5)^2),((45*n_samDH)/4)*((dd[2]/n_samDH-1/3)^2),180*n_samDH*((dd[3]/n_samDH-1/12)^2))) D <- as.numeric(ks.test(P2,"punif")[[1]][1]) tt <- as.matrix(c((1 - pchisq(u[1],1)),(1 - pchisq(u[2],1)),(1 - pchisq(u[3],1)),K1(WW2),(1-pkolm(D,n_samDH)))) tt_P1[which(tt_P1>=10e-4)]<-round(tt_P1[which(tt_P1>=10e-4)],4);tt_P1[which(tt_P1<10e-4)]<-format(tt_P1[which(tt_P1<10e-4)],scientific=TRUE,digit=4) tt_P2[which(tt_P2>=10e-4)]<-round(tt_P2[which(tt_P2>=10e-4)],4);tt_P2[which(tt_P2<10e-4)]<-format(tt_P2[which(tt_P2<10e-4)],scientific=TRUE,digit=4) tt[which(tt>=10e-4)]<-round(tt[which(tt>=10e-4)],4);tt[which(tt<10e-4)]<-format(tt[which(tt<10e-4)],scientific=TRUE,digit=4) output <- data.frame("PG-AI",round(abc,4),round(AIC,4),round(mean11,4),round(mean12,4),round(sigma,4),round(meanC,4)," "," "," "," "," "," "," "," "," "," "," "," "," "," "," ",round(sigmaC[1],4),round(mix_pi[1],4), " "," "," "," "," "," "," "," "," "," "," "," "," "," "," ",round(B1[1],4),round(B1[2],4),round(B1[3],4)," "," "," "," "," "," "," "," "," "," "," "," "," "," ",round(mm,4),round(nnn*100,4),round(u_P1[1],4),tt_P1[1],round(u_P1[2],4), tt_P1[2],round(u_P1[3],4),tt_P1[3],round(WW2_P1,4),tt_P1[4],round(D_P1,4),tt_P1[5],round(u_P2[1],4),tt_P2[1],round(u_P2[2],4), tt_P2[2],round(u_P2[3],4),tt_P2[3],round(WW2_P2,4),tt_P2[4],round(D_P2,4),tt_P2[5],round(u[1],4),tt[1],round(u[2],4), tt[2],round(u[3],4),tt[3],round(WW2,4),tt[4],round(D,4),tt[5]) output<-as.matrix(output) OUTPUT<-list(output,mi) return(OUTPUT) } G3DHModelFun[[13]] <- function(K1,logL,df11,df21,df31,G3DHtext2){ dataP1 <- as.matrix(as.numeric(df11[,1]));dataP2 <- as.matrix(as.numeric(df21[,1]));dataDH <- as.matrix(as.numeric(df31[,1])) n_samP1<-dim(dataP1)[1]; n_samP2<-dim(dataP2)[1];n_samDH<-dim(dataDH)[1] mean11<-mean(dataP1);mean12<-mean(dataP2) sigmaP1<- as.numeric(var(dataP1)); sigmaP2<- as.numeric(var(dataP2)) ss1<-(n_samP1-1)*sigmaP1; ss2<-(n_samP2-1)*sigmaP2 sigma0<-(ss1+ss2)/(n_samP1+n_samP2-2);sigma_dh<-as.numeric(var(dataDH)) m_esp<- 0.0001 ;m_fam<- as.numeric(G3DHtext2) d2<- 1;mi <- as.matrix(1) sigma <- 2*sigma0 meanC<- mean(dataDH) sigmaC <- sigma_dh/2 iteration <- 0; stopa <- 1000 L0 <- logL(n_samP1,1,1,mean11,sigma,dataP1)+logL(n_samP2,1,1,mean12,sigma,dataP2)+logL(n_samDH,1,1,meanC,sigmaC,dataDH) while(stopa > m_esp && iteration<=1000){ iteration <- iteration + 1 mix_pi<-1.0 rr<-(sum(dataP1)/n_samP1+sum(dataP2)/n_samP2-2.0*sum(dataDH)/n_samDH)/(sigma/n_samP1+sigma/n_samP2+4.0*sigmaC/n_samDH) mean11<- (sum(dataP1)-rr*sigma)/n_samP1 mean12<- (sum(dataP2)-rr*sigma)/n_samP2 meanC <- (sum(dataDH)+2.0*rr*sigmaC)/n_samDH ss1<- sum((dataP1-mean11)^2) ss2<- sum((dataP2-mean12)^2) swx<- sum((dataDH-meanC)^2) s0<-matrix(0,2,1) s0[1]<-(ss1+ss2);s0[2]<-swx*m_fam s1<-sigmaC -sigma/m_fam if (s1<0.0){ s1<- 0.0 } abc2<- sigma; ss1<- 0.0; abc3<-1000; n_iter<- 0 while(abc3>0.0001){ n_iter<- n_iter+1 abc1<- (sigma/m_fam)/(sigma/m_fam+s1) sigma<- (s0[1]+abc1*abc1*s0[2])/(n_samP1+n_samP2+abc1*n_samDH) abc3<- abs(abc2-sigma) abc2<- sigma;ss1<- ss1+1.0 if (n_iter>20) break } sigmaC <- s1+sigma/m_fam s1<- swx/n_samDH-sigma/m_fam sigmaC <- s1+ sigma/m_fam L1 <- logL(n_samP1,1,1,mean11,sigma,dataP1)+logL(n_samP2,1,1,mean12,sigma,dataP2)+logL(n_samDH,1,1,meanC,sigmaC,dataDH) stopa <- L1 - L0 L0 <- L1 if(stopa < 0) {stopa <- -stopa} } abc <- L1 AIC <- -2*abc + 2*4 aa<- matrix(c(1,1,1, 1,-1,0),3,2) b_line1 <- as.matrix(c(mean11,mean12,meanC)) B1 <- solve(t(aa)%*%aa)%*%(t(aa)%*%b_line1) mm <- sigma_dh - sigma if(mm < 0) {mm <- 0} nnn <- mm/sigma_dh dataP1<-sort(dataP1);bmw_P1 <- matrix(0,n_samP1,1); bmwsl_P1 <- matrix(0,n_samP1,1) gg_P1 <- (dataP1 - mean11)/sqrt(as.vector(sigma)) bmw_P1[which(gg_P1>=0)] <- pnorm(gg_P1[gg_P1>=0]) bmw_P1[which(gg_P1<0)] <- 1 - pnorm(abs(gg_P1[gg_P1<0])) bmwsl_P1[,1] <- bmw_P1 P2_P1 <- rowSums(bmwsl_P1) nn<-dim(as.matrix(unique(P2_P1)))[1] if(nn<n_samP1){P2_P1<-P2_P1+runif(n_samP1)/1e4} dd_P1 <- as.matrix(c(sum(P2_P1),sum(P2_P1^2),sum((P2_P1-0.5)^2))) WW2_P1 <- 1/(12*n_samP1) + sum((P2_P1 - (as.matrix(c(1:n_samP1)) - 0.5)/n_samP1)^2) u_P1 <- as.matrix(c(12*n_samP1*((dd_P1[1]/n_samP1-0.5)^2),((45*n_samP1)/4)*((dd_P1[2]/n_samP1-1/3)^2),180*n_samP1*((dd_P1[3]/n_samP1-1/12)^2))) D_P1 <- as.numeric(ks.test(P2_P1,"punif")[[1]][1]) tt_P1 <- as.matrix(c((1 - pchisq(u_P1[1],1)),(1 - pchisq(u_P1[2],1)),(1 - pchisq(u_P1[3],1)),K1(WW2_P1),(1-pkolm(D_P1,n_samP1)))) dataP2<-sort(dataP2);bmw_P2 <- matrix(0,n_samP2,1); bmwsl_P2 <- matrix(0,n_samP2,1) gg_P2 <- (dataP2 - mean12)/sqrt(as.vector(sigma)) bmw_P2[which(gg_P2>=0)] <- pnorm(gg_P2[gg_P2>=0]) bmw_P2[which(gg_P2<0)] <- 1 - pnorm(abs(gg_P2[gg_P2<0])) bmwsl_P2[,1] <- bmw_P2 P2_P2 <- rowSums(bmwsl_P2) nn<-dim(as.matrix(unique(P2_P2)))[1] if(nn<n_samP2){P2_P2<-P2_P2+runif(n_samP2)/1e4} dd_P2 <- as.matrix(c(sum(P2_P2),sum(P2_P2^2),sum((P2_P2-0.5)^2))) WW2_P2 <- 1/(12*n_samP2) + sum((P2_P2 - (as.matrix(c(1:n_samP2)) - 0.5)/n_samP2)^2) u_P2 <- as.matrix(c(12*n_samP2*((dd_P2[1]/n_samP2-0.5)^2),((45*n_samP2)/4)*((dd_P2[2]/n_samP2-1/3)^2),180*n_samP2*((dd_P2[3]/n_samP2-1/12)^2))) D_P2 <- as.numeric(ks.test(P2_P2,"punif")[[1]][1]) tt_P2 <- as.matrix(c((1 - pchisq(u_P2[1],1)),(1 - pchisq(u_P2[2],1)),(1 - pchisq(u_P2[3],1)),K1(WW2_P2),(1-pkolm(D_P2,n_samP2)))) dataDH<-sort(dataDH);bmw <- matrix(0,n_samDH,1); bmwsl <- matrix(0,n_samDH,d2) gg <- (dataDH - meanC)/sqrt(as.vector(sigmaC)) bmw[which(gg>=0)] <- pnorm(gg[gg>=0]) bmw[which(gg<0)] <- 1 - pnorm(abs(gg[gg<0])) bmwsl[,1] <- bmw*mix_pi P2 <- rowSums(bmwsl) nn<-dim(as.matrix(unique(P2)))[1] if(nn<n_samDH){P2<-P2+runif(n_samDH)/1e4} dd <- as.matrix(c(sum(P2),sum(P2^2),sum((P2-0.5)^2))) WW2 <- 1/(12*n_samDH) + sum((P2 - (as.matrix(c(1:n_samDH)) - 0.5)/n_samDH)^2) u <- as.matrix(c(12*n_samDH*((dd[1]/n_samDH-0.5)^2),((45*n_samDH)/4)*((dd[2]/n_samDH-1/3)^2),180*n_samDH*((dd[3]/n_samDH-1/12)^2))) D <- as.numeric(ks.test(P2,"punif")[[1]][1]) tt <- as.matrix(c((1 - pchisq(u[1],1)),(1 - pchisq(u[2],1)),(1 - pchisq(u[3],1)),K1(WW2),(1-pkolm(D,n_samDH)))) tt_P1[which(tt_P1>=10e-4)]<-round(tt_P1[which(tt_P1>=10e-4)],4);tt_P1[which(tt_P1<10e-4)]<-format(tt_P1[which(tt_P1<10e-4)],scientific=TRUE,digit=4) tt_P2[which(tt_P2>=10e-4)]<-round(tt_P2[which(tt_P2>=10e-4)],4);tt_P2[which(tt_P2<10e-4)]<-format(tt_P2[which(tt_P2<10e-4)],scientific=TRUE,digit=4) tt[which(tt>=10e-4)]<-round(tt[which(tt>=10e-4)],4);tt[which(tt<10e-4)]<-format(tt[which(tt<10e-4)],scientific=TRUE,digit=4) output <- data.frame("PG-A",round(abc,4),round(AIC,4),round(mean11,4),round(mean12,4),round(sigma,4),round(meanC,4)," "," "," "," "," "," "," "," "," "," "," "," "," "," "," ",round(sigmaC[1],4),round(mix_pi[1],4), " "," "," "," "," "," "," "," "," "," "," "," "," "," "," ",round(B1[1],4)," "," "," "," "," "," "," "," "," "," "," "," "," ",round(B1[2],4)," "," ",round(mm,4),round(nnn*100,4),round(u_P1[1],4),tt_P1[1],round(u_P1[2],4), tt_P1[2],round(u_P1[3],4),tt_P1[3],round(WW2_P1,4),tt_P1[4],round(D_P1,4),tt_P1[5],round(u_P2[1],4),tt_P2[1],round(u_P2[2],4), tt_P2[2],round(u_P2[3],4),tt_P2[3],round(WW2_P2,4),tt_P2[4],round(D_P2,4),tt_P2[5],round(u[1],4),tt[1],round(u[2],4), tt[2],round(u[3],4),tt[3],round(WW2,4),tt[4],round(D,4),tt[5]) output<-as.matrix(output) OUTPUT<-list(output,mi) return(OUTPUT) } G3DHModelFun[[14]] <- function(K1,logL,df11,df21,df31,G3DHtext2){ dataP1 <- as.matrix(as.numeric(df11[,1]));dataP2 <- as.matrix(as.numeric(df21[,1]));dataDH <- as.matrix(as.numeric(df31[,1])) n_samP1<-dim(dataP1)[1]; n_samP2<-dim(dataP2)[1];n_samDH<-dim(dataDH)[1] mean11<-mean(dataP1);mean12<-mean(dataP2) sigmaP1<- as.numeric(var(dataP1)); sigmaP2<- as.numeric(var(dataP2)) ss1<-(n_samP1-1)*sigmaP1; ss2<-(n_samP2-1)*sigmaP2 sigma0<-(ss1+ss2)/(n_samP1+n_samP2-2);sigma_dh<-as.numeric(var(dataDH)) m_esp<- 0.0001 ;m_fam<- as.numeric(G3DHtext2) d2<- 2 mi <- as.matrix(c(0.5,0.5)) sigma <- 2*sigma0 meanD<- mean(dataDH) sigmaD <- matrix((sigma_dh/2),d2,1) a1 <- sqrt(sigma_dh/n_samDH) if(mean11<mean12){a1=-a1} meanD <- as.matrix(c((meanD+3*a1/2),(meanD-3*a1/2))) iteration <- 0; stopa <- 1000 WW <- matrix(0,d2,n_samDH); swx <- matrix(0,d2,1) L0 <- logL(n_samP1,1,1,mean11,sigma,dataP1)+logL(n_samP2,1,1,mean12,sigma,dataP2)+sum(log(dmixnorm(dataDH,meanD,sqrt(sigmaD),mi))) while(stopa > m_esp && iteration<=1000){ iteration <- iteration + 1 for(i in 1:d2) { WW[i,] <- mi[i]*dnorm(dataDH,meanD[i],sqrt(sigmaD[i]))/dmixnorm(dataDH,meanD,sqrt(sigmaD),mi) } mix_pi <- as.matrix(rowSums(WW)/n_samDH) sumwx <- WW%*%dataDH n0 <- n_samDH*mix_pi n0[n0<0.000001] <- 0.000001 mean11<- sum(dataP1)/n_samP1 mean12<- sum(dataP2)/n_samP2 meanD <- sumwx/n0 ss1<- sum((dataP1-mean11)^2) ss2<- sum((dataP2-mean12)^2) for(i in 1:d2) { swx[i] <- WW[i,]%*%(dataDH-meanD[i])^2 } s0<-matrix(0,2,1) s0[1]<- ss1+ss2 s0[2]<- sum(swx)*m_fam s1<- sigmaD[1]-sigma/m_fam if (s1<0.0){s1<- 0.000001} abc2<- sigma abc3<-1000; n_iter<- 0 while(abc3>0.0001){ n_iter<- n_iter+1 abc1<- (sigma/m_fam)/(sigma/m_fam+s1) sigma<- (s0[1]+abc1*abc1*s0[2])/(n_samP1+n_samP2+abc1*n_samDH) abc3<- abs(abc2-sigma) abc2<- sigma if (n_iter>20) break } if (sigma<0.1*sigma0){ sigma<- 0.1*sigma0 } sigmaD[1]<- s1+sigma/m_fam s1<- sum(swx)/n_samDH-sigma/m_fam if (s1<0.0){ s1<- 0.000001 } sigmaD<- matrix((s1+sigma/m_fam),d2,1) L1 <- logL(n_samP1,1,1,mean11,sigma,dataP1)+logL(n_samP2,1,1,mean12,sigma,dataP2)+sum(log(dmixnorm(dataDH,meanD,sqrt(sigmaD),mix_pi))) stopa <- L1 - L0 L0 <- L1 if(stopa < 0) {stopa <- -stopa} } abc <- L1 AIC <- -2*abc + 2*6 aa<- matrix(c(1,0,0,0, 0,1,0,0, 0,0,1,1, 1,-1,1,-1),4,4) b_line1 <- as.matrix(c(mean11,mean12,meanD)) B1 <- solve(aa,b_line1) jj <- sigma_dh - sigmaD[1] if(jj < 0) {jj <- 0} ll <- jj/sigma_dh mm<- sigmaD[1]-sigma if (mm<0) {mm<- 0} nnn<- mm/sigma_dh dataP1<-sort(dataP1);bmw_P1 <- matrix(0,n_samP1,1); bmwsl_P1 <- matrix(0,n_samP1,1) gg_P1 <- (dataP1 - mean11)/sqrt(as.vector(sigma)) bmw_P1[which(gg_P1>=0)] <- pnorm(gg_P1[gg_P1>=0]) bmw_P1[which(gg_P1<0)] <- 1 - pnorm(abs(gg_P1[gg_P1<0])) bmwsl_P1[,1] <- bmw_P1 P2_P1 <- rowSums(bmwsl_P1) nn<-dim(as.matrix(unique(P2_P1)))[1] if(nn<n_samP1){P2_P1<-P2_P1+runif(n_samP1)/1e4} dd_P1 <- as.matrix(c(sum(P2_P1),sum(P2_P1^2),sum((P2_P1-0.5)^2))) WW2_P1 <- 1/(12*n_samP1) + sum((P2_P1 - (as.matrix(c(1:n_samP1)) - 0.5)/n_samP1)^2) u_P1 <- as.matrix(c(12*n_samP1*((dd_P1[1]/n_samP1-0.5)^2),((45*n_samP1)/4)*((dd_P1[2]/n_samP1-1/3)^2),180*n_samP1*((dd_P1[3]/n_samP1-1/12)^2))) D_P1 <- as.numeric(ks.test(P2_P1,"punif")[[1]][1]) tt_P1 <- as.matrix(c((1 - pchisq(u_P1[1],1)),(1 - pchisq(u_P1[2],1)),(1 - pchisq(u_P1[3],1)),K1(WW2_P1),(1-pkolm(D_P1,n_samP1)))) dataP2<-sort(dataP2);bmw_P2 <- matrix(0,n_samP2,1); bmwsl_P2 <- matrix(0,n_samP2,1) gg_P2 <- (dataP2 - mean12)/sqrt(as.vector(sigma)) bmw_P2[which(gg_P2>=0)] <- pnorm(gg_P2[gg_P2>=0]) bmw_P2[which(gg_P2<0)] <- 1 - pnorm(abs(gg_P2[gg_P2<0])) bmwsl_P2[,1] <- bmw_P2 P2_P2 <- rowSums(bmwsl_P2) nn<-dim(as.matrix(unique(P2_P2)))[1] if(nn<n_samP2){P2_P2<-P2_P2+runif(n_samP2)/1e4} dd_P2 <- as.matrix(c(sum(P2_P2),sum(P2_P2^2),sum((P2_P2-0.5)^2))) WW2_P2 <- 1/(12*n_samP2) + sum((P2_P2 - (as.matrix(c(1:n_samP2)) - 0.5)/n_samP2)^2) u_P2 <- as.matrix(c(12*n_samP2*((dd_P2[1]/n_samP2-0.5)^2),((45*n_samP2)/4)*((dd_P2[2]/n_samP2-1/3)^2),180*n_samP2*((dd_P2[3]/n_samP2-1/12)^2))) D_P2 <- as.numeric(ks.test(P2_P2,"punif")[[1]][1]) tt_P2 <- as.matrix(c((1 - pchisq(u_P2[1],1)),(1 - pchisq(u_P2[2],1)),(1 - pchisq(u_P2[3],1)),K1(WW2_P2),(1-pkolm(D_P2,n_samP2)))) dataDH<-sort(dataDH);bmw <- matrix(0,n_samDH,1); bmwsl <- matrix(0,n_samDH,d2) for(i in 1:d2){ gg <- (dataDH - meanD[i])/sqrt(sigmaD[i]) bmw[which(gg>=0)] <- pnorm(gg[gg>=0]) bmw[which(gg<0)] <- 1 - pnorm(abs(gg[gg<0])) bmwsl[,i] <- bmw*mix_pi[i] } P2 <- rowSums(bmwsl) nn<-dim(as.matrix(unique(P2)))[1] if(nn<n_samDH){P2<-P2+runif(n_samDH)/1e4} dd <- as.matrix(c(sum(P2),sum(P2^2),sum((P2-0.5)^2))) WW2 <- 1/(12*n_samDH) + sum((P2 - (as.matrix(c(1:n_samDH)) - 0.5)/n_samDH)^2) u <- as.matrix(c(12*n_samDH*((dd[1]/n_samDH-0.5)^2),((45*n_samDH)/4)*((dd[2]/n_samDH-1/3)^2),180*n_samDH*((dd[3]/n_samDH-1/12)^2))) D <- as.numeric(ks.test(P2,"punif")[[1]][1]) tt <- as.matrix(c((1 - pchisq(u[1],1)),(1 - pchisq(u[2],1)),(1 - pchisq(u[3],1)),K1(WW2),(1-pkolm(D,n_samDH)))) tt_P1[which(tt_P1>=10e-4)]<-round(tt_P1[which(tt_P1>=10e-4)],4);tt_P1[which(tt_P1<10e-4)]<-format(tt_P1[which(tt_P1<10e-4)],scientific=TRUE,digit=4) tt_P2[which(tt_P2>=10e-4)]<-round(tt_P2[which(tt_P2>=10e-4)],4);tt_P2[which(tt_P2<10e-4)]<-format(tt_P2[which(tt_P2<10e-4)],scientific=TRUE,digit=4) tt[which(tt>=10e-4)]<-round(tt[which(tt>=10e-4)],4);tt[which(tt<10e-4)]<-format(tt[which(tt<10e-4)],scientific=TRUE,digit=4) output <- data.frame("MX1-A-AI",round(abc,4),round(AIC,4),round(mean11,4),round(mean12,4),round(sigma,4),round(t(meanD),4)," "," "," "," "," "," "," "," "," "," "," "," "," "," ",round(sigmaD[1],4),round(t(mix_pi),4), " "," "," "," "," "," "," "," "," "," "," "," "," "," ",round(B1[1],4),round(B1[2],4),round(B1[3],4),round(B1[3],4)," "," "," "," "," "," "," "," "," "," "," ",round(jj,4),round(ll*100,4),round(mm,4),round(nnn*100,4),round(u_P1[1],4),tt_P1[1],round(u_P1[2],4), tt_P1[2],round(u_P1[3],4),tt_P1[3],round(WW2_P1,4),tt_P1[4],round(D_P1,4),tt_P1[5],round(u_P2[1],4),tt_P2[1],round(u_P2[2],4), tt_P2[2],round(u_P2[3],4),tt_P2[3],round(WW2_P2,4),tt_P2[4],round(D_P2,4),tt_P2[5],round(u[1],4),tt[1],round(u[2],4), tt[2],round(u[3],4),tt[3],round(WW2,4),tt[4],round(D,4),tt[5]) output<-as.matrix(output) OUTPUT<-list(output,mi) return(OUTPUT) } G3DHModelFun[[15]] <- function(K1,logL,df11,df21,df31,G3DHtext2){ dataP1 <- as.matrix(as.numeric(df11[,1]));dataP2 <- as.matrix(as.numeric(df21[,1]));dataDH <- as.matrix(as.numeric(df31[,1])) n_samP1<-dim(dataP1)[1]; n_samP2<-dim(dataP2)[1];n_samDH<-dim(dataDH)[1] mean11<-mean(dataP1);mean12<-mean(dataP2) sigmaP1<- as.numeric(var(dataP1)); sigmaP2<- as.numeric(var(dataP2)) ss1<-(n_samP1-1)*sigmaP1; ss2<-(n_samP2-1)*sigmaP2 sigma0<-(ss1+ss2)/(n_samP1+n_samP2-2);sigma_dh<-as.numeric(var(dataDH)) m_esp<- 0.0001 ;m_fam<- as.numeric(G3DHtext2) d2<- 2 mi <- as.matrix(c(0.5,0.5)) sigma <- 2*sigma0 meanD<- mean(dataDH) sigmaD <- matrix((sigma_dh/2),d2,1) a1 <- sqrt(sigma_dh/n_samDH) if(mean11<mean12){a1=-a1} meanD <- as.matrix(c((meanD+3*a1/2),(meanD-3*a1/2))) iteration <- 0; stopa <- 1000 WW <- matrix(0,d2,n_samDH); swx <- matrix(0,d2,1) L0 <- logL(n_samP1,1,1,mean11,sigma,dataP1)+logL(n_samP2,1,1,mean12,sigma,dataP2)+sum(log(dmixnorm(dataDH,meanD,sqrt(sigmaD),mi))) while(stopa > m_esp && iteration<=1000){ iteration <- iteration + 1 for(i in 1:d2) { WW[i,] <- mi[i]*dnorm(dataDH,meanD[i],sqrt(sigmaD[i]))/dmixnorm(dataDH,meanD,sqrt(sigmaD),mi) } mix_pi <- as.matrix(rowSums(WW)/n_samDH) sumwx <- WW%*%dataDH n0 <- n_samDH*mix_pi n0[n0<0.000001] <- 0.000001 rr<- (sum(dataP1)/n_samP1+sum(dataP2)/n_samP2-sumwx[1]/n0[1]-sumwx[2]/n0[2])/(sigma/n_samP1+sigma/n_samP2+sigmaD[1]/n0[1]+sigmaD[1]/n0[2]) mean11<- (sum(dataP1)-rr*sigma)/n_samP1 mean12<- (sum(dataP2)-rr*sigma)/n_samP2 meanD <- (sumwx+rr*sigmaD[1])/n0 ss1<- sum((dataP1-mean11)^2) ss2<- sum((dataP2-mean12)^2) for(i in 1:d2) { swx[i] <- WW[i,]%*%(dataDH-meanD[i])^2 } s0<-matrix(0,2,1) s0[1]<- ss1+ss2 s0[2]<- sum(swx)*m_fam s1<- sigmaD[1]-sigma/m_fam if (s1<0.0){s1<- 0.000001} abc2<- sigma abc3<-1000; n_iter<- 0 while(abc3>0.0001){ n_iter<- n_iter+1 abc1<- (sigma/m_fam)/(sigma/m_fam+s1) sigma<- (s0[1]+abc1*abc1*s0[2])/(n_samP1+n_samP2+abc1*n_samDH) abc3<- abs(abc2-sigma) abc2<- sigma if (n_iter>20) break } if (sigma<0.1*sigma0){ sigma<- 0.1*sigma0 } sigmaD[1]<- s1+sigma/m_fam s1<- sum(swx)/n_samDH-sigma/m_fam if (s1<0.0){ s1<- 0 } sigmaD<- matrix((s1+sigma/m_fam),d2,1) L1 <- logL(n_samP1,1,1,mean11,sigma,dataP1)+logL(n_samP2,1,1,mean12,sigma,dataP2)+sum(log(dmixnorm(dataDH,meanD,sqrt(sigmaD),mix_pi))) stopa <- L1 - L0 L0 <- L1 if(stopa < 0) {stopa <- -stopa} } abc <- L1 AIC <- -2*abc + 2*5 aa<- matrix(c(1,1,1,1, 1,-1,1,-1, 1,-1,0,0),4,3) b_line1 <- as.matrix(c(mean11,mean12,meanD)) B1 <- solve(t(aa)%*%aa)%*%(t(aa)%*%b_line1) jj <- sigma_dh - sigmaD[1] if(jj < 0) {jj <- 0} ll <- jj/sigma_dh mm<- sigmaD[1]-sigma if (mm<0) {mm<- 0} nnn<- mm/sigma_dh dataP1<-sort(dataP1);bmw_P1 <- matrix(0,n_samP1,1); bmwsl_P1 <- matrix(0,n_samP1,1) gg_P1 <- (dataP1 - mean11)/sqrt(as.vector(sigma)) bmw_P1[which(gg_P1>=0)] <- pnorm(gg_P1[gg_P1>=0]) bmw_P1[which(gg_P1<0)] <- 1 - pnorm(abs(gg_P1[gg_P1<0])) bmwsl_P1[,1] <- bmw_P1 P2_P1 <- rowSums(bmwsl_P1) nn<-dim(as.matrix(unique(P2_P1)))[1] if(nn<n_samP1){P2_P1<-P2_P1+runif(n_samP1)/1e4} dd_P1 <- as.matrix(c(sum(P2_P1),sum(P2_P1^2),sum((P2_P1-0.5)^2))) WW2_P1 <- 1/(12*n_samP1) + sum((P2_P1 - (as.matrix(c(1:n_samP1)) - 0.5)/n_samP1)^2) u_P1 <- as.matrix(c(12*n_samP1*((dd_P1[1]/n_samP1-0.5)^2),((45*n_samP1)/4)*((dd_P1[2]/n_samP1-1/3)^2),180*n_samP1*((dd_P1[3]/n_samP1-1/12)^2))) D_P1 <- as.numeric(ks.test(P2_P1,"punif")[[1]][1]) tt_P1 <- as.matrix(c((1 - pchisq(u_P1[1],1)),(1 - pchisq(u_P1[2],1)),(1 - pchisq(u_P1[3],1)),K1(WW2_P1),(1-pkolm(D_P1,n_samP1)))) dataP2<-sort(dataP2);bmw_P2 <- matrix(0,n_samP2,1); bmwsl_P2 <- matrix(0,n_samP2,1) gg_P2 <- (dataP2 - mean12)/sqrt(as.vector(sigma)) bmw_P2[which(gg_P2>=0)] <- pnorm(gg_P2[gg_P2>=0]) bmw_P2[which(gg_P2<0)] <- 1 - pnorm(abs(gg_P2[gg_P2<0])) bmwsl_P2[,1] <- bmw_P2 P2_P2 <- rowSums(bmwsl_P2) nn<-dim(as.matrix(unique(P2_P2)))[1] if(nn<n_samP2){P2_P2<-P2_P2+runif(n_samP2)/1e4} dd_P2 <- as.matrix(c(sum(P2_P2),sum(P2_P2^2),sum((P2_P2-0.5)^2))) WW2_P2 <- 1/(12*n_samP2) + sum((P2_P2 - (as.matrix(c(1:n_samP2)) - 0.5)/n_samP2)^2) u_P2 <- as.matrix(c(12*n_samP2*((dd_P2[1]/n_samP2-0.5)^2),((45*n_samP2)/4)*((dd_P2[2]/n_samP2-1/3)^2),180*n_samP2*((dd_P2[3]/n_samP2-1/12)^2))) D_P2 <- as.numeric(ks.test(P2_P2,"punif")[[1]][1]) tt_P2 <- as.matrix(c((1 - pchisq(u_P2[1],1)),(1 - pchisq(u_P2[2],1)),(1 - pchisq(u_P2[3],1)),K1(WW2_P2),(1-pkolm(D_P2,n_samP2)))) dataDH<-sort(dataDH);bmw <- matrix(0,n_samDH,1); bmwsl <- matrix(0,n_samDH,d2) for(i in 1:d2){ gg <- (dataDH - meanD[i])/sqrt(sigmaD[i]) bmw[which(gg>=0)] <- pnorm(gg[gg>=0]) bmw[which(gg<0)] <- 1 - pnorm(abs(gg[gg<0])) bmwsl[,i] <- bmw*mix_pi[i] } P2 <- rowSums(bmwsl) nn<-dim(as.matrix(unique(P2)))[1] if(nn<n_samDH){P2<-P2+runif(n_samDH)/1e4} dd <- as.matrix(c(sum(P2),sum(P2^2),sum((P2-0.5)^2))) WW2 <- 1/(12*n_samDH) + sum((P2 - (as.matrix(c(1:n_samDH)) - 0.5)/n_samDH)^2) u <- as.matrix(c(12*n_samDH*((dd[1]/n_samDH-0.5)^2),((45*n_samDH)/4)*((dd[2]/n_samDH-1/3)^2),180*n_samDH*((dd[3]/n_samDH-1/12)^2))) D <- as.numeric(ks.test(P2,"punif")[[1]][1]) tt <- as.matrix(c((1 - pchisq(u[1],1)),(1 - pchisq(u[2],1)),(1 - pchisq(u[3],1)),K1(WW2),(1-pkolm(D,n_samDH)))) tt_P1[which(tt_P1>=10e-4)]<-round(tt_P1[which(tt_P1>=10e-4)],4);tt_P1[which(tt_P1<10e-4)]<-format(tt_P1[which(tt_P1<10e-4)],scientific=TRUE,digit=4) tt_P2[which(tt_P2>=10e-4)]<-round(tt_P2[which(tt_P2>=10e-4)],4);tt_P2[which(tt_P2<10e-4)]<-format(tt_P2[which(tt_P2<10e-4)],scientific=TRUE,digit=4) tt[which(tt>=10e-4)]<-round(tt[which(tt>=10e-4)],4);tt[which(tt<10e-4)]<-format(tt[which(tt<10e-4)],scientific=TRUE,digit=4) output <- data.frame("MX1-A-A",round(abc,4),round(AIC,4),round(mean11,4),round(mean12,4),round(sigma,4),round(t(meanD),4)," "," "," "," "," "," "," "," "," "," "," "," "," "," ",round(sigmaD[1],4),round(t(mix_pi),4), " "," "," "," "," "," "," "," "," "," "," "," "," "," ",round(B1[1],4)," "," ",round(B1[2],4)," "," "," "," "," "," "," "," "," "," ",round(B1[3],4),round(jj,4),round(ll*100,4),round(mm,4),round(nnn*100,4),round(u_P1[1],4),tt_P1[1],round(u_P1[2],4), tt_P1[2],round(u_P1[3],4),tt_P1[3],round(WW2_P1,4),tt_P1[4],round(D_P1,4),tt_P1[5],round(u_P2[1],4),tt_P2[1],round(u_P2[2],4), tt_P2[2],round(u_P2[3],4),tt_P2[3],round(WW2_P2,4),tt_P2[4],round(D_P2,4),tt_P2[5],round(u[1],4),tt[1],round(u[2],4), tt[2],round(u[3],4),tt[3],round(WW2,4),tt[4],round(D,4),tt[5]) output<-as.matrix(output) OUTPUT<-list(output,mi) return(OUTPUT) } G3DHModelFun[[16]] <- function(K1,logL,df11,df21,df31,G3DHtext2){ dataP1 <- as.matrix(as.numeric(df11[,1]));dataP2 <- as.matrix(as.numeric(df21[,1]));dataDH <- as.matrix(as.numeric(df31[,1])) n_samP1<-dim(dataP1)[1]; n_samP2<-dim(dataP2)[1];n_samDH<-dim(dataDH)[1] mean11<-mean(dataP1);mean12<-mean(dataP2) sigmaP1<- as.numeric(var(dataP1)); sigmaP2<- as.numeric(var(dataP2)) ss1<-(n_samP1-1)*sigmaP1; ss2<-(n_samP2-1)*sigmaP2 sigma0<-(ss1+ss2)/(n_samP1+n_samP2-2);sigma_dh<-as.numeric(var(dataDH)) m_esp<- 0.0001 ;m_fam<- as.numeric(G3DHtext2) d2<-4 mi <- as.matrix(c(0.25,0.25,0.25,0.25)) meanE<-mean(dataDH) sigmaE <- matrix((sigma_dh/2*1.2222101),d2,1) sigma <- sigma0 a1 <- sqrt(sigma_dh/n_samDH) if(mean11<mean12){a1=-a1} meanE <- as.matrix(c((meanE+3*a1),(meanE+1.5*a1),(meanE-1.5*a1),(meanE-3*a1))) iteration <- 0; stopa <- 1000 WW <- matrix(0,d2,n_samDH); swx <- matrix(0,d2,1) L0 <- logL(n_samP1,1,1,mean11,sigma,dataP1)+logL(n_samP2,1,1,mean12,sigma,dataP2)+sum(log(dmixnorm(dataDH,meanE,sqrt(sigmaE),mi))) while(stopa > m_esp && iteration<=1000){ iteration <- iteration + 1 for(i in 1:d2) { WW[i,] <- mi[i]*dnorm(dataDH,meanE[i],sqrt(sigmaE[i]))/dmixnorm(dataDH,meanE,sqrt(sigmaE),mi) } mix_pi <- as.matrix(rowSums(WW)/n_samDH) sumwx <- WW%*%dataDH n0 <- n_samDH*mix_pi n0[n0<0.000001] <- 0.000001 mean11<- sum(dataP1)/n_samP1 mean12<- sum(dataP2)/n_samP2 meanE <- sumwx/n0 ss1<- sum((dataP1-mean11)^2) ss2<- sum((dataP2-mean12)^2) for(i in 1:d2) { swx[i] <- WW[i,]%*%(dataDH-meanE[i])^2 } s0<-matrix(0,2,1) s0[1]<- ss1+ss2 s0[2]<- sum(swx)*m_fam s1<- sigmaE[1]-sigma/m_fam if (s1<0.0){s1<- 0.000001} abc2<- sigma; abc3<-1000; n_iter<- 0 while(abc3>0.0001){ n_iter<- n_iter+1 abc1<- (sigma/m_fam)/(sigma/m_fam+s1) sigma<- (s0[1]+abc1*abc1*s0[2])/(n_samP1+n_samP2+abc1*n_samDH) abc3<- abs(abc2-sigma) abc2<- sigma if (n_iter>20) break } if (sigma<0.1*sigma0){ sigma<- 0.1*sigma0 } sigmaE[1]<- s1+sigma/m_fam s1<- sum(swx)/n_samDH-sigma/m_fam if (s1<0.0){ s1<- 0.000001 } sigmaE<- matrix((s1+sigma/m_fam),d2,1) L1 <- logL(n_samP1,1,1,mean11,sigma,dataP1)+logL(n_samP2,1,1,mean12,sigma,dataP2)+sum(log(dmixnorm(dataDH,meanE,sqrt(sigmaE),mix_pi))) stopa <- L1 - L0 L0 <- L1 if(stopa < 0) {stopa <- -stopa} } abc <- L1 AIC <- -2*abc + 2*8 aa<- matrix(c(1,0,0,0,0,0, 0,1,0,0,0,0, 0,0,1,1,1,1, 1,-1,1,1,-1,-1, 1,-1,1,-1,1,-1, 1,1,1,-1,-1,1),6,6) b_line1 <- as.matrix(c(mean11,mean12,meanE)) B1 <- solve(aa,b_line1) jj <- sigma_dh - sigmaE[1] if(jj < 0) {jj <- 0} ll <- jj/sigma_dh mm<- sigmaE[1]-sigma[1] if(mm<0){mm<-0} nnn<- mm/sigma_dh dataP1<-sort(dataP1);bmw_P1 <- matrix(0,n_samP1,1); bmwsl_P1 <- matrix(0,n_samP1,1) gg_P1 <- (dataP1 - mean11)/sqrt(as.vector(sigma)) bmw_P1[which(gg_P1>=0)] <- pnorm(gg_P1[gg_P1>=0]) bmw_P1[which(gg_P1<0)] <- 1 - pnorm(abs(gg_P1[gg_P1<0])) bmwsl_P1[,1] <- bmw_P1 P2_P1 <- rowSums(bmwsl_P1) nn<-dim(as.matrix(unique(P2_P1)))[1] if(nn<n_samP1){P2_P1<-P2_P1+runif(n_samP1)/1e4} dd_P1 <- as.matrix(c(sum(P2_P1),sum(P2_P1^2),sum((P2_P1-0.5)^2))) WW2_P1 <- 1/(12*n_samP1) + sum((P2_P1 - (as.matrix(c(1:n_samP1)) - 0.5)/n_samP1)^2) u_P1 <- as.matrix(c(12*n_samP1*((dd_P1[1]/n_samP1-0.5)^2),((45*n_samP1)/4)*((dd_P1[2]/n_samP1-1/3)^2),180*n_samP1*((dd_P1[3]/n_samP1-1/12)^2))) D_P1 <- as.numeric(ks.test(P2_P1,"punif")[[1]][1]) tt_P1 <- as.matrix(c((1 - pchisq(u_P1[1],1)),(1 - pchisq(u_P1[2],1)),(1 - pchisq(u_P1[3],1)),K1(WW2_P1),(1-pkolm(D_P1,n_samP1)))) dataP2<-sort(dataP2);bmw_P2 <- matrix(0,n_samP2,1); bmwsl_P2 <- matrix(0,n_samP2,1) gg_P2 <- (dataP2 - mean12)/sqrt(as.vector(sigma)) bmw_P2[which(gg_P2>=0)] <- pnorm(gg_P2[gg_P2>=0]) bmw_P2[which(gg_P2<0)] <- 1 - pnorm(abs(gg_P2[gg_P2<0])) bmwsl_P2[,1] <- bmw_P2 P2_P2 <- rowSums(bmwsl_P2) nn<-dim(as.matrix(unique(P2_P2)))[1] if(nn<n_samP2){P2_P2<-P2_P2+runif(n_samP2)/1e4} dd_P2 <- as.matrix(c(sum(P2_P2),sum(P2_P2^2),sum((P2_P2-0.5)^2))) WW2_P2 <- 1/(12*n_samP2) + sum((P2_P2 - (as.matrix(c(1:n_samP2)) - 0.5)/n_samP2)^2) u_P2 <- as.matrix(c(12*n_samP2*((dd_P2[1]/n_samP2-0.5)^2),((45*n_samP2)/4)*((dd_P2[2]/n_samP2-1/3)^2),180*n_samP2*((dd_P2[3]/n_samP2-1/12)^2))) D_P2 <- as.numeric(ks.test(P2_P2,"punif")[[1]][1]) tt_P2 <- as.matrix(c((1 - pchisq(u_P2[1],1)),(1 - pchisq(u_P2[2],1)),(1 - pchisq(u_P2[3],1)),K1(WW2_P2),(1-pkolm(D_P2,n_samP2)))) dataDH<-sort(dataDH);bmw <- matrix(0,n_samDH,1); bmwsl <- matrix(0,n_samDH,d2) for(i in 1:d2){ gg <- (dataDH - meanE[i])/sqrt(sigmaE[i]) bmw[which(gg>=0)] <- pnorm(gg[gg>=0]) bmw[which(gg<0)] <- 1 - pnorm(abs(gg[gg<0])) bmwsl[,i] <- bmw*mix_pi[i] } P2 <- rowSums(bmwsl) nn<-dim(as.matrix(unique(P2)))[1] if(nn<n_samDH){P2<-P2+runif(n_samDH)/1e4} dd <- as.matrix(c(sum(P2),sum(P2^2),sum((P2-0.5)^2))) WW2 <- 1/(12*n_samDH) + sum((P2 - (as.matrix(c(1:n_samDH)) - 0.5)/n_samDH)^2) u <- as.matrix(c(12*n_samDH*((dd[1]/n_samDH-0.5)^2),((45*n_samDH)/4)*((dd[2]/n_samDH-1/3)^2),180*n_samDH*((dd[3]/n_samDH-1/12)^2))) D <- as.numeric(ks.test(P2,"punif")[[1]][1]) tt <- as.matrix(c((1 - pchisq(u[1],1)),(1 - pchisq(u[2],1)),(1 - pchisq(u[3],1)),K1(WW2),(1-pkolm(D,n_samDH)))) tt_P1[which(tt_P1>=10e-4)]<-round(tt_P1[which(tt_P1>=10e-4)],4);tt_P1[which(tt_P1<10e-4)]<-format(tt_P1[which(tt_P1<10e-4)],scientific=TRUE,digit=4) tt_P2[which(tt_P2>=10e-4)]<-round(tt_P2[which(tt_P2>=10e-4)],4);tt_P2[which(tt_P2<10e-4)]<-format(tt_P2[which(tt_P2<10e-4)],scientific=TRUE,digit=4) tt[which(tt>=10e-4)]<-round(tt[which(tt>=10e-4)],4);tt[which(tt<10e-4)]<-format(tt[which(tt<10e-4)],scientific=TRUE,digit=4) output <- data.frame("MX2-AI-AI",round(abc,4),round(AIC,4),round(mean11,4),round(mean12,4),round(sigma,4),round(t(meanE),4)," "," "," "," "," "," "," "," "," "," "," "," ",round(sigmaE[1],4),round(t(mix_pi),4), " "," "," "," "," "," "," "," "," "," "," "," ",round(B1[1],4),round(B1[2],4),round(B1[3],4),round(B1[4],4),round(B1[5],4)," "," ",round(B1[6],4)," "," "," "," "," "," "," ",round(jj,4),round(ll*100,4),round(mm,4),round(nnn*100,4),round(u_P1[1],4),tt_P1[1],round(u_P1[2],4), tt_P1[2],round(u_P1[3],4),tt_P1[3],round(WW2_P1,4),tt_P1[4],round(D_P1,4),tt_P1[5],round(u_P2[1],4),tt_P2[1],round(u_P2[2],4), tt_P2[2],round(u_P2[3],4),tt_P2[3],round(WW2_P2,4),tt_P2[4],round(D_P2,4),tt_P2[5],round(u[1],4),tt[1],round(u[2],4), tt[2],round(u[3],4),tt[3],round(WW2,4),tt[4],round(D,4),tt[5]) output<-as.matrix(output) OUTPUT<-list(output,mi) return(OUTPUT) } G3DHModelFun[[17]] <- function(K1,logL,df11,df21,df31,G3DHtext2){ dataP1 <- as.matrix(as.numeric(df11[,1]));dataP2 <- as.matrix(as.numeric(df21[,1]));dataDH <- as.matrix(as.numeric(df31[,1])) n_samP1<-dim(dataP1)[1]; n_samP2<-dim(dataP2)[1];n_samDH<-dim(dataDH)[1] mean11<-mean(dataP1);mean12<-mean(dataP2) sigmaP1<- as.numeric(var(dataP1)); sigmaP2<- as.numeric(var(dataP2)) ss1<-(n_samP1-1)*sigmaP1; ss2<-(n_samP2-1)*sigmaP2 sigma0<-(ss1+ss2)/(n_samP1+n_samP2-2);sigma_dh<-as.numeric(var(dataDH)) m_esp<- 0.0001 ;m_fam<- as.numeric(G3DHtext2) d2<-4 mi <- as.matrix(c(0.25,0.25,0.25,0.25)) meanE<-mean(dataDH) sigmaE <- matrix((sigma_dh/2*1.2222101),d2,1) sigma <- sigma0 a1 <- sqrt(sigma_dh/n_samDH) if(mean11<mean12){a1=-a1} meanE <- as.matrix(c((meanE+3*a1),(meanE+1.5*a1),(meanE-1.5*a1),(meanE-3*a1))) iteration <- 0; stopa <- 1000 WW <- matrix(0,d2,n_samDH); swx <- matrix(0,d2,1) L0 <- logL(n_samP1,1,1,mean11,sigma,dataP1)+logL(n_samP2,1,1,mean12,sigma,dataP2)+sum(log(dmixnorm(dataDH,meanE,sqrt(sigmaE),mi))) while(stopa > m_esp && iteration<=1000){ iteration <- iteration + 1 for(i in 1:d2) { WW[i,] <- mi[i]*dnorm(dataDH,meanE[i],sqrt(sigmaE[i]))/dmixnorm(dataDH,meanE,sqrt(sigmaE),mi) } mix_pi <- as.matrix(rowSums(WW)/n_samDH) sumwx <- WW%*%dataDH n0 <- n_samDH*mix_pi n0[n0<0.000001] <- 0.000001 rr<-(sum(dataP1)/n_samP1+sum(dataP2)/n_samP2-sumwx[1]/n0[1]-sumwx[4]/n0[4])/(sigma/n_samP1+sigma/n_samP2+sigmaE[1]/n0[1]+sigmaE[4]/n0[4]) mean11<- (sum(dataP1)-rr*sigma)/n_samP1 mean12<- (sum(dataP2)-rr*sigma)/n_samP2 meanE[1]<- (sumwx[1]+rr*sigmaE[1])/n0[1] meanE[2]<- sumwx[2]/n0[2] meanE[3]<- sumwx[3]/n0[3] meanE[4]<- (sumwx[4]+rr*sigmaE[4])/n0[4] ss1<- sum((dataP1-mean11)^2) ss2<- sum((dataP2-mean12)^2) for(i in 1:d2) { swx[i] <- WW[i,]%*%(dataDH-meanE[i])^2 } s0<-matrix(0,2,1) s0[1]<- ss1+ss2 s0[2]<- sum(swx)*m_fam s1<- sigmaE[1]-sigma/m_fam if (s1<0.0){s1<- 0.000001} abc2<- sigma abc3<-1000; n_iter<- 0 while(abc3>0.0001){ n_iter<- n_iter+1 abc1<- (sigma/m_fam)/(sigma/m_fam+s1) sigma<- (s0[1]+abc1*abc1*s0[2])/(n_samP1+n_samP2+abc1*n_samDH) abc3<- abs(abc2-sigma) abc2<- sigma if (n_iter>20) break } if (sigma<0.1*sigma0){ sigma<- 0.1*sigma0 } sigmaE[1]<- s1+sigma/m_fam s1<- sum(swx)/n_samDH-sigma/m_fam if (s1<0.0){ s1<- 0.000001 } sigmaE<- matrix((s1+sigma/m_fam),d2,1) L1 <- logL(n_samP1,1,1,mean11,sigma,dataP1)+logL(n_samP2,1,1,mean12,sigma,dataP2)+sum(log(dmixnorm(dataDH,meanE,sqrt(sigmaE),mix_pi))) stopa <- L1 - L0 L0 <- L1 if(stopa < 0) {stopa <- -stopa} } abc <- L1 AIC <- -2*abc + 2*7 aa<- matrix(c(1,1,1,1,1,1, 1,-1,1,1,-1,-1, 1,-1,1,-1,1,-1, 1,-1,0,0,0,0, 1,1,1,-1,-1,1),6,5) b_line1 <- as.matrix(c(mean11,mean12,meanE)) B1 <- solve(t(aa)%*%aa)%*%(t(aa)%*%b_line1) jj <- sigma_dh - sigmaE[1] if(jj < 0) {jj <- 0} ll <- jj/sigma_dh mm<- sigmaE[1]-sigma[1] if(mm<0){mm<-0} nnn<- mm/sigma_dh dataP1<-sort(dataP1);bmw_P1 <- matrix(0,n_samP1,1); bmwsl_P1 <- matrix(0,n_samP1,1) gg_P1 <- (dataP1 - mean11)/sqrt(as.vector(sigma)) bmw_P1[which(gg_P1>=0)] <- pnorm(gg_P1[gg_P1>=0]) bmw_P1[which(gg_P1<0)] <- 1 - pnorm(abs(gg_P1[gg_P1<0])) bmwsl_P1[,1] <- bmw_P1 P2_P1 <- rowSums(bmwsl_P1) nn<-dim(as.matrix(unique(P2_P1)))[1] if(nn<n_samP1){P2_P1<-P2_P1+runif(n_samP1)/1e4} dd_P1 <- as.matrix(c(sum(P2_P1),sum(P2_P1^2),sum((P2_P1-0.5)^2))) WW2_P1 <- 1/(12*n_samP1) + sum((P2_P1 - (as.matrix(c(1:n_samP1)) - 0.5)/n_samP1)^2) u_P1 <- as.matrix(c(12*n_samP1*((dd_P1[1]/n_samP1-0.5)^2),((45*n_samP1)/4)*((dd_P1[2]/n_samP1-1/3)^2),180*n_samP1*((dd_P1[3]/n_samP1-1/12)^2))) D_P1 <- as.numeric(ks.test(P2_P1,"punif")[[1]][1]) tt_P1 <- as.matrix(c((1 - pchisq(u_P1[1],1)),(1 - pchisq(u_P1[2],1)),(1 - pchisq(u_P1[3],1)),K1(WW2_P1),(1-pkolm(D_P1,n_samP1)))) dataP2<-sort(dataP2);bmw_P2 <- matrix(0,n_samP2,1); bmwsl_P2 <- matrix(0,n_samP2,1) gg_P2 <- (dataP2 - mean12)/sqrt(as.vector(sigma)) bmw_P2[which(gg_P2>=0)] <- pnorm(gg_P2[gg_P2>=0]) bmw_P2[which(gg_P2<0)] <- 1 - pnorm(abs(gg_P2[gg_P2<0])) bmwsl_P2[,1] <- bmw_P2 P2_P2 <- rowSums(bmwsl_P2) nn<-dim(as.matrix(unique(P2_P2)))[1] if(nn<n_samP2){P2_P2<-P2_P2+runif(n_samP2)/1e4} dd_P2 <- as.matrix(c(sum(P2_P2),sum(P2_P2^2),sum((P2_P2-0.5)^2))) WW2_P2 <- 1/(12*n_samP2) + sum((P2_P2 - (as.matrix(c(1:n_samP2)) - 0.5)/n_samP2)^2) u_P2 <- as.matrix(c(12*n_samP2*((dd_P2[1]/n_samP2-0.5)^2),((45*n_samP2)/4)*((dd_P2[2]/n_samP2-1/3)^2),180*n_samP2*((dd_P2[3]/n_samP2-1/12)^2))) D_P2 <- as.numeric(ks.test(P2_P2,"punif")[[1]][1]) tt_P2 <- as.matrix(c((1 - pchisq(u_P2[1],1)),(1 - pchisq(u_P2[2],1)),(1 - pchisq(u_P2[3],1)),K1(WW2_P2),(1-pkolm(D_P2,n_samP2)))) dataDH<-sort(dataDH);bmw <- matrix(0,n_samDH,1); bmwsl <- matrix(0,n_samDH,d2) for(i in 1:d2){ gg <- (dataDH - meanE[i])/sqrt(sigmaE[i]) bmw[which(gg>=0)] <- pnorm(gg[gg>=0]) bmw[which(gg<0)] <- 1 - pnorm(abs(gg[gg<0])) bmwsl[,i] <- bmw*mix_pi[i] } P2 <- rowSums(bmwsl) nn<-dim(as.matrix(unique(P2)))[1] if(nn<n_samDH){P2<-P2+runif(n_samDH)/1e4} dd <- as.matrix(c(sum(P2),sum(P2^2),sum((P2-0.5)^2))) WW2 <- 1/(12*n_samDH) + sum((P2 - (as.matrix(c(1:n_samDH)) - 0.5)/n_samDH)^2) u <- as.matrix(c(12*n_samDH*((dd[1]/n_samDH-0.5)^2),((45*n_samDH)/4)*((dd[2]/n_samDH-1/3)^2),180*n_samDH*((dd[3]/n_samDH-1/12)^2))) D <- as.numeric(ks.test(P2,"punif")[[1]][1]) tt <- as.matrix(c((1 - pchisq(u[1],1)),(1 - pchisq(u[2],1)),(1 - pchisq(u[3],1)),K1(WW2),(1-pkolm(D,n_samDH)))) tt_P1[which(tt_P1>=10e-4)]<-round(tt_P1[which(tt_P1>=10e-4)],4);tt_P1[which(tt_P1<10e-4)]<-format(tt_P1[which(tt_P1<10e-4)],scientific=TRUE,digit=4) tt_P2[which(tt_P2>=10e-4)]<-round(tt_P2[which(tt_P2>=10e-4)],4);tt_P2[which(tt_P2<10e-4)]<-format(tt_P2[which(tt_P2<10e-4)],scientific=TRUE,digit=4) tt[which(tt>=10e-4)]<-round(tt[which(tt>=10e-4)],4);tt[which(tt<10e-4)]<-format(tt[which(tt<10e-4)],scientific=TRUE,digit=4) output <- data.frame("MX2-AI-A",round(abc,4),round(AIC,4),round(mean11,4),round(mean12,4),round(sigma,4),round(t(meanE),4)," "," "," "," "," "," "," "," "," "," "," "," ",round(sigmaE[1],4),round(t(mix_pi),4), " "," "," "," "," "," "," "," "," "," "," "," ",round(B1[1],4)," "," ",round(B1[2],4),round(B1[3],4)," "," ",round(B1[4],4)," "," "," "," "," "," ",round(B1[5],4),round(jj,4),round(ll*100,4),round(mm,4),round(nnn*100,4),round(u_P1[1],4),tt_P1[1],round(u_P1[2],4), tt_P1[2],round(u_P1[3],4),tt_P1[3],round(WW2_P1,4),tt_P1[4],round(D_P1,4),tt_P1[5],round(u_P2[1],4),tt_P2[1],round(u_P2[2],4), tt_P2[2],round(u_P2[3],4),tt_P2[3],round(WW2_P2,4),tt_P2[4],round(D_P2,4),tt_P2[5],round(u[1],4),tt[1],round(u[2],4), tt[2],round(u[3],4),tt[3],round(WW2,4),tt[4],round(D,4),tt[5]) output<-as.matrix(output) OUTPUT<-list(output,mi) return(OUTPUT) } G3DHModelFun[[18]] <- function(K1,logL,df11,df21,df31,G3DHtext2){ dataP1 <- as.matrix(as.numeric(df11[,1]));dataP2 <- as.matrix(as.numeric(df21[,1]));dataDH <- as.matrix(as.numeric(df31[,1])) n_samP1<-dim(dataP1)[1]; n_samP2<-dim(dataP2)[1];n_samDH<-dim(dataDH)[1] mean11<-mean(dataP1);mean12<-mean(dataP2) sigmaP1<- as.numeric(var(dataP1)); sigmaP2<- as.numeric(var(dataP2)) ss1<-(n_samP1-1)*sigmaP1; ss2<-(n_samP2-1)*sigmaP2 sigma0<-(ss1+ss2)/(n_samP1+n_samP2-2);sigma_dh<-as.numeric(var(dataDH)) m_esp<- 0.0001 ;m_fam<- as.numeric(G3DHtext2) d2<-4 mi <- as.matrix(c(0.25,0.25,0.25,0.25)) meanE<-mean(dataDH) sigmaE <- matrix((sigma_dh/2*1.2222101),d2,1) sigma <- sigma0 a1 <- sqrt(sigma_dh) if(mean11<mean12){a1=-a1} meanE <- as.matrix(c((meanE+3*a1),(meanE+1.5*a1),(meanE-1.5*a1),(meanE-3*a1))) iteration <- 0; stopa <- 1000 WW <- matrix(0,d2,n_samDH); swx <- matrix(0,d2,1) L0 <- logL(n_samP1,1,1,mean11,sigma,dataP1)+logL(n_samP2,1,1,mean12,sigma,dataP2)+sum(log(dmixnorm(dataDH,meanE,sqrt(sigmaE),mi))) while(stopa > m_esp && iteration<=1000){ iteration <- iteration + 1 for(i in 1:d2) { WW[i,] <- mi[i]*dnorm(dataDH,meanE[i],sqrt(sigmaE[i]))/dmixnorm(dataDH,meanE,sqrt(sigmaE),mi) } mix_pi <- as.matrix(rowSums(WW)/n_samDH) sumwx <- WW%*%dataDH n0 <- n_samDH*mix_pi n0[n0<0.000001] <- 0.000001 s0<- matrix(0,6,1) s0[1]<- sum(dataP1)/n_samP1+sum(dataP2)/n_samP2-sumwx[1]/n0[1]-sumwx[4]/n0[4] s0[2]<- sumwx[1]/n0[1]-sumwx[2]/n0[2]-sumwx[3]/n0[3]+sumwx[4]/n0[4] s0[3]<- sigma/n_samP1+sigma/n_samP2+sigmaE[1]/n0[1]+sigmaE[4]/n0[4] s0[4]<- -sigmaE[1]/n0[1]-sigmaE[4]/n0[4] s0[5]<- sigmaE[1]/n0[1]+sigmaE[2]/n0[2]+sigmaE[3]/n0[3]+sigmaE[4]/n0[4] s0[6]<- s0[3]*s0[5]-s0[4]*s0[4] rr<- matrix(0,2,1) rr[1]<- (s0[1]*s0[5]-s0[2]*s0[4])/s0[6] rr[2]<- (s0[2]*s0[3]-s0[1]*s0[4])/s0[6] mean11<- (sum(dataP1)-rr[1]*sigma)/n_samP1 mean12<- (sum(dataP2)-rr[1]*sigma)/n_samP2 meanE[1]<- (sumwx[1]+sigmaE[1]*(rr[1]-rr[2]))/n0[1] meanE[2]<- (sumwx[2]+sigmaE[2]*rr[2])/n0[2] meanE[3]<- (sumwx[3]+sigmaE[3]*rr[2])/n0[3] meanE[4]<- (sumwx[4]+sigmaE[4]*(rr[1]-rr[2]))/n0[4] ss1<- sum((dataP1-mean11)^2) ss2<- sum((dataP2-mean12)^2) for(i in 1:d2) { swx[i] <- WW[i,]%*%(dataDH-meanE[i])^2 } s0E<-matrix(0,2,1) s0E[1]<- ss1+ss2 s0E[2]<- sum(swx)*m_fam s1<- sigmaE[1]-sigma/m_fam if (s1<0.0){s1<- 0.000001 } abc2<- sigma abc3<-1000; n_iter<- 0 while(abc3>0.0001){ n_iter<- n_iter+1 abc1<- (sigma/m_fam)/(sigma/m_fam+s1) sigma<- (s0E[1]+abc1*abc1*s0E[2])/(n_samP1+n_samP2+abc1*n_samDH) abc3<- abs(abc2-sigma) abc2<- sigma if (n_iter>20) break } if (sigma<0.1*sigma0){ sigma<- 0.1*sigma0 } sigmaE[1]<- s1+sigma/m_fam s1<- sum(swx)/n_samDH-sigma/m_fam if (s1<0.0){ s1<- 0.000001 } sigmaE<- matrix((s1+sigma/m_fam),d2,1) L1 <- logL(n_samP1,1,1,mean11,sigma,dataP1)+logL(n_samP2,1,1,mean12,sigma,dataP2)+sum(log(dmixnorm(dataDH,meanE,sqrt(sigmaE),mix_pi))) stopa <- L1 - L0 L0 <- L1 if(stopa < 0) {stopa <- -stopa} } abc <- L1 AIC <- -2*abc + 2*6 aa<- matrix(c(1,1,1,1,1,1, 1,-1,1,1,-1,-1, 1,-1,1,-1,1,-1, 1,-1,0,0,0,0),6,4) b_line1 <- as.matrix(c(mean11,mean12,meanE)) B1 <- solve(t(aa)%*%aa)%*%(t(aa)%*%b_line1) jj <- sigma_dh - sigmaE[1] if(jj < 0) {jj <- 0} ll <- jj/sigma_dh mm<- sigmaE[1]-sigma[1] if(mm<0){mm<-0} nnn<- mm/sigma_dh dataP1<-sort(dataP1);bmw_P1 <- matrix(0,n_samP1,1); bmwsl_P1 <- matrix(0,n_samP1,1) gg_P1 <- (dataP1 - mean11)/sqrt(as.vector(sigma)) bmw_P1[which(gg_P1>=0)] <- pnorm(gg_P1[gg_P1>=0]) bmw_P1[which(gg_P1<0)] <- 1 - pnorm(abs(gg_P1[gg_P1<0])) bmwsl_P1[,1] <- bmw_P1 P2_P1 <- rowSums(bmwsl_P1) nn<-dim(as.matrix(unique(P2_P1)))[1] if(nn<n_samP1){P2_P1<-P2_P1+runif(n_samP1)/1e4} dd_P1 <- as.matrix(c(sum(P2_P1),sum(P2_P1^2),sum((P2_P1-0.5)^2))) WW2_P1 <- 1/(12*n_samP1) + sum((P2_P1 - (as.matrix(c(1:n_samP1)) - 0.5)/n_samP1)^2) u_P1 <- as.matrix(c(12*n_samP1*((dd_P1[1]/n_samP1-0.5)^2),((45*n_samP1)/4)*((dd_P1[2]/n_samP1-1/3)^2),180*n_samP1*((dd_P1[3]/n_samP1-1/12)^2))) D_P1 <- as.numeric(ks.test(P2_P1,"punif")[[1]][1]) tt_P1 <- as.matrix(c((1 - pchisq(u_P1[1],1)),(1 - pchisq(u_P1[2],1)),(1 - pchisq(u_P1[3],1)),K1(WW2_P1),(1-pkolm(D_P1,n_samP1)))) dataP2<-sort(dataP2);bmw_P2 <- matrix(0,n_samP2,1); bmwsl_P2 <- matrix(0,n_samP2,1) gg_P2 <- (dataP2 - mean12)/sqrt(as.vector(sigma)) bmw_P2[which(gg_P2>=0)] <- pnorm(gg_P2[gg_P2>=0]) bmw_P2[which(gg_P2<0)] <- 1 - pnorm(abs(gg_P2[gg_P2<0])) bmwsl_P2[,1] <- bmw_P2 P2_P2 <- rowSums(bmwsl_P2) nn<-dim(as.matrix(unique(P2_P2)))[1] if(nn<n_samP2){P2_P2<-P2_P2+runif(n_samP2)/1e4} dd_P2 <- as.matrix(c(sum(P2_P2),sum(P2_P2^2),sum((P2_P2-0.5)^2))) WW2_P2 <- 1/(12*n_samP2) + sum((P2_P2 - (as.matrix(c(1:n_samP2)) - 0.5)/n_samP2)^2) u_P2 <- as.matrix(c(12*n_samP2*((dd_P2[1]/n_samP2-0.5)^2),((45*n_samP2)/4)*((dd_P2[2]/n_samP2-1/3)^2),180*n_samP2*((dd_P2[3]/n_samP2-1/12)^2))) D_P2 <- as.numeric(ks.test(P2_P2,"punif")[[1]][1]) tt_P2 <- as.matrix(c((1 - pchisq(u_P2[1],1)),(1 - pchisq(u_P2[2],1)),(1 - pchisq(u_P2[3],1)),K1(WW2_P2),(1-pkolm(D_P2,n_samP2)))) dataDH<-sort(dataDH);bmw <- matrix(0,n_samDH,1); bmwsl <- matrix(0,n_samDH,d2) for(i in 1:d2){ gg <- (dataDH - meanE[i])/sqrt(sigmaE[i]) bmw[which(gg>=0)] <- pnorm(gg[gg>=0]) bmw[which(gg<0)] <- 1 - pnorm(abs(gg[gg<0])) bmwsl[,i] <- bmw*mix_pi[i] } P2 <- rowSums(bmwsl) nn<-dim(as.matrix(unique(P2)))[1] if(nn<n_samDH){P2<-P2+runif(n_samDH)/1e4} dd <- as.matrix(c(sum(P2),sum(P2^2),sum((P2-0.5)^2))) WW2 <- 1/(12*n_samDH) + sum((P2 - (as.matrix(c(1:n_samDH)) - 0.5)/n_samDH)^2) u <- as.matrix(c(12*n_samDH*((dd[1]/n_samDH-0.5)^2),((45*n_samDH)/4)*((dd[2]/n_samDH-1/3)^2),180*n_samDH*((dd[3]/n_samDH-1/12)^2))) D <- as.numeric(ks.test(P2,"punif")[[1]][1]) tt <- as.matrix(c((1 - pchisq(u[1],1)),(1 - pchisq(u[2],1)),(1 - pchisq(u[3],1)),K1(WW2),(1-pkolm(D,n_samDH)))) tt_P1[which(tt_P1>=10e-4)]<-round(tt_P1[which(tt_P1>=10e-4)],4);tt_P1[which(tt_P1<10e-4)]<-format(tt_P1[which(tt_P1<10e-4)],scientific=TRUE,digit=4) tt_P2[which(tt_P2>=10e-4)]<-round(tt_P2[which(tt_P2>=10e-4)],4);tt_P2[which(tt_P2<10e-4)]<-format(tt_P2[which(tt_P2<10e-4)],scientific=TRUE,digit=4) tt[which(tt>=10e-4)]<-round(tt[which(tt>=10e-4)],4);tt[which(tt<10e-4)]<-format(tt[which(tt<10e-4)],scientific=TRUE,digit=4) output <- data.frame("MX2-A-A",round(abc,4),round(AIC,4),round(mean11,4),round(mean12,4),round(sigma,4),round(t(meanE),4)," "," "," "," "," "," "," "," "," "," "," "," ",round(sigmaE[1],4),round(t(mix_pi),4), " "," "," "," "," "," "," "," "," "," "," "," ",round(B1[1],4)," "," ",round(B1[2],4),round(B1[3],4)," "," "," "," "," "," "," "," "," ",round(B1[4],4),round(jj,4),round(ll*100,4),round(mm,4),round(nnn*100,4),round(u_P1[1],4),tt_P1[1],round(u_P1[2],4), tt_P1[2],round(u_P1[3],4),tt_P1[3],round(WW2_P1,4),tt_P1[4],round(D_P1,4),tt_P1[5],round(u_P2[1],4),tt_P2[1],round(u_P2[2],4), tt_P2[2],round(u_P2[3],4),tt_P2[3],round(WW2_P2,4),tt_P2[4],round(D_P2,4),tt_P2[5],round(u[1],4),tt[1],round(u[2],4), tt[2],round(u[3],4),tt[3],round(WW2,4),tt[4],round(D,4),tt[5]) output<-as.matrix(output) OUTPUT<-list(output,mi) return(OUTPUT) } G3DHModelFun[[19]] <- function(K1,logL,df11,df21,df31,G3DHtext2){ dataP1 <- as.matrix(as.numeric(df11[,1]));dataP2 <- as.matrix(as.numeric(df21[,1]));dataDH <- as.matrix(as.numeric(df31[,1])) n_samP1<-dim(dataP1)[1]; n_samP2<-dim(dataP2)[1];n_samDH<-dim(dataDH)[1] mean11<-mean(dataP1);mean12<-mean(dataP2) sigmaP1<- as.numeric(var(dataP1)); sigmaP2<- as.numeric(var(dataP2)) ss1<-(n_samP1-1)*sigmaP1; ss2<-(n_samP2-1)*sigmaP2 sigma0<-(ss1+ss2)/(n_samP1+n_samP2-2);sigma_dh<-as.numeric(var(dataDH)) m_esp<- 0.0001 ;m_fam<- as.numeric(G3DHtext2) d2<-3 mi <- as.matrix(c(0.25,0.5,0.25)) meanE<-mean(dataDH) sigmaE <- matrix((sigma_dh/2*1.2222101),d2,1) sigma <- sigma0 a1 <- sqrt(sigma_dh) if(mean11<mean12){a1=-a1} meanE <- as.matrix(c(114,100,86)) iteration <- 0; stopa <- 1000 WW <- matrix(0,d2,n_samDH); swx <- matrix(0,d2,1) L0 <- logL(n_samP1,1,1,mean11,sigma,dataP1)+logL(n_samP2,1,1,mean12,sigma,dataP2)+sum(log(dmixnorm(dataDH,meanE,sqrt(sigmaE),mi))) while(stopa > m_esp && iteration<=1000){ iteration <- iteration + 1 for(i in 1:d2) { WW[i,] <- mi[i]*dnorm(dataDH,meanE[i],sqrt(sigmaE[i]))/dmixnorm(dataDH,meanE,sqrt(sigmaE),mi) } mix_pi <- as.matrix(rowSums(WW)/n_samDH) sumwx <- WW%*%dataDH n0 <- n_samDH*mix_pi n0[n0<0.000001] <- 0.000001 s0<- matrix(0,6,1) s0[1]<- sum(dataP1)/n_samP1+sum(dataP2)/n_samP2-2*sumwx[2]/n0[2] s0[2]<- sumwx[1]/n0[1]-2*sumwx[2]/n0[2]+sumwx[3]/n0[3] s0[3]<- sigma/n_samP1+sigma/n_samP2+4*sigmaE[2]/n0[2] s0[4]<- 4*sigmaE[2]/n0[2] s0[5]<- sigmaE[1]/n0[1]+4*sigmaE[2]/n0[2]+sigmaE[3]/n0[3] s0[6]<- s0[3]*s0[5]-s0[4]*s0[4] rr<- matrix(0,2,1) rr[1]<- (s0[1]*s0[5]-s0[2]*s0[4])/s0[6] rr[2]<- (s0[2]*s0[3]-s0[1]*s0[4])/s0[6] mean11<- (sum(dataP1)-rr[1]*sigma)/n_samP1 mean12<- (sum(dataP2)-rr[1]*sigma)/n_samP2 meanE[1]<- (sumwx[1]-sigmaE[1]*rr[2])/n0[1] meanE[2]<- (sumwx[2]+sigmaE[2]*(2.0*rr[1]+2.0*rr[2]))/n0[2] meanE[3]<- (sumwx[3]-sigmaE[3]*rr[2])/n0[3] ss1<- sum((dataP1-mean11)^2) ss2<- sum((dataP2-mean12)^2) for(i in 1:d2) { swx[i] <- WW[i,]%*%(dataDH-meanE[i])^2 } s0E<-matrix(0,2,1) s0E[1]<- ss1+ss2 s0E[2]<- sum(swx)*m_fam s1<- sigmaE[1]-sigma/m_fam if (s1<0.0){s1<- 0.000001} abc2<- sigma abc3<-1000; n_iter<- 0 while(abc3>0.0001){ n_iter<- n_iter+1 abc1<- (sigma/m_fam)/(sigma/m_fam+s1) sigma<- (s0E[1]+abc1*abc1*s0E[2])/(n_samP1+n_samP2+abc1*n_samDH) abc3<- abs(abc2-sigma) abc2<- sigma if (n_iter>20) break } if (sigma<0.1*sigma0){ sigma<- 0.1*sigma0 } sigmaE[1]<- s1+sigma/m_fam s1<- sum(swx)/n_samDH-sigma/m_fam if (s1<0.0){ s1<- 0.000001 } sigmaE<- matrix((s1+sigma/m_fam),d2,1) L1 <- logL(n_samP1,1,1,mean11,sigma,dataP1)+logL(n_samP2,1,1,mean12,sigma,dataP2)+sum(log(dmixnorm(dataDH,meanE,sqrt(sigmaE),mix_pi))) stopa <- L1 - L0 L0 <- L1 if(stopa < 0) {stopa <- -stopa} } abc <- L1 AIC <- -2*abc + 2*5 aa<- matrix(c(1,1,1,1,1, 2,-2,2,0,-2, 1,1,0,0,0),5,3) b_line1 <- as.matrix(c(mean11,mean12,meanE)) B1 <- solve(t(aa)%*%aa)%*%(t(aa)%*%b_line1) jj <- sigma_dh - sigmaE[1] if(jj < 0) {jj <- 0} ll <- jj/sigma_dh mm<- sigmaE[1]-sigma[1] if(mm<0){mm<-0} nnn<- mm/sigma_dh dataP1<-sort(dataP1);bmw_P1 <- matrix(0,n_samP1,1); bmwsl_P1 <- matrix(0,n_samP1,1) gg_P1 <- (dataP1 - mean11)/sqrt(as.vector(sigma)) bmw_P1[which(gg_P1>=0)] <- pnorm(gg_P1[gg_P1>=0]) bmw_P1[which(gg_P1<0)] <- 1 - pnorm(abs(gg_P1[gg_P1<0])) bmwsl_P1[,1] <- bmw_P1 P2_P1 <- rowSums(bmwsl_P1) nn<-dim(as.matrix(unique(P2_P1)))[1] if(nn<n_samP1){P2_P1<-P2_P1+runif(n_samP1)/1e4} dd_P1 <- as.matrix(c(sum(P2_P1),sum(P2_P1^2),sum((P2_P1-0.5)^2))) WW2_P1 <- 1/(12*n_samP1) + sum((P2_P1 - (as.matrix(c(1:n_samP1)) - 0.5)/n_samP1)^2) u_P1 <- as.matrix(c(12*n_samP1*((dd_P1[1]/n_samP1-0.5)^2),((45*n_samP1)/4)*((dd_P1[2]/n_samP1-1/3)^2),180*n_samP1*((dd_P1[3]/n_samP1-1/12)^2))) D_P1 <- as.numeric(ks.test(P2_P1,"punif")[[1]][1]) tt_P1 <- as.matrix(c((1 - pchisq(u_P1[1],1)),(1 - pchisq(u_P1[2],1)),(1 - pchisq(u_P1[3],1)),K1(WW2_P1),(1-pkolm(D_P1,n_samP1)))) dataP2<-sort(dataP2);bmw_P2 <- matrix(0,n_samP2,1); bmwsl_P2 <- matrix(0,n_samP2,1) gg_P2 <- (dataP2 - mean12)/sqrt(as.vector(sigma)) bmw_P2[which(gg_P2>=0)] <- pnorm(gg_P2[gg_P2>=0]) bmw_P2[which(gg_P2<0)] <- 1 - pnorm(abs(gg_P2[gg_P2<0])) bmwsl_P2[,1] <- bmw_P2 P2_P2 <- rowSums(bmwsl_P2) nn<-dim(as.matrix(unique(P2_P2)))[1] if(nn<n_samP2){P2_P2<-P2_P2+runif(n_samP2)/1e4} dd_P2 <- as.matrix(c(sum(P2_P2),sum(P2_P2^2),sum((P2_P2-0.5)^2))) WW2_P2 <- 1/(12*n_samP2) + sum((P2_P2 - (as.matrix(c(1:n_samP2)) - 0.5)/n_samP2)^2) u_P2 <- as.matrix(c(12*n_samP2*((dd_P2[1]/n_samP2-0.5)^2),((45*n_samP2)/4)*((dd_P2[2]/n_samP2-1/3)^2),180*n_samP2*((dd_P2[3]/n_samP2-1/12)^2))) D_P2 <- as.numeric(ks.test(P2_P2,"punif")[[1]][1]) tt_P2 <- as.matrix(c((1 - pchisq(u_P2[1],1)),(1 - pchisq(u_P2[2],1)),(1 - pchisq(u_P2[3],1)),K1(WW2_P2),(1-pkolm(D_P2,n_samP2)))) dataDH<-sort(dataDH);bmw <- matrix(0,n_samDH,1); bmwsl <- matrix(0,n_samDH,d2) for(i in 1:d2){ gg <- (dataDH - meanE[i])/sqrt(sigmaE[i]) bmw[which(gg>=0)] <- pnorm(gg[gg>=0]) bmw[which(gg<0)] <- 1 - pnorm(abs(gg[gg<0])) bmwsl[,i] <- bmw*mix_pi[i] } P2 <- rowSums(bmwsl) nn<-dim(as.matrix(unique(P2)))[1] if(nn<n_samDH){P2<-P2+runif(n_samDH)/1e4} dd <- as.matrix(c(sum(P2),sum(P2^2),sum((P2-0.5)^2))) WW2 <- 1/(12*n_samDH) + sum((P2 - (as.matrix(c(1:n_samDH)) - 0.5)/n_samDH)^2) u <- as.matrix(c(12*n_samDH*((dd[1]/n_samDH-0.5)^2),((45*n_samDH)/4)*((dd[2]/n_samDH-1/3)^2),180*n_samDH*((dd[3]/n_samDH-1/12)^2))) D <- as.numeric(ks.test(P2,"punif")[[1]][1]) tt <- as.matrix(c((1 - pchisq(u[1],1)),(1 - pchisq(u[2],1)),(1 - pchisq(u[3],1)),K1(WW2),(1-pkolm(D,n_samDH)))) tt_P1[which(tt_P1>=10e-4)]<-round(tt_P1[which(tt_P1>=10e-4)],4);tt_P1[which(tt_P1<10e-4)]<-format(tt_P1[which(tt_P1<10e-4)],scientific=TRUE,digit=4) tt_P2[which(tt_P2>=10e-4)]<-round(tt_P2[which(tt_P2>=10e-4)],4);tt_P2[which(tt_P2<10e-4)]<-format(tt_P2[which(tt_P2<10e-4)],scientific=TRUE,digit=4) tt[which(tt>=10e-4)]<-round(tt[which(tt>=10e-4)],4);tt[which(tt<10e-4)]<-format(tt[which(tt<10e-4)],scientific=TRUE,digit=4) output <- data.frame("MX2-EA-A",round(abc,4),round(AIC,4),round(mean11,4),round(mean12,4),round(sigma,4),round(t(meanE),4)," "," "," "," "," "," "," "," "," "," "," "," "," ",round(sigmaE[1],4),round(t(mix_pi),4), " "," "," "," "," "," "," "," "," "," "," "," "," ",round(B1[1],4)," "," ",round(B1[2],4),round(B1[2],4)," "," "," "," "," "," "," "," "," ",round(B1[3],4),round(jj,4),round(ll*100,4),round(mm,4),round(nnn*100,4),round(u_P1[1],4),tt_P1[1],round(u_P1[2],4), tt_P1[2],round(u_P1[3],4),tt_P1[3],round(WW2_P1,4),tt_P1[4],round(D_P1,4),tt_P1[5],round(u_P2[1],4),tt_P2[1],round(u_P2[2],4), tt_P2[2],round(u_P2[3],4),tt_P2[3],round(WW2_P2,4),tt_P2[4],round(D_P2,4),tt_P2[5],round(u[1],4),tt[1],round(u[2],4), tt[2],round(u[3],4),tt[3],round(WW2,4),tt[4],round(D,4),tt[5]) output<-as.matrix(output) OUTPUT<-list(output,mi) return(OUTPUT) } G3DHModelFun[[20]] <- function(K1,logL,df11,df21,df31,G3DHtext2){ dataP1 <- as.matrix(as.numeric(df11[,1]));dataP2 <- as.matrix(as.numeric(df21[,1]));dataDH <- as.matrix(as.numeric(df31[,1])) n_samP1<-dim(dataP1)[1]; n_samP2<-dim(dataP2)[1];n_samDH<-dim(dataDH)[1] mean11<-mean(dataP1);mean12<-mean(dataP2) sigmaP1<- as.numeric(var(dataP1)); sigmaP2<- as.numeric(var(dataP2)) ss1<-(n_samP1-1)*sigmaP1; ss2<-(n_samP2-1)*sigmaP2 sigma0<-(ss1+ss2)/(n_samP1+n_samP2-2);sigma_dh<-as.numeric(var(dataDH)) m_esp<- 0.0001 ;m_fam<- as.numeric(G3DHtext2) d2<-3 mi <- as.matrix(c(0.5,0.25,0.25)) meanE<-mean(dataDH) sigmaE <- matrix((sigma_dh/2*1.2222101),d2,1) sigma <- sigma0 a1 <- sqrt(sigma_dh/n_samDH) if(mean11<mean12){a1=-a1} meanE <- as.matrix(c((meanE+2*a1),meanE,(meanE-2*a1))) iteration <- 0; stopa <- 1000 WW <- matrix(0,d2,n_samDH); swx <- matrix(0,d2,1) L0 <- logL(n_samP1,1,1,mean11,sigma,dataP1)+logL(n_samP2,1,1,mean12,sigma,dataP2)+sum(log(dmixnorm(dataDH,meanE,sqrt(sigmaE),mi))) while(stopa > m_esp && iteration<=1000){ iteration <- iteration + 1 for(i in 1:d2) { WW[i,] <- mi[i]*dnorm(dataDH,meanE[i],sqrt(sigmaE[i]))/dmixnorm(dataDH,meanE,sqrt(sigmaE),mi) } mix_pi <- as.matrix(rowSums(WW)/n_samDH) sumwx <- WW%*%dataDH n0 <- n_samDH*mix_pi n0[n0<0.000001] <- 0.000001 rr<- (sum(dataP1)/n_samP1+sum(dataP2)/n_samP2-sumwx[1]/n0[1]-sumwx[3]/n0[3])/(sigma/n_samP1+sigma/n_samP2+sigmaE[1]/n0[1]+sigmaE[3]/n0[3]) mean11<- (sum(dataP1)-rr[1]*sigma)/n_samP1 mean12<- (sum(dataP2)-rr[1]*sigma)/n_samP2 meanE[1]<- (sumwx[1]+sigmaE[1]*rr)/n0[1] meanE[2]<- sumwx[2]/n0[2] meanE[3]<- (sumwx[3]+sigmaE[3]*rr)/n0[3] ss1<- sum((dataP1-mean11)^2) ss2<- sum((dataP2-mean12)^2) for(i in 1:d2) { swx[i] <- WW[i,]%*%(dataDH-meanE[i])^2 } s0E<-matrix(0,2,1) s0E[1]<- ss1+ss2 s0E[2]<- sum(swx)*m_fam s1<- sigmaE[1]-sigma/m_fam if (s1<0.0){s1<- 0.000001} abc2<- sigma abc3<-1000; n_iter<- 0 while(abc3>0.0001){ n_iter<- n_iter+1 abc1<- (sigma/m_fam)/(sigma/m_fam+s1) sigma<- (s0E[1]+abc1*abc1*s0E[2])/(n_samP1+n_samP2+abc1*n_samDH) abc3<- abs(abc2-sigma) abc2<- sigma if (n_iter>20) break } if (sigma<0.1*sigma0){ sigma<- 0.1*sigma0 } sigmaE[1]<- s1+sigma/m_fam s1<- sum(swx)/n_samDH-sigma/m_fam if (s1<0.0){ s1<- 0.000001 } sigmaE<- matrix((s1+sigma/m_fam),d2,1) L1 <- logL(n_samP1,1,1,mean11,sigma,dataP1)+logL(n_samP2,1,1,mean12,sigma,dataP2)+sum(log(dmixnorm(dataDH,meanE,sqrt(sigmaE),mix_pi))) stopa <- L1 - L0 L0 <- L1 if(stopa < 0) {stopa <- -stopa} } abc <- L1 AIC <- -2*abc + 2*6 aa<- matrix(c(1,1,1,1,1, 1,-1,1,-1,-1, 0,-1,0,1,-1, 1,-1,0,0,0),5,4) b_line1 <- as.matrix(c(mean11,mean12,meanE)) B1 <- solve(t(aa)%*%aa)%*%(t(aa)%*%b_line1) jj <- sigma_dh - sigmaE[1] if(jj < 0) {jj <- 0} ll <- jj/sigma_dh mm<- sigmaE[1]-sigma[1] if(mm<0){mm<-0} nnn<- mm/sigma_dh dataP1<-sort(dataP1);bmw_P1 <- matrix(0,n_samP1,1); bmwsl_P1 <- matrix(0,n_samP1,1) gg_P1 <- (dataP1 - mean11)/sqrt(as.vector(sigma)) bmw_P1[which(gg_P1>=0)] <- pnorm(gg_P1[gg_P1>=0]) bmw_P1[which(gg_P1<0)] <- 1 - pnorm(abs(gg_P1[gg_P1<0])) bmwsl_P1[,1] <- bmw_P1 P2_P1 <- rowSums(bmwsl_P1) nn<-dim(as.matrix(unique(P2_P1)))[1] if(nn<n_samP1){P2_P1<-P2_P1+runif(n_samP1)/1e4} dd_P1 <- as.matrix(c(sum(P2_P1),sum(P2_P1^2),sum((P2_P1-0.5)^2))) WW2_P1 <- 1/(12*n_samP1) + sum((P2_P1 - (as.matrix(c(1:n_samP1)) - 0.5)/n_samP1)^2) u_P1 <- as.matrix(c(12*n_samP1*((dd_P1[1]/n_samP1-0.5)^2),((45*n_samP1)/4)*((dd_P1[2]/n_samP1-1/3)^2),180*n_samP1*((dd_P1[3]/n_samP1-1/12)^2))) D_P1 <- as.numeric(ks.test(P2_P1,"punif")[[1]][1]) tt_P1 <- as.matrix(c((1 - pchisq(u_P1[1],1)),(1 - pchisq(u_P1[2],1)),(1 - pchisq(u_P1[3],1)),K1(WW2_P1),(1-pkolm(D_P1,n_samP1)))) dataP2<-sort(dataP2);bmw_P2 <- matrix(0,n_samP2,1); bmwsl_P2 <- matrix(0,n_samP2,1) gg_P2 <- (dataP2 - mean12)/sqrt(as.vector(sigma)) bmw_P2[which(gg_P2>=0)] <- pnorm(gg_P2[gg_P2>=0]) bmw_P2[which(gg_P2<0)] <- 1 - pnorm(abs(gg_P2[gg_P2<0])) bmwsl_P2[,1] <- bmw_P2 P2_P2 <- rowSums(bmwsl_P2) nn<-dim(as.matrix(unique(P2_P2)))[1] if(nn<n_samP2){P2_P2<-P2_P2+runif(n_samP2)/1e4} dd_P2 <- as.matrix(c(sum(P2_P2),sum(P2_P2^2),sum((P2_P2-0.5)^2))) WW2_P2 <- 1/(12*n_samP2) + sum((P2_P2 - (as.matrix(c(1:n_samP2)) - 0.5)/n_samP2)^2) u_P2 <- as.matrix(c(12*n_samP2*((dd_P2[1]/n_samP2-0.5)^2),((45*n_samP2)/4)*((dd_P2[2]/n_samP2-1/3)^2),180*n_samP2*((dd_P2[3]/n_samP2-1/12)^2))) D_P2 <- as.numeric(ks.test(P2_P2,"punif")[[1]][1]) tt_P2 <- as.matrix(c((1 - pchisq(u_P2[1],1)),(1 - pchisq(u_P2[2],1)),(1 - pchisq(u_P2[3],1)),K1(WW2_P2),(1-pkolm(D_P2,n_samP2)))) dataDH<-sort(dataDH);bmw <- matrix(0,n_samDH,1); bmwsl <- matrix(0,n_samDH,d2) for(i in 1:d2){ gg <- (dataDH - meanE[i])/sqrt(sigmaE[i]) bmw[which(gg>=0)] <- pnorm(gg[gg>=0]) bmw[which(gg<0)] <- 1 - pnorm(abs(gg[gg<0])) bmwsl[,i] <- bmw*mix_pi[i] } P2 <- rowSums(bmwsl) nn<-dim(as.matrix(unique(P2)))[1] if(nn<n_samDH){P2<-P2+runif(n_samDH)/1e4} dd <- as.matrix(c(sum(P2),sum(P2^2),sum((P2-0.5)^2))) WW2 <- 1/(12*n_samDH) + sum((P2 - (as.matrix(c(1:n_samDH)) - 0.5)/n_samDH)^2) u <- as.matrix(c(12*n_samDH*((dd[1]/n_samDH-0.5)^2),((45*n_samDH)/4)*((dd[2]/n_samDH-1/3)^2),180*n_samDH*((dd[3]/n_samDH-1/12)^2))) D <- as.numeric(ks.test(P2,"punif")[[1]][1]) tt <- as.matrix(c((1 - pchisq(u[1],1)),(1 - pchisq(u[2],1)),(1 - pchisq(u[3],1)),K1(WW2),(1-pkolm(D,n_samDH)))) tt_P1[which(tt_P1>=10e-4)]<-round(tt_P1[which(tt_P1>=10e-4)],4);tt_P1[which(tt_P1<10e-4)]<-format(tt_P1[which(tt_P1<10e-4)],scientific=TRUE,digit=4) tt_P2[which(tt_P2>=10e-4)]<-round(tt_P2[which(tt_P2>=10e-4)],4);tt_P2[which(tt_P2<10e-4)]<-format(tt_P2[which(tt_P2<10e-4)],scientific=TRUE,digit=4) tt[which(tt>=10e-4)]<-round(tt[which(tt>=10e-4)],4);tt[which(tt<10e-4)]<-format(tt[which(tt<10e-4)],scientific=TRUE,digit=4) output <- data.frame("MX2-ED-A",round(abc,4),round(AIC,4),round(mean11,4),round(mean12,4),round(sigma,4),round(t(meanE),4)," "," "," "," "," "," "," "," "," "," "," "," "," ",round(sigmaE[1],4),round(t(mix_pi),4), " "," "," "," "," "," "," "," "," "," "," "," "," ",round(B1[1],4)," "," ",round(B1[2],4),round(B1[3],4)," "," "," "," "," "," "," "," "," ",round(B1[4],4),round(jj,4),round(ll*100,4),round(mm,4),round(nnn*100,4),round(u_P1[1],4),tt_P1[1],round(u_P1[2],4), tt_P1[2],round(u_P1[3],4),tt_P1[3],round(WW2_P1,4),tt_P1[4],round(D_P1,4),tt_P1[5],round(u_P2[1],4),tt_P2[1],round(u_P2[2],4), tt_P2[2],round(u_P2[3],4),tt_P2[3],round(WW2_P2,4),tt_P2[4],round(D_P2,4),tt_P2[5],round(u[1],4),tt[1],round(u[2],4), tt[2],round(u[3],4),tt[3],round(WW2,4),tt[4],round(D,4),tt[5]) output<-as.matrix(output) OUTPUT<-list(output,mi) return(OUTPUT) } G3DHModelFun[[21]] <- function(K1,logL,df11,df21,df31,G3DHtext2){ dataP1 <- as.matrix(as.numeric(df11[,1]));dataP2 <- as.matrix(as.numeric(df21[,1]));dataDH <- as.matrix(as.numeric(df31[,1])) n_samP1<-dim(dataP1)[1]; n_samP2<-dim(dataP2)[1];n_samDH<-dim(dataDH)[1] mean11<-mean(dataP1);mean12<-mean(dataP2) sigmaP1<- as.numeric(var(dataP1)); sigmaP2<- as.numeric(var(dataP2)) ss1<-(n_samP1-1)*sigmaP1; ss2<-(n_samP2-1)*sigmaP2 sigma0<-(ss1+ss2)/(n_samP1+n_samP2-2);sigma_dh<-as.numeric(var(dataDH)) m_esp<- 0.0001 ;m_fam<- as.numeric(G3DHtext2) d2<-3 mi <- as.matrix(c(0.25,0.25,0.5)) meanE<-mean(dataDH) sigmaE <- matrix((sigma_dh/2*1.2222101),d2,1) sigma <- sigma0 a1 <- sqrt(sigma_dh/n_samDH) if(mean11<mean12){a1=-a1} meanE <- as.matrix(c((meanE+2*a1),meanE,(meanE-2*a1))) iteration <- 0; stopa <- 1000 WW <- matrix(0,d2,n_samDH); swx <- matrix(0,d2,1) L0 <- logL(n_samP1,1,1,mean11,sigma,dataP1)+logL(n_samP2,1,1,mean12,sigma,dataP2)+sum(log(dmixnorm(dataDH,meanE,sqrt(sigmaE),mi))) while(stopa > m_esp && iteration<=1000){ iteration <- iteration + 1 for(i in 1:d2) { WW[i,] <- mi[i]*dnorm(dataDH,meanE[i],sqrt(sigmaE[i]))/dmixnorm(dataDH,meanE,sqrt(sigmaE),mi) } mix_pi <- as.matrix(rowSums(WW)/n_samDH) sumwx <- WW%*%dataDH n0 <- n_samDH*mix_pi n0[n0<0.000001] <- 0.000001 rr<- (sum(dataP1)/n_samP1+sum(dataP2)/n_samP2-sumwx[1]/n0[1]-sumwx[3]/n0[3])/(sigma/n_samP1+sigma/n_samP2+sigmaE[1]/n0[1]+sigmaE[3]/n0[3]) mean11<- (sum(dataP1)-rr[1]*sigma)/n_samP1 mean12<- (sum(dataP2)-rr[1]*sigma)/n_samP2 meanE[1]<- (sumwx[1]+sigmaE[1]*rr)/n0[1] meanE[2]<- sumwx[2]/n0[2] meanE[3]<- (sumwx[3]+sigmaE[3]*rr)/n0[3] ss1<- sum((dataP1-mean11)^2) ss2<- sum((dataP2-mean12)^2) for(i in 1:d2) { swx[i] <- WW[i,]%*%(dataDH-meanE[i])^2 } s0E<-matrix(0,2,1) s0E[1]<- ss1+ss2 s0E[2]<- sum(swx)*m_fam s1<- sigmaE[1]-sigma/m_fam if (s1<0.0){s1<- 0.000001} abc2<- sigma abc3<-1000; n_iter<- 0 while(abc3>0.0001){ n_iter<- n_iter+1 abc1<- (sigma/m_fam)/(sigma/m_fam+s1) sigma<- (s0E[1]+abc1*abc1*s0E[2])/(n_samP1+n_samP2+abc1*n_samDH) abc3<- abs(abc2-sigma) abc2<- sigma if (n_iter>20) break } if (sigma<0.1*sigma0){ sigma<- 0.1*sigma0 } sigmaE[1]<- s1+sigma/m_fam s1<- sum(swx)/n_samDH-sigma/m_fam if (s1<0.0){ s1<- 0.000001 } sigmaE<- matrix((s1+sigma/m_fam),d2,1) L1 <- logL(n_samP1,1,1,mean11,sigma,dataP1)+logL(n_samP2,1,1,mean12,sigma,dataP2)+sum(log(dmixnorm(dataDH,meanE,sqrt(sigmaE),mix_pi))) stopa <- L1 - L0 L0 <- L1 if(stopa < 0) {stopa <- -stopa} } abc <- L1 AIC <- -2*abc + 2*6 aa<- matrix(c(1,1,1,1,1, 1,-1,1,1,-1, 1,0,1,-1,0, 1,-1,0,0,0),5,4) b_line1 <- as.matrix(c(mean11,mean12,meanE)) B1 <- solve(t(aa)%*%aa)%*%(t(aa)%*%b_line1) jj <- sigma_dh - sigmaE[1] if(jj < 0) {jj <- 0} ll <- jj/sigma_dh mm<- sigmaE[1]-sigma[1] if(mm<0){mm<-0} nnn<- mm/sigma_dh dataP1<-sort(dataP1);bmw_P1 <- matrix(0,n_samP1,1); bmwsl_P1 <- matrix(0,n_samP1,1) gg_P1 <- (dataP1 - mean11)/sqrt(as.vector(sigma)) bmw_P1[which(gg_P1>=0)] <- pnorm(gg_P1[gg_P1>=0]) bmw_P1[which(gg_P1<0)] <- 1 - pnorm(abs(gg_P1[gg_P1<0])) bmwsl_P1[,1] <- bmw_P1 P2_P1 <- rowSums(bmwsl_P1) nn<-dim(as.matrix(unique(P2_P1)))[1] if(nn<n_samP1){P2_P1<-P2_P1+runif(n_samP1)/1e4} dd_P1 <- as.matrix(c(sum(P2_P1),sum(P2_P1^2),sum((P2_P1-0.5)^2))) WW2_P1 <- 1/(12*n_samP1) + sum((P2_P1 - (as.matrix(c(1:n_samP1)) - 0.5)/n_samP1)^2) u_P1 <- as.matrix(c(12*n_samP1*((dd_P1[1]/n_samP1-0.5)^2),((45*n_samP1)/4)*((dd_P1[2]/n_samP1-1/3)^2),180*n_samP1*((dd_P1[3]/n_samP1-1/12)^2))) D_P1 <- as.numeric(ks.test(P2_P1,"punif")[[1]][1]) tt_P1 <- as.matrix(c((1 - pchisq(u_P1[1],1)),(1 - pchisq(u_P1[2],1)),(1 - pchisq(u_P1[3],1)),K1(WW2_P1),(1-pkolm(D_P1,n_samP1)))) dataP2<-sort(dataP2);bmw_P2 <- matrix(0,n_samP2,1); bmwsl_P2 <- matrix(0,n_samP2,1) gg_P2 <- (dataP2 - mean12)/sqrt(as.vector(sigma)) bmw_P2[which(gg_P2>=0)] <- pnorm(gg_P2[gg_P2>=0]) bmw_P2[which(gg_P2<0)] <- 1 - pnorm(abs(gg_P2[gg_P2<0])) bmwsl_P2[,1] <- bmw_P2 P2_P2 <- rowSums(bmwsl_P2) nn<-dim(as.matrix(unique(P2_P2)))[1] if(nn<n_samP2){P2_P2<-P2_P2+runif(n_samP2)/1e4} dd_P2 <- as.matrix(c(sum(P2_P2),sum(P2_P2^2),sum((P2_P2-0.5)^2))) WW2_P2 <- 1/(12*n_samP2) + sum((P2_P2 - (as.matrix(c(1:n_samP2)) - 0.5)/n_samP2)^2) u_P2 <- as.matrix(c(12*n_samP2*((dd_P2[1]/n_samP2-0.5)^2),((45*n_samP2)/4)*((dd_P2[2]/n_samP2-1/3)^2),180*n_samP2*((dd_P2[3]/n_samP2-1/12)^2))) D_P2 <- as.numeric(ks.test(P2_P2,"punif")[[1]][1]) tt_P2 <- as.matrix(c((1 - pchisq(u_P2[1],1)),(1 - pchisq(u_P2[2],1)),(1 - pchisq(u_P2[3],1)),K1(WW2_P2),(1-pkolm(D_P2,n_samP2)))) dataDH<-sort(dataDH);bmw <- matrix(0,n_samDH,1); bmwsl <- matrix(0,n_samDH,d2) for(i in 1:d2){ gg <- (dataDH - meanE[i])/sqrt(sigmaE[i]) bmw[which(gg>=0)] <- pnorm(gg[gg>=0]) bmw[which(gg<0)] <- 1 - pnorm(abs(gg[gg<0])) bmwsl[,i] <- bmw*mix_pi[i] } P2 <- rowSums(bmwsl) nn<-dim(as.matrix(unique(P2)))[1] if(nn<n_samDH){P2<-P2+runif(n_samDH)/1e4} dd <- as.matrix(c(sum(P2),sum(P2^2),sum((P2-0.5)^2))) WW2 <- 1/(12*n_samDH) + sum((P2 - (as.matrix(c(1:n_samDH)) - 0.5)/n_samDH)^2) u <- as.matrix(c(12*n_samDH*((dd[1]/n_samDH-0.5)^2),((45*n_samDH)/4)*((dd[2]/n_samDH-1/3)^2),180*n_samDH*((dd[3]/n_samDH-1/12)^2))) D <- as.numeric(ks.test(P2,"punif")[[1]][1]) tt <- as.matrix(c((1 - pchisq(u[1],1)),(1 - pchisq(u[2],1)),(1 - pchisq(u[3],1)),K1(WW2),(1-pkolm(D,n_samDH)))) tt_P1[which(tt_P1>=10e-4)]<-round(tt_P1[which(tt_P1>=10e-4)],4);tt_P1[which(tt_P1<10e-4)]<-format(tt_P1[which(tt_P1<10e-4)],scientific=TRUE,digit=4) tt_P2[which(tt_P2>=10e-4)]<-round(tt_P2[which(tt_P2>=10e-4)],4);tt_P2[which(tt_P2<10e-4)]<-format(tt_P2[which(tt_P2<10e-4)],scientific=TRUE,digit=4) tt[which(tt>=10e-4)]<-round(tt[which(tt>=10e-4)],4);tt[which(tt<10e-4)]<-format(tt[which(tt<10e-4)],scientific=TRUE,digit=4) output <- data.frame("MX2-ER-A",round(abc,4),round(AIC,4),round(mean11,4),round(mean12,4),round(sigma,4),round(t(meanE),4)," "," "," "," "," "," "," "," "," "," "," "," "," ",round(sigmaE[1],4),round(t(mix_pi),4), " "," "," "," "," "," "," "," "," "," "," "," "," ",round(B1[1],4)," "," ",round(B1[2],4),round(B1[3],4)," "," "," "," "," "," "," "," "," ",round(B1[4],4),round(jj,4),round(ll*100,4),round(mm,4),round(nnn*100,4),round(u_P1[1],4),tt_P1[1],round(u_P1[2],4), tt_P1[2],round(u_P1[3],4),tt_P1[3],round(WW2_P1,4),tt_P1[4],round(D_P1,4),tt_P1[5],round(u_P2[1],4),tt_P2[1],round(u_P2[2],4), tt_P2[2],round(u_P2[3],4),tt_P2[3],round(WW2_P2,4),tt_P2[4],round(D_P2,4),tt_P2[5],round(u[1],4),tt[1],round(u[2],4), tt[2],round(u[3],4),tt[3],round(WW2,4),tt[4],round(D,4),tt[5]) output<-as.matrix(output) OUTPUT<-list(output,mi) return(OUTPUT) } G3DHModelFun[[22]] <- function(K1,logL,df11,df21,df31,G3DHtext2){ dataP1 <- as.matrix(as.numeric(df11[,1]));dataP2 <- as.matrix(as.numeric(df21[,1]));dataDH <- as.matrix(as.numeric(df31[,1])) n_samP1<-dim(dataP1)[1]; n_samP2<-dim(dataP2)[1];n_samDH<-dim(dataDH)[1] mean11<-mean(dataP1);mean12<-mean(dataP2) sigmaP1<- as.numeric(var(dataP1)); sigmaP2<- as.numeric(var(dataP2)) ss1<-(n_samP1-1)*sigmaP1; ss2<-(n_samP2-1)*sigmaP2 sigma0<-(ss1+ss2)/(n_samP1+n_samP2-2);sigma_dh<-as.numeric(var(dataDH)) m_esp<- 0.0001 ;m_fam<- as.numeric(G3DHtext2) d2<-3 mi <- as.matrix(c(0.25,0.5,0.25)) meanE<-mean(dataDH) sigmaE <- matrix((sigma_dh/2*1.2222101),d2,1) sigma <- sigma0 a1 <- sqrt(sigma_dh/n_samDH) if(mean11<mean12){a1=-a1} meanE <- as.matrix(c((meanE+2*a1),meanE,(meanE-2*a1))) iteration <- 0; stopa <- 1000 WW <- matrix(0,d2,n_samDH); swx <- matrix(0,d2,1) L0 <- logL(n_samP1,1,1,mean11,sigma,dataP1)+logL(n_samP2,1,1,mean12,sigma,dataP2)+sum(log(dmixnorm(dataDH,meanE,sqrt(sigmaE),mi))) while(stopa > m_esp && iteration<=1000){ iteration <- iteration + 1 for(i in 1:d2) { WW[i,] <- mi[i]*dnorm(dataDH,meanE[i],sqrt(sigmaE[i]))/dmixnorm(dataDH,meanE,sqrt(sigmaE),mi) } mix_pi <- as.matrix(rowSums(WW)/n_samDH) sumwx <- WW%*%dataDH n0 <- n_samDH*mix_pi n0[n0<0.000001] <- 0.000001 rr<- (sum(dataP1)/n_samP1+sum(dataP2)/n_samP2-sumwx[1]/n0[1]-sumwx[3]/n0[3])/(sigma/n_samP1+sigma/n_samP2+sigmaE[1]/n0[1]+sigmaE[3]/n0[3]) mean11<- (sum(dataP1)-rr*sigma)/n_samP1 mean12<- (sum(dataP2)-rr*sigma)/n_samP2 meanE[1]<- (sumwx[1]+sigmaE[1]*rr)/n0[1] meanE[2]<- sumwx[2]/n0[2] meanE[3]<- (sumwx[3]+sigmaE[1]*rr)/n0[3] ss1<- sum((dataP1-mean11)^2) ss2<- sum((dataP2-mean12)^2) for(i in 1:d2) { swx[i] <- WW[i,]%*%(dataDH-meanE[i])^2 } s0E<-matrix(0,2,1) s0E[1]<- ss1+ss2 s0E[2]<- sum(swx)*m_fam s1<- sigmaE[1]-sigma/m_fam if (s1<0.0){s1<- 0.000001} abc2<- sigma abc3<-1000; n_iter<- 0 while(abc3>0.0001){ n_iter<- n_iter+1 abc1<- (sigma/m_fam)/(sigma/m_fam+s1) sigma<- (s0E[1]+abc1*abc1*s0E[2])/(n_samP1+n_samP2+abc1*n_samDH) abc3<- abs(abc2-sigma) abc2<- sigma if (n_iter>20) break } if (sigma<0.1*sigma0){ sigma<- 0.1*sigma0 } sigmaE[1]<- s1+sigma/m_fam s1<- sum(swx)/n_samDH-sigma/m_fam if (s1<0.0){ s1<- 0.000001 } sigmaE<- matrix((s1+sigma/m_fam),d2,1) L1 <- logL(n_samP1,1,1,mean11,sigma,dataP1)+logL(n_samP2,1,1,mean12,sigma,dataP2)+sum(log(dmixnorm(dataDH,meanE,sqrt(sigmaE),mix_pi))) stopa <- L1 - L0 L0 <- L1 if(stopa < 0) {stopa <- -stopa} } abc <- L1 AIC <- -2*abc + 2*6 aa<- matrix(c(1,1,1,1,1, 2,-2,2,0,-2, 1,1,1,-1,1, 1,-1,0,0,0),5,4) b_line1 <- as.matrix(c(mean11,mean12,meanE)) B1 <- solve(t(aa)%*%aa)%*%(t(aa)%*%b_line1) jj <- sigma_dh - sigmaE[1] if(jj < 0) {jj <- 0} ll <- jj/sigma_dh mm<- sigmaE[1]-sigma[1] if(mm<0){mm<-0} nnn<- mm/sigma_dh dataP1<-sort(dataP1);bmw_P1 <- matrix(0,n_samP1,1); bmwsl_P1 <- matrix(0,n_samP1,1) gg_P1 <- (dataP1 - mean11)/sqrt(as.vector(sigma)) bmw_P1[which(gg_P1>=0)] <- pnorm(gg_P1[gg_P1>=0]) bmw_P1[which(gg_P1<0)] <- 1 - pnorm(abs(gg_P1[gg_P1<0])) bmwsl_P1[,1] <- bmw_P1 P2_P1 <- rowSums(bmwsl_P1) nn<-dim(as.matrix(unique(P2_P1)))[1] if(nn<n_samP1){P2_P1<-P2_P1+runif(n_samP1)/1e4} dd_P1 <- as.matrix(c(sum(P2_P1),sum(P2_P1^2),sum((P2_P1-0.5)^2))) WW2_P1 <- 1/(12*n_samP1) + sum((P2_P1 - (as.matrix(c(1:n_samP1)) - 0.5)/n_samP1)^2) u_P1 <- as.matrix(c(12*n_samP1*((dd_P1[1]/n_samP1-0.5)^2),((45*n_samP1)/4)*((dd_P1[2]/n_samP1-1/3)^2),180*n_samP1*((dd_P1[3]/n_samP1-1/12)^2))) D_P1 <- as.numeric(ks.test(P2_P1,"punif")[[1]][1]) tt_P1 <- as.matrix(c((1 - pchisq(u_P1[1],1)),(1 - pchisq(u_P1[2],1)),(1 - pchisq(u_P1[3],1)),K1(WW2_P1),(1-pkolm(D_P1,n_samP1)))) dataP2<-sort(dataP2);bmw_P2 <- matrix(0,n_samP2,1); bmwsl_P2 <- matrix(0,n_samP2,1) gg_P2 <- (dataP2 - mean12)/sqrt(as.vector(sigma)) bmw_P2[which(gg_P2>=0)] <- pnorm(gg_P2[gg_P2>=0]) bmw_P2[which(gg_P2<0)] <- 1 - pnorm(abs(gg_P2[gg_P2<0])) bmwsl_P2[,1] <- bmw_P2 P2_P2 <- rowSums(bmwsl_P2) nn<-dim(as.matrix(unique(P2_P2)))[1] if(nn<n_samP2){P2_P2<-P2_P2+runif(n_samP2)/1e4} dd_P2 <- as.matrix(c(sum(P2_P2),sum(P2_P2^2),sum((P2_P2-0.5)^2))) WW2_P2 <- 1/(12*n_samP2) + sum((P2_P2 - (as.matrix(c(1:n_samP2)) - 0.5)/n_samP2)^2) u_P2 <- as.matrix(c(12*n_samP2*((dd_P2[1]/n_samP2-0.5)^2),((45*n_samP2)/4)*((dd_P2[2]/n_samP2-1/3)^2),180*n_samP2*((dd_P2[3]/n_samP2-1/12)^2))) D_P2 <- as.numeric(ks.test(P2_P2,"punif")[[1]][1]) tt_P2 <- as.matrix(c((1 - pchisq(u_P2[1],1)),(1 - pchisq(u_P2[2],1)),(1 - pchisq(u_P2[3],1)),K1(WW2_P2),(1-pkolm(D_P2,n_samP2)))) dataDH<-sort(dataDH);bmw <- matrix(0,n_samDH,1); bmwsl <- matrix(0,n_samDH,d2) for(i in 1:d2){ gg <- (dataDH - meanE[i])/sqrt(sigmaE[i]) bmw[which(gg>=0)] <- pnorm(gg[gg>=0]) bmw[which(gg<0)] <- 1 - pnorm(abs(gg[gg<0])) bmwsl[,i] <- bmw*mix_pi[i] } P2 <- rowSums(bmwsl) nn<-dim(as.matrix(unique(P2)))[1] if(nn<n_samDH){P2<-P2+runif(n_samDH)/1e4} dd <- as.matrix(c(sum(P2),sum(P2^2),sum((P2-0.5)^2))) WW2 <- 1/(12*n_samDH) + sum((P2 - (as.matrix(c(1:n_samDH)) - 0.5)/n_samDH)^2) u <- as.matrix(c(12*n_samDH*((dd[1]/n_samDH-0.5)^2),((45*n_samDH)/4)*((dd[2]/n_samDH-1/3)^2),180*n_samDH*((dd[3]/n_samDH-1/12)^2))) D <- as.numeric(ks.test(P2,"punif")[[1]][1]) tt <- as.matrix(c((1 - pchisq(u[1],1)),(1 - pchisq(u[2],1)),(1 - pchisq(u[3],1)),K1(WW2),(1-pkolm(D,n_samDH)))) tt_P1[which(tt_P1>=10e-4)]<-round(tt_P1[which(tt_P1>=10e-4)],4);tt_P1[which(tt_P1<10e-4)]<-format(tt_P1[which(tt_P1<10e-4)],scientific=TRUE,digit=4) tt_P2[which(tt_P2>=10e-4)]<-round(tt_P2[which(tt_P2>=10e-4)],4);tt_P2[which(tt_P2<10e-4)]<-format(tt_P2[which(tt_P2<10e-4)],scientific=TRUE,digit=4) tt[which(tt>=10e-4)]<-round(tt[which(tt>=10e-4)],4);tt[which(tt<10e-4)]<-format(tt[which(tt<10e-4)],scientific=TRUE,digit=4) output <- data.frame("MX2-AE-A",round(abc,4),round(AIC,4),round(mean11,4),round(mean12,4),round(sigma,4),round(t(meanE),4)," "," "," "," "," "," "," "," "," "," "," "," "," ",round(sigmaE[1],4),round(t(mix_pi),4), " "," "," "," "," "," "," "," "," "," "," "," "," ",round(B1[1],4)," "," ",round(B1[2],4)," "," "," ",round(B1[3],4)," "," "," "," "," "," ",round(B1[4],4),round(jj,4),round(ll*100,4),round(mm,4),round(nnn*100,4),round(u_P1[1],4),tt_P1[1],round(u_P1[2],4), tt_P1[2],round(u_P1[3],4),tt_P1[3],round(WW2_P1,4),tt_P1[4],round(D_P1,4),tt_P1[5],round(u_P2[1],4),tt_P2[1],round(u_P2[2],4), tt_P2[2],round(u_P2[3],4),tt_P2[3],round(WW2_P2,4),tt_P2[4],round(D_P2,4),tt_P2[5],round(u[1],4),tt[1],round(u[2],4), tt[2],round(u[3],4),tt[3],round(WW2,4),tt[4],round(D,4),tt[5]) output<-as.matrix(output) OUTPUT<-list(output,mi) return(OUTPUT) } G3DHModelFun[[23]] <- function(K1,logL,df11,df21,df31,G3DHtext2){ dataP1 <- as.matrix(as.numeric(df11[,1]));dataP2 <- as.matrix(as.numeric(df21[,1]));dataDH <- as.matrix(as.numeric(df31[,1])) n_samP1<-dim(dataP1)[1]; n_samP2<-dim(dataP2)[1];n_samDH<-dim(dataDH)[1] mean11<-mean(dataP1);mean12<-mean(dataP2) sigmaP1<- as.numeric(var(dataP1)); sigmaP2<- as.numeric(var(dataP2)) ss1<-(n_samP1-1)*sigmaP1; ss2<-(n_samP2-1)*sigmaP2 sigma0<-(ss1+ss2)/(n_samP1+n_samP2-2);sigma_dh<-as.numeric(var(dataDH)) m_esp<- 0.0001 ;m_fam<- as.numeric(G3DHtext2) d2<-2 mi <- as.matrix(c(0.25,0.75)) meanE<-mean(dataDH) sigmaE <- matrix((sigma_dh/2*1.2222101),d2,1) sigma <- sigma0 a1 <- sqrt(sigma_dh/n_samDH) if(mean11<mean12){a1=-a1} meanE <- as.matrix(c((meanE+1.5*a1),(meanE-1.5*a1))) iteration <- 0; stopa <- 1000 WW <- matrix(0,d2,n_samDH); swx <- matrix(0,d2,1) L0 <- logL(n_samP1,1,1,mean11,sigma,dataP1)+logL(n_samP2,1,1,mean12,sigma,dataP2)+sum(log(dmixnorm(dataDH,meanE,sqrt(sigmaE),mi))) while(stopa > m_esp && iteration<=1000){ iteration <- iteration + 1 for(i in 1:d2) { WW[i,] <- mi[i]*dnorm(dataDH,meanE[i],sqrt(sigmaE[i]))/dmixnorm(dataDH,meanE,sqrt(sigmaE),mi) } mix_pi <- as.matrix(rowSums(WW)/n_samDH) sumwx <- WW%*%dataDH n0 <- n_samDH*mix_pi n0[n0<0.000001] <- 0.000001 rr<- (sum(dataP1)/n_samP1+sum(dataP2)/n_samP2-2*sumwx[1]/n0[1])/(sigma/n_samP1+sigma/n_samP2+sigmaE[1]/n0[1]) mean11<- (sum(dataP1)-rr*sigma)/n_samP1 mean12<- (sum(dataP2)-rr*sigma)/n_samP2 meanE[1]<- (sumwx[1]+sigmaE[1]*rr)/n0[1] meanE[2]<- (sumwx[2]+sigmaE[2]*rr)/n0[2] ss1<- sum((dataP1-mean11)^2) ss2<- sum((dataP2-mean12)^2) for(i in 1:d2) { swx[i] <- WW[i,]%*%(dataDH-meanE[i])^2 } s0E<-matrix(0,2,1) s0E[1]<- ss1+ss2 s0E[2]<- sum(swx)*m_fam s1<- sigmaE[1]-sigma/m_fam if (s1<0.0){s1<- 0.000001} abc2<- sigma abc3<-1000; n_iter<- 0 while(abc3>0.0001){ n_iter<- n_iter+1 abc1<- (sigma/m_fam)/(sigma/m_fam+s1) sigma<- (s0E[1]+abc1*abc1*s0E[2])/(n_samP1+n_samP2+abc1*n_samDH) abc3<- abs(abc2-sigma) abc2<- sigma if (n_iter>20) break } if (sigma<0.1*sigma0){ sigma<- 0.1*sigma0 } sigmaE[1]<- s1+sigma/m_fam s1<- sum(swx)/n_samDH-sigma/m_fam if (s1<0.0){ s1<- 0.000001 } sigmaE<- matrix((s1+sigma/m_fam),d2,1) L1 <- logL(n_samP1,1,1,mean11,sigma,dataP1)+logL(n_samP2,1,1,mean12,sigma,dataP2)+sum(log(dmixnorm(dataDH,meanE,sqrt(sigmaE),mix_pi))) stopa <- L1 - L0 L0 <- L1 if(stopa < 0) {stopa <- -stopa} } abc <- L1 AIC <- -2*abc + 2*5 aa<- matrix(c(1,1,1,1, 1,1,1,-1, 1,-1,0,0),4,3) b_line1 <- as.matrix(c(mean11,mean12,meanE)) B1 <- solve(t(aa)%*%aa)%*%(t(aa)%*%b_line1) jj <- sigma_dh - sigmaE[1] if(jj < 0) {jj <- 0} ll <- jj/sigma_dh mm<- sigmaE[1]-sigma[1] if(mm<0){mm<-0} nnn<- mm/sigma_dh dataP1<-sort(dataP1);bmw_P1 <- matrix(0,n_samP1,1); bmwsl_P1 <- matrix(0,n_samP1,1) gg_P1 <- (dataP1 - mean11)/sqrt(as.vector(sigma)) bmw_P1[which(gg_P1>=0)] <- pnorm(gg_P1[gg_P1>=0]) bmw_P1[which(gg_P1<0)] <- 1 - pnorm(abs(gg_P1[gg_P1<0])) bmwsl_P1[,1] <- bmw_P1 P2_P1 <- rowSums(bmwsl_P1) nn<-dim(as.matrix(unique(P2_P1)))[1] if(nn<n_samP1){P2_P1<-P2_P1+runif(n_samP1)/1e4} dd_P1 <- as.matrix(c(sum(P2_P1),sum(P2_P1^2),sum((P2_P1-0.5)^2))) WW2_P1 <- 1/(12*n_samP1) + sum((P2_P1 - (as.matrix(c(1:n_samP1)) - 0.5)/n_samP1)^2) u_P1 <- as.matrix(c(12*n_samP1*((dd_P1[1]/n_samP1-0.5)^2),((45*n_samP1)/4)*((dd_P1[2]/n_samP1-1/3)^2),180*n_samP1*((dd_P1[3]/n_samP1-1/12)^2))) D_P1 <- as.numeric(ks.test(P2_P1,"punif")[[1]][1]) tt_P1 <- as.matrix(c((1 - pchisq(u_P1[1],1)),(1 - pchisq(u_P1[2],1)),(1 - pchisq(u_P1[3],1)),K1(WW2_P1),(1-pkolm(D_P1,n_samP1)))) dataP2<-sort(dataP2);bmw_P2 <- matrix(0,n_samP2,1); bmwsl_P2 <- matrix(0,n_samP2,1) gg_P2 <- (dataP2 - mean12)/sqrt(as.vector(sigma)) bmw_P2[which(gg_P2>=0)] <- pnorm(gg_P2[gg_P2>=0]) bmw_P2[which(gg_P2<0)] <- 1 - pnorm(abs(gg_P2[gg_P2<0])) bmwsl_P2[,1] <- bmw_P2 P2_P2 <- rowSums(bmwsl_P2) nn<-dim(as.matrix(unique(P2_P2)))[1] if(nn<n_samP2){P2_P2<-P2_P2+runif(n_samP2)/1e4} dd_P2 <- as.matrix(c(sum(P2_P2),sum(P2_P2^2),sum((P2_P2-0.5)^2))) WW2_P2 <- 1/(12*n_samP2) + sum((P2_P2 - (as.matrix(c(1:n_samP2)) - 0.5)/n_samP2)^2) u_P2 <- as.matrix(c(12*n_samP2*((dd_P2[1]/n_samP2-0.5)^2),((45*n_samP2)/4)*((dd_P2[2]/n_samP2-1/3)^2),180*n_samP2*((dd_P2[3]/n_samP2-1/12)^2))) D_P2 <- as.numeric(ks.test(P2_P2,"punif")[[1]][1]) tt_P2 <- as.matrix(c((1 - pchisq(u_P2[1],1)),(1 - pchisq(u_P2[2],1)),(1 - pchisq(u_P2[3],1)),K1(WW2_P2),(1-pkolm(D_P2,n_samP2)))) dataDH<-sort(dataDH);bmw <- matrix(0,n_samDH,1); bmwsl <- matrix(0,n_samDH,d2) for(i in 1:d2){ gg <- (dataDH - meanE[i])/sqrt(sigmaE[i]) bmw[which(gg>=0)] <- pnorm(gg[gg>=0]) bmw[which(gg<0)] <- 1 - pnorm(abs(gg[gg<0])) bmwsl[,i] <- bmw*mix_pi[i] } P2 <- rowSums(bmwsl) nn<-dim(as.matrix(unique(P2)))[1] if(nn<n_samDH){P2<-P2+runif(n_samDH)/1e4} dd <- as.matrix(c(sum(P2),sum(P2^2),sum((P2-0.5)^2))) WW2 <- 1/(12*n_samDH) + sum((P2 - (as.matrix(c(1:n_samDH)) - 0.5)/n_samDH)^2) u <- as.matrix(c(12*n_samDH*((dd[1]/n_samDH-0.5)^2),((45*n_samDH)/4)*((dd[2]/n_samDH-1/3)^2),180*n_samDH*((dd[3]/n_samDH-1/12)^2))) D <- as.numeric(ks.test(P2,"punif")[[1]][1]) tt <- as.matrix(c((1 - pchisq(u[1],1)),(1 - pchisq(u[2],1)),(1 - pchisq(u[3],1)),K1(WW2),(1-pkolm(D,n_samDH)))) tt_P1[which(tt_P1>=10e-4)]<-round(tt_P1[which(tt_P1>=10e-4)],4);tt_P1[which(tt_P1<10e-4)]<-format(tt_P1[which(tt_P1<10e-4)],scientific=TRUE,digit=4) tt_P2[which(tt_P2>=10e-4)]<-round(tt_P2[which(tt_P2>=10e-4)],4);tt_P2[which(tt_P2<10e-4)]<-format(tt_P2[which(tt_P2<10e-4)],scientific=TRUE,digit=4) tt[which(tt>=10e-4)]<-round(tt[which(tt>=10e-4)],4);tt[which(tt<10e-4)]<-format(tt[which(tt<10e-4)],scientific=TRUE,digit=4) output <- data.frame("MX2-CE-A",round(abc,4),round(AIC,4),round(mean11,4),round(mean12,4),round(sigma,4),round(t(meanE),4)," "," "," "," "," "," "," "," "," "," "," "," "," "," ",round(sigmaE[1],4),round(t(mix_pi),4), " "," "," "," "," "," "," "," "," "," "," "," "," "," ",round(B1[1],4)," "," "," "," "," "," ",round(B1[2],4)," "," "," "," "," "," ",round(B1[3],4),round(jj,4),round(ll*100,4),round(mm,4),round(nnn*100,4),round(u_P1[1],4),tt_P1[1],round(u_P1[2],4), tt_P1[2],round(u_P1[3],4),tt_P1[3],round(WW2_P1,4),tt_P1[4],round(D_P1,4),tt_P1[5],round(u_P2[1],4),tt_P2[1],round(u_P2[2],4), tt_P2[2],round(u_P2[3],4),tt_P2[3],round(WW2_P2,4),tt_P2[4],round(D_P2,4),tt_P2[5],round(u[1],4),tt[1],round(u[2],4), tt[2],round(u[3],4),tt[3],round(WW2,4),tt[4],round(D,4),tt[5]) output<-as.matrix(output) OUTPUT<-list(output,mi) return(OUTPUT) } G3DHModelFun[[24]] <- function(K1,logL,df11,df21,df31,G3DHtext2){ dataP1 <- as.matrix(as.numeric(df11[,1]));dataP2 <- as.matrix(as.numeric(df21[,1]));dataDH <- as.matrix(as.numeric(df31[,1])) n_samP1<-dim(dataP1)[1]; n_samP2<-dim(dataP2)[1];n_samDH<-dim(dataDH)[1] mean11<-mean(dataP1);mean12<-mean(dataP2) sigmaP1<- as.numeric(var(dataP1)); sigmaP2<- as.numeric(var(dataP2)) ss1<-(n_samP1-1)*sigmaP1; ss2<-(n_samP2-1)*sigmaP2 sigma0<-(ss1+ss2)/(n_samP1+n_samP2-2);sigma_dh<-as.numeric(var(dataDH)) m_esp<- 0.0001 ;m_fam<- as.numeric(G3DHtext2) d2<-2 mi <- as.matrix(c(0.75,0.25)) meanE<-mean(dataDH) sigmaE <- matrix((sigma_dh/2*1.2222101),d2,1) sigma <- sigma0 a1 <- sqrt(sigma_dh/n_samDH) if(mean11<mean12){a1=-a1} meanE <- as.matrix(c((meanE+2*a1),(meanE-2*a1))) iteration <- 0; stopa <- 1000 WW <- matrix(0,d2,n_samDH); swx <- matrix(0,d2,1) L0 <- logL(n_samP1,1,1,mean11,sigma,dataP1)+logL(n_samP2,1,1,mean12,sigma,dataP2)+sum(log(dmixnorm(dataDH,meanE,sqrt(sigmaE),mi))) while(stopa > m_esp && iteration<=1000){ iteration <- iteration + 1 for(i in 1:d2) { WW[i,] <- mi[i]*dnorm(dataDH,meanE[i],sqrt(sigmaE[i]))/dmixnorm(dataDH,meanE,sqrt(sigmaE),mi) } mix_pi <- as.matrix(rowSums(WW)/n_samDH) sumwx <- WW%*%dataDH n0 <- n_samDH*mix_pi n0[n0<0.000001] <- 0.000001 rr<- (sum(dataP1)/n_samP1+sum(dataP2)/n_samP2-sumwx[1]/n0[1]-sumwx[2]/n0[2])/(sigma/n_samP1+sigma/n_samP2+sigmaE[1]/n0[1]+sigmaE[2]/n0[2]) mean11<- (sum(dataP1)-rr*sigma)/n_samP1 mean12<- (sum(dataP2)-rr*sigma)/n_samP2 meanE[1]<- (sumwx[1]+sigmaE[1]*rr)/n0[1] meanE[2]<- (sumwx[2]+sigmaE[2]*rr)/n0[2] ss1<- sum((dataP1-mean11)^2) ss2<- sum((dataP2-mean12)^2) for(i in 1:d2) { swx[i] <- WW[i,]%*%(dataDH-meanE[i])^2 } s0E<-matrix(0,2,1) s0E[1]<- ss1+ss2 s0E[2]<- sum(swx)*m_fam s1<- sigmaE[1]-sigma/m_fam if (s1<0.0){s1<- 0.000001} abc2<- sigma abc3<-1000; n_iter<- 0 while(abc3>0.0001){ n_iter<- n_iter+1 abc1<- (sigma/m_fam)/(sigma/m_fam+s1) sigma<- (s0E[1]+abc1*abc1*s0E[2])/(n_samP1+n_samP2+abc1*n_samDH) abc3<- abs(abc2-sigma) abc2<- sigma if (n_iter>20) break } if (sigma<0.1*sigma0){ sigma<- 0.1*sigma0 } sigmaE[1]<- s1+sigma/m_fam s1<- sum(swx)/n_samDH-sigma/m_fam if (s1<0.0){ s1<- 0.000001 } sigmaE<- matrix((s1+sigma/m_fam),d2,1) L1 <- logL(n_samP1,1,1,mean11,sigma,dataP1)+logL(n_samP2,1,1,mean12,sigma,dataP2)+sum(log(dmixnorm(dataDH,meanE,sqrt(sigmaE),mix_pi))) stopa <- L1 - L0 L0 <- L1 if(stopa < 0) {stopa <- -stopa} } abc <- L1 AIC <- -2*abc + 2*5 aa<- matrix(c(1,1,1,1, 1,1,1,-1, 1,-1,0,0),4,3) b_line1 <- as.matrix(c(mean11,mean12,meanE)) B1 <- solve(t(aa)%*%aa)%*%(t(aa)%*%b_line1) jj <- sigma_dh - sigmaE[1] if(jj < 0) {jj <- 0} ll <- jj/sigma_dh mm<- sigmaE[1]-sigma[1] if(mm<0){mm<-0} nnn<- mm/sigma_dh dataP1<-sort(dataP1);bmw_P1 <- matrix(0,n_samP1,1); bmwsl_P1 <- matrix(0,n_samP1,1) gg_P1 <- (dataP1 - mean11)/sqrt(as.vector(sigma)) bmw_P1[which(gg_P1>=0)] <- pnorm(gg_P1[gg_P1>=0]) bmw_P1[which(gg_P1<0)] <- 1 - pnorm(abs(gg_P1[gg_P1<0])) bmwsl_P1[,1] <- bmw_P1 P2_P1 <- rowSums(bmwsl_P1) nn<-dim(as.matrix(unique(P2_P1)))[1] if(nn<n_samP1){P2_P1<-P2_P1+runif(n_samP1)/1e4} dd_P1 <- as.matrix(c(sum(P2_P1),sum(P2_P1^2),sum((P2_P1-0.5)^2))) WW2_P1 <- 1/(12*n_samP1) + sum((P2_P1 - (as.matrix(c(1:n_samP1)) - 0.5)/n_samP1)^2) u_P1 <- as.matrix(c(12*n_samP1*((dd_P1[1]/n_samP1-0.5)^2),((45*n_samP1)/4)*((dd_P1[2]/n_samP1-1/3)^2),180*n_samP1*((dd_P1[3]/n_samP1-1/12)^2))) D_P1 <- as.numeric(ks.test(P2_P1,"punif")[[1]][1]) tt_P1 <- as.matrix(c((1 - pchisq(u_P1[1],1)),(1 - pchisq(u_P1[2],1)),(1 - pchisq(u_P1[3],1)),K1(WW2_P1),(1-pkolm(D_P1,n_samP1)))) dataP2<-sort(dataP2);bmw_P2 <- matrix(0,n_samP2,1); bmwsl_P2 <- matrix(0,n_samP2,1) gg_P2 <- (dataP2 - mean12)/sqrt(as.vector(sigma)) bmw_P2[which(gg_P2>=0)] <- pnorm(gg_P2[gg_P2>=0]) bmw_P2[which(gg_P2<0)] <- 1 - pnorm(abs(gg_P2[gg_P2<0])) bmwsl_P2[,1] <- bmw_P2 P2_P2 <- rowSums(bmwsl_P2) nn<-dim(as.matrix(unique(P2_P2)))[1] if(nn<n_samP2){P2_P2<-P2_P2+runif(n_samP2)/1e4} dd_P2 <- as.matrix(c(sum(P2_P2),sum(P2_P2^2),sum((P2_P2-0.5)^2))) WW2_P2 <- 1/(12*n_samP2) + sum((P2_P2 - (as.matrix(c(1:n_samP2)) - 0.5)/n_samP2)^2) u_P2 <- as.matrix(c(12*n_samP2*((dd_P2[1]/n_samP2-0.5)^2),((45*n_samP2)/4)*((dd_P2[2]/n_samP2-1/3)^2),180*n_samP2*((dd_P2[3]/n_samP2-1/12)^2))) D_P2 <- as.numeric(ks.test(P2_P2,"punif")[[1]][1]) tt_P2 <- as.matrix(c((1 - pchisq(u_P2[1],1)),(1 - pchisq(u_P2[2],1)),(1 - pchisq(u_P2[3],1)),K1(WW2_P2),(1-pkolm(D_P2,n_samP2)))) dataDH<-sort(dataDH);bmw <- matrix(0,n_samDH,1); bmwsl <- matrix(0,n_samDH,d2) for(i in 1:d2){ gg <- (dataDH - meanE[i])/sqrt(sigmaE[i]) bmw[which(gg>=0)] <- pnorm(gg[gg>=0]) bmw[which(gg<0)] <- 1 - pnorm(abs(gg[gg<0])) bmwsl[,i] <- bmw*mix_pi[i] } P2 <- rowSums(bmwsl) nn<-dim(as.matrix(unique(P2)))[1] if(nn<n_samDH){P2<-P2+runif(n_samDH)/1e4} dd <- as.matrix(c(sum(P2),sum(P2^2),sum((P2-0.5)^2))) WW2 <- 1/(12*n_samDH) + sum((P2 - (as.matrix(c(1:n_samDH)) - 0.5)/n_samDH)^2) u <- as.matrix(c(12*n_samDH*((dd[1]/n_samDH-0.5)^2),((45*n_samDH)/4)*((dd[2]/n_samDH-1/3)^2),180*n_samDH*((dd[3]/n_samDH-1/12)^2))) D <- as.numeric(ks.test(P2,"punif")[[1]][1]) tt <- as.matrix(c((1 - pchisq(u[1],1)),(1 - pchisq(u[2],1)),(1 - pchisq(u[3],1)),K1(WW2),(1-pkolm(D,n_samDH)))) tt_P1[which(tt_P1>=10e-4)]<-round(tt_P1[which(tt_P1>=10e-4)],4);tt_P1[which(tt_P1<10e-4)]<-format(tt_P1[which(tt_P1<10e-4)],scientific=TRUE,digit=4) tt_P2[which(tt_P2>=10e-4)]<-round(tt_P2[which(tt_P2>=10e-4)],4);tt_P2[which(tt_P2<10e-4)]<-format(tt_P2[which(tt_P2<10e-4)],scientific=TRUE,digit=4) tt[which(tt>=10e-4)]<-round(tt[which(tt>=10e-4)],4);tt[which(tt<10e-4)]<-format(tt[which(tt<10e-4)],scientific=TRUE,digit=4) output <- data.frame("MX2-DE-A",round(abc,4),round(AIC,4),round(mean11,4),round(mean12,4),round(sigma,4),round(t(meanE),4)," "," "," "," "," "," "," "," "," "," "," "," "," "," ",round(sigmaE[1],4),round(t(mix_pi),4), " "," "," "," "," "," "," "," "," "," "," "," "," "," ",round(B1[1],4)," "," "," "," "," "," ",round(B1[2],4)," "," "," "," "," "," ",round(B1[3],4),round(jj,4),round(ll*100,4),round(mm,4),round(nnn*100,4),round(u_P1[1],4),tt_P1[1],round(u_P1[2],4), tt_P1[2],round(u_P1[3],4),tt_P1[3],round(WW2_P1,4),tt_P1[4],round(D_P1,4),tt_P1[5],round(u_P2[1],4),tt_P2[1],round(u_P2[2],4), tt_P2[2],round(u_P2[3],4),tt_P2[3],round(WW2_P2,4),tt_P2[4],round(D_P2,4),tt_P2[5],round(u[1],4),tt[1],round(u[2],4), tt[2],round(u[3],4),tt[3],round(WW2,4),tt[4],round(D,4),tt[5]) output<-as.matrix(output) OUTPUT<-list(output,mi) return(OUTPUT) } G3DHModelFun[[25]] <- function(K1,logL,df11,df21,df31,G3DHtext2){ dataP1 <- as.matrix(as.numeric(df11[,1]));dataP2 <- as.matrix(as.numeric(df21[,1]));dataDH <- as.matrix(as.numeric(df31[,1])) n_samP1<-dim(dataP1)[1]; n_samP2<-dim(dataP2)[1];n_samDH<-dim(dataDH)[1] mean11<-mean(dataP1);mean12<-mean(dataP2) sigmaP1<- as.numeric(var(dataP1)); sigmaP2<- as.numeric(var(dataP2)) ss1<-(n_samP1-1)*sigmaP1; ss2<-(n_samP2-1)*sigmaP2 sigma0<-(ss1+ss2)/(n_samP1+n_samP2-2);sigma_dh<-as.numeric(var(dataDH)) m_esp<- 0.0001 ;m_fam<- as.numeric(G3DHtext2) d2<-2 mi <- as.matrix(c(0.75,0.25)) meanE<-mean(dataDH) sigmaE <- matrix((sigma_dh/2*1.2222101),d2,1) sigma <- sigma0 a1 <- sqrt(sigma_dh/n_samDH) if(mean11<mean12){a1=-a1} meanE <- as.matrix(c((meanE+2*a1),(meanE-2*a1))) iteration <- 0; stopa <- 1000 WW <- matrix(0,d2,n_samDH); swx <- matrix(0,d2,1) L0 <- logL(n_samP1,1,1,mean11,sigma,dataP1)+logL(n_samP2,1,1,mean12,sigma,dataP2)+sum(log(dmixnorm(dataDH,meanE,sqrt(sigmaE),mi))) while(stopa > m_esp && iteration<=1000){ iteration <- iteration + 1 for(i in 1:d2) { WW[i,] <- mi[i]*dnorm(dataDH,meanE[i],sqrt(sigmaE[i]))/dmixnorm(dataDH,meanE,sqrt(sigmaE),mi) } mix_pi <- as.matrix(rowSums(WW)/n_samDH) sumwx <- WW%*%dataDH n0 <- n_samDH*mix_pi n0[n0<0.000001] <- 0.000001 rr<-(sum(dataP1)/n_samP1+sum(dataP2)/n_samP2-2.0*sumwx[2]/n0[2])/(sigma/n_samP1+sigma/n_samP2+4.0*sigmaE[2]/n0[2]) mean11<- (sum(dataP1)-rr*sigma)/n_samP1 mean12<- (sum(dataP2)-rr*sigma)/n_samP2 meanE[1]<- sumwx[1]/n0[1] meanE[2]<- (sumwx[2]+2.0*rr*sigmaE[2])/n0[2] ss1<- sum((dataP1-mean11)^2) ss2<- sum((dataP2-mean12)^2) for(i in 1:d2) { swx[i] <- WW[i,]%*%(dataDH-meanE[i])^2 } s0E<-matrix(0,2,1) s0E[1]<- ss1+ss2 s0E[2]<- sum(swx)*m_fam s1<- sigmaE[1]-sigma/m_fam if (s1<0.0){s1<- 0.000001} abc2<- sigma abc3<-1000; n_iter<- 0 while(abc3>0.0001){ n_iter<- n_iter+1 abc1<- (sigma/m_fam)/(sigma/m_fam+s1) sigma<- (s0E[1]+abc1*abc1*s0E[2])/(n_samP1+n_samP2+abc1*n_samDH) abc3<- abs(abc2-sigma) abc2<- sigma if (n_iter>20) break } if (sigma<0.1*sigma0){ sigma<- 0.1*sigma0 } sigmaE[1]<- s1+sigma/m_fam s1<- sum(swx)/n_samDH-sigma/m_fam if (s1<0.0){ s1<- 0.000001 } sigmaE<- matrix((s1+sigma/m_fam),d2,1) L1 <- logL(n_samP1,1,1,mean11,sigma,dataP1)+logL(n_samP2,1,1,mean12,sigma,dataP2)+sum(log(dmixnorm(dataDH,meanE,sqrt(sigmaE),mix_pi))) stopa <- L1 - L0 L0 <- L1 if(stopa < 0) {stopa <- -stopa} } abc <- L1 AIC <- -2*abc + 2*5 aa<- matrix(c(1,1,1,1, 1,1,-1,1, 1,-1,0,0),4,3) b_line1 <- as.matrix(c(mean11,mean12,meanE)) B1 <- solve(t(aa)%*%aa)%*%(t(aa)%*%b_line1) jj <- sigma_dh - sigmaE[1] if(jj < 0) {jj <- 0} ll <- jj/sigma_dh mm<- sigmaE[1]-sigma[1] if(mm<0){mm<-0} nnn<- mm/sigma_dh dataP1<-sort(dataP1);bmw_P1 <- matrix(0,n_samP1,1); bmwsl_P1 <- matrix(0,n_samP1,1) gg_P1 <- (dataP1 - mean11)/sqrt(as.vector(sigma)) bmw_P1[which(gg_P1>=0)] <- pnorm(gg_P1[gg_P1>=0]) bmw_P1[which(gg_P1<0)] <- 1 - pnorm(abs(gg_P1[gg_P1<0])) bmwsl_P1[,1] <- bmw_P1 P2_P1 <- rowSums(bmwsl_P1) nn<-dim(as.matrix(unique(P2_P1)))[1] if(nn<n_samP1){P2_P1<-P2_P1+runif(n_samP1)/1e4} dd_P1 <- as.matrix(c(sum(P2_P1),sum(P2_P1^2),sum((P2_P1-0.5)^2))) WW2_P1 <- 1/(12*n_samP1) + sum((P2_P1 - (as.matrix(c(1:n_samP1)) - 0.5)/n_samP1)^2) u_P1 <- as.matrix(c(12*n_samP1*((dd_P1[1]/n_samP1-0.5)^2),((45*n_samP1)/4)*((dd_P1[2]/n_samP1-1/3)^2),180*n_samP1*((dd_P1[3]/n_samP1-1/12)^2))) D_P1 <- as.numeric(ks.test(P2_P1,"punif")[[1]][1]) tt_P1 <- as.matrix(c((1 - pchisq(u_P1[1],1)),(1 - pchisq(u_P1[2],1)),(1 - pchisq(u_P1[3],1)),K1(WW2_P1),(1-pkolm(D_P1,n_samP1)))) dataP2<-sort(dataP2);bmw_P2 <- matrix(0,n_samP2,1); bmwsl_P2 <- matrix(0,n_samP2,1) gg_P2 <- (dataP2 - mean12)/sqrt(as.vector(sigma)) bmw_P2[which(gg_P2>=0)] <- pnorm(gg_P2[gg_P2>=0]) bmw_P2[which(gg_P2<0)] <- 1 - pnorm(abs(gg_P2[gg_P2<0])) bmwsl_P2[,1] <- bmw_P2 P2_P2 <- rowSums(bmwsl_P2) nn<-dim(as.matrix(unique(P2_P2)))[1] if(nn<n_samP2){P2_P2<-P2_P2+runif(n_samP2)/1e4} dd_P2 <- as.matrix(c(sum(P2_P2),sum(P2_P2^2),sum((P2_P2-0.5)^2))) WW2_P2 <- 1/(12*n_samP2) + sum((P2_P2 - (as.matrix(c(1:n_samP2)) - 0.5)/n_samP2)^2) u_P2 <- as.matrix(c(12*n_samP2*((dd_P2[1]/n_samP2-0.5)^2),((45*n_samP2)/4)*((dd_P2[2]/n_samP2-1/3)^2),180*n_samP2*((dd_P2[3]/n_samP2-1/12)^2))) D_P2 <- as.numeric(ks.test(P2_P2,"punif")[[1]][1]) tt_P2 <- as.matrix(c((1 - pchisq(u_P2[1],1)),(1 - pchisq(u_P2[2],1)),(1 - pchisq(u_P2[3],1)),K1(WW2_P2),(1-pkolm(D_P2,n_samP2)))) dataDH<-sort(dataDH);bmw <- matrix(0,n_samDH,1); bmwsl <- matrix(0,n_samDH,d2) for(i in 1:d2){ gg <- (dataDH - meanE[i])/sqrt(sigmaE[i]) bmw[which(gg>=0)] <- pnorm(gg[gg>=0]) bmw[which(gg<0)] <- 1 - pnorm(abs(gg[gg<0])) bmwsl[,i] <- bmw*mix_pi[i] } P2 <- rowSums(bmwsl) nn<-dim(as.matrix(unique(P2)))[1] if(nn<n_samDH){P2<-P2+runif(n_samDH)/1e4} dd <- as.matrix(c(sum(P2),sum(P2^2),sum((P2-0.5)^2))) WW2 <- 1/(12*n_samDH) + sum((P2 - (as.matrix(c(1:n_samDH)) - 0.5)/n_samDH)^2) u <- as.matrix(c(12*n_samDH*((dd[1]/n_samDH-0.5)^2),((45*n_samDH)/4)*((dd[2]/n_samDH-1/3)^2),180*n_samDH*((dd[3]/n_samDH-1/12)^2))) D <- as.numeric(ks.test(P2,"punif")[[1]][1]) tt <- as.matrix(c((1 - pchisq(u[1],1)),(1 - pchisq(u[2],1)),(1 - pchisq(u[3],1)),K1(WW2),(1-pkolm(D,n_samDH)))) tt_P1[which(tt_P1>=10e-4)]<-round(tt_P1[which(tt_P1>=10e-4)],4);tt_P1[which(tt_P1<10e-4)]<-format(tt_P1[which(tt_P1<10e-4)],scientific=TRUE,digit=4) tt_P2[which(tt_P2>=10e-4)]<-round(tt_P2[which(tt_P2>=10e-4)],4);tt_P2[which(tt_P2<10e-4)]<-format(tt_P2[which(tt_P2<10e-4)],scientific=TRUE,digit=4) tt[which(tt>=10e-4)]<-round(tt[which(tt>=10e-4)],4);tt[which(tt<10e-4)]<-format(tt[which(tt<10e-4)],scientific=TRUE,digit=4) output <- data.frame("MX2-IE-A",round(abc,4),round(AIC,4),round(mean11,4),round(mean12,4),round(sigma,4),round(t(meanE),4)," "," "," "," "," "," "," "," "," "," "," "," "," "," ",round(sigmaE[1],4),round(t(mix_pi),4), " "," "," "," "," "," "," "," "," "," "," "," "," "," ",round(B1[1],4)," "," "," "," "," "," ",round(B1[2],4)," "," "," "," "," "," ",round(B1[3],4),round(jj,4),round(ll*100,4),round(mm,4),round(nnn*100,4),round(u_P1[1],4),tt_P1[1],round(u_P1[2],4), tt_P1[2],round(u_P1[3],4),tt_P1[3],round(WW2_P1,4),tt_P1[4],round(D_P1,4),tt_P1[5],round(u_P2[1],4),tt_P2[1],round(u_P2[2],4), tt_P2[2],round(u_P2[3],4),tt_P2[3],round(WW2_P2,4),tt_P2[4],round(D_P2,4),tt_P2[5],round(u[1],4),tt[1],round(u[2],4), tt[2],round(u[3],4),tt[3],round(WW2,4),tt[4],round(D,4),tt[5]) output<-as.matrix(output) OUTPUT<-list(output,mi) return(OUTPUT) } G3DHModelFun[[26]] <- function(K1,logL,df11,df21,df31,G3DHtext2){ dataP1 <- as.matrix(as.numeric(df11[,1]));dataP2 <- as.matrix(as.numeric(df21[,1]));dataDH <- as.matrix(as.numeric(df31[,1])) n_samP1<-dim(dataP1)[1]; n_samP2<-dim(dataP2)[1];n_samDH<-dim(dataDH)[1] mean11<-mean(dataP1);mean12<-mean(dataP2) sigmaP1<- as.numeric(var(dataP1)); sigmaP2<- as.numeric(var(dataP2)) ss1<-(n_samP1-1)*sigmaP1; ss2<-(n_samP2-1)*sigmaP2 sigma0<-(ss1+ss2)/(n_samP1+n_samP2-2);sigma_dh<-as.numeric(var(dataDH)) m_esp<- 0.0001 ;m_fam<- as.numeric(G3DHtext2) d2<-8 mi <- as.matrix(c(0.125,0.125,0.125,0.125,0.125,0.125,0.125,0.125)) meanF<-mean(dataDH) sigmaF <- matrix((sigma_dh/(2*1.2222101)),d2,1) sigma <- sigma0 a1 <- sqrt(sigma_dh/n_samDH) if(mean11<mean12){a1=-a1} meanF <- as.matrix(c((meanF+3*a1),(meanF+2.1*a1),(meanF+1.2*a1),(meanF+0.3*a1),(meanF+1.5*a1),(meanF+0.5*a1),(meanF-1.5*a1),(meanF-2.5*a1))) iteration <- 0; stopa <- 1000 WW <- matrix(0,d2,n_samDH); swx <- matrix(0,d2,1) L0 <- logL(n_samP1,1,1,mean11,sigma,dataP1)+logL(n_samP2,1,1,mean12,sigma,dataP2)+sum(log(dmixnorm(dataDH,meanF,sqrt(sigmaF),mi))) while(stopa > m_esp && iteration<=1000){ iteration <- iteration + 1 for(i in 1:d2) { WW[i,] <- mi[i]*dnorm(dataDH,meanF[i],sqrt(sigmaF[i]))/dmixnorm(dataDH,meanF,sqrt(sigmaF),mi) } mix_pi <- as.matrix(rowSums(WW)/n_samDH) sumwx <- WW%*%dataDH n0 <- n_samDH*mix_pi n0[n0<0.000001] <- 0.000001 meanF<- sumwx/n0 meanF[1]<- (sum(dataP1)+m_fam*sumwx[1])/(n_samP1+m_fam*n0[1]) meanF[8]<- (sum(dataP2)+m_fam*sumwx[8])/(n_samP2+m_fam*n0[8]) mean11<- meanF[1] mean12<- meanF[8] ss1<- sum((dataP1-mean11)^2) ss2<- sum((dataP2-mean12)^2) for(i in 1:d2) { swx[i] <- WW[i,]%*%(dataDH-meanF[i])^2 } s0F<-matrix(0,2,1) s0F[1]<- ss1+ss2 s0F[2]<- sum(swx)*m_fam s1<- sigmaF[1]-sigma/m_fam if (s1<0.0){s1<- 0.000001} abc2<- sigma abc3<-1000; n_iter<- 0 while(abc3>0.0001){ n_iter<- n_iter+1 sigma<- (s0F[1]+s0F[2])/(n_samP1+n_samP2+n_samDH) abc3<- abs(abc2-sigma) abc2<- sigma if (n_iter>20) break } if (sigma<0.1*sigma0){ sigma<- 0.1*sigma0 } sigmaF<- matrix((sigma/m_fam),d2,1) L1 <- logL(n_samP1,1,1,mean11,sigma,dataP1)+logL(n_samP2,1,1,mean12,sigma,dataP2)+sum(log(dmixnorm(dataDH,meanF,sqrt(sigmaF),mix_pi))) stopa <- L1 - L0 L0 <- L1 if(stopa < 0) {stopa <- -stopa} } abc <- L1 AIC <- -2*abc + 2*9 aa<- matrix(c(1,1,1,1,1,1,1,1, 1,1,-1,-1,1,1,-1,-1, 1,-1,1,-1,1,-1,1,-1, 1,1,1,1,-1,-1,-1,-1, 1,-1,-1,1,1,-1,-1,1, 1,1,-1,-1,-1,-1,1,1, 1,-1,1,-1,-1,1,-1,1, 1,-1,-1,1,-1,1,1,-1 ),8,8) b_line1 <- meanF B1 <- ginv(t(aa)%*%aa)%*%(t(aa)%*%b_line1) jj <- sigma_dh - sigmaF[1] if(jj < 0) {jj <- 0} ll <- jj/sigma_dh mm<- sigmaF[1]-sigma[1] if(mm<0){mm<-0} nnn<- mm/sigma_dh dataP1<-sort(dataP1);bmw_P1 <- matrix(0,n_samP1,1); bmwsl_P1 <- matrix(0,n_samP1,1) gg_P1 <- (dataP1 - mean11)/sqrt(as.vector(sigma)) bmw_P1[which(gg_P1>=0)] <- pnorm(gg_P1[gg_P1>=0]) bmw_P1[which(gg_P1<0)] <- 1 - pnorm(abs(gg_P1[gg_P1<0])) bmwsl_P1[,1] <- bmw_P1 P2_P1 <- rowSums(bmwsl_P1) nn<-dim(as.matrix(unique(P2_P1)))[1] if(nn<n_samP1){P2_P1<-P2_P1+runif(n_samP1)/1e4} dd_P1 <- as.matrix(c(sum(P2_P1),sum(P2_P1^2),sum((P2_P1-0.5)^2))) WW2_P1 <- 1/(12*n_samP1) + sum((P2_P1 - (as.matrix(c(1:n_samP1)) - 0.5)/n_samP1)^2) u_P1 <- as.matrix(c(12*n_samP1*((dd_P1[1]/n_samP1-0.5)^2),((45*n_samP1)/4)*((dd_P1[2]/n_samP1-1/3)^2),180*n_samP1*((dd_P1[3]/n_samP1-1/12)^2))) D_P1 <- as.numeric(ks.test(P2_P1,"punif")[[1]][1]) tt_P1 <- as.matrix(c((1 - pchisq(u_P1[1],1)),(1 - pchisq(u_P1[2],1)),(1 - pchisq(u_P1[3],1)),K1(WW2_P1),(1-pkolm(D_P1,n_samP1)))) dataP2<-sort(dataP2);bmw_P2 <- matrix(0,n_samP2,1); bmwsl_P2 <- matrix(0,n_samP2,1) gg_P2 <- (dataP2 - mean12)/sqrt(as.vector(sigma)) bmw_P2[which(gg_P2>=0)] <- pnorm(gg_P2[gg_P2>=0]) bmw_P2[which(gg_P2<0)] <- 1 - pnorm(abs(gg_P2[gg_P2<0])) bmwsl_P2[,1] <- bmw_P2 P2_P2 <- rowSums(bmwsl_P2) nn<-dim(as.matrix(unique(P2_P2)))[1] if(nn<n_samP2){P2_P2<-P2_P2+runif(n_samP2)/1e4} dd_P2 <- as.matrix(c(sum(P2_P2),sum(P2_P2^2),sum((P2_P2-0.5)^2))) WW2_P2 <- 1/(12*n_samP2) + sum((P2_P2 - (as.matrix(c(1:n_samP2)) - 0.5)/n_samP2)^2) u_P2 <- as.matrix(c(12*n_samP2*((dd_P2[1]/n_samP2-0.5)^2),((45*n_samP2)/4)*((dd_P2[2]/n_samP2-1/3)^2),180*n_samP2*((dd_P2[3]/n_samP2-1/12)^2))) D_P2 <- as.numeric(ks.test(P2_P2,"punif")[[1]][1]) tt_P2 <- as.matrix(c((1 - pchisq(u_P2[1],1)),(1 - pchisq(u_P2[2],1)),(1 - pchisq(u_P2[3],1)),K1(WW2_P2),(1-pkolm(D_P2,n_samP2)))) dataDH<-sort(dataDH);bmw <- matrix(0,n_samDH,1); bmwsl <- matrix(0,n_samDH,d2) for(i in 1:d2){ gg <- (dataDH - meanF[i])/sqrt(sigmaF[i]) bmw[which(gg>=0)] <- pnorm(gg[gg>=0]) bmw[which(gg<0)] <- 1 - pnorm(abs(gg[gg<0])) bmwsl[,i] <- bmw*mix_pi[i] } P2 <- rowSums(bmwsl) nn<-dim(as.matrix(unique(P2)))[1] if(nn<n_samDH){P2<-P2+runif(n_samDH)/1e4} dd <- as.matrix(c(sum(P2),sum(P2^2),sum((P2-0.5)^2))) WW2 <- 1/(12*n_samDH) + sum((P2 - (as.matrix(c(1:n_samDH)) - 0.5)/n_samDH)^2) u <- as.matrix(c(12*n_samDH*((dd[1]/n_samDH-0.5)^2),((45*n_samDH)/4)*((dd[2]/n_samDH-1/3)^2),180*n_samDH*((dd[3]/n_samDH-1/12)^2))) D <- as.numeric(ks.test(P2,"punif")[[1]][1]) tt <- as.matrix(c((1 - pchisq(u[1],1)),(1 - pchisq(u[2],1)),(1 - pchisq(u[3],1)),K1(WW2),(1-pkolm(D,n_samDH)))) tt_P1[which(tt_P1>=10e-4)]<-round(tt_P1[which(tt_P1>=10e-4)],4);tt_P1[which(tt_P1<10e-4)]<-format(tt_P1[which(tt_P1<10e-4)],scientific=TRUE,digit=4) tt_P2[which(tt_P2>=10e-4)]<-round(tt_P2[which(tt_P2>=10e-4)],4);tt_P2[which(tt_P2<10e-4)]<-format(tt_P2[which(tt_P2<10e-4)],scientific=TRUE,digit=4) tt[which(tt>=10e-4)]<-round(tt[which(tt>=10e-4)],4);tt[which(tt<10e-4)]<-format(tt[which(tt<10e-4)],scientific=TRUE,digit=4) output <- data.frame("3MG-AI",round(abc,4),round(AIC,4),round(mean11,4),round(mean12,4),round(sigma,4),round(t(meanF),4)," "," "," "," "," "," "," "," ",round(sigmaF[1],4),round(t(mix_pi),4), " "," "," "," "," "," "," "," ",round(B1[1],4)," "," ",round(B1[2],4),round(B1[3],4),round(B1[4],4)," ",round(B1[5],4),round(B1[6],4)," ",round(B1[7],4)," "," ",round(B1[8],4)," ", round(jj,4),round(ll*100,4)," "," ",round(u_P1[1],4),tt_P1[1],round(u_P1[2],4), tt_P1[2],round(u_P1[3],4),tt_P1[3],round(WW2_P1,4),tt_P1[4],round(D_P1,4),tt_P1[5],round(u_P2[1],4),tt_P2[1],round(u_P2[2],4), tt_P2[2],round(u_P2[3],4),tt_P2[3],round(WW2_P2,4),tt_P2[4],round(D_P2,4),tt_P2[5],round(u[1],4),tt[1],round(u[2],4), tt[2],round(u[3],4),tt[3],round(WW2,4),tt[4],round(D,4),tt[5]) output<-as.matrix(output) OUTPUT<-list(output,mi) return(OUTPUT) } G3DHModelFun[[27]] <- function(K1,logL,df11,df21,df31,G3DHtext2){ dataP1 <- as.matrix(as.numeric(df11[,1]));dataP2 <- as.matrix(as.numeric(df21[,1]));dataDH <- as.matrix(as.numeric(df31[,1])) n_samP1<-dim(dataP1)[1]; n_samP2<-dim(dataP2)[1];n_samDH<-dim(dataDH)[1] mean11<-mean(dataP1);mean12<-mean(dataP2) sigmaP1<- as.numeric(var(dataP1)); sigmaP2<- as.numeric(var(dataP2)) ss1<-(n_samP1-1)*sigmaP1; ss2<-(n_samP2-1)*sigmaP2 sigma0<-(ss1+ss2)/(n_samP1+n_samP2-2);sigma_dh<-as.numeric(var(dataDH)) m_esp<- 0.0001 ;m_fam<- as.numeric(G3DHtext2) d2<-8 mi <- as.matrix(c(0.125,0.125,0.125,0.125,0.125,0.125,0.125,0.125)) meanF<-mean(dataDH) sigmaF <- matrix((sigma_dh/(2*1.2222101)),d2,1) sigma <- sigma0 a1 <- sqrt(sigma_dh/n_samDH) if(mean11<mean12){a1=-a1} meanF <- as.matrix(c((meanF+3*a1),(meanF+2.1*a1),(meanF+1.2*a1),(meanF+0.3*a1),(meanF+1.5*a1),(meanF+0.5*a1),(meanF-1.5*a1),(meanF-2.5*a1))) iteration <- 0; stopa <- 1000 WW <- matrix(0,d2,n_samDH); swx <- matrix(0,d2,1) L0 <- logL(n_samP1,1,1,mean11,sigma,dataP1)+logL(n_samP2,1,1,mean12,sigma,dataP2)+sum(log(dmixnorm(dataDH,meanF,sqrt(sigmaF),mi))) while(stopa > m_esp && iteration<=1000){ iteration <- iteration + 1 for(i in 1:d2) { WW[i,] <- mi[i]*dnorm(dataDH,meanF[i],sqrt(sigmaF[i]))/dmixnorm(dataDH,meanF,sqrt(sigmaF),mi) } mix_pi <- as.matrix(rowSums(WW)/n_samDH) sumwx <- WW%*%dataDH n0 <- n_samDH*mix_pi n0[n0<0.000001] <- 0.000001 hh<- matrix(0,4,4) hh[1,1]<- sigma*(1.0/(n_samP1+m_fam*n0[1])+1.0/(n_samP2+m_fam*n0[2]))+sigmaF[3]*(1.0/n0[3]+1.0/n0[6]) hh[1,2]<- 0 hh[1,3]<- sigma/(n_samP1+m_fam*n0[1])-sigmaF[6]/n0[6] hh[1,4]<- -sigmaF[3]/n0[3]+sigma/(n_samP2+m_fam*n0[8]) hh[2,2]<- sigmaF[2]*(1.0/n0[2]+1.0/n0[4]+1.0/n0[5]+1.0/n0[7]) hh[2,3]<- sigmaF[2]*(-1.0/n0[2]+1.0/n0[5]) hh[2,4]<- sigmaF[4]*(1.0/n0[4]-1.0/n0[7]) hh[3,3]<- sigma/(n_samP1+m_fam*n0[1])+sigmaF[2]*(1.0/n0[2]+1.0/n0[5]+1.0/n0[6]) hh[3,4]<- 0 hh[4,4]<- sigma/(n_samP2+m_fam*n0[8])+sigmaF[3]*(1.0/n0[3]+1.0/n0[4]+1.0/n0[7]) for(i in 2:4){ for(j in 1:(i-1)){ hh[i,j]<- hh[j,i] } } b_line<- matrix(0,4,1) b_line[1]<-(sum(dataP1)+m_fam*sumwx[1])/(n_samP1+m_fam*n0[1])+(sum(dataP2)+m_fam*n0[8])/(n_samP2+m_fam*n0[8])-sumwx[3]/n0[3]-sumwx[6]/n0[6] b_line[2]<-sumwx[2]/n0[2]-sumwx[4]/n0[4]-sumwx[5]/n0[5]+sumwx[7]/n0[7] b_line[3]<-(sum(dataP1)+m_fam*sumwx[1])/(n_samP1+m_fam*n0[1])-sumwx[2]/n0[2]-sumwx[5]/n0[5]+sumwx[6]/n0[6] b_line[4]<-(sum(dataP2)+m_fam*sumwx[8])/(n_samP2+m_fam*n0[8])+sumwx[3]/n0[3]-sumwx[4]/n0[4]-sumwx[7]/n0[7] B <- solve(hh,b_line) meanF[1]<- (sum(dataP1)+m_fam*sumwx[1]-(B[1]+B[3])*sigma)/(n_samP1+m_fam*n0[1]) meanF[2]<- (sumwx[2]+(-B[2]+B[3])*sigmaF[2])/n0[2] meanF[3]<- (sumwx[3]+(B[1]-B[4])*sigmaF[3])/n0[3] meanF[4]<- (sumwx[4]+(B[2]+B[4])*sigmaF[4])/n0[4] meanF[5]<- (sumwx[5]+(B[2]+B[3])*sigmaF[5])/n0[5] meanF[6]<- (sumwx[6]+(B[1]-B[3])*sigmaF[6])/n0[6] meanF[7]<- (sumwx[7]+(-B[2]+B[4])*sigmaF[7])/n0[7] meanF[8]<- (sum(dataP2)+m_fam*sumwx[8]-(B[1]+B[4])*sigma)/(n_samP2+m_fam*n0[8]) mean11<- meanF[1] mean12<- meanF[8] ss1<- sum((dataP1-mean11)^2) ss2<- sum((dataP2-mean12)^2) for(i in 1:d2) { swx[i] <- WW[i,]%*%(dataDH-meanF[i])^2 } s0F<-matrix(0,2,1) s0F[1]<- ss1+ss2 s0F[2]<- sum(swx)*m_fam s1<- sigmaF[1]-sigma/m_fam if (s1<0.0){s1<- 0.000001} abc2<- sigma abc3<-1000; n_iter<- 0 while(abc3>0.0001){ n_iter<- n_iter+1 sigma<- (s0F[1]+s0F[2])/(n_samP1+n_samP2+n_samDH) abc3<- abs(abc2-sigma) abc2<- sigma if (n_iter>20) break } if (sigma<0.1*sigma0){ sigma<- 0.1*sigma0 } sigmaF<- matrix((sigma/m_fam),d2,1) L1 <- logL(n_samP1,1,1,mean11,sigma,dataP1)+logL(n_samP2,1,1,mean12,sigma,dataP2)+sum(log(dmixnorm(dataDH,meanF,sqrt(sigmaF),mix_pi))) stopa <- L1 - L0 L0 <- L1 if(stopa < 0) {stopa <- -stopa} } abc <- L1 AIC <- -2*abc + 2*5 aa<- matrix(c(1,1,1,1,1,1,1,1, 1,1,-1,-1,1,1,-1,-1, 1,-1,1,-1,1,-1,1,-1, 1,1,1,1,-1,-1,-1,-1),8,4) b_line1 <- meanF B1 <- ginv(t(aa)%*%aa)%*%(t(aa)%*%b_line1) jj <- sigma_dh - sigmaF[1] if(jj < 0) {jj <- 0} ll <- jj/sigma_dh mm<- sigmaF[1]-sigma[1] if(mm<0){mm<-0} nnn<- mm/sigma_dh dataP1<-sort(dataP1);bmw_P1 <- matrix(0,n_samP1,1); bmwsl_P1 <- matrix(0,n_samP1,1) gg_P1 <- (dataP1 - mean11)/sqrt(as.vector(sigma)) bmw_P1[which(gg_P1>=0)] <- pnorm(gg_P1[gg_P1>=0]) bmw_P1[which(gg_P1<0)] <- 1 - pnorm(abs(gg_P1[gg_P1<0])) bmwsl_P1[,1] <- bmw_P1 P2_P1 <- rowSums(bmwsl_P1) nn<-dim(as.matrix(unique(P2_P1)))[1] if(nn<n_samP1){P2_P1<-P2_P1+runif(n_samP1)/1e4} dd_P1 <- as.matrix(c(sum(P2_P1),sum(P2_P1^2),sum((P2_P1-0.5)^2))) WW2_P1 <- 1/(12*n_samP1) + sum((P2_P1 - (as.matrix(c(1:n_samP1)) - 0.5)/n_samP1)^2) u_P1 <- as.matrix(c(12*n_samP1*((dd_P1[1]/n_samP1-0.5)^2),((45*n_samP1)/4)*((dd_P1[2]/n_samP1-1/3)^2),180*n_samP1*((dd_P1[3]/n_samP1-1/12)^2))) D_P1 <- as.numeric(ks.test(P2_P1,"punif")[[1]][1]) tt_P1 <- as.matrix(c((1 - pchisq(u_P1[1],1)),(1 - pchisq(u_P1[2],1)),(1 - pchisq(u_P1[3],1)),K1(WW2_P1),(1-pkolm(D_P1,n_samP1)))) dataP2<-sort(dataP2);bmw_P2 <- matrix(0,n_samP2,1); bmwsl_P2 <- matrix(0,n_samP2,1) gg_P2 <- (dataP2 - mean12)/sqrt(as.vector(sigma)) bmw_P2[which(gg_P2>=0)] <- pnorm(gg_P2[gg_P2>=0]) bmw_P2[which(gg_P2<0)] <- 1 - pnorm(abs(gg_P2[gg_P2<0])) bmwsl_P2[,1] <- bmw_P2 P2_P2 <- rowSums(bmwsl_P2) nn<-dim(as.matrix(unique(P2_P2)))[1] if(nn<n_samP2){P2_P2<-P2_P2+runif(n_samP2)/1e4} dd_P2 <- as.matrix(c(sum(P2_P2),sum(P2_P2^2),sum((P2_P2-0.5)^2))) WW2_P2 <- 1/(12*n_samP2) + sum((P2_P2 - (as.matrix(c(1:n_samP2)) - 0.5)/n_samP2)^2) u_P2 <- as.matrix(c(12*n_samP2*((dd_P2[1]/n_samP2-0.5)^2),((45*n_samP2)/4)*((dd_P2[2]/n_samP2-1/3)^2),180*n_samP2*((dd_P2[3]/n_samP2-1/12)^2))) D_P2 <- as.numeric(ks.test(P2_P2,"punif")[[1]][1]) tt_P2 <- as.matrix(c((1 - pchisq(u_P2[1],1)),(1 - pchisq(u_P2[2],1)),(1 - pchisq(u_P2[3],1)),K1(WW2_P2),(1-pkolm(D_P2,n_samP2)))) dataDH<-sort(dataDH);bmw <- matrix(0,n_samDH,1); bmwsl <- matrix(0,n_samDH,d2) for(i in 1:d2){ gg <- (dataDH - meanF[i])/sqrt(sigmaF[i]) bmw[which(gg>=0)] <- pnorm(gg[gg>=0]) bmw[which(gg<0)] <- 1 - pnorm(abs(gg[gg<0])) bmwsl[,i] <- bmw*mix_pi[i] } P2 <- rowSums(bmwsl) nn<-dim(as.matrix(unique(P2)))[1] if(nn<n_samDH){P2<-P2+runif(n_samDH)/1e4} dd <- as.matrix(c(sum(P2),sum(P2^2),sum((P2-0.5)^2))) WW2 <- 1/(12*n_samDH) + sum((P2 - (as.matrix(c(1:n_samDH)) - 0.5)/n_samDH)^2) u <- as.matrix(c(12*n_samDH*((dd[1]/n_samDH-0.5)^2),((45*n_samDH)/4)*((dd[2]/n_samDH-1/3)^2),180*n_samDH*((dd[3]/n_samDH-1/12)^2))) D <- as.numeric(ks.test(P2,"punif")[[1]][1]) tt <- as.matrix(c((1 - pchisq(u[1],1)),(1 - pchisq(u[2],1)),(1 - pchisq(u[3],1)),K1(WW2),(1-pkolm(D,n_samDH)))) tt_P1[which(tt_P1>=10e-4)]<-round(tt_P1[which(tt_P1>=10e-4)],4);tt_P1[which(tt_P1<10e-4)]<-format(tt_P1[which(tt_P1<10e-4)],scientific=TRUE,digit=4) tt_P2[which(tt_P2>=10e-4)]<-round(tt_P2[which(tt_P2>=10e-4)],4);tt_P2[which(tt_P2<10e-4)]<-format(tt_P2[which(tt_P2<10e-4)],scientific=TRUE,digit=4) tt[which(tt>=10e-4)]<-round(tt[which(tt>=10e-4)],4);tt[which(tt<10e-4)]<-format(tt[which(tt<10e-4)],scientific=TRUE,digit=4) output <- data.frame("3MG-A",round(abc,4),round(AIC,4),round(mean11,4),round(mean12,4),round(sigma,4),round(t(meanF),4)," "," "," "," "," "," "," "," ",round(sigmaF[1],4),round(t(mix_pi),4), " "," "," "," "," "," "," "," ",round(B1[1],4)," "," ",round(B1[2],4),round(B1[3],4),round(B1[4],4)," "," "," "," "," "," "," "," "," ", round(jj,4),round(ll*100,4)," "," ",round(u_P1[1],4),tt_P1[1],round(u_P1[2],4), tt_P1[2],round(u_P1[3],4),tt_P1[3],round(WW2_P1,4),tt_P1[4],round(D_P1,4),tt_P1[5],round(u_P2[1],4),tt_P2[1],round(u_P2[2],4), tt_P2[2],round(u_P2[3],4),tt_P2[3],round(WW2_P2,4),tt_P2[4],round(D_P2,4),tt_P2[5],round(u[1],4),tt[1],round(u[2],4), tt[2],round(u[3],4),tt[3],round(WW2,4),tt[4],round(D,4),tt[5]) output<-as.matrix(output) OUTPUT<-list(output,mi) return(OUTPUT) } G3DHModelFun[[28]] <- function(K1,logL,df11,df21,df31,G3DHtext2){ dataP1 <- as.matrix(as.numeric(df11[,1]));dataP2 <- as.matrix(as.numeric(df21[,1]));dataDH <- as.matrix(as.numeric(df31[,1])) n_samP1<-dim(dataP1)[1]; n_samP2<-dim(dataP2)[1];n_samDH<-dim(dataDH)[1] mean11<-mean(dataP1);mean12<-mean(dataP2) sigmaP1<- as.numeric(var(dataP1)); sigmaP2<- as.numeric(var(dataP2)) ss1<-(n_samP1-1)*sigmaP1; ss2<-(n_samP2-1)*sigmaP2 sigma0<-(ss1+ss2)/(n_samP1+n_samP2-2);sigma_dh<-as.numeric(var(dataDH)) m_esp<- 0.0001 ;m_fam<- as.numeric(G3DHtext2) d2<-4 mi <- as.matrix(c(0.125,0.375,0.375,0.125)) meanF<-mean(dataDH) sigmaF <- matrix((sigma_dh/(2*1.2222101)),d2,1) sigma <- sigma0 a1 <- sqrt(sigma_dh/n_samDH) if(mean11<mean12){a1=-a1} meanF <- as.matrix(c((meanF+3*a1),(meanF+a1),(meanF-a1),(meanF-3*a1))) iteration <- 0; stopa <- 1000 WW <- matrix(0,d2,n_samDH); swx <- matrix(0,d2,1) L0 <- logL(n_samP1,1,1,mean11,sigma,dataP1)+logL(n_samP2,1,1,mean12,sigma,dataP2)+sum(log(dmixnorm(dataDH,meanF,sqrt(sigmaF),mi))) while(stopa > m_esp && iteration<=1000){ iteration <- iteration + 1 for(i in 1:d2) { WW[i,] <- mi[i]*dnorm(dataDH,meanF[i],sqrt(sigmaF[i]))/dmixnorm(dataDH,meanF,sqrt(sigmaF),mi) } mix_pi <- as.matrix(rowSums(WW)/n_samDH) sumwx <- WW%*%dataDH n0 <- n_samDH*mix_pi n0[n0<0.000001] <- 0.000001 aa1<- sigma*(1.0/n_samP1+1.0/n_samP2)+sigmaF[2]/n0[2]+sigmaF[3]/n0[3] aa2<- sigma*(1.0/n_samP1-1.0/n_samP2)+3.0*sigmaF[2]/n0[2]-3.0*sigmaF[3]/n0[3] aa3<- sigma*(1.0/n_samP1+1.0/n_samP2)+9.0*(sigmaF[2]/n0[2]+sigmaF[3]/n0[3]) aa4<- sum(dataP1)/n_samP1+sum(dataP2)/n_samP2-sumwx[2]/n0[2]-sumwx[3]/n0[3] aa5<- sum(dataP1)/n_samP1-sum(dataP2)/n_samP2-3.0*sumwx[2]/n0[2]+3.0*sumwx[3]/n0[3] aa6<- aa1*aa3-aa2*aa2 rr<- matrix(0,2,1) rr[1]<- (aa3*aa4-aa2*aa5)/aa6 rr[2]<- (aa1*aa5-aa2*aa4)/aa6 meanF[1]<- (sum(dataP1)+m_fam*sumwx[1]-(rr[1]+rr[2])*sigma)/(n_samP1+m_fam*n0[1]) meanF[2]<- (sumwx[2]+(rr[1]+3.0*rr[2])*sigmaF[2])/n0[2] meanF[3]<- (sumwx[3]+(rr[1]-3.0*rr[2])*sigmaF[3])/n0[3] meanF[4]<- (sum(dataP2)+m_fam*sumwx[4]-(rr[1]-rr[2])*sigma)/(n_samP2+m_fam*n0[4]) mean11<- meanF[1] mean12<- meanF[4] ss1<- sum((dataP1-mean11)^2) ss2<- sum((dataP2-mean12)^2) for(i in 1:d2) { swx[i] <- WW[i,]%*%(dataDH-meanF[i])^2 } s0F<-matrix(0,2,1) s0F[1]<- ss1+ss2 s0F[2]<- sum(swx)*m_fam s1<- sigmaF[1]-sigma/m_fam if (s1<0.0){s1<- 0.000001} abc2<- sigma abc3<-1000; n_iter<- 0 while(abc3>0.0001){ n_iter<- n_iter+1 sigma<- (s0F[1]+s0F[2])/(n_samP1+n_samP2+n_samDH) abc3<- abs(abc2-sigma) abc2<- sigma if (n_iter>20) break } if (sigma<0.1*sigma0){ sigma<- 0.1*sigma0 } sigmaF<- matrix((sigma/m_fam),d2,1) L1 <- logL(n_samP1,1,1,mean11,sigma,dataP1)+logL(n_samP2,1,1,mean12,sigma,dataP2)+sum(log(dmixnorm(dataDH,meanF,sqrt(sigmaF),mix_pi))) stopa <- L1 - L0 L0 <- L1 if(stopa < 0) {stopa <- -stopa} } abc <- L1 AIC <- -2*abc + 2*3 aa<- matrix(c(1,1,1,1, 3,1,-1,-3),4,2) b_line1 <- meanF B1 <- ginv(t(aa)%*%aa)%*%(t(aa)%*%b_line1) jj <- sigma_dh - sigmaF[1] if(jj < 0) {jj <- 0} ll <- jj/sigma_dh mm<- sigmaF[1]-sigma[1] if(mm<0){mm<-0} nnn<- mm/sigma_dh dataP1<-sort(dataP1);bmw_P1 <- matrix(0,n_samP1,1); bmwsl_P1 <- matrix(0,n_samP1,1) gg_P1 <- (dataP1 - mean11)/sqrt(as.vector(sigma)) bmw_P1[which(gg_P1>=0)] <- pnorm(gg_P1[gg_P1>=0]) bmw_P1[which(gg_P1<0)] <- 1 - pnorm(abs(gg_P1[gg_P1<0])) bmwsl_P1[,1] <- bmw_P1 P2_P1 <- rowSums(bmwsl_P1) nn<-dim(as.matrix(unique(P2_P1)))[1] if(nn<n_samP1){P2_P1<-P2_P1+runif(n_samP1)/1e4} dd_P1 <- as.matrix(c(sum(P2_P1),sum(P2_P1^2),sum((P2_P1-0.5)^2))) WW2_P1 <- 1/(12*n_samP1) + sum((P2_P1 - (as.matrix(c(1:n_samP1)) - 0.5)/n_samP1)^2) u_P1 <- as.matrix(c(12*n_samP1*((dd_P1[1]/n_samP1-0.5)^2),((45*n_samP1)/4)*((dd_P1[2]/n_samP1-1/3)^2),180*n_samP1*((dd_P1[3]/n_samP1-1/12)^2))) D_P1 <- as.numeric(ks.test(P2_P1,"punif")[[1]][1]) tt_P1 <- as.matrix(c((1 - pchisq(u_P1[1],1)),(1 - pchisq(u_P1[2],1)),(1 - pchisq(u_P1[3],1)),K1(WW2_P1),(1-pkolm(D_P1,n_samP1)))) dataP2<-sort(dataP2);bmw_P2 <- matrix(0,n_samP2,1); bmwsl_P2 <- matrix(0,n_samP2,1) gg_P2 <- (dataP2 - mean12)/sqrt(as.vector(sigma)) bmw_P2[which(gg_P2>=0)] <- pnorm(gg_P2[gg_P2>=0]) bmw_P2[which(gg_P2<0)] <- 1 - pnorm(abs(gg_P2[gg_P2<0])) bmwsl_P2[,1] <- bmw_P2 P2_P2 <- rowSums(bmwsl_P2) nn<-dim(as.matrix(unique(P2_P2)))[1] if(nn<n_samP2){P2_P2<-P2_P2+runif(n_samP2)/1e4} dd_P2 <- as.matrix(c(sum(P2_P2),sum(P2_P2^2),sum((P2_P2-0.5)^2))) WW2_P2 <- 1/(12*n_samP2) + sum((P2_P2 - (as.matrix(c(1:n_samP2)) - 0.5)/n_samP2)^2) u_P2 <- as.matrix(c(12*n_samP2*((dd_P2[1]/n_samP2-0.5)^2),((45*n_samP2)/4)*((dd_P2[2]/n_samP2-1/3)^2),180*n_samP2*((dd_P2[3]/n_samP2-1/12)^2))) D_P2 <- as.numeric(ks.test(P2_P2,"punif")[[1]][1]) tt_P2 <- as.matrix(c((1 - pchisq(u_P2[1],1)),(1 - pchisq(u_P2[2],1)),(1 - pchisq(u_P2[3],1)),K1(WW2_P2),(1-pkolm(D_P2,n_samP2)))) dataDH<-sort(dataDH);bmw <- matrix(0,n_samDH,1); bmwsl <- matrix(0,n_samDH,d2) for(i in 1:d2){ gg <- (dataDH - meanF[i])/sqrt(sigmaF[i]) bmw[which(gg>=0)] <- pnorm(gg[gg>=0]) bmw[which(gg<0)] <- 1 - pnorm(abs(gg[gg<0])) bmwsl[,i] <- bmw*mix_pi[i] } P2 <- rowSums(bmwsl) nn<-dim(as.matrix(unique(P2)))[1] if(nn<n_samDH){P2<-P2+runif(n_samDH)/1e4} dd <- as.matrix(c(sum(P2),sum(P2^2),sum((P2-0.5)^2))) WW2 <- 1/(12*n_samDH) + sum((P2 - (as.matrix(c(1:n_samDH)) - 0.5)/n_samDH)^2) u <- as.matrix(c(12*n_samDH*((dd[1]/n_samDH-0.5)^2),((45*n_samDH)/4)*((dd[2]/n_samDH-1/3)^2),180*n_samDH*((dd[3]/n_samDH-1/12)^2))) D <- as.numeric(ks.test(P2,"punif")[[1]][1]) tt <- as.matrix(c((1 - pchisq(u[1],1)),(1 - pchisq(u[2],1)),(1 - pchisq(u[3],1)),K1(WW2),(1-pkolm(D,n_samDH)))) tt_P1[which(tt_P1>=10e-4)]<-round(tt_P1[which(tt_P1>=10e-4)],4);tt_P1[which(tt_P1<10e-4)]<-format(tt_P1[which(tt_P1<10e-4)],scientific=TRUE,digit=4) tt_P2[which(tt_P2>=10e-4)]<-round(tt_P2[which(tt_P2>=10e-4)],4);tt_P2[which(tt_P2<10e-4)]<-format(tt_P2[which(tt_P2<10e-4)],scientific=TRUE,digit=4) tt[which(tt>=10e-4)]<-round(tt[which(tt>=10e-4)],4);tt[which(tt<10e-4)]<-format(tt[which(tt<10e-4)],scientific=TRUE,digit=4) output <- data.frame("3MG-CEA",round(abc,4),round(AIC,4),round(mean11,4),round(mean12,4),round(sigma,4),round(t(meanF),4)," "," "," "," "," "," "," "," "," "," "," "," ",round(sigmaF[1],4),round(t(mix_pi),4), " "," "," "," "," "," "," "," "," "," "," "," ",round(B1[1],4)," "," ",round(B1[2],4),round(B1[2],4),round(B1[2],4)," "," "," "," "," "," "," "," "," ", round(jj,4),round(ll*100,4)," "," ",round(u_P1[1],4),tt_P1[1],round(u_P1[2],4), tt_P1[2],round(u_P1[3],4),tt_P1[3],round(WW2_P1,4),tt_P1[4],round(D_P1,4),tt_P1[5],round(u_P2[1],4),tt_P2[1],round(u_P2[2],4), tt_P2[2],round(u_P2[3],4),tt_P2[3],round(WW2_P2,4),tt_P2[4],round(D_P2,4),tt_P2[5],round(u[1],4),tt[1],round(u[2],4), tt[2],round(u[3],4),tt[3],round(WW2,4),tt[4],round(D,4),tt[5]) output<-as.matrix(output) OUTPUT<-list(output,mi) return(OUTPUT) } G3DHModelFun[[29]] <- function(K1,logL,df11,df21,df31,G3DHtext2){ dataP1 <- as.matrix(as.numeric(df11[,1]));dataP2 <- as.matrix(as.numeric(df21[,1]));dataDH <- as.matrix(as.numeric(df31[,1])) n_samP1<-dim(dataP1)[1]; n_samP2<-dim(dataP2)[1];n_samDH<-dim(dataDH)[1] mean11<-mean(dataP1);mean12<-mean(dataP2) sigmaP1<- as.numeric(var(dataP1)); sigmaP2<- as.numeric(var(dataP2)) ss1<-(n_samP1-1)*sigmaP1; ss2<-(n_samP2-1)*sigmaP2 sigma0<-(ss1+ss2)/(n_samP1+n_samP2-2);sigma_dh<-as.numeric(var(dataDH)) m_esp<- 0.0001 ;m_fam<- as.numeric(G3DHtext2) d2<-6 mi <- as.matrix(c(0.125,0.125,0.25,0.25,0.125,0.125)) meanF<-mean(dataDH) sigmaF <- matrix((sigma_dh/(2*1.2222101)),d2,1) sigma <- sigma0 a1 <- sqrt(sigma_dh) if(mean11<mean12){a1=-a1} meanF <- as.matrix(c((meanF+3*a1),(meanF+2*a1),(meanF+a1),(meanF-a1),(meanF-2*a1),(meanF-3*a1))) iteration <- 0; stopa <- 1000 WW <- matrix(0,d2,n_samDH); swx <- matrix(0,d2,1) L0 <- logL(n_samP1,1,1,mean11,sigma,dataP1)+logL(n_samP2,1,1,mean12,sigma,dataP2)+sum(log(dmixnorm(dataDH,meanF,sqrt(sigmaF),mi))) while(stopa > m_esp && iteration<=1000){ iteration <- iteration + 1 for(i in 1:d2) { WW[i,] <- mi[i]*dnorm(dataDH,meanF[i],sqrt(sigmaF[i]))/dmixnorm(dataDH,meanF,sqrt(sigmaF),mi) } mix_pi <- as.matrix(rowSums(WW)/n_samDH) sumwx <- WW%*%dataDH n0 <- n_samDH*mix_pi n0[n0<0.000001] <- 0.000001 hh<- matrix(0,3,3) hh[1,1]<- sigma*(1.0/(n_samP1+m_fam*n0[1])+1.0/(n_samP2+m_fam*n0[6]))+sigmaF[2]*(1.0/n0[2]+1.0/n0[5]) hh[1,2]<- sigma/(n_samP1+m_fam*n0[1])+sigmaF[2]/n0[2] hh[1,3]<- sigma/(n_samP1+m_fam*n0[1])-sigmaF[5]/n0[5] hh[2,2]<- sigma/(n_samP1+m_fam*n0[1])+sigmaF[2]*(1.0/n0[2]+1.0/n0[3]+1.0/n0[4]) hh[2,3]<- sigma/(n_samP1+m_fam*n0[1])+2.0*sigmaF[3]/n0[3] hh[3,3]<- sigma/(n_samP1+m_fam*n0[1])+4.0*sigmaF[3]/n0[3]+sigmaF[5]/n0[5] for(i in 2:3){ for(j in 1:(i-1)){ hh[i,j]<- hh[j,i] } } b_line<- matrix(0,3,1) b_line[1]<-(sum(dataP1)+m_fam*sumwx[1])/(n_samP1+m_fam*n0[1])+(sum(dataP2)+m_fam*sumwx[6])/(n_samP2+m_fam*n0[6])-sumwx[2]/n0[2]-sumwx[5]/n0[5] b_line[2]<-(sum(dataP1)+m_fam*sumwx[1])/(n_samP1+m_fam*n0[1])-sumwx[2]/n0[2]-sumwx[3]/n0[3]+sumwx[4]/n0[4] b_line[3]<-(sum(dataP1)+m_fam*sumwx[1])/(n_samP1+m_fam*n0[1])-2*sumwx[3]/n0[3]+sumwx[5]/n0[5] B <- solve(hh,b_line) meanF[1]<- (sum(dataP1)+m_fam*sumwx[1]-(B[1]+B[2]+B[3])*sigma)/(n_samP1+m_fam*n0[1]) meanF[2]<- (sumwx[2]+(B[1]+B[2])*sigmaF[2])/n0[2] meanF[3]<- (sumwx[3]+(B[2]+2.0*B[3])*sigmaF[3])/n0[3] meanF[4]<- (sumwx[4]-B[2]*sigmaF[4])/n0[4] meanF[5]<- (sumwx[5]+(B[1]-B[3])*sigmaF[5])/n0[5] meanF[6]<- (sum(dataP2)+m_fam*sumwx[6]-B[1]*sigma)/(n_samP2+m_fam*n0[6]) mean11<- meanF[1] mean12<- meanF[6] ss1<- sum((dataP1-mean11)^2) ss2<- sum((dataP2-mean12)^2) for(i in 1:d2) { swx[i] <- WW[i,]%*%(dataDH-meanF[i])^2 } s0F<-matrix(0,2,1) s0F[1]<- ss1+ss2 s0F[2]<- sum(swx)*m_fam s1<- sigmaF[1]-sigma/m_fam if (s1<0.0){s1<- 0.000001} abc2<- sigma abc3<-1000; n_iter<- 0 while(abc3>0.0001){ n_iter<- n_iter+1 sigma<- (s0F[1]+s0F[2])/(n_samP1+n_samP2+n_samDH) abc3<- abs(abc2-sigma) abc2<- sigma if (n_iter>20) break } if (sigma<0.1*sigma0){ sigma<- 0.1*sigma0 } sigmaF<- matrix((sigma/m_fam),d2,1) L1 <- logL(n_samP1,1,1,mean11,sigma,dataP1)+logL(n_samP2,1,1,mean12,sigma,dataP2)+sum(log(dmixnorm(dataDH,meanF,sqrt(sigmaF),mix_pi))) stopa <- L1 - L0 L0 <- L1 if(stopa < 0) {stopa <- -stopa} } abc <- L1 AIC <- -2*abc + 2*4 aa<- matrix(c(1,1,1,1,1,1, 2,2,0,0,-2,-2, 1,-1,1,-1,1,-1),6,3) b_line1 <- meanF B1 <- ginv(t(aa)%*%aa)%*%(t(aa)%*%b_line1) jj <- sigma_dh - sigmaF[1] if(jj < 0) {jj <- 0} ll <- jj/sigma_dh mm<- sigmaF[1]-sigma[1] if(mm<0){mm<-0} nnn<- mm/sigma_dh dataP1<-sort(dataP1);bmw_P1 <- matrix(0,n_samP1,1); bmwsl_P1 <- matrix(0,n_samP1,1) gg_P1 <- (dataP1 - mean11)/sqrt(as.vector(sigma)) bmw_P1[which(gg_P1>=0)] <- pnorm(gg_P1[gg_P1>=0]) bmw_P1[which(gg_P1<0)] <- 1 - pnorm(abs(gg_P1[gg_P1<0])) bmwsl_P1[,1] <- bmw_P1 P2_P1 <- rowSums(bmwsl_P1) nn<-dim(as.matrix(unique(P2_P1)))[1] if(nn<n_samP1){P2_P1<-P2_P1+runif(n_samP1)/1e4} dd_P1 <- as.matrix(c(sum(P2_P1),sum(P2_P1^2),sum((P2_P1-0.5)^2))) WW2_P1 <- 1/(12*n_samP1) + sum((P2_P1 - (as.matrix(c(1:n_samP1)) - 0.5)/n_samP1)^2) u_P1 <- as.matrix(c(12*n_samP1*((dd_P1[1]/n_samP1-0.5)^2),((45*n_samP1)/4)*((dd_P1[2]/n_samP1-1/3)^2),180*n_samP1*((dd_P1[3]/n_samP1-1/12)^2))) D_P1 <- as.numeric(ks.test(P2_P1,"punif")[[1]][1]) tt_P1 <- as.matrix(c((1 - pchisq(u_P1[1],1)),(1 - pchisq(u_P1[2],1)),(1 - pchisq(u_P1[3],1)),K1(WW2_P1),(1-pkolm(D_P1,n_samP1)))) dataP2<-sort(dataP2);bmw_P2 <- matrix(0,n_samP2,1); bmwsl_P2 <- matrix(0,n_samP2,1) gg_P2 <- (dataP2 - mean12)/sqrt(as.vector(sigma)) bmw_P2[which(gg_P2>=0)] <- pnorm(gg_P2[gg_P2>=0]) bmw_P2[which(gg_P2<0)] <- 1 - pnorm(abs(gg_P2[gg_P2<0])) bmwsl_P2[,1] <- bmw_P2 P2_P2 <- rowSums(bmwsl_P2) nn<-dim(as.matrix(unique(P2_P2)))[1] if(nn<n_samP2){P2_P2<-P2_P2+runif(n_samP2)/1e4} dd_P2 <- as.matrix(c(sum(P2_P2),sum(P2_P2^2),sum((P2_P2-0.5)^2))) WW2_P2 <- 1/(12*n_samP2) + sum((P2_P2 - (as.matrix(c(1:n_samP2)) - 0.5)/n_samP2)^2) u_P2 <- as.matrix(c(12*n_samP2*((dd_P2[1]/n_samP2-0.5)^2),((45*n_samP2)/4)*((dd_P2[2]/n_samP2-1/3)^2),180*n_samP2*((dd_P2[3]/n_samP2-1/12)^2))) D_P2 <- as.numeric(ks.test(P2_P2,"punif")[[1]][1]) tt_P2 <- as.matrix(c((1 - pchisq(u_P2[1],1)),(1 - pchisq(u_P2[2],1)),(1 - pchisq(u_P2[3],1)),K1(WW2_P2),(1-pkolm(D_P2,n_samP2)))) dataDH<-sort(dataDH);bmw <- matrix(0,n_samDH,1); bmwsl <- matrix(0,n_samDH,d2) for(i in 1:d2){ gg <- (dataDH - meanF[i])/sqrt(sigmaF[i]) bmw[which(gg>=0)] <- pnorm(gg[gg>=0]) bmw[which(gg<0)] <- 1 - pnorm(abs(gg[gg<0])) bmwsl[,i] <- bmw*mix_pi[i] } P2 <- rowSums(bmwsl) nn<-dim(as.matrix(unique(P2)))[1] if(nn<n_samDH){P2<-P2+runif(n_samDH)/1e4} dd <- as.matrix(c(sum(P2),sum(P2^2),sum((P2-0.5)^2))) WW2 <- 1/(12*n_samDH) + sum((P2 - (as.matrix(c(1:n_samDH)) - 0.5)/n_samDH)^2) u <- as.matrix(c(12*n_samDH*((dd[1]/n_samDH-0.5)^2),((45*n_samDH)/4)*((dd[2]/n_samDH-1/3)^2),180*n_samDH*((dd[3]/n_samDH-1/12)^2))) D <- as.numeric(ks.test(P2,"punif")[[1]][1]) tt <- as.matrix(c((1 - pchisq(u[1],1)),(1 - pchisq(u[2],1)),(1 - pchisq(u[3],1)),K1(WW2),(1-pkolm(D,n_samDH)))) tt_P1[which(tt_P1>=10e-4)]<-round(tt_P1[which(tt_P1>=10e-4)],4);tt_P1[which(tt_P1<10e-4)]<-format(tt_P1[which(tt_P1<10e-4)],scientific=TRUE,digit=4) tt_P2[which(tt_P2>=10e-4)]<-round(tt_P2[which(tt_P2>=10e-4)],4);tt_P2[which(tt_P2<10e-4)]<-format(tt_P2[which(tt_P2<10e-4)],scientific=TRUE,digit=4) tt[which(tt>=10e-4)]<-round(tt[which(tt>=10e-4)],4);tt[which(tt<10e-4)]<-format(tt[which(tt<10e-4)],scientific=TRUE,digit=4) output <- data.frame("3MG-PEA",round(abc,4),round(AIC,4),round(mean11,4),round(mean12,4),round(sigma,4),round(t(meanF),4)," "," "," "," "," "," "," "," "," "," ",round(sigmaF[1],4),round(t(mix_pi),4), " "," "," "," "," "," "," "," "," "," ",round(B1[1],4)," "," ",round(B1[2],4),round(B1[2],4),round(B1[3],4)," "," "," "," "," "," "," "," "," ", round(jj,4),round(ll*100,4)," "," ",round(u_P1[1],4),tt_P1[1],round(u_P1[2],4), tt_P1[2],round(u_P1[3],4),tt_P1[3],round(WW2_P1,4),tt_P1[4],round(D_P1,4),tt_P1[5],round(u_P2[1],4),tt_P2[1],round(u_P2[2],4), tt_P2[2],round(u_P2[3],4),tt_P2[3],round(WW2_P2,4),tt_P2[4],round(D_P2,4),tt_P2[5],round(u[1],4),tt[1],round(u[2],4), tt[2],round(u[3],4),tt[3],round(WW2,4),tt[4],round(D,4),tt[5]) output<-as.matrix(output) OUTPUT<-list(output,mi) return(OUTPUT) } G3DHModelFun[[30]] <- function(K1,logL,df11,df21,df31,G3DHtext2){ dataP1 <- as.matrix(as.numeric(df11[,1]));dataP2 <- as.matrix(as.numeric(df21[,1]));dataDH <- as.matrix(as.numeric(df31[,1])) n_samP1<-dim(dataP1)[1]; n_samP2<-dim(dataP2)[1];n_samDH<-dim(dataDH)[1] mean11<-mean(dataP1);mean12<-mean(dataP2) sigmaP1<- as.numeric(var(dataP1)); sigmaP2<- as.numeric(var(dataP2)) ss1<-(n_samP1-1)*sigmaP1; ss2<-(n_samP2-1)*sigmaP2 sigma0<-(ss1+ss2)/(n_samP1+n_samP2-2);sigma_dh<-as.numeric(var(dataDH)) m_esp<- 0.0001 ;m_fam<- as.numeric(G3DHtext2) d2<-8 mi <- as.matrix(c(0.125,0.125,0.125,0.125,0.125,0.125,0.125,0.125)) meanG<-mean(dataDH) sigmaG <- matrix((sigma_dh/(2*1.2222101)),d2,1) sigma <- sigma0 a1 <- sqrt(sigma_dh/n_samDH) if(mean11<mean12){a1=-a1} meanG <- as.matrix(c((meanG+3*a1),(meanG+2.1*a1),(meanG+1.2*a1),(meanG+0.3*a1),(meanG+1.5*a1),(meanG+0.5*a1),(meanG-1.5*a1),(meanG-2.5*a1))) iteration <- 0; stopa <- 1000 WW <- matrix(0,d2,n_samDH); swx <- matrix(0,d2,1) L0 <- logL(n_samP1,1,1,mean11,sigma,dataP1)+logL(n_samP2,1,1,mean12,sigma,dataP2)+sum(log(dmixnorm(dataDH,meanG,sqrt(sigmaG),mi))) while(stopa > m_esp && iteration<=1000){ iteration <- iteration + 1 for(i in 1:d2) { WW[i,] <- mi[i]*dnorm(dataDH,meanG[i],sqrt(sigmaG[i]))/dmixnorm(dataDH,meanG,sqrt(sigmaG),mi) } mix_pi <- as.matrix(rowSums(WW)/n_samDH) sumwx <- WW%*%dataDH n0 <- n_samDH*mix_pi n0[n0<0.000001] <- 0.000001 mean11<- sum(dataP1)/n_samP1 mean12<- sum(dataP2)/n_samP2 meanG<- sumwx/n0 ss1<- sum((dataP1-mean11)^2) ss2<- sum((dataP2-mean12)^2) for(i in 1:d2) { swx[i] <- WW[i,]%*%(dataDH-meanG[i])^2 } s0G<-matrix(0,2,1) s0G[1]<- ss1+ss2 s0G[2]<- sum(swx)*m_fam s1<- sigmaG[1]-sigma/m_fam if (s1<0.0){s1<- 0.000001} abc2<- sigma abc3<-1000; n_iter<- 0 while(abc3>0.0001){ n_iter<- n_iter+1 abc1<- (sigma/m_fam)/(sigma/m_fam+s1) sigma<- (s0G[1]+abc1*abc1*s0G[2])/(n_samP1+n_samP2+abc1*n_samDH) abc3<- abs(abc2-sigma) abc2<- sigma if (n_iter>20) break } if (sigma<0.1*sigma0){ sigma<- 0.1*sigma0 } sigmaG[1]<- s1+sigma/m_fam s1<- sum(swx)/n_samDH-sigma/m_fam if (s1<0.0){ s1<- 0.000001 } sigmaG<- matrix((s1+sigma/m_fam),d2,1) L1 <- logL(n_samP1,1,1,mean11,sigma,dataP1)+logL(n_samP2,1,1,mean12,sigma,dataP2)+sum(log(dmixnorm(dataDH,meanG,sqrt(sigmaG),mix_pi))) stopa <- L1 - L0 L0 <- L1 if(stopa < 0) {stopa <- -stopa} } abc <- L1 AIC <- -2*abc + 2*12 aa<- matrix(c(1,0,0,0,0,0,0,0,0,0, 0,1,0,0,0,0,0,0,0,0, 0,0,1,1,1,1,1,1,1,1, 1,-1,1,1,-1,-1,1,1,-1,-1, 1,-1,1,-1,1,-1,1,-1,1,-1, 1,-1,1,1,1,1,-1,-1,-1,-1, 1,1,1,-1,-1,1,1,-1,-1,1, 1,1,1,1,-1,-1,-1,-1,1,1, 1,1,1,-1,1,-1,-1,1,-1,1, 1,-1,1,-1,-1,1,-1,1,1,-1 ),10,10) b_line1 <- matrix(c(mean11,mean12,meanG)) B1 <- ginv(t(aa)%*%aa)%*%(t(aa)%*%b_line1) jj <- sigma_dh - sigmaG[1] if(jj < 0) {jj <- 0} ll <- jj/sigma_dh mm<- sigmaG[1]-sigma[1] if(mm<0){mm<-0} nnn<- mm/sigma_dh dataP1<-sort(dataP1);bmw_P1 <- matrix(0,n_samP1,1); bmwsl_P1 <- matrix(0,n_samP1,1) gg_P1 <- (dataP1 - mean11)/sqrt(as.vector(sigma)) bmw_P1[which(gg_P1>=0)] <- pnorm(gg_P1[gg_P1>=0]) bmw_P1[which(gg_P1<0)] <- 1 - pnorm(abs(gg_P1[gg_P1<0])) bmwsl_P1[,1] <- bmw_P1 P2_P1 <- rowSums(bmwsl_P1) nn<-dim(as.matrix(unique(P2_P1)))[1] if(nn<n_samP1){P2_P1<-P2_P1+runif(n_samP1)/1e4} dd_P1 <- as.matrix(c(sum(P2_P1),sum(P2_P1^2),sum((P2_P1-0.5)^2))) WW2_P1 <- 1/(12*n_samP1) + sum((P2_P1 - (as.matrix(c(1:n_samP1)) - 0.5)/n_samP1)^2) u_P1 <- as.matrix(c(12*n_samP1*((dd_P1[1]/n_samP1-0.5)^2),((45*n_samP1)/4)*((dd_P1[2]/n_samP1-1/3)^2),180*n_samP1*((dd_P1[3]/n_samP1-1/12)^2))) D_P1 <- as.numeric(ks.test(P2_P1,"punif")[[1]][1]) tt_P1 <- as.matrix(c((1 - pchisq(u_P1[1],1)),(1 - pchisq(u_P1[2],1)),(1 - pchisq(u_P1[3],1)),K1(WW2_P1),(1-pkolm(D_P1,n_samP1)))) dataP2<-sort(dataP2);bmw_P2 <- matrix(0,n_samP2,1); bmwsl_P2 <- matrix(0,n_samP2,1) gg_P2 <- (dataP2 - mean12)/sqrt(as.vector(sigma)) bmw_P2[which(gg_P2>=0)] <- pnorm(gg_P2[gg_P2>=0]) bmw_P2[which(gg_P2<0)] <- 1 - pnorm(abs(gg_P2[gg_P2<0])) bmwsl_P2[,1] <- bmw_P2 P2_P2 <- rowSums(bmwsl_P2) nn<-dim(as.matrix(unique(P2_P2)))[1] if(nn<n_samP2){P2_P2<-P2_P2+runif(n_samP2)/1e4} dd_P2 <- as.matrix(c(sum(P2_P2),sum(P2_P2^2),sum((P2_P2-0.5)^2))) WW2_P2 <- 1/(12*n_samP2) + sum((P2_P2 - (as.matrix(c(1:n_samP2)) - 0.5)/n_samP2)^2) u_P2 <- as.matrix(c(12*n_samP2*((dd_P2[1]/n_samP2-0.5)^2),((45*n_samP2)/4)*((dd_P2[2]/n_samP2-1/3)^2),180*n_samP2*((dd_P2[3]/n_samP2-1/12)^2))) D_P2 <- as.numeric(ks.test(P2_P2,"punif")[[1]][1]) tt_P2 <- as.matrix(c((1 - pchisq(u_P2[1],1)),(1 - pchisq(u_P2[2],1)),(1 - pchisq(u_P2[3],1)),K1(WW2_P2),(1-pkolm(D_P2,n_samP2)))) dataDH<-sort(dataDH);bmw <- matrix(0,n_samDH,1); bmwsl <- matrix(0,n_samDH,d2) for(i in 1:d2){ gg <- (dataDH - meanG[i])/sqrt(sigmaG[i]) bmw[which(gg>=0)] <- pnorm(gg[gg>=0]) bmw[which(gg<0)] <- 1 - pnorm(abs(gg[gg<0])) bmwsl[,i] <- bmw*mix_pi[i] } P2 <- rowSums(bmwsl) nn<-dim(as.matrix(unique(P2)))[1] if(nn<n_samDH){P2<-P2+runif(n_samDH)/1e4} dd <- as.matrix(c(sum(P2),sum(P2^2),sum((P2-0.5)^2))) WW2 <- 1/(12*n_samDH) + sum((P2 - (as.matrix(c(1:n_samDH)) - 0.5)/n_samDH)^2) u <- as.matrix(c(12*n_samDH*((dd[1]/n_samDH-0.5)^2),((45*n_samDH)/4)*((dd[2]/n_samDH-1/3)^2),180*n_samDH*((dd[3]/n_samDH-1/12)^2))) D <- as.numeric(ks.test(P2,"punif")[[1]][1]) tt <- as.matrix(c((1 - pchisq(u[1],1)),(1 - pchisq(u[2],1)),(1 - pchisq(u[3],1)),K1(WW2),(1-pkolm(D,n_samDH)))) tt_P1[which(tt_P1>=10e-4)]<-round(tt_P1[which(tt_P1>=10e-4)],4);tt_P1[which(tt_P1<10e-4)]<-format(tt_P1[which(tt_P1<10e-4)],scientific=TRUE,digit=4) tt_P2[which(tt_P2>=10e-4)]<-round(tt_P2[which(tt_P2>=10e-4)],4);tt_P2[which(tt_P2<10e-4)]<-format(tt_P2[which(tt_P2<10e-4)],scientific=TRUE,digit=4) tt[which(tt>=10e-4)]<-round(tt[which(tt>=10e-4)],4);tt[which(tt<10e-4)]<-format(tt[which(tt<10e-4)],scientific=TRUE,digit=4) output <- data.frame("MX3-AI-AI",round(abc,4),round(AIC,4),round(mean11,4),round(mean12,4),round(sigma,4),round(t(meanG),4)," "," "," "," "," "," "," "," ",round(sigmaG[1],4),round(t(mix_pi),4), " "," "," "," "," "," "," "," ",round(B1[1],4),round(B1[2],4),round(B1[3],4),round(B1[4],4),round(B1[5],4),round(B1[6],4)," ",round(B1[7],4),round(B1[8],4)," ",round(B1[9],4)," "," ",round(B1[10],4)," ", round(jj,4),round(ll*100,4),round(mm,4),round(nnn*100,4),round(u_P1[1],4),tt_P1[1],round(u_P1[2],4), tt_P1[2],round(u_P1[3],4),tt_P1[3],round(WW2_P1,4),tt_P1[4],round(D_P1,4),tt_P1[5],round(u_P2[1],4),tt_P2[1],round(u_P2[2],4), tt_P2[2],round(u_P2[3],4),tt_P2[3],round(WW2_P2,4),tt_P2[4],round(D_P2,4),tt_P2[5],round(u[1],4),tt[1],round(u[2],4), tt[2],round(u[3],4),tt[3],round(WW2,4),tt[4],round(D,4),tt[5]) output<-as.matrix(output) OUTPUT<-list(output,mi) return(OUTPUT) } G3DHModelFun[[31]] <- function(K1,logL,df11,df21,df31,G3DHtext2){ dataP1 <- as.matrix(as.numeric(df11[,1]));dataP2 <- as.matrix(as.numeric(df21[,1]));dataDH <- as.matrix(as.numeric(df31[,1])) n_samP1<-dim(dataP1)[1]; n_samP2<-dim(dataP2)[1];n_samDH<-dim(dataDH)[1] mean11<-mean(dataP1);mean12<-mean(dataP2) sigmaP1<- as.numeric(var(dataP1)); sigmaP2<- as.numeric(var(dataP2)) ss1<-(n_samP1-1)*sigmaP1; ss2<-(n_samP2-1)*sigmaP2 sigma0<-(ss1+ss2)/(n_samP1+n_samP2-2);sigma_dh<-as.numeric(var(dataDH)) m_esp<- 0.0001 ;m_fam<- as.numeric(G3DHtext2) d2<-8 mi <- as.matrix(c(0.125,0.125,0.125,0.125,0.125,0.125,0.125,0.125)) meanG<-mean(dataDH) sigmaG <- matrix((sigma_dh/(2*1.2222101)),d2,1) sigma <- sigma0 a1 <- sqrt(sigma_dh) if(mean11<mean12){a1=-a1} meanG <- as.matrix(c((meanG+3*a1),(meanG+2.1*a1),(meanG+1.2*a1),(meanG+0.3*a1),(meanG+1.5*a1),(meanG+0.5*a1),(meanG-1.5*a1),(meanG-2.5*a1))) iteration <- 0; stopa <- 1000 WW <- matrix(0,d2,n_samDH); swx <- matrix(0,d2,1) L0 <- logL(n_samP1,1,1,mean11,sigma,dataP1)+logL(n_samP2,1,1,mean12,sigma,dataP2)+sum(log(dmixnorm(dataDH,meanG,sqrt(sigmaG),mi))) while(stopa > m_esp && iteration<=1000){ iteration <- iteration + 1 for(i in 1:d2) { WW[i,] <- mi[i]*dnorm(dataDH,meanG[i],sqrt(sigmaG[i]))/dmixnorm(dataDH,meanG,sqrt(sigmaG),mi) } mix_pi <- as.matrix(rowSums(WW)/n_samDH) sumwx <- WW%*%dataDH n0 <- n_samDH*mix_pi n0[n0<0.000001] <- 0.000001 aa1<- sum(dataP1)/n_samP1+sum(dataP2)/n_samP2-sumwx[1]/n0[1]-sumwx[8]/n0[8] aa2<- sigma*(1.0/n_samP1+1.0/n_samP2)+sigmaG[1]/n0[1]+sigmaG[8]/n0[8] rr<- aa1/aa2 mean11<- (sum(dataP1)-rr*sigma)/n_samP1 mean12<- (sum(dataP2)-rr*sigma)/n_samP2 meanG<- sumwx/n0 meanG[1]<-(sumwx[1]+rr*sigmaG[1])/n0[1] meanG[8]<-(sumwx[8]+rr*sigmaG[8])/n0[8] ss1<- sum((dataP1-mean11)^2) ss2<- sum((dataP2-mean12)^2) for(i in 1:d2) { swx[i] <- WW[i,]%*%(dataDH-meanG[i])^2 } s0G<-matrix(0,2,1) s0G[1]<- ss1+ss2 s0G[2]<- sum(swx)*m_fam s1<- sigmaG[1]-sigma/m_fam if (s1<0.0){s1<- 0.000001} abc2<- sigma; abc3<-1000; n_iter<- 0 while(abc3>0.0001){ n_iter<- n_iter+1 abc1<- (sigma/m_fam)/(sigma/m_fam+s1) sigma<- (s0G[1]+abc1*abc1*s0G[2])/(n_samP1+n_samP2+abc1*n_samDH) abc3<- abs(abc2-sigma) abc2<- sigma if (n_iter>20) break } if (sigma<0.1*sigma0){ sigma<- 0.1*sigma0 } sigmaG[1]<- s1+sigma/m_fam s1<- sum(swx)/n_samDH-sigma/m_fam if (s1<0.0){ s1<- 0.000001 } sigmaG<- matrix((s1+sigma/m_fam),d2,1) L1 <- logL(n_samP1,1,1,mean11,sigma,dataP1)+logL(n_samP2,1,1,mean12,sigma,dataP2)+sum(log(dmixnorm(dataDH,meanG,sqrt(sigmaG),mix_pi))) stopa <- L1 - L0 L0 <- L1 if(stopa < 0) {stopa <- -stopa} } abc <- L1 AIC <- -2*abc + 2*11 aa<- matrix(c(1,1,1,1,1,1,1,1,1,1, 1,-1,1,1,-1,-1,1,1,-1,-1, 1,-1,1,-1,1,-1,1,-1,1,-1, 1,-1,1,1,1,1,-1,-1,-1,-1, 1,1,1,-1,-1,1,1,-1,-1,1, 1,1,1,1,-1,-1,-1,-1,1,1, 1,1,1,-1,1,-1,-1,1,-1,1, 1,-1,1,-1,-1,1,-1,1,1,-1, 1,-1,0,0,0,0,0,0,0,0),10,9) b_line1 <- matrix(c(mean11,mean12,meanG)) B1 <- ginv(t(aa)%*%aa)%*%(t(aa)%*%b_line1) jj <- sigma_dh - sigmaG[1] if(jj < 0) {jj <- 0} ll <- jj/sigma_dh mm<- sigmaG[1]-sigma[1] if(mm<0){mm<-0} nnn<- mm/sigma_dh dataP1<-sort(dataP1);bmw_P1 <- matrix(0,n_samP1,1); bmwsl_P1 <- matrix(0,n_samP1,1) gg_P1 <- (dataP1 - mean11)/sqrt(as.vector(sigma)) bmw_P1[which(gg_P1>=0)] <- pnorm(gg_P1[gg_P1>=0]) bmw_P1[which(gg_P1<0)] <- 1 - pnorm(abs(gg_P1[gg_P1<0])) bmwsl_P1[,1] <- bmw_P1 P2_P1 <- rowSums(bmwsl_P1) nn<-dim(as.matrix(unique(P2_P1)))[1] if(nn<n_samP1){P2_P1<-P2_P1+runif(n_samP1)/1e4} dd_P1 <- as.matrix(c(sum(P2_P1),sum(P2_P1^2),sum((P2_P1-0.5)^2))) WW2_P1 <- 1/(12*n_samP1) + sum((P2_P1 - (as.matrix(c(1:n_samP1)) - 0.5)/n_samP1)^2) u_P1 <- as.matrix(c(12*n_samP1*((dd_P1[1]/n_samP1-0.5)^2),((45*n_samP1)/4)*((dd_P1[2]/n_samP1-1/3)^2),180*n_samP1*((dd_P1[3]/n_samP1-1/12)^2))) D_P1 <- as.numeric(ks.test(P2_P1,"punif")[[1]][1]) tt_P1 <- as.matrix(c((1 - pchisq(u_P1[1],1)),(1 - pchisq(u_P1[2],1)),(1 - pchisq(u_P1[3],1)),K1(WW2_P1),(1-pkolm(D_P1,n_samP1)))) dataP2<-sort(dataP2);bmw_P2 <- matrix(0,n_samP2,1); bmwsl_P2 <- matrix(0,n_samP2,1) gg_P2 <- (dataP2 - mean12)/sqrt(as.vector(sigma)) bmw_P2[which(gg_P2>=0)] <- pnorm(gg_P2[gg_P2>=0]) bmw_P2[which(gg_P2<0)] <- 1 - pnorm(abs(gg_P2[gg_P2<0])) bmwsl_P2[,1] <- bmw_P2 P2_P2 <- rowSums(bmwsl_P2) nn<-dim(as.matrix(unique(P2_P2)))[1] if(nn<n_samP2){P2_P2<-P2_P2+runif(n_samP2)/1e4} dd_P2 <- as.matrix(c(sum(P2_P2),sum(P2_P2^2),sum((P2_P2-0.5)^2))) WW2_P2 <- 1/(12*n_samP2) + sum((P2_P2 - (as.matrix(c(1:n_samP2)) - 0.5)/n_samP2)^2) u_P2 <- as.matrix(c(12*n_samP2*((dd_P2[1]/n_samP2-0.5)^2),((45*n_samP2)/4)*((dd_P2[2]/n_samP2-1/3)^2),180*n_samP2*((dd_P2[3]/n_samP2-1/12)^2))) D_P2 <- as.numeric(ks.test(P2_P2,"punif")[[1]][1]) tt_P2 <- as.matrix(c((1 - pchisq(u_P2[1],1)),(1 - pchisq(u_P2[2],1)),(1 - pchisq(u_P2[3],1)),K1(WW2_P2),(1-pkolm(D_P2,n_samP2)))) dataDH<-sort(dataDH);bmw <- matrix(0,n_samDH,1); bmwsl <- matrix(0,n_samDH,d2) for(i in 1:d2){ gg <- (dataDH - meanG[i])/sqrt(sigmaG[i]) bmw[which(gg>=0)] <- pnorm(gg[gg>=0]) bmw[which(gg<0)] <- 1 - pnorm(abs(gg[gg<0])) bmwsl[,i] <- bmw*mix_pi[i] } P2 <- rowSums(bmwsl) nn<-dim(as.matrix(unique(P2)))[1] if(nn<n_samDH){P2<-P2+runif(n_samDH)/1e4} dd <- as.matrix(c(sum(P2),sum(P2^2),sum((P2-0.5)^2))) WW2 <- 1/(12*n_samDH) + sum((P2 - (as.matrix(c(1:n_samDH)) - 0.5)/n_samDH)^2) u <- as.matrix(c(12*n_samDH*((dd[1]/n_samDH-0.5)^2),((45*n_samDH)/4)*((dd[2]/n_samDH-1/3)^2),180*n_samDH*((dd[3]/n_samDH-1/12)^2))) D <- as.numeric(ks.test(P2,"punif")[[1]][1]) tt <- as.matrix(c((1 - pchisq(u[1],1)),(1 - pchisq(u[2],1)),(1 - pchisq(u[3],1)),K1(WW2),(1-pkolm(D,n_samDH)))) tt_P1[which(tt_P1>=10e-4)]<-round(tt_P1[which(tt_P1>=10e-4)],4);tt_P1[which(tt_P1<10e-4)]<-format(tt_P1[which(tt_P1<10e-4)],scientific=TRUE,digit=4) tt_P2[which(tt_P2>=10e-4)]<-round(tt_P2[which(tt_P2>=10e-4)],4);tt_P2[which(tt_P2<10e-4)]<-format(tt_P2[which(tt_P2<10e-4)],scientific=TRUE,digit=4) tt[which(tt>=10e-4)]<-round(tt[which(tt>=10e-4)],4);tt[which(tt<10e-4)]<-format(tt[which(tt<10e-4)],scientific=TRUE,digit=4) output <- data.frame("MX3-AI-A",round(abc,4),round(AIC,4),round(mean11,4),round(mean12,4),round(sigma,4),round(t(meanG),4)," "," "," "," "," "," "," "," ",round(sigmaG[1],4),round(t(mix_pi),4), " "," "," "," "," "," "," "," ",round(B1[1],4)," "," ",round(B1[2],4),round(B1[3],4),round(B1[4],4)," ",round(B1[5],4),round(B1[6],4)," ",round(B1[7],4)," "," ",round(B1[8],4),round(B1[9],4), round(jj,4),round(ll*100,4),round(mm,4),round(nnn*100,4),round(u_P1[1],4),tt_P1[1],round(u_P1[2],4), tt_P1[2],round(u_P1[3],4),tt_P1[3],round(WW2_P1,4),tt_P1[4],round(D_P1,4),tt_P1[5],round(u_P2[1],4),tt_P2[1],round(u_P2[2],4), tt_P2[2],round(u_P2[3],4),tt_P2[3],round(WW2_P2,4),tt_P2[4],round(D_P2,4),tt_P2[5],round(u[1],4),tt[1],round(u[2],4), tt[2],round(u[3],4),tt[3],round(WW2,4),tt[4],round(D,4),tt[5]) output<-as.matrix(output) OUTPUT<-list(output,mi) return(OUTPUT) } G3DHModelFun[[32]] <- function(K1,logL,df11,df21,df31,G3DHtext2){ dataP1 <- as.matrix(as.numeric(df11[,1]));dataP2 <- as.matrix(as.numeric(df21[,1]));dataDH <- as.matrix(as.numeric(df31[,1])) n_samP1<-dim(dataP1)[1]; n_samP2<-dim(dataP2)[1];n_samDH<-dim(dataDH)[1] mean11<-mean(dataP1);mean12<-mean(dataP2) sigmaP1<- as.numeric(var(dataP1)); sigmaP2<- as.numeric(var(dataP2)) ss1<-(n_samP1-1)*sigmaP1; ss2<-(n_samP2-1)*sigmaP2 sigma0<-(ss1+ss2)/(n_samP1+n_samP2-2);sigma_dh<-as.numeric(var(dataDH)) m_esp<- 0.0001 ;m_fam<- as.numeric(G3DHtext2) d2<-8 mi <- as.matrix(c(0.125,0.125,0.125,0.125,0.125,0.125,0.125,0.125)) meanG<-mean(dataDH) sigmaG <- matrix((sigma_dh/(2*1.2222101)),d2,1) sigma <- sigma0 a1 <- sqrt(sigma_dh) if(mean11<mean12){a1=-a1} meanG <- as.matrix(c((meanG+3*a1),(meanG+2.1*a1),(meanG+1.2*a1),(meanG+0.3*a1),(meanG+1.5*a1),(meanG+0.5*a1),(meanG-1.5*a1),(meanG-2.5*a1))) iteration <- 0; stopa <- 1000 WW <- matrix(0,d2,n_samDH); swx <- matrix(0,d2,1) L0 <- logL(n_samP1,1,1,mean11,sigma,dataP1)+logL(n_samP2,1,1,mean12,sigma,dataP2)+sum(log(dmixnorm(dataDH,meanG,sqrt(sigmaG),mi))) while(stopa > m_esp && iteration<=1000){ iteration <- iteration + 1 for(i in 1:d2) { WW[i,] <- mi[i]*dnorm(dataDH,meanG[i],sqrt(sigmaG[i]))/dmixnorm(dataDH,meanG,sqrt(sigmaG),mi) } mix_pi <- as.matrix(rowSums(WW)/n_samDH) sumwx <- WW%*%dataDH n0 <- n_samDH*mix_pi n0[n0<0.000001] <- 0.000001 hh<-matrix(0,5,5) hh[1,1]<- sigma*(1.0/n_samP1+1.0/n_samP2)+sigmaG[1]*(1.0/n0[1]+1.0/n0[8]) hh[1,2]<- -sigmaG[1]*(1.0/n0[1]+1.0/n0[8]) hh[1,3]<- 0 hh[1,4]<- -sigmaG[1]/n0[1] hh[1,5]<- -sigmaG[8]/n0[8] hh[2,2]<- sigmaG[1]*(1.0/n0[1]+1.0/n0[3]+1.0/n0[6]+1.0/n0[8]) hh[2,3]<- 0 hh[2,4]<- sigmaG[1]*(1.0/n0[1]-1.0/n0[6]) hh[2,5]<- sigmaG[1]*(-1.0/n0[3]+1.0/n0[8]) hh[3,3]<- sigmaG[2]*(1.0/n0[2]+1.0/n0[4]+1.0/n0[5]+1.0/n0[7]) hh[3,4]<- sigmaG[2]*(-1.0/n0[2]+1.0/n0[5]) hh[3,5]<- sigmaG[4]*(1.0/n0[4]-1.0/n0[7]) hh[4,4]<- sigmaG[1]*(1.0/n0[1]+1.0/n0[2]+1.0/n0[5]+1.0/n0[6]) hh[4,5]<- 0 hh[5,5]<- sigmaG[3]*(1.0/n0[3]+1.0/n0[4]+1.0/n0[7]+1.0/n0[8]) for(i in 2:5){ for(j in 1:(i-1)){ hh[i,j]<- hh[j,i] } } b_line<-matrix(0,5,1) b_line[1]<- sum(dataP1)/n_samP1+sum(dataP2)/n_samP2-sumwx[1]/n0[1]-sumwx[8]/n0[8] b_line[2]<- sumwx[1]/n0[1]-sumwx[3]/n0[3]-sumwx[6]/n0[6]+sumwx[8]/n0[8] b_line[3]<- sumwx[2]/n0[2]-sumwx[4]/n0[4]-sumwx[5]/n0[5]+sumwx[7]/n0[7] b_line[4]<- sumwx[1]/n0[1]-sumwx[2]/n0[2]-sumwx[5]/n0[5]+sumwx[6]/n0[6] b_line[5]<- sumwx[3]/n0[3]-sumwx[4]/n0[4]-sumwx[7]/n0[7]+sumwx[8]/n0[8] B <- solve(hh,b_line) mean11<- (sum(dataP1)-B[1]*sigma)/n_samP1 mean12<- (sum(dataP2)-B[1]*sigma)/n_samP2 meanG[1]<- (sumwx[1]+(B[1]-B[2]-B[4])*sigmaG[1])/n0[1] meanG[2]<- (sumwx[2]+(-B[3]+B[4])*sigmaG[2])/n0[2] meanG[3]<- (sumwx[3]+(B[2]-B[5])*sigmaG[3])/n0[3] meanG[4]<- (sumwx[4]+(B[3]+B[5])*sigmaG[4])/n0[4] meanG[5]<- (sumwx[5]+(B[3]+B[4])*sigmaG[5])/n0[5] meanG[6]<- (sumwx[6]+(B[2]-B[4])*sigmaG[6])/n0[6] meanG[7]<- (sumwx[7]-(B[3]-B[5])*sigmaG[7])/n0[7] meanG[8]<- (sumwx[8]+(B[1]-B[2]-B[5])*sigmaG[8])/n0[8] ss1<- sum((dataP1-mean11)^2) ss2<- sum((dataP2-mean12)^2) for(i in 1:d2) { swx[i] <- WW[i,]%*%(dataDH-meanG[i])^2 } s0G<-matrix(0,2,1) s0G[1]<- ss1+ss2 s0G[2]<- sum(swx)*m_fam s1<- sigmaG[1]-sigma/m_fam if (s1<0.0){s1<- 0.000001} abc2<- sigma abc3<-1000; n_iter<- 0 while(abc3>0.0001){ n_iter<- n_iter+1 abc1<- (sigma/m_fam)/(sigma/m_fam+s1) sigma<- (s0G[1]+abc1*abc1*s0G[2])/(n_samP1+n_samP2+n_samDH) abc3<- abs(abc2-sigma) abc2<- sigma if (n_iter>20) break } if (sigma<0.1*sigma0){ sigma<- 0.1*sigma0 } sigmaG[1]<- s1+sigma/m_fam s1<- sum(swx)/n_samDH-sigma/m_fam if (s1<0.0){ s1<- 0.000001 } sigmaG<- matrix((s1+sigma/m_fam),d2,1) L1 <- logL(n_samP1,1,1,mean11,sigma,dataP1)+logL(n_samP2,1,1,mean12,sigma,dataP2)+sum(log(dmixnorm(dataDH,meanG,sqrt(sigmaG),mix_pi))) stopa <- L1 - L0 L0 <- L1 if(stopa < 0) {stopa <- -stopa} } abc <- L1 AIC <- -2*abc + 2*6 aa<- matrix(c(1,1,1,1,1,1,1,1,1,1, 1,-1,1,1,-1,-1,1,1,-1,-1, 1,-1,1,-1,1,-1,1,-1,1,-1, 1,-1,1,1,1,1,-1,-1,-1,-1, 1,-1,0,0,0,0,0,0,0,0),10,5) b_line1 <- matrix(c(mean11,mean12,meanG)) B1 <- ginv(t(aa)%*%aa)%*%(t(aa)%*%b_line1) jj <- sigma_dh - sigmaG[1] if(jj < 0) {jj <- 0} ll <- jj/sigma_dh mm<- sigmaG[1]-sigma[1] if(mm<0){mm<-0} nnn<- mm/sigma_dh dataP1<-sort(dataP1);bmw_P1 <- matrix(0,n_samP1,1); bmwsl_P1 <- matrix(0,n_samP1,1) gg_P1 <- (dataP1 - mean11)/sqrt(as.vector(sigma)) bmw_P1[which(gg_P1>=0)] <- pnorm(gg_P1[gg_P1>=0]) bmw_P1[which(gg_P1<0)] <- 1 - pnorm(abs(gg_P1[gg_P1<0])) bmwsl_P1[,1] <- bmw_P1 P2_P1 <- rowSums(bmwsl_P1) nn<-dim(as.matrix(unique(P2_P1)))[1] if(nn<n_samP1){P2_P1<-P2_P1+runif(n_samP1)/1e4} dd_P1 <- as.matrix(c(sum(P2_P1),sum(P2_P1^2),sum((P2_P1-0.5)^2))) WW2_P1 <- 1/(12*n_samP1) + sum((P2_P1 - (as.matrix(c(1:n_samP1)) - 0.5)/n_samP1)^2) u_P1 <- as.matrix(c(12*n_samP1*((dd_P1[1]/n_samP1-0.5)^2),((45*n_samP1)/4)*((dd_P1[2]/n_samP1-1/3)^2),180*n_samP1*((dd_P1[3]/n_samP1-1/12)^2))) D_P1 <- as.numeric(ks.test(P2_P1,"punif")[[1]][1]) tt_P1 <- as.matrix(c((1 - pchisq(u_P1[1],1)),(1 - pchisq(u_P1[2],1)),(1 - pchisq(u_P1[3],1)),K1(WW2_P1),(1-pkolm(D_P1,n_samP1)))) dataP2<-sort(dataP2);bmw_P2 <- matrix(0,n_samP2,1); bmwsl_P2 <- matrix(0,n_samP2,1) gg_P2 <- (dataP2 - mean12)/sqrt(as.vector(sigma)) bmw_P2[which(gg_P2>=0)] <- pnorm(gg_P2[gg_P2>=0]) bmw_P2[which(gg_P2<0)] <- 1 - pnorm(abs(gg_P2[gg_P2<0])) bmwsl_P2[,1] <- bmw_P2 P2_P2 <- rowSums(bmwsl_P2) nn<-dim(as.matrix(unique(P2_P2)))[1] if(nn<n_samP2){P2_P2<-P2_P2+runif(n_samP2)/1e4} dd_P2 <- as.matrix(c(sum(P2_P2),sum(P2_P2^2),sum((P2_P2-0.5)^2))) WW2_P2 <- 1/(12*n_samP2) + sum((P2_P2 - (as.matrix(c(1:n_samP2)) - 0.5)/n_samP2)^2) u_P2 <- as.matrix(c(12*n_samP2*((dd_P2[1]/n_samP2-0.5)^2),((45*n_samP2)/4)*((dd_P2[2]/n_samP2-1/3)^2),180*n_samP2*((dd_P2[3]/n_samP2-1/12)^2))) D_P2 <- as.numeric(ks.test(P2_P2,"punif")[[1]][1]) tt_P2 <- as.matrix(c((1 - pchisq(u_P2[1],1)),(1 - pchisq(u_P2[2],1)),(1 - pchisq(u_P2[3],1)),K1(WW2_P2),(1-pkolm(D_P2,n_samP2)))) dataDH<-sort(dataDH);bmw <- matrix(0,n_samDH,1); bmwsl <- matrix(0,n_samDH,d2) for(i in 1:d2){ gg <- (dataDH - meanG[i])/sqrt(sigmaG[i]) bmw[which(gg>=0)] <- pnorm(gg[gg>=0]) bmw[which(gg<0)] <- 1 - pnorm(abs(gg[gg<0])) bmwsl[,i] <- bmw*mix_pi[i] } P2 <- rowSums(bmwsl) nn<-dim(as.matrix(unique(P2)))[1] if(nn<n_samDH){P2<-P2+runif(n_samDH)/1e4} dd <- as.matrix(c(sum(P2),sum(P2^2),sum((P2-0.5)^2))) WW2 <- 1/(12*n_samDH) + sum((P2 - (as.matrix(c(1:n_samDH)) - 0.5)/n_samDH)^2) u <- as.matrix(c(12*n_samDH*((dd[1]/n_samDH-0.5)^2),((45*n_samDH)/4)*((dd[2]/n_samDH-1/3)^2),180*n_samDH*((dd[3]/n_samDH-1/12)^2))) D <- as.numeric(ks.test(P2,"punif")[[1]][1]) tt <- as.matrix(c((1 - pchisq(u[1],1)),(1 - pchisq(u[2],1)),(1 - pchisq(u[3],1)),K1(WW2),(1-pkolm(D,n_samDH)))) tt_P1[which(tt_P1>=10e-4)]<-round(tt_P1[which(tt_P1>=10e-4)],4);tt_P1[which(tt_P1<10e-4)]<-format(tt_P1[which(tt_P1<10e-4)],scientific=TRUE,digit=4) tt_P2[which(tt_P2>=10e-4)]<-round(tt_P2[which(tt_P2>=10e-4)],4);tt_P2[which(tt_P2<10e-4)]<-format(tt_P2[which(tt_P2<10e-4)],scientific=TRUE,digit=4) tt[which(tt>=10e-4)]<-round(tt[which(tt>=10e-4)],4);tt[which(tt<10e-4)]<-format(tt[which(tt<10e-4)],scientific=TRUE,digit=4) output <- data.frame("MX3-A-A",round(abc,4),round(AIC,4),round(mean11,4),round(mean12,4),round(sigma,4),round(t(meanG),4)," "," "," "," "," "," "," "," ",round(sigmaG[1],4),round(t(mix_pi),4), " "," "," "," "," "," "," "," ",round(B1[1],4)," "," ",round(B1[2],4),round(B1[3],4),round(B1[4],4)," "," "," "," "," "," "," "," ",round(B1[5],4), round(jj,4),round(ll*100,4),round(mm,4),round(nnn*100,4),round(u_P1[1],4),tt_P1[1],round(u_P1[2],4), tt_P1[2],round(u_P1[3],4),tt_P1[3],round(WW2_P1,4),tt_P1[4],round(D_P1,4),tt_P1[5],round(u_P2[1],4),tt_P2[1],round(u_P2[2],4), tt_P2[2],round(u_P2[3],4),tt_P2[3],round(WW2_P2,4),tt_P2[4],round(D_P2,4),tt_P2[5],round(u[1],4),tt[1],round(u[2],4), tt[2],round(u[3],4),tt[3],round(WW2,4),tt[4],round(D,4),tt[5]) output<-as.matrix(output) OUTPUT<-list(output,mi) return(OUTPUT) } G3DHModelFun[[33]] <- function(K1,logL,df11,df21,df31,G3DHtext2){ dataP1 <- as.matrix(as.numeric(df11[,1]));dataP2 <- as.matrix(as.numeric(df21[,1]));dataDH <- as.matrix(as.numeric(df31[,1])) n_samP1<-dim(dataP1)[1]; n_samP2<-dim(dataP2)[1];n_samDH<-dim(dataDH)[1] mean11<-mean(dataP1);mean12<-mean(dataP2) sigmaP1<- as.numeric(var(dataP1)); sigmaP2<- as.numeric(var(dataP2)) ss1<-(n_samP1-1)*sigmaP1; ss2<-(n_samP2-1)*sigmaP2 sigma0<-(ss1+ss2)/(n_samP1+n_samP2-2);sigma_dh<-as.numeric(var(dataDH)) m_esp<- 0.0001 ;m_fam<- as.numeric(G3DHtext2) d2<-4 mi <- as.matrix(c(0.125,0.375,0.375,0.125)) meanG<-mean(dataDH) sigmaG <- matrix((sigma_dh/(2*1.2222101)),d2,1) sigma <- sigma0 a1 <- sqrt(sigma_dh) if(mean11<mean12){a1=-a1} meanG <- as.matrix(c((meanG+3*a1),(meanG+a1),(meanG-a1),(meanG-3*a1))) iteration <- 0; stopa <- 1000 WW <- matrix(0,d2,n_samDH); swx <- matrix(0,d2,1) L0 <- logL(n_samP1,1,1,mean11,sigma,dataP1)+logL(n_samP2,1,1,mean12,sigma,dataP2)+sum(log(dmixnorm(dataDH,meanG,sqrt(sigmaG),mi))) while(stopa > m_esp && iteration<=1000){ iteration <- iteration + 1 for(i in 1:d2) { WW[i,] <- mi[i]*dnorm(dataDH,meanG[i],sqrt(sigmaG[i]))/dmixnorm(dataDH,meanG,sqrt(sigmaG),mi) } mix_pi <- as.matrix(rowSums(WW)/n_samDH) sumwx <- WW%*%dataDH n0 <- n_samDH*mix_pi n0[n0<0.000001] <- 0.000001 hh<-matrix(0,3,3) hh[1,1]<- sigma*(1.0/n_samP1+1.0/n_samP2)+sigmaG[1]*(1.0/n0[1]+1.0/n0[4]) hh[1,2]<- -sigmaG[1]*(1.0/n0[1]+1.0/n0[4]) hh[1,3]<- -sigmaG[1]*(1.0/n0[1]-1.0/n0[4]) hh[2,2]<- sigmaG[1]*(1.0/n0[1]+1.0/n0[2]+1.0/n0[3]+1.0/n0[4]) hh[2,3]<- sigmaG[1]*(1.0/n0[1]+3.0/n0[2]-3.0/n0[3]-1.0/n0[4]) hh[3,3]<- sigmaG[1]*(1.0/n0[1]+9.0/n0[2]+9.0/n0[3]+1.0/n0[4]) for(i in 2:3){ for(j in 1:(i-1)){ hh[i,j]<- hh[j,i] } } b_line<-matrix(0,3,1) b_line[1]<- sum(dataP1)/n_samP1+sum(dataP2)/n_samP2-sumwx[1]/n0[1]-sumwx[4]/n0[4] b_line[2]<- sumwx[1]/n0[1]-sumwx[2]/n0[2]-sumwx[3]/n0[3]+sumwx[4]/n0[4] b_line[3]<- sumwx[1]/n0[1]-3.0*sumwx[2]/n0[2]+3.0*sumwx[3]/n0[3]-sumwx[4]/n0[4] B <- solve(hh,b_line) mean11<- (sum(dataP1)-B[1]*sigma)/n_samP1 mean12<- (sum(dataP2)-B[1]*sigma)/n_samP2 meanG[1]<-(sumwx[1]+(B[1]-B[2]-B[3])*sigmaG[1])/n0[1] meanG[2]<-(sumwx[2]+(B[2]+3.0*B[3])*sigmaG[2])/n0[2] meanG[3]<-(sumwx[3]+(B[2]-3.0*B[3])*sigmaG[3])/n0[3] meanG[4]<-(sumwx[4]+(B[1]-B[2]+B[3])*sigmaG[4])/n0[4] ss1<- sum((dataP1-mean11)^2) ss2<- sum((dataP2-mean12)^2) for(i in 1:d2) { swx[i] <- WW[i,]%*%(dataDH-meanG[i])^2 } s0G<-matrix(0,2,1) s0G[1]<- ss1+ss2 s0G[2]<- sum(swx)*m_fam s1<- sigmaG[1]-sigma/m_fam if (s1<0.0){s1<- 0.000001} abc2<- sigma abc3<-1000; n_iter<- 0 while(abc3>0.0001){ n_iter<- n_iter+1 abc1<- (sigma/m_fam)/(sigma/m_fam+s1) sigma<- (s0G[1]+abc1*abc1*s0G[2])/(n_samP1+n_samP2+abc1*n_samDH) abc3<- abs(abc2-sigma) abc2<- sigma if (n_iter>20) break } if (sigma<0.1*sigma0){ sigma<- 0.1*sigma0 } sigmaG[1]<- s1+sigma/m_fam s1<- sum(swx)/n_samDH-sigma/m_fam if (s1<0.0){ s1<- 0.000001 } sigmaG<- matrix((s1+sigma/m_fam),d2,1) L1 <- logL(n_samP1,1,1,mean11,sigma,dataP1)+logL(n_samP2,1,1,mean12,sigma,dataP2)+sum(log(dmixnorm(dataDH,meanG,sqrt(sigmaG),mix_pi))) stopa <- L1 - L0 L0 <- L1 if(stopa < 0) {stopa <- -stopa} } abc <- L1 AIC <- -2*abc + 2*5 aa<- matrix(c(1,1,1,1,1,1,3,-3,3,1,-1,-3, 1,-1,0,0,0,0),6,3) b_line1 <- matrix(c(mean11,mean12,meanG)) B1 <- ginv(t(aa)%*%aa)%*%(t(aa)%*%b_line1) jj <- sigma_dh - sigmaG[1] if(jj < 0) {jj <- 0} ll <- jj/sigma_dh mm<- sigmaG[1]-sigma[1] if(mm<0){mm<-0} nnn<- mm/sigma_dh dataP1<-sort(dataP1);bmw_P1 <- matrix(0,n_samP1,1); bmwsl_P1 <- matrix(0,n_samP1,1) gg_P1 <- (dataP1 - mean11)/sqrt(as.vector(sigma)) bmw_P1[which(gg_P1>=0)] <- pnorm(gg_P1[gg_P1>=0]) bmw_P1[which(gg_P1<0)] <- 1 - pnorm(abs(gg_P1[gg_P1<0])) bmwsl_P1[,1] <- bmw_P1 P2_P1 <- rowSums(bmwsl_P1) nn<-dim(as.matrix(unique(P2_P1)))[1] if(nn<n_samP1){P2_P1<-P2_P1+runif(n_samP1)/1e4} dd_P1 <- as.matrix(c(sum(P2_P1),sum(P2_P1^2),sum((P2_P1-0.5)^2))) WW2_P1 <- 1/(12*n_samP1) + sum((P2_P1 - (as.matrix(c(1:n_samP1)) - 0.5)/n_samP1)^2) u_P1 <- as.matrix(c(12*n_samP1*((dd_P1[1]/n_samP1-0.5)^2),((45*n_samP1)/4)*((dd_P1[2]/n_samP1-1/3)^2),180*n_samP1*((dd_P1[3]/n_samP1-1/12)^2))) D_P1 <- as.numeric(ks.test(P2_P1,"punif")[[1]][1]) tt_P1 <- as.matrix(c((1 - pchisq(u_P1[1],1)),(1 - pchisq(u_P1[2],1)),(1 - pchisq(u_P1[3],1)),K1(WW2_P1),(1-pkolm(D_P1,n_samP1)))) dataP2<-sort(dataP2);bmw_P2 <- matrix(0,n_samP2,1); bmwsl_P2 <- matrix(0,n_samP2,1) gg_P2 <- (dataP2 - mean12)/sqrt(as.vector(sigma)) bmw_P2[which(gg_P2>=0)] <- pnorm(gg_P2[gg_P2>=0]) bmw_P2[which(gg_P2<0)] <- 1 - pnorm(abs(gg_P2[gg_P2<0])) bmwsl_P2[,1] <- bmw_P2 P2_P2 <- rowSums(bmwsl_P2) nn<-dim(as.matrix(unique(P2_P2)))[1] if(nn<n_samP2){P2_P2<-P2_P2+runif(n_samP2)/1e4} dd_P2 <- as.matrix(c(sum(P2_P2),sum(P2_P2^2),sum((P2_P2-0.5)^2))) WW2_P2 <- 1/(12*n_samP2) + sum((P2_P2 - (as.matrix(c(1:n_samP2)) - 0.5)/n_samP2)^2) u_P2 <- as.matrix(c(12*n_samP2*((dd_P2[1]/n_samP2-0.5)^2),((45*n_samP2)/4)*((dd_P2[2]/n_samP2-1/3)^2),180*n_samP2*((dd_P2[3]/n_samP2-1/12)^2))) D_P2 <- as.numeric(ks.test(P2_P2,"punif")[[1]][1]) tt_P2 <- as.matrix(c((1 - pchisq(u_P2[1],1)),(1 - pchisq(u_P2[2],1)),(1 - pchisq(u_P2[3],1)),K1(WW2_P2),(1-pkolm(D_P2,n_samP2)))) dataDH<-sort(dataDH);bmw <- matrix(0,n_samDH,1); bmwsl <- matrix(0,n_samDH,d2) for(i in 1:d2){ gg <- (dataDH - meanG[i])/sqrt(sigmaG[i]) bmw[which(gg>=0)] <- pnorm(gg[gg>=0]) bmw[which(gg<0)] <- 1 - pnorm(abs(gg[gg<0])) bmwsl[,i] <- bmw*mix_pi[i] } P2 <- rowSums(bmwsl) nn<-dim(as.matrix(unique(P2)))[1] if(nn<n_samDH){P2<-P2+runif(n_samDH)/1e4} dd <- as.matrix(c(sum(P2),sum(P2^2),sum((P2-0.5)^2))) WW2 <- 1/(12*n_samDH) + sum((P2 - (as.matrix(c(1:n_samDH)) - 0.5)/n_samDH)^2) u <- as.matrix(c(12*n_samDH*((dd[1]/n_samDH-0.5)^2),((45*n_samDH)/4)*((dd[2]/n_samDH-1/3)^2),180*n_samDH*((dd[3]/n_samDH-1/12)^2))) D <- as.numeric(ks.test(P2,"punif")[[1]][1]) tt <- as.matrix(c((1 - pchisq(u[1],1)),(1 - pchisq(u[2],1)),(1 - pchisq(u[3],1)),K1(WW2),(1-pkolm(D,n_samDH)))) tt_P1[which(tt_P1>=10e-4)]<-round(tt_P1[which(tt_P1>=10e-4)],4);tt_P1[which(tt_P1<10e-4)]<-format(tt_P1[which(tt_P1<10e-4)],scientific=TRUE,digit=4) tt_P2[which(tt_P2>=10e-4)]<-round(tt_P2[which(tt_P2>=10e-4)],4);tt_P2[which(tt_P2<10e-4)]<-format(tt_P2[which(tt_P2<10e-4)],scientific=TRUE,digit=4) tt[which(tt>=10e-4)]<-round(tt[which(tt>=10e-4)],4);tt[which(tt<10e-4)]<-format(tt[which(tt<10e-4)],scientific=TRUE,digit=4) output <- data.frame("MX3-CEA-A",round(abc,4),round(AIC,4),round(mean11,4),round(mean12,4),round(sigma,4),round(t(meanG),4)," "," "," "," "," "," "," "," "," "," "," "," ",round(sigmaG[1],4),round(t(mix_pi),4), " "," "," "," "," "," "," "," "," "," "," "," ",round(B1[1],4)," "," ",round(B1[2],4),round(B1[2],4),round(B1[2],4)," "," "," "," "," "," "," "," ",round(B1[3],4), round(jj,4),round(ll*100,4),round(mm,4),round(nnn*100,4),round(u_P1[1],4),tt_P1[1],round(u_P1[2],4), tt_P1[2],round(u_P1[3],4),tt_P1[3],round(WW2_P1,4),tt_P1[4],round(D_P1,4),tt_P1[5],round(u_P2[1],4),tt_P2[1],round(u_P2[2],4), tt_P2[2],round(u_P2[3],4),tt_P2[3],round(WW2_P2,4),tt_P2[4],round(D_P2,4),tt_P2[5],round(u[1],4),tt[1],round(u[2],4), tt[2],round(u[3],4),tt[3],round(WW2,4),tt[4],round(D,4),tt[5]) output<-as.matrix(output) OUTPUT<-list(output,mi) return(OUTPUT) } G3DHModelFun[[34]] <- function(K1,logL,df11,df21,df31,G3DHtext2){ dataP1 <- as.matrix(as.numeric(df11[,1]));dataP2 <- as.matrix(as.numeric(df21[,1]));dataDH <- as.matrix(as.numeric(df31[,1])) n_samP1<-dim(dataP1)[1]; n_samP2<-dim(dataP2)[1];n_samDH<-dim(dataDH)[1] mean11<-mean(dataP1);mean12<-mean(dataP2) sigmaP1<- as.numeric(var(dataP1)); sigmaP2<- as.numeric(var(dataP2)) ss1<-(n_samP1-1)*sigmaP1; ss2<-(n_samP2-1)*sigmaP2 sigma0<-(ss1+ss2)/(n_samP1+n_samP2-2);sigma_dh<-as.numeric(var(dataDH)) m_esp<- 0.0001 ;m_fam<- as.numeric(G3DHtext2) d2<- 6 mi <- as.matrix(c(0.125,0.125,0.25,0.25,0.125,0.125)) meanG<-mean(dataDH) sigmaG <- matrix((sigma_dh/(2*1.2222101)),d2,1) sigma <- sigma0 a1 <- sqrt(sigma_dh/n_samDH) if(mean11<mean12){a1=-a1} meanG <- as.matrix(c((meanG+3*a1),(meanG+2*a1),(meanG+a1),(meanG-a1),(meanG-2*a1),(meanG-3*a1))) iteration <- 0; stopa <- 1000 WW <- matrix(0,d2,n_samDH); swx <- matrix(0,d2,1) L0 <- logL(n_samP1,1,1,mean11,sigma,dataP1)+logL(n_samP2,1,1,mean12,sigma,dataP2)+sum(log(dmixnorm(dataDH,meanG,sqrt(sigmaG),mi))) while(stopa > m_esp && iteration<=1000){ iteration <- iteration + 1 for(i in 1:d2) { WW[i,] <- mi[i]*dnorm(dataDH,meanG[i],sqrt(sigmaG[i]))/dmixnorm(dataDH,meanG,sqrt(sigmaG),mi) } mix_pi <- as.matrix(rowSums(WW)/n_samDH) sumwx <- WW%*%dataDH n0 <- n_samDH*mix_pi n0[n0<0.000001] <- 0.000001 hh<-matrix(0,4,4) hh[1,1]<- sigma*(1.0/n_samP1+1.0/n_samP2)+sigmaG[1]*(1.0/n0[1]+1.0/n0[6]) hh[1,2]<- -sigmaG[1]*(1.0/n0[1]+1.0/n0[6]) hh[1,3]<- -sigmaG[1]/n0[1] hh[1,4]<- -sigmaG[1]/n0[1] hh[2,2]<- sigmaG[1]*(1.0/n0[1]+1.0/n0[2]+1.0/n0[5]+1.0/n0[6]) hh[2,3]<- sigmaG[1]*(1.0/n0[1]+1.0/n0[2]) hh[2,4]<- sigmaG[1]*(1.0/n0[1]-1.0/n0[5]) hh[3,3]<- sigmaG[1]*(1.0/n0[1]+1.0/n0[2]+1.0/n0[3]+1.0/n0[4]) hh[3,4]<- sigmaG[1]*(1.0/n0[1]+2.0/n0[3]) hh[4,4]<- sigmaG[1]*(1.0/n0[1]+4.0/n0[3]+1.0/n0[5]) for(i in 2:4){ for(j in 1:(i-1)){ hh[i,j]<- hh[j,i] } } b_line<-matrix(0,4,1) b_line[1]<- sum(dataP1)/n_samP1+sum(dataP2)/n_samP2-sumwx[1]/n0[1]-sumwx[6]/n0[6] b_line[2]<- sumwx[1]/n0[1]-sumwx[2]/n0[2]-sumwx[5]/n0[5]+sumwx[6]/n0[6] b_line[3]<- sumwx[1]/n0[1]-sumwx[2]/n0[2]-sumwx[3]/n0[3]+sumwx[4]/n0[4] b_line[4]<- sumwx[1]/n0[1]-2.0*sumwx[3]/n0[3]+sumwx[5]/n0[5] B <- solve(hh,b_line) mean11<- (sum(dataP1)-B[1]*sigma)/n_samP1 mean12<- (sum(dataP2)-B[1]*sigma)/n_samP2 meanG[1]<-(sumwx[1]-(-B[1]+B[2]+B[3]+B[4])*sigmaG[1])/n0[1] meanG[2]<-(sumwx[2]+(B[2]+B[3])*sigmaG[2])/n0[2] meanG[3]<-(sumwx[3]+(B[3]+2.0*B[4])*sigmaG[3])/n0[3] meanG[4]<-(sumwx[4]-B[3]*sigmaG[4])/n0[4] meanG[5]<-(sumwx[5]+(B[2]-B[4])*sigmaG[5])/n0[5] meanG[6]<-(sumwx[6]+(B[1]-B[2])*sigmaG[6])/n0[6] ss1<- sum((dataP1-mean11)^2) ss2<- sum((dataP2-mean12)^2) for(i in 1:d2) { swx[i] <- WW[i,]%*%(dataDH-meanG[i])^2 } s0G<-matrix(0,2,1) s0G[1]<- ss1+ss2 s0G[2]<- sum(swx)*m_fam s1<- sigmaG[1]-sigma/m_fam if (s1<0.0){s1<- 0.000001} abc2<- sigma abc3<-1000; n_iter<- 0 while(abc3>0.0001){ n_iter<- n_iter+1 abc1<- (sigma/m_fam)/(sigma/m_fam+s1) sigma<- (s0G[1]+abc1*abc1*s0G[2])/(n_samP1+n_samP2+n_samDH) abc3<- abs(abc2-sigma) abc2<- sigma if (n_iter>20) break } if (sigma<0.1*sigma0){ sigma<- 0.1*sigma0 } sigmaG[1]<- s1+sigma/m_fam s1<- sum(swx)/n_samDH-sigma/m_fam if (s1<0.0){ s1<- 0.000001 } sigmaG<- matrix((s1+sigma/m_fam),d2,1) L1 <- logL(n_samP1,1,1,mean11,sigma,dataP1)+logL(n_samP2,1,1,mean12,sigma,dataP2)+sum(log(dmixnorm(dataDH,meanG,sqrt(sigmaG),mix_pi))) stopa <- L1 - L0 L0 <- L1 if(stopa < 0) {stopa <- -stopa} } abc <- L1 AIC <- -2*abc + 2*6 aa<- matrix(c(1,1,1,1,1,1,1,1, 2,-2,2,2,0,0,-2,-2, 1,-1,1,-1,1,-1,1,-1, 1,-1,0,0,0,0,0,0),8,4) b_line1 <- matrix(c(mean11,mean12,meanG)) B1 <- ginv(t(aa)%*%aa)%*%(t(aa)%*%b_line1) jj <- sigma_dh - sigmaG[1] if(jj < 0) {jj <- 0} ll <- jj/sigma_dh mm<- sigmaG[1]-sigma[1] if(mm<0){mm<-0} nnn<- mm/sigma_dh dataP1<-sort(dataP1);bmw_P1 <- matrix(0,n_samP1,1); bmwsl_P1 <- matrix(0,n_samP1,1) gg_P1 <- (dataP1 - mean11)/sqrt(as.vector(sigma)) bmw_P1[which(gg_P1>=0)] <- pnorm(gg_P1[gg_P1>=0]) bmw_P1[which(gg_P1<0)] <- 1 - pnorm(abs(gg_P1[gg_P1<0])) bmwsl_P1[,1] <- bmw_P1 P2_P1 <- rowSums(bmwsl_P1) nn<-dim(as.matrix(unique(P2_P1)))[1] if(nn<n_samP1){P2_P1<-P2_P1+runif(n_samP1)/1e4} dd_P1 <- as.matrix(c(sum(P2_P1),sum(P2_P1^2),sum((P2_P1-0.5)^2))) WW2_P1 <- 1/(12*n_samP1) + sum((P2_P1 - (as.matrix(c(1:n_samP1)) - 0.5)/n_samP1)^2) u_P1 <- as.matrix(c(12*n_samP1*((dd_P1[1]/n_samP1-0.5)^2),((45*n_samP1)/4)*((dd_P1[2]/n_samP1-1/3)^2),180*n_samP1*((dd_P1[3]/n_samP1-1/12)^2))) D_P1 <- as.numeric(ks.test(P2_P1,"punif")[[1]][1]) tt_P1 <- as.matrix(c((1 - pchisq(u_P1[1],1)),(1 - pchisq(u_P1[2],1)),(1 - pchisq(u_P1[3],1)),K1(WW2_P1),(1-pkolm(D_P1,n_samP1)))) dataP2<-sort(dataP2);bmw_P2 <- matrix(0,n_samP2,1); bmwsl_P2 <- matrix(0,n_samP2,1) gg_P2 <- (dataP2 - mean12)/sqrt(as.vector(sigma)) bmw_P2[which(gg_P2>=0)] <- pnorm(gg_P2[gg_P2>=0]) bmw_P2[which(gg_P2<0)] <- 1 - pnorm(abs(gg_P2[gg_P2<0])) bmwsl_P2[,1] <- bmw_P2 P2_P2 <- rowSums(bmwsl_P2) nn<-dim(as.matrix(unique(P2_P2)))[1] if(nn<n_samP2){P2_P2<-P2_P2+runif(n_samP2)/1e4} dd_P2 <- as.matrix(c(sum(P2_P2),sum(P2_P2^2),sum((P2_P2-0.5)^2))) WW2_P2 <- 1/(12*n_samP2) + sum((P2_P2 - (as.matrix(c(1:n_samP2)) - 0.5)/n_samP2)^2) u_P2 <- as.matrix(c(12*n_samP2*((dd_P2[1]/n_samP2-0.5)^2),((45*n_samP2)/4)*((dd_P2[2]/n_samP2-1/3)^2),180*n_samP2*((dd_P2[3]/n_samP2-1/12)^2))) D_P2 <- as.numeric(ks.test(P2_P2,"punif")[[1]][1]) tt_P2 <- as.matrix(c((1 - pchisq(u_P2[1],1)),(1 - pchisq(u_P2[2],1)),(1 - pchisq(u_P2[3],1)),K1(WW2_P2),(1-pkolm(D_P2,n_samP2)))) dataDH<-sort(dataDH);bmw <- matrix(0,n_samDH,1); bmwsl <- matrix(0,n_samDH,d2) for(i in 1:d2){ gg <- (dataDH - meanG[i])/sqrt(sigmaG[i]) bmw[which(gg>=0)] <- pnorm(gg[gg>=0]) bmw[which(gg<0)] <- 1 - pnorm(abs(gg[gg<0])) bmwsl[,i] <- bmw*mix_pi[i] } P2 <- rowSums(bmwsl) nn<-dim(as.matrix(unique(P2)))[1] if(nn<n_samDH){P2<-P2+runif(n_samDH)/1e4} dd <- as.matrix(c(sum(P2),sum(P2^2),sum((P2-0.5)^2))) WW2 <- 1/(12*n_samDH) + sum((P2 - (as.matrix(c(1:n_samDH)) - 0.5)/n_samDH)^2) u <- as.matrix(c(12*n_samDH*((dd[1]/n_samDH-0.5)^2),((45*n_samDH)/4)*((dd[2]/n_samDH-1/3)^2),180*n_samDH*((dd[3]/n_samDH-1/12)^2))) D <- as.numeric(ks.test(P2,"punif")[[1]][1]) tt <- as.matrix(c((1 - pchisq(u[1],1)),(1 - pchisq(u[2],1)),(1 - pchisq(u[3],1)),K1(WW2),(1-pkolm(D,n_samDH)))) tt_P1[which(tt_P1>=10e-4)]<-round(tt_P1[which(tt_P1>=10e-4)],4);tt_P1[which(tt_P1<10e-4)]<-format(tt_P1[which(tt_P1<10e-4)],scientific=TRUE,digit=4) tt_P2[which(tt_P2>=10e-4)]<-round(tt_P2[which(tt_P2>=10e-4)],4);tt_P2[which(tt_P2<10e-4)]<-format(tt_P2[which(tt_P2<10e-4)],scientific=TRUE,digit=4) tt[which(tt>=10e-4)]<-round(tt[which(tt>=10e-4)],4);tt[which(tt<10e-4)]<-format(tt[which(tt<10e-4)],scientific=TRUE,digit=4) output <- data.frame("MX3-PEA-A",round(abc,4),round(AIC,4),round(mean11,4),round(mean12,4),round(sigma,4),round(t(meanG),4)," "," "," "," "," "," "," "," "," "," ",round(sigmaG[1],4),round(t(mix_pi),4), " "," "," "," "," "," "," "," "," "," ",round(B1[1],4)," "," ",round(B1[2],4),round(B1[3],4),","," "," "," "," "," "," "," "," ",round(B1[4],4), round(jj,4),round(ll*100,4),round(mm,4),round(nnn*100,4),round(u_P1[1],4),tt_P1[1],round(u_P1[2],4), tt_P1[2],round(u_P1[3],4),tt_P1[3],round(WW2_P1,4),tt_P1[4],round(D_P1,4),tt_P1[5],round(u_P2[1],4),tt_P2[1],round(u_P2[2],4), tt_P2[2],round(u_P2[3],4),tt_P2[3],round(WW2_P2,4),tt_P2[4],round(D_P2,4),tt_P2[5],round(u[1],4),tt[1],round(u[2],4), tt[2],round(u[3],4),tt[3],round(WW2,4),tt[4],round(D,4),tt[5]) output<-as.matrix(output) OUTPUT<-list(output,mi) return(OUTPUT) } G3DHModelFun[[35]] <- function(K1,logL,df11,df21,df31,G3DHtext2){ dataP1 <- as.matrix(as.numeric(df11[,1]));dataP2 <- as.matrix(as.numeric(df21[,1]));dataDH <- as.matrix(as.numeric(df31[,1])) n_samP1<-dim(dataP1)[1]; n_samP2<-dim(dataP2)[1];n_samDH<-dim(dataDH)[1] mean11<-mean(dataP1);mean12<-mean(dataP2) sigmaP1<- as.numeric(var(dataP1)); sigmaP2<- as.numeric(var(dataP2)) ss1<-(n_samP1-1)*sigmaP1; ss2<-(n_samP2-1)*sigmaP2 sigma0<-(ss1+ss2)/(n_samP1+n_samP2-2);sigma_dh<-as.numeric(var(dataDH)) m_esp<- 0.0001 ;m_fam<- as.numeric(G3DHtext2) d2<-16 mi <- as.matrix(c(0.0625,0.0625,0.0625,0.0625,0.0625,0.0625,0.0625,0.0625,0.0625,0.0625,0.0625,0.0625,0.0625,0.0625,0.0625,0.0625)) meanH<-mean(dataDH) sigmaH <- matrix((sigma_dh/(2*1.2222101)),d2,1) sigma <- sigma0 a1 <- sqrt(sigma_dh) if(mean11<mean12){a1=-a1} meanH <- as.matrix(c(222,146,114,138,114,78,50,54,152,96,76,100,84,68,72,56)) iteration <- 0; stopa <- 1000 WW <- matrix(0,d2,n_samDH); swx <- matrix(0,d2,1) L0 <- logL(n_samP1,1,1,mean11,sigma,dataP1)+logL(n_samP2,1,1,mean12,sigma,dataP2)+sum(log(dmixnorm(dataDH,meanH,sqrt(sigmaH),mi))) while(stopa > m_esp && iteration<=1000){ iteration <- iteration + 1 for(i in 1:d2) { WW[i,] <- mi[i]*dnorm(dataDH,meanH[i],sqrt(sigmaH[i]))/dmixnorm(dataDH,meanH,sqrt(sigmaH),mi) } mix_pi <- as.matrix(rowSums(WW)/n_samDH) sumwx <- WW%*%dataDH n0 <- n_samDH*mix_pi n0[n0<0.000001] <- 0.000001 s0<-matrix(0,4,1) s0[1]<- sigma;s0[2]<- n_samP1+m_fam*n0[1] s0[3]<- sigma;s0[4]<- n_samP2+m_fam*n0[16] hh<-matrix(0,5,5) hh[1,1]<- s0[1]/s0[2]+sigmaH[2]/n0[2]+sigmaH[3]/n0[3]+sigmaH[4]/n0[4]+sigmaH[9]/n0[9]+sigmaH[10]/n0[10]+sigmaH[11]/n0[11]+sigmaH[12]/n0[12] hh[1,2]<- s0[1]/s0[2]+sigmaH[2]/n0[2]+sigmaH[3]/n0[3]+sigmaH[4]/n0[4] hh[1,3]<- s0[1]/s0[2]+sigmaH[2]/n0[2]+sigmaH[3]/n0[3]+sigmaH[4]/n0[4] hh[1,4]<- -(s0[1]/s0[2]+sigmaH[2]/n0[2]+sigmaH[9]/n0[9]+sigmaH[10]/n0[10]) hh[1,5]<- sigmaH[2]/n0[2]+sigmaH[3]/n0[3]+sigmaH[10]/n0[10]+sigmaH[11]/n0[11] hh[2,2]<- s0[1]/s0[2]+sigmaH[2]/n0[2]+sigmaH[3]/n0[3]+sigmaH[4]/n0[4]+sigmaH[13]/n0[13]+sigmaH[14]/n0[14]+sigmaH[15]/n0[15]+s0[3]/s0[4] hh[2,3]<- s0[1]/s0[2]+sigmaH[2]/n0[2]+sigmaH[3]/n0[3]+sigmaH[4]/n0[4] hh[2,4]<- -(s0[1]/s0[2]+sigmaH[2]/n0[2]-sigmaH[13]/n0[13]-sigmaH[14]/n0[14]) hh[2,5]<- sigmaH[2]/n0[2]+sigmaH[3]/n0[3]+sigmaH[13]/n0[13]+s0[3]/s0[4] hh[3,3]<- s0[1]/s0[2]+sigmaH[2]/n0[2]+sigmaH[3]/n0[3]+sigmaH[4]/n0[4]+sigmaH[5]/n0[5]+sigmaH[6]/n0[6]+sigmaH[7]/n0[7]+sigmaH[8]/n0[8] hh[3,4]<- -(s0[1]/s0[2]+sigmaH[2]/n0[2]+sigmaH[5]/n0[5]+sigmaH[6]/n0[6]) hh[3,5]<- sigmaH[2]/n0[2]+sigmaH[3]/n0[3]-sigmaH[5]/n0[5]-sigmaH[8]/n0[8] hh[4,4]<- s0[1]/s0[2]+sigmaH[2]/n0[2]+sigmaH[5]/n0[5]+sigmaH[6]/n0[6]+sigmaH[9]/n0[9]+sigmaH[10]/n0[10]+sigmaH[13]/n0[13]+sigmaH[14]/n0[14] hh[4,5]<- -sigmaH[2]/n0[2]+sigmaH[5]/n0[5]-sigmaH[10]/n0[10]+sigmaH[13]/n0[13] hh[5,5]<- sigmaH[2]/n0[2]+sigmaH[3]/n0[3]+sigmaH[5]/n0[5]+sigmaH[8]/n0[8]+sigmaH[10]/n0[10]+sigmaH[11]/n0[11]+sigmaH[13]/n0[13]+s0[3]/s0[4] for(i in 2:5){ for(j in 1:(i-1)){ hh[i,j]<- hh[j,i] } } b_line<-matrix(0,5,1) b_line[1]<- -(sum(dataP1)+m_fam*sumwx[1])/(n_samP1+m_fam*n0[1])+sumwx[2]/n0[2]-sumwx[3]/n0[3]+sumwx[4]/n0[4]+sumwx[9]/n0[9]-sumwx[10]/n0[10]+sumwx[11]/n0[11]-sumwx[12]/n0[12] b_line[2]<- -(sum(dataP1)+m_fam*sumwx[1])/(n_samP1+m_fam*n0[1])+sumwx[2]/n0[2]-sumwx[3]/n0[3]+sumwx[4]/n0[4]+sumwx[13]/n0[13]-sumwx[14]/n0[14]+sumwx[15]/n0[15]-(sum(dataP2)+m_fam*sumwx[16])/(n_samP2+m_fam*n0[16]) b_line[3]<- -(sum(dataP1)+m_fam*sumwx[1])/(n_samP1+m_fam*n0[1])+sumwx[2]/n0[2]-sumwx[3]/n0[3]+sumwx[4]/n0[4]+sumwx[5]/n0[5]-sumwx[6]/n0[6]+sumwx[7]/n0[7]-sumwx[8]/n0[8] b_line[4]<- (sum(dataP1)+m_fam*sumwx[1])/(n_samP1+m_fam*n0[1])-sumwx[2]/n0[2]-sumwx[5]/n0[5]+(sum(dataP2)+m_fam*sumwx[16])/(n_samP2+m_fam*n0[16])-sumwx[9]/n0[9]+sumwx[10]/n0[10]+sumwx[13]/n0[13]-sumwx[14]/n0[14]; b_line[5]<- sumwx[2]/n0[2]-sumwx[3]/n0[3]-sumwx[5]/n0[5]+sumwx[8]/n0[8]-sumwx[10]/n0[10]+sumwx[11]/n0[11]+sumwx[13]/n0[13]-(sum(dataP2)+m_fam*sumwx[16])/(n_samP2+m_fam*n0[16]) B <- solve(hh,b_line) meanH[1]<-(sum(dataP1)+m_fam*sumwx[1]+(B[1]+B[2]+B[3]-B[4])*sigma)/(n_samP1+m_fam*n0[1]) meanH[2]<-(sumwx[2]-(B[1]+B[2]+B[3]-B[4]+B[5])*sigmaH[2])/n0[2] meanH[3]<-(sumwx[3]+(B[1]+B[2]+B[3]+B[5])*sigmaH[3])/n0[3] meanH[4]<-(sumwx[4]-(B[1]+B[2]+B[3])*sigmaH[4])/n0[4] meanH[5]<-(sumwx[5]+(-B[3]+B[4]+B[5])*sigmaH[5])/n0[5] meanH[6]<-(sumwx[6]+(B[3]-B[4])*sigmaH[6])/n0[6] meanH[7]<-(sumwx[7]+(-B[3])*sigmaH[7])/n0[7] meanH[8]<-(sumwx[8]+(B[3]-B[5])*sigmaH[8])/n0[8] meanH[9]<-(sumwx[9]-(B[1]-B[4])*sigmaH[9])/n0[9] meanH[10]<-(sumwx[10]+(B[1]-B[4]+B[5])*sigmaH[10])/n0[10] meanH[11]<-(sumwx[11]-(B[1]+B[5])*sigmaH[11])/n0[11] meanH[12]<-(sumwx[12]+B[1]*sigmaH[12])/n0[12] meanH[13]<-(sumwx[13]-(B[2]+B[4]+B[5])*sigmaH[13])/n0[13] meanH[14]<-(sumwx[14]+(B[2]+B[4])*sigmaH[14])/n0[14] meanH[15]<-(sumwx[15]-B[2]*sigmaH[15])/n0[15] meanH[16]<-(sum(dataP2)+m_fam*sumwx[16]+(B[2]+B[5])*sigma)/(n_samP2+m_fam*n0[16]) mean11<- meanH[1] mean12<- meanH[16] ss1<- sum((dataP1-mean11)^2) ss2<- sum((dataP2-mean12)^2) for(i in 1:d2) { swx[i] <- WW[i,]%*%(dataDH-meanH[i])^2 } s0H<-matrix(0,2,1) s0H[1]<- ss1+ss2 s0H[2]<- sum(swx)*m_fam s1<- sigmaH[1]-sigma/m_fam if (s1<0.0){s1<- 0.000001} abc2<- sigma abc3<-1000; n_iter<- 0 while(abc3>0.0001){ n_iter<- n_iter+1 sigma<- (s0H[1]+s0H[2])/(n_samP1+n_samP2+n_samDH) abc3<- abs(abc2-sigma) abc2<- sigma if (n_iter>20) break } if (sigma<0.1*sigma0){ sigma<- 0.1*sigma0 } sigmaH<-matrix((sigma/m_fam),d2,1) L1 <- logL(n_samP1,1,1,mean11,sigma,dataP1)+logL(n_samP2,1,1,mean12,sigma,dataP2)+sum(log(dmixnorm(dataDH,meanH,sqrt(sigmaH),mix_pi))) stopa <- L1 - L0 L0 <- L1 if(stopa < 0) {stopa <- -stopa} } abc <- L1 AIC <- -2*abc + 2*11 aa<- matrix(c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1, 1,1,1,1,-1,-1,-1,-1,1,1,1,1,-1,-1,-1,-1, 1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1, 1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1, 1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1, 1,1,-1,-1,1,1,-1,-1,-1,-1,1,1,-1,-1,1,1, 1,-1,-1,1,1,-1,-1,1,-1,1,1,-1,-1,1,1,-1, 1,1,-1,-1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,1, 1,-1,1,1,-1,1,1,-1,1,-1,-1,1,-1,1,1,-1, 1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1),16,11) b_line1 <- meanH B1 <- ginv(t(aa)%*%aa)%*%(t(aa)%*%b_line1) jj <- sigma_dh - sigmaH[1] if(jj < 0) {jj <- 0} ll <- jj/sigma_dh dataP1<-sort(dataP1);bmw_P1 <- matrix(0,n_samP1,1); bmwsl_P1 <- matrix(0,n_samP1,1) gg_P1 <- (dataP1 - mean11)/sqrt(as.vector(sigma)) bmw_P1[which(gg_P1>=0)] <- pnorm(gg_P1[gg_P1>=0]) bmw_P1[which(gg_P1<0)] <- 1 - pnorm(abs(gg_P1[gg_P1<0])) bmwsl_P1[,1] <- bmw_P1 P2_P1 <- rowSums(bmwsl_P1) nn<-dim(as.matrix(unique(P2_P1)))[1] if(nn<n_samP1){P2_P1<-P2_P1+runif(n_samP1)/1e4} dd_P1 <- as.matrix(c(sum(P2_P1),sum(P2_P1^2),sum((P2_P1-0.5)^2))) WW2_P1 <- 1/(12*n_samP1) + sum((P2_P1 - (as.matrix(c(1:n_samP1)) - 0.5)/n_samP1)^2) u_P1 <- as.matrix(c(12*n_samP1*((dd_P1[1]/n_samP1-0.5)^2),((45*n_samP1)/4)*((dd_P1[2]/n_samP1-1/3)^2),180*n_samP1*((dd_P1[3]/n_samP1-1/12)^2))) D_P1 <- as.numeric(ks.test(P2_P1,"punif")[[1]][1]) tt_P1 <- as.matrix(c((1 - pchisq(u_P1[1],1)),(1 - pchisq(u_P1[2],1)),(1 - pchisq(u_P1[3],1)),K1(WW2_P1),(1-pkolm(D_P1,n_samP1)))) dataP2<-sort(dataP2);bmw_P2 <- matrix(0,n_samP2,1); bmwsl_P2 <- matrix(0,n_samP2,1) gg_P2 <- (dataP2 - mean12)/sqrt(as.vector(sigma)) bmw_P2[which(gg_P2>=0)] <- pnorm(gg_P2[gg_P2>=0]) bmw_P2[which(gg_P2<0)] <- 1 - pnorm(abs(gg_P2[gg_P2<0])) bmwsl_P2[,1] <- bmw_P2 P2_P2 <- rowSums(bmwsl_P2) nn<-dim(as.matrix(unique(P2_P2)))[1] if(nn<n_samP2){P2_P2<-P2_P2+runif(n_samP2)/1e4} dd_P2 <- as.matrix(c(sum(P2_P2),sum(P2_P2^2),sum((P2_P2-0.5)^2))) WW2_P2 <- 1/(12*n_samP2) + sum((P2_P2 - (as.matrix(c(1:n_samP2)) - 0.5)/n_samP2)^2) u_P2 <- as.matrix(c(12*n_samP2*((dd_P2[1]/n_samP2-0.5)^2),((45*n_samP2)/4)*((dd_P2[2]/n_samP2-1/3)^2),180*n_samP2*((dd_P2[3]/n_samP2-1/12)^2))) D_P2 <- as.numeric(ks.test(P2_P2,"punif")[[1]][1]) tt_P2 <- as.matrix(c((1 - pchisq(u_P2[1],1)),(1 - pchisq(u_P2[2],1)),(1 - pchisq(u_P2[3],1)),K1(WW2_P2),(1-pkolm(D_P2,n_samP2)))) dataDH<-sort(dataDH);bmw <- matrix(0,n_samDH,1); bmwsl <- matrix(0,n_samDH,d2) for(i in 1:d2){ gg <- (dataDH - meanH[i])/sqrt(sigmaH[i]) bmw[which(gg>=0)] <- pnorm(gg[gg>=0]) bmw[which(gg<0)] <- 1 - pnorm(abs(gg[gg<0])) bmwsl[,i] <- bmw*mix_pi[i] } P2 <- rowSums(bmwsl) nn<-dim(as.matrix(unique(P2)))[1] if(nn<n_samDH){P2<-P2+runif(n_samDH)/1e4} dd <- as.matrix(c(sum(P2),sum(P2^2),sum((P2-0.5)^2))) WW2 <- 1/(12*n_samDH) + sum((P2 - (as.matrix(c(1:n_samDH)) - 0.5)/n_samDH)^2) u <- as.matrix(c(12*n_samDH*((dd[1]/n_samDH-0.5)^2),((45*n_samDH)/4)*((dd[2]/n_samDH-1/3)^2),180*n_samDH*((dd[3]/n_samDH-1/12)^2))) D <- as.numeric(ks.test(P2,"punif")[[1]][1]) tt <- as.matrix(c((1 - pchisq(u[1],1)),(1 - pchisq(u[2],1)),(1 - pchisq(u[3],1)),K1(WW2),(1-pkolm(D,n_samDH)))) tt_P1[which(tt_P1>=10e-4)]<-round(tt_P1[which(tt_P1>=10e-4)],4);tt_P1[which(tt_P1<10e-4)]<-format(tt_P1[which(tt_P1<10e-4)],scientific=TRUE,digit=4) tt_P2[which(tt_P2>=10e-4)]<-round(tt_P2[which(tt_P2>=10e-4)],4);tt_P2[which(tt_P2<10e-4)]<-format(tt_P2[which(tt_P2<10e-4)],scientific=TRUE,digit=4) tt[which(tt>=10e-4)]<-round(tt[which(tt>=10e-4)],4);tt[which(tt<10e-4)]<-format(tt[which(tt<10e-4)],scientific=TRUE,digit=4) output <- data.frame("4MG-AI",round(abc,4),round(AIC,4),round(mean11,4),round(mean12,4),round(sigma,4),round(t(meanH),4),round(sigmaH[1],4),round(t(mix_pi),4), round(B1[1],4)," "," ",round(B1[2],4),round(B1[3],4),round(B1[4],4),round(B1[5],4),round(B1[6],4),round(B1[7],4),round(B1[8],4),round(B1[9],4),round(B1[10],4),round(B1[11],4)," "," ", round(jj,4),round(ll*100,4)," "," ",round(u_P1[1],4),tt_P1[1],round(u_P1[2],4), tt_P1[2],round(u_P1[3],4),tt_P1[3],round(WW2_P1,4),tt_P1[4],round(D_P1,4),tt_P1[5],round(u_P2[1],4),tt_P2[1],round(u_P2[2],4), tt_P2[2],round(u_P2[3],4),tt_P2[3],round(WW2_P2,4),tt_P2[4],round(D_P2,4),tt_P2[5],round(u[1],4),tt[1],round(u[2],4), tt[2],round(u[3],4),tt[3],round(WW2,4),tt[4],round(D,4),tt[5]) output<-as.matrix(output) OUTPUT<-list(output,mi) return(OUTPUT) } G3DHModelFun[[36]] <- function(K1,logL,df11,df21,df31,G3DHtext2){ dataP1 <- as.matrix(as.numeric(df11[,1]));dataP2 <- as.matrix(as.numeric(df21[,1]));dataDH <- as.matrix(as.numeric(df31[,1])) n_samP1<-dim(dataP1)[1]; n_samP2<-dim(dataP2)[1];n_samDH<-dim(dataDH)[1] mean11<-mean(dataP1);mean12<-mean(dataP2) sigmaP1<- as.numeric(var(dataP1)); sigmaP2<- as.numeric(var(dataP2)) ss1<-(n_samP1-1)*sigmaP1; ss2<-(n_samP2-1)*sigmaP2 sigma0<-(ss1+ss2)/(n_samP1+n_samP2-2);sigma_dh<-as.numeric(var(dataDH)) m_esp<- 0.0001 ;m_fam<- as.numeric(G3DHtext2) d2<-5 mi <- as.matrix(c(0.0625,0.25,0.375,0.25,0.0625)) meanH<-mean(dataDH) sigmaH <- matrix((sigma_dh/(2*1.2222101)),d2,1) sigma <- sigma0 a1 <- sqrt(sigma_dh/n_samDH) if(mean11<mean12){a1=-a1} meanH <- as.matrix(c((meanH+3*a1),(meanH+2*a1),meanH,(meanH-2*a1),(meanH-3*a1))) iteration <- 0; stopa <- 1000 WW <- matrix(0,d2,n_samDH); swx <- matrix(0,d2,1) L0 <- logL(n_samP1,1,1,mean11,sigma,dataP1)+logL(n_samP2,1,1,mean12,sigma,dataP2)+sum(log(dmixnorm(dataDH,meanH,sqrt(sigmaH),mi))) while(stopa > m_esp && iteration<=1000){ iteration <- iteration + 1 for(i in 1:d2) { WW[i,] <- mi[i]*dnorm(dataDH,meanH[i],sqrt(sigmaH[i]))/dmixnorm(dataDH,meanH,sqrt(sigmaH),mi) } mix_pi <- as.matrix(rowSums(WW)/n_samDH) sumwx <- WW%*%dataDH n0 <- n_samDH*mix_pi n0[n0<0.000001] <- 0.000001 s0<-matrix(0,4,1) s0[1]<- sigma;s0[2]<- n_samP1+m_fam*n0[1] s0[3]<- sigma;s0[4]<- n_samP2+m_fam*n0[5] hh<-matrix(0,3,3) hh[1,1]<- s0[1]/s0[2]+4.0*sigmaH[2]/n0[2]+sigmaH[3]/n0[3] hh[1,2]<- 2.0*s0[1]/s0[2]+6.0*sigmaH[2]/n0[2] hh[1,3]<- s0[1]/s0[2]+2.0*sigmaH[2]/n0[2] hh[2,2]<- 4.0*s0[1]/s0[2]+9.0*sigmaH[2]/n0[2]+sigmaH[4]/n0[4] hh[2,3]<- 2.0*s0[1]/s0[2]+3.0*sigmaH[2]/n0[2]-sigmaH[4]/n0[4] hh[3,3]<- s0[1]/s0[2]+sigmaH[2]/n0[2]+sigmaH[4]/n0[4]+s0[3]/s0[4] for(i in 2:3){ for(j in 1:(i-1)){ hh[i,j]<- hh[j,i] } } b_line<-matrix(0,3,1) b_line[1]<- -(sum(dataP1)+m_fam*sumwx[1])/(n_samP1+m_fam*n0[1])+2*sumwx[2]/n0[2]-sumwx[3]/n0[3] b_line[2]<- -2*(sum(dataP1)+m_fam*sumwx[1])/(n_samP1+m_fam*n0[1])+3*sumwx[2]/n0[2]-sumwx[4]/n0[4] b_line[3]<- -(sum(dataP1)+m_fam*sumwx[1])/(n_samP1+m_fam*n0[1])+sumwx[2]/n0[2]+sumwx[4]/n0[4]-(sum(dataP2)+m_fam*sumwx[5])/(n_samP2+m_fam*n0[5]) B <- solve(hh,b_line) meanH[1]<-(sum(dataP1)+m_fam*sumwx[1]+(B[1]+2*B[2]+B[3])*sigma)/(n_samP1+m_fam*n0[1]) meanH[2]<-(sumwx[2]+(-2*B[1]-3*B[2]-B[3])*sigmaH[2])/n0[2] meanH[3]<-(sumwx[3]+B[1]*sigmaH[3])/n0[3] meanH[4]<-(sumwx[4]+(B[2]-B[3])*sigmaH[4])/n0[4] meanH[5]<-(sum(dataP2)+m_fam*sumwx[5]+B[3]*sigma)/(n_samP2+m_fam*n0[5]) mean11<- meanH[1] mean12<- meanH[5] ss1<- sum((dataP1-mean11)^2) ss2<- sum((dataP2-mean12)^2) for(i in 1:d2) { swx[i] <- WW[i,]%*%(dataDH-meanH[i])^2 } s0H<-matrix(0,2,1) s0H[1]<- ss1+ss2 s0H[2]<- sum(swx)*m_fam s1<- sigmaH[1]-sigma/m_fam if (s1<0.0){s1<- 0.000001} abc2<- sigma abc3<-1000; n_iter<- 0 while(abc3>0.0001){ n_iter<- n_iter+1 sigma<- (s0H[1]+s0H[2])/(n_samP1+n_samP2+n_samDH) abc3<- abs(abc2-sigma) abc2<- sigma if (n_iter>20) break } if (sigma<0.1*sigma0){ sigma<- 0.1*sigma0 } sigmaH<-matrix((sigma/m_fam),d2,1) L1 <- logL(n_samP1,1,1,mean11,sigma,dataP1)+logL(n_samP2,1,1,mean12,sigma,dataP2)+sum(log(dmixnorm(dataDH,meanH,sqrt(sigmaH),mix_pi))) stopa <- L1 - L0 L0 <- L1 if(stopa < 0) {stopa <- -stopa} } abc <- L1 AIC <- -2*abc + 2*3 aa<- matrix(c(1,1,1,1,1, 4,2,0,-2,-4),5,2) b_line1 <- meanH B1 <- ginv(t(aa)%*%aa)%*%(t(aa)%*%b_line1) jj <- sigma_dh - sigmaH[1] if(jj < 0) {jj <- 0} ll <- jj/sigma_dh dataP1<-sort(dataP1);bmw_P1 <- matrix(0,n_samP1,1); bmwsl_P1 <- matrix(0,n_samP1,1) gg_P1 <- (dataP1 - mean11)/sqrt(as.vector(sigma)) bmw_P1[which(gg_P1>=0)] <- pnorm(gg_P1[gg_P1>=0]) bmw_P1[which(gg_P1<0)] <- 1 - pnorm(abs(gg_P1[gg_P1<0])) bmwsl_P1[,1] <- bmw_P1 P2_P1 <- rowSums(bmwsl_P1) nn<-dim(as.matrix(unique(P2_P1)))[1] if(nn<n_samP1){P2_P1<-P2_P1+runif(n_samP1)/1e4} dd_P1 <- as.matrix(c(sum(P2_P1),sum(P2_P1^2),sum((P2_P1-0.5)^2))) WW2_P1 <- 1/(12*n_samP1) + sum((P2_P1 - (as.matrix(c(1:n_samP1)) - 0.5)/n_samP1)^2) u_P1 <- as.matrix(c(12*n_samP1*((dd_P1[1]/n_samP1-0.5)^2),((45*n_samP1)/4)*((dd_P1[2]/n_samP1-1/3)^2),180*n_samP1*((dd_P1[3]/n_samP1-1/12)^2))) D_P1 <- as.numeric(ks.test(P2_P1,"punif")[[1]][1]) tt_P1 <- as.matrix(c((1 - pchisq(u_P1[1],1)),(1 - pchisq(u_P1[2],1)),(1 - pchisq(u_P1[3],1)),K1(WW2_P1),(1-pkolm(D_P1,n_samP1)))) dataP2<-sort(dataP2);bmw_P2 <- matrix(0,n_samP2,1); bmwsl_P2 <- matrix(0,n_samP2,1) gg_P2 <- (dataP2 - mean12)/sqrt(as.vector(sigma)) bmw_P2[which(gg_P2>=0)] <- pnorm(gg_P2[gg_P2>=0]) bmw_P2[which(gg_P2<0)] <- 1 - pnorm(abs(gg_P2[gg_P2<0])) bmwsl_P2[,1] <- bmw_P2 P2_P2 <- rowSums(bmwsl_P2) nn<-dim(as.matrix(unique(P2_P2)))[1] if(nn<n_samP2){P2_P2<-P2_P2+runif(n_samP2)/1e4} dd_P2 <- as.matrix(c(sum(P2_P2),sum(P2_P2^2),sum((P2_P2-0.5)^2))) WW2_P2 <- 1/(12*n_samP2) + sum((P2_P2 - (as.matrix(c(1:n_samP2)) - 0.5)/n_samP2)^2) u_P2 <- as.matrix(c(12*n_samP2*((dd_P2[1]/n_samP2-0.5)^2),((45*n_samP2)/4)*((dd_P2[2]/n_samP2-1/3)^2),180*n_samP2*((dd_P2[3]/n_samP2-1/12)^2))) D_P2 <- as.numeric(ks.test(P2_P2,"punif")[[1]][1]) tt_P2 <- as.matrix(c((1 - pchisq(u_P2[1],1)),(1 - pchisq(u_P2[2],1)),(1 - pchisq(u_P2[3],1)),K1(WW2_P2),(1-pkolm(D_P2,n_samP2)))) dataDH<-sort(dataDH);bmw <- matrix(0,n_samDH,1); bmwsl <- matrix(0,n_samDH,d2) for(i in 1:d2){ gg <- (dataDH - meanH[i])/sqrt(sigmaH[i]) bmw[which(gg>=0)] <- pnorm(gg[gg>=0]) bmw[which(gg<0)] <- 1 - pnorm(abs(gg[gg<0])) bmwsl[,i] <- bmw*mix_pi[i] } P2 <- rowSums(bmwsl) nn<-dim(as.matrix(unique(P2)))[1] if(nn<n_samDH){P2<-P2+runif(n_samDH)/1e4} dd <- as.matrix(c(sum(P2),sum(P2^2),sum((P2-0.5)^2))) WW2 <- 1/(12*n_samDH) + sum((P2 - (as.matrix(c(1:n_samDH)) - 0.5)/n_samDH)^2) u <- as.matrix(c(12*n_samDH*((dd[1]/n_samDH-0.5)^2),((45*n_samDH)/4)*((dd[2]/n_samDH-1/3)^2),180*n_samDH*((dd[3]/n_samDH-1/12)^2))) D <- as.numeric(ks.test(P2,"punif")[[1]][1]) tt <- as.matrix(c((1 - pchisq(u[1],1)),(1 - pchisq(u[2],1)),(1 - pchisq(u[3],1)),K1(WW2),(1-pkolm(D,n_samDH)))) tt_P1[which(tt_P1>=10e-4)]<-round(tt_P1[which(tt_P1>=10e-4)],4);tt_P1[which(tt_P1<10e-4)]<-format(tt_P1[which(tt_P1<10e-4)],scientific=TRUE,digit=4) tt_P2[which(tt_P2>=10e-4)]<-round(tt_P2[which(tt_P2>=10e-4)],4);tt_P2[which(tt_P2<10e-4)]<-format(tt_P2[which(tt_P2<10e-4)],scientific=TRUE,digit=4) tt[which(tt>=10e-4)]<-round(tt[which(tt>=10e-4)],4);tt[which(tt<10e-4)]<-format(tt[which(tt<10e-4)],scientific=TRUE,digit=4) output <- data.frame("4MG-CEA",round(abc,4),round(AIC,4),round(mean11,4),round(mean12,4),round(sigma,4),round(t(meanH),4)," "," "," "," "," "," "," "," "," "," "," ",round(sigmaH[1],4),round(t(mix_pi),4), " "," "," "," "," "," "," "," "," "," "," ",round(B1[1],4)," "," ",round(B1[2],4),round(B1[2],4),round(B1[2],4),round(B1[2],4)," "," "," "," "," "," "," "," ", round(jj,4),round(ll*100,4)," "," ",round(u_P1[1],4),tt_P1[1],round(u_P1[2],4), tt_P1[2],round(u_P1[3],4),tt_P1[3],round(WW2_P1,4),tt_P1[4],round(D_P1,4),tt_P1[5],round(u_P2[1],4),tt_P2[1],round(u_P2[2],4), tt_P2[2],round(u_P2[3],4),tt_P2[3],round(WW2_P2,4),tt_P2[4],round(D_P2,4),tt_P2[5],round(u[1],4),tt[1],round(u[2],4), tt[2],round(u[3],4),tt[3],round(WW2,4),tt[4],round(D,4),tt[5]) output<-as.matrix(output) OUTPUT<-list(output,mi) return(OUTPUT) } G3DHModelFun[[37]] <- function(K1,logL,df11,df21,df31,G3DHtext2){ dataP1 <- as.matrix(as.numeric(df11[,1]));dataP2 <- as.matrix(as.numeric(df21[,1]));dataDH <- as.matrix(as.numeric(df31[,1])) n_samP1<-dim(dataP1)[1]; n_samP2<-dim(dataP2)[1];n_samDH<-dim(dataDH)[1] mean11<-mean(dataP1);mean12<-mean(dataP2) sigmaP1<- as.numeric(var(dataP1)); sigmaP2<- as.numeric(var(dataP2)) ss1<-(n_samP1-1)*sigmaP1; ss2<-(n_samP2-1)*sigmaP2 sigma0<-(ss1+ss2)/(n_samP1+n_samP2-2);sigma_dh<-as.numeric(var(dataDH)) m_esp<- 0.0001 ;m_fam<- as.numeric(G3DHtext2) d2<-9 mi <- as.matrix(c(0.0625,0.0625,0.125,0.125,0.25,0.125,0.125,0.0625,0.0625)) meanH<-mean(dataDH) sigmaH <- matrix((sigma_dh/(2*1.2222101)),d2,1) sigma <- sigma0 a1 <- sqrt(sigma_dh/n_samDH) if(mean11<mean12){a1=-a1} meanH <- as.matrix(c((meanH+3*a1),(meanH+2.5*a1),(meanH+2*a1),(meanH+1.5*a1),(meanH+a1), (meanH-1.5*a1),(meanH-2*a1),(meanH-2.5*a1),(meanH-3*a1))) iteration <- 0; stopa <- 1000 WW <- matrix(0,d2,n_samDH); swx <- matrix(0,d2,1) L0 <- logL(n_samP1,1,1,mean11,sigma,dataP1)+logL(n_samP2,1,1,mean12,sigma,dataP2)+sum(log(dmixnorm(dataDH,meanH,sqrt(sigmaH),mi))) while(stopa > m_esp && iteration<=1000){ iteration <- iteration + 1 for(i in 1:d2) { WW[i,] <- mi[i]*dnorm(dataDH,meanH[i],sqrt(sigmaH[i]))/dmixnorm(dataDH,meanH,sqrt(sigmaH),mi) } mix_pi <- as.matrix(rowSums(WW)/n_samDH) sumwx <- WW%*%dataDH n0 <- n_samDH*mix_pi n0[n0<0.000001] <- 0.000001 s0<-matrix(0,4,1) s0[1]<- sigma;s0[2]<- n_samP1+m_fam*n0[1] s0[3]<- sigma;s0[4]<- n_samP2+m_fam*n0[9] hh<-matrix(0,6,6) hh[1,1]<- s0[1]/s0[2]+sigmaH[2]/n0[2]+sigmaH[4]/n0[4]+sigmaH[6]/n0[6] hh[1,2]<- s0[1]/s0[2] hh[1,3]<- 0 hh[1,4]<- sigmaH[4]/n0[4]-sigmaH[6]/n0[6] hh[1,5]<- -(s0[1]/s0[2]+sigmaH[4]/n0[4]) hh[1,6]<- -(s0[1]/s0[2]+2.0*sigmaH[4]/n0[4]) hh[2,2]<- s0[1]/s0[2]+sigmaH[3]/n0[3]+sigmaH[7]/n0[7]+sigmaH[8]/n0[8] hh[2,3]<- 2.0*sigmaH[7]/n0[7]+sigmaH[8]/n0[8] hh[2,4]<- 0 hh[2,5]<- -(s0[1]/s0[2]+sigmaH[3]/n0[3]) hh[2,6]<- -(s0[1]/s0[2]+2.0*sigmaH[7]/n0[7]) hh[3,3]<- 4.0*sigmaH[7]/n0[7]+sigmaH[8]/n0[8]+s0[3]/s0[4] hh[3,4]<- hh[3,5]<- 0 hh[3,6]<- -(4.0*sigmaH[7]/n0[7]+s0[3]/s0[4]) hh[4,4]<- sigmaH[4]/n0[4]+4.0*sigmaH[5]/n0[5]+sigmaH[6]/n0[6] hh[4,5]<- -(sigmaH[4]/n0[4]+2.0*sigmaH[5]/n0[5]) hh[4,6]<- -2.0*sigmaH[4]/n0[4] hh[5,5]<- s0[1]/s0[2]+sigmaH[3]/n0[3]+sigmaH[4]/n0[4]+sigmaH[5]/n0[5] hh[5,6]<- s0[1]/s0[2]+2.0*sigmaH[4]/n0[4] hh[6,6]<- s0[1]/s0[2]+4.0*sigmaH[4]/n0[4]+4.0*sigmaH[7]/n0[7]+s0[3]/s0[4] for(i in 2:6){ for(j in 1:(i-1)){ hh[i,j]<- hh[j,i] } } b_line<-matrix(0,6,1) b_line[1]<- (sum(dataP1)+m_fam*sumwx[1])/(n_samP1+m_fam*n0[1])-sumwx[2]/n0[2]-sumwx[4]/n0[4]+sumwx[6]/n0[6] b_line[2]<- (sum(dataP1)+m_fam*sumwx[1])/(n_samP1+m_fam*n0[1])-sumwx[3]/n0[3]+sumwx[7]/n0[7]-sumwx[8]/n0[8] b_line[3]<- 2.0*sumwx[7]/n0[7]-sumwx[8]/n0[8]-(sum(dataP2)+m_fam*sumwx[9])/(n_samP2+m_fam*n0[9]) b_line[4]<- -sumwx[4]/n0[4]+2.0*sumwx[5]/n0[5]-sumwx[6]/n0[6] b_line[5]<- -(sum(dataP1)+m_fam*sumwx[1])/(n_samP1+m_fam*n0[1])+sumwx[3]/n0[3]+sumwx[4]/n0[4]-sumwx[5]/n0[5] b_line[6]<- -(sum(dataP1)+m_fam*sumwx[1])/(n_samP1+m_fam*n0[1])+2.0*sumwx[4]/n0[4]+(sum(dataP2)+m_fam*sumwx[9])/(n_samP2+m_fam*n0[9])-2.0*sumwx[7]/n0[7] B <- solve(hh,b_line) meanH[1]<-(sum(dataP1)+m_fam*sumwx[1]-(B[1]+B[2]-B[5]-B[6])*sigma)/(n_samP1+m_fam*n0[1]) meanH[2]<-(sumwx[2]+B[1]*sigmaH[2])/n0[2] meanH[3]<-(sumwx[3]+(B[2]-B[5])*sigmaH[3])/n0[3] meanH[4]<-(sumwx[4]+(B[1]+B[4]-B[5]-2.0*B[6])*sigmaH[4])/n0[4] meanH[5]<-(sumwx[5]+(-2.0*B[4]+B[5])*sigmaH[5])/n0[5] meanH[6]<-(sumwx[6]-(B[1]-B[4])*sigmaH[6])/n0[6] meanH[7]<-(sumwx[7]-(B[2]+2.0*B[3]-2.0*B[6])*sigmaH[7])/n0[7] meanH[8]<-(sumwx[8]+(B[2]+B[3])*sigmaH[8])/n0[8] meanH[9]<-(sum(dataP2)+m_fam*sumwx[9]+(B[3]-B[6])*sigma)/(n_samP2+m_fam*n0[9]) mean11<- meanH[1] mean12<- meanH[9] ss1<- sum((dataP1-mean11)^2) ss2<- sum((dataP2-mean12)^2) for(i in 1:d2) { swx[i] <- WW[i,]%*%(dataDH-meanH[i])^2 } s0H<-matrix(0,2,1) s0H[1]<- ss1+ss2 s0H[2]<- sum(swx)*m_fam s1<- sigmaH[1]-sigma/m_fam if (s1<0.0){s1<- 0.000001} abc2<- sigma abc3<-1000; n_iter<- 0 while(abc3>0.0001){ n_iter<- n_iter+1 sigma<- (s0H[1]+s0H[2])/(n_samP1+n_samP2+n_samDH) abc3<- abs(abc2-sigma) abc2<- sigma if (n_iter>20) break } if (sigma<0.1*sigma0){ sigma<- 0.1*sigma0 } sigmaH<-matrix((sigma/m_fam),d2,1) L1 <- logL(n_samP1,1,1,mean11,sigma,dataP1)+logL(n_samP2,1,1,mean12,sigma,dataP2)+sum(log(dmixnorm(dataDH,meanH,sqrt(sigmaH),mix_pi))) stopa <- L1 - L0 L0 <- L1 if(stopa < 0) {stopa <- -stopa} } abc <- L1 AIC <- -2*abc + 2*4 aa<- matrix(c(1,1,1,1,1,1,1,1,1, 2,2,2,0,0,0,-2,-2,-2, 2,-2,0,2,0,-2,0,2,-2),9,3) b_line1 <- meanH B1 <- ginv(t(aa)%*%aa)%*%(t(aa)%*%b_line1) jj <- sigma_dh - sigmaH[1] if(jj < 0) {jj <- 0} ll <- jj/sigma_dh dataP1<-sort(dataP1);bmw_P1 <- matrix(0,n_samP1,1); bmwsl_P1 <- matrix(0,n_samP1,1) gg_P1 <- (dataP1 - mean11)/sqrt(as.vector(sigma)) bmw_P1[which(gg_P1>=0)] <- pnorm(gg_P1[gg_P1>=0]) bmw_P1[which(gg_P1<0)] <- 1 - pnorm(abs(gg_P1[gg_P1<0])) bmwsl_P1[,1] <- bmw_P1 P2_P1 <- rowSums(bmwsl_P1) nn<-dim(as.matrix(unique(P2_P1)))[1] if(nn<n_samP1){P2_P1<-P2_P1+runif(n_samP1)/1e4} dd_P1 <- as.matrix(c(sum(P2_P1),sum(P2_P1^2),sum((P2_P1-0.5)^2))) WW2_P1 <- 1/(12*n_samP1) + sum((P2_P1 - (as.matrix(c(1:n_samP1)) - 0.5)/n_samP1)^2) u_P1 <- as.matrix(c(12*n_samP1*((dd_P1[1]/n_samP1-0.5)^2),((45*n_samP1)/4)*((dd_P1[2]/n_samP1-1/3)^2),180*n_samP1*((dd_P1[3]/n_samP1-1/12)^2))) D_P1 <- as.numeric(ks.test(P2_P1,"punif")[[1]][1]) tt_P1 <- as.matrix(c((1 - pchisq(u_P1[1],1)),(1 - pchisq(u_P1[2],1)),(1 - pchisq(u_P1[3],1)),K1(WW2_P1),(1-pkolm(D_P1,n_samP1)))) dataP2<-sort(dataP2);bmw_P2 <- matrix(0,n_samP2,1); bmwsl_P2 <- matrix(0,n_samP2,1) gg_P2 <- (dataP2 - mean12)/sqrt(as.vector(sigma)) bmw_P2[which(gg_P2>=0)] <- pnorm(gg_P2[gg_P2>=0]) bmw_P2[which(gg_P2<0)] <- 1 - pnorm(abs(gg_P2[gg_P2<0])) bmwsl_P2[,1] <- bmw_P2 P2_P2 <- rowSums(bmwsl_P2) nn<-dim(as.matrix(unique(P2_P2)))[1] if(nn<n_samP2){P2_P2<-P2_P2+runif(n_samP2)/1e4} dd_P2 <- as.matrix(c(sum(P2_P2),sum(P2_P2^2),sum((P2_P2-0.5)^2))) WW2_P2 <- 1/(12*n_samP2) + sum((P2_P2 - (as.matrix(c(1:n_samP2)) - 0.5)/n_samP2)^2) u_P2 <- as.matrix(c(12*n_samP2*((dd_P2[1]/n_samP2-0.5)^2),((45*n_samP2)/4)*((dd_P2[2]/n_samP2-1/3)^2),180*n_samP2*((dd_P2[3]/n_samP2-1/12)^2))) D_P2 <- as.numeric(ks.test(P2_P2,"punif")[[1]][1]) tt_P2 <- as.matrix(c((1 - pchisq(u_P2[1],1)),(1 - pchisq(u_P2[2],1)),(1 - pchisq(u_P2[3],1)),K1(WW2_P2),(1-pkolm(D_P2,n_samP2)))) dataDH<-sort(dataDH);bmw <- matrix(0,n_samDH,1); bmwsl <- matrix(0,n_samDH,d2) for(i in 1:d2){ gg <- (dataDH - meanH[i])/sqrt(sigmaH[i]) bmw[which(gg>=0)] <- pnorm(gg[gg>=0]) bmw[which(gg<0)] <- 1 - pnorm(abs(gg[gg<0])) bmwsl[,i] <- bmw*mix_pi[i] } P2 <- rowSums(bmwsl) nn<-dim(as.matrix(unique(P2)))[1] if(nn<n_samDH){P2<-P2+runif(n_samDH)/1e4} dd <- as.matrix(c(sum(P2),sum(P2^2),sum((P2-0.5)^2))) WW2 <- 1/(12*n_samDH) + sum((P2 - (as.matrix(c(1:n_samDH)) - 0.5)/n_samDH)^2) u <- as.matrix(c(12*n_samDH*((dd[1]/n_samDH-0.5)^2),((45*n_samDH)/4)*((dd[2]/n_samDH-1/3)^2),180*n_samDH*((dd[3]/n_samDH-1/12)^2))) D <- as.numeric(ks.test(P2,"punif")[[1]][1]) tt <- as.matrix(c((1 - pchisq(u[1],1)),(1 - pchisq(u[2],1)),(1 - pchisq(u[3],1)),K1(WW2),(1-pkolm(D,n_samDH)))) tt_P1[which(tt_P1>=10e-4)]<-round(tt_P1[which(tt_P1>=10e-4)],4);tt_P1[which(tt_P1<10e-4)]<-format(tt_P1[which(tt_P1<10e-4)],scientific=TRUE,digit=4) tt_P2[which(tt_P2>=10e-4)]<-round(tt_P2[which(tt_P2>=10e-4)],4);tt_P2[which(tt_P2<10e-4)]<-format(tt_P2[which(tt_P2<10e-4)],scientific=TRUE,digit=4) tt[which(tt>=10e-4)]<-round(tt[which(tt>=10e-4)],4);tt[which(tt<10e-4)]<-format(tt[which(tt<10e-4)],scientific=TRUE,digit=4) output <- data.frame("4MG-EEA",round(abc,4),round(AIC,4),round(mean11,4),round(mean12,4),round(sigma,4),round(t(meanH),4)," "," "," "," "," "," "," ",round(sigmaH[1],4),round(t(mix_pi),4), " "," "," "," "," "," "," ",round(B1[1],4)," "," ",round(B1[2],4),round(B1[2],4),round(B1[3],4),round(B1[3],4)," "," "," "," "," "," "," "," ", round(jj,4),round(ll*100,4)," "," ",round(u_P1[1],4),tt_P1[1],round(u_P1[2],4), tt_P1[2],round(u_P1[3],4),tt_P1[3],round(WW2_P1,4),tt_P1[4],round(D_P1,4),tt_P1[5],round(u_P2[1],4),tt_P2[1],round(u_P2[2],4), tt_P2[2],round(u_P2[3],4),tt_P2[3],round(WW2_P2,4),tt_P2[4],round(D_P2,4),tt_P2[5],round(u[1],4),tt[1],round(u[2],4), tt[2],round(u[3],4),tt[3],round(WW2,4),tt[4],round(D,4),tt[5]) output<-as.matrix(output) OUTPUT<-list(output,mi) return(OUTPUT) } G3DHModelFun[[38]] <- function(K1,logL,df11,df21,df31,G3DHtext2){ dataP1 <- as.matrix(as.numeric(df11[,1]));dataP2 <- as.matrix(as.numeric(df21[,1]));dataDH <- as.matrix(as.numeric(df31[,1])) n_samP1<-dim(dataP1)[1]; n_samP2<-dim(dataP2)[1];n_samDH<-dim(dataDH)[1] mean11<-mean(dataP1);mean12<-mean(dataP2) sigmaP1<- as.numeric(var(dataP1)); sigmaP2<- as.numeric(var(dataP2)) ss1<-(n_samP1-1)*sigmaP1; ss2<-(n_samP2-1)*sigmaP2 sigma0<-(ss1+ss2)/(n_samP1+n_samP2-2);sigma_dh<-as.numeric(var(dataDH)) m_esp<- 0.0001 ;m_fam<- as.numeric(G3DHtext2) d2<-8 mi <- as.matrix(c(0.0625,0.0625,0.1875,0.1875,0.1875,0.1875,0.0625,0.0625)) meanH<-mean(dataDH) sigmaH <- matrix((sigma_dh/(2*1.2222101)),d2,1) sigma <- sigma0 a1 <- sqrt(sigma_dh/n_samDH) if(mean11<mean12){a1=-a1} meanH <- as.matrix(c((meanH+3*a1),(meanH+2.5*a1),(meanH+2*a1),(meanH+1.5*a1), (meanH-1.5*a1),(meanH-2*a1),(meanH-2.5*a1),(meanH-3*a1))) iteration <- 0; stopa <- 1000 WW <- matrix(0,d2,n_samDH); swx <- matrix(0,d2,1) L0 <- logL(n_samP1,1,1,mean11,sigma,dataP1)+logL(n_samP2,1,1,mean12,sigma,dataP2)+sum(log(dmixnorm(dataDH,meanH,sqrt(sigmaH),mi))) while(stopa > m_esp && iteration<=1000){ iteration <- iteration + 1 for(i in 1:d2) { WW[i,] <- mi[i]*dnorm(dataDH,meanH[i],sqrt(sigmaH[i]))/dmixnorm(dataDH,meanH,sqrt(sigmaH),mi) } mix_pi <- as.matrix(rowSums(WW)/n_samDH) sumwx <- WW%*%dataDH n0 <- n_samDH*mix_pi n0[n0<0.000001] <- 0.000001 s0<-matrix(0,4,1) s0[1]<- sigma;s0[2]<- n_samP1+m_fam*n0[1] s0[3]<- sigma;s0[4]<- n_samP2+m_fam*n0[8] hh<-matrix(0,5,5) hh[1,1]<- 4.0*s0[1]/s0[2]+9.0*sigmaH[4]/n0[4]+s0[3]/s0[4] hh[1,2]<- -(2.0*s0[1]/s0[2]+3.0*sigmaH[4]/n0[4]) hh[1,3]<- 0 hh[1,4]<- -2.0*s0[1]/s0[2] hh[1,5]<- 0 hh[2,2]<- s0[1]/s0[2]+sigmaH[4]/n0[4]+sigmaH[2]/n0[2]+sigmaH[3]/n0[3] hh[2,3]<- (sigmaH[2]/n0[2]+2.0*sigmaH[3]/n0[3]) hh[2,4]<- s0[1]/s0[2]+sigmaH[2]/n0[2] hh[2,5]<- 2.0*sigmaH[2]/n0[2]+3.0*sigmaH[3]/n0[3] hh[3,3]<- sigmaH[2]/n0[2]+4.0*sigmaH[3]/n0[3]+sigmaH[5]/n0[5] hh[3,4]<- sigmaH[2]/n0[2]-sigmaH[5]/n0[5] hh[3,5]<- 2.0*sigmaH[2]/n0[2]+6.0*sigmaH[3]/n0[3] hh[4,4]<- s0[1]/s0[2]+sigmaH[2]/n0[2]+sigmaH[5]/n0[5]+sigmaH[6]/n0[6] hh[4,5]<- 2.0*sigmaH[2]/n0[2] hh[5,5]<- 4.0*sigmaH[2]/n0[2]+9.0*sigmaH[3]/n0[3]+sigmaH[7]/n0[7] for(i in 2:5){ for(j in 1:(i-1)){ hh[i,j]<- hh[j,i] } } b_line<-matrix(0,5,1) b_line[1]<- -2.0*(sum(dataP1)+m_fam*sumwx[1])/(n_samP1+m_fam*n0[1])+3.0*sumwx[4]/n0[4]-(sum(dataP2)+m_fam*sumwx[8])/(n_samP2+m_fam*n0[8]) b_line[2]<- (sum(dataP1)+m_fam*sumwx[1])/(n_samP1+m_fam*n0[1])-sumwx[2]/n0[2]+sumwx[3]/n0[3]-sumwx[4]/n0[4] b_line[3]<- -sumwx[2]/n0[2]+2.0*sumwx[3]/n0[3]-sumwx[5]/n0[5] b_line[4]<- (sum(dataP1)+m_fam*sumwx[1])/(n_samP1+m_fam*n0[1])-sumwx[2]/n0[2]+sumwx[5]/n0[5]-sumwx[6]/n0[6] b_line[5]<- -2.0*sumwx[2]/n0[2]+3.0*sumwx[3]/n0[3]-sumwx[7]/n0[7] B <- solve(hh,b_line) meanH[1]<-(sum(dataP1)+m_fam*sumwx[1]+(2.0*B[1]-B[2]-B[4])*sigma)/(n_samP1+m_fam*n0[1]) meanH[2]<-(sumwx[2]+(B[2]+B[3]+B[4]+2.0*B[5])*sigmaH[2])/n0[2] meanH[3]<-(sumwx[3]-(B[2]+2.0*B[3]+3.0*B[5])*sigmaH[3])/n0[3] meanH[4]<-(sumwx[4]+(-3.0*B[1]+B[2])*sigmaH[4])/n0[4] meanH[5]<-(sumwx[5]+(B[3]-B[4])*sigmaH[5])/n0[5] meanH[6]<-(sumwx[6]+B[4]*sigmaH[6])/n0[6] meanH[7]<-(sumwx[7]+B[5]*sigmaH[7])/n0[7] meanH[8]<-(sum(dataP2)+m_fam*sumwx[8]+B[1]*sigma)/(n_samP2+m_fam*n0[8]) mean11<- meanH[1] mean12<- meanH[8] ss1<- sum((dataP1-mean11)^2) ss2<- sum((dataP2-mean12)^2) for(i in 1:d2) { swx[i] <- WW[i,]%*%(dataDH-meanH[i])^2 } s0H<-matrix(0,2,1) s0H[1]<- ss1+ss2 s0H[2]<- sum(swx)*m_fam s1<- sigmaH[1]-sigma/m_fam if (s1<0.0){s1<- 0.000001} abc2<- sigma abc3<-1000; n_iter<- 0 while(abc3>0.0001){ n_iter<- n_iter+1 sigma<- (s0H[1]+s0H[2])/(n_samP1+n_samP2+n_samDH) abc3<- abs(abc2-sigma) abc2<- sigma if (n_iter>20) break } if (sigma<0.1*sigma0){ sigma<- 0.1*sigma0 } sigmaH<-matrix((sigma/m_fam),d2,1) L1 <- logL(n_samP1,1,1,mean11,sigma,dataP1)+logL(n_samP2,1,1,mean12,sigma,dataP2)+sum(log(dmixnorm(dataDH,meanH,sqrt(sigmaH),mix_pi))) stopa <- L1 - L0 L0 <- L1 if(stopa < 0) {stopa <- -stopa} } abc <- L1 AIC <- -2*abc + 2*4 aa<- matrix(c(1,1,1,1,1,1,1,1, 3,3,1,1,-1,-1,-3,-3, 1,-1,-1,1,-1,1,-1,1),8,3) b_line1 <- meanH B1 <- ginv(t(aa)%*%aa)%*%(t(aa)%*%b_line1) jj <- sigma_dh - sigmaH[1] if(jj < 0) {jj <- 0} ll <- jj/sigma_dh dataP1<-sort(dataP1);bmw_P1 <- matrix(0,n_samP1,1); bmwsl_P1 <- matrix(0,n_samP1,1) gg_P1 <- (dataP1 - mean11)/sqrt(as.vector(sigma)) bmw_P1[which(gg_P1>=0)] <- pnorm(gg_P1[gg_P1>=0]) bmw_P1[which(gg_P1<0)] <- 1 - pnorm(abs(gg_P1[gg_P1<0])) bmwsl_P1[,1] <- bmw_P1 P2_P1 <- rowSums(bmwsl_P1) nn<-dim(as.matrix(unique(P2_P1)))[1] if(nn<n_samP1){P2_P1<-P2_P1+runif(n_samP1)/1e4} dd_P1 <- as.matrix(c(sum(P2_P1),sum(P2_P1^2),sum((P2_P1-0.5)^2))) WW2_P1 <- 1/(12*n_samP1) + sum((P2_P1 - (as.matrix(c(1:n_samP1)) - 0.5)/n_samP1)^2) u_P1 <- as.matrix(c(12*n_samP1*((dd_P1[1]/n_samP1-0.5)^2),((45*n_samP1)/4)*((dd_P1[2]/n_samP1-1/3)^2),180*n_samP1*((dd_P1[3]/n_samP1-1/12)^2))) D_P1 <- as.numeric(ks.test(P2_P1,"punif")[[1]][1]) tt_P1 <- as.matrix(c((1 - pchisq(u_P1[1],1)),(1 - pchisq(u_P1[2],1)),(1 - pchisq(u_P1[3],1)),K1(WW2_P1),(1-pkolm(D_P1,n_samP1)))) dataP2<-sort(dataP2);bmw_P2 <- matrix(0,n_samP2,1); bmwsl_P2 <- matrix(0,n_samP2,1) gg_P2 <- (dataP2 - mean12)/sqrt(as.vector(sigma)) bmw_P2[which(gg_P2>=0)] <- pnorm(gg_P2[gg_P2>=0]) bmw_P2[which(gg_P2<0)] <- 1 - pnorm(abs(gg_P2[gg_P2<0])) bmwsl_P2[,1] <- bmw_P2 P2_P2 <- rowSums(bmwsl_P2) nn<-dim(as.matrix(unique(P2_P2)))[1] if(nn<n_samP2){P2_P2<-P2_P2+runif(n_samP2)/1e4} dd_P2 <- as.matrix(c(sum(P2_P2),sum(P2_P2^2),sum((P2_P2-0.5)^2))) WW2_P2 <- 1/(12*n_samP2) + sum((P2_P2 - (as.matrix(c(1:n_samP2)) - 0.5)/n_samP2)^2) u_P2 <- as.matrix(c(12*n_samP2*((dd_P2[1]/n_samP2-0.5)^2),((45*n_samP2)/4)*((dd_P2[2]/n_samP2-1/3)^2),180*n_samP2*((dd_P2[3]/n_samP2-1/12)^2))) D_P2 <- as.numeric(ks.test(P2_P2,"punif")[[1]][1]) tt_P2 <- as.matrix(c((1 - pchisq(u_P2[1],1)),(1 - pchisq(u_P2[2],1)),(1 - pchisq(u_P2[3],1)),K1(WW2_P2),(1-pkolm(D_P2,n_samP2)))) dataDH<-sort(dataDH);bmw <- matrix(0,n_samDH,1); bmwsl <- matrix(0,n_samDH,d2) for(i in 1:d2){ gg <- (dataDH - meanH[i])/sqrt(sigmaH[i]) bmw[which(gg>=0)] <- pnorm(gg[gg>=0]) bmw[which(gg<0)] <- 1 - pnorm(abs(gg[gg<0])) bmwsl[,i] <- bmw*mix_pi[i] } P2 <- rowSums(bmwsl) nn<-dim(as.matrix(unique(P2)))[1] if(nn<n_samDH){P2<-P2+runif(n_samDH)/1e4} dd <- as.matrix(c(sum(P2),sum(P2^2),sum((P2-0.5)^2))) WW2 <- 1/(12*n_samDH) + sum((P2 - (as.matrix(c(1:n_samDH)) - 0.5)/n_samDH)^2) u <- as.matrix(c(12*n_samDH*((dd[1]/n_samDH-0.5)^2),((45*n_samDH)/4)*((dd[2]/n_samDH-1/3)^2),180*n_samDH*((dd[3]/n_samDH-1/12)^2))) D <- as.numeric(ks.test(P2,"punif")[[1]][1]) tt <- as.matrix(c((1 - pchisq(u[1],1)),(1 - pchisq(u[2],1)),(1 - pchisq(u[3],1)),K1(WW2),(1-pkolm(D,n_samDH)))) tt_P1[which(tt_P1>=10e-4)]<-round(tt_P1[which(tt_P1>=10e-4)],4);tt_P1[which(tt_P1<10e-4)]<-format(tt_P1[which(tt_P1<10e-4)],scientific=TRUE,digit=4) tt_P2[which(tt_P2>=10e-4)]<-round(tt_P2[which(tt_P2>=10e-4)],4);tt_P2[which(tt_P2<10e-4)]<-format(tt_P2[which(tt_P2<10e-4)],scientific=TRUE,digit=4) tt[which(tt>=10e-4)]<-round(tt[which(tt>=10e-4)],4);tt[which(tt<10e-4)]<-format(tt[which(tt<10e-4)],scientific=TRUE,digit=4) output <- data.frame("4MG-EEEA",round(abc,4),round(AIC,4),round(mean11,4),round(mean12,4),round(sigma,4),round(t(meanH),4)," "," "," "," "," "," "," "," ",round(sigmaH[1],4),round(t(mix_pi),4), " "," "," "," "," "," "," "," ",round(B1[1],4)," "," ",round(B1[2],4),round(B1[2],4),round(B1[2],4),round(B1[3],4)," "," "," "," "," "," "," "," ", round(jj,4),round(ll*100,4)," "," ",round(u_P1[1],4),tt_P1[1],round(u_P1[2],4), tt_P1[2],round(u_P1[3],4),tt_P1[3],round(WW2_P1,4),tt_P1[4],round(D_P1,4),tt_P1[5],round(u_P2[1],4),tt_P2[1],round(u_P2[2],4), tt_P2[2],round(u_P2[3],4),tt_P2[3],round(WW2_P2,4),tt_P2[4],round(D_P2,4),tt_P2[5],round(u[1],4),tt[1],round(u[2],4), tt[2],round(u[3],4),tt[3],round(WW2,4),tt[4],round(D,4),tt[5]) output<-as.matrix(output) OUTPUT<-list(output,mi) return(OUTPUT) } K1G3DH <- function(x){ V0 <- 0 for(j in 0:2) {I1 <- 0;I2 <- 0 for(k in 0:8) {I1 <- I1 + (((4*j+1)^2/(32*x))^(-0.25+2*k))/(gamma(k+1)*gamma(0.75+k)) I2 <- I2 + ((4*j+1)^2/(32*x))^(0.25+2*k)/(gamma(k+1)*gamma(1.25+k))} V0 <- V0 + (gamma(j+0.5)*sqrt(4*j+1)/(gamma(0.5)*gamma(j+1)))*exp(-(4*j+1)^2/(16*x))*(I1-I2)} V <- (1/sqrt(2*x))*V0 return (1-V) } logLG3DH <- function(nm,nng,mi,mn,s,d1) { sum2 <- sum(log(dmixnorm(d1,mn,sqrt(s),mi)));return (sum2) } if(model=="All models"){ cl.cores <- detectCores() if(cl.cores<=2){ cl.cores<-1 }else if(cl.cores>2){ if(cl.cores>10){ cl.cores<-10 }else { cl.cores <- detectCores()-1 } } cl <- makeCluster(cl.cores) registerDoParallel(cl) i<-NULL allresult=foreach(i=1:38,.combine = 'rbind')%dopar%{ requireNamespace("KScorrect") requireNamespace("kolmim") requireNamespace("MASS") G3DHModelFun[[i]](K1G3DH,logLG3DH,df11,df21,df31,G3DHtext2)[[1]] } stopCluster(cl) mi<-NULL }else{ allresultq<-switch(model,"0MG"=G3DHModelFun[[1]](K1G3DH,logLG3DH,df11,df21,df31,G3DHtext2),"1MG-A"=G3DHModelFun[[2]](K1G3DH,logLG3DH,df11,df21,df31,G3DHtext2),"2MG-AI"=G3DHModelFun[[3]](K1G3DH,logLG3DH,df11,df21,df31,G3DHtext2), "2MG-A"=G3DHModelFun[[4]](K1G3DH,logLG3DH,df11,df21,df31,G3DHtext2),"2MG-EA"=G3DHModelFun[[5]](K1G3DH,logLG3DH,df11,df21,df31,G3DHtext2),"2MG-ED"=G3DHModelFun[[6]](K1G3DH,logLG3DH,df11,df21,df31,G3DHtext2), "2MG-ER"=G3DHModelFun[[7]](K1G3DH,logLG3DH,df11,df21,df31,G3DHtext2),"2MG-AE"=G3DHModelFun[[8]](K1G3DH,logLG3DH,df11,df21,df31,G3DHtext2),"2MG-CE"=G3DHModelFun[[9]](K1G3DH,logLG3DH,df11,df21,df31,G3DHtext2), "2MG-DE"=G3DHModelFun[[10]](K1G3DH,logLG3DH,df11,df21,df31,G3DHtext2),"PG-AI"=G3DHModelFun[[12]](K1G3DH,logLG3DH,df11,df21,df31,G3DHtext2), "PG-A"=G3DHModelFun[[13]](K1G3DH,logLG3DH,df11,df21,df31,G3DHtext2),"MX1-A-AI"=G3DHModelFun[[14]](K1G3DH,logLG3DH,df11,df21,df31,G3DHtext2),"MX1-A-A"=G3DHModelFun[[15]](K1G3DH,logLG3DH,df11,df21,df31,G3DHtext2), "MX2-AI-AI"=G3DHModelFun[[16]](K1G3DH,logLG3DH,df11,df21,df31,G3DHtext2),"MX2-AI-A"=G3DHModelFun[[17]](K1G3DH,logLG3DH,df11,df21,df31,G3DHtext2),"MX2-A-A"=G3DHModelFun[[18]](K1G3DH,logLG3DH,df11,df21,df31,G3DHtext2), "MX2-EA-A"=G3DHModelFun[[19]](K1G3DH,logLG3DH,df11,df21,df31,G3DHtext2),"MX2-ED-A"=G3DHModelFun[[20]](K1G3DH,logLG3DH,df11,df21,df31,G3DHtext2),"MX2-ER-A"=G3DHModelFun[[21]](K1G3DH,logLG3DH,df11,df21,df31,G3DHtext2), "MX2-AE-A"=G3DHModelFun[[22]](K1G3DH,logLG3DH,df11,df21,df31,G3DHtext2),"MX2-CE-A"=G3DHModelFun[[23]](K1G3DH,logLG3DH,df11,df21,df31,G3DHtext2),"MX2-DE-A"=G3DHModelFun[[24]](K1G3DH,logLG3DH,df11,df21,df31,G3DHtext2), "MX2-IE-A"=G3DHModelFun[[25]](K1G3DH,logLG3DH,df11,df21,df31,G3DHtext2),"3MG-AI"=G3DHModelFun[[26]](K1G3DH,logLG3DH,df11,df21,df31,G3DHtext2),"3MG-A"=G3DHModelFun[[27]](K1G3DH,logLG3DH,df11,df21,df31,G3DHtext2), "3MG-CEA"=G3DHModelFun[[28]](K1G3DH,logLG3DH,df11,df21,df31,G3DHtext2),"3MG-PEA"=G3DHModelFun[[29]](K1G3DH,logLG3DH,df11,df21,df31,G3DHtext2),"MX3-AI-AI"=G3DHModelFun[[30]](K1G3DH,logLG3DH,df11,df21,df31,G3DHtext2), "MX3-AI-A"=G3DHModelFun[[31]](K1G3DH,logLG3DH,df11,df21,df31,G3DHtext2),"MX3-A-A"=G3DHModelFun[[32]](K1G3DH,logLG3DH,df11,df21,df31,G3DHtext2),"MX3-CEA-A"=G3DHModelFun[[33]](K1G3DH,logLG3DH,df11,df21,df31,G3DHtext2), "MX3-PEA-A"=G3DHModelFun[[34]](K1G3DH,logLG3DH,df11,df21,df31,G3DHtext2),"4MG-AI"=G3DHModelFun[[35]](K1G3DH,logLG3DH,df11,df21,df31,G3DHtext2),"4MG-CEA"=G3DHModelFun[[36]](K1G3DH,logLG3DH,df11,df21,df31,G3DHtext2), "4MG-EEA"=G3DHModelFun[[37]](K1G3DH,logLG3DH,df11,df21,df31,G3DHtext2),"4MG-EEEA"=G3DHModelFun[[38]](K1G3DH,logLG3DH,df11,df21,df31,G3DHtext2)) allresult<-allresultq[[1]] if(model=="0MG"||model=="PG-A"||model=="PG-AI"){ mi<-NULL }else{ mi<-allresultq[[2]] } } colnames(allresult) <- G3DHcolname out<-list(allresult,mi) return(out) }
getT <- function(countsTable, sizeFactors = NULL, q.vec = NULL, numPart = 1, propForSigma = c(0, 1), verbose = TRUE, shrinkTarget = NULL, shrinkQuantile = NULL, shrinkVar = FALSE, eSlope = 0.05, disp = NULL, dispXX = NULL, normalize = FALSE, lwd1 = 4.5, cexlab1 = 1.2) { if (!is.null(countsTable)) { counts = as.matrix(countsTable) } if (is.null(countsTable) & is.null(disp)) { stop("at least provide the initial dispersion estimates.") } if (is.null(sizeFactors) & !is.null(countsTable)) { sizeFactors = getNormFactor(countsTable) } if (is.null(eSlope)) { eSlope = 0.002 } else { if (length(eSlope) > 1 & verbose) print("Note: only the first value in eSlope is used for tests.") } allAdjDisp = list() if (is.null(disp) & !is.null(countsTable)) { normc = as.matrix(t(t(counts) / sizeFactors)) normc.m = rowMeans(normc) normc.v = rowVars(as.matrix(t(t(counts) / sqrt(sizeFactors)))) s_st = mean(1 / sizeFactors) disp = (normc.v - normc.m) / (normc.m)^2 normc.m[normc.m <= 0] = 1 log.normc.m = log(normc.m) } else if (!is.null(dispXX)) { normc.m = dispXX normc.m[normc.m <= 0] = 1 log.normc.m = log(normc.m) } else { normc.m = NULL log.normc.m = NULL } if (shrinkVar & is.null(disp)) { disp = normc.v if (verbose) print("Shrinkage estimates on variance are used.") } else { if (verbose) print("Shrinkage estimates on dispersion are used for the tests.") } disp[is.na(disp)] = 0 disp[disp <= 0] = 0 if (numPart == 1) { disp.m = mean(disp) asd.mle = round(mean((disp - disp.m)^2, na.rm = T), 4) rg.xx = quantile(disp[is.finite(disp)], prob = c(0.05, 0.995)) xx = seq(rg.xx[1], rg.xx[2], length.out = 200) asd = rep(0, length(xx)) for (i in 1:length(xx)) { allAdjDisp[[i]] = equalSpace(disp, log.normc.m, 1, propForSigma = propForSigma, shrinkTarget = xx[i], vb = FALSE) allAdjDisp[[i]] = pmax(1e-08, allAdjDisp[[i]]) names(allAdjDisp[[i]]) = 1:length(disp) asd[i] = mean((allAdjDisp[[i]] - disp)^2, na.rm = T) } diff.q = diff.asd = rep(0, length(asd)) maxASD = max(asd, na.rm = T) maxASD.pnt = which(asd == maxASD) for (i in 1:length(asd)) { diff.asd[i] = maxASD - asd[i] diff.q[i] = xx[maxASD.pnt] - xx[i] } numAdjPoints = 6 len.asd = length(asd) - numAdjPoints + 1 slope1 = rep(1, len.asd) if (normalize) { xx1 = xx / sd(xx) yy1 = asd / sd(asd) eSlope = eSlope * 5 } else { xx1 = xx yy1 = asd } for (i in 1:len.asd) { slope1.xx = xx1[i:(i + numAdjPoints - 1)] slope1.yy = yy1[i:(i + numAdjPoints - 1)] slope1[i] = cov(slope1.xx, slope1.yy) / var(slope1.xx) } maxSlope1 = max(abs(slope1)) maxSlope1.pnt = which(abs(slope1) == maxSlope1) sub.slope1 = abs(slope1)[maxSlope1.pnt:len.asd] sub.diff.asd = diff.asd[maxSlope1.pnt:length(diff.asd)] pred.diff = matrix(NA, nrow = length(sub.diff.asd), ncol = numAdjPoints) for (i in 1:length(sub.diff.asd)) { for (j in 1:numAdjPoints) { if (i - j >= 0) { pred.diff[i, j] = sub.diff.asd[i] / sub.slope1[i - j + 1] } } } max.pred = max(pred.diff, na.rm = T) max.rowInd = which(apply(pred.diff, 1, max, na.rm = T) == max.pred) temp.max.pnt = max.rowInd + maxSlope1.pnt - 1 - ceiling(numAdjPoints/2) max.pnt = rep(0, length(eSlope)) for (k in 1:length(eSlope)) { max.pnt[k] = temp.max.pnt[1] while (-slope1[max.pnt[k] - ceiling(numAdjPoints/2)] < eSlope[k] & slope1[max.pnt[k] - ceiling(numAdjPoints/2)] < 0) { max.pnt[k] = max.pnt[k] - 1 } } if (!is.null(shrinkQuantile)) { max.pnt = 1 q.vec = shrinkQuantile adjDisp1 = equalSpace(disp, log.normc.m, numPart, propForSigma = propForSigma, shrinkQuantile = q.vec[1], vb = FALSE) adjDisp1 = pmax(1e-08, adjDisp1) names(adjDisp1) = 1:length(disp) asd.target = mean((adjDisp1 - disp)^2, na.rm = T) target = round(quantile(disp, prob = q.vec[1]), 3) } if (!is.null(shrinkTarget)) { max.pnt = 1 disp.tm = c(disp[!is.na(disp)], shrinkTarget[1]) q.vec = round(rank(disp.tm)[disp.tm == shrinkTarget[1]] / length(disp[!is.na(disp)]), 3) adjDisp1 = equalSpace(disp, log.normc.m, numPart, propForSigma = propForSigma, shrinkQuantile = q.vec[1], vb = FALSE) adjDisp1 = pmax(1e-08, adjDisp1) names(adjDisp1) = 1:length(disp) asd.target = mean((adjDisp1 - disp)^2, na.rm = T) target = shrinkTarget[1] } if (is.null(shrinkQuantile) & is.null(shrinkTarget)) { target = asd.target = q.vec = rep(0, length(eSlope)) for (k in 1:length(eSlope)) { target[k] = xx[max.pnt[k]][1] asd.target[k] = asd[max.pnt[k]] disp.tm = c(disp[!is.na(disp)], target[k]) q.vec[k] = round(rank(disp.tm)[disp.tm == target[k]] / length(disp[!is.na(disp)]), 3) } } if (verbose) { if (!is.null(shrinkQuantile) | !is.null(shrinkTarget)) { print(paste("The selected shrink target is", target[1])) print(paste("The selected shrink quantile is", q.vec[1])) } else { print(paste("The shrink target is", target[1])) print(paste("The shrink quantile is", q.vec[1])) } } return(list(q = q.vec[1], target = target[1])) } else if (numPart > 1) { if (is.null(log.normc.m)) { stop("Error in getT: log.normc.m can not be NULL.") } out = getTgroup(y = disp, x = log.normc.m, numPart = numPart, verbose = verbose, eSlope = eSlope, lwd1 = lwd1, cexlab1 = cexlab1) return(out) } else { stop("Error: numPart must be a non-negative integer.") } } getAdjustDisp <- function(obs, propForSigma = c(0.5, 1), shrinkTarget = NULL, shrinkQuantile = NULL, verbose = TRUE){ obs[is.na(obs)] = 0 if (is.null(shrinkTarget)) { upBound = quantile(obs, prob = shrinkQuantile, na.rm = T) if (verbose) { print(paste("shrink toward ", shrinkTarget, " (", shrinkQuantile, "th quantile).", sep = "")) } } else { upBound = shrinkTarget if (verbose) { print(paste("shrink toward ", shrinkTarget, ".", sep = "")) } } if (is.null(propForSigma)) { subobs = obs[obs >= upBound & obs <= quantile(obs, prob = 0.999)] S.mat = var(subobs, na.rm = T) } else if (length(propForSigma) == 2) { subobs = obs rg = quantile(subobs[is.finite(subobs)], na.rm = T, prob = propForSigma) subobs = subobs[subobs >= rg[1] & subobs <= rg[2]] S.mat = var(subobs[is.finite(subobs)], na.rm = T) } else if (length(propForSigma) == 1 & is.numeric(propForSigma)) { S.mat = propForSigma } else if (is.na(propForSigma)) { subobs = obs[is.finite(obs)] S.mat = var(subobs[is.finite(subobs)], na.rm = T) } else { stop(paste("if don't know the empirical value on the variance of", "dispersion, please set it as NULL.")) } cmp = data.frame(mean = mean(obs, na.rm = T), sigmasq.part = S.mat) mean.mat = rep(upBound, length(obs)) dif.mat = obs - mean.mat dif2.mat = sum(dif.mat^2) deta = 1 - ((length(obs) - 2) * S.mat / (dif2.mat)) jsDiff = pmax(0, deta) * dif.mat jsest = jsDiff + mean.mat return(list(adj = jsest, cmp = cmp)) } getNormFactor <- function (countsTable1){ countsTable1.log = log(countsTable1) row.mean1.log = rowMeans(countsTable1.log) geo.dev1.log = countsTable1.log - row.mean1.log apply(geo.dev1.log, 2, function(x) { exp(median(x[is.finite(x)])) }) } rowVars <- function (x){ apply(x, 1, var, na.rm = T) } equalSpace <- function (y, x = NULL, numcls = 1, propForSigma = c(0, 1), shrinkTarget = NULL, shrinkQuantile = 0.975, vb = TRUE){ if (numcls == 1 | is.null(x)) return(getAdjustDisp(y, propForSigma = propForSigma, shrinkTarget, shrinkQuantile, verbose = vb)$adj) if (!is.null(shrinkTarget) & length(shrinkTarget) != numcls) { print(paste("Warning: the number of shrink targes is unequal to the", "number of pre-decied groups. Only the first target is used.")) shrinkTarget = shrinkTarget[1] numcls = 1 } if (sum(is.na(x)) > 0) print("The NA values in the dependent variable were ignored.") if (length(y) != length(x)) stop(paste("Error: check the input of equalSpace. y and x have", "unequal lengths in equalSpace function.")) rgx = range(x[x > -Inf]) cut = seq(from = rgx[1], to = rgx[2], length = numcls + 1) cls = rep(1, length(y)) cls[x <= cut[2]] = 1 cls[x > cut[numcls]] = numcls for (i in 2:(numcls - 1)) { cls[x > cut[i] & x <= cut[i + 1]] = i } sizes = tapply(rep(1, length(cls)), cls, sum) js = y mean.y = mean(y) for (i in 1:length(sizes)) { if (sizes[i] > 2) { x.sub = x[cls == i] if (!is.null(shrinkTarget)) { mixr = getAdjustDisp(y[cls == i], propForSigma = propForSigma, shrinkTarget[i], shrinkQuantile, verbose = vb) } else { mixr = getAdjustDisp(y[cls == i], propForSigma = propForSigma, shrinkTarget = NULL, shrinkQuantile = shrinkQuantile, verbose = vb) } js[cls == i] = mixr$adj } else { js[cls == i] = mean.y } } return(js) } getTgroup <- function (y, x, numPart = 10, plotASD = FALSE, verbose = FALSE, eSlope = 0.05, lwd1 = 4.5, cexlab1 = 1.2){ rgx = range(x[is.finite(x)]) cut = seq(from = rgx[1], to = rgx[2], length = numPart + 1) cls = rep(1, length(y)) cls[x <= cut[2]] = 1 cls[x > cut[numPart]] = numPart for (i in 2:(numPart - 1)) { cls[x > cut[i] & x <= cut[i + 1]] = i } sizes = tapply(rep(1, length(cls)), cls, sum) qall.vec = targetall = rep(1, numPart) for (gp in 1:numPart) { allAdjy = list() y1 = y[cls == gp] x1 = x[cls == gp] y.m = mean(y1) asd.mle = round(mean((y1 - y.m)^2, na.rm = T), 4) rg.xx = quantile(y[is.finite(y1)], prob = c(0.05, 0.995)) xx = seq(rg.xx[1], rg.xx[2], length.out = 200) asd = rep(0, length(xx)) for (i in 1:length(xx)) { allAdjy[[i]] = equalSpace(y = y1, x = x1, numcls = 1, shrinkTarget = xx[i], vb = FALSE) allAdjy[[i]] = pmax(1e-08, allAdjy[[i]]) names(allAdjy[[i]]) = 1:length(y1) asd[i] = mean((allAdjy[[i]] - y1)^2, na.rm = T) } diff.q = diff.asd = rep(0, length(asd)) maxASD = max(asd, na.rm = T) maxASD.pnt = which(asd == maxASD) maxASD.pnt = max(maxASD.pnt) for (i in 1:length(asd)) { diff.asd[i] = maxASD - asd[i] diff.q[i] = xx[maxASD.pnt] - xx[i] } numAdjPoints = 6 len.asd = length(asd) - numAdjPoints + 1 slope1 = rep(1, len.asd) xx1 = xx y11 = asd for (i in 1:len.asd) { slope1.xx = xx1[i:(i + numAdjPoints - 1)] slope1.y1 = y11[i:(i + numAdjPoints - 1)] slope1[i] = cov(slope1.xx, slope1.y1) / var(slope1.xx) } maxSlope1 = max(abs(slope1)) maxSlope1.pnt = which(abs(slope1) == maxSlope1) sub.slope1 = abs(slope1)[maxSlope1.pnt:len.asd] sub.diff.asd = diff.asd[maxSlope1.pnt:length(diff.asd)] pred.diff = matrix(NA, nrow = length(sub.diff.asd), ncol = numAdjPoints) for (i in 1:length(sub.diff.asd)) { for (j in 1:numAdjPoints) { if (i - j >= 0) { pred.diff[i, j] = sub.diff.asd[i] / sub.slope1[i - j + 1] } } } max.pred = max(pred.diff, na.rm = T) max.rowInd = which(apply(pred.diff, 1, max, na.rm = T) == max.pred) temp.max.pnt = max.rowInd + maxSlope1.pnt - 1 - ceiling(numAdjPoints / 2) max.pnt = rep(0, length(eSlope)) for (k in 1:length(eSlope)) { max.pnt[k] = temp.max.pnt[1] tm1 = -slope1[max.pnt[k] - ceiling(numAdjPoints/2)] tm2 = -tm1 while (!is.na(tm1) & tm1[1] < eSlope[k] & tm2[1] < 0) { max.pnt[k] = max.pnt[k] - 1 tm1 = -slope1[max.pnt[k] - ceiling(numAdjPoints/2)] tm2 = -tm1 if (length(tm1) == 0) break } } target = asd.target = q.vec = rep(0, length(eSlope)) for (k in 1:length(eSlope)) { target[k] = xx[max.pnt[k]][1] asd.target[k] = asd[max.pnt[k]][1] y.tm = c(y1[!is.na(y1)], target[k]) q.vec[k] = round(rank(y.tm)[y.tm == target[k]]/length(y1[!is.na(y1)]), 3) } if (verbose) { print(paste("In group", gp, "the average of the values on", "X-axis for", sizes[gp], "genes is", mean(x1, na.rm = T))) print(paste("shrinkTarget ", target[1], " and shrinkQuantile ", q.vec[1], ".", sep = "")) } qall.vec[gp] = q.vec[1] targetall[gp] = target[1] } return(list(q = qall.vec, target = targetall)) }
checkArg = function(x, cl, s4 = FALSE, len, min.len, max.len, choices, subset, lower = NA, upper = NA, na.ok = TRUE, formals) { s = deparse(substitute(x)) if (missing(x)) stop("Argument ", s, " must not be missing!") cl2 = class(x)[1] len2 = length(x) matchEl = function(x, xs) any(sapply(xs, function(y) identical(y, x))) if (!missing(choices)) { if (!matchEl(x, choices)) stop("Argument ", s, " must be any of: ", collapse(choices), "!") } else if (!missing(subset)) { if (!all(sapply(x, matchEl, xs = subset))) stop("Argument ", s, " must be subset of: ", collapse(subset), "!") } else if (!missing(formals)) { if (!is.function(x)) stop("Argument ", s, " must be of class ", "function", " not: ", cl2, "!") fs = names(formals(x)) if (length(fs) < length(formals) || !all(formals == fs[seq_along(formals)])) stop("Argument function must have first formal args: ", paste(formals, collapse = ","), "!") } else { mycheck = function(x, cc) if(identical(cc, "numeric")) is.numeric(x) else if(identical(cc, "integer")) is.integer(x) else if(identical(cc, "vector")) is.vector(x) else if (!s4) inherits(x, cc) else if (s4) is(x, cc) if (!any(sapply(cl, mycheck, x = x))) stop("Argument ", s, " must be of class ", collapse(cl, " OR "), ", not: ", cl2, "!") if (!missing(len) && len2 != len) stop("Argument ", s, " must be of length ", len, " not: ", len2, "!") if (!missing(min.len) && len2 < min.len) stop("Argument ", s, " must be at least of length ", min.len, " not: ", len2, "!") if (!missing(max.len) && len2 > max.len) stop("Argument ", s, " must be at most of length ", max.len, " not: ", len2, "!") if (!na.ok && any(is.na(x))) stop("Argument ", s, " must not contain any NAs!") if (is.numeric(x) && !is.na(lower) && ((is.na(x) && !na.ok) || (!is.na(x) && any(x < lower)))) stop("Argument ", s, " must be greater than or equal ", lower, "!") if (is.numeric(x) && !is.na(upper) && ((is.na(x) && !na.ok) || (!is.na(x) && any(x > upper)))) stop("Argument ", s, " must be less than or equal ", upper, "!") } }
cgamm = function(formula, nsim = 0, family = gaussian(), cpar = 1.2, data = NULL, weights = NULL, sc_x = FALSE, sc_y = FALSE, bisect = TRUE, reml = TRUE) { cl <- match.call() mf <- match.call(expand.dots = FALSE) m <- match(c("formula", "data"), names(mf), 0L) mf <- mf[c(1L, m)] mf[[1]] <- quote(lme4::lFormula) mf <- eval(mf, parent.frame(1L))$fr ynm <- names(mf)[1] mt <- attr(mf, "terms") y <- model.response(mf, "any") shapes1 <- NULL; shapes2 <- NULL xmat <- NULL; xnms <- NULL tr <- NULL; pl <- NULL; umb <- NULL tree.delta <- NULL; umbrella.delta <- NULL tid1 <- NULL; tid2 <- NULL; tpos2 <- 0 uid1 <- NULL; uid2 <- NULL; upos2 <- 0 nums <- NULL; ks <- list(); sps <- NULL; xid <- 1 zmat <- NULL; zid <- NULL; zid0 <- NULL; zid1 <- NULL; zid2 <- NULL; znms <- NULL; is_param <- NULL; is_fac <- NULL; vals <- NULL; st <- 1; ed <- 1 ztb <- list(); iztb <- 1 nc <- ncol(mf) id <- mf[,nc] szs <- unname(table(id)) for (i in 2:(nc-1)) { if (is.numeric(attributes(mf[,i])$shape)) { shapes1 <- c(shapes1, attributes(mf[,i])$shape) xmat <- cbind(xmat, mf[,i]) xnms <- c(xnms, attributes(mf[,i])$nm) nums <- c(nums, attributes(mf[,i])$numknots) sps <- c(sps, attributes(mf[,i])$space) ks[[xid]] <- attributes(mf[,i])$knots xid <- xid + 1 } if (is.character(attributes(mf[,i])$shape)) { shapes2 <- c(shapes2, attributes(mf[,i])$shape) if (attributes(mf[,i])$shape == "tree") { pl <- c(pl, attributes(mf[,i])$pl) treei <- tree.fun(mf[,i], attributes(mf[,i])$pl) tree.delta <- rbind(tree.delta, treei) tpos1 <- tpos2 + 1 tpos2 <- tpos2 + nrow(treei) tid1 <- c(tid1, tpos1) tid2 <- c(tid2, tpos2) tr <- cbind(tr, mf[,i]) } if (attributes(mf[,i])$shape == "umbrella") { umbi <- umbrella.fun(mf[,i]) umbrella.delta <- rbind(umbrella.delta, umbi) upos1 <- upos2 + 1 upos2 <- upos2 + nrow(umbi) uid1 <- c(uid1, upos1) uid2 <- c(uid2, upos2) umb <- cbind(umb, mf[,i]) } } if (is.null(attributes(mf[,i])$shape)) { if (!is.null(names(mf)[i])) { znms <- c(znms, names(mf)[i]) } if (!is.matrix(mf[,i])) { zid <- c(zid, i) is_param <- c(is_param, TRUE) if (is.factor(mf[,i])) { is_fac <- c(is_fac, TRUE) ch_char <- suppressWarnings(is.na(as.numeric(levels(mf[, i])))) if (any(ch_char)) { vals <- c(vals, unique(levels(mf[, i]))[-1]) } else { vals <- c(vals, as.numeric(levels(mf[, i]))[-1]) } nlvs <- length(attributes(mf[,i])$levels) ed <- st + nlvs - 2 zid1 <- c(zid1, st) zid2 <- c(zid2, ed) st <- st + nlvs - 1 zmat0 <- model.matrix(~ mf[, i])[, -1, drop = FALSE] zmat <- cbind(zmat, zmat0) ztb[[iztb]] <- mf[,i] iztb <- iztb + 1 } else { is_fac <- c(is_fac, FALSE) zmat <- cbind(zmat, mf[, i]) ztb[[iztb]] <- mf[,i] iztb <- iztb + 1 ed <- st zid1 <- c(zid1, st) zid2 <- c(zid2, ed) st <- st + 1 vals <- c(vals, "") } } else { is_param <- c(is_param, FALSE) is_fac <- c(is_fac, FALSE) zmat0 <- mf[, i] mat_cols <- ncol(zmat0) mat_rm <- NULL for (irm in 1:mat_cols) { if (all(round(diff(zmat0[, irm]), 8) == 0)) { mat_rm <- c(mat_rm, irm) } } if (!is.null(mat_rm)) { zmat0 <- zmat0[, -mat_rm, drop = FALSE] } zmat <- cbind(zmat, zmat0) ztb[[iztb]] <- mf[,i] iztb <- iztb + 1 vals <- c(vals, 1) zid <- c(zid, i) nlvs <- ncol(zmat0) + 1 ed <- st + nlvs - 2 zid1 <- c(zid1, st) zid2 <- c(zid2, ed) st <- st + nlvs - 1 } } } dimnames(zmat)[[2]] <- NULL wt.iter = FALSE if (is.null(shapes1) & is.null(shapes2)) { nsim <- 0 } xmat0 <- xmat; shapes0 <- shapes1; nums0 <- nums; ks0 <- ks; sps0 <- sps; xnms0 <- xnms; idx_s <- NULL; idx <- NULL if (any(shapes1 == 17)) { kshapes <- length(shapes1) obs <- 1:kshapes idx_s <- obs[which(shapes1 == 17)]; idx <- obs[which(shapes1 != 17)] xmat0[ ,1:length(idx_s)] <- xmat[ ,idx_s] shapes0[1:length(idx_s)] <- shapes1[idx_s] nums0[1:length(idx_s)] <- nums[idx_s] sps0[1:length(idx_s)] <- sps[idx_s] ks0[1:length(idx_s)] <- ks[idx_s] xnms0[1:length(idx_s)] <- xnms[idx_s] if (length(idx) > 0) { xmat0[ ,(1 + length(idx_s)):kshapes] <- xmat[ ,idx] shapes0[(1 + length(idx_s)):kshapes] <- shapes1[idx] nums0[(1 + length(idx_s)):kshapes] <- nums[idx] sps0[(1 + length(idx_s)):kshapes] <- sps[idx] ks0[(1 + length(idx_s)):kshapes] <- ks[idx] xnms0[(1 +length(idx_s)):kshapes] <- xnms[idx] } } shapes <- c(shapes1, shapes2) ans <- cgamm.fit(y = y, xmat = xmat0, zmat = zmat, id = id, shapes = shapes0, numknots = nums0, knots = ks0, space = sps0, nsim = nsim, family = family, cpar = cpar, wt.iter = wt.iter, umbrella.delta = umbrella.delta, tree.delta = tree.delta, weights = weights, sc_x = sc_x, sc_y = sc_y, idx_s = idx_s, idx = idx, bisect = bisect, reml = reml) rslt <- list(muhat = ans$muhat, coefs = ans$coefs, bh = ans$bh, zcoefs = ans$zcoefs, pvals.beta = ans$pvals.beta, se.beta = ans$se.beta, vcoefs = ans$vcoefs, ahat = ans$ahat, sig2hat = ans$sig2hat, siga2hat = ans$siga2hat, thhat = ans$thhat, bigmat = ans$bigmat, gtil=ans$gtil, dd2=ans$dd2, id = id, szs = szs, shapes = shapes0, numknots = ans$numknots, knots = ans$knots, space = sps0, d0 = ans$np, xmat_add = xmat, xmat0 = ans$xmat2, knots0 = ans$knots2, numknots0 = ans$numknots2, sps0 = ans$sps2, ms0 = ans$ms2, etacomps = ans$etacomps, xnms_add = xnms, xid1 = ans$xid1, xid2 = ans$xid2, ynm = ynm, y = y, znms = znms, zmat = zmat, ztb = ztb, zid = zid, zid1 = zid1, zid2 = zid2, vals = vals, family = family, is_fac = is_fac, is_param = is_param, tms = mt, capm = ans$capm, capms = ans$capms, capk = ans$capk, capt = ans$capt, capu = ans$capu, mod.lmer = ans$mod.lmer, pv.siga2 = ans$pv.siga2, ci.siga2 = ans$ci.siga2, ci.siga2.bi = ans$ci.siga2.bi, ci.th = ans$ci.th, ci.rho = ans$ci.rho, ci.sig2 = ans$ci.sig2, ones = ans$ones, resid_df_obs = ans$resid_df_obs, edf = ans$edf) rslt$call <- cl class(rslt) <- c("cgamm", "cgam") return (rslt) } cgamm.fit = function(y, xmat, zmat, id, shapes, numknots, knots, space, nsim, family = gaussian(), cpar = 1.2, wt.iter = FALSE, umbrella.delta = NULL, tree.delta = NULL, weights = NULL, sc_x = FALSE, sc_y = FALSE, idx_s = NULL, idx = NULL, bisect = FALSE, modlmer = FALSE, reml = TRUE) { cicfamily = CicFamily(family) llh.fun = cicfamily$llh.fun linkfun = cicfamily$linkfun etahat.fun = cicfamily$etahat.fun gr.fun = cicfamily$gr.fun wt.fun = cicfamily$wt.fun zvec.fun = cicfamily$zvec.fun muhat.fun = cicfamily$muhat.fun ysim.fun = cicfamily$ysim.fun deriv.fun = cicfamily$deriv.fun dev.fun = cicfamily$dev.fun n = length(y) szs = unname(table(id)) ncl = length(szs) balanced = FALSE if (length(unique(szs)) == 1) {balanced = TRUE} ycl = f_ecl(y, ncl, szs) sm = 1e-7 capl = length(xmat) / n if (capl < 1) {capl = 0} if (round(capl, 8) != round(capl, 1)) {stop ("Incompatible dimensions for xmat!")} if (capl > 0 & sc_x) { for (i in 1:capl) {xmat[,i] = (xmat[,i] - min(xmat[,i])) / (max(xmat[,i]) - min(xmat[,i]))} } if (sc_y) { sc = sd(y) y = y / sc } capk = length(zmat) / n if (capk < 1) {capk = 0} if (round(capk, 8) != round(capk, 1)) {stop ("Incompatible dimensions for zmat!")} capls = sum(shapes == 17) delta = NULL varlist = NULL xid1 = NULL; xid2 = NULL; xpos2 = 0 knotsuse = list(); numknotsuse = NULL mslst = list() capm = 0 capms = 0 if (capl > 0) { del1_ans = makedelta(xmat[, 1], shapes[1], numknots[1], knots[[1]], space = space[1]) del1 = del1_ans$amat knotsuse[[1]] = del1_ans$knots mslst[[1]] = del1_ans$ms numknotsuse = c(numknotsuse, length(del1_ans$knots)) m1 = length(del1) / n if (shapes[1] == 17) {capms = capms + m1} var1 = 1:m1*0 + 1 xpos1 = xpos2 + 1 xpos2 = xpos2 + m1 xid1 = c(xid1, xpos1) xid2 = c(xid2, xpos2) if (capl == 1) { delta = del1 varlist = var1 } else { for (i in 2:capl) { del2_ans = makedelta(xmat[,i], shapes[i], numknots[i], knots[[i]], space = space[i]) del2 = del2_ans$amat knotsuse[[i]] = del2_ans$knots mslst[[i]] = del2_ans$ms numknotsuse = c(numknotsuse, length(del2_ans$knots)) m2 = length(del2) / n if (shapes[i] == 17) {capms = capms + m2} xpos1 = xpos2 + 1 xpos2 = xpos2 + m2 xid1 = c(xid1, xpos1) xid2 = c(xid2, xpos2) delta = rbind(del1, del2) varlist = 1:(m1 + m2)*0 varlist[1:m1] = var1 varlist[(m1 + 1):(m1 + m2)] = (1:m2)*0 + i var1 = varlist m1 = m1 + m2 del1 = delta } } xvec = NULL if (sum(shapes > 2 & shapes < 5 | shapes > 10 & shapes < 13) > 0 & capk > 0) { xvec = t(xmat[, shapes > 2 & shapes < 5 | shapes > 10 & shapes < 13]) bigmat = rbind(1:n*0 + 1, t(zmat), xvec, delta) np = 1 + capk + sum(shapes > 2 & shapes < 5 | shapes > 10 & shapes < 13) + capms } else if (sum(shapes > 2 & shapes < 5 | shapes > 10 & shapes < 13) > 0 & capk == 0) { xvec = t(xmat[, shapes > 2 & shapes < 5 | shapes > 10 & shapes < 13]) bigmat = rbind(1:n*0 + 1, xvec, delta) np = 1 + sum(shapes > 2 & shapes < 5 | shapes > 10 & shapes < 13) + capms } else if (sum(shapes > 2 & shapes < 5 | shapes > 10 & shapes < 13) == 0 & capk > 0) { bigmat = rbind(1:n*0 + 1, t(zmat), delta) np = 1 + capk + capms } else if (sum(shapes > 2 & shapes < 5 | shapes > 10 & shapes < 13) == 0 & capk == 0) { bigmat = rbind(1:n*0 + 1, delta) np = 1 + capms } else { print ("error in capk, shapes!") } capm = length(delta) / n - capms } if (!is.null(umbrella.delta)) { bigmat = rbind(bigmat, umbrella.delta) capu = length(umbrella.delta) / n } else {capu = 0} if (!is.null(tree.delta)) { bigmat = rbind(bigmat, tree.delta) capt = length(tree.delta) / n } else {capt = 0} if (!is.null(umbrella.delta) | !is.null(tree.delta)) delta_ut = rbind(umbrella.delta, tree.delta) if (!wt.iter) { if (is.null(weights)) { weights = 1:n*0 + 1 } wt = weights zvec = wt^(1/2) * y gmat = t(bigmat) for (i in 1:n) {gmat[i,] = bigmat[,i] * sqrt(wt[i])} if (any(shapes != 17)) { dsend = gmat[, (np + 1):(np + capm + capu + capt), drop = FALSE] zsend = gmat[, 1:np, drop = FALSE] ans = coneB(zvec, dsend, zsend) edf = ans$df face = ans$face bh = coef(ans) if (any(round(bh[1:np],6) < 0)) { pos = (1:np)[which(round(bh[1:np],6) < 0)] face = unique(c(pos, face)) } } else { bh = solve(crossprod(gmat), t(gmat)) %*% zvec edf = nrow(bigmat) face = 1:edf } xtx = xtx2 = NULL dd = t(bigmat[face, ,drop = FALSE]) xms = ones = list() st = 1 ed = 0 for (icl in 1:ncl) { sz = szs[icl] ed = ed + sz xms[[icl]] = dd[st:ed, ,drop=F] onevec = 1:sz*0+1 onemat = onevec%*%t(onevec) ones[[icl]] = onemat st = ed + 1 } muhat = t(bigmat) %*% bh oldmu = muhat diff = 10 nrep = 0 while (diff > 1e-7 & nrep < 10) { nrep = nrep + 1 evec = y - muhat ecl = f_ecl(evec, ncl, szs) mod.lmer = NULL if (!balanced) { if (modlmer) { mod.lmer = lmer(evec~-1+(1|id), REML=reml) thhat = summary(mod.lmer)$optinfo$val^2 } else { if (reml) { ansi = try(ansi0<-uniroot(fth2rm, c(1e-10, 1e+3), szs=szs, ycl=ecl, N=n, xcl=xms, p=edf, type='ub', xtx=xtx, xtx2=xtx2, xmat_face=dd, ones=ones), silent=TRUE) } else { ansi = try(ansi0<-uniroot(fth2, c(1e-10, 1e+3), szs=szs, ycl=ecl, N=n), silent=TRUE) } if (class(ansi) == "try-error") { thhat = 0 } else { thhat = ansi$root } } type = "ub" } else { if (modlmer) { mod.lmer = lmer(evec~-1+(1|id), REML=reml) thhat = summary(mod.lmer)$optinfo$val^2 } else { if (reml) { ansi = try(ansi0<-uniroot(fth2rm, c(1e-10, 1e+3), szs=szs, ycl=ecl, N=n, xcl=xms, p=edf, type='b', xtx=xtx, xtx2=xtx2, xmat_face=dd, ones=ones), silent=TRUE) } else { ansi = try(ansi0<-uniroot(fth2, c(1e-10, 1e+3), szs=szs, ycl=ecl, N=n), silent=TRUE) } if (class(ansi) == "try-error") { thhat = 0 } else { thhat = ansi$root } } type = "b" } ytil = NULL gtil = NULL st = 1 ed = 0 if (balanced) { oneMat = ones[[1]] sz = szs[1] } else { sz = max(szs) pos = which(szs == sz)[1] oneMat = ones[[pos]] } vi = diag(sz) + oneMat*thhat covi = vi umat = t(chol(covi)) uinv = solve(umat) uinv0 = uinv for (icl in 1:ncl) { sz = szs[icl] if (!balanced) { uinv = uinv0[1:sz, 1:sz, drop=FALSE] } yi = ycl[[icl]] ytil = c(ytil, uinv %*% as.matrix(yi, ncol=1)) ed = ed + sz gtil = rbind(gtil, uinv %*% gmat[st:ed, ,drop=F]) st = ed + 1 } if (any(shapes != 17)) { dsend = gtil[, (np + 1):(np + capm + capu + capt), drop = FALSE] zsend = gtil[, 1:np, drop = FALSE] ans = coneB(ytil, dsend, vmat = zsend, face=face) edf = ans$df face = ans$face bh = coef(ans) if (any(round(bh[1:np],6) < 0)) { pos = (1:np)[which(round(bh[1:np],6) < 0)] face = unique(c(pos, face)) } } else { bh = solve(crossprod(gtil), t(gtil)) %*% ytil edf = nrow(bigmat) face = 1:edf } muhat = t(bigmat) %*% bh diff = mean((oldmu - muhat)^2) oldmu = muhat dd = t(bigmat[face, ,drop = FALSE]) dd2 = gtil[,face,drop=FALSE] if (reml) { xms = list() st = 1 ed = 0 for (icl in 1:ncl) { sz = szs[icl] ed = ed + sz xms[[icl]] = dd[st:ed, ,drop=F] st = ed + 1 } } } ebars = sapply(ecl, mean) sig2hat = fsig(thhat, szs, ecl, ncl, N=n, edf=edf, D=nrow(bigmat), type=type) siga2hat = sig2hat * thhat ahat = ebars*szs*thhat/(1+szs*thhat) } onevw = NULL; zmatw = NULL; xvecw = NULL; dusew = NULL st = 1 ed = 0 dd_nv = dd[,-c(1:np),drop=FALSE] for (icl in 1:ncl) { sz = szs[icl] onevi = 1:sz*0+1 if (!balanced) { uinv = uinv0[1:sz, 1:sz, drop=FALSE] } ed = ed + sz onevw = rbind(onevw, uinv %*% onevi) if (!is.null(xvec)) { xvecw = rbind(xvecw, uinv %*% xvec[st:ed, ,drop=F]) } if (capk > 0) { zmatw = rbind(zmatw, uinv %*% zmat[st:ed, ,drop=F]) } if (!is.null(dd_nv)) { dusew = rbind(dusew, uinv %*% dd_nv[st:ed, ,drop=F]) } st = ed + 1 } df_obs = sum(abs(bh) > 0) pv.siga2 = ranef.test(ecl, szs, n, ncl) ci1 = NULL ci1 = ranef.ci(ecl, szs, n, ncl, level = 0.95) ci.siga2 = ci1 ci.th = ci.rho = ci.siga2.bi = NULL if (bisect) { ci2 = ranef.cith(thhat, sig2hat, siga2hat, ahat, ecl, szs, n, ncl, level = 0.95, xms=xms, p=edf, reml=reml) ci.th = ci2$ci.th ci.rho = ci2$ci.rho cia = ranef.cisiga(sig2hat, siga2hat, ahat, ecl, szs, n, ncl, level = 0.95, xms=xms, p=edf, reml=reml) ci.siga2.bi = cia$ci.siga2 } ci.sig2 = ranef.cisig2(ecl, n, ncl, level = 0.95) coefskeep = bh thvecs = NULL if (capl > 0) { dcoefs = coefskeep[(np - capms + 1):(np + capm)] thvecs = matrix(nrow = capl, ncol = n) ncon = 1 for (i in 1:capl) { thvecs[i,] = t(delta[varlist == i,]) %*% dcoefs[varlist == i] if (shapes[i] > 2 & shapes[i] < 5 | shapes[i] > 10 & shapes[i] < 13) { ncon = ncon + 1 thvecs[i,] = thvecs[i,] + vcoefs[capk + ncon] * xmat[,i] } } } if (length(idx_s) > 0) { thvecs0 = thvecs thvecs0[idx_s,] = thvecs[1:length(idx_s), ] if (length(idx) > 0) { thvecs0[idx,] = thvecs[(1+length(idx_s)):capl, ] } thvecs = thvecs0 } thvecs_ut = NULL if (capu + capt > 0) { thvecs_ut = t(delta_ut) %*% coefskeep[(np + 1 + capm):(np + capm + capu + capt)] } if (!is.null(thvecs_ut)) { thvecs = rbind(thvecs, t(thvecs_ut)) } ncl = length(szs) bhmt = matrix(rep(bh[-1], each = ncl), nrow = ncl) coefs = cbind(ahat - bh[1], bhmt) colnames(coefs) = c("(Intercept)", paste("edge", 1:ncol(bhmt))) se.beta = 1:(capk + 1)*0 tstat = 1:(capk + 1)*0 pvals.beta = 1:(capk + 1)*0 zcoefs = bh[1:(1+capk)] imat = diag(n) pj = 0 if (ncol(dusew) >= 1) { if (sum(shapes > 2 & shapes < 5 | shapes > 10 & shapes < 13) > 0) { pm = cbind(xvecw , dusew) } else { pm = dusew } pj = pm %*% solve(crossprod(pm), t(pm)) } se2 = solve(t(cbind(onevw, zmatw)) %*% (imat - pj) %*% cbind(onevw, zmatw))*sig2hat se.beta = sqrt(as.vector(diag(se2))) tstat = zcoefs / se.beta if (n<=200){cpar=1.5} if ((n - cpar * df_obs) <= 0) { pvals.beta=2 * (1 - pt(abs(tstat), df_obs)) warning ('Effective degrees of freedom is close to the number of observations! Inference about parametric covariates is not reliable!') } else { pvals.beta=2 * (1 - pt(abs(tstat), n - cpar * df_obs)) } if (capl > 0) { xcoefs = bh[(capk + 2):np] } else {xcoefs = NULL} if (np > 0) { vcoefs = bh[1:np] } else {vcoefs = NULL} knotsuse2 = knotsuse numknotsuse2 = numknotsuse mslst2 = mslst xmat2 = xmat if (length(idx_s) > 0) { knotsuse0 = knotsuse numknotsuse0 = numknotsuse mslst0 = mslst knotsuse0[idx_s] = knotsuse[1:length(idx_s)] numknotsuse0[idx_s] = numknotsuse[1:length(idx_s)] mslst0[idx_s] = mslst[1:length(idx_s)] if (length(idx) > 0) { knotsuse0[idx] = knotsuse[(1+length(idx_s)):capl] numknotsuse0[idx] = numknotsuse[(1+length(idx_s)):capl] mslst0[idx] = mslst[(1+length(idx_s)):capl] } knotsuse = knotsuse0 numknotsuse = numknotsuse0 mslst = mslst0 } rslt = list(muhat = muhat, coefs = coefs, bh = bh, zcoefs = zcoefs, pvals.beta = pvals.beta, se.beta = se.beta, vcoefs = vcoefs, ahat = ahat, sig2hat = sig2hat, siga2hat = siga2hat, thhat = thhat, bigmat = bigmat, gtil=gtil, dd2=dd2, np = np, knots = knotsuse, knots2 = knotsuse2, numknots = numknotsuse, numknots2 = numknotsuse2, ms = mslst, ms2 = mslst2, xmat2 = xmat2, xid1 = xid1, xid2 = xid2, capm = capm, capms = capms, capk = capk, capt = capt, capu = capu, etacomps = thvecs, mod.lmer = mod.lmer, pv.siga2 = pv.siga2, ci.siga2 = ci.siga2, ci.siga2.bi = ci.siga2.bi, ci.th = ci.th, ci.rho = ci.rho, ci.sig2 = ci.sig2, ones = ones, resid_df_obs = n - cpar * df_obs, edf = df_obs) return (rslt) } fth = function(ycl, ncl, N) { ni = N/ncl ybar = sapply(ycl, mean) y = unlist(ycl) num = ni^2*sum(ybar^2) - sum(y^2) den = ni*sum(y^2) - ni^2*sum(ybar^2) return (num/den) } fth2 = function(th, szs, ycl, N) { ybar = sapply(ycl, mean) y = unlist(ycl) num = sum(szs^2*ybar^2/(1+szs*th)^2) den = sum(y^2) - sum(th*szs^2*ybar^2/(1+szs*th)) obj = N/2*num/den - 1/2*sum(szs/(1+szs*th)) return (obj) } fth2rm = function(th, szs, ycl, N, xcl, p=2, type='b', xtx=NULL, xtx2=NULL, xmat_face=NULL, ones=NULL) { ybar = sapply(ycl, mean) y = unlist(ycl) num = sum(szs^2*ybar^2/(1+szs*th)^2) den = sum(y^2) - sum(th*szs^2*ybar^2/(1+szs*th)) ncl = length(ycl) hmat = matrix(0, p, p) xtils = list() ones2 = list() for(icl in 1:ncl){ ni = szs[icl] xi = xcl[[icl]] xm = xi onemat = ones[[icl]] ones2[[icl]] = onemat/(1+ni*th)^2 rinv = diag(ni) - th/(1+ni*th)*onemat hmat = hmat + t(xm) %*% rinv %*% xm } lmat = chol(hmat) hinv = chol2inv(lmat) tr = 0 for (icl in 1:ncl) { ni = szs[icl] xi = xcl[[icl]] onevec = 1:ni*0+1 xtil = t(onevec)%*%xi tr = tr + sum(diag(hinv %*% crossprod(xtil)/(1+ni*th)^2)) } rml = 1/2*tr obj = (N-p)/2*num/den - 1/2*sum(szs/(1+szs*th)) + rml return (obj) } fsig = function(thhat, szs, ycl, ncl, N, edf, D, type='b') { ybars = sapply(ycl, mean) d = min(1.5*edf, D) if (type == 'b') { sz = N/ncl sig2hat = (sum(unlist(ycl)^2) - sz^2*thhat/(1+sz*thhat) * sum(ybars^2))/(N-d-1) } else { sig2hat = (sum(unlist(ycl)^2) - sum(thhat*szs^2*ybars^2/(1 + szs*thhat)))/(N-d-1) } return (sig2hat) } f_ecl = function(evec, ncl, sz) { ecl = list() st = 1 ed = 0 for (icl in 1:ncl) { if (length(sz) > 1) { szi = sz[icl] } else {szi = sz} ed = ed + szi ecl[[icl]] = evec[st:ed] st = ed + 1 } return (ecl) } ranef.test = function(ecl, szs, N, ncl) { evec = unlist(ecl) ebars = sapply(ecl, mean) sse = 0 ssb = 0 ebar = mean(evec) for(icl in 1:ncl) { sz = szs[icl] eibar = ebars[[icl]] ei = ecl[[icl]] ssei = sum((ei - eibar)^2) sse = sse + ssei ssbi = sz*(eibar - ebar)^2 ssb = ssb + ssbi } mse = sse/(N-ncl) msb = ssb/(ncl-1) fstat = msb/mse pv = 1-pf(fstat, df1=ncl-1, df2=N-ncl) return (pv) } ranef.ci = function(ecl, szs, N, ncl, level = 0.95) { evec = unlist(ecl) ebars = sapply(ecl, mean) sse = 0 ssb = 0 ebar = mean(evec) for(icl in 1:ncl) { sz = szs[icl] eibar = ebars[[icl]] ei = ecl[[icl]] ssei = sum((ei - eibar)^2) sse = sse + ssei ssbi = sz*(eibar - ebar)^2 ssb = ssb + ssbi } mse = sse/(N-ncl) msb = ssb/(ncl-1) sz2 = 1/(ncl-1)*(N - sum(szs^2)/N) siga2hat = (msb-mse)/sz2 dfsiga = (sz2*siga2hat)**2/(msb**2/(ncl-1)+mse**2/(N-ncl)) alpha = 1-level lwr = dfsiga*siga2hat/qchisq(1-alpha/2, df=dfsiga) upp = dfsiga*siga2hat/qchisq(alpha/2, df=dfsiga) ci = c(lwr, upp) return (ci) } ranef.cith = function(thhat, sig2hat, siga2hat, ahat, ecl, szs, N, ncl, level = 0.95, xms, p, reml=TRUE) { N = sum(szs) evec = unlist(ecl) thval = fmin(thhat, ncl, ecl, N, xms, p, reml=reml) ebars = sapply(ecl, mean) ans = try(ans0<-uniroot(fn2, ncl=ncl, ycl=ecl, N=N, thval=thval, xms=xms, p=p, reml=reml, interval=c(1e-10, thhat^1), tol=.Machine$double.eps),silent=TRUE) if (class(ans) == 'try-error') { lwr = 0 } else {lwr = ans$root} ans2 = try(ans20<-uniroot(fn2, ncl=ncl, ycl=ecl, N=N, thval=thval, xms=xms, p=p, reml=reml, interval=c(thhat^1, 1e+4), tol=.Machine$double.eps),silent=TRUE) if (class(ans2) == 'try-error') { upp = 1e+4 } else {upp = ans2$root} ci = c(lwr, upp) ci2 = c(lwr/(1+lwr), upp/(1+upp)) ans = list(ci.th = ci, ci.rho = ci2) return (ans) } ranef.cisiga = function(sig2hat, siga2hat, ahat, ecl, szs, N, ncl, level = 0.95, xms, p, reml=TRUE) { N = sum(szs) evec = unlist(ecl) thval = fmin2(siga2=siga2hat, sig2hat, ncl, ecl, N, xms, p, reml=reml) ebars = sapply(ecl, mean) ans = try(ans0<-uniroot(fn2a, sig2hat=sig2hat, ncl=ncl, ycl=ecl, N=N, thval=thval, xms=xms, p=p, reml=reml, interval=c(1e-10, siga2hat^1), tol=.Machine$double.eps),silent=TRUE) if (class(ans) == 'try-error') { lwr = 0 } else {lwr = ans$root} ans2 = try(ans20<-uniroot(fn2a, sig2hat=sig2hat, ncl=ncl, ycl=ecl, N=N, thval=thval, xms=xms, p=p, reml=reml, interval=c(siga2hat^1, 1e+4), tol=.Machine$double.eps),silent=TRUE) if (class(ans2) == 'try-error') { upp = 1e+4 } else {upp = ans2$root} ci = c(lwr, upp) ans = list(ci.siga2 = ci) return (ans) } ranef.cisig2 = function(ecl, N, ncl, level = 0.95) { evec = unlist(ecl) ebars = sapply(ecl, mean) sse = 0 ebar = mean(evec) for(icl in 1:ncl) { eibar = ebars[[icl]] ei = ecl[[icl]] ssei = sum((ei - eibar)^2) sse = sse + ssei } alpha = 1-level lwr = sse/qchisq(1-alpha/2, df=N-ncl) upp = sse/qchisq(alpha/2, df=N-ncl) ci = c(lwr, upp) return (ci) } fmin = function(theta, ncl, ycl, N, xms=NULL, p=2, reml=TRUE) { if (reml) { acc1 = acc2 = acc3 = 0 hmat = matrix(0, p, p) for (i in 1:ncl) { yi = ycl[[i]] ni = length(yi) one = matrix(rep(1, ni), ncol=1) onemat = tcrossprod(one) viinv = diag(ni) - theta / (1+ni*theta) * onemat detvi = (1+ni*theta) acc1 = acc1 + t(yi) %*% viinv %*% yi acc2 = acc2 + log(detvi) xm = xms[[i]] rinv = diag(ni) - theta/(1+ni*theta)*onemat hmat = hmat + t(xm) %*% rinv %*% xm } obj = (N-p)/2 * log(acc1) + 1/2 * acc2 + 1/2 * log(det(hmat)) } else { acc1 = acc2 = 0 for (i in 1:ncl) { yi = ycl[[i]] ni = length(yi) one = matrix(rep(1, ni), ncol=1) onemat = tcrossprod(one) viinv = diag(ni) - theta / (1+ni*theta) * onemat detvi = (1+ni*theta) acc1 = acc1 + t(yi) %*% viinv %*% yi acc2 = acc2 + log(detvi) } obj = N/2 * log(acc1) + 1/2 * acc2 } return (obj) } fn2 = function(x, ncl, ycl, N, thval, level=0.95, xms=NULL, p=2, reml=TRUE) { thval2 = -thval cts = thval2 - 1/2*qchisq(level, df=1) obj = -fmin(x, ncl, ycl, N, xms, p, reml) - cts[1] return (obj) } fmin2 = function(siga2, sig2hat, ncl, ycl, N, xms=NULL, p=2, reml=TRUE) { if (reml) { acc1 = acc2 = acc3 = 0 hmat = matrix(0, p, p) for (i in 1:ncl) { yi = ycl[[i]] ni = length(yi) one = matrix(rep(1, ni), ncol=1) onemat = tcrossprod(one) viinv = diag(ni) - siga2 / (sig2hat+ni*siga2) * onemat detvi = (1+ni*siga2/sig2hat) acc1 = acc1 + t(yi) %*% viinv %*% yi acc2 = acc2 + log(detvi) xm = xms[[i]] rinv = diag(ni) - siga2/(sig2hat+ni*siga2)*onemat hmat = hmat + t(xm) %*% rinv %*% xm } obj = (N-p)/2 * log(acc1) + 1/2 * acc2 + 1/2 * log(det(hmat)) } else { acc1 = acc2 = 0 for (i in 1:ncl) { yi = ycl[[i]] ni = length(yi) one = matrix(rep(1, ni), ncol=1) onemat = tcrossprod(one) viinv = diag(ni) - siga2 / (sig2hat+ni*siga2) * onemat detvi = (1+ni*siga2/sig2hat) acc1 = acc1 + t(yi) %*% viinv %*% yi acc2 = acc2 + log(detvi) } obj = N/2 * log(acc1) + 1/2 * acc2 } return (obj) } fn2a = function(siga2, sig2hat, ncl, ycl, N, thval, level=0.95, xms=NULL, p=2, reml=TRUE) { thval2 = -thval cts = thval2 - 1/2*qchisq(level, df=1) obj = -fmin2(siga2, sig2hat, ncl, ycl, N, xms, p, reml) - cts[1] return (obj) } coef.cgamm <- function(object,...) { ans <- object$coefs ans } ranef.cgamm <- function(object,...) { ans <- object$ahat ans } fixef.cgamm <- function(object,...) { ans <- object$bh ans } predict.cgamm = function(object, newData, interval = c("none", "confidence", "prediction"), type = c("response", "link"), level = 0.95, n.mix = 500, var.f = NULL,...) { family = object$family cicfamily = CicFamily(family) muhat.fun = cicfamily$muhat.fun if (!inherits(object, "cgamm")) { warning("calling predict.cgamm(<fake-cgam-object>) ...") } if (missing(newData) || is.null(newData)) { muhat = object$muhat ahat = object$ahat ans = list(fix_effect = muhat, random_effect = ahat) return (ans) } if (!is.data.frame(newData)) { stop ("newData must be a data frame!") } prior.w = object$prior.w y = object$y muhat = object$muhat shapes = object$shapes np = object$d0; capm = object$capm; capk = object$capk; capt = object$capt; capu = object$capu xid10 = object$xid1; xid20 = object$xid2; xmat0 = object$xmat0; knots0 = object$knots0; numknots0 = object$numknots0; sps0 = object$sps0; ms0 = object$ms0 zmat = object$zmat; umb = object$umb; tr = object$tr ztb = object$ztb; zid1 = object$zid1; zid2 = object$zid2; iz = 1 bigmat = object$bigmat; umbrella.delta = object$umbrella.delta; tree.delta = object$tree.delta coefs = object$bh; zcoefs = object$zcoefs; vcoefs = object$vcoefs; xcoefs0 = object$xcoefs; ucoefs = object$ucoefs; tcoefs = object$tcoefs tt = object$tms Terms = delete.response(tt) lbs = attributes(object$tms)$term.labels idlb = rev(lbs)[1] group = object$id if (!any(names(newData) %in% lbs)){ newData[[idlb]] = rep(1, nrow(newData)) m = model.frame(Terms, newData) group_new = NULL if (interval == "prediction") { stop ("Group information is missing for the newData!") } } else { m = model.frame(Terms, newData) nmsm = names(m) group_new = m[,which(nmsm%in%idlb)] } nmsm = names(m) rm_id = which(nmsm%in%idlb) newdata = m[, -rm_id, drop=F] newx0 = NULL; newxv = NULL; newx = NULL; newx_s = NULL; newu = NULL; newt = NULL; newz = NULL; newv = NULL rn = nrow(newdata) newetahat = 0; newmuhat = 0 newxbasis = NULL; newx_sbasis = NULL; newubasis = NULL; newtbasis = NULL; newbigmat = NULL my_line = function(xp = NULL, y, x, end, start) { slope = NULL intercept = NULL yp = NULL slope = (y[end] - y[start]) / (x[end] - x[start]) intercept = y[end] - slope * x[end] yp = intercept + slope * xp ans = new.env() ans$slope = slope ans$intercept = intercept ans$yp = yp ans } for (i in 1:ncol(newdata)) { if (is.null(attributes(newdata[,i])$shape)) { if (is.factor(newdata[,i])) { lvli = levels(newdata[,i]) ztbi = levels(ztb[[iz]]) newdatai = NULL if (!any(lvli %in% ztbi)) { stop ("new factor level must be among factor levels in the fit!") } else { id1 = which(ztbi %in% lvli) klvls = length(ztbi) if (klvls > 1) { newimat = matrix(0, nrow = rn, ncol = klvls-1) for (i1 in 1:rn) { if (newdata[i1,i] != ztbi[1]) { id_col = which(ztbi %in% newdata[i1,i]) - 1 newimat[i1,id_col] = 1 } } newdatai = newimat } } } else { newdatai = newdata[,i] } newz = cbind(newz, newdatai) iz = iz + 1 } if (is.numeric(attributes(newdata[,i])$shape)) { newx0 = cbind(newx0, newdata[,i]) if ((attributes(newdata[,i])$shape > 2 & attributes(newdata[,i])$shape < 5) | (attributes(newdata[,i])$shape > 10 & attributes(newdata[,i])$shape < 13)) { newxv = cbind(newxv, newdata[,i]) } } if (is.character(attributes(newdata[,i])$shape)) { if (attributes(newdata[,i])$shape == "tree") { newt = cbind(newt, newdata[,i]) } if (attributes(newdata[,i])$shape == "umbrella") { newu = cbind(newu, newdata[,i]) } } } if (!is.null(shapes)) { if (any(shapes == 17)) { kshapes <- length(shapes) obs <- 1:kshapes idx_s <- obs[which(shapes == 17)]; idx <- obs[which(shapes != 17)] newx1 <- newx0 shapes0 <- 1:kshapes*0 newx1[,1:length(idx_s)] <- newx0[,idx_s] shapes0[1:length(idx_s)] <- shapes[idx_s] if (length(idx) > 0) { newx1[,(1 + length(idx_s)):kshapes] <- newx0[,idx] shapes0[(1 + length(idx_s)):kshapes] <- shapes[idx] } newx0 <- newx1; shapes <- shapes0 } xmat = xmat_s = NULL newx = newx_s = NULL knots = NULL ms_x = ms = NULL sh_x = sh = NULL if (all(shapes < 9)) { newx = newx0 xid1 = xid10; xid2 = xid20 xmat = xmat0 sh_x = shapes ms_x = ms0 } else if (all(shapes > 8)) { newx_s = newx0 xid1_s = xid10; xid2_s = xid20 xmat_s = xmat0 numknots = numknots0 knots = knots0 sps = sps0 sh = shapes ms = ms0 } else if (any(shapes > 8) & any(shapes < 9)) { newx = newx0[, shapes < 9, drop = FALSE] xmat = xmat0[, shapes < 9, drop = FALSE] sh_x = shapes[shapes < 9] ms_x = ms0[shapes < 9] xid1 = xid10[shapes < 9]; xid2 = xid20[shapes < 9] newx_s = newx0[, shapes > 8, drop = FALSE] xmat_s = xmat0[, shapes > 8, drop = FALSE] sh = shapes[shapes > 8] ms = ms0[shapes > 8] xid1_s = xid10[shapes > 8]; xid2_s = xid20[shapes > 8] numknots = numknots0[shapes > 8] knots = knots0[shapes > 8] sps = sps0[shapes > 8] } } if (!is.null(shapes)) { vcoefs = vcoefs[1:(1 + capk + sum(shapes > 2 & shapes < 5 | shapes > 10 & shapes < 13))] } else {vcoefs = vcoefs[1:(1 + capk)]} if (capk > 0) { vcoefs_nz = vcoefs[-c(2:(1 + capk))] } else {vcoefs_nz = vcoefs} newv = cbind(1:rn*0 + 1, newz, newxv) newv_nz = cbind(1:rn*0 + 1, newxv) n = ncol(bigmat) nc = ncol(xmat0) spl = splpr = NULL m_acc = 0 object$ms0 -> ms0 object$shapes -> shapes for (i in 1:nc) { msi = ms0[[i]] shpi = shapes[i] ki = knots0[[i]] xi = xmat0[,i] xipr = newx0[,i] if (any(xipr > max(xi)) | any(xipr < min(xi))) { stop ("No extrapolation is allowed in cgamm prediction!") } deli = makedelta(xi, shpi, knots = ki) spli = deli$amat if (shpi >= 9) { dpri = makedelta(xipr, shpi, knots = ki, suppre = TRUE, interp = TRUE) splpri = dpri$amat if (shpi > 10 & shpi < 13) { xs = sort(xi) ord = order(xi) obs = 1:n nr = nrow(splpri) ms2 = matrix(0, nrow = nr, ncol = rn) for (i1 in 1:rn) { for (i2 in 1:nr) { ms2[i2, i1] = my_line(xp = xipr[i1], y = msi[i2, ][ord], x = xs, end = n, start = 1)$yp } } splpri = splpri - ms2 } else { splpri = splpri - msi } } else {splpri = pred_del(xi, shpi, xipr, msi)} mi = dim(spli)[1] m_acc = m_acc + mi spl = rbind(spl, spli) splpr = rbind(splpr, splpri) } xmatpr = cbind(newv, t(splpr)) muhatpr = xmatpr %*% coefs[1:ncol(xmatpr), ,drop=FALSE] if ("none" %in% interval) { ans = list(fit = muhatpr) } else if (interval == "confidence" | interval == "prediction") { ones = object$ones capk = object$capk p = 1 + capk + sum(shapes > 2 & shapes < 5 | shapes > 10 & shapes < 13) if (family$family == "gaussian") { sig2hat = object$sig2hat siga2hat = object$siga2hat thhat = object$thhat szs = object$szs ahat = object$ahat muhat = object$muhat balanced = FALSE if (length(unique(szs)) == 1) { balanced = TRUE } ncl = length(szs) edges = t(bigmat) nd = ncol(edges) if (is.null(var.f)) { face = NULL nloop = n.mix nsec = 2^m_acc if (balanced) { oneMat = ones[[1]] sz = szs[1] } else { sz = max(szs) pos = which(szs == sz)[1] oneMat = ones[[pos]] } wi = 1*(diag(sz) + thhat*oneMat) covi = wi umat = t(chol(covi)) uinv0 = uinv = solve(umat) if (round(thhat,6) != 0) { sector = NULL times = NULL df = NULL for(iloop in 1:nloop){ ysim = NULL etil = NULL st = 1 ed = 0 for (icl in 1:ncl) { sz = szs[icl] ed = ed + sz mui = muhat[st:ed] if (!balanced) { uinv = uinv0[1:sz, 1:sz, drop=FALSE] } ysi = uinv %*% (rnorm(1, sd = siga2hat^.5) + as.matrix(mui, ncol=1) + rnorm(sz, sd=sig2hat^.5)) ysim = c(ysim, ysi) emati = edges[st:ed, ,drop=F] etil = rbind(etil, uinv %*% emati) st = ed + 1 } dsend = etil[, -(1:np)] zsend = etil[, 1:np] ans = coneB(ysim, dsend, vmat = zsend, face = NULL) cf = round(ans$coefs[(np+1):(m_acc+np)],10) sec = 1:m_acc*0 sec[cf > 0] = 1 sector = rbind(sector, sec) r = makebin(sec) + 1 if (iloop == 1) { df = rbind(df, c(r, 1)) } else { if (r %in% df[,1]) { ps = which(df[,1] %in% r) df[ps,2] = df[ps,2] + 1 } else { df = rbind(df, c(r, 1)) } } } sm_id = which((df[,2]/nloop) < 1e-3) if (any(sm_id)) { df = df[-sm_id, ,drop=FALSE] } } else { prior.w = 1:n*0 + 1 sector = NULL times = NULL df = NULL for (iloop in 1:nloop) { ysim = muhat + rnorm(n)*sig2hat^.5 ysim = ysim * sqrt(prior.w) dsend = edges[, (np+1):(m_acc+np)] zsend = edges[, 1:np] ans = coneB(ysim, dsend, zsend, face = NULL) cf = round(ans$coefs[(np+1):(m_acc+np)], 10) sec = 1:m_acc*0 sec[cf > 0] = 1 sector = rbind(sector, sec) r = makebin(sec) + 1 if (iloop == 1) { df = rbind(df, c(r, 1)) } else { if (r %in% df[,1]) { ps = which(df[,1] %in% r) df[ps,2] = df[ps,2] + 1 } else { df = rbind(df, c(r, 1)) } } } sm_id = which((df[,2]/nloop) < 1e-3) if (any(sm_id)) { df = df[-sm_id, ,drop=FALSE] } } ns = nrow(df) bsec = df bsec[,2] = bsec[,2] / sum(bsec[,2]) ord = order(bsec[,1]) bsec = bsec[ord,,drop=FALSE] nv = np zmat = zsend spl = t(dsend) obs = 1:m_acc;oobs = 1:(m_acc+nv) acov = matrix(0, nrow = m_acc+nv, ncol = m_acc+nv) for (is in 1:ns) { if (bsec[is,2] > 0) { jvec = getbin(bsec[is,1], m_acc) if (sum(jvec) == 1) { smat = cbind(zmat, t(spl[which(jvec==1),,drop=F])) } else if (sum(jvec) == 0) { smat = zmat } else { smat = cbind(zmat, t(spl[which(jvec==1),,drop=F])) } acov1 = bsec[is,2]*solve(t(smat)%*%smat) acov2 = matrix(0,nrow=m_acc+nv,ncol=m_acc+nv) jobs = 1:(m_acc+nv)>0 jm = 1:m_acc>0 jm[obs[jvec==0]] = FALSE jobs[(nv+1):(m_acc+nv)] = jm nobs = oobs[jobs==TRUE] for (i in 1:sum(jobs)) { acov2[nobs[i],jobs] = acov1[i,] } acov = acov+acov2 } } acov = acov*sig2hat } mult = qnorm((1 - level)/2, lower.tail=FALSE) if (interval == "confidence") { if (is.null(var.f)) { var.f = diag(xmatpr%*%acov%*%t(xmatpr)) } hl = mult*sqrt(var.f) } if (interval == "prediction") { bh = object$bh dd = t(bigmat[abs(bh)>0, ,drop=FALSE]) nnew = nrow(xmatpr) vp1 = rep(sig2hat, nnew) if (is.null(var.f)){ var.f = diag(xmatpr%*%acov%*%t(xmatpr)) } vp2 = var.f imat2 = diag(ncl) gm = siga2hat*imat2 rinvlst = ones = list() if (balanced) { pos = 1 } else { pos = min(which(szs == max(szs))) } n1=szs[pos] one1=rep(1,n1) onem1=tcrossprod(one1) im1=diag(n1) rinv1=im1-thhat/(1+n1*thhat)*onem1 rinv0=rinv1 for(i in 1:ncl){ if (balanced) { rinvlst[[i]] = rinv1 ones[[i]] = one1 } else { ni = szs[i] onevec = rep(1, ni) onemat = onem1[1:ni,1:ni] imatn = im1[1:ni,1:ni] rinv = imatn-thhat/(1+ni*thhat)*onemat rinvlst[[i]] = rinv ones[[i]] = onevec } } rinv = as.matrix(bdiag(rinvlst)) onem = as.matrix(bdiag(ones)) mult1 = t(dd)%*%rinv pw = dd%*%solve(mult1%*%dd)%*%mult1 vp30 = gm-siga2hat*thhat*t(onem)%*%rinv%*%(diag(n)-pw)%*%onem vp3 = diag(vp30) lwr = upp = fitpr = var.pred = rep(0, nnew) ugr = unique(group) ugr_new = unique(group_new) ncl_new = length(ugr_new) for(i in 1:ncl_new){ gri = ugr_new[i] gr_id = which(group_new%in%gri) szi = length(gr_id) oneveci = matrix(rep(1, szi), ncol=1) evi = matrix(rep(0, ncl), nrow=1);evi[i]=1 face = which(abs(bh)>0) pwpr = (xmatpr[gr_id, face])%*%solve(mult1%*%dd)%*%mult1 vp40 = -siga2hat*pwpr%*%onem vp4i = diag(vp40%*%t(evi)%*%t(oneveci)) pos_cl = which(ugr%in%gri) var.predi = rep(sig2hat, szi) + vp2[gr_id] + rep(vp3[pos_cl], szi) + 2*vp4i var.pred[gr_id] = var.predi lwr[gr_id] = muhatpr[gr_id] + ahat[pos_cl] - mult*sqrt(var.predi) upp[gr_id] = muhatpr[gr_id] + ahat[pos_cl] + mult*sqrt(var.predi) fitpr[gr_id] = muhatpr[gr_id] + ahat[pos_cl] } } if (interval == "confidence") { ans = list(fit = muhatpr, lower = muhatpr - hl, upper = muhatpr + hl, var.f=var.f) } if (interval == "prediction") { ans = list(fit = fitpr, lower = lwr, upper = upp, var.f=var.f, var.pred=var.pred) } } } class(ans) = "cgamp" return (ans) } makebin = function(x){ k = length(x) r = 0 for(i in 1:k){r = r + x[k-i+1]*2^(i-1)} r } getvars = function(num){ i = num digits = 0 power = 0 while(digits == 0){ if(i<2^power){digits = power} power = power+1 } binry = 1:digits*0 if(num>0){binry[1] = 1} i = i-2^(digits-1) power = digits-2 for(p in power:0){ if(i >= 2^p){ i = i-2^p binry[digits-p] = 1 } } binry } getbin = function(num, capl){ br = getvars(num-1) digits = length(br) binrep = 1:capl*0 binrep[(capl-digits+1):capl] = br binrep } pred_del = function(x, sh, xp, ms) { n = length(xp) xu = sort(unique(x)) n1 = length(xu) sigma = NULL my_line = function(xp = NULL, y, x, end, start) { slope = NULL intercept = NULL yp = NULL slope = (y[end] - y[start]) / (x[end] - x[start]) intercept = y[end] - slope * x[end] yp = intercept + slope * xp ans = new.env() ans$slope = slope ans$intercept = intercept ans$yp = yp ans } if (sh < 3) { sigma = matrix(0, nrow = n1 - 1, ncol = n) for (i in 1: (n1 - 1)) { sigma[i, xp > xu[i]] = 1 } if (sh == 2) {sigma = -sigma} for (i in 1:(n1 - 1)) {sigma[i, ] = sigma[i, ] - ms[i]} } if (sh == 3 | sh == 4) { sigma = matrix(0, nrow = n1 - 2, ncol = n) for (i in 1: (n1 - 2)) { sigma[i, xp > xu[i+1]] = xp[xp > xu[i+1]] - xu[i+1] } if (sh == 4) {sigma = -sigma} xs = sort(x) ord = order(x) nx = length(x) obs = 1:nx m = nrow(ms) ms0 = matrix(0, nrow = m, ncol = n) for (i1 in 1:n) { for (i2 in 1:m) { ms0[i2, i1] = my_line(xp = xp[i1], y = ms[i2, ][ord], x = xs, end = nx, start = 1)$yp } } sigma = sigma - ms0 } if (sh > 4 & sh < 9) { sigma = matrix(0, nrow = n1 - 1, ncol = n) if (sh == 5) { for (i in 1:(n1 - 1)) { sigma[i, xp > xu[i]] = (xp[xp > xu[i]] - xu[i]) / (max(x) - xu[i]) } for (i in 1:(n1 - 1)) {sigma[i,] = sigma[i,] - ms[i]} } else if (sh == 6) { for (i in 1:(n1 - 1)) { sigma[i, xp < xu[i + 1]] = (xp[xp < xu[i + 1]] - xu[i + 1]) / (min(x) - xu[i + 1]) } for (i in 1:(n1 - 1)) {sigma[i,] = sigma[i,] - ms[i]} } else if (sh == 7) { for (i in 1:(n1 - 1)) { sigma[i, xp < xu[i + 1]] = (xp[xp < xu[i + 1]] - xu[i + 1]) / (min(x) - xu[i + 1]) } for (i in 1:(n1 - 1)) {sigma[i,] = -sigma[i,] + ms[i]} } else if (sh == 8) { for (i in 1:(n1 - 1)) { sigma[i, xp > xu[i]] = (xp[xp > xu[i]] - xu[i]) / (max(x) - xu[i]) } for (i in 1:(n1 - 1)) {sigma[i,] = -sigma[i,] + ms[i]} } } return (sigma) } summary.cgamm <- function(object,...) { if (!is.null(object$zcoefs)) { family <- object$family resid_df_obs <- object$resid_df_obs coefs <- object$zcoefs se <- object$se.beta tval <- coefs / se pvalbeta <- object$pvals.beta n <- length(coefs) zid <- object$zid zid1 <- object$zid1 zid2 <- object$zid2 tms <- object$tms is_param <- object$is_param is_fac <- object$is_fac vals <- object$vals rslt1 <- data.frame("Estimate" = round(coefs, 4), "StdErr" = round(se, 4), "t.value" = round(tval, 4), "p.value" = round(pvalbeta, 4)) rownames(rslt1)[1] <- "(Intercept)" if (n > 1) { lzid <- length(zid1) for (i in 1:lzid) { pos1 <- zid1[i]; pos2 <- zid2[i]; for (j in pos1:pos2) { if (!is_param[i]) { rownames(rslt1)[j + 1] <- paste(attributes(tms)$term.labels[zid[i] - 1], rownames(rslt1)[j + 1], sep = "") } else { rownames(rslt1)[j + 1] <- paste(attributes(tms)$term.labels[zid[i] - 1], vals[j], sep = "") } } } } rslt1 <- as.matrix(rslt1) ans <- list(call = object$call, coefficients = rslt1, zcoefs = coefs, resid_df_obs = resid_df_obs, family = family) class(ans) <- "summary.cgamm" ans } else { ans <- list(zcoefs = object$zcoefs) class(ans) <- "summary.cgamm" ans } } print.summary.cgamm <- function(x,...) { if (!is.null(x$zcoefs)) { cat("Call:\n") print(x$call) cat("\n") cat("Coefficients:") cat("\n") printCoefmat(x$coefficients, P.values = TRUE, has.Pvalue = TRUE) } else { print ("No linear predictor is defined") } } plotpersp <- function(object,...) { UseMethod("plotpersp", object) } plotpersp.cgamp = function(object, x1=NULL, x2=NULL, x1nm=NULL, x2nm=NULL, data=NULL, up = TRUE, main=NULL, cex.main=.8, xlab = NULL, ylab = NULL, zlab = NULL, zlim = NULL, th = NULL, ltheta = NULL, ticktype = "detailed",...) { if (!inherits(object, "cgamp")) { warning("calling plotpersp(<fake-cgam-prediction-object>) ...") } t_col = function(color, percent = 50, name = NULL) { rgb.val <- col2rgb(color) t.col <- rgb(rgb.val[1], rgb.val[2], rgb.val[3], maxColorValue = 255, alpha = (100-percent)*255/100, names = name) invisible(t.col) } if (up) { mycol = t_col("green", perc = 90, name = "lt.green") } else { mycol = t_col("pink", perc = 80, name = "lt.pink") } acov = object$acov mult = object$mult obj = object$object xnms = obj$xnms_add xmat = obj$xmat_add bigmat = obj$bigmat if (is.null(x1nm) | is.null(x2nm)) { if (length(xnms) >= 2) { x1nm = xnms[1] x2nm = xnms[2] x1id = 1 x2id = 2 x1 = xmat[, 1] x2 = xmat[, 2] } else {stop ("Number of non-parametric predictors must >= 2!")