code
stringlengths 1
13.8M
|
---|
cnView_buildMain <- function(x, y, z=NULL, chr, CNscale=FALSE, layers=NULL, segmentColor=NULL)
{
dummy_data <- geom_point(data=y, mapping=aes_string(x='coordinate', y=2),
alpha=0)
theme <- theme(axis.text.x=element_text(angle=30, hjust=1))
if(CNscale == "relative")
{
shade_cn <- scale_color_gradient2("Copy Number",
midpoint=0,
low='
mid='gray65',
high='
space='Lab')
ylabel <- ylab('Copy Number Difference')
} else if(CNscale == "absolute") {
shade_cn <- scale_color_gradient2("Copy Number",
midpoint=2,
low='
mid='gray65',
high='
space='Lab')
ylabel <- ylab('Absolute Copy Number')
} else {
memo <- paste0("Did not recognize input to CNscale... defaulting to",
"absolute scale, please specify \"relative\"",
"if copy neutral calls == 0")
warning(memo)
}
xlabel <- xlab('Coordinate')
if(!is.null(layers))
{
layers <- layers
} else {
layers <- geom_blank()
}
if(any('p_value' %in% colnames(x)))
{
x$transparency <- 1-x$p_value
cnpoints <- geom_point(data=x, mapping=aes_string(x='coordinate',
y='cn',
colour='cn',
alpha='transparency'))
transparency <- scale_alpha(guide='none')
} else {
cnpoints <- geom_point(data=x, mapping=aes_string(x='coordinate',
y='cn',
colour='cn'))
transparency <- geom_blank()
}
if(!is.null(z))
{
colour = ifelse(is.null(segmentColor), "green", segmentColor)
cnseg <- geom_segment(data=z, mapping=aes_string(x='start',
xend='end',
y='segmean',
yend='segmean'),
colour=colour, size=2)
} else {
cnseg <- geom_blank()
}
tmp <- data.frame(x=0, y=0)
p1 <- ggplot(data=tmp, aes(x=0)) + cnpoints + shade_cn +
ylabel + xlabel + theme_bw() + theme + cnseg + dummy_data +
transparency + layers
if(chr == 'all')
{
facet <- facet_wrap(~chromosome, scales='free')
p1 <- p1 + facet
}
return(p1)
} |
context("secs-hms")
test_that(".secs function works", {
expect_equal(.secs("15"), 15)
expect_equal(.secs("15s"), 15)
expect_equal(.secs("1m"), 60)
expect_equal(.secs("3m15s"), 195)
expect_equal(.secs("1h3m15s"), 3795)
})
test_that(".hms function works", {
expect_identical(.hms(3810), "1h3m30s")
expect_identical(.hms("3810"), "1h3m30s")
expect_identical(.hms("3m15s"), "0h3m15s")
expect_identical(.hms("3m"), "0h3m0s")
}) |
library(tfruns)
FLAGS <- flags(
flag_numeric('learning_rate', 2e-5, 'Initial learning rate.'),
flag_numeric('max_steps', 1e-6, 'Number of steps to run trainer.')
) |
checkTestOutput <- function(rtIn, rtSave=paste(rtIn, ".save", sep=""), debug=TRUE) {
rtOut <- gsub("\\.Rt$", ".Rout", rtIn, perl=TRUE)
rtFail <- gsub("\\.Rt$", ".Rt.fail", rtIn, perl=TRUE)
rtLog <- paste(rtIn, ".log", sep="")
if (!file.exists(rtIn)) {
msg <- paste("checkTestOutput: cannot find original test file '", rtIn, "' in '", getwd(), "'\n", sep="")
cat(file=rtFail, msg)
cat(file=stdout(), msg)
return(NULL)
}
if (!file.exists(rtSave)) {
msg <- paste("checkTestOutput: cannot find saved-test-object file '", rtSave, "' in '", getwd(), "'\n", sep="")
cat(file=rtFail, msg)
cat(file=stdout(), msg)
return(NULL)
}
if (!file.exists(rtOut)) {
msg <- paste("checkTestOutput: cannot actual test output file '", rtOut, "' in '", getwd(), "'\n", sep="")
cat(file=rtFail, msg)
cat(file=stdout(), msg)
return(NULL)
}
if (debug)
cat(" * Loading saved transcript object from file \"", rtSave, "\" ...\n", sep="", file=stdout())
testObjName <- load(file=rtSave, envir=as.environment(-1))
if (testObjName[1] != "tests")
tests <- get(testObjName[1])
cat(" * Parsing actual test output from file \"", rtOut, "\" ...\n", sep="", file=stdout())
resList <- parseTranscriptFile(rtOut, ignoreUpToRegExpr=">
res <- compareTranscriptAndOutput(sub(".Rout", ".Rt", rtOut), tests, resList, verbose=TRUE)
res.summary <- summary(res)
print(res.summary)
sink(rtLog)
print(res)
print(res.summary)
sink()
testResultsFile <- "test-summary.txt"
if (file.exists(testResultsFile)) {
testResults <- scan("test-summary.txt", quiet=T, what=list(name="", ntests=0, NULL, NULL, nerr=0, NULL, nwarn=0, NULL, NULL, nmess=0, NULL), fill=T)
if (length(testResults$name)>0 && testResults$name[length(testResults$name)]=="total:")
testResults <- lapply(testResults, "[", -length(testResults$name))
} else {
testResults <- list(name=character(0), ntests=numeric(0), c1=NULL,