} } ynm = obj$ynm kts = obj$knots np = obj$d0 knms = length(xnms) obs = 1:knms if (!is.null(data)) { if (!is.data.frame(data)) { stop ("User need to make the data argument a data frame with names for each variable!") } datnms <- names(data) if (!any(datnms == x1nm) | !any(datnms == x2nm)) { stop ("Check the accuracy of the names of x1 and x2!") } x1 <- data[ ,which(datnms == x1nm)] x2 <- data[ ,which(datnms == x2nm)] if (length(x1) != nrow(xmat)) { warning ("Number of observations in the data set is not the same as the number of elements in x1!") } x1id <- obs[xnms == x1nm] if (length(x2) != nrow(xmat)) { warning ("Number of observations in the data set is not the same as the number of elements in x2!") } x2id <- obs[xnms == x2nm] } else { if (all(xnms != x1nm)) { if (length(x1) != nrow(xmat)) { stop ("Number of observations in the data set is not the same as the number of elements in x1!") } bool <- apply(xmat, 2, function(x) all(x1 == x)) if (any(bool)) { x1id <- obs[bool] x1nm <- xnms[bool] } else { stop (paste(paste("'", x1nm, "'", sep = ''), "is not a predictor defined in the cgam fit!")) } } else { x1id <- obs[xnms == x1nm] } if (all(xnms != x2nm)) { if (length(x2) != nrow(xmat)) { stop ("Number of observations in the data set is not the same as the number of elements in x2!") } bool <- apply(xmat, 2, function(x) all(x2 == x)) if (any(bool)) { x2id <- obs[bool] x2nm <- xnms[bool] } else { stop (paste(paste("'", x2nm, "'", sep = ''), "is not a predictor defined in the cgam fit!")) } } else { x2id <- obs[xnms == x2nm] } } xm0 = object$newx0 xm = xm0[,c(x1id,x2id)] thvs_upp = object$thvs_upp thvs_lwr = object$thvs_lwr mins = min(thvs_lwr)+obj$coefs[1] maxs = max(thvs_upp)+obj$coefs[1] if (is.null(zlim)) { zlim = c(mins-(maxs-mins)/2.2, maxs+(maxs-mins)/2.2) } res = plotpersp.cgam(obj, x1=x1, x2=x2, x1nm=x1nm, x2nm=x2nm, zlim=zlim, col='white', xlab=xlab, ylab=ylab, zlab=zlab, th=th, ltheta=ltheta, ticktype=ticktype) ngrid = res$ngrid x_grid = ngrid y_grid = ngrid x1g = 0:x_grid / x_grid * .95 * (max(xm[,1]) - min(xm[,1])) + min(xm[,1]) + .025 * (max(xm[,1]) - min(xm[,1])) n1 = length(x1g) x2g = 0:y_grid / y_grid * .95 * (max(xm[,2]) - min(xm[,2])) + min(xm[,2]) + .025 * (max(xm[,2]) - min(xm[,2])) n2 = length(x2g) xgmat = matrix(nrow = n1, ncol = n2) eta0 = obj$coefs[1] if (up) { thvecs = thvs_upp } else { thvecs = thvs_lwr } for (i2 in 1:n2) { for (i1 in 1:n1) { x1a = max(xm[xm[,1] <= x1g[i1], 1]) x1b = min(xm[xm[,1] > x1g[i1], 1]) v1a = min(thvecs[x1id, xm[,1] == x1a]) v1b = min(thvecs[x1id, xm[,1] == x1b]) alp = (x1g[i1] - x1a) / (x1b - x1a) th1add = (1 - alp) * v1a + alp * v1b x2a = max(xm[xm[,2] <= x2g[i2],2]) x2b =min(xm[xm[,2] > x2g[i2],2]) v2a = min(thvecs[x2id, xm[,2] == x2a]) v2b = min(thvecs[x2id, xm[,2] == x2b]) alp = (x2g[i2] - x2a) / (x2b - x2a) th2add = (1 - alp) * v2a + alp * v2b xgmat[i1,i2] = eta0 + th1add + th2add } } z_add = res$z_add x3_add = res$x3_add xgmat = xgmat + z_add + x3_add fml = obj$family$family if (up) { if (is.null(main)) { main = "Cgam Surface with Upper 95% Confidence Surface" } } if (!up) { if (is.null(main)) { main = "Cgam Surface with Lower 95% Confidence Surface" } } par(new = TRUE) persp(x1g, x2g, xgmat, zlim = res$zlim, xlab = "", ylab = "", zlab = "", theta = res$theta, ltheta = res$ltheta, cex.axis = res$cex.axis, main = main, cex.main = cex.main, ticktype = res$ticktype, col=mycol, box=FALSE, axes=FALSE) par(new=FALSE) }
library(testthat) context("PCMParam") library(PCMBase) if(PCMBaseIsADevRelease()) { list2env(PCMBaseTestObjects, globalenv()) set.seed(1, kind = "Mersenne-Twister", normal.kind = "Inversion") k <- PCMNumTraits(model.ab.123) R <- PCMNumRegimes(model.ab.123) randVecs1 <- PCMParamRandomVecParams(o = model.ab.123, k = k, R = R, n = 10) test_that("randVecs1 is 10-row matrix", expect_true(is.matrix(randVecs1) && nrow(randVecs1) == 10L)) randVecs2 <- PCMParamRandomVecParams( o = model.ab.123, k = k, R = R, n = 10) test_that("randVecs2 is 10-row matrix", expect_true(is.matrix(randVecs2) && nrow(randVecs2) == 10L)) randVecs3 <- PCMParamRandomVecParams( o = model.ab.123, k = k, R = R, n = 10) test_that("randVecs3 is 10-row matrix", expect_true(is.matrix(randVecs3) && nrow(randVecs3) == 10L)) randVecs4 <- PCMParamRandomVecParams( o = model.ab.123, k = k, R = R, n = 1) test_that("randVecs4 is 1-row matrix", { expect_true(is.matrix(randVecs4)) expect_equal(nrow(randVecs4), 1L) }) randVecs5 <- PCMParamRandomVecParams( o = model.ab.123, k = k, R = R, n = 0) test_that("randVecs5 is 0-row matrix", { expect_true(is.matrix(randVecs5)) expect_equal(nrow(randVecs5), 0L) }) }
prodlimMulti <- function(response,size.strata,N,NU,cotype,force.multistate){ is.event <- response[,"status"]!=0 if (force.multistate==TRUE){ to <- response[,"status"] from <- rep(0,length(to)) } else{ to <- response[,"event"] from <- response[,"from"] } state.names <- unique(c(from, to[response[,"status"]!=0])) ns <- length(state.names) cens <- FALSE if(length(to[is.event])>0) cens <- TRUE from <- as.integer(factor(from,levels=state.names)) - 1 from <- as.numeric(from) to[is.event] <- as.integer(factor(to[is.event], levels=state.names)) - 1 to[!is.event] <- ns to <- as.numeric(to) states <- sort(unique(c(from, to[is.event]))) tra <- unique(cbind(from[is.event], to[is.event])) sorted <- order(tra[,1],tra[,2]) tra <- matrix(tra[sorted,], ncol=2) tra <- cbind(0:(length(tra[,1])-1),tra) colnames(tra) <- c("row","from", "to") ntra <- nrow(tra) trow <- match(paste(from,to), paste(tra[,"from"],tra[,"to"]), nomatch=0) - 1 cens.in <- sort(unique(from[!is.event])) nci <- length(cens.in) cpos <- match(paste(from,to), paste(cens.in, ns), nomatch = 0) - 1 if( cotype > 1 ) { nr.start <- size.strata } else{nr.start <- length(from[from==0])} fit <- .C("prodlim_multistates", as.integer(N), as.integer(ns), as.integer(length(is.event)), as.integer(size.strata), as.integer(ntra), as.integer(tra[,"from"]), as.integer(tra[,"to"]), as.integer(trow), as.integer(nci), as.integer(cens.in), as.integer(cpos), as.double(response[,"time"]), as.integer(response[,"status"]), as.integer(nr.start), time=double(N), hazard=double(N*ns*ns), prob=double(N*ns*ns), nevent=integer(N*ns*ns), ncens=integer(N*ns), nrisk=integer(N*ns), first.strata=integer(NU), ntimes.strata=integer(NU), PACKAGE="prodlim") tra[,"from"] <- state.names[tra[,"from"]+1] tra[,"to"] <- state.names[tra[,"to"]+1] cens.in <- state.names[cens.in+1] NT <- sum(fit$ntimes.strata) res <- list("time"=fit$time[1:NT],"hazard"=fit$hazard[1:(NT*ns*ns)],"prob"=fit$prob[1:(NT*ns*ns)],"nevent"=fit$nevent[1:(NT*ns*ns)],"ncens"=fit$ncens[1:(NT*ns)],"nrisk"=nrisk <- fit$nrisk[1:(NT*ns)],"first.strata"=fit$first.strata,"size.strata"=fit$ntimes.strata,"uniquetrans"=tra,"cens.in"=cens.in,"states"=states,"state.names"=state.names,"model"="multi.states") res }
test_that("Coefficient digits work correctly", { model_simple <- lm(mpg ~ cyl + disp, data = mtcars) expect_snapshot_output( extract_eq(model_simple, use_coefs = TRUE, coef_digits = 4) ) expect_snapshot_output( extract_eq(model_simple, use_coefs = TRUE, fix_signs = FALSE) ) }) test_that("Wrapping works correctly", { model_big <- lm(mpg ~ ., data = mtcars) expect_snapshot_output( extract_eq(model_big, wrap = TRUE, terms_per_line = 4) ) expect_snapshot_output( extract_eq(model_big, wrap = TRUE, terms_per_line = 2) ) tex_end <- capture.output(extract_eq(model_big, wrap = TRUE, operator_location = "end" )) expect_match(tex_end[3], "\\+ \\\\\\\\$", label = "wrapped equation line ends with +" ) expect_match(tex_end[4], "\\+ \\\\\\\\$", label = "other wrapped equation line ends with +" ) tex_start <- capture.output(extract_eq(model_big, wrap = TRUE, operator_location = "start" )) expect_match(tex_start[3], "\\)\\\\\\\\$", label = "wrapped equation line doesn't end with +" ) expect_match(tex_start[4], "&\\\\quad \\+ ", label = "wrapped equation line starts with +" ) expect_match(tex_start[5], "&\\\\quad \\+ ", label = "other wrapped equation line starts with +" ) tex_align <- capture.output(extract_eq(model_big, wrap = TRUE, align_env = "align" )) expect_equal(tex_align[2], "\\begin{align}", label = "different align environment used" ) })
context("test-ls_fun_args") test_that("extract function args", { args <- ls_fun_args(quote(library(tidycode))) expect_equal(unlist(args), list(quote(tidycode))) args <- ls_fun_args(quote(lm(mpg ~ cyl, mtcars))) expect_equal(args[[1]], list(quote(mpg ~ cyl), quote(mtcars))) expect_equal(args[[2]], list(quote(mpg), quote(cyl))) })
NULL setGeneric("oracle", function(catObj, theta, responses, approx = FALSE, parallel = FALSE) standardGeneric("oracle")) setMethod(f = "oracle", signature = "Cat", definition = function(catObj, theta, responses, approx = FALSE, parallel = FALSE){ n <- catObj@lengthThreshold if(length(theta) != nrow(responses)){ stop("Need a corresponding theta value for each answer profile.") } if(ncol(responses) != length(catObj@answers)){ stop("Response profiles are not compatible with Cat object.") } ncombos <- choose(ncol(responses), n) if(ncombos > 1000000){ stop("Too many combinations result from choose(nrow(responses), n).") } if(n > 5){ warning("Asking n>5 questions will provide estimate likely arbitrarily close to truth.") } combo_mat <- t(combn(1:ncol(responses), n)) if(approx & nrow(combo_mat) > 1000){ combo_mat <- combo_mat[sample(x = 1:nrow(combo_mat), size = 1000, replace = FALSE), ] } find_truth <- function(ind_theta, ind_ans, combo_mat, cat){ combo_profiles <- adply(.data = combo_mat, .margins = 1, .id = NULL, .parallel = parallel, .fun = function(indices, catObj, ans){ catObj@answers[indices] <- unlist(ans[indices]) theta_est <- estimateTheta(catObj) return(data.frame(theta = ind_theta, theta_est = theta_est, ans[indices])) }, catObj = cat, ans = ind_ans) return_row <- which.min(abs(combo_profiles$theta_est - ind_theta)) return(combo_profiles[return_row, ]) } out <- adply(.data = 1:nrow(responses), .margins = 1, .id = NULL, .parallel = parallel, .fun = function(x) find_truth(ind_theta = theta[x], ind_ans = responses[x,], combo_mat = combo_mat, cat = catObj)) return(out) })
bayesfactor_parameters <- function(posterior, prior = NULL, direction = "two-sided", null = 0, verbose = TRUE, ...) { UseMethod("bayesfactor_parameters") } bayesfactor_pointnull <- function(posterior, prior = NULL, direction = "two-sided", null = 0, verbose = TRUE, ...) { if (length(null) > 1) { message("'null' is a range - computing a ROPE based Bayes factor.") } bayesfactor_parameters( posterior = posterior, prior = prior, direction = direction, null = null, verbose = verbose, ... ) } bayesfactor_rope <- function(posterior, prior = NULL, direction = "two-sided", null = rope_range(posterior), verbose = TRUE, ...) { if (length(null) < 2) { message("'null' is a point - computing a Savage-Dickey (point null) Bayes factor.") } bayesfactor_parameters( posterior = posterior, prior = prior, direction = direction, null = null, verbose = verbose, ... ) } bf_parameters <- bayesfactor_parameters bf_pointnull <- bayesfactor_pointnull bf_rope <- bayesfactor_rope bayesfactor_parameters.numeric <- function(posterior, prior = NULL, direction = "two-sided", null = 0, verbose = TRUE, ...) { if (is.null(prior)) { prior <- posterior if (verbose) { warning( "Prior not specified! ", "Please specify a prior (in the form 'prior = distribution_normal(1000, 0, 1)')", " to get meaningful results." ) } } prior <- data.frame(X = prior) posterior <- data.frame(X = posterior) sdbf <- bayesfactor_parameters.data.frame( posterior = posterior, prior = prior, direction = direction, null = null, verbose = verbose, ... ) sdbf$Parameter <- NULL sdbf } bayesfactor_parameters.stanreg <- function(posterior, prior = NULL, direction = "two-sided", null = 0, verbose = TRUE, effects = c("fixed", "random", "all"), component = c("conditional", "location", "smooth_terms", "sigma", "zi", "zero_inflated", "all"), parameters = NULL, ...) { cleaned_parameters <- insight::clean_parameters(posterior) effects <- match.arg(effects) component <- match.arg(component) samps <- .clean_priors_and_posteriors(posterior, prior, verbose = verbose, effects = effects, component = component, parameters = parameters ) temp <- bayesfactor_parameters.data.frame( posterior = samps$posterior, prior = samps$prior, direction = direction, null = null, verbose = verbose, ... ) bf_val <- .prepare_output(temp, cleaned_parameters, inherits(posterior, "stanmvreg")) class(bf_val) <- class(temp) attr(bf_val, "clean_parameters") <- cleaned_parameters attr(bf_val, "hypothesis") <- attr(temp, "hypothesis") attr(bf_val, "direction") <- attr(temp, "direction") attr(bf_val, "plot_data") <- attr(temp, "plot_data") bf_val } bayesfactor_parameters.brmsfit <- bayesfactor_parameters.stanreg bayesfactor_parameters.blavaan <- function(posterior, prior = NULL, direction = "two-sided", null = 0, verbose = TRUE, ...) { cleaned_parameters <- insight::clean_parameters(posterior) samps <- .clean_priors_and_posteriors(posterior, prior, verbose = verbose ) temp <- bayesfactor_parameters.data.frame( posterior = samps$posterior, prior = samps$prior, direction = direction, null = null, verbose = verbose, ... ) bf_val <- .prepare_output(temp, cleaned_parameters) class(bf_val) <- class(temp) attr(bf_val, "clean_parameters") <- cleaned_parameters attr(bf_val, "hypothesis") <- attr(temp, "hypothesis") attr(bf_val, "direction") <- attr(temp, "direction") attr(bf_val, "plot_data") <- attr(temp, "plot_data") bf_val } bayesfactor_parameters.emmGrid <- function(posterior, prior = NULL, direction = "two-sided", null = 0, verbose = TRUE, ...) { samps <- .clean_priors_and_posteriors(posterior, prior, verbose = verbose ) bayesfactor_parameters.data.frame( posterior = samps$posterior, prior = samps$prior, direction = direction, null = null, verbose = verbose, ... ) } bayesfactor_parameters.emm_list <- bayesfactor_parameters.emmGrid bayesfactor_parameters.data.frame <- function(posterior, prior = NULL, direction = "two-sided", null = 0, verbose = TRUE, ...) { direction <- .get_direction(direction) if (is.null(prior)) { prior <- posterior warning( "Prior not specified! ", "Please specify priors (with column order matching 'posterior')", " to get meaningful results." ) } if (verbose && length(null) == 1L && (nrow(posterior) < 4e4 || nrow(prior) < 4e4)) { warning( "Bayes factors might not be precise.\n", "For precise Bayes factors, sampling at least 40,000 posterior samples is recommended.", call. = FALSE ) } sdbf <- numeric(ncol(posterior)) for (par in seq_along(posterior)) { sdbf[par] <- .bayesfactor_parameters( posterior[[par]], prior[[par]], direction = direction, null = null, ... ) } bf_val <- data.frame( Parameter = colnames(posterior), log_BF = log(sdbf), stringsAsFactors = FALSE ) class(bf_val) <- unique(c( "bayesfactor_parameters", "see_bayesfactor_parameters", class(bf_val) )) attr(bf_val, "hypothesis") <- null attr(bf_val, "direction") <- direction attr(bf_val, "plot_data") <- .make_BF_plot_data(posterior, prior, direction, null, ...) bf_val } .bayesfactor_parameters <- function(posterior, prior, direction = 0, null = 0, ...) { stopifnot(length(null) %in% c(1, 2)) if (isTRUE(all.equal(posterior, prior))) { return(1) } insight::check_if_installed("logspline") if (length(null) == 1) { relative_density <- function(samples) { f_samples <- .logspline(samples, ...) d_samples <- logspline::dlogspline(null, f_samples) if (direction < 0) { norm_samples <- logspline::plogspline(null, f_samples) } else if (direction > 0) { norm_samples <- 1 - logspline::plogspline(null, f_samples) } else { norm_samples <- 1 } d_samples / norm_samples } return(relative_density(prior) / relative_density(posterior)) } else if (length(null) == 2) { null <- sort(null) null[is.infinite(null)] <- 1.797693e+308 * sign(null[is.infinite(null)]) f_prior <- .logspline(prior, ...) f_posterior <- .logspline(posterior, ...) h0_prior <- diff(logspline::plogspline(null, f_prior)) h0_post <- diff(logspline::plogspline(null, f_posterior)) BF_null_full <- h0_post / h0_prior if (direction < 0) { h1_prior <- logspline::plogspline(min(null), f_prior) h1_post <- logspline::plogspline(min(null), f_posterior) } else if (direction > 0) { h1_prior <- 1 - logspline::plogspline(max(null), f_prior) h1_post <- 1 - logspline::plogspline(max(null), f_posterior) } else { h1_prior <- 1 - h0_prior h1_post <- 1 - h0_post } BF_alt_full <- h1_post / h1_prior return(BF_alt_full / BF_null_full) } } bayesfactor_parameters.bayesfactor_models <- function(...) { stop( "Oh no, 'bayesfactor_parameters()' does not know how to deal with multiple models :(\n", "You might want to use 'bayesfactor_inclusion()' here to test specific terms across models." ) } bayesfactor_parameters.sim <- function(...) { stop( "Bayes factors are based on the shift from a prior to a posterior. ", "Since simulated draws are not based on any priors, computing Bayes factors does not make sense :(\n", "You might want to try `rope`, `ci`, `pd` or `pmap` for posterior-based inference." ) } bayesfactor_parameters.sim.merMod <- bayesfactor_parameters.sim
if (requireNamespace("lintr", quietly = TRUE)) { test_that("Package Style", { lintr::expect_lint_free() }) }
library(testthat) credential <- retrieve_credential_testing() test_that("One Shot: Bad Uri -Not HTTPS", { expected_message_411 <- "<!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.01//EN\"\"http://www.w3.org/TR/html4/strict.dtd\">\n<HTML><HEAD><TITLE>Length Required</TITLE>\n<META HTTP-EQUIV=\"Content-Type\" Content=\"text/html; charset=us-ascii\"></HEAD>\n<BODY><h2>Length Required</h2>\n<hr><p>HTTP Error 411. The request must be chunked or have a content length.</p>\n</BODY></HTML>\n" expected_message_501 <- "<?xml version=\"1.0\" encoding=\"UTF-8\" ?><hash><error>The requested method is not implemented.</error></hash>" expect_message( returned_object <- redcap_read_oneshot( redcap_uri = "http://bbmc.ouhsc.edu/redcap/api/", token = credential$token ) ) expect_equal(returned_object$data, expected=data.frame(), label="An empty data.frame should be returned.") expect_true(returned_object$status_code %in% c(411L, 501L)) expect_true(returned_object$raw_text %in% c(expected_message_411, expected_message_501)) expect_equal(returned_object$records_collapsed, "") expect_equal(returned_object$fields_collapsed, "") expect_false(returned_object$success) }) test_that("One Shot: Bad Uri -wrong address", { expected_message <- "<!DOCTYPE html PUBLIC \"-//W3C//DTD XHTML 1.0 Strict//EN\" \"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd\">\n<html xmlns=\"http://www.w3.org/1999/xhtml\">\n<head>\n<meta http-equiv=\"Content-Type\" content=\"text/html; charset=iso-8859-1\"/>\n<title>404 - File or directory not found.</title>\n<style type=\"text/css\">\n<!--\nbody{margin:0;font-size:.7em;font-family:Verdana, Arial, Helvetica, sans-serif;background: expect_message( returned_object <- redcap_read_oneshot( redcap_uri = "https://bbmc.ouhsc.edu/redcap/apiFFFFFFFFFFFFFF/", token = credential$token ) ) expect_equal(returned_object$data, expected=data.frame(), label="An empty data.frame should be returned.") expect_equal(returned_object$status_code, expected=404L) expect_equal(returned_object$raw_text, expected=expected_message) expect_equal(returned_object$records_collapsed, "") expect_equal(returned_object$fields_collapsed, "") expect_false(returned_object$success) }) test_that("Batch: Bad Uri -Not HTTPS", { expected_outcome_message <- "The initial call failed with the code: (411|501)." expect_message( returned_object <- redcap_read( redcap_uri = "http://bbmc.ouhsc.edu/redcap/api/", token = credential$token ) ) expect_equal(returned_object$data, expected=data.frame(), label="An empty data.frame should be returned.") expect_true(returned_object$status_code %in% c(411L, 501L)) expect_equal(returned_object$records_collapsed, "failed in initial batch call") expect_equal(returned_object$fields_collapsed, "failed in initial batch call") expect_match(returned_object$outcome_messages, expected_outcome_message) expect_false(returned_object$success) }) test_that("Batch: Bad Uri -wrong address", { expected_outcome_message <- "The initial call failed with the code: 404." expect_message( returned_object <- redcap_read( redcap_uri = "https://bbmc.ouhsc.edu/redcap/apiFFFFFFFFFFFFFF/", token = credential$token ) ) expect_equal(returned_object$data, expected=data.frame(), label="An empty data.frame should be returned.") expect_equal(returned_object$status_code, expected=404L) expect_equal(returned_object$records_collapsed, "failed in initial batch call") expect_equal(returned_object$fields_collapsed, "failed in initial batch call") expect_equal(returned_object$outcome_messages, expected_outcome_message) expect_false(returned_object$success) }) test_that("hashed record -warn", { expected_warning <- "^It appears that the REDCap record IDs have been hashed.+" expect_warning( REDCapR:::warn_hash_record_id(), expected_warning ) }) test_that("guess_max deprecated -warn", { expected_outcome_message <- "The `guess_max` parameter in `REDCapR::redcap_read\\(\\)` is deprecated\\." expect_warning( regexp = expected_outcome_message, returned_object <- redcap_read( redcap_uri = credential$redcap_uri, token = credential$token, guess_max = 100 ) ) }) rm(credential)
furrr_test_that("future_pmap() matches pmap() for simple cases", { expect_identical( future_pmap(list(1:3, 4:6, 7:9), ~.x + .y + ..3), pmap(list(1:3, 4:6, 7:9), ~.x + .y + ..3) ) }) furrr_test_that("names of `.x` are retained", { x <- c(a = 1, b = 2) y <- c(c = 1, d = 2) expect_named(future_pmap(list(x, y), ~1), c("a", "b")) }) furrr_test_that("named empty input makes named empty output", { x <- set_names(list(), character()) expect_named(future_pmap(list(x, x), ~.x), character()) }) furrr_test_that("future_pmap_dbl() works", { x <- c(1, 2, 3) y <- c(4, 5, 6) expect_identical( future_pmap_dbl(list(x, y), ~.x + .y), pmap_dbl(list(x, y), ~.x + .y) ) }) furrr_test_that("future_pmap_int() works", { x <- c(1L, 2L, 3L) y <- c(4L, 5L, 6L) expect_identical( future_pmap_int(list(x, y), ~.x + .y), pmap_int(list(x, y), ~.x + .y) ) }) furrr_test_that("future_pmap_lgl() works", { x <- c(TRUE, FALSE, TRUE) y <- c(FALSE, TRUE, TRUE) expect_identical( future_pmap_lgl(list(x, y), ~.x || .y), pmap_lgl(list(x, y), ~.x || .y) ) }) furrr_test_that("future_pmap_chr() works", { x <- c("a", "b", "c") y <- c("d", "e", "f") expect_identical( future_pmap_chr(list(x, y), ~.y), pmap_chr(list(x, y), ~.y) ) }) furrr_test_that("future_pmap_raw() works", { x <- c("a", "b", "c") y <- as.raw(1:3) expect_identical( future_pmap_raw(list(x, y), ~.y), pmap_raw(list(x, y), ~.y) ) }) furrr_test_that("names of `.x` are retained", { x <- c(a = 1, b = 2) y <- c(c = 1, d = 2) expect_named(future_pmap_dbl(list(x, y), ~1), c("a", "b")) }) furrr_test_that("future_pmap_dfr() works", { x <- c("a", "b", "c") y <- c("d", "e", "f") expect_identical( future_pmap_dfr(list(x, y), ~data.frame(x = .x, y = .y)), pmap_dfr(list(x, y), ~data.frame(x = .x, y = .y)) ) }) furrr_test_that("future_pmap_dfc() works", { x <- c("a", "b", "c") y <- c("d", "e", "f") expect_identical( future_pmap_dfc(list(x, y), ~as.data.frame(set_names(list(.x), .y))), pmap_dfc(list(x, y), ~as.data.frame(set_names(list(.x), .y))) ) }) furrr_test_that("future_pmap() works with completely empty list", { expect_identical(future_pmap(list(), identity), list()) expect_identical(future_pmap_dbl(list(), identity), double()) }) furrr_test_that("future_pmap() works with size zero input", { expect_identical(future_pmap(list(list(), list()), identity), list()) }) furrr_test_that("atomic variants work with size zero input", { expect_identical(future_pmap_chr(list(list(), list()), identity), character()) expect_identical(future_pmap_dbl(list(list(), list()), identity), double()) expect_identical(future_pmap_int(list(list(), list()), identity), integer()) expect_identical(future_pmap_lgl(list(list(), list()), identity), logical()) expect_identical(future_pmap_raw(list(list(), list()), identity), raw()) }) furrr_test_that("size one recycling works", { expect_identical( future_pmap(list(1, 1:2), ~c(.x, .y)), list(c(1, 1), c(1, 2)) ) expect_identical( future_pmap(list(1:2, 1), ~c(.x, .y)), list(c(1, 1), c(2, 1)) ) expect_identical( future_pmap(list(integer(), 1), ~c(.x, .y)), list() ) expect_identical( future_pmap(list(1, integer()), ~c(.x, .y)), list() ) }) furrr_test_that("generally can't recycle to size zero", { expect_error( future_pmap(list(1:2, integer()), ~c(.x, .y)), "Can't recycle" ) expect_error( future_pmap(list(integer(), 1:2), ~c(.x, .y)), "Can't recycle" ) }) furrr_test_that("named arguments can be passed through", { vec_mean <- function(.x, .y, na.rm = FALSE) { mean(c(.x,.y), na.rm = na.rm) } x <- list(c(NA, 1), 1:2) expect_identical( future_pmap(x, vec_mean, na.rm = TRUE), list(1, 1.5) ) }) furrr_test_that("arguments can be matched by name", { x <- list(x = c(1, 2), y = c(3, 5)) fn <- function(y, x) {y - x} expect_identical(future_pmap_dbl(x, fn), c(2, 3)) }) furrr_test_that("unused components can be absorbed", { x <- list(c(1, 2), c(3, 5)) fn1 <- function(x) {x} fn2 <- function(x, ...) {x} expect_error(future_pmap_dbl(x, fn1)) expect_identical(future_pmap_dbl(x, fn2), c(1, 2)) }) furrr_test_that("globals in `.x` and `.y` are found ( fn1 <- function(x) sum(x, na.rm = TRUE) fn2 <- function(x) sum(x, na.rm = FALSE) x <- list(c(1, 2, NA), c(2, 3, 4)) fns1 <- map(x, ~ purrr::partial(fn1, x = .x)) fns2 <- map(x, ~ purrr::partial(fn2, x = .x)) expect_identical( future_pmap(list(fns1, fns2), ~c(.x(), .y())), list(c(3, NA), c(9, 9)) ) }) test_that("globals in `.l` are only exported to workers that use them", { plan(multisession, workers = 2) on.exit(plan(sequential), add = TRUE) my_wrapper1 <- local({ my_mean1 <- function(x) mean(x, na.rm = TRUE) function(x) { my_mean1(x) exists("my_mean1") } }) my_wrapper2 <- local({ my_mean2 <- function(x) mean(x, na.rm = FALSE) function(x) { my_mean2(x) exists("my_mean1") } }) x <- list(my_wrapper1, my_wrapper2) expect_identical( future_pmap_lgl(list(x), .f = ~.x(c(1, NA))), c(TRUE, FALSE) ) })
NULL NULL cluspred <- function(y, x, u = NULL, K = 2, model.reg = "mean", tau = 0.5, simultaneous=TRUE, np=TRUE, nbinit = 20, nbCPU = 1, tol = 0.01, band = (length(y)**(-1/5)), seed=134) { checkinputs(y, x, u, K, model.reg, tau, simultaneous, np, nbinit, nbCPU, tol, band, seed) set.seed(seed) if (!np){ if (!(model.reg%in%c("mean", "quantile"))) stop("model.red must be mean or quantile for the parametric approach") } if (simultaneous){ if (np){ return(Singleblock_algo_NP(y, x, u, model.reg, nbinit, K, tau, nbCPU, tol, band)) }else{ return(Singleblock_algo_Param(y, x, u, model.reg, nbinit, K, tau, nbCPU, tol)) } }else{ return(TwostepsAlgo(y, x, u, np, model.reg, nbinit, K, tau,nbCPU, tol, band)) } }
ArchiveGribGrab <- function(abbrev, model.date, model.run, preds, local.dir = NULL, file.names = NULL, tidy = FALSE, verbose = TRUE, download.method = NULL, file.type = "grib2") { if(is.null(local.dir)) { local.dir <- getwd() } if(!is.null(file.names)) { if(length(file.names) != length(preds)) { stop("The length of the \"file.names\" argument is not the same as the length of the \"preds\" argument. Each file downloaded from NOMADS needs its own file name.") } } if(tidy) { unlink(list.files(local.dir, pattern = "*\\.grb[2]?$", full.names = TRUE)) } model.date <- as.numeric(strsplit(as.character(model.date), split = "")[[1]]) if(length(model.date) != 8) { stop("MODEL.DATE should be in YYYYMMDD format!") } if(file.type == "grib1") { suffix <- ".grb" } else if (file.type == "grib2") { suffix <- ".grb2" } else { stop(paste0("Did not recognize file type \"", file.type, "\"")) } model.url <- NOMADSArchiveList(abbrev)$url download.url <- paste0(model.url, paste(model.date[1:6], collapse = ""), "/", paste(model.date, collapse = ""), "/") grib.info <- NULL for(k in 1:length(preds)) { if(is.null(file.names)) { file.part <- paste0(paste(model.date, collapse = ""), "_", sprintf("%02.f", as.numeric(model.run)), "00_", sprintf("%03.f", as.numeric(preds[k])), suffix) file.name <- file.part } else { file.name <- file.names[k] } link.list <- unique(LinkExtractor(download.url)) if(!any(grepl(file.part, link.list))) { warning(paste("The requested data file ending in", file.part, "does not appear to be in the archive. Try opening", download.url, "in a web browser to verify that it's missing.")) next } grb.urls <- stringr::str_replace( stringr::str_extract( paste0(download.url, link.list[grepl(file.part, link.list)]), paste0("^.*", file.part, ">")), ">", "") if(length(grb.urls) > 1) { warning("Two files were found: ", paste(link.list[grepl(paste0(".*", file.part, "$"), link.list)], collapse = " "), ". Both will be downloaded.") c <- 1 } else { c <- "" } use.curl <- FALSE file.names <- NULL for(grb.url in grb.urls) { file.name.tmp <- paste0(c, file.name) if(is.null(download.method) & !use.curl) { download.file(grb.url, paste(local.dir,file.name.tmp, sep = "/"), mode = "wb", quiet = !verbose) } if(!is.null(download.method) & !use.curl) { download.file(grb.url, paste(local.dir,file.name.tmp, sep = "/"), download.method, mode = "wb", quiet = !verbose) } file.names <- append(file.names, paste(normalizePath(local.dir), file.name.tmp, sep = "/")) print(file.names) if(c != "") { c <- c + 1 } } grib.info[[k]] <- list(file.name = file.names, url = grb.urls) } return(grib.info) } CheckNOMADSArchive <- function(abbrev, model.date = NULL) { model.url <- NOMADSArchiveList(abbrev=abbrev)$url model.list <- c() if(is.null(model.date)) { month.list <- grep("\\d{6}/", LinkExtractor(model.url), value = TRUE) for(month in month.list) { month.url <- paste0(model.url, month) if(RCurl::url.exists(month.url)) { date.list <- grep("\\d{8}/", LinkExtractor(month.url), value = TRUE) for(day in date.list) { day.url <- paste0(model.url, month, day) if(RCurl::url.exists(day.url)) { model.list <- append(model.list, grep("grb\\d?$", LinkExtractor(day.url), value = TRUE)) } } } } } else { model.date <- as.numeric(strsplit(as.character(model.date), split = "")[[1]]) check.url <- paste0(model.url, paste(model.date[1:6], collapse = ""), "/", paste(model.date, collapse = ""), "/") if(RCurl::url.exists(check.url)) { model.list <- append( model.list, stringr::str_replace( unlist(stringr::str_extract_all(LinkExtractor(check.url), "^.*grb\\d?>")), ">", "") ) } } model.list <- as.vector(model.list) available.models <- list( date = stringr::str_extract(model.list, "\\d{8}"), model.run = stringr::str_replace_all(stringr::str_extract(model.list, "_\\d{4}_"), "_", ""), pred = stringr::str_replace(stringr::str_replace(stringr::str_extract(model.list, "_\\d{3}\\."), "\\.", ""), "_", ""), file.name = model.list) if(length(available.models$date) == 0) { warning("No products are available for that model and date. Sorry!") } invisible(available.models) }
summary.mmsbm <- function(object, ...){ summ <- list("Number of Dyads" = nrow(object$dyadic.data), "Number of Blocks" = ncol(object$BlockModel), "Percent of Observations in Each Block" = rowMeans(object$MixedMembership), "Blockmodel Matrix" = exp(object$BlockModel) / (1 + exp(object$BlockModel)), "Monadic Coefficients" = object$MonadCoef) if(length(object$DyadCoef)){ summ$`Dyadic Coefficients` <- object$DyadCoef } if(object$n_states > 1){ summ$`Markov State Probabilities` <- rowMeans(object$Kappa) } if(object$forms$hessian){ if("vcov_dyad" %in% names(object)){ summ$`Dyadic Coefficients` <- cbind(object$DyadCoef, sqrt(diag(object$vcov_dyad))) colnames(summ$`Dyadic Coefficients`) <- c("Coefficient", "Std. Error") } mse <- sqrt(diag(object$vcov_monad)) summ$`Monadic Coefficients` <- cbind(c(summ$`Monadic Coefficients`), mse) colnames(summ$`Monadic Coefficients`) <- c("Coefficient", "Std. Error") rownames(summ$`Monadic Coefficients`) <- rownames(object$vcov_monad) } print(summ) }
source("ESEUR_config.r") library("boot") sd_diff=function(est, indices) { t=est[indices] return(sd(t[1:num_A_est])-sd(t[(num_A_est+1):total_est])) } est=read.csv(paste0(ESEUR_dir, "group-compare/simula_04.csv.xz"), as.is=TRUE) A_est=subset(est, Group =="A")$Estimate B_est=subset(est, Group !="A")$Estimate num_A_est=length(A_est) num_B_est=length(B_est) total_est=num_A_est+num_B_est AB_sd_diff=abs(sd(A_est)-sd(B_est)) bid_boot=boot(c(A_est, B_est), sd_diff, R = 4999) plot(density(bid_boot$t), main="", ylab="Density\n") mean(bid_boot$t) sd(bid_boot$t) length(bid_boot$t[abs(bid_boot$t) >= AB_sd_diff])
test_that("plot runs without warning",{ curve <- function(t){ rbind(t*cos(13*t), t*sin(13*t)) } set.seed(18) data_curves <- lapply(1:4, function(i){ m <- sample(10:15, 1) delta <- abs(rnorm(m, mean = 1, sd = 0.05)) t <- cumsum(delta)/sum(delta) data.frame(t(curve(t)) + 0.07*t*matrix(cumsum(rnorm(2*length(delta))), ncol = 2)) }) knots <- seq(0,1, length = 11) smooth_elastic_mean <- compute_elastic_mean(data_curves, knots = knots) expect_warning(plot(smooth_elastic_mean), regexp = NA) }) test_that("plot gives error if more than two dim",{ data_curve1 <- data.frame(x1 = sin(1:7/4*pi), x2 = cos(1:7/4*pi), x3 = -sin(1:7/4*pi)) data_curve2 <- data_curve <- data.frame(x1 = sin(1:15/8*pi), x2 = cos(1:15/8*pi), x3 = 1:15/8*pi) data_curves <- list(data_curve1, data_curve2) knots <- seq(0,1, length = 11) elastic_mean <- compute_elastic_mean(data_curves, knots = knots, type = "polygon") expect_error(plot(elastic_mean), "Plotting option only for functions and planar curves!") })
predicted <- function(fitted_model) { Z <- rstan::extract(fitted_model$model, "Z", permuted = FALSE) x <- rstan::extract(fitted_model$model, "x", permuted = FALSE) Zperm <- rstan::extract(fitted_model$model, "Z", permuted = TRUE) xperm <- rstan::extract(fitted_model$model, "x", permuted = TRUE) n_ts <- dim(Zperm$Z)[2] n_y <- dim(xperm$x)[3] n_chains <- dim(Z)[2] n_trends <- dim(xperm$x)[2] n_mcmc <- dim(x)[1] pred <- array(0, c(n_mcmc, n_chains, n_y, n_ts)) for (i in 1:n_mcmc) { for (chain in 1:n_chains) { x_i <- t(matrix(x[i, chain, ], nrow = n_trends, ncol = n_y)) Z_i <- t(matrix(Z[i, chain, ], nrow = n_ts, ncol = n_trends)) pred[i, chain, , ] <- x_i %*% Z_i } } return(pred) }
geom_node_tile <- function(mapping = NULL, data = NULL, position = 'identity', show.legend = NA, ...) { mapping <- aes_intersect(mapping, aes( x = x, y = y, width = width, height = height )) layer( data = data, mapping = mapping, stat = StatFilter, geom = GeomNodeTile, position = position, show.legend = show.legend, inherit.aes = FALSE, params = list(na.rm = FALSE, ...) ) } GeomNodeTile <- ggproto('GeomNodeTile', GeomTile, default_aes = aes( fill = NA, colour = 'black', size = 0.5, linetype = 1, alpha = NA, width = 1, height = 1 ), required_aes = c('x', 'y') )
vital_status <- function(wide_df, status_var = "p_status", life_var_new = "p_alive", check = TRUE, as_labelled_factor = FALSE){ if(!is.data.frame(wide_df) & data.table::is.data.table(wide_df)){ rlang::inform("You are using a dplyr based function on a raw data.table; the data.table has been converted to a data.frame to let this function run more efficiently.") wide_df <- as.data.frame(wide_df) } status_var <- rlang::enquo(status_var) life_var_new <- rlang::enquo(life_var_new) defined_vars <- c(rlang::as_name(status_var)) not_found <- defined_vars[!(defined_vars %in% colnames(wide_df))] if(length(not_found) > 0) { rlang::abort(paste0("The following variables defined are not found in the provided dataframe: ", not_found, ". Please run pat_status function beforehand.")) } lifevar_label <- paste("Patient Vital Status at end of follow-up", attr(wide_df[[rlang::eval_tidy(status_var)]], "label", exact = T) %>% stringr::str_sub(-10)) if(is.factor(wide_df[[rlang::eval_tidy(status_var)]])){ changed_status_var <- TRUE wide_df <- wide_df %>% dplyr::mutate( status_var_orig = .data[[!!status_var]], !!status_var := sjlabelled::as_numeric(.data[[!!status_var]], keep.labels=FALSE, use.labels = TRUE)) } else{ changed_status_var <- FALSE } wide_df <- wide_df %>% dplyr::mutate(!!life_var_new := dplyr::case_when( .data[[!!status_var]] == 1 ~ 10, .data[[!!status_var]] == 2 ~ 10, .data[[!!status_var]] == 3 ~ 11, .data[[!!status_var]] == 4 ~ 11, TRUE ~ as.numeric(.data[[!!status_var]]))) if(changed_status_var == TRUE){ wide_df <- wide_df %>% dplyr::mutate( !!status_var := .data$status_var_orig ) %>% dplyr::select(-status_var_orig) } wide_df <- wide_df %>% sjlabelled::var_labels(!!life_var_new := !!lifevar_label) %>% sjlabelled::val_labels(!!life_var_new := c("Patient alive" = 10, "Patient dead" = 11, "NA - patient not born before end of FU" = 97, "NA - patient did not develop cancer before end of FU" = 98, "NA - patient date of death is missing" = 99), force.labels = TRUE) if(as_labelled_factor == TRUE){ wide_df <- wide_df %>% dplyr::mutate(!!life_var_new := sjlabelled::as_label(.data[[!!life_var_new]], keep.labels=TRUE)) } if(check == TRUE){ check_tab <- wide_df %>% dplyr::count(.data[[!!status_var]], .data[[!!life_var_new]]) print(check_tab) } return(wide_df) }
f_abbreviation <- function (x, length = 5, ...) { abbreviate(x, minlength = length, named = FALSE, ...) } ff_abbreviation <- functionize(f_abbreviation)
getBins <- function (model = NULL, obs = NULL, pred = NULL, id = NULL, bin.method, n.bins = 10, fixed.bin.size = FALSE, min.bin.size = 15, min.prob.interval = 0.1, quantile.type = 7, simplif = FALSE, verbosity = 2) { if (!is.null(model)) { if (!is.null(obs) && verbosity > 0) message("Argument 'obs' ignored in favour of 'model'.") if (!is.null(pred) && verbosity > 0) message("Argument 'pred' ignored in favour of 'model'.") obspred <- mod2obspred(model) obs <- obspred[ , "obs"] pred <- obspred[ , "pred"] } stopifnot(length(obs) == length(pred), !(NA %in% obs), !(NA %in% pred), obs %in% c(0, 1), is.null(id) | length(id) == length(pred), n.bins >= 2, min.bin.size >= 0, min.prob.interval > 0, min.prob.interval < 1) if (!(bin.method %in% modEvAmethods("getBins"))) stop("Invalid bin.method; type modEvAmethods('getBins') for available options.") N <- length(obs) bin.method0 <- bin.method if (bin.method == "round.prob" ) { if (verbosity > 1) message("Arguments n.bins, fixed.bin.size and min.bin.size are ignored by this bin.method.") prob.bin <- round(pred, digits = nchar(min.prob.interval) - 2) } else if (bin.method == "prob.bins") { if (verbosity > 1) message("Arguments n.bins, fixed.bin.size and min.bin.size are ignored by this bin.method.") bin.cuts <- seq(from = min(0, min(pred)), to = max(1, max(pred)), by = min.prob.interval) prob.bin <- findInterval(pred, bin.cuts) } else if (bin.method == "size.bins") { if (verbosity > 1) message("Arguments n.bins and min.prob.interval are ignored by this bin.method.") bin.method <- "n.bins" n.bins <- floor(N / min.bin.size) fixed.bin.size <- TRUE } if (bin.method == "n.bins") { if (verbosity > 1 && bin.method0 != "size.bins") message("Arguments min.bin.size and min.prob.interval are ignored by this bin.method.") if (fixed.bin.size) { prob.bin <- cut(seq_along(pred), n.bins) } else { prob.bin <- cut(pred, n.bins) } } else if (bin.method == "quantiles") { if (verbosity > 1) message("Arguments fixed.bin.size, min.bin.size and min.prob.interval are ignored by this bin.method.") cutpoints <- quantile(pred, probs = (0:n.bins)/n.bins, type = quantile.type) prob.bin <- findInterval(pred, cutpoints, rightmost.closed = TRUE) } prob.bins <- sort(unique(prob.bin)) bins.table <- t(as.data.frame(unclass(table(obs, prob.bin)))) bins.table <- data.frame(rowSums(bins.table), bins.table[, c(2, 1)]) colnames(bins.table) <- c("N", "N.pres", "N.abs") bins.table$prevalence <- with(bins.table, N.pres/N) bins.table$mean.prob <- tapply(pred, prob.bin, mean) bins.table$median.prob <- tapply(pred, prob.bin, median) bins.table$difference <- with(bins.table, mean.prob - prevalence) bins.table$max.poss.diff <- ifelse(bins.table$mean.prob < 0.5, 1 - bins.table$mean.prob, bins.table$mean.prob) bins.table$adj.diff <- with(bins.table, abs(difference - max.poss.diff)) bins.table$overpred <- apply(bins.table[, c("prevalence", "mean.prob")], MARGIN = 1, max) bins.table$underpred <- apply(bins.table[, c("prevalence", "mean.prob")], MARGIN = 1, min) bins.table <- bins.table[bins.table$N > 0, ] if (min(as.data.frame(bins.table)$N) < 15) if (verbosity > 0) warning("There is at least one bin with less than 15 values, for which comparisons may not be meaningful; consider using a bin.method that allows defining a minimum bin size") n.bins <- nrow(bins.table) list(prob.bin = prob.bin, bins.table = bins.table, N = N, n.bins = n.bins) }
check_nodes <- function(x, nms, check_calls = F, depth = NA, stop_pred = NULL) { depth = depth - 1 if (!is.na(depth) && depth < 0) return(NULL) if (check_calls) { if (is_call(x) && call_name(x) %in% nms) withRestarts( signal("Reserved symbol found", .subclass="passer", val=deparse(x)), get_back_to_work = function() NULL) } else { if (is_symbol(x) && deparse(x) %in% nms) withRestarts( signal("Reserved symbol found", .subclass="passer", val=deparse(x)), get_back_to_work = function() NULL) } if (is_call(x) && !(call_name(x) %in% c("::", ":::"))) { if (is.null(stop_pred) || !as_mapper(stop_pred)(x)) call_args(x) %>% map(~check_nodes(., nms=nms, check_calls=check_calls, depth=depth, stop_pred=stop_pred)) } } find_used_symbols <- function(x, nms, check_calls = F, depth = NA, stop_pred = NULL) { expr <- enexpr(x) symbol_list <- NULL handler <- function(cond) { symbol_list <<- append(symbol_list, cond$val) invokeRestart("get_back_to_work") } withCallingHandlers( check_nodes(expr, nms=nms, check_calls=check_calls, depth=depth, stop_pred=stop_pred), passer = handler ) return(unique(symbol_list)) } get_used_specials <- function(qs, names_to_check, ...) { qs %>% keep(~quo_is_call(.) | quo_is_symbol(.)) %>% map(function(q) { l <- find_used_symbols(!!get_expr(q), names_to_check, ...) if (!is.null(l)) env_has(env = get_env(q), nms=l, inherit = T) %>% keep(~.==T) %>% names() }) %>% unlist() %>% unique() } check_for_calls <- function(qs, names_to_check, message, ...) { l <- qs %>% keep(~quo_is_call(.) | quo_is_symbol(.)) %>% map(function(q) find_used_symbols(!!get_expr(q), names_to_check, check_calls = T, ...)) %>% unlist() if (length(l) > 0) warning(paste0(message, "`", l[[1]], "`"), immediate. = TRUE, call. = FALSE) invisible(NULL) } warn_of_specials <- function(x) { if (length(x) > 0) { agreement <- "" verb <- "have" if (length(x) == 1) { agreement <- "s" verb <- "has" } warning("`", paste(x, collapse = "`, `"), "` ", verb, " special meaning as catchr input, but seem", agreement, " to already be defined elsewhere. These previous definitions may be masked when determining condition behavior. (To turn these warnings off, use `catchr_default_opts(warn_about_terms=FALSE)`.)", immediate. = TRUE, call. = FALSE) } } approx_arg_name <- function(x, len = 25) { v <- get_expr(enquo(x)) %>% expr_deparse(width = 999) %>% paste(collapse = "") add_ellipses(v, len) } has_handler_args <- function(fn) { args <- Map(is_missing, fn_fmls(args(fn))) needed <- args %>% keep(~.) %>% length() supplied <- args %>% keep(~!.) %>% length() has_dots <- "..." %in% fn_fmls_names(args(fn)) return(needed == 1 || (needed == 0 && supplied > 0) || has_dots) } classify_el <- function(el, nono_words) { el_expr <- approx_arg_name(!!el) if (is_function(el) && !has_handler_args(el)) abort(paste0(el_expr, " must take at least one argument to be in a catchr plan"), fn = el) else if (is_string(el) && !(el %in% nono_words)) abort(paste0(el_expr, " is not one of catchr's special reserved terms"), string = el) else if (!is_string(el) && !is_function(el)) abort(paste0(el_expr, " must be a string, unquoted expression, or function, but is type '", typeof(el), "'"), arg=el) } classify_arg <- function(arg, nono_words) { arg_expr <- approx_arg_name(!!arg) if (length(arg) > 1 || is_list(arg)) { if (!is_list(arg) && !is_bare_character(arg)) abort(paste0("Input `", arg_expr, "` has an invalid type: '", typeof(arg), "'"), val=arg) walk(arg, ~classify_el(., nono_words)) } else classify_el(arg, nono_words) invisible(arg) } make_catchr_mask <- function(nms = special_terms) { as_list(nms) %>% set_names(nms) %>% as_data_mask() } clean_input <- function(qs, spec_names = NULL) { if (is.null(spec_names)) spec_names <- special_terms mask <- make_catchr_mask(spec_names) res <- qs %>% map(~eval_tidy(., data = mask)) %>% map(~classify_arg(., spec_names)) %>% add_back_arg_pos(qs) env_unbind(parent.env(mask), env_names(parent.env(mask))) res } check_and_clean_input <- function(..., spec_names) { akw <- args_and_kwargs(...) if (getOption("catchr.warn_about_terms", FALSE)) warn_of_specials(get_used_specials(akw$kwargs, spec_names)) check_for_calls(akw$kwargs, c("user_exit", "user_display"), "`user_exit/user_display` is being called in the input to a plan at a very shallow level, possibly meaning that it is not in a function. Remember that these functions need to be IN a function or passed in AS a function, not a call. The call in question: ", depth=2, stop_pred = ~call_name(.)=="function") kwargs <- clean_input(akw$kwargs, spec_names) args <- unnamed_args_to_strings(akw$args) check_for_duplicates(args, names(kwargs)) walk(args, function(arg) if (arg %in% names(kwargs)) abort(paste0("'", arg, "' is both an unnamed and named argument"))) return(list(args = args, kwargs = kwargs)) } check_for_duplicates <- function(l, ...) { l <- append(l, list(...)) dupes <- l[duplicated(l)] %>% unique() if (length(dupes) > 0) abort(paste0("Conditions cannot have multiple plans: ", paste0("'", dupes, "'", collapse = ","))) NULL } unnamed_args_to_strings <- function(x) { x %>% map(get_expr) %>% walk(~if (!is_string(.) && !is_symbol(.)) abort("Unnamed args must be unquoted names or strings", arg=.)) %>% as.character() %>% add_back_arg_pos(x) }
if(!dev.interactive(TRUE)) pdf("smooth.spline-test.pdf") y18 <- c(1:3, 5, 4, 7:3, 2*(2:5), rep(10, 4)) (b.64 <- grepl("^x86.64", Sys.info()[["machine"]]) && .Machine$sizeof.pointer > 4) (Lb.64 <- b.64 && Sys.info()[["sysname"]] == "Linux" && .Machine$sizeof.pointer == 8) (s2. <- smooth.spline(y18, cv = TRUE, control = list(trace=TRUE, tol = 1e-6, low = if(b.64) -3 else -2))) plot(y18) xx <- seq(1,length(y18), len=201) lines(predict(s2., xx), col = 4) mtext(deparse(s2.$call,200), side= 1, line= -1, cex= 0.8, col= 4) (sdf8 <- smooth.spline(y18, df = 8, control=list(trace=TRUE))) sdf8$df - 8 (sdf8. <- smooth.spline(y18, df = 8, control=list(tol = 1e-8))) ss50 <- try(smooth.spline(y18, spar = 50)) e <- try(smooth.spline(y18, spar = -9)) if(Lb.64) inherits(e, "try-error") else "not Linux 64-bit" b.64 || inherits(ss50, "try-error") e10 <- c(-20, -10, -7, -4:4, 7, 10) (lams <- setNames(10^e10, paste0("lambda = 10^", e10))) lamExp <- as.expression(lapply(e10, function(E) substitute(lambda == 10^e, list(e = E)))) sspl <- lapply(lams, function(LAM) try(smooth.spline(y18, lambda = LAM))) sspl ok <- vapply(sspl, class, "") == "smooth.spline" stopifnot(ok[e10 <= 7]) ssok <- sspl[ok] ssGet <- function(ch) t(sapply(ssok, `[` , ch)) ssGet1 <- function(ch) sapply(ssok, `[[`, ch) stopifnot(all.equal(ssGet1("crit"), ssGet1("cv.crit"), tol = 1e-10)) ssGet(c("lambda", "df", "crit", "pen.crit")) plot(y18); lines(predict(s2., xx), lwd = 5, col = adjustcolor(4, 1/4)) invisible(lapply(seq_along(ssok), function(i) lines(predict(ssok[[i]], xx), col=i))) i18 <- 1:18 abline(lm(y18 ~ i18), col = adjustcolor('tomato',1/2), lwd = 5, lty = 3) legend("topleft", lamExp[ok], ncol = 2, bty = "n", col = seq_along(ssok), lty=1) s2 <- smooth.spline(y18, cv = TRUE, keep.stuff=TRUE) s2.7 <- smooth.spline(y18, cv = TRUE, keep.stuff=TRUE, nknots = 7) s2.11 <- smooth.spline(y18, cv = TRUE, keep.stuff=TRUE, nknots = 11) plot(y18) lines(predict(s2, xx), lwd = 5, col = adjustcolor(4, 1/4)) lines(predict(s2.7, xx), lwd = 3, col = adjustcolor("red", 1/4)) lines(predict(s2.11, xx), lwd = 2, col = adjustcolor("forestgreen", 1/4)) if(!requireNamespace("Matrix", quietly = TRUE) && !interactive()) q("no") if(Lb.64 && interactive()) stopifnot(inherits(e, "try-error")) rbind("s-9_err" = inherits(e, "try-error"), "s+50_err"= inherits(ss50, "try-error")) aux2Mat <- function(auxM) { stopifnot(is.list(auxM), identical(vapply(auxM, class, ""), setNames(rep("numeric", 4), c("XWy", "XWX", "Sigma", "R")))) nk <- length(XWy <- auxM[["XWy"]]) list(XWy = XWy, XWX = Matrix::bandSparse(nk, k= 0:3, diagonals= matrix(auxM[[ "XWX" ]], nk,4), symmetric=TRUE), Sigma= Matrix::bandSparse(nk, k= 0:3, diagonals= matrix(auxM[["Sigma"]], nk,4), symmetric=TRUE)) } chkB <- function(smspl, tol = 1e-10) { stopifnot(inherits(smspl, "smooth.spline")) if(!is.list(smspl$auxM)) stop("need result of smooth.spline(., keep.stuff = TRUE)") lM <- aux2Mat(smspl$auxM) beta.hat <- solve(lM$XWX + smspl$lambda * lM$Sigma, lM$XWy) all.equal(as.vector(beta.hat), smspl$fit$coef, tolerance = tol) } stopifnot(chkB(s2)) stopifnot(chkB(s2.7)) stopifnot(chkB(s2.11)) lM <- aux2Mat(s2$auxM) A <- lM$XWX + s2$lambda * lM$Sigma R <- Matrix::chol(A) c. <- s2$fit$coef stopifnot(all.equal(c., as.vector( solve(A, lM$XWy))) ) pen <- as.vector(c. %*% lM$Sigma %*% c.) c(unscaled.penalty = pen, scaled.penalty = s2$lambda * pen) Sigma.tit <- quote(list(Sigma == Omega, "where"~~ Omega[list(j,k)] == integral({B[j]*second}(t)~{B[k]*second}(t)~dt))) Matrix::image(lM$XWX, main = quote({X*minute}*W*X)) Matrix::image(lM$Sigma, main = Sigma.tit) Matrix::image(A, main = quote({X*minute}*W*X + lambda*Sigma)) Matrix::image(R, main = quote(R == chol({X*minute}*W*X + lambda*Sigma))) s2.7.k <- smooth.spline(y18, cv = TRUE, keep.stuff=TRUE, all.knots = s2.7$fit$knot[3+ 1:7]) ii <- names(s2.7) != "call" stopifnot( all.equal(s2.7 [ii], s2.7.k[ii])) s2.9f <- smooth.spline(y18, cv = TRUE, keep.stuff=TRUE, all.knots = seq(0, 1, length.out = 9)) lines(predict(s2.9f, xx), lwd = 2, lty=3, col = adjustcolor("tomato", 1/2)) s2.7f <- smooth.spline(y18, cv = TRUE, keep.stuff=TRUE, all.knots = c(-1,1,3,5,7,9,12)/10) if(FALSE) { s2.5f <- smooth.spline(y18, cv = TRUE, keep.stuff=TRUE, control=list(trace=TRUE), all.knots = c(1,3,5,7,9)/10) lines(predict(s2.5f, xx), lwd = 2, lty=3, col = adjustcolor("brown", 1/2)) } dScaledKnots <- function(smsp, drop.ends=TRUE) { stopifnot(inherits(smsp, "smooth.spline")) sf <- smsp$fit nk <- length(kk <- sf$knot) stopifnot((nk <- length(kk <- sf$knot)) >= 7) if(drop.ends) kk <- kk[4:(nk-3)] sf$min + sf$range * kk } pLines <- function(ss) { abline(v = dScaledKnots(ss), lty=3, col=adjustcolor("black", 1/2)) abline(h = 0, v = range(ss$x), lty=4, lwd = 1.5, col="skyblue4") } xe <- seq(-5, 25, length=256) plot(y18, xlim=range(xe), ylim = c(-4,10)+.5, xlab="x") lines(predict(s2.7f, xe), col=2, lwd = 2) pLines(s2.7f) str(m2 <- predict(s2.7f, x=xe, deriv=2)) plot(m2, type="l", col=2, lwd = 2, main = "m''(x) -- for m(.) := smooth.spl(*, all.knots=c(..))", sub = "(knots shown as vertical dotted lines)") pLines(s2.7f) m1 <- predict(s2.7f, x=xe, deriv = 1) plot(m1, type="l", col=2, lwd = 2, main = "m'(x) -- for m(.) := smooth.spl(*, all.knots=c(..))", sub = "(knots shown as vertical dotted lines)") pLines(s2.7f)
context("Just testing PSTNPds functionality") test_that("Check whether length of PSTNPds vector is correct",{ pstFunc<-as.vector(PSTNPds(seqs="ATAAACG",pos = c("ATAAGCG","ATCCCCG"),neg = c("AAAACCG","CGCCACT"))) expect_equal(length(pstFunc),5) })
expected <- eval(parse(text="\"ts\"")); test(id=0, code={ argv <- eval(parse(text="list(structure(1:5, .Tsp = c(1, 5, 1), class = \"ts\"))")); do.call(`oldClass`, argv); }, o=expected);
NULL interpret_d <- function(...) { .Deprecated("interpret_cohens_d") interpret_cohens_d(...) } interpret_g <- function(...) { .Deprecated("interpret_hedges_g") interpret_hedges_g(...) } interpret_delta <- function(...) { .Deprecated("interpret_glass_delta") interpret_glass_delta(...) } interpret_parameters <- function(...) { .Deprecated("interpret_r") interpret_r(...) }