c2=NULL, nerr=numeric(0), c3=NULL,
nwarn=numeric(0), c4=NULL, c5=NULL,
nmess=numeric(0), c6=NULL)
}
i <- match(paste(rtIn, ":", sep=""), testResults$name, nomatch=length(testResults$name)+1)
testResults$name[i] <- paste(rtIn, ":", sep="")
testResults$ntests[i] <- res.summary$n
testResults$nerr[i] <- res.summary$counts["error"]
testResults$nwarn[i] <- res.summary$counts["warning"]
testResults$nmess[i] <- res.summary$counts["info"]
i <- length(testResults$name)+1
testResults$name[i] <- "total:"
testResults$ntests[i] <- sum(testResults$ntests, na.rm=T)
testResults[[3]] <- "tests"
testResults[[4]] <- "with"
testResults$nerr[i] <- sum(testResults$nerr, na.rm=T)
testResults[[6]] <- "errors,"
testResults$nwarn[i] <- sum(testResults$nwarn, na.rm=T)
testResults[[8]] <- "warnings"
testResults[[9]] <- "and"
testResults$nmess[i] <- sum(testResults$nmess, na.rm=T)
testResults[[11]] <- "messages"
sink(testResultsFile)
cat(do.call("paste", lapply(testResults, format)), sep="\n")
sink()
testResultsFile <- "test-summary.fail"
if (sum(testResults$nerr, na.rm=T) > 0) {
sink(testResultsFile)
cat(do.call("paste", lapply(testResults, format)), sep="\n")
sink()
}
return(res)
} |
createStudyPopulation <- function(plpData,
population = NULL,
outcomeId,
binary = T,
includeAllOutcomes = T,
firstExposureOnly = FALSE,
washoutPeriod = 0,
removeSubjectsWithPriorOutcome = TRUE,
priorOutcomeLookback = 99999,
requireTimeAtRisk = F,
minTimeAtRisk=365,
riskWindowStart = 0,
startAnchor = "cohort start",
riskWindowEnd = 365,
endAnchor = "cohort start",
verbosity = "INFO",
restrictTarToCohortEnd = F,
addExposureDaysToStart,
addExposureDaysToEnd,
...) {
if(!missing(addExposureDaysToStart)){
if(is.null(startAnchor)){
warning('addExposureDaysToStart is depreciated - please use startAnchor instead')
startAnchor <- ifelse(addExposureDaysToStart, 'cohort end','cohort start')
} else {
warning('addExposureDaysToStart specificed so being used')
warning('addExposureDaysToStart is depreciated - please use startAnchor instead')
startAnchor <- ifelse(addExposureDaysToStart, 'cohort end','cohort start')
}
}
if(!missing(addExposureDaysToEnd)){
if(is.null(endAnchor)){
warning('addExposureDaysToEnd is depreciated - please use endAnchor instead')
endAnchor <- ifelse(addExposureDaysToEnd, 'cohort end','cohort start')
} else {
warning('addExposureDaysToEnd specificed so being used')
warning('addExposureDaysToEnd is depreciated - please use endAnchor instead')
endAnchor <- ifelse(addExposureDaysToEnd, 'cohort end','cohort start')
}
}
if(missing(verbosity)){
verbosity <- "INFO"
} else{
if(!verbosity%in%c("DEBUG","TRACE","INFO","WARN","FATAL","ERROR")){
stop('Incorrect verbosity string')
}
}
if(length(ParallelLogger::getLoggers())==0){
logger <- ParallelLogger::createLogger(name = "SIMPLE",
threshold = verbosity,
appenders = list(ParallelLogger::createConsoleAppender(layout = ParallelLogger::layoutTimestamp)))
ParallelLogger::registerLogger(logger)
}
if(!class(plpData)%in%c('plpData')){
ParallelLogger::logError('Check plpData format')
stop('Wrong plpData input')
}
ParallelLogger::logDebug(paste0('outcomeId: ', outcomeId))
checkNotNull(outcomeId)
ParallelLogger::logDebug(paste0('binary: ', binary))
checkBoolean(binary)
ParallelLogger::logDebug(paste0('includeAllOutcomes: ', includeAllOutcomes))
checkBoolean(includeAllOutcomes)
ParallelLogger::logDebug(paste0('firstExposureOnly: ', firstExposureOnly))
checkBoolean(firstExposureOnly)
ParallelLogger::logDebug(paste0('washoutPeriod: ', washoutPeriod))
checkHigherEqual(washoutPeriod,0)
ParallelLogger::logDebug(paste0('removeSubjectsWithPriorOutcome: ', removeSubjectsWithPriorOutcome))
checkBoolean(removeSubjectsWithPriorOutcome)
if (removeSubjectsWithPriorOutcome){
ParallelLogger::logDebug(paste0('priorOutcomeLookback: ', priorOutcomeLookback))
checkHigher(priorOutcomeLookback,0)
}
ParallelLogger::logDebug(paste0('requireTimeAtRisk: ', requireTimeAtRisk))
checkBoolean(requireTimeAtRisk)
ParallelLogger::logDebug(paste0('minTimeAtRisk: ', minTimeAtRisk))
checkHigherEqual(minTimeAtRisk,0)
ParallelLogger::logDebug(paste0('restrictTarToCohortEnd: ', restrictTarToCohortEnd))
checkBoolean(restrictTarToCohortEnd)
ParallelLogger::logDebug(paste0('riskWindowStart: ', riskWindowStart))
checkHigherEqual(riskWindowStart,0)
ParallelLogger::logDebug(paste0('startAnchor: ', startAnchor))
if(!startAnchor%in%c('cohort start', 'cohort end')){
stop('Incorrect startAnchor')
}
ParallelLogger::logDebug(paste0('riskWindowEnd: ', riskWindowEnd))
checkHigherEqual(riskWindowEnd,0)
ParallelLogger::logDebug(paste0('endAnchor: ', endAnchor))
if(!endAnchor%in%c('cohort start', 'cohort end')){
stop('Incorrect startAnchor')
}
if(requireTimeAtRisk){
if(startAnchor==endAnchor){
if(minTimeAtRisk>(riskWindowEnd-riskWindowStart)){
warning('issue: minTimeAtRisk is greater than max possible time-at-risk')
}
}
}
if (is.null(population)) {
population <- plpData$cohorts
}
metaData <- attr(population, "metaData")
metaData$outcomeId <- outcomeId
metaData$binary <- binary
metaData$includeAllOutcomes <- includeAllOutcomes
metaData$firstExposureOnly = firstExposureOnly
metaData$washoutPeriod = washoutPeriod
metaData$removeSubjectsWithPriorOutcome = removeSubjectsWithPriorOutcome
metaData$priorOutcomeLookback = priorOutcomeLookback
metaData$requireTimeAtRisk = requireTimeAtRisk
metaData$minTimeAtRisk=minTimeAtRisk
metaData$riskWindowStart = riskWindowStart
metaData$startAnchor = startAnchor
metaData$riskWindowEnd = riskWindowEnd
metaData$endAnchor = endAnchor
if(is.null(metaData$attrition)){
metaData$attrition <- attr(plpData$cohorts, 'metaData')$attrition
}
if(!is.null(metaData$attrition)){
metaData$attrition <- data.frame(outcomeId = metaData$attrition$outcomeId,
description = metaData$attrition$description,
targetCount = metaData$attrition$targetCount,
uniquePeople = metaData$attrition$uniquePeople,
outcomes = metaData$attrition$outcomes)
if(sum(metaData$attrition$outcomeId==outcomeId)>0){
metaData$attrition <- metaData$attrition[metaData$attrition$outcomeId==outcomeId,]
} else{
metaData$attrition <- NULL
}
}
oId <- outcomeId
population <- population %>%
dplyr::mutate(startAnchor = startAnchor, startDay = riskWindowStart,
endAnchor = endAnchor, endDay = riskWindowEnd) %>%
dplyr::mutate(tarStart = ifelse(.data$startAnchor == 'cohort start', .data$startDay, .data$startDay+ .data$daysToCohortEnd),
tarEnd = ifelse(.data$endAnchor == 'cohort start', .data$endDay, .data$endDay+ .data$daysToCohortEnd)) %>%
dplyr::mutate(tarEnd = ifelse(.data$tarEnd>.data$daysToObsEnd, .data$daysToObsEnd,.data$tarEnd ))
if(max(population$daysToCohortEnd)>0 & restrictTarToCohortEnd){
ParallelLogger::logInfo('Restricting tarEnd to end of target cohort')
population <- population %>% dplyr::mutate(tarEnd = ifelse(.data$tarEnd>.data$daysToCohortEnd, .data$daysToCohortEnd,.data$tarEnd ))
}
outcomeTAR <- population %>%
dplyr::inner_join(plpData$outcomes, by ='rowId') %>%
dplyr::filter(.data$outcomeId == get('oId')) %>%
dplyr::select(.data$rowId, .data$daysToEvent, .data$tarStart, .data$tarEnd) %>%
dplyr::filter(.data$daysToEvent >= .data$tarStart & .data$daysToEvent <= .data$tarEnd)
if(nrow(as.data.frame(outcomeTAR))>0){
outcomeTAR <- outcomeTAR %>%
dplyr::group_by(.data$rowId) %>%
dplyr::summarise(first = min(.data$daysToEvent),
ocount = length(unique(.data$daysToEvent))) %>%
dplyr::select(.data$rowId, .data$first, .data$ocount)
} else {
outcomeTAR <- outcomeTAR %>%
dplyr::mutate(first = 0, ocount = 0) %>%
dplyr::select(.data$rowId, .data$first, .data$ocount)
}
population <- population %>%
dplyr::left_join(outcomeTAR, by = 'rowId')
attrRow <- population %>% dplyr::group_by() %>%
dplyr::summarise(outcomeId = get('oId'),
description = 'Initial plpData cohort or population',
targetCount = length(.data$rowId),
uniquePeople = length(unique(.data$subjectId)),
outcomes = sum(!is.na(.data$first)))
metaData$attrition <- rbind(metaData$attrition, attrRow)
if (firstExposureOnly) {
ParallelLogger::logTrace(paste("Restricting to first exposure"))
population <- population %>%
dplyr::arrange(.data$subjectId,.data$cohortStartDate) %>%
dplyr::group_by(.data$subjectId) %>%
dplyr::filter(dplyr::row_number(.data$subjectId)==1)
attrRow <- population %>% dplyr::group_by() %>%
dplyr::summarise(outcomeId = get('oId'),
description = 'First Exposure',
targetCount = length(.data$rowId),
uniquePeople = length(unique(.data$subjectId)),
outcomes = sum(!is.na(.data$first)))