targets::tar_test("tar_git_status_targets() up-to-date targets", { skip_os_git() git_setup_init() expect_equal(nrow(tar_git_status_targets(callr_function = NULL)), 0L) }) targets::tar_test("tar_git_status_targets() outdated targets", { skip_os_git() git_setup_init() targets::tar_invalidate(everything()) expect_gt(nrow(tar_git_status_targets(callr_function = NULL)), 0L) })
context("ColorProvider works") test_that("ColorProvider works", { aa <- ColorProvider$new() expect_is(aa, "ColorProvider") expect_is(aa, "R6") expect_is(aa$locale, "character") expect_equal(aa$locale, "en_US") expect_is(aa$all_colors, "list") expect_equal(aa$all_colors$AliceBlue, " expect_is(aa$safe_colors, "character") expect_is(aa$bothify, "function") expect_is(aa$color_name, "function") expect_is(aa$color_name(), "character") expect_is(aa$hex_color(), "character") expect_is(aa$safe_color_name(), "character") expect_error(aa$check_locale("en_asdf")) }) test_that("ColorProvider locale support works", { skip_on_cran() skip_on_travis() test_locale <- function(loc) { bb <- ColorProvider$new(locale = loc) expect_is(bb$locale, "character") expect_equal(bb$locale, loc) expect_is(bb$color_name(), "character") expect_true(all(bb$color_name() %in% names(bb$all_colors))) expect_is(bb$safe_color_name(), "character") expect_true(all(bb$safe_color_name() %in% bb$safe_colors)) } locales <- c("en_US", "uk_UA") for (loc in locales) { test_locale(loc) } }) context("ch color functions work") test_that("ch color functions error for incorrect input", { expect_error(ch_color_name(-1)) expect_error(ch_color_name(-99, "uk_UA")) expect_error(ch_color_name(locale = "ch_AR")) expect_error(ch_safe_color_name(-1)) expect_error(ch_safe_color_name(-99, "uk_UA")) expect_error(ch_safe_color_name(locale = "ch_AR")) expect_error(ch_hex_color(-99)) expect_error(ch_safe_hex_color(-1)) expect_error(ch_rgb_color(-99)) expect_error(ch_rgb_css_color(-1)) }) test_that("ch_color_name works", { expect_is(ch_color_name(), "character") expect_is(ch_color_name(7), "character") expect_equal(length(ch_color_name()), 1) expect_equal(length(ch_color_name(12)), 12) expect_true(all(ch_color_name() %in% names(ColorProvider$new()$all_colors))) expect_true(all(ch_color_name(7) %in% names(ColorProvider$new()$all_colors))) }) test_that("ch_safe_color_name works", { expect_is(ch_safe_color_name(), "character") expect_is(ch_safe_color_name(5), "character") expect_equal(length(ch_safe_color_name()), 1) expect_equal(length(ch_safe_color_name(7)), 7) expect_true(all(ch_safe_color_name() %in% ColorProvider$new()$safe_colors)) expect_true(all(ch_safe_color_name(7) %in% ColorProvider$new()$safe_colors)) }) test_that("ch_hex_color works", { expect_is(ch_hex_color(), "character") expect_is(ch_hex_color(7), "character") expect_equal(length(ch_hex_color()), 1) expect_equal(length(ch_hex_color(12)), 12) hex_regex <- "^ expect_match(ch_hex_color(), hex_regex, ignore.case = TRUE) expect_match(ch_hex_color(12), hex_regex, ignore.case = TRUE) expect_true(all(nchar(ch_hex_color()) == 7)) expect_true(all(nchar(ch_hex_color(12)) == 7)) }) test_that("ch_safe_hex_color works", { expect_is(ch_safe_hex_color(), "character") expect_is(ch_safe_hex_color(7), "character") expect_equal(length(ch_safe_hex_color()), 1) expect_equal(length(ch_safe_hex_color(12)), 12) safe_hex_regex <- "^ expect_match(ch_safe_hex_color(), safe_hex_regex, ignore.case = TRUE) expect_match(ch_safe_hex_color(12), safe_hex_regex, ignore.case = TRUE) expect_true(all(nchar(ch_safe_hex_color()) == 7)) expect_true(all(nchar(ch_safe_hex_color(12)) == 7)) }) between_0_255 <- function(x) all(0 <= x & x <= 255) test_that("ch_rgb_color works", { expect_is(ch_rgb_color(), "list") expect_is(ch_rgb_color(7), "list") expect_equal(length(ch_rgb_color()), 1) expect_equal(length(ch_rgb_color(7)), 7) expect_equal(vapply(ch_rgb_color(), length, integer(1)), rep(3, 1)) expect_equal(vapply(ch_rgb_color(7), length, integer(1)), rep(3, 7)) expect_true(all(vapply(ch_rgb_color(), between_0_255, logical(1)))) expect_true(all(vapply(ch_rgb_color(7), between_0_255, logical(1)))) }) test_that("ch_rgb_css_color works", { expect_is(ch_rgb_css_color(), "character") expect_is(ch_rgb_css_color(7), "character") expect_equal(length(ch_rgb_css_color()), 1) expect_equal(length(ch_rgb_css_color(7)), 7) rgb_regex <- "^rgb\\((\\d+), (\\d+), (\\d+)\\)$" res <- ch_rgb_css_color() expect_match(res, rgb_regex) expect_true(between_0_255(as.integer(gsub(rgb_regex, "\\1", res)))) expect_true(between_0_255(as.integer(gsub(rgb_regex, "\\2", res)))) expect_true(between_0_255(as.integer(gsub(rgb_regex, "\\3", res)))) res7 <- ch_rgb_css_color(7) expect_match(res7, rgb_regex) expect_true(between_0_255(as.integer(gsub(rgb_regex, "\\1", res7)))) expect_true(between_0_255(as.integer(gsub(rgb_regex, "\\2", res7)))) expect_true(between_0_255(as.integer(gsub(rgb_regex, "\\3", res7)))) })
test_that("extract single, contiguous submatrix", { for (i in 1:n_datasets) { Mat <- r_mats[[i]] on_disc_mat <- cov_odms[[i]]@ondisc_matrix for (j in 1:n_reps) { col_idxs_range <- sample(x = 1:ncol(Mat), size = 2, replace = FALSE) %>% sort() col_idxs <- col_idxs_range[1]:col_idxs_range[2] row_idxs_range <- sample(x = 1:nrow(Mat), size = 2, replace = FALSE) %>% sort() row_idxs <- row_idxs_range[1]:row_idxs_range[2] compare_Mat_on_disc_extract(Mat = Mat, on_disc_mat = on_disc_mat, col_idxs = col_idxs, row_idxs = row_idxs) col_idxs <- sample(col_idxs) row_idxs <- sample(row_idxs) compare_Mat_on_disc_extract(Mat = Mat, on_disc_mat = on_disc_mat, col_idxs = col_idxs, row_idxs = row_idxs) } } }) test_that("extract multiple, contiguous submatrices", { for (i in 1:n_datasets) { Mat <- r_mats[[i]] on_disc_mat <- cov_odms[[i]]@ondisc_matrix if (nrow(Mat) >= 6 && ncol(Mat) >= 6) { for (j in 1:n_reps) { col_idxs_range <- sample(x = 1:ncol(Mat), size = 6, replace = FALSE) %>% sort() col_idxs <- c(col_idxs_range[1]:col_idxs_range[2], col_idxs_range[3]:col_idxs_range[4], col_idxs_range[5]:col_idxs_range[6]) row_idxs_range <- sample(x = 1:nrow(Mat), size = 6, replace = FALSE) %>% sort() row_idxs <- c(row_idxs_range[1]:row_idxs_range[2], row_idxs_range[3]:row_idxs_range[4], row_idxs_range[5]:row_idxs_range[6]) compare_Mat_on_disc_extract(Mat = Mat, on_disc_mat = on_disc_mat, col_idxs = col_idxs, row_idxs = row_idxs) col_idxs <- sample(col_idxs) row_idxs <- sample(row_idxs) compare_Mat_on_disc_extract(Mat = Mat, on_disc_mat = on_disc_mat, col_idxs = col_idxs, row_idxs = row_idxs) } } } }) test_that("Extract arbitrary submatrices", { for (i in 1:n_datasets) { Mat <- r_mats[[i]] on_disc_mat <- cov_odms[[i]]@ondisc_matrix for (j in 1:n_reps) { subset_size_col <- sample(1:(ceiling(ncol(Mat)/30)), 1) subset_size_row <- sample(1:(ceiling(nrow(Mat)/30)), 1) col_idxs <- sample(x = 1:ncol(Mat), size = subset_size_col) row_idxs <- sample(x = 1:nrow(Mat), size = subset_size_row) compare_Mat_on_disc_extract(Mat = Mat, on_disc_mat = on_disc_mat, col_idxs = col_idxs, row_idxs = row_idxs) } } }) test_that("Illegal subsets and extracts", { for (i in 1:n_datasets) { on_disc_mat <- cov_odms[[i]]@ondisc_matrix expect_error(on_disc_mat[,ncol(on_disc_mat) + 10]) expect_error(on_disc_mat[nrow(on_disc_mat) + 10,]) expect_error(on_disc_mat[[,]]) } }) test_that("Test correct dimensions after subset", { for (i in 1:n_datasets) { Mat <- r_mats[[i]] on_disc_mat <- cov_odms[[i]]@ondisc_matrix subset_size_col <- sample(1:(ceiling(ncol(Mat)/30)), 1) subset_size_row <- sample(1:(ceiling(nrow(Mat)/30)), 1) col_idxs <- sample(x = 1:ncol(Mat), size = subset_size_col) row_idxs <- sample(x = 1:nrow(Mat), size = subset_size_row) t1 <- on_disc_mat[,col_idxs] t2 <- Mat[,col_idxs,drop=FALSE] expect_equal(dim(t1), dim(t2)) t1 <- on_disc_mat[,-col_idxs] t2 <- Mat[,-col_idxs,drop=FALSE] expect_equal(dim(t1), dim(t2)) t1 <- on_disc_mat[row_idxs,] t2 <- Mat[row_idxs,,drop=FALSE] expect_equal(dim(t1), dim(t2)) t1 <- on_disc_mat[-row_idxs,] t2 <- Mat[-row_idxs,,drop=FALSE] expect_equal(dim(t1), dim(t2)) t1 <- Mat[row_idxs, col_idxs,drop=FALSE] t2 <- on_disc_mat[row_idxs, col_idxs] expect_equal(dim(t1), dim(t2)) t1 <- Mat[-row_idxs, -col_idxs,drop=FALSE] t2 <- on_disc_mat[-row_idxs, -col_idxs] expect_equal(dim(t1), dim(t2)) } }) test_that("Extract arbitrary submatrices after subset", { for (i in 1:n_datasets) { Mat <- r_mats[[i]] on_disc_mat <- cov_odms[[i]]@ondisc_matrix for (j in 1:n_reps) { subset_size_col <- sample(1:(ceiling(ncol(Mat)/10)), 1) subset_size_row <- sample(1:(ceiling(nrow(Mat)/10)), 1) col_idxs <- sample(x = 1:ncol(Mat), size = subset_size_col) row_idxs <- sample(x = 1:nrow(Mat), size = subset_size_row) Mat_row_sub <- Mat[row_idxs,,drop=FALSE] Mat_col_sub <- Mat[,col_idxs,drop=FALSE] Mat_sub <- Mat[row_idxs, col_idxs,drop=FALSE] on_disc_mat_row_sub <- on_disc_mat[row_idxs,] on_disc_mat_col_sub <- on_disc_mat[,col_idxs] on_disc_mat_sub <- on_disc_mat[row_idxs, col_idxs] col_idxs_sub <- sample(x = 1:ncol(Mat_sub), size = sample(1:ncol(Mat_sub), 1)) row_idxs_sub <- sample(x = 1:nrow(Mat_sub), size = sample(1:nrow(Mat_sub), 1)) compare_Mat_on_disc_extract(Mat = Mat_row_sub, on_disc_mat = on_disc_mat_row_sub, col_idxs = col_idxs, row_idxs = row_idxs_sub) compare_Mat_on_disc_extract(Mat = Mat_col_sub, on_disc_mat = on_disc_mat_col_sub, col_idxs = col_idxs_sub, row_idxs = row_idxs) compare_Mat_on_disc_extract(Mat = Mat_sub, on_disc_mat = on_disc_mat_sub, col_idxs = col_idxs_sub, row_idxs = row_idxs_sub) } } }) test_that("Subset/extract corner cases", { for (i in 1:n_datasets) { Mat <- r_mats[[i]] on_disc_mat <- cov_odms[[i]]@ondisc_matrix on_dist_mat_sub <- on_disc_mat[] expect_identical(on_disc_mat, on_dist_mat_sub) zero_rows <- which(Matrix::rowSums(Mat) == 0) if (length(zero_rows) >= 1) { idx <- zero_rows[1] zero_extract <- as.numeric(on_disc_mat[[idx,]]) expect_equal(zero_extract, rep(0, ncol(Mat))) } } })
allstats<-function(file.name, river.name=NULL, file.type="txt", date.col=3, discharge.col=4, skipped.rows=28) { cat("Starting file ", file.name, ".\n") if (file.type=="txt") { file<-read.table(file.name, skip=skipped.rows, sep="\t",header=F) } if (file.type=="csv") { file<-read.csv(file.name, skip=skipped.rows) } if (file.type!="csv" & file.type!="txt") stop ("Unrecognized file type. Use txt or csv.") k<-c(date.col, discharge.col) file<-file[,k] colnames(file)<-c("date", "discharge") n.file<-dim(file)[1] max.nas<-n.file*.35 x<-asStreamflow(file, river.name, max.na=max.nas) signal.stats<-fourierAnalysis(x) hflow.stats<-sigmaHighFlows(signal.stats$signal, resid.column=10) lflow.stats<-sigmaLowFlows(signal.stats$signal, resid.column=10) logpearson.stats<-lp3Events(x) ann.extremes<-annualExtremes(x) annual.stats<-annualnoise(ann.extremes$annual.max$ldis.corrupt) sigma.hf<-as.numeric(hflow.stats$sigma.hfb) sigma.lf<-as.numeric(lflow.stats$sigma.lfb) q2<-as.numeric(logpearson.stats[[1]]) q10<-as.numeric(logpearson.stats[[2]]) l2<-as.numeric(logpearson.stats[[3]]) l10<-as.numeric(logpearson.stats[[4]]) a.rms<-as.numeric(signal.stats$rms[[1]]) n.rms<-as.numeric(signal.stats$rms[[2]]) snr<-as.numeric(signal.stats$rms[[4]]) theta.d<--1*as.numeric(coefficients(signal.stats$logps.regression)[2]) name<-as.character(x$name) theta.a<--1*as.numeric(annual.stats$reg.stats[2]) cat("File", file.name, " successful.\n") out<-as.data.frame(cbind(a.rms,n.rms, snr, theta.d, theta.a,sigma.hf, sigma.lf,q2, q10, l2, l10)) row.names(out)<-name return(out) } parameters.list<-function(x, names=NULL, file.type="txt", date.col=3, dis.col=4,skipped.rows=28) { n.files<-length(x) files<-x if( !is.null(names)) name.vec<-names if (is.null(names)) name.vec<-as.character(1:n.files) all.out<-NULL filetype<-file.type datecol<-date.col discol<-dis.col skipped<-skipped.rows for (i in 1:n.files) { output<-tryCatch(allstats(files[i], name.vec[i], file.type=filetype, date.col=datecol, discharge.col=discol,skipped.rows=skipped), error=function(ex){ cat("Error in file ", files[i]) print(ex) return(rep(NA,11))}) all.out<-rbind(all.out, output) } all.out<-as.data.frame(all.out) return(all.out) }
.xyvBuf <- function(object, xy, buffer, fun=NULL, na.rm=TRUE, layer, nl, cellnumbers=FALSE, small=FALSE, onlycells=FALSE) { buffer <- abs(buffer) if (length(buffer == 1)) { buffer <- rep(buffer, times=nrow(xy)) } else if (length(buffer) != nrow(xy) | ! is.vector(buffer) ) { stop('buffer should be a single value or a vector of length==nrow(xy)') } buffer[is.na(buffer)] <- 0 if (onlycells) { cellnumbers <- TRUE fun <- NULL small <- TRUE object <- raster(object) } else if (! is.null(fun)) { cellnumbers <- FALSE } cv <- list() obj <- raster(object) if (couldBeLonLat(obj)) { bufy <- buffer / 111319.5 ymx <- pmin(90, xy[,2] + bufy) ymn <- pmax(-90, xy[,2] - bufy) bufx1 <- buffer / pointDistance(cbind(0, ymx), cbind(1, ymx), lonlat=TRUE) bufx2 <- buffer / pointDistance(cbind(0, ymn), cbind(1, ymn), lonlat=TRUE) bufx <- pmax(bufx1, bufx2) cn <- colFromX(obj, xy[,1]-bufx) cx <- colFromX(obj, xy[,1]+bufx) cn[is.na(cn) & (xy[,1]-bufx <= xmin(obj) & xy[,1]+bufx >= xmin(obj))] <- 1 cx[is.na(cx) & (xy[,1]-bufx <= xmax(obj) & xy[,1]+bufx > xmax(obj))] <- ncol(obj) rn <- rowFromY(obj, xy[,2]+bufy) rx <- rowFromY(obj, xy[,2]-bufy) rn[is.na(rn) & (xy[,2]-bufy <= ymax(obj) & xy[,2]+bufy >= ymax(obj))] <- 1 rx[is.na(rx) & (xy[,2]-bufy <= ymin(obj) & xy[,2]+bufy >= ymin(obj))] <- nrow(obj) for (i in 1:nrow(xy)) { s <- sum(rn[i], rx[i], cn[i], cx[i]) if (is.na(s)) { cv[[i]] <- NA } else { if (onlycells) { value <- i } else { value <- getValuesBlock(object, rn[i], rx[i]-rn[i]+1, cn[i], cx[i]-cn[i]+1) } cell <- cellFromRowColCombine(obj, rn[i]:rx[i], cn[i]:cx[i]) coords <- xyFromCell(obj, cell) if (cellnumbers) { pd <- cbind(pointDistance(xy[i,], coords, lonlat=TRUE), cell, value) } else { pd <- cbind(pointDistance(xy[i,], coords, lonlat=TRUE), value) } if (nrow(pd) > 1) { v <- pd[pd[,1] <= buffer[i], -1] if (NROW(v) == 0) { cv[[i]] <- pd[which.min(pd[,1]), -1] } else { cv[[i]] <- v } } else { cv[[i]] <- pd[,-1] } } } } else { cn <- colFromX(obj, xy[,1]-buffer) cx <- colFromX(obj, xy[,1]+buffer) cn[is.na(cn) & (xy[,1]-buffer <= xmin(obj) & xy[,1]+buffer >= xmin(obj))] <- 1 cx[is.na(cx) & (xy[,1]-buffer <= xmax(obj) & xy[,1]+buffer > xmax(obj))] <- ncol(obj) rn <- rowFromY(obj, xy[,2]+buffer) rx <- rowFromY(obj, xy[,2]-buffer) rn[is.na(rn) & (xy[,2]-buffer <= ymax(obj) & xy[,2]+buffer >= ymax(obj))] <- 1 rx[is.na(rx) & (xy[,2]-buffer <= ymin(obj) & xy[,2]+buffer >= ymin(obj))] <- nrow(obj) if (.doCluster()) { cl <- getCluster() on.exit( returnCluster() ) nodes <- min(nrow(xy), length(cl)) message('Using cluster with ', nodes, ' nodes') utils::flush.console() parallel::clusterExport(cl, c('object', 'obj', 'cellnumbers'), envir=environment()) clFun2 <- function(i, xy, rn, rx, cn, cx) { s <- sum(rn, rx, cn, cx) if (is.na(s)) { return(NA) } else { if (onlycells) { value <- i } else { value <- getValuesBlock(object, rn, rx-rn+1, cn, cx-cn+1) } cell <- cellFromRowColCombine(obj, rn:rx, cn:cx) coords <- xyFromCell(obj, cell) if (cellnumbers) { pd <- cbind(pointDistance(xy, coords, lonlat=TRUE), cell, value) } else { pd <- cbind(pointDistance(xy, coords, lonlat=TRUE), value) } if (nrow(pd) > 1) { pd <- pd[pd[,1] <= buffer[i], -1] } else { pd <- pd[,-1] } return(pd) } } .sendCall <- eval( parse( text="parallel:::sendCall") ) for (i in 1:nodes) { .sendCall(cl[[i]], clFun2, list(i, xy[i, ,drop=FALSE], rn[i], rx[i], cn[i], cx[i]), tag=i) } for (i in 1:nrow(xy)) { d <- .recvOneData(cl) if (! d$value$success) { print(d) stop('cluster error') } else { cv[[i]] <- d$value$value } ni <- nodes + i if (ni <= nrow(xy)) { .sendCall(cl[[d$node]], clFun2, list(ni, xy[i, ,drop=FALSE], rn[i], rx[i], cn[i], cx[i]), tag=i) } } } else { for (i in 1:nrow(xy)) { s <- sum(rn[i], rx[i], cn[i], cx[i]) if (is.na(s)) { cv[[i]] <- NA } else { if (onlycells) { value <- i } else { value <- getValuesBlock(object, rn[i], rx[i]-rn[i]+1, cn[i], cx[i]-cn[i]+1) } cell <- cellFromRowColCombine(obj, rn[i]:rx[i], cn[i]:cx[i]) coords <- xyFromCell(obj, cell) if (cellnumbers) { pd <- cbind(pointDistance(xy[i,], coords, lonlat=FALSE), cell, value) } else { pd <- cbind(pointDistance(xy[i,], coords, lonlat=FALSE), value) } if (nrow(pd) > 1) { cv[[i]] <- pd[pd[,1] <= buffer[i], -1] } else { cv[[i]] <- pd[,-1] } } } } } if (small) { i <- sapply(cv, function(x) length(x)==0) if (any(i)) { i <- which(i) if (onlycells) { vv <- cbind(cellFromXY(object, xy[i, ,drop=FALSE]), NA) } else { vv <- extract(object, xy[i, ,drop=FALSE], na.rm=na.rm, layer=layer, nl=nl, cellnumbers=cellnumbers) } if (NCOL(vv) > 1) { for (j in 1:length(i)) { cv[[ i[j] ]] <- vv[j, ] } } else { for (j in 1:length(i)) { cv[[ i[j] ]] <- vv[j] } } } } nls <- nlayers(object) nms <- names(object) if (nls > 1) { if (layer > 1 | nl < nls) { lyrs <- layer:(layer+nl-1) nms <- nms[ lyrs ] cv <- lapply(cv, function(x) x[, lyrs ]) } } if (! is.null(fun)) { fun <- match.fun(fun) if (na.rm) { fun2 <- function(x){ x <- stats::na.omit(x) if (length(x) > 0) { return(fun(x)) } else { return(NA) } } } else { fun2 <- fun } if (nl == 1) { cv <- unlist(lapply(cv, fun2), use.names = FALSE) } else { np <- length(cv) cv <- lapply(cv, function(x) { if (!is.matrix(x)) { x <- t(matrix(x)) } apply(x, 2, fun2)} ) cv <- matrix(unlist(cv, use.names = FALSE), nrow=np, byrow=TRUE) colnames(cv) <- nms } } return(cv) }
NULL setClass( Class="CompositeModel", representation=representation( variable.independency = "logical", component.independency = "logical" ), contains=c("Model"), prototype=prototype( variable.independency = logical(0), component.independency = logical(0) ), validity=function(object){ vcf<-c("Heterogeneous_pk_E_L_B", "Heterogeneous_pk_E_Lk_B", "Heterogeneous_pk_E_L_Bk", "Heterogeneous_pk_E_Lk_Bk") vce<-c("Heterogeneous_p_E_L_B", "Heterogeneous_p_E_Lk_B", "Heterogeneous_p_E_L_Bk", "Heterogeneous_p_E_Lk_Bk") f<-c("Heterogeneous_pk_Ekj_L_B", "Heterogeneous_pk_Ekj_Lk_B", "Heterogeneous_pk_Ekj_L_Bk", "Heterogeneous_pk_Ekj_Lk_Bk", "Heterogeneous_pk_Ekjh_L_B", "Heterogeneous_pk_Ekjh_Lk_B", "Heterogeneous_pk_Ekjh_L_Bk", "Heterogeneous_pk_Ekjh_Lk_Bk") e<-c("Heterogeneous_p_Ekj_L_B", "Heterogeneous_p_Ekj_Lk_B", "Heterogeneous_p_Ekj_L_Bk", "Heterogeneous_p_Ekj_Lk_Bk", "Heterogeneous_p_Ekjh_L_B", "Heterogeneous_p_Ekjh_Lk_B", "Heterogeneous_p_Ekjh_L_Bk", "Heterogeneous_p_Ekjh_Lk_Bk") cf<-c("Heterogeneous_pk_Ej_L_B", "Heterogeneous_pk_Ej_Lk_B", "Heterogeneous_pk_Ej_L_Bk", "Heterogeneous_pk_Ej_Lk_Bk") ce<-c("Heterogeneous_p_Ej_L_B", "Heterogeneous_p_Ej_Lk_B", "Heterogeneous_p_Ej_L_Bk", "Heterogeneous_p_Ej_Lk_Bk") vf<-c("Heterogeneous_pk_Ek_L_B", "Heterogeneous_pk_Ek_Lk_B", "Heterogeneous_pk_Ek_L_Bk", "Heterogeneous_pk_Ek_Lk_Bk") ve<-c("Heterogeneous_p_Ek_L_B", "Heterogeneous_p_Ek_Lk_B", "Heterogeneous_p_Ek_L_Bk", "Heterogeneous_p_Ek_Lk_Bk") all.free<-c(vcf,f,cf,vf) all.equal<-c(vce,e,ce,ve) variable.free<-c(vcf,vf) variable.equal<-c(vce,ve) variable<-c(variable.free,variable.equal) component.free<-c(vcf,cf) component.equal<-c(vce,ce) component<-c(component.free,component.equal) all=c(all.free,all.equal) if ( sum(object@listModels %in% all) != length(object@listModels) ) stop("At least one model is not a valid model. See ?mixmodCompositeModel for the list of all composite models.") if ( [email protected] & [email protected] ) stop("equal.proportions and free.porportions cannot be both as FALSE !") if ( [email protected] & (sum(object@listModels %in% all.free)>0) ) stop("At least one model has a free proportions but free.proportions is set as FALSE. See ?mixmodCompositeModel for the list of models with equal proportions.") if ( [email protected] & (sum(object@listModels %in% all.equal)>0) ) stop("At least one model has an equal proportions but equal.proportions is set as FALSE. See ?mixmodCompositeModel for the list of models with free proportions.") if ( length([email protected]) ){ if ( [email protected] & sum(object@listModels %in% variable) != length(object@listModels) ) stop("At least one model is not independent of the variable j. See ?mixmodCompositeModel for the list of all composite models.") } if ( length([email protected]) ){ if ( [email protected] & sum(object@listModels %in% component) != length(object@listModels) ) stop("At least one model is not independent of the variable j. See ?mixmodCompositeModel for the list of all composite models.") } } ) setMethod( f="initialize", signature=c("CompositeModel"), definition=function(.Object, listModels, free.proportions, equal.proportions, variable.independency, component.independency){ vcf<-c("Heterogeneous_pk_E_L_B", "Heterogeneous_pk_E_Lk_B", "Heterogeneous_pk_E_L_Bk", "Heterogeneous_pk_E_Lk_Bk") vce<-c("Heterogeneous_p_E_L_B", "Heterogeneous_p_E_Lk_B", "Heterogeneous_p_E_L_Bk", "Heterogeneous_p_E_Lk_Bk") f<-c("Heterogeneous_pk_Ekj_L_B", "Heterogeneous_pk_Ekj_Lk_B", "Heterogeneous_pk_Ekj_L_Bk", "Heterogeneous_pk_Ekj_Lk_Bk", "Heterogeneous_pk_Ekjh_L_B", "Heterogeneous_pk_Ekjh_Lk_B", "Heterogeneous_pk_Ekjh_L_Bk", "Heterogeneous_pk_Ekjh_Lk_Bk") e<-c("Heterogeneous_p_Ekj_L_B", "Heterogeneous_p_Ekj_Lk_B", "Heterogeneous_p_Ekj_L_Bk", "Heterogeneous_p_Ekj_Lk_Bk", "Heterogeneous_p_Ekjh_L_B", "Heterogeneous_p_Ekjh_Lk_B", "Heterogeneous_p_Ekjh_L_Bk", "Heterogeneous_p_Ekjh_Lk_Bk") cf<-c("Heterogeneous_pk_Ej_L_B", "Heterogeneous_pk_Ej_Lk_B", "Heterogeneous_pk_Ej_L_Bk", "Heterogeneous_pk_Ej_Lk_Bk") ce<-c("Heterogeneous_p_Ej_L_B", "Heterogeneous_p_Ej_Lk_B", "Heterogeneous_p_Ej_L_Bk", "Heterogeneous_p_Ej_Lk_Bk") vf<-c("Heterogeneous_pk_Ek_L_B", "Heterogeneous_pk_Ek_Lk_B", "Heterogeneous_pk_Ek_L_Bk", "Heterogeneous_pk_Ek_Lk_Bk") ve<-c("Heterogeneous_p_Ek_L_B", "Heterogeneous_p_Ek_Lk_B", "Heterogeneous_p_Ek_L_Bk", "Heterogeneous_p_Ek_Lk_Bk") all.free<-c(vcf,f,cf,vf) all.equal<-c(vce,e,ce,ve) variable.free<-c(vcf,vf) variable.equal<-c(vce,ve) variable<-c(variable.free,variable.equal) component.free<-c(vcf,cf) component.equal<-c(vce,ce) component<-c(component.free,component.equal) if ( !missing(listModels) ){ .Object@listModels <- listModels if ( missing(free.proportions) ){ if ( sum(listModels %in% all.free) ){ [email protected]<-TRUE } else{ [email protected]<-FALSE } } else{ [email protected]<-free.proportions } if ( missing(equal.proportions) ){ if ( sum(listModels %in% all.equal) ){ [email protected]<-TRUE } else{ [email protected]<-FALSE } } else{ [email protected]<-equal.proportions } if ( missing(variable.independency) ){ if ( sum(listModels %in% variable) == length(listModels) ){ [email protected]<-TRUE } } else{ [email protected]<-variable.independency } if ( missing(component.independency) ){ if ( sum(listModels %in% component) == length(listModels) ){ [email protected]<-TRUE } } else{ [email protected]<-component.independency } } else{ if ( missing(free.proportions) ){ [email protected]<-TRUE } else{ [email protected]<-free.proportions } if ( missing(equal.proportions) ){ [email protected]<-TRUE } else{ [email protected]<-equal.proportions } list<-character(0) if ( !missing(variable.independency) & !missing(component.independency)){ if ( variable.independency & component.independency){ if ( [email protected] ){ list<-c(list,vcf) } if ( [email protected] ){ list<-c(list,vce) } }else if ( !variable.independency & !component.independency){ if ( [email protected] ){ list<-c(list,f) } if ( [email protected] ){ list<-c(list,e) } }else if ( !variable.independency & component.independency){ if ( [email protected] ){ list<-c(list,cf) } if ( [email protected] ){ list<-c(list,ce) } }else if ( variable.independency & !component.independency){ if ( [email protected] ){ list<-c(list,vf) } if ( [email protected] ){ list<-c(list,ve) } } [email protected] <- component.independency [email protected] <- variable.independency } else if ( !missing(component.independency) ){ if ( component.independency ){ if ( [email protected] ){ list<-c(list,component.free) } if ( [email protected] ){ list<-c(list,component.equal) } }else{ if ( [email protected] ){ list<-c(list,f,vf) } if ( [email protected] ){ list<-c(list,e,ve) } } [email protected]<-component.independency [email protected] <- logical(0) } else if ( !missing(variable.independency) ){ if ( variable.independency ){ if ( [email protected] ){ list<-c(list,variable.free) } if ( [email protected] ){ list<-c(list,variable.equal) } }else{ if ( [email protected] ){ list<-c(list,f,cf) } if ( [email protected] ){ list<-c(list,e,ce) } } [email protected] <- logical(0) [email protected] <- variable.independency } else{ if ( [email protected] ){ list<-c(list,all.free) } if ( [email protected] ){ list<-c(list,all.equal) } [email protected] <- logical(0) [email protected] <- logical(0) } .Object@listModels<-list } validObject(.Object) return(.Object) } ) mixmodCompositeModel<- function(listModels=NULL, free.proportions=TRUE, equal.proportions=TRUE, variable.independency=NULL, component.independency=NULL ){ if ( !is.null(listModels) ){ new("CompositeModel", listModels=listModels) } else{ if ( !is.null(variable.independency) & !is.null(component.independency) ){ new("CompositeModel", free.proportions=free.proportions, equal.proportions=equal.proportions, variable.independency=variable.independency, component.independency=component.independency) } else if ( !is.null(variable.independency) & is.null(component.independency) ){ new("CompositeModel", free.proportions=free.proportions, equal.proportions=equal.proportions, variable.independency=variable.independency) } else if ( is.null(variable.independency) & !is.null(component.independency) ){ new("CompositeModel", free.proportions=free.proportions, equal.proportions=equal.proportions, component.independency=component.independency) } else{ new("CompositeModel", free.proportions=free.proportions, equal.proportions=equal.proportions) } } } composeModelName <- function (g_modelname,m_modelname) { gaussianmodel = mixmodGaussianModel(listModels = g_modelname) multinomialmodel = mixmodMultinomialModel(listModels = m_modelname) if(gaussianmodel["free.proportions"]!=multinomialmodel["free.proportions"] & gaussianmodel["equal.proportions"]!=multinomialmodel["equal.proportions"]) stop("Proportions should either be free or equal for both the models.") if(gaussianmodel["family"]!="diagonal") stop("In heterogeneous case, Gaussian model can only belong diagonal family.") if(gaussianmodel["free.proportions"]) return(paste("Heterogeneous_",substr(m_modelname,8,nchar(m_modelname)),substr(g_modelname,12,nchar(g_modelname)),sep="")) else return(paste("Heterogeneous_",substr(m_modelname,8,nchar(m_modelname)),substr(g_modelname,11,nchar(g_modelname)),sep="")) } setMethod( f="[", signature(x = "CompositeModel"), definition=function(x,i,j,drop){ if ( missing(j) ){ switch(EXPR=i, "listModels"={return(x@listModels)}, "free.proportions"={return([email protected])}, "equal.proportions"={return([email protected])}, "variable.independency"={return([email protected])}, "component.independency"={return([email protected])}, stop("This attribute doesn't exist !") ) }else{ switch(EXPR=i, "listModels"={return(x@listModels[j])}, stop("This attribute doesn't exist !") ) } } ) setReplaceMethod( f="[", signature(x = "CompositeModel"), definition=function(x,i,j,value){ if ( missing(j) ){ switch(EXPR=i, "listModels"={x@listModels<-value}, "free.proportions"={[email protected]<-value}, "equal.proportions"={[email protected]<-value}, "variable.independency"={[email protected]<-value}, "component.independency"={[email protected]<-value}, stop("This attribute doesn't exist !") ) }else{ switch(EXPR=i, "listModels"={x@listModels[j]<-value}, stop("This attribute doesn't exist !") ) } validObject(x) return(x) } )
get_problem_matrix <- function(linOps, id_to_col = integer(0), constr_offsets = integer(0)) { cvxCanon <- CVXcanon$new() lin_vec <- CVXcanon.LinOpVector$new() id_to_col_C <- id_to_col storage.mode(id_to_col_C) <- "integer" tmp <- R6List$new() for (lin in linOps) { tree <- build_lin_op_tree(lin, tmp) tmp$append(tree) lin_vec$push_back(tree) } if (typeof(constr_offsets) != "integer") { stop("get_problem_matrix: expecting integer vector for constr_offsets") } if (length(constr_offsets) == 0) problemData <- cvxCanon$build_matrix(lin_vec, id_to_col_C) else { constr_offsets_C <- constr_offsets storage.mode(constr_offsets_C) <- "integer" problemData <- cvxCanon$build_matrix(lin_vec, id_to_col_C, constr_offsets_C) } list(V = problemData$getV(), I = problemData$getI(), J = problemData$getJ(), const_vec = matrix(problemData$getConstVec(), ncol = 1)) } format_matrix <- function(matrix, format='dense') { if(is.bigq(matrix) || is.bigz(matrix)) { matdbl <- matrix(sapply(matrix, as.double)) dim(matdbl) <- dim(matrix) matrix <- matdbl } if (format == 'dense') { as.matrix(matrix) } else if (format == 'sparse') { Matrix::Matrix(matrix, sparse = TRUE) } else if (format == 'scalar') { as.matrix(matrix) } else { stop(sprintf("format_matrix: format %s unknown", format)) } } set_matrix_data <- function(linC, linR) { if (is.list(linR$data) && linR$data$class == "LinOp") { if (linR$data$type == 'sparse_const') { linC$sparse_data <- format_matrix(linR$data$data, 'sparse') } else if (linR$data$type == 'dense_const') { linC$dense_data <- format_matrix(linR$data$data) } else { stop(sprintf("set_matrix_data: data.type %s unknown", linR$data$type)) } } else { if (linR$type == 'sparse_const') { linC$sparse_data <- format_matrix(linR$data, 'sparse') } else { linC$dense_data <- format_matrix(linR$data) } } } set_slice_data <- function(linC, linR) { for (i in seq.int(length(linR$data) - 1L)) { sl <- linR$data[[i]] linC$slice_push_back(sl - 1) } } build_lin_op_tree <- function(root_linR, tmp, verbose = FALSE) { Q <- Deque$new() root_linC <- CVXcanon.LinOp$new() Q$append(list(linR = root_linR, linC = root_linC)) while(Q$length() > 0) { node <- Q$popleft() linR <- node$linR linC <- node$linC for(argR in linR$args) { tree <- CVXcanon.LinOp$new() tmp$append(tree) Q$append(list(linR = argR, linC = tree)) linC$args_push_back(tree) } linC$type <- toupper(linR$type) linC$size_push_back(as.integer(linR$dim[1])) linC$size_push_back(as.integer(linR$dim[2])) if(!is.null(linR$data)) { if (length(linR$data) == 3L && linR$data[[3L]] == 'key') { set_slice_data(linC, linR) } else if(is.numeric(linR$data) || is.integer(linR$data)) linC$dense_data <- format_matrix(linR$data, 'scalar') else if(linR$data$class == 'LinOp' && linR$data$type == 'scalar_const') linC$dense_data <- format_matrix(linR$data$data, 'scalar') else set_matrix_data(linC, linR) } } root_linC }
rm(list=ls()) setwd("C:/Users/Tom/Documents/Kaggle/Santander") library(data.table) library(bit64) library(xgboost) library(stringr) submissionDate <- "06-12-2016" loadFile <- "xgboost weighted stacked 1, linear increase jun15 times6 back 11-0 no zeroing, exponential normalisation joint" submissionFile <- "xgboost weighted stacked 1, linear increase jun15 times6 back 11-0 no zeroing, exponential normalisation joint" targetDate <- "12-11-2016" trainModelsFolder <- "trainFixedLag5TrainAll" trainAll <- grepl("TrainAll", trainModelsFolder) testFeaturesFolder <- "testFixedLag5" loadPredictions <- FALSE loadBaseModelPredictions <- TRUE savePredictions <- TRUE saveBaseModelPredictions <- TRUE savePredictionsBeforeNormalisation <- TRUE dropFoldModels <- FALSE foldRelativeWeight <- 0.8 normalizeProdProbs <- TRUE normalizeMode <- c("additive", "linear", "exponential")[3] additiveNormalizeProds <- NULL fractionPosFlankUsers <- 0.035 expectedCountPerPosFlank <- 1.25 marginalNormalisation <- c("linear", "exponential")[2] weightSum <- 1 predictSubset <- FALSE predictionsFolder <- "Predictions" zeroTargets <- NULL source("Common/exponentialNormaliser.R") source("Common/getModelWeights.R") dateTargetWeights <- readRDS(file.path(getwd(), "Model weights", targetDate, "model weights second.rds")) predictionsPath <- file.path(getwd(), "Submission", submissionDate, predictionsFolder) dir.create(predictionsPath, showWarnings = FALSE) if(saveBaseModelPredictions && !loadBaseModelPredictions){ baseModelPredictionsPath <- file.path(predictionsPath, submissionFile) dir.create(baseModelPredictionsPath, showWarnings = FALSE) } else{ if(loadBaseModelPredictions){ baseModelPredictionsPath <- file.path(predictionsPath, loadFile) } } if(loadPredictions){ rawPredictionsPath <- file.path(predictionsPath, paste0("prevNorm", loadFile, ".rds")) } else{ rawPredictionsPath <- file.path(predictionsPath, paste0("prevNorm", submissionFile, ".rds")) } posFlankClientsFn <- file.path(getwd(), "Feature engineering", targetDate, "positive flank clients.rds") posFlankClients <- readRDS(posFlankClientsFn) modelsBasePath <- file.path(getwd(), "Second level learners", "Models", targetDate, trainModelsFolder) modelGroups <- list.dirs(modelsBasePath)[-1] modelGroups <- modelGroups[!grepl("Manual tuning", modelGroups)] modelGroups <- modelGroups[!grepl("no fold BU", modelGroups)] nbModelGroups <- length(modelGroups) baseModelInfo <- NULL baseModels <- list() for(i in 1:nbModelGroups){ modelGroup <- modelGroups[i] slashPositions <- gregexpr("\\/", modelGroup)[[1]] modelGroupExtension <- substring(modelGroup, 1 + slashPositions[length(slashPositions)]) modelGroupFiles <- list.files(modelGroup) modelGroupFiles <- modelGroupFiles[!grepl("no fold BU", modelGroupFiles)] if(dropFoldModels){ modelGroupFiles <- modelGroupFiles[!grepl("Fold", modelGroupFiles)] } nbModels <- length(modelGroupFiles) monthsBack <- suppressWarnings( as.numeric(substring(gsub("Lag.*$", "", modelGroupExtension), 5))) lag <- suppressWarnings(as.numeric(gsub("^.*Lag", "", modelGroupExtension))) if(nbModels>0){ for(j in 1:nbModels){ modelGroupFile <- modelGroupFiles[j] modelInfo <- readRDS(file.path(modelGroup, modelGroupFile)) targetProduct <- modelInfo$targetVar relativeWeight <- getModelWeights(monthsBack, targetProduct, dateTargetWeights) isFold <- grepl("Fold", modelGroupFile) prodMonthFiles <- modelGroupFiles[grepl(targetProduct, modelGroupFiles)] nbFoldsProd <- sum(grepl("Fold", prodMonthFiles)) prodMonthFiles <- modelGroupFiles[grepl(targetProduct, modelGroupFiles)] nbFoldsProd <- sum(grepl("Fold", prodMonthFiles)) foldBaseWeight <- foldRelativeWeight * 4 / nbFoldsProd if(!is.finite(foldBaseWeight)){ foldBaseWeight <- 0 } productMonthSum <- 1 + nbFoldsProd*foldBaseWeight if(isFold){ foldModelWeight <- foldBaseWeight/productMonthSum } else{ foldModelWeight <- 1/productMonthSum } baseModelInfo <- rbind(baseModelInfo, data.table( modelGroupExtension = modelGroupExtension, targetProduct = targetProduct, monthsBack = monthsBack, modelLag = lag, relativeWeight = relativeWeight * foldModelWeight) ) baseModels <- c(baseModels, list(modelInfo)) } } } baseModelInfo[, modelId := 1:nrow(baseModelInfo)] if(all(is.na(baseModelInfo$modelLag))){ nbGroups <- length(unique(baseModelInfo$modelGroupExtension)) baseModelInfo <- baseModelInfo[order(targetProduct), ] baseModelInfo$modelLag <- 5 baseModelInfo$relativeWeight <- 1 monthsBackLags <- rep(defaultTestLag, nbGroups) nbMarginalLags <- length(monthsBackLags) nbConditionalLags <- 1 } else{ monthsBackLags <- rev(sort(unique(baseModelInfo$modelLag))) nbMarginalLags <- length(monthsBackLags) nbConditionalLags <- length(monthsBackLags) } uniqueBaseModels <- sort(unique(baseModelInfo$targetProduct)) for(i in 1:length(uniqueBaseModels)){ productIds <- baseModelInfo$targetProduct==uniqueBaseModels[i] productWeightSum <- baseModelInfo[productIds, sum(relativeWeight)] normalizeWeightRatio <- weightSum/productWeightSum baseModelInfo[productIds, relativeWeight := relativeWeight* normalizeWeightRatio] } baseModelInfo <- baseModelInfo[order(monthsBack), ] baseModelNames <- unique(baseModelInfo[monthsBack==0, targetProduct]) testDataLag <- readRDS(file.path(getwd(), "Second level learners", "Features", targetDate, testFeaturesFolder, "Lag5.rds")) if(predictSubset){ predictSubsetIds <- sort(sample(1:nrow(testDataLag), predictSubsetCount)) testDataLag <- testDataLag[predictSubsetIds] } testDataPosFlank <- testDataLag$ncodpers %in% posFlankClients trainFn <- "trainFixedLag5/Back11Lag5.rds" colOrderData <- readRDS(file.path(getwd(), "Second level learners", "Features", targetDate, trainFn)) targetCols <- grep("^ind_.*_ult1$", names(colOrderData), value=TRUE) rm(colOrderData) gc() nbBaseModels <- length(targetCols) countContributions <- readRDS(file.path(getwd(), "Feature engineering", targetDate, "monthlyRelativeProductCounts.rds")) if(!trainAll){ posFlankModelInfo <- baseModelInfo[targetProduct=="hasNewProduct"] newProdPredictions <- rep(0, nrow(testDataLag)) if(nrow(posFlankModelInfo) != nbMarginalLags) browser() for(i in 1:nbMarginalLags){ cat("Generating new product predictions for lag", i, "of", nbMarginalLags, "\n") lag <- posFlankModelInfo[i, modelLag] weight <- posFlankModelInfo[i, relativeWeight] newProdModel <- baseModels[[posFlankModelInfo[i, modelId]]] testDataLag <- readRDS(file.path(getwd(), "Feature engineering", targetDate, testFeaturesFolder, paste0("Lag", lag, " features.rds"))) if(predictSubset){ testDataLag <- testDataLag[predictSubsetIds] } predictorData <- testDataLag[, newProdModel$predictors, with=FALSE] predictorDataM <- data.matrix(predictorData) rm(predictorData) gc() newProdPredictionsLag <- predict(newProdModel$model, predictorDataM) newProdPredictions <- newProdPredictions + newProdPredictionsLag*weight } newProdPredictions <- newProdPredictions/weightSum meanGroupPredsMayFlag <- c(mean(newProdPredictions[testDataLag$hasMay15Data==0]), mean(newProdPredictions[testDataLag$hasMay15Data==1])) meanGroupPredsPosFlank <- c(mean(newProdPredictions[!testDataPosFlank]), mean(newProdPredictions[testDataPosFlank])) expectedPosFlanks <- sum(newProdPredictions) leaderboardPosFlanks <- fractionPosFlankUsers*nrow(testDataLag) normalisedProbRatio <- leaderboardPosFlanks/expectedPosFlanks cat("Expected/leaderboard positive flank ratio", round(1/normalisedProbRatio, 2), "\n") if(marginalNormalisation == "linear"){ newProdPredictions <- newProdPredictions * normalisedProbRatio } else{ newProdPredictions <- probExponentNormaliser(newProdPredictions, normalisedProbRatio) } } else{ newProdPredictions <- rep(1, nrow(testDataLag)) } if(loadPredictions && file.exists(rawPredictionsPath)){ allPredictions <- readRDS(rawPredictionsPath) } else{ allPredictions <- NULL for(lagId in 1:nbConditionalLags){ cat("\nGenerating positive flank predictions for lag", lagId, "of", nbConditionalLags, "@", as.character(Sys.time()), "\n\n") lag <- monthsBackLags[lagId] testDataLag <- readRDS(file.path(getwd(), "Second level learners", "Features", targetDate, testFeaturesFolder, paste0("Lag", lag, ".rds"))) if(predictSubset){ testDataLag <- testDataLag[predictSubsetIds] } for(i in 1:nbBaseModels){ targetVar <- targetCols[i] targetModelIds <- baseModelInfo[targetProduct==targetVar & modelLag==lag, modelId] cat("Generating test predictions for model", i, "of", nbBaseModels, "\n") if(exists("baseModelPredictionsPath")){ baseModelPredPath <- file.path(baseModelPredictionsPath, paste0(targetVar, " Lag ", lag, ".rds")) } else{ baseModelPredPath <- "" } foldWeights <- baseModelInfo[modelId %in% targetModelIds, relativeWeight] weight <- sum(foldWeights) if(loadBaseModelPredictions && file.exists(baseModelPredPath)){ predictionsDT <- readRDS(baseModelPredPath) } else{ if(targetVar %in% zeroTargets || weight <= 0){ predictions <- rep(0, nrow(testDataLag)) } else{ nbTargetModelFolds <- length(targetModelIds) foldPredictions <- rep(0, nrow(testDataLag)) alreadyOwned <- is.na(testDataLag[[paste0(targetVar, "Lag1")]]) | testDataLag[[paste0(targetVar, "Lag1")]] == 1 predictorData <- testDataLag[!alreadyOwned, baseModels[[targetModelIds[1]]]$predictors, with=FALSE] predictorDataM <- data.matrix(predictorData) rm(predictorData) gc() for(fold in 1:nbTargetModelFolds){ targetModelId <- targetModelIds[fold] targetModel <- baseModels[[targetModelId]] weightFold <- foldWeights[fold] if(targetModel$targetVar != targetVar) browser() predictionsPrevNotOwnedFold <- predict(targetModel$model, predictorDataM) foldPredictions[!alreadyOwned] <- foldPredictions[!alreadyOwned] + predictionsPrevNotOwnedFold*weightFold } predictions <- foldPredictions/weight predictions[alreadyOwned] <- 0 } predictionsDT <- data.table(ncodpers = testDataLag$ncodpers, predictions = predictions, product = targetVar) } predictionsDT[, weightedPrediction := predictionsDT$predictions*weight] if(targetVar %in% allPredictions$product){ allPredictions[product==targetVar, weightedPrediction:= weightedPrediction + predictionsDT$weightedPrediction] } else{ allPredictions <- rbind(allPredictions, predictionsDT) } if(saveBaseModelPredictions && !loadBaseModelPredictions){ predictionsDT[, weightedPrediction:=NULL] saveRDS(predictionsDT, baseModelPredPath) } } } allPredictions[, prediction := weightedPrediction / weightSum] allPredictions[, weightedPrediction := NULL] allPredictions[, predictions := NULL] if(savePredictionsBeforeNormalisation){ saveRDS(allPredictions, file=rawPredictionsPath) } } probMultipliers <- rep(NA, nbBaseModels) if(normalizeProdProbs){ for(i in 1:nbBaseModels){ cat("Normalizing product predictions", i, "of", nbBaseModels, "\n") targetVar <- targetCols[i] alreadyOwned <- is.na(testDataLag[[paste0(targetVar, "Lag1")]]) | testDataLag[[paste0(targetVar, "Lag1")]] == 1 predictions <- allPredictions[product==targetVar, prediction] predictionsPrevNotOwned <- predictions[!alreadyOwned] if(suppressWarnings(max(predictions[alreadyOwned]))>0) browser() predictedPosFlankCount <- sum(predictionsPrevNotOwned * newProdPredictions[!alreadyOwned]) probMultiplier <- nrow(testDataLag) * fractionPosFlankUsers * expectedCountPerPosFlank * countContributions[17, i] / predictedPosFlankCount probMultipliers[i] <- probMultiplier if(is.finite(probMultiplier)){ if(normalizeMode == "additive" || targetVar %in% additiveNormalizeProds){ predictions[!alreadyOwned] <- predictions[!alreadyOwned] + (probMultiplier-1)*mean(predictions[!alreadyOwned]) } else{ if(normalizeMode == "linear"){ predictions[!alreadyOwned] <- predictions[!alreadyOwned] * probMultiplier } else{ predictions[!alreadyOwned] <- probExponentNormaliser( predictions[!alreadyOwned], probMultiplier, weights=newProdPredictions[!alreadyOwned]) } } allPredictions[product==targetVar, prediction:=predictions] } } } setkey(allPredictions, ncodpers) allPredictions[,order_predict := match(1:length(prediction), order(-prediction)), by=ncodpers] allPredictions <- allPredictions[order(ncodpers, -prediction), ] orderCount <- allPredictions[, .N, .(ncodpers, order_predict)] if(max(orderCount$N)>1) browser() hist(allPredictions[order_predict==1, prediction]) topPredictions <- allPredictions[order_predict==1, .N, product] topPredictions <- topPredictions[order(-N)] topPredictionsPosFlanks <- allPredictions[order_predict==1 & ncodpers %in% posFlankClients, .N, product] topPredictionsPosFlanks <- topPredictionsPosFlanks[order(-N)] productRankDelaFin <- allPredictions[product=="ind_dela_fin_ult1", .N, order_predict] productRankDelaFin <- productRankDelaFin[order(order_predict),] productRankDecoFin <- allPredictions[product=="ind_deco_fin_ult1", .N, order_predict] productRankDecoFin <- productRankDecoFin[order(order_predict),] productRankTjcrFin <- allPredictions[product=="ind_tjcr_fin_ult1", .N, order_predict] productRankTjcrFin <- productRankTjcrFin[order(order_predict),] productRankRecaFin <- allPredictions[product=="ind_reca_fin_ult1", .N, order_predict] productRankRecaFin <- productRankRecaFin[order(order_predict),] allPredictions[, totalProb := prediction * rep(newProdPredictions, each = nbBaseModels)] meanProductProbs <- allPredictions[, .(meanCondProb = mean(prediction), meanProb = mean(totalProb), totalProb = sum(totalProb)), product] meanProductProbs <- meanProductProbs[order(-meanProb), ] productString <- paste(allPredictions[order_predict==1, product], allPredictions[order_predict==2, product], allPredictions[order_predict==3, product], allPredictions[order_predict==4, product], allPredictions[order_predict==5, product], allPredictions[order_predict==6, product], allPredictions[order_predict==7, product]) if(length(productString) != nrow(testDataLag)) browser() submission <- data.frame(ncodpers = testDataLag$ncodpers, added_products = productString) paddedSubmission <- fread("Data/sample_submission.csv") paddedSubmission[, added_products := ""] matchIds <- match(submission$ncodpers, paddedSubmission$ncodpers) paddedSubmission[matchIds, added_products := submission$added_products] write.csv(paddedSubmission, file.path(getwd(), "Submission", submissionDate, paste0(submissionFile, ".csv")), row.names = FALSE) if(savePredictions){ saveRDS(allPredictions, file=file.path(predictionsPath, paste0(submissionFile, ".rds"))) } cat("Submission file created successfully!\n", nrow(submission)," records were predicted (", round(nrow(submission)/nrow(paddedSubmission)*100,2), "%)\n", sep="")
expected <- eval(parse(text="FALSE")); test(id=0, code={ argv <- eval(parse(text="list(FALSE, FALSE)")); .Internal(qsort(argv[[1]], argv[[2]])); }, o=expected);
makeModelFile <-function(model, filename, mergedTree, S, hyperprior, corString=NULL, predString=NULL, parString="", groupMatT1=NULL, fixedPar=NULL ){ treeNames <- as.character(sort(unique(mergedTree$Tree))) NOT=length(treeNames) count=1 ncatPerTree <- as.vector(by(mergedTree$Category, mergedTree$Tree, length)) cat(ifelse(model=="traitMPT", " " "data{\nfor(s in 1:S){\n zeros[s] <- 0\n}\n}\n\n", "model{\n\n", "for (n in 1: subjs){\n\n file=filename) for(i in 1:NOT){ for(j in 1:ncatPerTree[i]){ cat(treeNames[i],"[n,",j,"] <- ",mergedTree$Equation[count], "\n",sep="",file=filename,append=T) count=count+1 } cat("\n",file=filename,append=T) } cat("\n for(i in 1:NOT){ cat("response.",treeNames[i],"[n,1:",ncatPerTree[i],"] ~ dmulti(", treeNames[i],"[n,1:",ncatPerTree[i],"],items.",treeNames[i], "[n])\n",sep="",file=filename,append=T) } cat("}\n",file=filename,append=T) hyperprior <- switch(model, "betaMPT" = makeBetaHyperprior(S =S , alpha = hyperprior$alpha, beta = hyperprior$beta), "traitMPT" = makeTraitHyperprior(S = S, predString = predString, mu = hyperprior$mu, xi = hyperprior$xi, wishart = !anyNA(hyperprior$V)) ) cat("\n\n hyperprior, file=filename, append=TRUE) if(! is.null(fixedPar)){ S.fixed <- length(unique(fixedPar$theta)) cat("\nfor(i in 1:", S.fixed,"){\n", " thetaFE[i] ~ dunif(0,1)\n}\n", file=filename, append=TRUE) } if( !is.null(corString)){ cat(corString, file=filename, append=T) } cat(parString, file=filename, append = TRUE) cat("}\n",file=filename,append=T) } makeBetaHyperprior <- function(S, alpha = "dunif(1,5000)", beta = "dunif(1,5000)"){ if(!inherits(alpha, "character") || !length(alpha) %in% c(1,S)){ stop("Hyperprior for 'alpha' must be a character vector of length 1 if the same prior should be used for all MPT parameters (default) or a vector of the same length as the number of parameters (=", S, "; to check the order see ?readEQN).") } if(!inherits(beta, "character") || !length(beta) %in% c(1,S)){ stop("Hyperprior for 'beta' must be a character vector of length 1 if the same prior should be used for all MPT parameters (default) or a vector of the same length as the number of parameters (=", S, "; to check the order see ?readEQN).") } modelString <- paste0(" for(s in 1:S){ for(n in 1:subjs) { theta[s,n] ~ dbeta(alph[s], bet[s]) } } for(s in 1:S){ mean[s] <- alph[s]/(alph[s]+bet[s]) sd[s] <- sqrt(alph[s]*bet[s]/(pow(alph[s]+bet[s],2)*(alph[s]+bet[s]+1))) }\n\n") for(s in 1:S){ if(alpha[s] == "zero" | beta[s] == "zero"){ modelString <- paste0(modelString, "alph[", s, "] ~ dunif(.01,5000)\n", "bet[", s, "] ~ dunif(.01,5000)\n", "zeros[",s,"] ~ dpois(phi[",s,"])\n", "phi[",s,"] <- -log(1/pow(alph[",s,"]+bet[",s,"],5/2))\n") }else{ modelString <- paste0(modelString, "alph[", s, "] ~ ", alpha[s], "\n", "bet[", s, "] ~ ", beta[s], "\n") } } modelString <- paste0(modelString, "\n") return(modelString) } makeTraitHyperprior <- function(S, predString, mu = "dnorm(0,1)", xi = "dunif(0,100)", wishart = TRUE){ if(!inherits(mu, "character") || !length(mu) %in% c(1,S)){ stop("Hyperprior for 'mu' must be a character vector of length 1 if the same prior should be used for all MPT parameters (default) or a vector of the same length as the number of parameters (=", S, "; to check the order see ?readEQN).") } if(!inherits(xi, "character") || !length(xi) %in% c(1,S)){ stop("Hyperprior for 'xi' must be a character vector of length 1 if the same prior should be used for all MPT parameters (default) or a vector of the same length as the number of parameters (=", S, "; to check the order see ?readEQN).") } if (wishart){ modelString <- paste0(predString, " for(i in 1:subjs) { delta.part.raw[1:S,i] ~ dmnorm(zeros,T.prec.part[1:S,1:S]) } ", ifelse(S > 1," T.prec.part[1:S,1:S] ~ dwish(V, df)", " T.prec.part[1,1] ~ dchisq(df)"), " Sigma.raw[1:S,1:S] <- inverse(T.prec.part[,]) for(s in 1:S){ mean[s] <- phi(mu[s]) for(q in 1:S){ Sigma[s,q] <- Sigma.raw[q,s]*xi[s]*xi[q] } } for(s in 1:S){ for(q in 1:S){ rho[s,q] <- Sigma[s,q]/sqrt(Sigma[s,s]*Sigma[q,q]) } sigma[s] <- sqrt(Sigma[s,s]) }") } else { modelString <- paste0(predString, " for(s in 1:S) { for(i in 1:subjs) { delta.part.raw[s,i] ~ dnorm(0,tau[s]) } mean[s] <- phi(mu[s]) tau[s] ~ dgamma(.5, df / 2) sigma[s] <- abs(xi[s]) / sqrt(tau[s]) for(s2 in 1:S){ rho[s,s2] <- -99 } }") } paste0(modelString, "\n\n", paste0("\nmu[", 1:S, "] ~ ", mu, collapse = ""), paste0("\nxi[", 1:S, "] ~ ", xi, collapse = ""),"\n\n") }
tm_wordcloud <- function(data, stopwords = NULL, seed = 100, keep = 100, return = "plot", ...){ set.seed(seed) clean_data <- suppressMessages(tm_clean( data = data, token = "words", stopwords = stopwords )) plot_data <- clean_data %>% count(word, name = "freq") %>% arrange(desc(freq)) if(nrow(plot_data) < keep){ keep <- nrow(plot_data) } plot_data <- plot_data %>% slice(1:keep) if(return == "plot"){ output <- plot_data %>% ggplot(aes(label = word, size = freq)) + ggwordcloud::geom_text_wordcloud(rm_outside = TRUE, ...) + scale_size_area(max_size = 15) + theme_minimal() return(output) } else if (return == "table"){ return(plot_data) } else { stop("Please enter a valid input for `return`.") } }
make.timedep.dataset = function(dat, X, d, baseline.ageyrs, t.1, t.2=NULL) { stopifnot(t.1<t.2) dat[[baseline.ageyrs]]=round(dat[[baseline.ageyrs]],3) dat$tstart = 0 dat$tstop = dat[[X]] if (is.null(t.2)) breaks=c(0,t.1,100) else breaks=c(0,t.1,t.2,100) dat$.timedep.agegrp=cut(dat[[baseline.ageyrs]], breaks=breaks, right=FALSE) dat$.baseline.agegrp=dat$.timedep.agegrp .levels=levels(dat$.timedep.agegrp) age.at.X=dat[[baseline.ageyrs]] + dat[[X]] subset.2 = dat[[baseline.ageyrs]] < t.1 & age.at.X>=t.1 dat.young = subset(dat, subset.2) dat.young.cpy=dat.young if (nrow(dat.young)>0) { dat.young[[d]]=0 dat.young$tstop=(t.1 - 1e-4) - dat.young[[baseline.ageyrs]] dat.young.cpy$tstart=dat.young$tstop dat.young.cpy$.timedep.agegrp=.levels[2] dat.young.cpy$.timedep.agegrp=factor(dat.young.cpy$.timedep.agegrp, levels=.levels) } if (is.null(t.2)) { out=rbind( subset(dat, !subset.2), dat.young, dat.young.cpy ) } else { subset.1 = dat[[baseline.ageyrs]]<t.2 & dat[[baseline.ageyrs]]>=t.1 & age.at.X>=t.2 dat.middle = subset(dat, subset.1) dat.middle.cpy=dat.middle if(nrow(dat.middle)>0) { dat.middle[[d]]=0 dat.middle$tstop=(t.2 - 1e-4) - dat.middle[[baseline.ageyrs]] dat.middle.cpy$tstart=dat.middle$tstop dat.middle.cpy$.timedep.agegrp=.levels[3] dat.middle.cpy$.timedep.agegrp=factor(dat.middle.cpy$.timedep.agegrp, levels=.levels) } out=rbind( subset(dat, !(subset.1 | subset.2)), dat.middle, dat.middle.cpy, dat.young, dat.young.cpy ) } }
context("legendre()") test_that("basic", { expect_equal( legendre(3), structure( list( c("x" = 1, "coef" = -1.5), c("x" = 3, "coef" = 2.5) ), "class" = c("legendre", "mpoly"), "legendre" = list( "degree" = 3, "indeterminate" = "x", "normalized" = FALSE ) ) ) }) test_that("basic", { expect_equal( legendre(3, indeterminate = "t"), structure( list( c("t" = 1, "coef" = -1.5), c("t" = 3, "coef" = 2.5) ), "class" = c("legendre", "mpoly"), "legendre" = list( "degree" = 3, "indeterminate" = "t", "normalized" = FALSE ) ) ) }) test_that("normalized", { expect_equal( legendre(3, normalized = TRUE), structure( list( c("x" = 1, "coef" = -2.806243), c("x" = 3, "coef" = 4.677072) ), "class" = c("legendre", "mpoly"), "legendre" = list( "degree" = 3, "indeterminate" = "x", "normalized" = TRUE ) ), tolerance = 1e-5 ) }) test_that("vectorized", { expect_equal( legendre(0:2), structure( list( structure( list( c("coef" = 1) ), "class" = c("legendre", "mpoly"), "legendre" = list( "degree" = 0, "indeterminate" = "x", "normalized" = FALSE ) ), structure( list( c("x" = 1, "coef" = 1) ), "class" = c("legendre", "mpoly"), "legendre" = list( "degree" = 1, "indeterminate" = "x", "normalized" = FALSE ) ), structure( list( c("coef" = -.5), c("x" = 2, "coef" = 1.5) ), "class" = c("legendre", "mpoly"), "legendre" = list( "degree" = 2, "indeterminate" = "x", "normalized" = FALSE ) ) ), class = "mpolyList" ) ) })
"colombian"
get_unemployment <- function(by=NULL) { params <- list(subject="unemp") if (!is.null(by)) params <- make_params(params, by, c("g", "r", "a", "e")) res <- epi_query(params) if (is.null(res)) return(data.frame()) cols <- stringi::stri_trans_tolower(res$columns$name) cols <- stringi::stri_replace_all_regex(cols, "[\\('\\)]", "") cols <- stringi::stri_replace_all_regex(cols, "[[:space:]" %s+% rawToChar(as.raw(c(0xe2, 0x80, 0x93))) %s+% "-]+", "_") out <- setNames(as_data_frame(res$data), cols) out <- dplyr::mutate_all(out, "clean_cols") out <- suppressMessages(readr::type_convert(out)) show_citation(res) out } get_unemployment_by_state <- function(by=NULL) { params <- list(subject="unempstate") if (!is.null(by)) params <- make_params(params, by, c("r")) res <- epi_query(params) if (is.null(res)) return(data.frame()) cols <- stringi::stri_trans_tolower(res$columns$name) cols <- stringi::stri_replace_all_regex(cols, "[\\('\\)]", "") cols <- stringi::stri_replace_all_regex(cols, "[[:space:]" %s+% rawToChar(as.raw(c(0xe2, 0x80, 0x93))) %s+% "-]+", "_") out <- setNames(as_data_frame(res$data), cols) out <- dplyr::mutate_all(out, "clean_cols") out <- suppressMessages(readr::type_convert(out)) out <- tidyr::gather(out, region, value, -date) show_citation(res) out } get_long_term_unemployment <- function(by=NULL) { params <- list(subject="ltunemp") if (!is.null(by)) params <- make_params(params, by, c("g", "r", "a", "e")) res <- epi_query(params) if (is.null(res)) return(data.frame()) cols <- stringi::stri_trans_tolower(res$columns$name) cols <- stringi::stri_replace_all_regex(cols, "[\\('\\)]", "") cols <- stringi::stri_replace_all_regex(cols, "[[:space:]" %s+% rawToChar(as.raw(c(0xe2, 0x80, 0x93))) %s+% "-]+", "_") out <- setNames(as_data_frame(res$data), cols) out <- dplyr::mutate_all(out, "clean_cols") out <- suppressMessages(readr::type_convert(out)) show_citation(res) out } get_underemployment <- function(by=NULL) { params <- list(subject="underemp") if (!is.null(by)) params <- make_params(params, by, c("g", "r", "a", "e")) res <- epi_query(params) if (is.null(res)) return(data.frame()) cols <- stringi::stri_trans_tolower(res$columns$name) cols <- stringi::stri_replace_all_regex(cols, "[\\('\\)]", "") cols <- stringi::stri_replace_all_regex(cols, "[[:space:]" %s+% rawToChar(as.raw(c(0xe2, 0x80, 0x93))) %s+% "-]+", "_") out <- setNames(as_data_frame(res$data), cols) out <- dplyr::mutate_all(out, "clean_cols") out <- suppressMessages(readr::type_convert(out)) show_citation(res) out } get_labor_force_participation_rate <- function(by=NULL) { params <- list(subject="lfpr") if (!is.null(by)) params <- make_params(params, by, c("g", "r", "a", "e")) res <- epi_query(params) if (is.null(res)) return(data.frame()) cols <- stringi::stri_trans_tolower(res$columns$name) cols <- stringi::stri_replace_all_regex(cols, "[\\('\\)]", "") cols <- stringi::stri_replace_all_regex(cols, "[[:space:]" %s+% rawToChar(as.raw(c(0xe2, 0x80, 0x93))) %s+% "-]+", "_") out <- setNames(as_data_frame(res$data), cols) out <- dplyr::mutate_all(out, "clean_cols") out <- suppressMessages(readr::type_convert(out)) show_citation(res) out } get_employment_to_population_ratio <- function(by=NULL) { params <- list(subject="epop") if (!is.null(by)) params <- make_params(params, by, c("g", "r", "a", "e")) res <- epi_query(params) if (is.null(res)) return(data.frame()) cols <- stringi::stri_trans_tolower(res$columns$name) cols <- stringi::stri_replace_all_regex(cols, "[\\('\\)]", "") cols <- stringi::stri_replace_all_regex(cols, "[[:space:]" %s+% rawToChar(as.raw(c(0xe2, 0x80, 0x93))) %s+% "-]+", "_") out <- setNames(as_data_frame(res$data), cols) out <- dplyr::mutate_all(out, "clean_cols") out <- suppressMessages(readr::type_convert(out)) show_citation(res) out }
cal_MASE <- function(training, test, forecast){ m <- stats::frequency(training) q_t <- abs(test-forecast)/mean(abs(diff(training, lag=m))) return(mean(q_t)) }