metaData$attrition <- rbind(metaData$attrition, attrRow)
}
if(washoutPeriod) {
ParallelLogger::logTrace(paste("Requiring", washoutPeriod, "days of observation prior index date"))
msg <- paste("At least", washoutPeriod, "days of observation prior")
population <- population %>%
dplyr::mutate(washoutPeriod = washoutPeriod) %>%
dplyr::filter(.data$daysFromObsStart >= .data$washoutPeriod)
attrRow <- population %>% dplyr::group_by() %>%
dplyr::summarise(outcomeId = get('oId'),
description = msg,
targetCount = length(.data$rowId),
uniquePeople = length(unique(.data$subjectId)),
outcomes = sum(!is.na(.data$first)))
metaData$attrition <- rbind(metaData$attrition, attrRow)
}
if(removeSubjectsWithPriorOutcome) {
ParallelLogger::logTrace("Removing subjects with prior outcomes (if any)")
outcomeBefore <- population %>%
dplyr::inner_join(plpData$outcomes, by ='rowId') %>%
dplyr::filter(outcomeId == get('oId')) %>%
dplyr::select(.data$rowId, .data$daysToEvent, .data$tarStart) %>%
dplyr::filter(.data$daysToEvent < .data$tarStart & .data$daysToEvent > -get('priorOutcomeLookback') )
if(nrow(as.data.frame(outcomeBefore))>0){
outcomeBefore %>%
dplyr::group_by(.data$rowId) %>%
dplyr::summarise(first = min(.data$daysToEvent)) %>%
dplyr::select(.data$rowId)
}
population <- population %>%
dplyr::filter(!.data$rowId %in% outcomeBefore$rowId )
attrRow <- population %>% dplyr::group_by() %>%
dplyr::summarise(outcomeId = get('oId'),
description = "No prior outcome",
targetCount = length(.data$rowId),
uniquePeople = length(unique(.data$subjectId)),
outcomes = sum(!is.na(.data$first)))
metaData$attrition <- rbind(metaData$attrition, attrRow)
}
if (requireTimeAtRisk) {
if(includeAllOutcomes){
ParallelLogger::logTrace("Removing non outcome subjects with insufficient time at risk (if any)")
population <- population %>%
dplyr::filter(!is.na(.data$first) | .data$tarEnd >= .data$tarStart + minTimeAtRisk )
attrRow <- population %>% dplyr::group_by() %>%
dplyr::summarise(outcomeId = get('oId'),
description = "Removing non-outcome subjects with insufficient time at risk (if any)",
targetCount = length(.data$rowId),
uniquePeople = length(unique(.data$subjectId)),
outcomes = sum(!is.na(.data$first)))
metaData$attrition <- rbind(metaData$attrition, attrRow)
}
else {
ParallelLogger::logTrace("Removing subjects with insufficient time at risk (if any)")
population <- population %>%
dplyr::filter( .data$tarEnd >= .data$tarStart + minTimeAtRisk )
attrRow <- population %>% dplyr::group_by() %>%
dplyr::summarise(outcomeId = get('oId'),
description = "Removing subjects with insufficient time at risk (if any)",
targetCount = length(.data$rowId),
uniquePeople = length(unique(.data$subjectId)),
outcomes = sum(!is.na(.data$first)))
metaData$attrition <- rbind(metaData$attrition, attrRow)
}
} else {
ParallelLogger::logTrace("Removing subjects with no time at risk (if any)")
population <- population %>%
dplyr::filter( .data$tarEnd >= .data$tarStart )
attrRow <- population %>% dplyr::group_by() %>%
dplyr::summarise(outcomeId = get('oId'),
description = "Removing subjects with no time at risk (if any))",
targetCount = length(.data$rowId),
uniquePeople = length(unique(.data$subjectId)),
outcomes = sum(!is.na(.data$first)))
metaData$attrition <- rbind(metaData$attrition, attrRow)
}
if(binary){
ParallelLogger::logInfo("Outcome is 0 or 1")
population <- population %>%
dplyr::mutate(outcomeCount = ifelse(is.na(.data$ocount),0,1))
} else{
ParallelLogger::logTrace("Outcome is count")
population <- population %>%
dplyr::mutate(outcomeCount = ifelse(is.na(.data$ocount),0,.data$ocount))
}
population <- population %>%
dplyr::mutate(timeAtRisk = .data$tarEnd - .data$tarStart + 1 ,
survivalTime = ifelse(.data$outcomeCount == 0, .data$tarEnd -.data$tarStart + 1, .data$first - .data$tarStart + 1),
daysToEvent = .data$first) %>%
dplyr::select(.data$rowId, .data$subjectId, .data$cohortId, .data$cohortStartDate, .data$daysFromObsStart,
.data$daysToCohortEnd, .data$daysToObsEnd, .data$ageYear, .data$gender,
.data$outcomeCount, .data$timeAtRisk, .data$daysToEvent, .data$survivalTime)
if(sum(!is.na(population$daysToEvent))==0){
ParallelLogger::logWarn('No outcomes left...')
return(NULL)
}
population <- as.data.frame(population)
attr(population, "metaData") <- metaData
return(population)
}
getCounts <- function(population,description = "") {
persons <- length(unique(population$subjectId))
targets <- nrow(population)
counts <- data.frame(description = description,
targetCount= targets,
uniquePeople = persons)
return(counts)
}
getCounts2 <- function(cohort,outcomes, description = "") {
persons <- length(unique(cohort$subjectId))
targets <- nrow(cohort)
outcomes <- stats::aggregate(cbind(count = outcomeId) ~ outcomeId,
data = outcomes,
FUN = function(x){NROW(x)})
counts <- data.frame(outcomeId = outcomes$outcomeId,
description = description,
targetCount= targets,
uniquePeople = persons,
outcomes = outcomes$count)
return(counts)
} |
get_carrier <- function(x, strict = FALSE, safe = FALSE,
locale = getOption("dialr.locale")) {
if (!is.phone(x)) stop("`x` must be a vector of class `phone`.", call. = FALSE)
carrier_mapper <- .get_phoneNumberToCarrierMapper()
locale <- .jstr_to_locale(locale)
if (safe) {
region <- get_region(x)
out <- NA
out[!is.na(region)] <-
phone_apply(x[!is.na(region)], function(pn) {
.jcall(carrier_mapper, "S", "getSafeDisplayName", pn, locale)
}, character(1))
} else {
out <- phone_apply(x, function(pn) {
.jcall(carrier_mapper, "S", "getNameForValidNumber", pn, locale)
}, character(1))
}
if (strict) out[!is_valid(x)] <- NA_character_
out
} |
barMiss <- function(x, delimiter = NULL, pos = 1, selection = c("any","all"),
col = c("skyblue","red","skyblue4","red4","orange","orange4"),
border = NULL, main = NULL, sub = NULL,
xlab = NULL, ylab = NULL, axes = TRUE,
labels = axes, only.miss = TRUE,
miss.labels = axes, interactive = TRUE, ...) {
check_data(x)
x <- as.data.frame(x)
imputed <- FALSE
if(is.null(dim(x))) {
if(is.continuous(x)) {
histMiss(x, delimiter=delimiter, pos=pos, selection=selection, col=col,
border=border, main=main, sub=sub, xlab=xlab, ylab=ylab,
axes=axes, only.miss=only.miss,
miss.labels=miss.labels, interactive=interactive, ...)
return(invisible(1))
}
n <- length(x)
p <- 1
if(n == 0) stop("'x' must have positive length")
} else {
if(!(inherits(x, c("data.frame","matrix")))) {
stop("'x' must be a data.frame or matrix")
}
if(is.continuous(x[, pos])) {
histMiss(x, delimiter=delimiter, pos=pos, selection=selection, col=col,
border=border, main=main, sub=sub, xlab=xlab, ylab=ylab,
axes=axes, only.miss=only.miss,
miss.labels=miss.labels, interactive=interactive, ...)
return(invisible(1))
}
if(!is.null(delimiter)) {
tmp <- grep(delimiter, colnames(x))
if(length(tmp) > 0) {
imp_var <- x[, tmp, drop=FALSE]
x <- x[, -tmp, drop=FALSE]
if(ncol(x) == 0) stop("Only the missing-index is given")
if(is.matrix(imp_var) && range(imp_var) == c(0,1)) imp_var <- apply(imp_var,2,as.logical)
if(is.null(dim(imp_var))) {
if(!is.logical(imp_var)) stop("The missing-index of imputed Variables must be of the type logical")
} else {
if(!any(as.logical(lapply(imp_var,is.logical)))) stop("The missing-index of imputed Variables must be of the type logical")
}
imputed <- TRUE
} else {
warning("'delimiter' is given, but no missing-index-Variable is found", call. = FALSE)
}
}
n <- nrow(x)
p <- ncol(x)
if(n == 0) stop("'x' has no rows")
else if(p == 0) stop("'x' has no columns")
if(is.null(colnames(x))) colnames(x) <- defaultNames(p)
}
if(p == 1) {
only.miss <- TRUE
interactive <- FALSE
} else {
if((!is.numeric(pos)) || (length(pos) != 1) || (p < pos)) {
stop("'pos' must be an integer specifying one column of 'x' and must be lesser than the number of colums of 'x'")
}
selection <- match.arg(selection)
}
if(length(col) == 0) col <- c("skyblue","red","skyblue4","red4","orange","orange4")
else if(length(col) == 1) col <- c(rep.int(c("transparent", col), 2),rep.int(col,2))
else if(length(col) == 3 || length(col) == 5) col <- rep.int(col[1:2], 3)
else if(length(col) != 6) col <- rep(col, length.out=6)
localAxis <- function(..., names.arg, axisnames, cex.names, names.miss) {
axis(...)
}
localTitle <- function(..., names.arg, axisnames, cex.names, names.miss) {
title(...)
}
dots <- list(...)