findit <- function(lims=list(), objective="CV", niter=NULL, iprotein=NULL, plot.it=TRUE, T=25, P="Psat", res=NULL, labcex=0.6, loga2=NULL, loga.balance=0, rat=NULL, balance=NULL, normalize=FALSE) { nd <- length(lims) if(!is.null(iprotein)) pl <- protein.length(iprotein) if(is.null(res)) res <- c(128,64,16,8,6,4,4)[nd] if(is.null(niter)) niter <- c(4,6,6,8,12,12,12)[nd] if(is.null(rat)) { rat <- 0.95 if(res > 4) rat <- 0.9 if(res > 8) rat <- 0.8 if(res > 16) rat <- 0.7 } basis <- get("thermo", CHNOSZ)$basis if("pH" %in% names(lims)) { iH <- match("H+",rownames(basis)) if(length(iH) > 0) { rownames(basis)[iH] <- "pH" basis$logact[iH] <- -basis$logact[iH] } else(stop("pH is a requested variable but H+ is not in the basis")) } limfun <- function(lim,curr,i) { if(i==1) mylims <- lim else { message(paste("optimal:",round(curr,4),"",""), appendLF=FALSE) range <- range(lim) int <- abs(diff(range)) * rat^(i-1) mylims <- c(curr-int/2, curr+int/2) if(any(mylims < min(range))) mylims <- mylims + (min(range) - min(mylims)) if(any(mylims > max(range))) mylims <- mylims - (max(mylims) - max(range)) if(diff(lim) < 0) mylims <- rev(mylims) } message(paste("new limits:",round(mylims[1],4),round(mylims[2],4))) return(mylims) } teststat <- numeric() out <- vector("list",length(lims)) names(out) <- names(lims) lolim <- out hilim <- out outlims <- lims for(i in 1:niter) { message(paste("\n aargs <- list() for(j in 1:length(lims)) { if(names(lims)[j] %in% rownames(basis)) { ibasis <- match(names(lims)[j],rownames(basis)) message(paste(" lim <- lims[[j]] curr <- basis$logact[ibasis] myarg <- list(c(limfun(lim,curr,i),res)) names(myarg) <- rownames(basis)[ibasis] aargs <- c(aargs,myarg) } else if(names(lims[j]) %in% c("T","P")) { message(paste(" if(names(lims[j])=="T") { lim <- lims$T curr <- T } else { lim <- lims$P curr <- P } myarg <- list(c(limfun(lim,curr,i),res)) names(myarg) <- names(lims[j]) aargs <- c(aargs,myarg) } else warning(paste("findit: ignoring",names(lims[j]),"which is not a basis species, T or P")) } if(!"T" %in% names(lims)) aargs <- c(aargs,list(T=T)) if(!"P" %in% names(lims)) aargs <- c(aargs,list(P=P)) if(!is.null(iprotein)) { aargs <- c(aargs,list(iprotein=iprotein)) } a <- do.call(affinity,aargs) e <- equilibrate(a, balance=balance, loga.balance=loga.balance, normalize=normalize) dd <- revisit(e, objective, loga2=loga2, plot.it=FALSE)$H iopt <- optimal.index(dd, objective)[1,, drop=FALSE] teststat <- c(teststat,dd[iopt]) for(j in 1:length(lims)) { mylims <- aargs[[j]] myinc <- seq(mylims[1],mylims[2],length.out=mylims[3]) myval <- myinc[iopt[j]] if(names(lims)[j] %in% rownames(basis)) { ibasis <- match(names(lims)[j],rownames(basis)) basis$logact[ibasis] <- myval basis(rownames(basis)[ibasis],myval) } else if(names(lims)[j]=="T") { T <- myval } else if(names(lims)[j]=="P") { P <- myval } out[[j]] <- c(out[[j]],myval) lolim[[j]] <- c(lolim[[j]],mylims[1]) hilim[[j]] <- c(hilim[[j]],mylims[2]) outlims[[j]] <- mylims } if(plot.it) { if(nd==1) { if(i==1) revisit(e,objective,loga2,xlim=lims[[1]]) abline(v=outlims[[1]][1:2]) lines(myinc,dd) points(myval,dd[iopt]) } else if(nd==2) { if(i==1) revisit(e,objective,loga2,xlim=lims[[1]],ylim=lims[[2]],labcex=labcex) else { ol1 <- outlims[[1]] ol2 <- outlims[[2]] rect(ol1[1],ol2[1],ol1[2],ol2[2],border=par("fg"),col="white") revisit(e,objective,loga2,xlim=lims[[1]],ylim=lims[[2]],add=TRUE,labcex=labcex) } text(out[[1]],out[[2]]) points(out[[1]],out[[2]],cex=2) } else { if(i==1) add <- FALSE else add <- TRUE if(i > 1) { ol1 <- outlims[[1]] ol2 <- outlims[[2]] rect(ol1[1],ol2[1],ol1[2],ol2[2],border=par("fg"),col="white") } for(j in 3:nd) { for(k in 1:length(e$loga.equil)) e$loga.equil[[k]] <- slice(e$loga.equil[[k]],3,iopt[j]) } revisit(e,objective,loga2,xlim=lims[[1]],ylim=lims[[2]],add=add,labcex=labcex) text(out[[1]],out[[2]]) points(out[[1]],out[[2]],cex=2) } } } teststat <- list(teststat) names(teststat) <- objective value <- c(out,teststat) out <- list(value=value,lolim=lolim,hilim=hilim) class(out) <- "findit" return(out) } plot_findit <- function(x,which=NULL,mar=c(3.5,5,2,2),xlab="iteration",...) { l <- length(x$value) if(is.null(which)) which <- 1:l l <- length(which) opar <- par(mfrow=c(l,1),mar=mar) for(i in which) { niter <- length(x$value[[i]]) ylab <- names(x$value)[i] if(ylab %in% c(rownames(get("thermo", CHNOSZ)$basis),"T","P","pH","Eh")) ylab <- axis.label(ylab) plot(1:niter,x$value[[i]],xlab=xlab,ylab=ylab,...) lines(1:niter,x$value[[i]]) if(i!=length(x$value)) { lines(1:niter,x$lolim[[i]],lty=2) lines(1:niter,x$hilim[[i]],lty=2) } } par(opar) }
f.polygons.preCKrige <- function( newdata, neighbours, model, pwidth, pheight, napp = 1 ) { if( class( newdata ) == "SpatialPolygons" ) { data = as.data.frame( matrix( ncol = 0, nrow = 0 ) ) } if( class( newdata ) == "SpatialPolygonsDataFrame" ) { data = newdata@data } class(model) <- "list" model.me.free <- model[unlist(lapply(1:length(model), function(i,m){m[[i]]$model != "mev"},m = model))] newdata.polygons = SpatialPolygons( newdata@polygons ) if( missing( neighbours ) ) { neighbours <- lapply( as.list( 1:length(newdata@polygons) ), function( x ){ return( integer(0) ) } ) } stopifnot( is.list(neighbours) ) pixgrid<- f.pixelgrid( polygons = newdata.polygons, neighbours = neighbours, pixel.x.width = pwidth, pixel.y.width = pheight ) pixcm <- f.pixelcovmat( pixgrid = pixgrid, model = model.me.free ) t.n.poly <- as.list( 1:length( newdata.polygons@polygons ) ) for( i in 1:napp ){ pc.tmp <- f.pixconfig( polygons = newdata.polygons, neighbours = neighbours, pixgrid = pixgrid, n = napp ) if( i == 1 ) { pixconfig = pc.tmp } else { t2 <- proc.time()[3] pixconfig <- lapply( pixconfig, function( pc, pc.tmp ) { pc$pixcenter <- cbind( pc$pixcenter, pc.tmp[[ pc$posindex[1] ]]$pixcenter ) pc$pix.in.poly <- cbind( pc$pix.in.poly, pc.tmp[[ pc$posindex[1] ]]$pix.in.poly ) pc$sa.polygons <- c(pc$sa.polygons, pc.tmp[[ pc$posindex[1] ]]$sa.polygons) return(pc) }, pc.tmp= pc.tmp ) } rm( pc.tmp ) } cm.list <- f.polygoncovmat( pixconfig = pixconfig, pixcm = pixcm, model = model.me.free, n = napp ) return( new( "preCKrigePolygons", covmat = cm.list$mean.bb.cov.mat, se.covmat = cm.list$var.mean.bb.cov.mat, pixconfig = pixconfig, pixcovmat = pixcm, model = model, data = data, polygons = newdata@polygons ) ) rm( pixcm, pixgrid, newdata.polygons, pixconfig, cm.list) }
context("Checking PFT lookup") con <- check_db_test() teardown( db.close(con) ) test_that("query.pft_species finds species for a PFT", { one_sp <- query.pft_species(pft = "salix-miyabeana", modeltype = NULL, con) expect_is(one_sp, "data.frame") expect_equal(nrow(one_sp), 1) expect_equivalent(as.numeric(one_sp$id), 2871) expect_equivalent(one_sp$scientificname, "Salix miyabeana") multi_sp <- query.pft_species(pft = "salix", modeltype = NULL, con) expect_is(multi_sp, "data.frame") expect_gt(nrow(multi_sp), 10) expect_equal(length(multi_sp$id), length(unique(multi_sp$id))) expect_equal(unique(multi_sp$genus), "Salix") }) test_that("specifying modeltype removes duplicates from ambiguous query", { soil_null <- query.pft_species(pft = "soil", modeltype = NULL, con) soil_ed <- query.pft_species(pft = "soil", modeltype = "ED2", con) expect_lt(nrow(soil_ed), nrow(soil_null)) expect_true(all(soil_ed$id %in% soil_null$id)) }) test_that("nonexistant PFTs and modeltypes return empty dataframes", { expect_length(query.pft_species("soil", "NOTAMODEL", con)$id, 0) expect_length(query.pft_species("NOTAPFT", NULL, con)$id, 0) }) test_that("query.pft_cultivars finds cultivars for a PFT", { skip("Disabled until Travis bety contains Pavi_alamo and Pavi_all ( one_cv <- query.pft_cultivars(pft = "Pavi_alamo", modeltype = NULL, con) expect_is(one_cv, "data.frame") expect_equal(nrow(one_cv), 1) expect_equal(one_cv$id, 3) expect_equal(one_cv$specie_id, 938) expect_equal(one_cv$scientificname, "Panicum virgatum") multi_cv <- query.pft_cultivars(pft = "Pavi_all", modeltype = NULL, con) expect_is(multi_cv, "data.frame") expect_gt(nrow(multi_cv), 90) expect_equal(length(multi_cv$id), length(unique(multi_cv$id))) expect_true(one_cv$id %in% multi_cv$id) }) test_that("query.pft_species and query.pft_cultivars do not find each other's PFTs", { expect_equal(nrow(query.pft_species("Pavi_alamo", NULL, con)), 0) expect_equal(nrow(query.pft_cultivars("soil", NULL, con)), 0) })
pb.hybrid.binary <- function(n00, n01, n10, n11, data, methods, iter.resam = 1000, theo.pval = TRUE){ if(!missing(data)){ n00 <- eval(substitute(n00), data, parent.frame()) n01 <- eval(substitute(n01), data, parent.frame()) n10 <- eval(substitute(n10), data, parent.frame()) n11 <- eval(substitute(n11), data, parent.frame()) } if(missing(methods)){ methods <- c("rank", "reg", "reg.het", "skew", "skew.het", "inv.sqrt.n", "trimfill", "n", "inv.n", "as.rank", "as.reg", "as.reg.het", "smoothed", "smoothed.het", "score", "count") } if(!all(is.element(methods, c("rank", "reg", "reg.het", "skew", "skew.het", "inv.sqrt.n", "trimfill", "n", "inv.n", "as.rank", "as.reg", "as.reg.het", "smoothed", "smoothed.het", "score", "count")))){ stop("incorrect input for methods.") } pval.rank <- pval.reg <- pval.reg.het <- pval.skew <- pval.skew.het <- pval.inv.sqrt.n <- pval.trimfill <- pval.n <- pval.inv.n <- pval.as.rank <- pval.as.reg <- pval.as.reg.het <- pval.smoothed <- pval.smoothed.het <- pval.score <- pval.count <- NA pval.rank.theo <- pval.reg.theo <- pval.reg.het.theo <- pval.skew.theo <- pval.skew.het.theo <- pval.inv.sqrt.n.theo <- pval.trimfill.theo <- pval.n.theo <- pval.inv.n.theo <- pval.as.rank.theo <- pval.as.reg.theo <- pval.as.reg.het.theo <- pval.smoothed.theo <- pval.smoothed.het.theo <- pval.score.theo <- pval.count.theo <- NA n00.ori <- n00 n01.ori <- n01 n10.ori <- n10 n11.ori <- n11 counts <- check.counts(n00, n01, n10, n11) n00 <- counts$n00 n01 <- counts$n01 n10 <- counts$n10 n11 <- counts$n11 y <- log(n11/n10*n00/n01) s2 <- 1/n00 + 1/n01 + 1/n10 + 1/n11 n <- n00 + n01 + n10 + n11 pi0 <- n01/(n00 + n01) n0Sum <- n00 + n01 n1Sum <- n10 + n11 if(is.element("rank", methods)){ rank <- pb.rank(y, s2) stat.rank <- rank$stat if(theo.pval) pval.rank.theo <- rank$pval } if(is.element("reg", methods)){ reg <- pb.reg(y, s2) stat.reg <- reg$stat if(theo.pval) pval.reg.theo <- reg$pval } if(is.element("reg.het", methods)){ reg.het <- pb.reg.het(y, s2) stat.reg.het <- reg.het$stat if(theo.pval) pval.reg.het.theo <- reg.het$pval } if(is.element("skew", methods)){ skew <- pb.skew(y, s2) stat.skew <- skew$stat if(theo.pval) pval.skew.theo <- skew$pval } if(is.element("skew.het", methods)){ skew.het <- pb.skew.het(y, s2) stat.skew.het <- skew.het$stat if(theo.pval) pval.skew.het.theo <- skew.het$pval } if(is.element("inv.sqrt.n", methods)){ inv.sqrt.n <- pb.inv.sqrt.n(y, s2, n) stat.inv.sqrt.n <- inv.sqrt.n$stat if(theo.pval) pval.inv.sqrt.n.theo <- inv.sqrt.n$pval } if(is.element("trimfill", methods)){ options(warn = -1) rma <- rma(yi = y, vi = s2, method = "DL") trimfill <- pb.trimfill(rma, estimator = "R0") stat.trimfill <- trimfill$k0 if(theo.pval) pval.trimfill.theo <- trimfill$pval options(warn = 0) } if(is.element("n", methods)){ pbn <- pb.n(y = y, n00 = n00, n01 = n01, n10 = n10, n11 = n11) stat.n <- pbn$stat if(theo.pval) pval.n.theo <- pbn$pval } if(is.element("inv.n", methods)){ inv.n <- pb.inv.n(y = y, n00 = n00, n01 = n01, n10 = n10, n11 = n11) stat.inv.n <- inv.n$stat if(theo.pval) pval.inv.n.theo <- inv.n$pval } if(is.element("as.rank", methods)){ as.rank <- pb.as.rank(n00 = n00, n01 = n01, n10 = n10, n11 = n11) stat.as.rank <- as.rank$stat if(theo.pval) pval.as.rank.theo <- as.rank$pval } if(is.element("as.reg", methods)){ as.reg <- pb.as.reg(n00 = n00, n01 = n01, n10 = n10, n11 = n11) stat.as.reg <- as.reg$stat if(theo.pval) pval.as.reg.theo <- as.reg$pval } if(is.element("as.reg.het", methods)){ as.reg.het <- pb.as.reg.het(n00 = n00, n01 = n01, n10 = n10, n11 = n11) stat.as.reg.het <- as.reg.het$stat if(theo.pval) pval.as.reg.het.theo <- as.reg.het$pval } if(is.element("smoothed", methods)){ smoothed <- pb.smoothed(y = y, n00 = n00, n01 = n01, n10 = n10, n11 = n11) stat.smoothed <- smoothed$stat if(theo.pval) pval.smoothed.theo <- smoothed$pval } if(is.element("smoothed.het", methods)){ smoothed.het <- pb.smoothed.het(y = y, n00 = n00, n01 = n01, n10 = n10, n11 = n11) stat.smoothed.het <- smoothed.het$stat if(theo.pval) pval.smoothed.het.theo <- smoothed.het$pval } if(is.element("score", methods)){ score <- pb.score(n00 = n00, n01 = n01, n10 = n10, n11 = n11) stat.score <- score$stat if(theo.pval) pval.score.theo <- score$pval } if(is.element("count", methods)){ count <- pb.count(n00 = n00.ori, n01 = n01.ori, n10 = n10.ori, n11 = n11.ori) stat.count <- count$stat if(theo.pval) pval.count.theo <- count$pval } N <- length(y) w <- 1/s2 theta.hat <- sum(w*y)/sum(w) Q <- sum(w*(y - theta.hat)^2) tau2.hat <- (Q - N + 1)/(sum(w) - sum(w^2)/sum(w)) tau2.hat <- max(c(0, tau2.hat)) w <- 1/(s2 + tau2.hat) theta.hat <- sum(w*y)/sum(w) if(all(is.na(n))) n <- rep(NA, N) stat.rank.resam <- stat.reg.resam <- stat.reg.het.resam <- stat.skew.resam <- stat.skew.het.resam <- stat.inv.sqrt.n.resam <- stat.trimfill.resam <- stat.n.resam <- stat.inv.n.resam <- stat.as.rank.resam <- stat.as.reg.resam <- stat.as.reg.het.resam <- stat.smoothed.resam <- stat.smoothed.het.resam <- stat.score.resam <- stat.count.resam <- stat.hybrid.resam <- stat.hybrid.theo.resam <- rep(NA, iter.resam) pval.rank.theo.resam <- pval.reg.theo.resam <- pval.reg.het.theo.resam <- pval.skew.theo.resam <- pval.skew.het.theo.resam <- pval.inv.sqrt.n.theo.resam <- pval.trimfill.theo.resam <- pval.n.theo.resam <- pval.inv.n.theo.resam <- pval.as.rank.theo.resam <- pval.as.reg.theo.resam <- pval.as.reg.het.theo.resam <- pval.smoothed.theo.resam <- pval.smoothed.het.theo.resam <- pval.score.theo.resam <- pval.count.theo.resam <- rep(NA, iter.resam) for(i in 1:iter.resam){ idx <- sample(1:N, replace = TRUE) n0Sum.resam <- n0Sum[idx] n1Sum.resam <- n1Sum[idx] pi0.resam <- pi0[idx] s2.resam <- s2[idx] theta.resam <- rnorm(n = N, mean = theta.hat, sd = sqrt(s2.resam + tau2.hat)) n00.resam <- n01.resam <- n10.resam <- n11.resam <- rep(NA, N) for(j in 1:N){ counts.resam <- find.counts(n0. = n0Sum.resam[j], n1. = n1Sum.resam[j], lor = theta.resam[j], lor.var = s2.resam[j], p0.ori = pi0.resam[j]) n00.resam[j] <- counts.resam$n00 n01.resam[j] <- counts.resam$n01 n10.resam[j] <- counts.resam$n10 n11.resam[j] <- counts.resam$n11 } n00.ori.resam <- n00.resam n00.ori.resam <- round(n00.ori.resam) n01.ori.resam <- n01.resam n01.ori.resam <- round(n01.ori.resam) n10.ori.resam <- n10.resam n10.ori.resam <- round(n10.ori.resam) n11.ori.resam <- n11.resam n11.ori.resam <- round(n11.ori.resam) counts.resam <- check.counts(n00.resam, n01.resam, n10.resam, n11.resam) n00.resam <- counts.resam$n00 n01.resam <- counts.resam$n01 n10.resam <- counts.resam$n10 n11.resam <- counts.resam$n11 y.resam <- log(n11.resam/n10.resam*n00.resam/n01.resam) s2.resam <- 1/n00.resam + 1/n01.resam + 1/n10.resam + 1/n11.resam n.resam <- n00.resam + n01.resam + n10.resam + n11.resam if(is.element("rank", methods)){ rank.resam <- pb.rank(y.resam, s2.resam) stat.rank.resam[i] <- rank.resam$stat if(theo.pval) pval.rank.theo.resam[i] <- rank.resam$pval } if(is.element("reg", methods)){ reg.resam <- pb.reg(y.resam, s2.resam) stat.reg.resam[i] <- reg.resam$stat if(theo.pval) pval.reg.theo.resam[i] <- reg.resam$pval } if(is.element("reg.het", methods)){ reg.het.resam <- pb.reg.het(y.resam, s2.resam) stat.reg.het.resam[i] <- reg.het.resam$stat if(theo.pval) pval.reg.het.theo.resam[i] <- reg.het.resam$pval } if(is.element("skew", methods)){ skew.resam <- pb.skew(y.resam, s2.resam) stat.skew.resam[i] <- skew.resam$stat if(theo.pval) pval.skew.theo.resam[i] <- skew.resam$pval } if(is.element("skew.het", methods)){ skew.het.resam <- pb.skew.het(y.resam, s2.resam) stat.skew.het.resam[i] <- skew.het.resam$stat if(theo.pval) pval.skew.het.theo.resam[i] <- skew.het.resam$pval } if(is.element("inv.sqrt.n", methods)){ inv.sqrt.n.resam <- pb.inv.sqrt.n(y.resam, s2.resam, n.resam) stat.inv.sqrt.n.resam[i] <- inv.sqrt.n.resam$stat if(theo.pval) pval.inv.sqrt.n.theo.resam[i] <- inv.sqrt.n.resam$pval } if(is.element("trimfill", methods)){ options(warn = -1) rma.resam <- rma(yi = y.resam, vi = s2.resam, method = "DL") trimfill.resam <- pb.trimfill(rma.resam, estimator = "R0") stat.trimfill.resam[i] <- trimfill.resam$k0 if(theo.pval) pval.trimfill.theo.resam[i] <- trimfill.resam$pval options(warn = 0) } if(is.element("n", methods)){ pbn.resam <- pb.n(y = y.resam, n00 = n00.resam, n01 = n01.resam, n10 = n10.resam, n11 = n11.resam) stat.n.resam[i] <- pbn.resam$stat if(theo.pval) pval.n.theo.resam[i] <- pbn.resam$pval } if(is.element("inv.n", methods)){ inv.n.resam <- pb.inv.n(y = y.resam, n00 = n00.resam, n01 = n01.resam, n10 = n10.resam, n11 = n11.resam) stat.inv.n.resam[i] <- inv.n.resam$stat if(theo.pval) pval.inv.n.theo.resam[i] <- inv.n.resam$pval } if(is.element("as.rank", methods)){ as.rank.resam <- pb.as.rank(n00 = n00.resam, n01 = n01.resam, n10 = n10.resam, n11 = n11.resam) stat.as.rank.resam[i] <- as.rank.resam$stat if(theo.pval) pval.as.rank.theo.resam[i] <- as.rank.resam$pval } if(is.element("as.reg", methods)){ as.reg.resam <- pb.as.reg(n00 = n00.resam, n01 = n01.resam, n10 = n10.resam, n11 = n11.resam) stat.as.reg.resam[i] <- as.reg.resam$stat if(theo.pval) pval.as.reg.theo.resam[i] <- as.reg.resam$pval } if(is.element("as.reg.het", methods)){ as.reg.het.resam <- pb.as.reg.het(n00 = n00.resam, n01 = n01.resam, n10 = n10.resam, n11 = n11.resam) stat.as.reg.het.resam[i] <- as.reg.het.resam$stat if(theo.pval) pval.as.reg.het.theo.resam[i] <- as.reg.het.resam$pval } if(is.element("smoothed", methods)){ smoothed.resam <- pb.smoothed(y = y.resam, n00 = n00.resam, n01 = n01.resam, n10 = n10.resam, n11 = n11.resam) stat.smoothed.resam[i] <- smoothed.resam$stat if(theo.pval) pval.smoothed.theo.resam[i] <- smoothed.resam$pval } if(is.element("smoothed.het", methods)){ smoothed.het.resam <- pb.smoothed.het(y = y.resam, n00 = n00.resam, n01 = n01.resam, n10 = n10.resam, n11 = n11.resam) stat.smoothed.het.resam[i] <- smoothed.het.resam$stat if(theo.pval) pval.smoothed.het.theo.resam[i] <- smoothed.het.resam$pval } if(is.element("score", methods)){ score.resam <- pb.score(n00 = n00.resam, n01 = n01.resam, n10 = n10.resam, n11 = n11.resam) stat.score.resam[i] <- score.resam$stat if(theo.pval) pval.score.theo.resam[i] <- score.resam$pval } if(is.element("count", methods)){ count.resam <- pb.count(n00 = n00.ori.resam, n01 = n01.ori.resam, n10 = n10.ori.resam, n11 = n11.ori.resam) stat.count.resam[i] <- count.resam$stat if(theo.pval) pval.count.theo.resam[i] <- count.resam$pval } } if(is.element("rank", methods)) pval.rank <- (sum(abs(stat.rank.resam) >= abs(stat.rank)) + 1)/(iter.resam + 1) if(is.element("reg", methods)) pval.reg <- (sum(abs(stat.reg.resam) >= abs(stat.reg)) + 1)/(iter.resam + 1) if(is.element("reg.het", methods)) pval.reg.het <- (sum(abs(stat.reg.het.resam) >= abs(stat.reg.het)) + 1)/(iter.resam + 1) if(is.element("skew", methods)) pval.skew <- (sum(abs(stat.skew.resam) >= abs(stat.skew)) + 1)/(iter.resam + 1) if(is.element("skew.het", methods)) pval.skew.het <- (sum(abs(stat.skew.het.resam) >= abs(stat.skew.het)) + 1)/(iter.resam + 1) if(is.element("inv.sqrt.n", methods)) pval.inv.sqrt.n <- (sum(abs(stat.inv.sqrt.n.resam) >= abs(stat.inv.sqrt.n)) + 1)/(iter.resam + 1) if(is.element("trimfill", methods)) pval.trimfill <- (sum(abs(stat.trimfill.resam) >= abs(stat.trimfill)) + 1)/(iter.resam + 1) if(is.element("n", methods)) pval.n <- (sum(abs(stat.n.resam) >= abs(stat.n)) + 1)/(iter.resam + 1) if(is.element("inv.n", methods)) pval.inv.n <- (sum(abs(stat.inv.n.resam) >= abs(stat.inv.n)) + 1)/(iter.resam + 1) if(is.element("as.rank", methods)) pval.as.rank <- (sum(abs(stat.as.rank.resam) >= abs(stat.as.rank)) + 1)/(iter.resam + 1) if(is.element("as.reg", methods)) pval.as.reg <- (sum(abs(stat.as.reg.resam) >= abs(stat.as.reg)) + 1)/(iter.resam + 1) if(is.element("as.reg.het", methods)) pval.as.reg.het <- (sum(abs(stat.as.reg.het.resam) >= abs(stat.as.reg.het)) + 1)/(iter.resam + 1) if(is.element("smoothed", methods)) pval.smoothed <- (sum(abs(stat.smoothed.resam) >= abs(stat.smoothed)) + 1)/(iter.resam + 1) if(is.element("smoothed.het", methods)) pval.smoothed.het <- (sum(abs(stat.smoothed.het.resam) >= abs(stat.smoothed.het)) + 1)/(iter.resam + 1) if(is.element("score", methods)) pval.score <- (sum(abs(stat.score.resam) >= abs(stat.score)) + 1)/(iter.resam + 1) if(is.element("count", methods)) pval.count <- (sum(abs(stat.count.resam) >= abs(stat.count)) + 1)/(iter.resam + 1) if(length(methods) == 1){ if(!theo.pval) out <- get(paste0("pval.", methods)) if(theo.pval){ out <- list(get(paste0("pval.", methods)), get(paste0("pval.", methods, ".theo"))) names(out) <- c(paste0("pval.", methods), paste0("pval.", methods, ".theo")) } } if(length(methods) > 1){ stat.hybrid <- min(c(pval.rank, pval.reg, pval.reg.het, pval.skew, pval.skew.het, pval.inv.sqrt.n, pval.trimfill, pval.n, pval.inv.n, pval.as.rank, pval.as.reg, pval.as.reg.het, pval.smoothed, pval.smoothed.het, pval.score, pval.count), na.rm = TRUE) if(theo.pval) stat.hybrid.theo <- min(c(pval.rank.theo, pval.reg.theo, pval.reg.het.theo, pval.skew.theo, pval.skew.het.theo, pval.inv.sqrt.n.theo, pval.trimfill.theo, pval.n.theo, pval.inv.n.theo, pval.as.rank.theo, pval.as.reg.theo, pval.as.reg.het.theo, pval.smoothed.theo, pval.smoothed.het.theo, pval.score.theo, pval.count.theo), na.rm = TRUE) pval.rank.resam <- pval.reg.resam <- pval.reg.het.resam <- pval.skew.resam <- pval.skew.het.resam <- pval.inv.sqrt.n.resam <- pval.trimfill.resam <- pval.n.resam <- pval.inv.n.resam <- pval.as.rank.resam <- pval.as.reg.resam <- pval.as.reg.het.resam <- pval.smoothed.resam <- pval.smoothed.het.resam <- pval.score.resam <- pval.count.resam <- rep(NA, iter.resam) for(i in 1:iter.resam){ if(theo.pval) stat.hybrid.theo.resam[i] <- min(c(pval.rank.theo.resam[i], pval.reg.theo.resam[i], pval.reg.het.theo.resam[i], pval.skew.theo.resam[i], pval.skew.het.theo.resam[i], pval.inv.sqrt.n.theo.resam[i], pval.trimfill.theo.resam[i], pval.n.theo.resam[i], pval.inv.n.theo.resam[i], pval.as.rank.theo.resam[i], pval.as.reg.theo.resam[i], pval.as.reg.het.theo.resam[i], pval.smoothed.theo.resam[i], pval.smoothed.het.theo.resam[i], pval.score.theo.resam[i], pval.count.theo.resam[i]), na.rm = TRUE) if(is.element("rank", methods)) pval.rank.resam[i] <- (sum(abs(stat.rank.resam[-i]) >= abs(stat.rank.resam[i])) + 1)/iter.resam if(is.element("reg", methods)) pval.reg.resam[i] <- (sum(abs(stat.reg.resam[-i]) >= abs(stat.reg.resam[i])) + 1)/iter.resam if(is.element("reg.het", methods)) pval.reg.het.resam[i] <- (sum(abs(stat.reg.het.resam[-i]) >= abs(stat.reg.het.resam[i])) + 1)/iter.resam if(is.element("skew", methods)) pval.skew.resam[i] <- (sum(abs(stat.skew.resam[-i]) >= abs(stat.skew.resam[i])) + 1)/iter.resam if(is.element("skew.het", methods)) pval.skew.het.resam[i] <- (sum(abs(stat.skew.het.resam[-i]) >= abs(stat.skew.het.resam[i])) + 1)/iter.resam if(is.element("inv.sqrt.n", methods)) pval.inv.sqrt.n.resam[i] <- (sum(abs(stat.inv.sqrt.n.resam[-i]) >= abs(stat.inv.sqrt.n.resam[i])) + 1)/iter.resam if(is.element("trimfill", methods)) pval.trimfill.resam[i] <- (sum(abs(stat.trimfill.resam[-i]) >= abs(stat.trimfill.resam[i])) + 1)/iter.resam if(is.element("n", methods)) pval.n.resam[i] <- (sum(abs(stat.n.resam[-i]) >= abs(stat.n.resam[i])) + 1)/iter.resam if(is.element("inv.n", methods)) pval.inv.n.resam[i] <- (sum(abs(stat.inv.n.resam[-i]) >= abs(stat.inv.n.resam[i])) + 1)/iter.resam if(is.element("as.rank", methods)) pval.as.rank.resam[i] <- (sum(abs(stat.as.rank.resam[-i]) >= abs(stat.as.rank.resam[i])) + 1)/iter.resam if(is.element("as.reg", methods)) pval.as.reg.resam[i] <- (sum(abs(stat.as.reg.resam[-i]) >= abs(stat.as.reg.resam[i])) + 1)/iter.resam if(is.element("as.reg.het", methods)) pval.as.reg.het.resam[i] <- (sum(abs(stat.as.reg.het.resam[-i]) >= abs(stat.as.reg.het.resam[i])) + 1)/iter.resam if(is.element("smoothed", methods)) pval.smoothed.resam[i] <- (sum(abs(stat.smoothed.resam[-i]) >= abs(stat.smoothed.resam[i])) + 1)/iter.resam if(is.element("smoothed.het", methods)) pval.smoothed.het.resam[i] <- (sum(abs(stat.smoothed.het.resam[-i]) >= abs(stat.smoothed.het.resam[i])) + 1)/iter.resam if(is.element("score", methods)) pval.score.resam[i] <- (sum(abs(stat.score.resam[-i]) >= abs(stat.score.resam[i])) + 1)/iter.resam if(is.element("count", methods)) pval.count.resam[i] <- (sum(abs(stat.count.resam[-i]) >= abs(stat.count.resam[i])) + 1)/iter.resam stat.hybrid.resam[i] <- min(c(pval.rank.resam[i], pval.reg.resam[i], pval.reg.het.resam[i], pval.skew.resam[i], pval.skew.het.resam[i], pval.inv.sqrt.n.resam[i], pval.trimfill.resam[i], pval.n.resam[i], pval.inv.n.resam[i], pval.as.rank.resam[i], pval.as.reg.resam[i], pval.as.reg.het.resam[i], pval.smoothed.resam[i], pval.smoothed.het.resam[i], pval.score.resam[i], pval.count.resam[i]), na.rm = TRUE) } pval.hybrid <- (sum(stat.hybrid.resam <= stat.hybrid) + 1)/(iter.resam + 1) if(!theo.pval){ out <- list(pval.rank = pval.rank, pval.reg = pval.reg, pval.reg.het = pval.reg.het, pval.skew = pval.skew, pval.skew.het = pval.skew.het, pval.inv.sqrt.n = pval.inv.sqrt.n, pval.trimfill = pval.trimfill, pval.n = pval.n, pval.inv.n = pval.inv.n, pval.as.rank = pval.as.rank, pval.as.reg = pval.as.reg, pval.as.reg.het = pval.as.reg.het, pval.smoothed = pval.smoothed, pval.smoothed.het = pval.smoothed.het, pval.score = pval.score, pval.count = pval.count, pval.hybrid = pval.hybrid) } if(theo.pval){ pval.hybrid.theo <- (sum(stat.hybrid.theo.resam <= stat.hybrid.theo) + 1)/(iter.resam + 1) out <- list(pval.rank = pval.rank, pval.rank.theo = pval.rank.theo, pval.reg = pval.reg, pval.reg.theo = pval.reg.theo, pval.reg.het = pval.reg.het, pval.reg.het.theo = pval.reg.het.theo, pval.skew = pval.skew, pval.skew.theo = pval.skew.theo, pval.skew.het = pval.skew.het, pval.skew.het.theo = pval.skew.het.theo, pval.inv.sqrt.n = pval.inv.sqrt.n, pval.inv.sqrt.n.theo = pval.inv.sqrt.n.theo, pval.trimfill = pval.trimfill, pval.trimfill.theo = pval.trimfill.theo, pval.n = pval.n, pval.n.theo = pval.n.theo, pval.inv.n = pval.inv.n, pval.inv.n.theo = pval.inv.n.theo, pval.as.rank = pval.as.rank, pval.as.rank.theo = pval.as.rank.theo, pval.as.reg = pval.as.reg, pval.as.reg.theo = pval.as.reg.theo, pval.as.reg.het = pval.as.reg.het, pval.as.reg.het.theo = pval.as.reg.het.theo, pval.smoothed = pval.smoothed, pval.smoothed.theo = pval.smoothed.theo, pval.smoothed.het = pval.smoothed.het, pval.smoothed.het.theo = pval.smoothed.het.theo, pval.score = pval.score, pval.score.theo = pval.score.theo, pval.count = pval.count, pval.count.theo = pval.count.theo, pval.hybrid = pval.hybrid, pval.hybrid.theo = pval.hybrid.theo) } na.test <- which(is.na(out)) if(length(na.test) > 0) out <- out[-na.test] } return(out) }
logtpdfL = function(logDetGamma, mahalx, alpha, L){ y = lgamma(alpha+L/2) - lgamma(alpha) - (L/2)*log(2*pi) - logDetGamma - (alpha+L/2)*(log(mahalx/2 + 1)); return(y)}
heatmapCol <- function(data, col, lim, na.rm = TRUE){ nrcol <- length(col) data.range <- range(data, na.rm = na.rm) if(diff(data.range) == 0) stop("data has range 0") if(lim <= 0) stop("lim has to be positive") if(lim > min(abs(data.range))){ warning("specified bound 'lim' is out of data range\n hence 'min(abs(range(data)))' is used") lim <- min(abs(data.range)) } nrcol <- length(col) reps1 <- ceiling(nrcol*(-lim-data.range[1])/(2*lim)) reps2 <- ceiling(nrcol*(data.range[2]-lim)/(2*lim)) col1 <- c(rep(col[1], reps1), col, rep(col[nrcol], reps2)) return(col1) }
testthat::skip_if_not(requireNamespace("maptools")) library(maptools) library(testthat) library(spbabel) data(wrld_simpl) data("mpoint1") polytab <- spbabel::sptable(wrld_simpl) polynames <- c("object_", "branch_", "island_", "order_", "x_", "y_") polytypes <- setNames(c("integer", "integer", "logical", "integer", "numeric", "numeric"), polynames) linetab <- spbabel::sptable(as(wrld_simpl, "SpatialLinesDataFrame")) linenames <- c("object_", "branch_", "order_", "x_", "y_") linetypes <- setNames(c("integer", "integer", "integer", "numeric", "numeric"), linenames) spts <- as(as(wrld_simpl, "SpatialLinesDataFrame"), "SpatialPointsDataFrame") pointtab <- spbabel::sptable(spts) pointnames <- c("object_", "x_", "y_") pointtypes <- setNames(c("integer", "numeric", "numeric"), pointnames) multitab <- spbabel::sptable(mpoint1) multinames <- c("branch_", "object_", "x_", "y_") multitypes <- setNames(c("integer", "integer", "numeric", "numeric"), multinames) context("safety catch in case the column order changes") test_that("sptable names is the same", { expect_equal(names(polytab), polynames) expect_equal(names(linetab), linenames) }) context("sptable") test_that("sptable structure is sound", { expect_equal(sort(names(polytab)), sort(polynames)) expect_equal(sapply(polytab, class)[polynames], polytypes) expect_equal(sort(names(linetab)), sort(linenames)) expect_equal(sapply(linetab, class)[linenames], linetypes) }) context("points") test_that("sptable points structure is sound", { expect_true(all(pointnames %in% names(pointtab))) expect_equal(sapply(pointtab, class)[pointnames], pointtypes) expect_equal(sort(names(multitab)), sort(multinames)) expect_equal(sapply(multitab, class)[multinames], multitypes) }) context("holes") test_that("hole checking", { expect_that(sptable(sp(holey)), is_a("tbl_df")) })
lava.options <- function(...) { dots <- list(...) newopt <- curopt <- get("options",envir=lava.env) if (length(dots)==0) return(curopt[order(names(curopt))]) if (length(dots)==1 && is.list(dots[[1]]) && is.null(names(dots))) { dots <- dots[[1]] } idx <- which(names(dots)!="") newopt[names(dots)[idx]] <- dots[idx] assign("options",newopt,envir=lava.env) invisible(curopt) } gethook <- function(hook="estimate.hooks",...) { get(hook,envir=lava.env) } addhook <- function(x,hook="estimate.hooks",...) { newhooks <- unique(c(gethook(hook),x)) assign(hook,newhooks,envir=lava.env) invisible(newhooks) } versioncheck <- function(pkg="lava",geq,sep=".",...) { xyz <- tryCatch( char2num(strsplit(as.character(packageVersion(pkg)),sep,fixed=TRUE)[[1]]), error=function(x) NULL) if (is.null(xyz)) return(FALSE) if (missing(geq)) return(xyz) for (i in seq(min(length(xyz),length(geq)))) { if (xyz[i]>geq[i]) return(TRUE) if (xyz[i]<geq[i]) return(FALSE) } if (length(xyz)>=length(geq)) return(TRUE) return(FALSE) } lava.env <- new.env() assign("init.hooks",c(),envir=lava.env) assign("remove.hooks",c(),envir=lava.env) assign("estimate.hooks",c(),envir=lava.env) assign("color.hooks",c(),envir=lava.env) assign("sim.hooks",c(),envir=lava.env) assign("post.hooks",c(),envir=lava.env) assign("print.hooks",c(),envir=lava.env) assign("plot.post.hooks",c(),envir=lava.env) assign("plot.hooks",c(),envir=lava.env) assign("options", list( trace=0, tol=1e-6, gamma=1, backtrack="wolfe", ngamma=0, iter.max=300, eval.max=250, constrain=FALSE, allow.negative.variance=FALSE, progressbarstyle=3, itol=1e-16, cluster.index=versioncheck("mets",c(0,2,7)), tobit=versioncheck("lava.tobit",c(0,5)), Dmethod="simple", messages=ifelse(interactive(), 1, 0), parallel=TRUE, param="relative", sparse=FALSE, test=TRUE, coef.names=FALSE, constrain=TRUE, graph.proc="beautify", regex=FALSE, min.weight=1e-3, exogenous=TRUE, plot.engine="Rgraphviz", node.color=c(exogenous="lightblue",endogenous="orange", latent="yellowgreen",transform="lightgray"), edgecolor=FALSE, layout="dot", symbols=c("~","~~"), devel=FALSE, debug=FALSE), envir=lava.env)
create_probs <- function(input.obj = NULL, global_error = NULL, genotypes_errors = NULL, genotypes_probs = NULL){ if(!(is(input.obj,"onemap") | is(input.obj,"sequence"))){ stop("input.obj should be of class onemap or sequence") } if(is(input.obj, "sequence")) { seq.obj <- input.obj input.obj <- input.obj$data.name flag <- TRUE } else { flag <- FALSE } if(input.obj$n.mar == 0){ warning("It is a empty onemap object. Nothing will be done.") return(input.obj) } if(all(is.null(c(global_error, genotypes_errors, genotypes_probs)))){ global_error <- 10^-5 } crosstype <- class(input.obj)[2] probs <- melt(t(input.obj$geno)) probs$type <- rep(input.obj$segr.type.num, input.obj$n.ind) if(!is.null(global_error) | !is.null(genotypes_errors)){ if(!is.null(global_error)) { error <- rep(global_error, length(probs$value)) } else { if(!all(colnames(input.obj$geno)%in%colnames(genotypes_errors))){ stop("Not all markers in onemap object have corresponding genotype errors in matrix") } if(!all(colnames(genotypes_errors)%in%colnames(input.obj$geno))){ stop("There are more markers in errors matrix than in onemap object") } if(!all(rownames(input.obj$geno)%in%rownames(genotypes_errors))){ stop("Not all individuals in onemap object have corresponding genotype errors in matrix") } if(!all(rownames(input.obj$geno)%in%rownames(genotypes_errors))){ stop("There are more individuals in errors matrix than in onemap object") } error <- melt(t(genotypes_errors)) error <- error$value } if(crosstype == "outcross" | crosstype == "f2"){ prob <- matrix(NA, nrow=length(probs$value), ncol = 4) idx <- which(probs$value == 0) prob[idx,] <- 1 idx <- which(is.na(error)) prob[idx,] <- 1 idx <- which(probs$value == 1 & probs$type == 1) prob[idx,] <- c(1-error[idx], rep(error[idx]/3,3)) idx <- which(probs$value == 2 & probs$type == 1) prob[idx,] <- c(error[idx]/3, 1-error[idx], rep(error[idx]/3,2)) idx <- which(probs$value == 3 & probs$type == 1) prob[idx,] <- c(rep(error[idx]/3,2), 1-error[idx], error[idx]/3) idx <- which(probs$value == 4 & probs$type == 1) prob[idx,] <- c(rep(error[idx]/3,3), 1-error[idx]) idx <- which(probs$value == 1 & probs$type == 2) prob[idx,] <- c(rep(1-error[idx],2), rep(error[idx],2)) idx <- which(probs$value == 2 & probs$type == 2) prob[idx,] <- c(rep(error[idx]/3,2), 1-error[idx], error[idx]/3) idx <- which(probs$value == 3 & probs$type == 2) prob[idx,] <- c(rep(error[idx]/3,3), 1-error[idx]) idx <- which(probs$value == 1 & probs$type == 3) prob[idx,] <- c(1-error[idx], error[idx], 1-error[idx], error[idx]) idx <- which(probs$value == 2 & probs$type == 3) prob[idx,] <- c(error[idx]/3, 1-error[idx], rep(error[idx]/3,2)) idx <- which(probs$value == 3 & probs$type == 3) prob[idx,] <- c(rep(error[idx]/3,3), 1-error[idx]) idx <- which(probs$value == 1 & probs$type == 4) prob[idx,] <- c(1-error[idx], rep(error[idx]/3,3)) idx <- which(probs$value == 2 & probs$type == 4) prob[idx,] <- c(error[idx], rep(1-error[idx],2), error[idx]) idx <- which(probs$value == 3 & probs$type == 4) prob[idx,] <- c(rep(error[idx]/3,3), 1-error[idx]) idx <- which(probs$value == 1 & probs$type == 5) prob[idx,] <- c(rep((1-error[idx])/3,3), error[idx]) idx <- which(probs$value == 2 & probs$type == 5) prob[idx,] <- c(rep(error[idx]/3,3), 1-error[idx]) idx <- which(probs$value == 1 & probs$type == 6) prob[idx,] <- c(rep(1-error[idx],2), rep(error[idx],2)) idx <- which(probs$value == 2 & probs$type == 6) prob[idx,] <- c(rep(error[idx],2), rep(1-error[idx],2)) idx <- which(probs$value == 3 & probs$type == 6) prob[idx,] <- 1 idx <- which(probs$value == 1 & probs$type == 7) prob[idx,] <- c(1-error[idx], error[idx], 1-error[idx], error[idx]) idx <- which(probs$value == 2 & probs$type == 7) prob[idx,] <- c(error[idx], 1-error[idx], error[idx], 1-error[idx]) idx <- which(probs$value == 3 & probs$type == 7) prob[idx,] <- 1 } else if(crosstype == "backcross" | crosstype == "riself" | crosstype == "risib"){ prob <- matrix(NA, nrow=length(probs$value), ncol = 2) idx <- which(probs$value == 0) prob[idx,] <- 1 idx <- which(probs$value == 1) prob[idx,] <- c(1- error[idx], error[idx]) idx <- which(probs$value == 2) prob[idx,] <- c(error[idx], 1-error[idx]) idx <- which(probs$value == 3) prob[idx,] <- c(error[idx], 1-error[idx]) } } if(!is.null(genotypes_probs)){ if(crosstype == "outcross" | crosstype == "f2"){ prob.temp <- matrix(NA, nrow=length(probs$value), ncol = 3) prob.temp[,2] <- genotypes_probs[,2] het.idx <- which(probs$value == 2) hom1.idx <- which(probs$value == 1) if(length(hom1.idx) > 1){ sub <- genotypes_probs[hom1.idx,-2] } else { sub <- t(as.matrix(genotypes_probs[hom1.idx,-2])) } for_het <- table(apply(sub,1, which.max)) for_het <- as.numeric(which.max(for_het)) if(for_het == 2){ prob.temp[het.idx,3] <- genotypes_probs[het.idx,1] prob.temp[het.idx,1] <- genotypes_probs[het.idx,3] } else { prob.temp[het.idx,1] <- genotypes_probs[het.idx,1] prob.temp[het.idx,3] <- genotypes_probs[het.idx,3] } hom1.idx.prob <- which(apply(sub,1, which.max) == 1) prob.temp[hom1.idx[hom1.idx.prob],1] <- genotypes_probs[hom1.idx[hom1.idx.prob], 1] prob.temp[hom1.idx[hom1.idx.prob],3] <- genotypes_probs[hom1.idx[hom1.idx.prob], 3] hom1.idx.prob <- which(apply(sub,1, which.max) == 2) prob.temp[hom1.idx[hom1.idx.prob],1] <- genotypes_probs[hom1.idx[hom1.idx.prob], 3] prob.temp[hom1.idx[hom1.idx.prob],3] <- genotypes_probs[hom1.idx[hom1.idx.prob], 1] hom3.idx <- which(probs$value == 3) if(length(hom3.idx) > 1){ sub <- genotypes_probs[hom3.idx,-2] } else { sub <- t(as.matrix(genotypes_probs[hom3.idx,-2])) } hom3.idx.prob <- which(apply(sub,1, which.max) == 1) prob.temp[hom3.idx[hom3.idx.prob],3] <- genotypes_probs[hom3.idx[hom3.idx.prob], 1] prob.temp[hom3.idx[hom3.idx.prob],1] <- genotypes_probs[hom3.idx[hom3.idx.prob], 3] hom3.idx.prob <- which(apply(sub,1, which.max) == 2) prob.temp[hom3.idx[hom3.idx.prob],3] <- genotypes_probs[hom3.idx[hom3.idx.prob], 3] prob.temp[hom3.idx[hom3.idx.prob],1] <- genotypes_probs[hom3.idx[hom3.idx.prob], 1] prob <- matrix(NA, nrow=length(probs$value), ncol = 4) idx <- which(probs$type == 4) prob[idx,] <- cbind(prob.temp[idx,1], prob.temp[idx,2], prob.temp[idx,2], prob.temp[idx,3]) idx <- which(probs$type == 6) prob[idx,] <- cbind(prob.temp[idx,1], prob.temp[idx,1], prob.temp[idx,2], prob.temp[idx,2]) idx <- which(probs$type == 7) prob[idx,] <- cbind(prob.temp[idx,1], prob.temp[idx,2], prob.temp[idx,1], prob.temp[idx,2]) idx <- which(probs$value == 0) prob[idx,] <- 1 } else { prob.temp <- matrix(NA, nrow=length(probs$value), ncol = 3) prob.temp[,2] <- genotypes_probs[,2] het.idx <- which(probs$value == 2) hom1.idx <- which(probs$value == 1) if(length(hom1.idx) > 1){ sub <- genotypes_probs[hom1.idx,-2] } else { sub <- t(as.matrix(genotypes_probs[hom1.idx,-2])) } hom1.idx.prob <- unique(apply(genotypes_probs[hom1.idx,],1, which.max)) prob.temp[hom1.idx,1] <- genotypes_probs[hom1.idx, hom1.idx.prob] if(hom1.idx.prob == 3){ prob.temp[hom1.idx,3] <- genotypes_probs[hom1.idx, 1] prob.temp[het.idx,3] <- genotypes_probs[het.idx,1] prob.temp[het.idx,1] <- genotypes_probs[het.idx,3] } else { prob.temp[hom1.idx,3] <- genotypes_probs[hom1.idx, 3] prob.temp[het.idx,1] <- genotypes_probs[het.idx,1] prob.temp[het.idx,3] <- genotypes_probs[het.idx,3] } hom3.idx <- which(probs$value == 3) if(length(hom3.idx) > 1){ sub <- genotypes_probs[hom3.idx,-2] } else { sub <- t(as.matrix(genotypes_probs[hom3.idx,-2])) } hom3.idx.prob <- unique(apply(genotypes_probs[hom3.idx,],1, which.max)) prob.temp[hom3.idx,3] <- genotypes_probs[hom3.idx, hom3.idx.prob] if(hom3.idx.prob == 3){ prob.temp[hom3.idx,1] <- genotypes_probs[hom3.idx, 1] } else { prob.temp[hom3.idx,1] <- genotypes_probs[hom3.idx, 3] } if(crosstype == "backcross" | crosstype == "riself" | crosstype == "risib") { prob <- matrix(NA, nrow=length(probs$value), ncol = 2) idx <- which(probs$value == 1) prob[idx,] <- cbind(prob.temp[idx,1], prob.temp[idx,2]) idx <- which(probs$value == 2) prob[idx,] <- cbind(prob.temp[idx,1], prob.temp[idx,2]) idx <- which(probs$value == 3) prob[idx,] <- cbind(prob.temp[idx,1], prob.temp[idx,3]) idx <- which(probs$value == 0) prob[idx,] <- 1 } } } rownames(prob) <- paste0(probs$Var1, "_", probs$Var2) input.obj$error<- t(apply(prob, 1, function(x) if(all(is.na(x))) rep(1, 4) else x)) if(flag) { seq.obj$data.name <- input.obj seq.obj$twopt$data.name <- input.obj input.obj <- seq.obj } return(input.obj) }
create_hn_api_response <- function(response) { parsed_content <- parse_json(response) structure( list( content = parsed_content, path = response$url, response = response ), class = "hn_api_response" ) } is_hn_api_response <- function(x) { inherits(x, "hn_api_response") } get_content <- function(x) { assert(is_hn_api_response(x)) x$content } validate_hn_api_response <- function(hn_api_response) { assert(!httr::http_error(hn_api_response$response), sprintf("The request resulted with an error [%s]\n%s\n<%s>", hn_api_response$response$status_code, hn_api_response$content, hn_api_response$path)) if (is.null(hn_api_response$content)) { warning( sprintf("The content of the response is empty!\n<%s>", hn_api_response$path) ) } } print.hn_api_response <- function(x, ...) { cat(sprintf("---HN API RESPONSE [%s][%s]---", x$path, x$response$status_code)) utils::str(x$content) }
ICESAcoustic <- function(AcousticData){ ICESAcousticData <- lapply( AcousticData, AcousticDataToICESAcousticOne ) return(ICESAcousticData) } AcousticDataToICESAcousticOne <- function(AcousticDataOne){ if(AcousticDataOne$metadata$useXsd=='icesAcoustic'){ ICESAcousticDataOne <- AcousticData_ICESToICESAcousticOne(AcousticDataOne) } else{ stop('StoX: only ices acoustic format is allowed') } return(ICESAcousticDataOne) } AcousticData_ICESToICESAcousticOne <- function(AcousticData_ICESOne){ ICESAcousticDataOne <- data.table::copy(AcousticData_ICESOne) ICESAcousticDataOne$Data$EchoType<-NULL independentTables <- c("Instrument", "Calibration", "DataAcquisition", "DataProcessing") hierarchicalTables <- c("Cruise", "Log", "Sample", "Data") tablesToKeep <- c(independentTables, hierarchicalTables) ICESAcousticDataOne$Cruise$Survey <- utils::tail(ICESAcousticDataOne$Survey$Code, 1) if(length(ICESAcousticDataOne$vocabulary)) { vocabulary <- findVariablesMathcinigVocabulary( vocabulary = ICESAcousticDataOne$vocabulary, data = ICESAcousticDataOne[tablesToKeep] ) vocabulary <- unique(vocabulary) ICESAcousticDataOne[tablesToKeep] <- translateVariables( data = ICESAcousticDataOne[tablesToKeep], Translation = vocabulary, translate.keys = TRUE, warnMissingTranslation = FALSE ) } compareICES('https://acoustic.ices.dk/Services/Schema/XML/AC_TransducerLocation.xml',unique(ICESAcousticDataOne$Instrument$TransducerLocation)) compareICES('https://acoustic.ices.dk/Services/Schema/XML/AC_TransducerBeamType.xml',unique(ICESAcousticDataOne$Instrument$TransducerBeamType)) compareICES('https://acoustic.ices.dk/Services/Schema/XML/AC_AcquisitionMethod.xml',unique(ICESAcousticDataOne$Calibration$AcquisitionMethod)) compareICES('https://acoustic.ices.dk/Services/Schema/XML/AC_ProcessingMethod.xml',unique(ICESAcousticDataOne$Calibration$ProcessingMethod)) compareICES('https://acoustic.ices.dk/Services/Schema/XML/AC_DataAcquisitionSoftwareName.xml',unique(ICESAcousticDataOne$DataAcquisition$SoftwareName)) compareICES('https://acoustic.ices.dk/Services/Schema/XML/AC_StoredDataFormat.xml',unique(ICESAcousticDataOne$DataAcquisition$StoredDataFormat)) compareICES('https://acoustic.ices.dk/Services/Schema/XML/AC_DataAcquisitionSoftwareName.xml',unique(ICESAcousticDataOne$DataAcquisition$SoftwareName)) compareICES('https://acoustic.ices.dk/Services/Schema/XML/AC_DataProcessingSoftwareName.xml',unique(ICESAcousticDataOne$DataProcessing$SoftwareName)) compareICES('https://acoustic.ices.dk/Services/Schema/XML/AC_TriwaveCorrection.xml',unique(ICESAcousticDataOne$DataProcessing$TriwaveCorrection)) compareICES('https://acoustic.ices.dk/Services/Schema/XML/AC_OnAxisGainUnit.xml',unique(ICESAcousticDataOne$DataProcessing$OnAxisGainUnit)) compareICES('https://acoustic.ices.dk/Services/Schema/XML/ISO_3166.xml',unique(ICESAcousticDataOne$Cruise$Country)) compareICES('https://acoustic.ices.dk/Services/Schema/XML/SHIPC.xml',unique(ICESAcousticDataOne$Cruise$Platform)) compareICES('https://acoustic.ices.dk/Services/Schema/XML/EDMO.xml',unique(ICESAcousticDataOne$Cruise$Organisation)) compareICES('https://acoustic.ices.dk/Services/Schema/XML/AC_Survey.xml',unique(ICESAcousticDataOne$Survey$Code)) compareICES('https://acoustic.ices.dk/Services/Schema/XML/AC_LogOrigin.xml',unique(ICESAcousticDataOne$Log$Origin)) compareICES('https://acoustic.ices.dk/Services/Schema/XML/AC_LogValidity.xml',unique(ICESAcousticDataOne$Log$Validity)) compareICES('https://acoustic.ices.dk/Services/Schema/XML/AC_PingAxisIntervalType.xml',unique(ICESAcousticDataOne$Sample$PingAxisIntervalType)) compareICES('https://acoustic.ices.dk/Services/Schema/XML/AC_PingAxisIntervalUnit.xml',unique(ICESAcousticDataOne$Sample$PingAxisIntervalUnit)) compareICES('https://acoustic.ices.dk/Services/Schema/XML/AC_PingAxisIntervalOrigin.xml',unique(ICESAcousticDataOne$Sample$PingAxisIntervalOrigin)) compareICES('https://acoustic.ices.dk/Services/Schema/XML/AC_SaCategory.xml',unique(ICESAcousticDataOne$Data$SaCategory)) compareICES('https://acoustic.ices.dk/Services/Schema/XML/AC_AcousticDataType.xml',unique(ICESAcousticDataOne$Data$Type)) compareICES('https://acoustic.ices.dk/Services/Schema/XML/AC_DataUnit.xml',unique(ICESAcousticDataOne$Data$Unit)) independentTablesColumnNames <- lapply(ICESAcousticDataOne[independentTables], names) independentTablesNewColumnNames <- mapply(paste0, independentTables, independentTablesColumnNames) mapply( data.table::setnames, ICESAcousticDataOne[independentTables], old = independentTablesColumnNames, new = independentTablesNewColumnNames ) renameToTableNameFirst( ICESAcousticDataOne, tableNames = hierarchicalTables, setToID = independentTables, formatType = "Acoustic" ) hierarchicalTablesSansCruise <- setdiff(hierarchicalTables, "Cruise") LogSampleData <- RstoxData::mergeDataTables(ICESAcousticDataOne[hierarchicalTablesSansCruise], output.only.last = TRUE, all = TRUE) LogSampleData <- unique(LogSampleData) ICESAcousticDataOne <- c( ICESAcousticDataOne[c("Instrument", "Calibration", "DataAcquisition", "DataProcessing", "Cruise")], list(Data = LogSampleData) ) ICESAcousticDataOne <- lapply(ICESAcousticDataOne, moveIDsLast) return(ICESAcousticDataOne) } WriteICESAcoustic <- function(ICESAcousticData){ WriteICESAcousticData <- lapply( ICESAcousticData, WriteICESAcousticOne ) return(WriteICESAcousticData) } WriteICESAcousticOne <- function(ICESAcousticDataOne){ ICESAcousticCSVDataOne <- convertToHeaderRecordMatrix(ICESAcousticDataOne) ICESAcousticCSVDataOne <- expandWidth(ICESAcousticCSVDataOne) ICESAcousticCSVDataOne <- do.call(rbind, ICESAcousticCSVDataOne) return(ICESAcousticCSVDataOne) } convertToHeaderRecordMatrix <- function(ICESData) { lapply(names(ICESData), createHeaderRecordMatrix, ICESData = ICESData) } createHeaderRecordMatrix <- function(ICESDataTableName, ICESData) { thisTable <- ICESData[[ICESDataTableName]] header <- c( ICESDataTableName, "Header", names(thisTable) ) record <- cbind( ICESDataTableName, "Record", as.matrix(thisTable) ) unname(rbind(header, record)) } convertToRecordTypeMatrix <- function(ICESData) { lapply(names(ICESData), createRecordTypeMatrix, ICESData = ICESData) } createRecordTypeMatrix <- function(ICESDataTableName, ICESData) { thisTable <- ICESData[[ICESDataTableName]] header <- c( "RecordType", names(thisTable) ) record <- cbind( ICESDataTableName, trimws(as.matrix(thisTable)) ) unname(rbind(header, record)) } moveIDsLast <- function(x) { endsWithID <- endsWith(names(x), "ID") data.table::setcolorder(x, c(names(x)[!endsWithID], names(x)[endsWithID])) } expandWidth <- function(x, na = NA) { ncols <- sapply(x, ncol) nrows <- sapply(x, nrow) dims <- cbind(nrows, max(ncols) - ncols) dimsList <- split(dims, seq_along(x)) NAArrays <- mapply(array, dim = dimsList, SIMPLIFY = FALSE, MoreArgs = list(data = na)) mapply(cbind, x, NAArrays, SIMPLIFY = FALSE) } ICESBiotic <- function( BioticData, SurveyName = character(), Country = character(), Organisation = integer(), AllowRemoveSpecies = TRUE ) { ICESBioticData <- lapply( BioticData, BioticDataToICESBioticOne, SurveyName = SurveyName, Country = Country, Organisation = Organisation, AllowRemoveSpecies = AllowRemoveSpecies ) return(ICESBioticData) } BioticDataToICESBioticOne <- function( BioticDataOne, SurveyName = character(), Country = character(), Organisation = integer(), AllowRemoveSpecies = TRUE ) { if(BioticDataOne$metadata$useXsd %in% "icesBiotic") { ICESBioticDataOne <- BioticData_ICESToICESBioticOne(BioticDataOne) } else if(BioticDataOne$metadata$useXsd %in% c("nmdbioticv3", "nmdbioticv3.1")) { ICESBioticDataOne <- BioticData_NMDToICESBioticOne( BioticDataOne, SurveyName = SurveyName, Country = Country, Organisation = Organisation, AllowRemoveSpecies = AllowRemoveSpecies ) } else { warning("StoX: Only NMD Biotic version 3 and 3.1 data can be converted to ICESBiotic (was ", BioticDataOne$metadata$useXsd, " for the file ", BioticDataOne$metadata$file, ". NA returned.") return(NULL) } hierarchicalTables <- c("Cruise", "Haul", "Catch", "Biology") ICESBioticDataOne <- ICESBioticDataOne[hierarchicalTables] renameToTableNameFirst( ICESBioticDataOne, tableNames = hierarchicalTables, formatType = "Biotic" ) ICESBioticDataOne <- lapply(ICESBioticDataOne, moveIDsLast) return(ICESBioticDataOne) } BioticData_ICESToICESBioticOne <- function(BioticData_ICESOne) { BioticDataOne <- data.table::copy(BioticData_ICESOne) BioticDataOne$Cruise$Survey <- utils::tail(BioticDataOne$Survey$Code, 1) tablesToTranslate <- c("Cruise", "Haul", "Catch", "Biology") if(length(BioticDataOne$vocabulary)) { vocabulary <- findVariablesMathcinigVocabulary( vocabulary = BioticDataOne$vocabulary, data = BioticDataOne[tablesToTranslate] ) vocabulary <- unique(vocabulary) BioticDataOne[tablesToTranslate] <- translateVariables( data = BioticDataOne[tablesToTranslate], Translation = vocabulary, translate.keys = TRUE, warnMissingTranslation = FALSE ) } return(BioticDataOne) } BioticData_NMDToICESBioticOne <- function( BioticData_NMDOne, SurveyName = character(), Country = character(), Organisation = integer(), AllowRemoveSpecies = TRUE ) { cruiseRaw <- BioticData_NMDOne$mission if(!all(length(SurveyName), length(Country), length(Organisation))) { stop("All of SurveyName, Country and Organisation must be given.") } Cruise <- cruiseRaw[, .( Survey = ..SurveyName, Country = ..Country, Organisation = ..Organisation, Platform = getICESShipCode(platformname), StartDate = gsub("Z", "", missionstartdate), EndDate = gsub("Z", "", missionstopdate), LocalID = cruise )] haulRaw <- merge(cruiseRaw, BioticData_NMDOne$fishstation) Haul <- haulRaw[, .( LocalID = cruise, Gear = gear, Number = serialnumber, StationName = station, StartTime = ifelse(is.na(stationstartdate) | is.na(stationstarttime), NA, gsub("Z", " ", paste0(stationstartdate, substr(stationstarttime, 1, 5)))), Duration = getTimeDiff(stationstartdate, stationstarttime, stationstopdate, stationstoptime), Validity = getHaulValiditySimple(gearcondition, samplequality), StartLatitude = latitudestart, StartLongitude = longitudestart, StopLatitude = latitudeend, StopLongitude = longitudeend, StatisticalRectangle = getICESrect(latitudestart, longitudestart), MinTrawlDepth = ifelse(is.na(fishingdepthmin), fishingdepthmax, fishingdepthmin), MaxTrawlDepth = fishingdepthmax, BottomDepth = ifelse(bottomdepthstop > fishingdepthmax, bottomdepthstop, NA), Distance = getDistanceMeter(latitudestart, longitudestart, latitudeend, longitudeend), Netopening = verticaltrawlopening, CodendMesh = NA, SweepLength = sweeplength, GearExceptions = NA, DoorType = trawldoortype, WarpLength = round(wirelength), WarpDiameter = round(wirediameter), WarpDensity = round(wiredensity), DoorSurface = trawldoorarea, DoorWeight = round(trawldoorweight), DoorSpread = trawldoorspread, WingSpread = wingspread, Buoyancy = NA, KiteArea = NA, GroundRopeWeight = NA, Rigging = NA, Tickler = NA, HydrographicStationID = NA, TowDirection = round(direction), SpeedGround = NA, SpeedWater = gearflow, WindDirection = winddirection, WindSpeed = round(windspeed), SwellDirection = NA, SwellHeight = NA, LogDistance = logstart, Stratum = NA )] catchRaw <- merge(BioticData_NMDOne$catchsample, haulRaw, by = intersect(names(BioticData_NMDOne$catchsample), names(haulRaw))) catchRaw <- catchRaw[!is.na(aphia)] Catch <- catchRaw[, .( LocalID = cruise, Gear = gear, Number = serialnumber, SpeciesCode = aphia, SpeciesCategory = catchpartnumber, DataType = "R", SpeciesValidity = ifelse(is.na(catchproducttype), 0, catchproducttype), SpeciesCategoryNumber = catchcount, WeightUnit = "kg", SpeciesCategoryWeight = catchweight, SpeciesSex = NA, SubsampledNumber = lengthsamplecount, SubsamplingFactor = catchcount / lengthsamplecount, SubsampleWeight = lengthsampleweight, LengthCode = NA, LengthClass = NA, LengthType = lengthmeasurement, NumberAtLength = lengthsamplecount, WeightAtLength = NA )] Catch[is.na(SpeciesCategoryNumber) & is.na(SpeciesCategoryWeight) & !is.na(SubsampledNumber), SpeciesCategoryNumber := SubsampledNumber] Catch[is.na(SpeciesCategoryNumber) & is.na(SpeciesCategoryWeight) & !is.na(SubsampleWeight), SpeciesCategoryWeight := SubsampleWeight] Catch[!is.na(SpeciesCategoryWeight) & is.na(SubsampleWeight), SubsampleWeight := 0] indRaw <- BioticData_NMDOne$individual indRaw[is.na(preferredagereading), preferredagereading := 1] baseAge <- intersect(names(indRaw), names(BioticData_NMDOne$agedetermination)) indRaw <- merge(indRaw, BioticData_NMDOne$agedetermination, by.x=c(baseAge, "preferredagereading"), by.y= c(baseAge, "agedeterminationid"), all.x = TRUE) indRaw <- merge(catchRaw, indRaw, by = intersect(names(catchRaw), names(indRaw))) indRaw[is.na(age), agingstructure := NA_character_] Biology <- indRaw[, .( LocalID = cruise, Gear = gear, Number = serialnumber, SpeciesCode = aphia, SpeciesCategory = catchpartnumber, StockCode = NA, FishID = specimenid, LengthCode = getLengthCodeICES(lengthresolution), LengthClass = scaleLengthUsingLengthCode(length, getLengthCodeICES(lengthresolution), inputUnit = "m"), WeightUnit = 'kg', IndividualWeight = individualweight, IndividualSex = sex, IndividualMaturity = specialstage, MaturityScale = NA, IndividualAge = age, AgePlusGroup = NA, AgeSource = agingstructure, GeneticSamplingFlag = NA, StomachSamplingFlag = NA, ParasiteSamplingFlag = NA, IndividualVertebraeCount = NA )] if(AllowRemoveSpecies) { xmlRaw <- read_xml("https://acoustic.ices.dk/Services/Schema/XML/SpecWoRMS.xml") validCodes <- xml_text(xml_find_all(xmlRaw, "//Code//Key")) notPresentInCatch <- unique(setdiff(Catch$SpeciesCode, validCodes)) notPresentInBiology <- unique(setdiff(Biology$SpeciesCode, validCodes)) if(length(notPresentInCatch)) { warning("StoX: The following species are not listed in https://acoustic.ices.dk/Services/Schema/XML/SpecWoRMS.xml were automatically removed from table Catch (set AllowRemoveSpecies = FALSE to prevent this):\n", paste(notPresentInCatch, collapse = ", ")) } if(length(notPresentInBiology)) { warning("StoX: The following species are not listed in https://acoustic.ices.dk/Services/Schema/XML/SpecWoRMS.xml were automatically removed from table Biology (set AllowRemoveSpecies = FALSE to prevent this):\n", paste(notPresentInBiology, collapse = ", ")) } Catch <- Catch[SpeciesCode %in% validCodes, ] Biology <- Biology[SpeciesCode %in% validCodes, ] } else { message("AllowRemoveSpecies is set to FALSE. Will only give warning for records with species that is not accepted by the ICES system.") compareICES("https://acoustic.ices.dk/Services/Schema/XML/SpecWoRMS.xml", unique(Catch$SpeciesCode)) } ICESBioticCSV <- list( Cruise = Cruise, Haul = Haul, Catch = Catch, Biology = Biology ) return(ICESBioticCSV) } WriteICESBiotic <- function(ICESBioticData){ WriteICESBioticData <- lapply( ICESBioticData, WriteICESBioticOne ) return(WriteICESBioticData) } WriteICESBioticOne <- function(ICESBioticDataOne){ ICESBioticCSVDataOne <- convertToHeaderRecordMatrix(ICESBioticDataOne) ICESBioticCSVDataOne <- expandWidth(ICESBioticCSVDataOne) ICESBioticCSVDataOne <- do.call(rbind, ICESBioticCSVDataOne) return(ICESBioticCSVDataOne) } renameToTableNameFirst <- function(data, tableNames, setToID = NULL, formatType = c("Biotic", "Acoustic")) { formatType <- match.arg(formatType) columnName <- lapply(data[tableNames], names) tableName = rep(tableNames, lengths(columnName)) columnName <- unlist(columnName) areTableNames <- columnName %in% setToID newColumnName <- character(length(columnName)) newColumnName[areTableNames] <- paste0(columnName[areTableNames], "ID") newColumnName[!areTableNames] <- paste0(tableName[!areTableNames], columnName[!areTableNames]) conversionTable <- data.table::data.table( tableName = tableName, columnName = columnName, newColumnName = newColumnName ) ICESKeys <- getRstoxDataDefinitions(paste0("ICES", formatType, "Keys")) ICESKeys <- unique(unlist(ICESKeys[!names(ICESKeys) %in% tail(tableNames, 1)])) conversionTable <- conversionTable[!(duplicated(columnName) & columnName %in% ICESKeys), ] conversionTable <- subset(conversionTable, tableName != columnName) conversionTableList <- split(conversionTable, by = "tableName") keys <- conversionTable[columnName %in% ICESKeys, ] conversionTableList <- lapply(conversionTableList, rbind, keys) conversionTableList <- lapply(conversionTableList, unique) mapply( data.table::setnames, data[tableNames], old = lapply(conversionTableList, "[[", "columnName"), new = lapply(conversionTableList, "[[", "newColumnName"), skip_absent = TRUE ) } ICESDatras <- function( BioticData ) { ICESDatrasData <- lapply( BioticData, ICESDatrasOne ) ICESDatrasData <- ICESDatrasData[lengths(ICESDatrasData) > 0] return(ICESDatrasData) } ICESDatrasOne <- function( BioticDataOne ) { if(!