nmdots <- names(dots)
has.axisnames <- "axisnames" %in% nmdots
if(missing(labels)) {
if(has.axisnames) {
if(dots$axisnames) {
if("names.arg" %in% nmdots) labels <- dots$names.arg
else labels <- TRUE
} else labels <- FALSE
} else if("names.arg" %in% nmdots) labels <- dots$names.arg
}
if(missing(miss.labels)) {
if(has.axisnames) {
if(dots$axisnames) {
if("names.miss" %in% nmdots) miss.labels <- dots$names.miss
else miss.labels <- TRUE
} else miss.labels <- FALSE
} else if("names.miss" %in% nmdots) miss.labels <- dots$names.miss
}
createPlot <- function(main=NULL, sub=NULL,
xlab=NULL, ylab=NULL, labels=axes) {
if(is.null(dim(x))) xpos <- as.factor(x)
else if(p == 1) {
xpos <- as.factor(x[,1])
if(is.null(xlab)) xlab <- colnames(x)
} else {
xpos <- as.factor(x[, pos])
xh <- x[, -pos, drop=FALSE]
if(is.null(xlab)) xlab <- colnames(x)[pos]
}
if(p == 2 && is.null(ylab)) {
if(!imputed) ylab <- paste("missing/observed in", colnames(x)[-pos])
else ylab <- paste("imputed/observed in", colnames(x)[-pos])
}
x.axis <- TRUE
if(is.logical(labels)) {
if(!is.na(labels) && labels) labels <- NULL
else x.axis <- FALSE
}
miss.axis <- TRUE
if(is.logical(miss.labels)) {
if(!is.na(miss.labels) && miss.labels) miss.labels <- NULL
else miss.axis <- FALSE
}
impp <- FALSE
if(!imputed) {
misspos <- isNA(xpos)
} else {
tmp <- isImp(x, pos = pos, delimiter = delimiter, imp_var = imp_var, selection = selection)
misspos <- tmp[["misspos"]]
impp <- tmp[["impp"]]
missh <- tmp[["missh"]]
}
missposf <- factor(ifelse(misspos, 1, 0), levels=0:1)
if(p == 1) ct <- table(missposf)[2]
else {
if(!imputed) missh <- isNA(xh, selection)
misshf <- factor(ifelse(missh, 1, 0), levels=1:0)
ct <- table(misshf, missposf)
ct[2,] <- ct[1,] + ct[2,]
if(only.miss) ct <- ct[,2]
}
allNA <- all(misspos)
if(allNA) {
n <- 5
counts <- 0
} else {
n <- length(levels(xpos))
counts <- summary(xpos[!misspos])
}
br <- c(0.2, n*1.2)
h <- br[2] - br[1]
if(only.miss) {
xlim <- c(br[1], br[2]+1+0.08*h)
ylim <- c(0, max(summary(xpos)))
} else {
xlim <- c(br[1], br[2]+0.155*h)
ylim <- c(0, max(counts))
}
if(allNA) {
b <- NULL
labels <- character()
plot(xlim, ylim, type="n", ann=FALSE, axes=FALSE, yaxs="i")
if(only.miss && axes) localAxis(side=2, ...)
} else {
b <- barplot(counts, col=col[1], border=border,
main="", sub="", xlab="", ylab="", xlim=xlim,
ylim=ylim, axes=FALSE, axisnames=FALSE)
if(p > 1 && any(missh)) {
if(imputed) color <- col[5]
else color <- col[2]
indices <- which(is.na(x[,2]) & missh ==TRUE)
missh2 <- missh
missh2[-indices] <- FALSE
countsmiss <- table(xpos[missh], useNA="no")
countsmiss2 <- table(xpos[missh2], useNA="no")
b <- barplot(countsmiss, col=color, border=border,
add=TRUE, axes=FALSE, axisnames=FALSE)
if(length(indices) > 0 & imputed) {
b <- barplot(countsmiss2, col=col[2], border=border,
add=TRUE, axes=FALSE, axisnames=FALSE)
}
}
else if(p == 1 && impp == TRUE && any(misspos)) {
countsmiss <- table(xpos[missh], useNA="no")
b <- barplot(countsmiss, col=col[5], border=border,
add=TRUE, axes=FALSE, axisnames=FALSE)
}
if(x.axis) {
if(is.null(labels)) labels <- levels(xpos)
else labels <- rep(labels, length.out=length(levels(xpos)))
}
if(axes) localAxis(side=2, ...)
}
localTitle(main, sub, xlab, ylab, ...)
abline(v=br[2]+0.04*h, col="lightgrey")
if(only.miss) {
xleft <- br[2] + 0.08*h
xright <- xlim[2]
if(p == 1) {
rect(xleft, 0, xright, ct, col=col[3], border=border, xpd=TRUE)
} else {
if(!imputed) color <- col[4:3]
else color <- col[c(6,3)]
rect(rep(xleft, 2), c(0, ct[1]), rep(xright, 2), ct,
col=color, border=border, xpd=TRUE)
}
if(miss.axis) {
miss.at <- xleft+(xright-xleft)/2
if(is.null(miss.labels)) {
if(!imputed) miss.labels <- "missing"
else miss.labels <- "imputed"
}
else miss.labels <- rep(miss.labels, length.out=1)
}
} else {
usr <- par("usr")
par(usr=c(usr[1:2], 0, max(ct[2,])))
on.exit(par(usr=usr))
zero <- br[2]+0.08*h
xleft <- zero + c(0,0,1.5,1.5)*0.03*h
ybottom <- c(0,ct[1,1],0,ct[1,2])
xright <- zero + c(1,1,2.5,2.5)*0.03*h
ytop <- ct
if(!imputed) color <- col[c(2,1,4,3)]
else color <- col[c(5,1,6,3)]
rect(xleft, ybottom, xright, ytop,
col=color, border=border, xpd=TRUE)
if(length(indices) > 0 & imputed) {
sum_miss <- length(indices)
xleft1 <- xleft[1]
ybottom1 <- ybottom[1]
xright1 <- xright[1]
ytop1 <- sum_miss
color1 <- col[2]
rect(xleft1,ybottom1,xright1,ytop1,col=color1,border=border,xpd=TRUE)
}
if(miss.axis) {
miss.at <- zero + c(0.5,2)*0.03*h
if(is.null(miss.labels)) {
if(!imputed) miss.labels <- c("observed","missing")
else miss.labels <- c("observed","imputed")
}
else miss.labels <- rep(miss.labels, length.out=2)
}
if(axes) localAxis(side=4, ...)
}
if(x.axis || miss.axis) {
x.axes <- TRUE
dots$side <- 1
dots$at <- c(if(x.axis) b, if(miss.axis) miss.at)
dots$labels <- c(if(x.axis) labels, if(miss.axis) miss.labels)
if(is.null(dots$line)) dots$line <- par("mgp")[3]
dots$lty <- 0
if(is.null(dots$las)) dots$las <- 3
if(dots$las %in% 2:3) {
space.vert <- (par("oma")[1]+par("mar")[1]-
dots$line-par("mgp")[2])*par("csi")
ok <- prettyLabels(dots$labels,
dots$at, space.vert, dots$cex.axis)
if(any(ok)) {
dots$at <- dots$at[ok]
dots$labels <- dots$labels[ok]
} else x.axes <- FALSE
}
if(x.axes) do.call(localAxis, dots)
}
return(b)
}
b <- createPlot(main, sub, xlab, ylab, labels)
interactiveDevices <- c("X11cairo","quartz","windows")
dev <- names(dev.cur())
if(interactive && any(!is.na(charmatch(interactiveDevices, dev)))) {
cat(paste("\nClick in in the left margin to switch to the previous",
"variable or in the right margin to switch to the next",
"variable.\n"))
cat(paste("To regain use of the VIM GUI and the R console,",
"click anywhere else in the graphics window.\n\n"))
usr <- par("usr")
pt <- locatorVIM()
while(!is.null(pt) && (pt$x < usr[1] || pt$x > usr[2])) {
if(pt$x < usr[1]) pos <- if(pos == 1) p else (pos - 1) %% p
else pos <- if(pos == p-1) p else (pos + 1) %% p
b <-
if(is.continuous(x[, pos])) {
histMiss(if(imputed) cbind(x,imp_var) else x, delimiter = delimiter, pos=pos, selection=selection, col=col,
border=border, axes=axes, only.miss=only.miss,
miss.labels=miss.labels, interactive=FALSE, ...)
} else createPlot(labels=if(is.logical(labels)) labels else axes)
usr <- par("usr")
pt <- locatorVIM()
}
}
invisible(b)
} |
fd2list <- function(fdobj)
{
coef <- fdobj$coefs
coefsize <- dim(coef)
nrep <- coefsize[2]
if (length(coefsize) > 2)
stop("FDOBJ is not univariate.")
fdlist <- vector("list",0)
for (i in 1:nrep) fdlist[[i]] <- fdobj[i]
return(fdlist)
} |
pafdR_build.exercise <- function(lan = 'en',
exercise.folder = 'pafdR-exercises',
pdf.folder = 'pdf out'){
my.pdftex.flag <- pafdR_check.pdflatex()
if (!my.pdftex.flag) {
stop('cant find pdflatex.exe! Check your latex installation and also if the command is available at userpath')
}
if (class(lan)!= 'character') {
stop('Class of en should be character')
}
possible.lan <- c('en', 'pt-br')
if ( !(lan %in% possible.lan)) {
stop(paste('Input lan (language) should be one of:', paste(possible.lan,collapse = ', ')))
}
if (class(exercise.folder) != 'character') {
stop('Class of exercise.folder should be character')
}
my.f <- list.files(path = exercise.folder,pattern = '*.Rnw', full.names = T)
if (length(my.f)==0) {
cat('Cant find any .Rnw files in ', exercise.folder,
'. Will download it with pafdR_download.exercises()')
pafdR_download.exercises(exercise.folder = exercise.folder)
}
my.f <- list.files(path = exercise.folder, pattern = '*.Rnw', full.names = T)
if (lan == 'pt-br'){
my.template <- system.file('ext/myexam_pt-br.tex', package = 'pafdR')
my.fig.input <- system.file('ext/CAPADigital_DadosFinanceirosR.jpg', package = 'pafdR')
my.name <- paste0('pafdR-Exercicios-',lan,'-',Sys.Date())
}
if (lan == 'en') {
my.template <- system.file('ext/myexam_en.tex', package = 'pafdR')
my.fig.input <- system.file('ext/CAPADigital_FinancialDataR.jpg', package = 'pafdR')
my.name <- paste0('pafdR-Exercises-',lan,'-',Sys.Date())
}
n.q <- length(my.f)
n.ver <- 1
lan <<- lan
cat('\npafdR - Building Exercises')
my.exam <- exams::exams2pdf(file = my.f,
n=n.ver,
name=my.name,
inputs = my.fig.input,
template = my.template,
language = lan,
institution = '',
title = 'R Exercises',
course = '',
duplex = T,
encoding = 'UTF-8',
dir = pdf.folder,
date = Sys.Date(),
intro = '',
verbose = FALSE)
file.rename(from = paste0(pdf.folder,'/',my.name,'1','.pdf'),
to = paste0(pdf.folder,'/',my.name, '.pdf'))
df.answer.key <- data.frame()
exam.now <- my.exam[[1]]
n.q <- length(exam.now)
for (i.q in seq(n.q)){
sol.now <- letters[which(exam.now[[i.q]]$metainfo$solution)]
temp <- data.frame(Question = i.q,
Solution = sol.now)
df.answer.key <- rbind(df.answer.key, temp)
}
sol.file <- paste0(pdf.folder,'/Solutions_', my.name,'.txt')
utils::write.csv(x = df.answer.key, file = sol.file, row.names = FALSE)
cat('\n\nDONE!\n')
cat('Pdf file available at: ',paste0(pdf.folder,'/',my.name))
cat('\nSolutions available at: ',sol.file)
return(TRUE)
} |
base64_encode <- function(x) {
if(is.null(x)) return("")
return(cpp_base64_encode(x))
} |
setGeneric("graphdf", function(x, ...) {
standardGeneric("graphdf")