(BioticDataOne$metadata$useXsd %in% c("nmdbioticv3", "nmdbioticv3.1"))) { warning("StoX: Currently, only NMD Biotic version 3 and 3.1 data can be written by ICESDatras") return(matrix(1, 0, 0)) } '%ni%' <- Negate('%in%') finalHH <- merge(BioticDataOne$mission, BioticDataOne$fishstation) finalHH[, `:=`( "Quarter" = getQuarter(stationstartdate), "Country" = getTSCountryByIOC(nation), "Ship" = getICESShipCode(platformname), "Gear" = "GOV", "SweepLngt" = getGOVSweepByEquipment(gear), "GearEx" = getGearEx(getGOVSweepByEquipment(gear), startyear, serialnumber, bottomdepthstart), "DoorType" = "P", "StNo" = serialnumber, "HaulNo" = station, "Year" = getYear(stationstartdate), "Month" = getMonth(stationstartdate), "Day" = getDay(stationstartdate), "TimeShot" = getTimeShot(stationstarttime), "DepthStratum" = NA, "HaulDur" = as.numeric(getTimeDiff(stationstartdate, stationstarttime, stationstopdate, stationstoptime)), "DayNight" = getDayNight(stationstartdate, stationstarttime, latitudestart, longitudestart), "ShootLat" = roundDrop0(latitudestart, digits = 4), "ShootLong" = roundDrop0(longitudestart, digits = 4), "HaulLat" = roundDrop0(latitudeend, digits = 4), "HaulLong" = roundDrop0(longitudeend, digits = 4), "StatRec" = getICESrect(latitudestart, longitudestart), "Depth" = roundDrop0(bottomdepthstart), "HaulVal" = getHaulVal(gearcondition, samplequality), "HydroStNo" = NA, "StdSpecRecCode" = 1, "BycSpecRecCode" = 1, "DataType" = "R", "Netopening"= roundDrop0(verticaltrawlopening, digits = 1), "Rigging" = NA, "Tickler" = NA, "Distance" = roundDrop0(getDistanceMeter(latitudestart, longitudestart, latitudeend, longitudeend)), "Warplngt" = roundDrop0(wirelength), "Warpdia" = NA, "WarpDen" = NA, "DoorSurface" = 4.5, "DoorWgt" = 1075, "DoorSpread" = ifelse(!is.na(trawldoorspread), roundDrop0(trawldoorspread, digits = 1), NA), "WingSpread" = NA, "Buoyancy" = NA, "KiteDim" = 0.8, "WgtGroundRope" = NA, "TowDir" = ifelse(!is.na(direction), roundDrop0(direction), NA), "GroundSpeed" = roundDrop0(gearflow, digits = 1), "SpeedWater" = NA, "SurCurDir" = NA, "SurCurSpeed" = NA, "BotCurDir" = NA, "BotCurSpeed" = NA, "WindDir" = NA, "WindSpeed" = NA, "SwellDir" = NA, "SwellHeight" = NA, "SurTemp" = NA, "BotTemp" = NA, "SurSal" = NA, "BotSal" = NA, "ThermoCline" = NA, "ThClineDepth" = NA, "CodendMesh" = NA , "SecchiDepth" = NA, "Turbidity" = NA, "TidePhase" = NA, "TideSpeed" = NA, "PelSampType" = NA, "MinTrawlDepth" = NA, "MaxTrawlDepth" = NA )] HHraw <- data.table::copy(finalHH[, c( "Quarter", "Country", "Ship", "Gear", "SweepLngt", "GearEx", "DoorType", "StNo", "HaulNo", "Year", "Month", "Day", "TimeShot", "DepthStratum", "HaulDur", "DayNight", "ShootLat", "ShootLong", "HaulLat", "HaulLong", "StatRec", "Depth", "HaulVal", "HydroStNo", "StdSpecRecCode", "BycSpecRecCode", "DataType", "Netopening", "Rigging", "Tickler", "Distance", "Warplngt", "Warpdia", "WarpDen", "DoorSurface", "DoorWgt", "DoorSpread", "WingSpread", "Buoyancy", "KiteDim", "WgtGroundRope", "TowDir", "GroundSpeed", "SpeedWater", "SurCurDir", "SurCurSpeed", "BotCurDir", "BotCurSpeed", "WindDir", "WindSpeed", "SwellDir", "SwellHeight", "SurTemp", "BotTemp", "SurSal", "BotSal", "ThermoCline", "ThClineDepth", "CodendMesh", "SecchiDepth", "Turbidity", "TidePhase", "TideSpeed", "PelSampType", "MinTrawlDepth", "MaxTrawlDepth")] ) mergedHL <- merge(BioticDataOne$catchsample, finalHH, by=intersect(names(BioticDataOne$catchsample), names(finalHH))) groupCA <- c("missiontype", "startyear", "platform", "missionnumber", "serialnumber", "aphia", "sex") groupHL <- c(groupCA, "catchpartnumber") mergedHL <- mergedHL[!is.na(aphia)] getSpecVal <- function(HaulVal, catchcount, lengthsamplecount, catchweight){ temp <- as.data.table(cbind(hv=HaulVal, cc=catchcount, lsc=lengthsamplecount, cw=catchweight)) temp[, res := "0"] temp[!is.na(cc) & !is.na(lsc) & !is.na(cw), res:="1"] temp[!is.na(cc) & is.na(lsc) & is.na(cw), res:="4"] temp[ is.na(cc) & is.na(lsc) & !is.na(cw), res:="6"] temp[!is.na(cc) & is.na(lsc) & !is.na(cw), res:="7"] temp[ is.na(cc) & is.na(lsc) & is.na(cw), res:="5"] temp[!is.na(cc) & !is.na(lsc) & is.na(cw), res:="0"] temp[hv == "I", res:="0"] return(temp$res) } mergedHL[, SpecVal := getSpecVal(HaulVal, catchcount, lengthsamplecount, catchweight)] mergedHL[,`:=`( isHerringOrSprat = ifelse(aphia %in% c("126417", "126425"), TRUE, FALSE), isCrustacean = ifelse(aphia %in% c("107275", "107276", "107369", "107253", "107703", "107704", "107350", "107254", "107205", "140712", "140687", "140658"), TRUE, FALSE))] mergedHL[,lngtCode := "1"] mergedHL[is.na(sampletype), lngtCode := NA] mergedHL[isCrustacean == TRUE, lngtCode := "."] mergedHL[isHerringOrSprat == TRUE, lngtCode := "0"] mergedHL[,`:=`(lenInterval = ifelse(lngtCode=="0", 5, 1), reportInMM = ifelse(lngtCode %ni% c("1", NA), TRUE, FALSE))] mergedHL[is.na(lenInterval), lenInterval := 1] mergedHL[!is.na(catchweight), catCatchWgt := ceiling(catchweight * 1000)] mergedHL[!is.na(lengthsampleweight), subWeight := ceiling(lengthsampleweight * 1000)] mergedHL[, sampleFac := catchweight / lengthsampleweight] mergedHL <- merge(mergedHL, BioticDataOne$individual, by = intersect(names(mergedHL), names(BioticDataOne$individual)), all.x = TRUE) mergedHL[, N := sum(!is.na(specimenid)), by = groupHL] mergedHL[N == 0, `:=`(lngtClass = as.integer(NA), sex = as.character(NA))] mergedHL[, length := length * 100] mergedHL[length < 1, `:=`(lngtCode = ".", lenInterval = 1, reportInMM = TRUE)] mergedHL[reportInMM == TRUE, length := length * 10] mergedHL[, sex := ifelse(is.na(sex), as.character(NA), ifelse(sex == "1", "F", "M"))] for(interval in unique(mergedHL$lenInterval)) { intVec <- seq(0, max(mergedHL$length, na.rm = T), by = interval) mergedHL[lenInterval == interval, lngtClass := intVec[findInterval(length, intVec)]] } mergedHL[!is.na(length), lsCountTot := 1] finalHL <- mergedHL[, .(N, lsCountTot = sum(lsCountTot)), by = c( groupHL, "lngtClass", "Quarter", "Country", "Ship", "Gear", "SweepLngt", "GearEx", "DoorType", "HaulNo", "SpecVal", "catCatchWgt", "sampleFac", "subWeight", "lngtCode", "stationtype", "lengthmeasurement" ) ] finalHL <- finalHL[!duplicated(finalHL)] finalHL[,`:=`(noMeas = sum(lsCountTot)), by = groupHL] finalHL[,`:=`(totalNo = noMeas * sampleFac, subFactor = sampleFac)] HLraw <- data.table::copy(finalHL[, .( "Quarter" = Quarter, "Country" = Country, "Ship" = Ship, "Gear" = Gear, "SweepLngt" = SweepLngt, "GearEx" = GearEx, "DoorType" = DoorType, "StNo" = serialnumber, "HaulNo" = HaulNo, "Year" = startyear, "SpecCodeType" = "W", "SpecCode" = aphia, "SpecVal" = SpecVal, "Sex" = sex, "TotalNo" = roundDrop0(totalNo, digits = 2), "CatIdentifier" = catchpartnumber, "NoMeas" = noMeas, "SubFactor" = roundDrop0(subFactor, 4), "SubWgt" = roundDrop0(subWeight), "CatCatchWgt" = roundDrop0(catCatchWgt), "LngtCode" = lngtCode, "LngtClass" = lngtClass, "HLNoAtLngt" = roundDrop0(lsCountTot, 2), "DevStage" = NA, "LenMeasType" = convLenMeasType(lengthmeasurement) )] ) mergedHL[is.na(preferredagereading), preferredagereading := 1] baseAge <- intersect(names(mergedHL), names(BioticDataOne$agedetermination)) mergedCA <- merge(mergedHL, BioticDataOne$agedetermination, by.x=c(baseAge, "preferredagereading"), by.y= c(baseAge, "agedeterminationid"), all.x = TRUE) mergedCA <- mergedCA[!is.na(specimenid)] mergedCA[, maturity:=getDATRASMaturity(Quarter, aphia, specialstage, maturationstage)] mergedCA[!is.na(individualweight), `:=`(nWithWeight =.N, totWeight = sum(individualweight)), by = c(groupCA, "lngtClass", "maturity", "age")] finalCA <- mergedCA[, .(nInd =.N), by = c( groupCA, "lngtClass", "maturity", "age", "Quarter", "Country", "Ship", "Gear", "SweepLngt", "GearEx", "DoorType", "HaulNo", "SpecVal", "StatRec", "lngtCode", "stationtype", "nWithWeight", "totWeight", "specimenid", "tissuesample", "stomach", "agingstructure", "readability", "parasite")] finalCA[!is.na(nWithWeight), meanW := totWeight / nWithWeight] CAraw <- data.table::copy(finalCA[, .( "Quarter" = Quarter, "Country" = Country, "Ship" = Ship, "Gear" = Gear, "SweepLngt" = SweepLngt, "GearEx" = GearEx, "DoorType" = DoorType, "StNo" = serialnumber, "HaulNo" = HaulNo, "Year" = startyear, "SpecCodeType" = "W", "SpecCode" = aphia, "AreaType" = "0", "AreaCode" = StatRec, "LngtCode" = lngtCode, "LngtClass" = lngtClass, "Sex" = sex, "Maturity" = maturity, "PlusGr" = as.character(NA), "AgeRings" = ifelse(!is.na(age), age, NA), "CANoAtLngt" = nInd, "IndWgt" = ifelse(!is.na(meanW), roundDrop0(meanW * 1000, 1), NA), "MaturityScale" = "M6", "FishID" = specimenid, "GenSamp" = ifelse(!is.na(tissuesample), "Y", "N"), "StomSamp" = ifelse(!is.na(stomach), "Y", "N"), "AgeSource" = convAgeSource(agingstructure), "AgePrepMet" = NA, "OtGrading" = ifelse(readability %in% as.character(c(1:4)), readability, NA), "ParSamp" = ifelse(!is.na(parasite), "Y", "N") )] ) hh <- HHraw hl <- HLraw ca <- CAraw dupl <- stats::aggregate(catchcategory ~ aphia + serialnumber, BioticDataOne$catchsample, FUN = function(x) length(unique(x))) dupl <- dupl[dupl$catchcategory > 1, ] if(nrow(dupl)) { found <- stats::aggregate(CatCatchWgt ~ StNo + SpecCode + Sex + CatIdentifier, hl[(hl$SpecCode %in% dupl$aphia & hl$StNo %in% dupl$serialnumber),], FUN = function(x) length(unique(x))) found <- found[found$CatCatchWgt > 1, ] for(iz in seq_len(nrow(found))) { tmpHL <- hl[hl$StNo==found[iz, "StNo"] & hl$SpecCode==found[iz, "SpecCode"] & hl$Sex==found[iz, "Sex"] & hl$CatIdentifier==found[iz, "CatIdentifier"], ] combinedCatCatchWgt <- tmpHL hl[hl$StNo==found[iz, "StNo"] & hl$SpecCode==found[iz, "SpecCode"] & hl$Sex==found[iz, "Sex"] & hl$CatIdentifier==found[iz, "CatIdentifier"], "CatCatchWgt"] <- roundDrop0(mean(tmpHL$CatCatchWgt)) hl[hl$StNo==found[iz, "StNo"] & hl$SpecCode==found[iz, "SpecCode"] & hl$Sex==found[iz, "Sex"] & hl$CatIdentifier==found[iz, "CatIdentifier"], "SubWgt"] <- roundDrop0(mean(tmpHL$SubWgt)) hl[hl$StNo==found[iz, "StNo"] & hl$SpecCode==found[iz, "SpecCode"] & hl$Sex==found[iz, "Sex"] & hl$CatIdentifier==found[iz, "CatIdentifier"], "TotalNo"] <- sum(unique(tmpHL$TotalNo)) hl[hl$StNo==found[iz, "StNo"] & hl$SpecCode==found[iz, "SpecCode"] & hl$Sex==found[iz, "Sex"] & hl$CatIdentifier==found[iz, "CatIdentifier"], "NoMeas"] <- sum(tmpHL$HLNoAtLngt) hl[hl$StNo==found[iz, "StNo"] & hl$SpecCode==found[iz, "SpecCode"] & hl$Sex==found[iz, "Sex"] & hl$CatIdentifier==found[iz, "CatIdentifier"], "SubFactor"] <- sum(unique(tmpHL$TotalNo))/sum(tmpHL$HLNoAtLngt) } } tmp <- stats::aggregate(SpecVal ~ SpecCode + StNo, hl, FUN = function(x) length(unique(x))) tmp <- tmp[tmp$SpecVal>1, ] for( rownum in seq_len(nrow(tmp)) ) { tmpSpecs <- hl[(hl$StNo==tmp$StNo[rownum] & hl$SpecCode==tmp$SpecCode[rownum]),]$SpecVal if(any(tmpSpecs == 1)) hl <- hl[!(hl$StNo==tmp$StNo[rownum] & hl$SpecCode==tmp$SpecCode[rownum] & hl$SpecVal!=1),] else hl[(hl$StNo==tmp$StNo[rownum] & hl$SpecCode==tmp$SpecCode[rownum]), c("SpecVal")] <- min(tmpSpecs) } hl[hl$SpecVal==0, c("Sex", "TotalNo", "CatIdentifier", "NoMeas", "SubFactor", "SubWgt", "CatCatchWgt", "LngtCode", "LngtClass", "HLNoAtLngt")] <- NA hl[hl$SpecVal==4, c("NoMeas", "SubWgt", "CatCatchWgt", "LngtCode", "LngtClass", "HLNoAtLngt")] <- NA hl[hl$SpecVal==4, c("SubFactor")] <- 1 hl[hl$SpecVal==5, c("TotalNo", "NoMeas", "SubWgt", "CatCatchWgt", "LngtCode", "LngtClass", "HLNoAtLngt")] <- NA hl[hl$SpecVal==5, c("SubFactor")] <- 1 hl[hl$SpecVal==6, c("TotalNo", "NoMeas", "LngtCode", "LngtClass", "HLNoAtLngt")] <- NA hl[hl$SpecVal==7, c("NoMeas", "LngtCode", "LngtClass", "HLNoAtLngt")] <- NA hl[hl$SpecVal==10, c("CatCatchWgt")] <- NA hl <- hl[!duplicated(hl),] hl <- hl[hl$StNo %in% hh$StNo,] ca <- ca[ca$StNo %in% hh$StNo,] ca <- ca[!ca$StNo %in% hh$StNo[hh$HaulVal=='I'],] hl <- hl[!hl$SpecCode %in% c(230,558,830,883,1302,1839,100635,100706,100930,103929,106048,106087,106204,106733,106791, 106854,106928,107044,107218,107230,107240,107273,107292,107318,107330,107346,107397,107398,107551, 107616,107643,111374,111597,111604,116986,117302,117809,117815,117890,123117,123867,123920,123970, 123987,124319,124418,124913,124929,124934,125128,125131,125134,129196,129229,130464,130867,132072, 132480,135144,135302,137704,137732,138223,138239,138760,138899,139004,139488,140299,140627,141753, 144129,150642,178639,181228,23986719494,21263,100817,100982,106738,107160,107232,107277,107322, 107323,107327,107387,107531,107552,107564,107649,107651,111367,123080,123083,123084,123776,123813, 124043,124154,124160,124287,124535,125166,125333,128517,129840,138802,138878,138920,140467,140717, 143755,145541,145546,145548,532031,589677,1762,123082,149),] ca <- ca[!ca$SpecCode %in% c(230,558,830,883,1302,1839,100635,100706,100930,103929,106048,106087,106204,106733,106791, 106854,106928,107044,107218,107230,107240,107273,107292,107318,107330,107346,107397,107398,107551, 107616,107643,111374,111597,111604,116986,117302,117809,117815,117890,123117,123867,123920,123970, 123987,124319,124418,124913,124929,124934,125128,125131,125134,129196,129229,130464,130867,132072, 132480,135144,135302,137704,137732,138223,138239,138760,138899,139004,139488,140299,140627,141753, 144129,150642,178639,181228,23986719494,21263,100817,100982,106738,107160,107232,107277,107322, 107323,107327,107387,107531,107552,107564,107649,107651,111367,123080,123083,123084,123776,123813, 124043,124154,124160,124287,124535,125166,125333,128517,129840,138802,138878,138920,140467,140717, 143755,145541,145546,145548,532031,589677,1762,123082,149),] hl <- hl[!hl$SpecCode %in% c(443,938,1131,1292,1337,1360,19494,22988,100751,100757,100790,101054,103484,104062, 106122,106669,107011,107052,107148,107239,107388,107563,110690,110911,110956,111411,117136, 117258,123260,123276,123321,123335,123574,123593 ,123851,123922,123985,124085,125158,125269, 128506,130467,130987,131779,134591,137683,141872,146142 ,149864,445590,510534,105,175,927,1107, 1135,1267,100793),] hl <- hl[!hl$SpecCode %in% c(105,175,927,1107,1135,1267,100793,103443,103692,106057,106835,106903,107558,110908,111361, 117940,122348,123160,123426,124257,125027,125284,131495,135294,135301,135306,138992,140528,140687, 167882,178527,239867,291396,106763,137656,117225,100653,125125,100698,131774,134366,123386,117228, 117994,138923,123127,137701,123320,131629 ,152391,1363,214,103543,106994,103450,129400,140143, 146420,141905,22496,988,103717,107163,982,985,123622,102145,1082,10216,103483),] ca <- ca[!ca$SpecCode %in% c(443,938,1131,1292,1337,1360,19494,22988,100751,100757,100790,101054,103484,104062, 106122,106669,107011,107052,107148,107239,107388,107563,110690,110911,110956,111411,117136, 117258,123260,123276,123321,123335,123574,123593 ,123851,123922,123985,124085,125158,125269, 128506,130467,130987,131779,134591,137683,141872,146142 ,149864,445590,510534,105,175,927,1107, 1135,1267,100793),] ca <- ca[!ca$SpecCode %in% c(105,175,927,1107,1135,1267,100793,103443,103692,106057,106835,106903,107558,110908,111361, 117940,122348,123160,123426,124257,125027,125284,131495,135294,135301,135306,138992,140528,140687, 167882,178527,239867,291396,106763,137656,117225,100653,125125,100698,131774,134366,123386,117228, 117994,138923,123127,137701,123320,131629 ,152391,1363,214,103543,106994,103450,129400,140143, 146420,141905,22496,988,103717,107163,982,985,123622,102145,1082,10216,103483),] hl <- hl[!hl$SpecCode %in% c(NA, 101,106769,106782,107010,107726,122478,123506,12437,124951,128539,129402,196221,205077,124373, 123187, 124710),] ca <- ca[!ca$SpecCode %in% c(NA, 101,106769,106782,107010,107726,122478,123506,12437,124951,128539,129402,196221,205077,124373, 123187, 124710),] benthosSpecCodes <- c(104,956,966,1128,1296,1367,1608,11707,100782,100839,100854,103439,103732,104040,105865,106041,106673,106702,106789,106834,107152, 107205,107264,110749,110916,110993,111152,111355,111365,117093,117195,118445,122626,123204,123255,123613,124147,124151,124324,124670, 128490,128503,129563,130057,134691,136025,137710,138018,138068,138477,138631,138749,138938,140166,140173,140480,140625,141904,141929, 149854,152997,532035,816800) hl <- hl[!hl$SpecCode %in% benthosSpecCodes,] ca <- ca[!ca$SpecCode %in% benthosSpecCodes,] if (nrow(ca) > 0) { testca <- unique(data.table::data.table(StNo=ca$StNo, SpecCode=ca$SpecCode, ca=TRUE)) testhl <- unique(data.table::data.table(StNo=hl$StNo, SpecCode=hl$SpecCode, hl=TRUE)) tt <- merge(testca, testhl, by = c("StNo","SpecCode"), all=TRUE) missingHL <- tt[is.na(tt$hl),] for(idxHL in seq_len(nrow(missingHL))) { r <- missingHL[idxHL,] tmp <- hl[hl$StNo==r$StNo,][1,] tmp$SpecCode <- r$SpecCode tmp$SpecVal <- 4 tmp$TotalNo <- c(hh$HaulDur[hh$StNo==r$StNo]) tmp$CatCatchWgt <- NA hl <- rbind(hl,tmp) } } ca[ which((ca$SpecCode==127023 | ca$SpecCode==126417) & ca$AgeRings >= 15), c("PlusGr", "AgeRings")] <- list("+", 15) hl <- hl[order(hl$StNo),] ICESDatrasData <- list(HH = hh, HL = hl, CA = ca) return(ICESDatrasData) } WriteICESDatras <- function(ICESDatrasData){ WriteICESDatrasData <- lapply( ICESDatrasData, WriteICESDatrasOne, na = "-9" ) return(WriteICESDatrasData) } WriteICESDatrasOne <- function(ICESDatrasDataOne, na = "-9"){ ICESDatrasCSVDataOne <- convertToRecordTypeMatrix(ICESDatrasDataOne) if(length(na)) { ICESDatrasCSVDataOne <- lapply(ICESDatrasCSVDataOne, function(x) {x[is.na(x)] <- na; x}) } ICESDatrasCSVDataOne <- lapply(ICESDatrasCSVDataOne, apply, 1, paste, collapse = ",") ICESDatrasCSVDataOne <- unlist(ICESDatrasCSVDataOne) return(ICESDatrasCSVDataOne) } getTSCountryByIOC <- function(nation) { cnvTbl <- c("58" = "NO") x <- cnvTbl[as.character(nation)] x[is.null(x)] <- NA return(x) } getGearEx <- function(sweep, year, serialnumber, depth) { temp <- as.data.table(cbind(sweep, year, serialnumber, depth)) temp[, res:= "S"] temp[year == 2011 & serialnumber > 24362 & depth >= 70 | year == 2012 | year == 2011 & serialnumber >= 24135 & depth >= 70, res:="ST"] return (temp$res) } getYear <- function(stationstartdate) { format(as.Date(stationstartdate, format="%Y-%m-%dZ"), "%Y") } getMonth <- function(stationstartdate) { format(as.Date(stationstartdate, format="%Y-%m-%dZ"), "%m") } getDay <- function(stationstartdate) { format(as.Date(stationstartdate, format="%Y-%m-%dZ"), "%d") } getTimeShot <- function(stationstarttime) { timeshot <- function(y) { if(length(y) == 3) { return(paste0(y[1], y[2])) } else { return(NA) } } x <- strsplit(stationstarttime, ":") return(unlist(lapply(x, timeshot))) } getQuarter <- function(stationstartdate) { x <- format(as.Date(stationstartdate, format="%Y-%m-%dZ"), "%m") return(floor((as.numeric(x) - 1) / 3 + 1)) } getDayNight <- function(stationstartdate, stationstarttime, latitudestart, longitudestart, UTCoff = 0) { deg2rad <- function(val) { return(val * (pi / 180)) } rad2deg <- function(val) { return(val * (180 / pi)) } datetime0 <- as.POSIXct("1990-12-30", tz = "UTC") uniqueDates <- unique(stationstartdate) nDaysA = as.numeric(difftime(uniqueDates, datetime0, units = "days")) nTimes = 24*3600 tArray = seq(0, 1, length = nTimes) ssTab <- list() for(idx in seq_len(length(nDaysA))) { nDays <- nDaysA[idx] lat <- latitudestart[idx] lng <- longitudestart[idx] localdate <- as.POSIXct(uniqueDates[idx], tz = "UTC") E = tArray F = nDays + 2415018.5 + E - UTCoff / 24 G = (F - 2451545) / 36525 I = (280.46646 + G * (36000.76983 + G * 0.0003032)) %% 360 J = 357.52911 + G * (35999.05029 - 0.0001537 * G) K = 0.016708634 - G * (0.000042037 + 0.0000001267 * G) L = sin(deg2rad(J)) * (1.914602 - G * (0.004817 + 0.000014 * G))+sin(deg2rad(2 * J)) * (0.019993 - 0.000101*G) + sin(deg2rad(3 * J)) * 0.000289 M = I + L P = M - 0.00569 - 0.00478 * sin(deg2rad(125.04 - 1934.136 * G)) Q = 23 + (26 + ((21.448 - G * (46.815 + G * (0.00059 - G * 0.001813)))) / 60) / 60 R = Q + 0.00256 * cos(deg2rad(125.04 - 1934.136 * G)) T = rad2deg(asin(sin(deg2rad(R)) * sin(deg2rad(P)))) U = tan(deg2rad(R/2)) * tan(deg2rad(R/2)) V = 4 * rad2deg(U * sin(2 * deg2rad(I))-2 * K * sin(deg2rad(J)) + 4 * K * U * sin(deg2rad(J)) * cos(2*deg2rad(I)) - 0.5 * U * U * sin(4 * deg2rad(I)) - 1.25 * K * K * sin(2 * deg2rad(J))) AB = (E * 1440 + V + 4 *lng - 60 * UTCoff) %% 1440 AC = ifelse (AB/4 < 0, AB/4 + 180, AB/4 - 180) AD = rad2deg(acos(sin(deg2rad(lat)) * sin(deg2rad(T)) + cos(deg2rad(lat)) * cos(deg2rad(T)) * cos(deg2rad(AC)))) WArg <- cos(deg2rad(90.833)) / (cos(deg2rad(lat)) * cos(deg2rad(T))) - tan(deg2rad(lat)) * tan(deg2rad(T)) if(any(WArg < -1)) { WArg[WArg < -1] <- -1 } if(any(WArg > 1)) { WArg[WArg > 1] <- 1 } W = rad2deg(acos(WArg)) X = (720 - 4 * lng - V + UTCoff * 60) * 60 sunrise = which.min(abs(X - round(W * 4 * 60) - nTimes * tArray)) sunset = which.min(abs(X+round(W*4*60) - nTimes*tArray)) sunrisetime = localdate + sunrise sunsettime = localdate + sunset ssTab[[uniqueDates[idx]]] <- list(sunrise = sunrisetime, sunset = sunsettime) } getDN <- function(x, ssTab) { y <- ssTab[[format(x, "%Y-%m-%dZ")]] if(x < y$sunrise || x >= y$sunset) { return("N") } else { return("D") } } datetime <- as.POSIXct(gsub("Z", " ", paste0(stationstartdate, stationstarttime)), tz = "UTC") return(unlist(lapply(datetime, getDN, ssTab))) } convLenMeasType <- function(LenMeasType) { ct <- c( "B" = 5, "C" = 6, "E" = 1, "F" = 8, "G" = 4, "H" = 3, "J" = 2, "L" = 7, "S" = 9 ) return(ct[LenMeasType]) } convAgeSource <- function(AgeSource) { if(!all(AgeSource %in% c("1", "2", "7"))) { warning("The conversion from agingstructure to AgeSource may be wrong for other values than 1, 2 and 7. Please noify the developers of StoX.") } ct <- c("1" = "scale", "2" = "otolith", "4" = "df-spine", "6" = "spine", "7" = "vertebra", "8" = "caudal-thorn") return(ct[AgeSource]) } roundDrop0 <- function(x, digits = 0) { notNA <- !is.na(x) x[notNA] <- formatC(x[notNA], digits = digits, format = "f", drop0trailing = TRUE) return(x) }
OipTsSdEwma <- function(data, n.train, threshold, l = 3, m = 5, to.next.iteration = list(last.res = NULL, to.check = NULL, last.m = NULL)) { if (!is.numeric(data) | (sum(is.na(data)) > 0)) { stop("data argument must be a numeric vector and without NA values.") } if (!is.numeric(n.train) | n.train <= 0) { stop("n.train argument must be a positive numeric value.") } if (!is.numeric(threshold) | threshold <= 0 | threshold > 1) { stop("threshold argument must be a numeric value in (0,1] range.") } if (!is.numeric(l)) { stop("l argument must be a numeric value.") } if (!is.numeric(m)) { stop("m argument must be a numeric value and smaller than all dataset length.") } if (!is.null(to.next.iteration) & !is.list(to.next.iteration)) { stop("to.next.iteration argument must be NULL or a list with las execution result.") } ApplyKolmogorovTest <- function(part1, part2) { res.test <- suppressWarnings(stats::ks.test(part1, part2, exact = NULL)) return(ifelse(res.test$p.value > 0.05, 0, 1)) } OnePointTssdEwma <- function(data, n.train, threshold, l, m, to.next.iteration) { result <- OipSdEwma(data, n.train, threshold, l, to.next.iteration$last.res) if (is.null(to.next.iteration)) { last.m <- NULL to.check <- list() } else { last.m <- to.next.iteration$last.m to.check <- to.next.iteration$to.check } last.m.values <- ifelse(is.null(last.m), 0, length(last.m)) result$result$i <- result$last.res[1,"i"] if (last.m.values < m) { last.m <- c(last.m, data) to.check <- NULL last.data.checked <- NULL } else { last.m <- last.m[-1] last.m <- c(last.m, data) to.check.len <- length(to.check) if (result$result$is.anomaly) { to.check[[to.check.len + 1]] <- list(index = result$result$i, check.in = result$result$i + m, last.m = last.m) } if (to.check.len >= 1) { if (to.check[[1]]$check.in == result$result$i) { is.anomaly <- ApplyKolmogorovTest(to.check[[1]]$last.m, last.m) last.data.checked <- data.frame(i = to.check[[1]]$index, is.anomaly = is.anomaly) to.check <- to.check[-1] } else { last.data.checked <- NULL } } else { last.data.checked <- NULL } } to.next.iteration <- list(last.res = result$last.res, to.check = to.check, last.m = last.m) return(list(result = result$result, last.data.checked = last.data.checked, to.next.iteration = to.next.iteration)) } if (length(data) == 1) { return(OnePointTssdEwma(data, n.train, threshold, l, m, to.next.iteration)) } else { n <- length(data) last.res <- list() last.res$result <- NULL last.res$to.next.iteration <- to.next.iteration res <- NULL last.data.checked <- NULL for (i in 1:n) { last.res <- OnePointTssdEwma(data = data[i], n.train, threshold, l, m, last.res$to.next.iteration) res <- rbind(res, last.res$result) if (!is.null(last.res$last.data.checked)) { last.data.checked <- rbind(last.data.checked, last.res$last.data.checked) } } if (!is.null(last.data.checked)) { res[res$i %in% last.data.checked$i, "is.anomaly"] <- last.data.checked$is.anomaly last.data.checked <- last.data.checked[!(last.data.checked$i %in% res$i),] if (nrow(last.data.checked) == 0) last.res[2] <- list(NULL) else last.res$last.data.checked <- last.data.checked } last.res$result <- res return(last.res) } }
globalVariables(c("Partidos","Desproporcionalidad","Comunidad")) AgregadosIndi <- function(Ano=0,Mes="",RutaDescarga="",Auto=TRUE,datos=""){ out <- tryCatch( { if(Auto==TRUE){ if(Ano == 0) stop("It must be provided a year in 'Ano'") if(Mes=="") stop("It must be provided a month with a two-character format in 'Mes'") if(RutaDescarga=="") stop("A download path must be provided in 'RutaDescarga'") }else{ if(class(datos) != "data.frame") stop("It must be provided a data.frame in parameter 'datos'") if(ncol(datos) != 3) stop("The data.frame provided in parameter 'datos' must contain 3 columns") } if(Auto){ data <- suppressMessages(Agregado_Prov_MIR(Ano,Mes,Tipo="Congreso",RutaDescarga, Borrar=TRUE)) start_idx <- which(substr(colnames(data),1,2)=="V_")[1] data[,start_idx:ncol(data)]<-apply(data[,start_idx:ncol(data)],2,as.integer) data <-data[1:52,start_idx:ncol(data)] data2<- as.data.frame(t(colSums(data))) idx_votos <- substr(colnames(data2),1,2)=="V_" data3 <- t(data2[,idx_votos]) data4 <- t(data2[,!idx_votos]) data5 <- data.frame(Partidos=substr(rownames(data3),3,nchar(rownames(data3))), Votos=data3,Escanos=data4,stringsAsFactors = FALSE) data5[,c(2,3)] <- apply(data5[,c(2,3)],2,as.integer) }else{ data5 <-datos colnames(data5)<-c("Partidos","Votos","Escanos") } data5$Porc_votos <- round(data5$Votos/sum(data5$Votos),4)*100 data5$Porc_escanos <- round(data5$Escanos/sum(data5$Escanos),4)*100 data5$Acum_porc_votos <- cumsum(data5$Porc_votos) data5$Acum_porc_escanos <- cumsum(data5$Porc_escanos) data5$Desproporcionalidad <- round(data5$Porc_escanos - data5$Porc_votos,2) p<-ggplot(data5,aes(x=Partidos,y=Desproporcionalidad))+ geom_bar(stat='identity') + coord_flip() + scale_x_discrete(limits=rev(data5$Partidos))+ geom_hline(yintercept = 0, color="blue") + geom_text(aes(x = Partidos,y = max(Desproporcionalidad) + 0.1, label = Desproporcionalidad),size=2.5) idx_sainte_lag <- Sainte_Lague(data5$Votos,data5$Escanos) idx_rae <- Rae(data5$Votos,data5$Escanos) idx_rae_corr <- Rae_corregido(data5$Votos,data5$Escanos,correc=0.5) idx_loos_hanb <- Loos_Hanby(data5$Votos,data5$Escanos) idx_Gallagher <- Gallagher(data5$Votos,data5$Escanos) idx_L_max <-L_max(data5$Votos,data5$Escanos) idx_Cox_Shugart <- Cox_Shugart(data5$Votos,data5$Escanos) idx_Cox_Shugart_corr <- Cox_Shugart_correg(data5$Votos,data5$Escanos) idx_L_Tukey <- L_Tukey(data5$Votos,data5$Escanos) despr_res=data.frame(SL=idx_sainte_lag) despr_res$R<-idx_rae despr_res$Rco <- idx_rae_corr despr_res$LH <- idx_loos_hanb despr_res$Gcm <- idx_Gallagher despr_res$Lmax <- idx_L_max despr_res$CS <- idx_Cox_Shugart despr_res$CS_correg <- idx_Cox_Shugart_corr despr_res$LT <- idx_L_Tukey idx_F <- fragmentacion_rae(data5$Votos,data5$Escanos) idx_N <- nep(data5$Votos,data5$Escanos) idx_Hiper <-hiper(data5$Votos,data5$Escanos) idx_NP <-nepMolinar(data5$Votos,data5$Escanos) idx_Con <- concentracion(data5$Votos,data5$Escanos) idx_Comp <- competitividad(data5$Votos,data5$Escanos) dimension <- data.frame(F_electoral=as.numeric(idx_F[1]), F_parlamen=as.numeric(idx_F[2])) dimension$N_electoral <- as.numeric(idx_N[1]) dimension$N_parlamen <- as.numeric(idx_N[2]) dimension$Hiper_electoral <- as.numeric(idx_Hiper[1]) dimension$Hiper_parlamen <- as.numeric(idx_Hiper[2]) dimension$NP_electoral <- as.numeric(idx_NP[1]) dimension$NP_parlamen <- as.numeric(idx_NP[2]) dimension$Con_electoral <- as.numeric(idx_Con[1]) dimension$Con_parlamen <- as.numeric(idx_Con[2]) dimension$Comp_electoral <- as.numeric(idx_Comp[1]) dimension$Comp_parlamen <- as.numeric(idx_Comp[2]) res <- list(dat=data5,grafico=p,In_despro= despr_res,In_dimen=dimension) return(res) }, warning = function(cond){ message("A warning has been generated, the path may not exist or cannot be written to") message("The warning message is the following:") message(cond) return(NULL) }, error= function(cond){ message("The path provided may not exist or cannot be written to") message("The error message is the following:") message(cond) return(NA) } ) return(out) } DesAgregadosIndi <- function(Ano=0,Mes="",RutaDescarga="",Auto=TRUE,datos_v="",datos_d=""){ out <- tryCatch( { if(Auto==TRUE){ if(Ano == 0) stop("It must be provided a year in 'Ano'") if(Mes=="") stop("It must be provided a month with a two-character format in 'Mes'") if(RutaDescarga=="") stop("A download path must be provided in 'RutaDescarga'") }else{ if(datos_v=="") stop("A data.frame must be provided with voting data in parameter 'datos_v'") if(datos_d=="") stop("A data.frame must be provided with seat data in parameter 'datos_d'") if(class(datos_v) != "data.frame") stop("It must be provided a data.frame containing the votes in parameter 'datos_v'") if(class(datos_d) != "data.frame") stop("It must be provided a data.frame containing the seats in parameter 'datos_d'") } if(Auto){ data <- suppressMessages(Agregado_Prov_MIR(Ano,Mes,Tipo="Congreso",RutaDescarga, Borrar=TRUE)) iden <- data[1:50,1:3] start_idx <- which(substr(colnames(data),1,2)=="V_")[1] data22 <- data[1:50,start_idx:ncol(data)] idx_votos <- substr(colnames(data22),1,2)=="V_" data33 <- data22[,idx_votos] data33 <- cbind(iden,data33) data44 <- data22[,!idx_votos] data44 <- cbind(iden,data44) }else{ data33 <- datos_v data44 <- datos_d } res_prov <-list() for(h in 1:nrow(data33)){ cprov <- data33[h,2] d1<-colnames(data33[4:ncol(data33)]) d1 <- substr(d1,3,nchar(d1)) d2<-t(data33[h,4:ncol(data33)]) d3 <- t(data44[h,4:ncol(data33)]) data5 <-data.frame(Partidos=d1,Votos=d2,Escanos=d3,stringsAsFactors = FALSE) colnames(data5) <- c("Partidos","Votos","Escanos") data5[,c(2,3)] <- apply(data5[,c(2,3)],2,as.integer) votos <- data5[,2]>0 data5 <-data5[votos,] r <- AgregadosIndi(Ano=0,Mes="",RutaDescarga="",Auto = FALSE,datos=data5) res_prov[[cprov]]<- r } res_CCAA <- list() data333 <- data33[,-c(2,3)] colnames(data333)[1]<-"Comunidad" data333[,2:ncol(data333)] <-apply(data333[,2:ncol(data333)],2,as.integer) data333 <-data333 %>% group_by(Comunidad) %>% summarise_all(funs(sum)) data444 <- data44[,-c(2,3)] colnames(data444)[1]<-"Comunidad" data444[,2:ncol(data444)] <-apply(data444[,2:ncol(data444)],2,as.integer) data444 <-data444 %>% group_by(Comunidad) %>% summarise_all(funs(sum)) for(h in 1:nrow(data333)){ d1<-colnames(data333[2:ncol(data333)]) d1 <- substr(d1,3,nchar(d1)) d2<-t(data333[h,2:ncol(data333)]) d3 <- t(data444[h,2:ncol(data444)]) data5 <-data.frame(Partidos=d1,Votos=d2,Escanos=d3,stringsAsFactors = FALSE) colnames(data5) <- c("Partidos","Votos","Escanos") votos <- data5[,2]>0 data5 <-data5[votos,] r <- AgregadosIndi(Ano=0,Mes="",RutaDescarga="",Auto = FALSE,datos=data5) res_CCAA[[as.character(h)]]<- r } res_total <- list(CCAA=res_CCAA,PROV= res_prov) return(res_total) }, warning = function(cond){ message("A warning has been generated, the path may not exist or cannot be written to") message("The warning message is the following:") message(cond) return(NULL) }, error= function(cond){ message("The path provided may not exist or cannot be written to") message("The error message is the following:") message(cond) return(NA) } ) return(out) }
NULL dapc <- function(.data, .f, ...) UseMethod("dapc") dapc.default <- function(.data, .f, ...) { assert_that(is_vector(.data)) if (is_lang(.f)) { e <- call_env() .f <- eval(.f, envir = e)[[2]] .data[] <- lapply(.data, function(.x) { eval(.f, list(.x = .x), e) }) } else { .data[] <- lapply(.data, .f, ...) } .data } dapr <- function(.data, .f, ...) UseMethod("dapr") dapr.default <- function(.data, .f, ...) { assert_that(is_vector(.data)) if (is_lang(.f)) { e <- call_env() .f <- eval(.f, envir = e)[[2]] .data[seq_len(nrow(.data)), ] <- t(apply(.data, 1, function(.x) eval(.f, list(.x = .x), e) )) } else { .data[seq_len(nrow(.data)), ] <- t(apply(.data, 1, .f, ...)) } .data } dapc_if <- function(.data, .predicate, .f, ...) UseMethod("dapc_if") dapc_if.default <- function(.data, .predicate, .f, ...) { assert_that(is_vector(.data)) if (is.logical(.predicate)) { lg <- .predicate } else if (is_lang(.predicate)) { e <- call_env() .predicate <- eval(.predicate, envir = e)[[2]] lg <- vapply(.data, function(.x) eval(.predicate, list(.x = .x), e), FUN.VALUE = logical(1)) } else { lg <- vapply(.data, .predicate, FUN.VALUE = logical(1)) } assert_that(is.logical(lg)) if (is_lang(.f)) { e <- call_env() .f <- eval(.f, envir = e)[[2]] .data[lg] <- lapply(.data[lg], function(.x) eval(.f, list(.x = .x), e) ) } else { .data[lg] <- lapply(.data[lg], .f, ...) } .data } dapr_if <- function(.data, .predicate, .f, ...) UseMethod("dapr_if") dapr_if.default <- function(.data, .predicate, .f, ...) { assert_that(is_vector(.data)) if (is.logical(.predicate)) { lg <- .predicate } else if (is_lang(.predicate)) { e <- call_env() .predicate <- eval(.predicate, envir = e)[[2]] lg <- unlist(apply(.data, 1, function(.x) eval(.predicate, list(.x = .x), e) )) } else { lg <- vapply(.data, .predicate, FUN.VALUE = logical(1)) } assert_that(is.logical(lg)) if (sum(lg) == 0) return(.data) if (is_lang(.f)) { e <- call_env() .f <- eval(.f, envir = e)[[2]] .data[lg, ] <- t(apply(.data[lg, ], 1, function(.x) eval(.f, list(.x = .x), e) )) } else { .data[lg, ] <- t(apply(.data[lg, ], 1, .f, ...)) } .data }
"asafellow"
getDistancePointers <- function(dist.fcts, prefabDists = c("sumofsquares", "euclidean", "manhattan", "tanimoto")) { dist.ptrs <- vector(length(dist.fcts), mode = "list") if (prefab.idx <- dist.fcts %in% prefabDists) { dist.ptrs[prefab.idx] <- CreateStdDistancePointers(factor(dist.fcts[prefab.idx], levels = prefabDists)) } if (rest.idx <- !prefab.idx) { if (!exists(dist.fcts)) { stop(paste("Cannot find (custom) distance function: ", dist.fcts, sep="")) } dist.ptrs[[1]] <- eval(call(dist.fcts)) } dist.ptrs }
node_status <- function(.dag, as_factor = TRUE, ...) { .tdy_dag <- if_not_tidy_daggity(.dag, ...) .exposures <- dagitty::exposures(.tdy_dag$dag) .outcomes <- dagitty::outcomes(.tdy_dag$dag) .latents <- dagitty::latents(.tdy_dag$dag) .tdy_dag$data <- dplyr::mutate(.tdy_dag$data, status = ifelse(name %in% .exposures, "exposure", ifelse(name %in% .outcomes, "outcome", ifelse(name %in% .latents, "latent", NA)))) if (as_factor) .tdy_dag$data$status <- factor(.tdy_dag$data$status, exclude = NA) .tdy_dag } ggdag_status <- function(.tdy_dag, ..., edge_type = "link_arc", node_size = 16, text_size = 3.88, label_size = text_size, text_col = "white", label_col = text_col, node = TRUE, stylized = FALSE, text = TRUE, use_labels = NULL) { edge_function <- edge_type_switch(edge_type) p <- if_not_tidy_daggity(.tdy_dag) %>% node_status(...) %>% ggplot2::ggplot(ggplot2::aes(x = x, y = y, xend = xend, yend = yend, color = status)) + edge_function() + scale_adjusted() + breaks(c("exposure", "outcome", "latent")) if (node) { if (stylized) { p <- p + geom_dag_node(size = node_size) } else { p <- p + geom_dag_point(size = node_size) } } if (text) p <- p + geom_dag_text(col = text_col, size = text_size) if (!is.null(use_labels)) p <- p + geom_dag_label_repel(ggplot2::aes_string(label = use_labels, fill = "status"), size = text_size, col = label_col, show.legend = FALSE) p }
plotBP <- function(ts, breaks, bp.y, ...) { plot(ts, ...) ylons <- mean(ts, na.rm = TRUE) if (missing(bp.y)) bp.y <- quantile(ts, .005) colors <- palette()[1:length(breaks)] abline(v = breaks[2, ], col = colors, lty=2) text(breaks[2, ], y = bp.y, labels = names(breaks), col = colors) for (a in 1:length(breaks)) arrows(breaks[1, a], ylons, breaks[3, a], ylons, code = 3, angle = 90, length = 0.1, lwd = 2, col = colors[a]) }
extractDIC <- function(fit,...){ UseMethod("extractDIC") } extractDIC.merMod <- function(fit,...){ is_REML <- isREML(fit) llik <- logLik(fit, REML=is_REML) dev <- deviance(refitML(fit)) n <- getME(fit, "devcomp")$dims["n"] Dhat <- -2 * (llik) pD <- dev - Dhat DIC <- dev + pD[[1]] names(DIC) <- "DIC" return(DIC) }
library(PopED) ff <- function(model_switch,xt,parameters,poped.db){ with(as.list(parameters),{ y=xt MS <- model_switch N = floor(xt/TAU)+1 CONC=(DOSE*Favail/V)*(KA/(KA - CL/V)) * (exp(-CL/V * (xt - (N - 1) * TAU)) * (1 - exp(-N * CL/V * TAU))/(1 - exp(-CL/V * TAU)) - exp(-KA * (xt - (N - 1) * TAU)) * (1 - exp(-N * KA * TAU))/(1 - exp(-KA * TAU))) EFF = E0*(1 - CONC*IMAX/(IC50 + CONC)) y[MS==1] = CONC[MS==1] y[MS==2] = EFF[MS==2] return(list( y= y,poped.db=poped.db)) }) } sfg <- function(x,a,bpop,b,bocc){ parameters=c( V=bpop[1]*exp(b[1]), KA=bpop[2]*exp(b[2]), CL=bpop[3]*exp(b[3]), Favail=bpop[4], DOSE=a[1], TAU = a[2], E0=bpop[5]*exp(b[4]), IMAX=bpop[6], IC50=bpop[7]) return( parameters ) } feps <- function(model_switch,xt,parameters,epsi,poped.db){ returnArgs <- ff(model_switch,xt,parameters,poped.db) y <- returnArgs[[1]] poped.db <- returnArgs[[2]] MS <- model_switch pk.dv <- y*(1+epsi[,1])+epsi[,2] pd.dv <- y*(1+epsi[,3])+epsi[,4] y[MS==1] = pk.dv[MS==1] y[MS==2] = pd.dv[MS==2] return(list( y= y,poped.db =poped.db )) } bpop_vals <- c(V=72.8,KA=0.25,CL=3.75,Favail=0.9,E0=1120,IMAX=0.807,IC50=0.0993) bpop_vals_ed <- cbind(zeros(7,1),bpop_vals,zeros(7,1)) bpop_vals_ed["IC50",1] <- 1 bpop_vals_ed["IC50",3] <- (bpop_vals_ed["IC50",2]*0.1)^2 bpop_vals_ed poped.db <- create.poped.database(ff_fun="ff", fError_fun="feps", fg_fun="sfg", groupsize=20, m=3, bpop=bpop_vals_ed, notfixed_bpop=c(1,1,1,0,1,1,1), d=c(V=0.09,KA=0.09,CL=0.25^2,E0=0.09), sigma=c(0.04,5e-6,0.09,100), notfixed_sigma=c(0,0,0,0), xt=c( 1,2,8,240,240,1,2,8,240,240), minxt=c(0,0,0,240,240,0,0,0,240,240), maxxt=c(10,10,10,248,248,10,10,10,248,248), discrete_xt = list(0:248), G_xt=c(1,2,3,4,5,1,2,3,4,5), bUseGrouped_xt=1, model_switch=c(1,1,1,1,1,2,2,2,2,2), a=list(c(DOSE=20,TAU=24),c(DOSE=40, TAU=24),c(DOSE=0, TAU=24)), maxa=c(DOSE=200,TAU=40), mina=c(DOSE=0,TAU=2), ourzero=0) tic(); output <- evaluate.e.ofv.fim(poped.db,ED_samp_size=20); toc() output$E_ofv output$E_fim output <- poped_optim(poped.db, opt_xt = T, parallel = T, d_switch=F,ED_samp_size=20, method = c("LS")) summary(output) get_rse(output$FIM,output$poped.db) plot_model_prediction(output$poped.db,facet_scales="free")
print.list.rma <- function(x, digits=x$digits, ...) { mstyle <- .get.mstyle("crayon" %in% .packages()) .chkclass(class(x), must="list.rma") digits <- .get.digits(digits=digits, xdigits=x$digits, dmiss=FALSE) attr(x, "class") <- NULL x$cr.lb <- NULL x$cr.ub <- NULL slab.pos <- which(names(x) == "slab") out <- x[seq_len(slab.pos-1)] out <- data.frame(out, row.names=x$slab, stringsAsFactors=FALSE) if (nrow(out) == 0L) stop(mstyle$stop("All values are NA."), call.=FALSE) if (exists("select", where=x, inherits=FALSE)) out <- out[x$select,] if (nrow(out) == 0L) { message(mstyle$message("No values to print.")) return(invisible()) } transf.true <- 0 if (exists("transf", where=x, inherits=FALSE) && x$transf) { transf.true <- 1 out$se <- NULL } if (exists("method", where=x, inherits=FALSE)) { min.pos <- slab.pos - is.element("tau2.level", names(x)) - is.element("gamma2.level", names(x)) - is.element("X", names(x)) - is.element("Z", names(x)) - transf.true } else { min.pos <- slab.pos - transf.true } sav <- out[,seq_len(min.pos-1)] for (i in seq_len(min.pos-1)) { if (inherits(out[,i], c("integer","logical","factor","character"))) { out[,i] <- out[,i] } else { if (names(out)[i] %in% c("pred", "resid")) out[,i] <- .fcf(out[,i], digits[["est"]]) if (names(out)[i] %in% c("se")) out[,i] <- .fcf(out[,i], digits[["se"]]) if (names(out)[i] %in% c("ci.lb", "ci.ub", "cr.lb", "cr.ub", "pi.lb", "pi.ub")) out[,i] <- .fcf(out[,i], digits[["ci"]]) if (names(out)[i] %in% c("zval", "Q", "z", "X2")) out[,i] <- .fcf(out[,i], digits[["test"]]) if (names(out)[i] %in% c("pval", "Qp")) out[,i] <- .fcf(out[,i], digits[["pval"]]) if (names(out)[i] %in% c("I2", "H2")) out[,i] <- .fcf(out[,i], digits[["het"]]) if (names(out)[i] %in% c("tau2")) out[,i] <- .fcf(out[,i], digits[["var"]]) if (!is.character(out[,i])) out[,i] <- .fcf(out[,i], digits[["est"]]) } } .space() tmp <- capture.output(print(out, quote=FALSE, right=TRUE)) .print.table(tmp, mstyle) if (is.null(attr(x, ".rmspace"))) .space() invisible(sav) }
spadimo <- function(data, weights, obs, control = list(scaleFun = Qn, nlatent = 1, etas = NULL, csqcritv = 0.975, stopearly = FALSE, trace = FALSE, plot = TRUE)) { if (missing(data)) { stop("Argument 'data' is missing, with no default.") } if (missing(weights)) { stop("Argument 'weights' is missing, with no default.") } if (missing(obs)) { stop("Argument 'obs' is missing, with no default.") } if (missing(control)) { control <- list(scaleFun = Qn, nlatent = 1, etas = NULL, csqcritv = 0.975, stopearly = FALSE, trace = FALSE, plot = TRUE) } starttimer <- proc.time() obs <- as.integer(obs) x <- as.matrix(data) n <- nrow(x) p <- ncol(x) w <- weights if (is.null(control$scaleFun)) { control$scaleFun <- Qn } if (is.null(control$nlatent)) { control$nlatent <- 1 } if (is.null(control$etas)) { if (n > p) { control$etas <- seq(0.9, 0.1, -0.05) } else if (n <= p) { control$etas <- seq(0.6, 0.1, -0.05) } } if (is.null(control$csqcritv)) { control$csqcritv <- 0.975 } if (is.null(control$stopearly)) { control$stopearly <- FALSE } if (is.null(control$trace)) { control$trace <- FALSE } if (is.null(control$plot)) { control$plot <- TRUE } etas <- sort(control$etas, decreasing = TRUE) stopcrit <- FALSE a.list <- list() outlvars.list <- list() robLoc <- apply(x, 2, weighted.mean, w) robScale <- apply(x, 2, control$scaleFun) if (any(robScale < .Machine$double.eps)) { stop("The following variables have 0 scale:\n ", paste(names(which(robScale < .Machine$double.eps)), collapse = ", ")) } z <- scale(x, center = robLoc, scale = robScale) outlyingness.before <- NA PCA.outlflag.before <- NA if (n > p) { Sigmaw <- (t(z) %*% diag(w) %*% z) / (sum(w)-1) outlyingness.before <- sqrt(t(z[obs, ]) %*% chol2inv(chol(Sigmaw)) %*% z[obs, ]) if (control$trace) printer(type = 1, n = n, p = p, control = control, outlyingness.before = outlyingness.before) } else if (n <= p) { set.seed(2017) PCA.outlflag.before <- !(PcaHubert(z, alpha = 0.75, k = 0, kmax = 10, maxdir = 250, scale = FALSE)@flag[obs]) if (control$trace) printer(type = 1, n = n, p = p, PCA.outlflag.before = PCA.outlflag.before) } for (i in 1:length(etas)) { reg <- spadimo.exs(Z = z, w = w, obs = obs, nlatent = control$nlatent, eta = etas[i]) outlvars <- reg$outlvars a.list[[i]] <- reg$a outlvars.list[[i]] <- outlvars if (control$trace) printer(type = 2, etas = etas, i = i, reg = reg) if (length(outlvars) == p) { if (stopcrit == FALSE) { stopcrit <- TRUE outlvars.crit <- outlvars eta.crit <- reg$eta a.crit <- reg$a outlyingness.after.crit <- NA PCA.outlflag.after.crit <- NA } warning('All variables were flagged!', call. = FALSE) break } z.reduced <- as.matrix(z[,-outlvars]) df <- p - length(outlvars) csqcrit.after <- qchisq(control$csqcritv, df) outlyingness.after <- 0 PCA.outlflag.after <- FALSE if (n > p) { Sigmaw <- (t(z.reduced) %*% diag(w) %*% z.reduced) / (sum(w)-1) outlyingness.after <- sqrt(t(z.reduced[obs, ]) %*% chol2inv(chol(Sigmaw)) %*% z.reduced[obs, ]) if (control$trace) printer(type = 3, n = n, p = p, control = control, outlyingness.after = outlyingness.after, csqcrit.after = csqcrit.after, df = df) } else if (n <= p) { set.seed(2017) PCA.outlflag.after <- !(PcaHubert(z.reduced, alpha = 0.75, k = 0, kmax = 10, maxdir = 250, scale = FALSE)@flag[obs]) if (control$trace) printer(type = 3, n = n, p = p, PCA.outlflag.after = PCA.outlflag.after) } if (n > p & outlyingness.after^2 < csqcrit.after & stopcrit == FALSE) { stopcrit <- TRUE outlvars.crit <- outlvars eta.crit <- reg$eta a.crit <- reg$a outlyingness.after.crit <- outlyingness.after PCA.outlflag.after.crit <- NA if (control$stopearly) break } else if (n <= p & PCA.outlflag.after == FALSE & stopcrit == FALSE) { stopcrit <- TRUE outlvars.crit <- outlvars eta.crit <- reg$eta a.crit <- reg$a outlyingness.after.crit <- NA PCA.outlflag.after.crit <- PCA.outlflag.after if (control$stopearly) break } else if (i == length(etas) & stopcrit == FALSE) { warning('Algorithm did not converge; reduced case remains outlying.', call. = FALSE) outlvars.crit <- outlvars eta.crit <- reg$eta a.crit <- reg$a outlyingness.after.crit <- NA PCA.outlflag.after.crit <- PCA.outlflag.after } } endtimer <- proc.time() - starttimer if (control$trace) printer(type = 4, endtimer = endtimer) if (control$plot) printer(type = 5, n = n, p = p, x = x, i = i, obs = obs, control = control, etas = etas, eta.crit = eta.crit, outlvars.crit = outlvars.crit, rownamesData = rownames(data), colnamesData = colnames(data), a.list = a.list, outlvars.list = outlvars.list) return(list(outlvars = outlvars.crit, outlvarslist = outlvars.list, a = a.crit, alist = a.list, eta = eta.crit, o.before = ifelse(n > p, as.numeric(outlyingness.before), PCA.outlflag.before), o.after = ifelse(n > p, as.numeric(outlyingness.after.crit), PCA.outlflag.after.crit), time = round(endtimer[3], 4), control = control)) } spadimo.exs <- function(Z, w, obs, nlatent, eta) { z <- as.matrix(Z) n <- nrow(z) p <- ncol(z) if (w[obs] == 0) w[obs] <- 1e-10 zw <- sqrt(w) * z yw <- rep(0, n) yw[obs] <- 1 if (nlatent == 1) { a <- t(zw) %*% yw a <- a/norm(a, 'F') wnn2 <- data.frame(outlvars = abs(a) - eta*max(abs(a)), oldorder = 1:p) a <- wnn2$outlvars*sign(a) wnn2 <- wnn2[order(wnn2$outlvars, decreasing = TRUE), ] outlvars <- wnn2$oldorder[which(wnn2$outlvars >= 0)] names(outlvars) <- colnames(Z)[outlvars] a[setdiff(1:p, outlvars)] <- 0 a <- a/norm(a, 'F') } else { a <- snipls_nc(yw ~ zw - 1, data = cbind.data.frame(yw, zw), eta = eta, a = nlatent, print = FALSE)$coefficients a <- a/norm(a, 'F') wnn2 <- data.frame(outlvars = abs(a), oldorder = 1:p) wnn2 <- wnn2[order(wnn2$outlvars, decreasing = TRUE), ] outlvars <- wnn2$oldorder[which(wnn2$outlvars > 0)] names(outlvars) <- colnames(Z)[outlvars] } return(list(outlvars = outlvars, a = a, eta = eta, nlatent = nlatent)) } snipls_nc <- function(formula, data, eta, a, print = FALSE){ Z <- model.frame(formula, data = data) Xh <- as.matrix(Z[, 2:ncol(Z)]) X0 <- Xh yh <- as.vector(Z[, 1]) my <- 0 y0 <- yh Tpls <- NULL W <- NULL P <- NULL C <- NULL B <- NULL bh <- 0 Xev <- matrix(0, nrow = 1, ncol = a) Yev <- matrix(0, nrow = 1, ncol = a) oldgoodies <- NULL vars <- vector('list', 2*a) for(i in 1:a){ wh <- t(Xh)%*%yh wh <- wh/norm(wh, 'F') goodies <- abs(wh) - eta*max(abs(wh))[1] wh <- goodies*sign(wh) goodies <- which((goodies >= 0)) goodies <- union(oldgoodies, goodies) oldgoodies <- goodies wh[setdiff(1:ncol(X0), goodies)] <- 0 th <- Xh%*%wh nth <- norm(th, 'F') ch <- t(yh)%*%th/(nth^2) ph <- t(Xh)%*%th/(nth^2) ph[setdiff(1:ncol(X0), goodies)] <- 0 yh <- yh - th * as.numeric(ch) Xh <- Xh - th%*%t(ph) W <- cbind(W, wh) P <- cbind(P, ph) C <- rbind(C, ch) Tpls <- cbind(Tpls, th) Xev[i] <- (nth^2*norm(ph, 'F')^2)/sum(X0^2)*100 Yev[i] <- sum(nth^2*as.numeric(ch^2))/sum(y0^2)*100 if (print) { cat('Variables retained for ', i, ' latent variable(s):', '\n', colnames(X0)[goodies], '.\n') } vars[[2*(i-1)+1]] <- colnames(X0)[goodies] vars[[2*i]] <- goodies } if (length(goodies) > 0) { R <- W %*% solve(t(P)%*%W) B <- R%*%C } else { B <- matrix(0, nrow = ncol(Xh), ncol = 1) R <- B Tpls <- matrix(0, nrow = nrow(Xh), ncol = a) } yp <- X0%*%B + my if (any(is.nan(Tpls))) { stop('NaN generated in Tpls') } if (length(vars[[2*a]]) == 0) { stop('No variables have been retained in Sparse PRM model!') } return(list(W = W, loadings = P, C = C, scores = Tpls, coefficients = B, Xev = Xev, Yev = Yev, Vars = vars, fitted.values = yp, R = R)) } printer <- function(type, x = NULL, n = NULL, p = NULL, i = NULL, df = NULL, obs = NULL, reg = NULL, etas = NULL, a.list = NULL, control = NULL, endtimer = NULL, eta.crit = NULL, rownamesData = NULL, colnamesData = NULL, csqcrit.after = NULL, outlvars.crit = NULL, outlvars.list = NULL, outlyingness.after = NULL, PCA.outlflag.after = NULL, outlyingness.before = NULL, PCA.outlflag.before = NULL, nOutliers = NULL, nOutliers.crit = NULL) { if (type == 1) { if (n > p) { cat(paste0('\n --------------------------------------------------------------------------', '\n squared outlyingness of original case = ', round(outlyingness.before^2, 4), '\n qchisq(', control$csqcritv, ', df = ', p, ') = ', round(qchisq(control$csqcritv, p), 4))) } else if (n <= p) { cat(paste('\n --------------------------------------------------------------------------', '\n orignal case outlying according to ROBPCA :', PCA.outlflag.before)) } } if (type == 2) { cat(paste0('\n\n --------------------------------------------------------------------------', '\n eta = ', etas[i], ' (SNIPLS, nlatent = ', reg$nlatent, ')', '\n ', length(reg$outlvars), ' variables retained: ', '\n')) print(reg$outlvars) } if (type == 3) { if (n > p) { cat(paste0('\n squared outlyingness of reduced case = ', round(outlyingness.after^2, 4), '\n qchisq(' , control$csqcritv, ', df = ', df, ') = ', round(csqcrit.after, 4))) } else if (n <= p) { cat(paste('\n reduced case outlying according to ROBPCA :', PCA.outlflag.after)) } } if (type == 4) { cat(paste('\n\n computation time:', round(endtimer[3], 4), 'sec.\n')) } if (type == 5) { if (i > 1) { heatmap <- matrix(0, nrow = i, ncol = p) cellnotes.a <- matrix(0, nrow = i, ncol = p) cellnotes.obs <- matrix(0, nrow = i, ncol = p) for (j in 1:i) { heatmap[j, which(a.list[[j]] > 0)] <- 1 heatmap[j, which(a.list[[j]] < 0)] <- -1 if (p <= 50) { cellnotes.a[j, ] <- round(a.list[[j]], 2) cellnotes.obs[j, ] <- round(x[obs, ], 2) } else { cellnotes.a[j, ] <- rep(NA, p) cellnotes.obs[j, ] <- rep(NA, p) } } rownames(heatmap) <- round(etas[1:i], 2) if (is.null(colnamesData)) { colnames(heatmap) <- 1:p } else { colnames(heatmap) <- colnamesData } Color <- c() if(-1 %in% c(heatmap)) { Color <- c(Color, 'blue') } if (0 %in% c(heatmap)) { Color <- c(Color, 'lightgray') } if (1 %in% c(heatmap)) { Color <- c(Color, 'red') } if (p <= 50) { heatmap.2(heatmap, scale = 'none', col = Color, cellnote = cellnotes.a, notecol = ifelse(as.vector(t(heatmap[i:1, ])) != 0, 'white', 'black'), xlab = 'sparse direction of maximal outlyingness', ylab = expression(eta), notecex = 1.0, Rowv = FALSE, Colv = FALSE, dendrogram = 'none', density.info = 'none', trace = 'none', key = FALSE, margins = c(5, 4.5), lhei = c(0.5, 12), lwid = c(0.5, 10), colsep = 1:p, rowsep = 1:i, sepcolor = 'white', sepwidth = c(0.01, 0.01)) } if (p <= 500) { heatmap.2(heatmap, scale = 'none', col = Color, cellnote = cellnotes.obs, notecol = ifelse(as.vector(t(heatmap[i:1, ])) != 0, 'white', 'black'), xlab = 'case', ylab = expression(eta), notecex = 0.8, Rowv = FALSE, Colv = FALSE, dendrogram = 'none', density.info = 'none', trace = 'none', key = FALSE, margins = c(5, 4.5), lhei = c(0.5, 12), lwid = c(0.5, 10), colsep = 1:p, rowsep = 1:i, sepcolor = 'white', sepwidth = c(0.01, 0.01)) } screeplot <- ggplot(data = data.frame(etas = etas[1:i], nOutliers = sapply(outlvars.list, length)), aes(x = etas, y = nOutliers)) + geom_point(size = 3.5) + geom_line() + geom_point(data = data.frame(eta.crit = eta.crit, nOutliers.crit = length(outlvars.crit)), aes(x = eta.crit, y = nOutliers.crit), shape = 18, size = 7, col = 'red') + labs(x = expression(eta), y = 'No. flagged variables') + theme(plot.title = element_text(size = 15), text = element_text(size = 20), axis.title = element_text(size = 15)) + ggtitle(substitute(paste(eta, ' = ', eta.crit, ' , ', nflags, ' variables flagged'), list(eta.crit = eta.crit, nflags = length(outlvars.crit)))) plot(screeplot) } } }
plot.gensvm.grid <- function(x, ...) { if (is.null(x$best.estimator)) { cat("Error: Can't plot, the best.estimator element is NULL\n") return(invisible(NULL)) } fit <- x$best.estimator return(plot(fit, ...)) }
startNLR <- function(Data, group, model, match = "zscore", parameterization = "alternative", simplify = FALSE) { if (missing(model)) { stop("'model' is missing.", call. = FALSE ) } else { if (!all(model %in% c( "Rasch", "1PL", "2PL", "3PLcg", "3PLdg", "3PLc", "3PL", "3PLd", "4PLcgdg", "4PLcgd", "4PLd", "4PLcdg", "4PLc", "4PL" ))) { stop("Invalid value for 'model'.", call. = FALSE ) } } Data <- as.data.frame(Data) if (length(model) == 1) { model <- rep(model, ncol(Data)) } else { if (length(model) != ncol(Data)) { stop("Invalid length of 'model'. Model needs to be specified for each item or by single string.", call. = FALSE) } } if (length(parameterization) == 1) { parameterization <- rep(parameterization, ncol(Data)) } else { if (length(parameterization) != ncol(Data)) { stop("Invalid length of 'parameterization'. Parameterization for initial values needs to be specified for each item or by single string.", call. = FALSE) } } startNLR_line <- function(match, DATA) { covar <- match breaks <- unique(quantile(covar, (0:3) / 3, na.rm = TRUE)) lb <- length(breaks) - 1 Q3 <- cut(covar, breaks, include.lowest = TRUE) levels(Q3) <- LETTERS[1:lb] x <- cbind( mean(covar[Q3 == LETTERS[1]], na.rm = TRUE), colMeans(data.frame(DATA[Q3 == LETTERS[1], ]), na.rm = TRUE) ) y <- cbind( mean(covar[Q3 == LETTERS[lb]], na.rm = TRUE), colMeans(data.frame(DATA[Q3 == LETTERS[lb], ]), na.rm = TRUE) ) u1 <- y[, 1] - x[, 1] u2 <- y[, 2] - x[, 2] q <- -(-u1 * y[, 2] + u2 * y[, 1]) / u1 k <- u2 / u1 results <- as.data.frame(cbind(k, q)) return(results) } if (match[1] == "zscore") { MATCH <- scale(apply(Data, 1, sum)) } else { if (match[1] == "score") { MATCH <- as.numeric(apply(Data, 1, sum)) } else { if (length(match) == dim(Data)[1]) { MATCH <- match } else { stop("Invalid value for 'match'. Possible values are 'score', 'zscore', or vector of the same length as number of observations in 'Data'.", call. = FALSE) } } } M_R <- mean(MATCH[group == 0], na.rm = TRUE) M_F <- mean(MATCH[group == 1], na.rm = TRUE) SD_R <- sd(MATCH[group == 0], na.rm = TRUE) SD_F <- sd(MATCH[group == 1], na.rm = TRUE) MATCH <- scale(MATCH) line <- startNLR_line(MATCH, DATA = Data) data_R <- data.frame(Data[group == 0, ]) data_F <- data.frame(Data[group == 1, ]) line_R <- startNLR_line(MATCH[group == 0], DATA = data_R) line_F <- startNLR_line(MATCH[group == 1], DATA = data_F) a_R <- a_F <- b_R <- b_F <- c_R <- c_F <- d_R <- d_F <- c() c <- sapply( 1:ncol(Data), function(i) { if (model[i] %in% c("Rasch", "1PL", "2PL", "3PLdg", "3PLd")) { c_R[i] <- c_F[i] <- 0 } else { if (grepl("cg", model[i])) { c_R[i] <- c_F[i] <- checkInterval(line$k * (-4) + line$q, c(0, 0.99))[i] } else { c_R[i] <- checkInterval(line_R$k * (-4) + line_R$q, c(0, 0.99))[i] c_F[i] <- checkInterval(line_F$k * (-4) + line_F$q, c(0, 0.99))[i] } } return(c(c_R[i], c_F[i])) } ) c_R <- t(c)[, 1] c_F <- t(c)[, 2] d <- sapply( 1:ncol(Data), function(i) { if (model[i] %in% c("Rasch", "1PL", "2PL", "3PLcg", "3PLc", "3PL")) { d_R[i] <- d_F[i] <- 1 } else { if (grepl("dg", model[i])) { d_R[i] <- d_F[i] <- checkInterval(line$k * 4 + line$q, c(0.01, 1))[i] } else { d_R[i] <- checkInterval(line_R$k * 4 + line_R$q, c(0.01, 1))[i] d_F[i] <- checkInterval(line_F$k * 4 + line_F$q, c(0.01, 1))[i] } } return(c(d_R[i], d_F[i])) } ) d_R <- t(d)[, 1] d_F <- t(d)[, 2] a <- sapply( 1:ncol(Data), function(i) { if (model[i] == "Rasch") { a_R[i] <- a_F[i] <- 1 } else { if (model[i] == "1PL") { a_R[i] <- a_F[i] <- (4 * line$k / (d_R - c_R))[i] } else { a_R[i] <- (4 * line_R$k / (d_R - c_R))[i] a_F[i] <- (4 * line_F$k / (d_F - c_F))[i] } } return(c(a_R[i], a_F[i])) } ) a_R <- t(a)[, 1] a_F <- t(a)[, 2] b_R <- ((d_R + c_R) / 2 - line_R$q) / line_R$k b_F <- ((d_F + c_F) / 2 - line_F$q) / line_F$k a_R <- a_R / SD_R a_F <- a_F / SD_F b_R <- b_R * SD_R + M_R b_F <- b_F * SD_F + M_F if (length(unique(parameterization)) == 1 & simplify) { results <- switch(unique(parameterization), classic = data.frame( "a" = a_R, "b" = b_R, "c" = c_R, "d" = d_R, "aDif" = a_F - a_R, "bDif" = b_F - b_R, "cDif" = c_F - c_R, "dDif" = d_F - d_R ), alternative = data.frame( "a" = a_R, "b" = b_R, "cR" = c_R, "dR" = d_R, "aDif" = a_F - a_R, "bDif" = b_F - b_R, "cF" = c_F, "dF" = d_F ), logistic = data.frame( "b1" = a_R, "b0" = -a_R * b_R, "c" = c_R, "d" = d_R, "b3" = a_F - a_R, "b2" = -a_R * b_R + a_F * b_F, "cDif" = c_F - c_R, "dDif" = d_F - d_R ) ) } else { results <- lapply(1:ncol(Data), function(i) { switch(parameterization[i], classic = data.frame( "a" = a_R, "b" = b_R, "c" = c_R, "d" = d_R, "aDif" = a_F - a_R, "bDif" = b_F - b_R, "cDif" = c_F - c_R, "dDif" = d_F - d_R )[i, ], alternative = data.frame( "a" = a_R, "b" = b_R, "cR" = c_R, "dR" = d_R, "aDif" = a_F - a_R, "bDif" = b_F - b_R, "cF" = c_F, "dF" = d_F )[i, ], logistic = data.frame( "b1" = a_R, "b0" = -a_R * b_R, "c" = c_R, "d" = d_R, "b3" = a_F - a_R, "b2" = -a_R * b_R + a_F * b_F, "cDif" = c_F - c_R, "dDif" = d_F - d_R )[i, ] ) }) } return(results) }
ParameterSet <- R6::R6Class("ParameterSet", public = list( initialize = function(prms = list(), tag_properties = NULL) { .ParameterSet__initialize(self, private, prms, tag_properties) }, print = function(sort = TRUE) .ParameterSet__print(self, private, sort), get_values = function(id = NULL, tags = NULL, transform = TRUE, inc_null = TRUE, simplify = TRUE) { .ParameterSet__get_values(self, private, id, tags, transform, inc_null, simplify) }, add_dep = function(id, on, cnd) { .ParameterSet__add_dep(self, private, id, on, cnd) }, rep = function(times, prefix) { .ParameterSet__rep(self, private, times, prefix) }, extract = function(id = NULL, tags = NULL, prefix = NULL) { .ParameterSet__extract(self, private, id, tags, prefix) }, remove = function(id = NULL, prefix = NULL) { .ParameterSet__remove(self, private, id, prefix) }, getParameterValue = function(id, ...) { warning("Deprecated. In the future please use $values/$get_values(). Will be removed in 0.3.0.") self$get_values(id) }, setParameterValue = function(..., lst = list(...)) { warning("Deprecated. In the future please use $values. Will be removed in 0.3.0.") self$values <- unique_nlist(c(lst, self$values)) }, set_values = function(..., lst = list(...)) { self$values <- unique_nlist(c(lst, self$values)) invisible(self) }, parameters = function(...) { warning("Deprecated. In the future please use $print/as.data.table(). Will be removed in 0.3.0.") self }, transform = function(x = self$values) { .ParameterSet__transform(self, private, x) } ), active = list( tags = function() private$.tags, ids = function() private$.id, length = function() length(self$ids), deps = function() private$.deps, supports = function() .ParameterSet__supports(self, private), tag_properties = function(x) { .ParameterSet__tag_properties(self, private, x) }, values = function(x) .ParameterSet__values(self, private, x), trafo = function(x) .ParameterSet__trafo(self, private, x) ), private = list( .id = NULL, .isupports = NULL, .supports = NULL, .value = NULL, .tags = NULL, .tag_properties = NULL, .trafo = NULL, .deps = NULL, .immutable = NULL, .update_support = function(..., lst = list(...)) { .ParameterSet__.update_support(self, private, lst) }, .prefix = function(prefix) { .ParameterSet__.prefix(self, private, prefix) }, .unprefix = function(prefix) { .ParameterSet__.unprefix(self, private, prefix) }, deep_clone = function(name, value) { switch(name, ".deps" = { if (!is.null(value)) { data.table::copy(value) } }, value ) } ) ) pset <- function(..., prms = list(...), tag_properties = NULL, deps = NULL, trafo = NULL) { ps <- ParameterSet$new(prms, tag_properties) if (!is.null(deps)) { checkmate::assert_list(deps) lapply(deps, function(x) { cnd <- if (checkmate::test_list(x$cond)) x$cond[[1]] else x$cond ps$add_dep(x$id, x$on, cnd) }) } ps$trafo <- trafo ps }