})
setMethod(
"graphdf",
signature = "list",
definition = function(x, ...) {
results <- vector("list", length(x))
for (i in 1:length(x)) {
thisGraph <- x[[i]]
if (is_igraph(thisGraph)) {
results[[i]] <- list()
results[[i]]$v <- data.frame(sapply(names(vertex_attr(thisGraph)), function(z) {
vertex_attr(thisGraph, z)
}), stringsAsFactors = FALSE)
results[[i]]$e <- data.frame(as_edgelist(thisGraph),
sapply(names(edge_attr(thisGraph)), function(z) {
edge_attr(thisGraph, z)
}), stringsAsFactors = FALSE)
edgeDfNames <- names(results[[i]]$e)
names(results[[i]]$e) <- c("e1", "e2", edgeDfNames[3:length(edgeDfNames)])
results[[i]]$e <- as.data.frame(sapply(results[[i]]$e, as.character),
stringsAsFactors = FALSE)
results[[i]]$v <- as.data.frame(sapply(results[[i]]$v, as.character),
stringsAsFactors = FALSE)
results[[i]]$e <- as.data.frame(lapply(results[[i]]$e, function(z) {
type.convert(z, as.is = TRUE)
}), stringsAsFactors = FALSE)
results[[i]]$v <- as.data.frame(lapply(results[[i]]$v, function(z) {
type.convert(z, as.is = TRUE)
}), stringsAsFactors = FALSE)
} else {
results[[i]]$v <- NA
results[[i]]$e <- NA
}
}
return(results)
})
setMethod(
"graphdf",
signature = "goc",
definition = function(x, ...) {
theseGraphs <- lapply(x@th, function(z) z$goc)
graphdf(theseGraphs)
})
setMethod(
"graphdf",
signature = "grain",
definition = function(x, ...) {
theseGraphs <- list(x@th)
graphdf(theseGraphs)
})
setMethod(
"graphdf",
signature = "mpg",
definition = function(x, ...) {
theseGraphs <- vector("list", 1)
theseGraphs[[1]] <- x@mpg
graphdf(theseGraphs)
})
setMethod(
"graphdf",
signature = "igraph",
definition = function(x, ...) {
theseGraphs <- vector("list", 1)
theseGraphs[[1]] <- x
graphdf(theseGraphs)
}) |
sugm.select <- function(est,
criterion = "stars",
stars.subsample.ratio = NULL,
stars.thresh = 0.1,
rep.num = 20,
fold = 5,
loss="likelihood",
verbose = TRUE)
{
if(est$method!="clime" && est$method!="tiger") {
cat("\"method\" must be either \"clime\" or \"tiger\" \n")
return(NULL)
}
gcinfo(FALSE)
if(est$cov.input){
cat("Model selection is not available when using the covariance matrix as input.")
class(est) = "select"
return(est)
}
if(!est$cov.input)
{
if(is.null(criterion))
criterion = "stars"
n = nrow(est$data)
d = ncol(est$data)
nlambda = length(est$lambda)
if(criterion == "cv"){
if(verbose)
{
cat("Conducting cross validation (cv) selection....\n")
flush.console()
}
out = sugm.cv(est, loss=loss, fold = fold)
est$opt.lambda = out$lambda.opt
est$opt.index = out$opt.idx
rm(out)
gc()
if(verbose){
cat("done\n")
flush.console()
}
if(verbose)
{
cat("Computing the optimal graph....\n")
flush.console()
}
if(est$method == "clime")
out = sugm(est$data, lambda = est$opt.lambda, method = "clime", sym = est$sym, verbose = FALSE,
standardize=est$standardize)
if(est$method == "tiger")
out = sugm(est$data, lambda = est$opt.lambda, method = "tiger", sym = est$sym, verbose = FALSE,
standardize=est$standardize)
est$refit = est$path[[est$opt.index]]
est$opt.sparsity=sum(est$refit)/d/(d-1)
est$opt.icov = est$icov[[est$opt.index]]
if(verbose){
cat("done\n")
flush.console()
}
}
if(criterion == "stars"){
if(is.null(stars.subsample.ratio))
{
if(n>144) stars.subsample.ratio = 10*sqrt(n)/n
if(n<=144) stars.subsample.ratio = 0.8
}
est$merge = list()
for(i in 1:nlambda) est$merge[[i]] = Matrix(0,d,d)
for(i in 1:rep.num)
{
if(verbose)
{
mes <- paste(c("Conducting Subsampling....in progress:", floor(100*i/rep.num), "%"), collapse="")
cat(mes, "\r")
flush.console()
}
ind.sample = sample(c(1:n), floor(n*stars.subsample.ratio), replace=FALSE)
if(est$method == "clime")
tmp = sugm(est$data[ind.sample,], lambda = est$lambda, method = "clime", sym = est$sym, verbose = FALSE,
standardize=est$standardize)$path
if(est$method == "tiger")
tmp = sugm(est$data[ind.sample,], lambda = est$lambda, method = "tiger", sym = est$sym, verbose = FALSE,
standardize=est$standardize)$path
for(i in 1:nlambda)
est$merge[[i]] = est$merge[[i]] + tmp[[i]]
rm(ind.sample,tmp)
gc()
}
if(verbose){
cat("\n")
mes = "Conducting Subsampling....done. "
cat(mes, "\r")
cat("\n")
flush.console()
}
est$variability = rep(0,nlambda)
for(i in 1:nlambda){
est$merge[[i]] = est$merge[[i]]/rep.num
est$variability[i] = 4*sum(est$merge[[i]]*(1-est$merge[[i]]))/(d*(d-1))
}
est$opt.index = max(which.max(est$variability >= stars.thresh)[1]-1,1)
est$refit = est$path[[est$opt.index]]
est$opt.lambda = est$lambda[est$opt.index]
est$opt.sparsity = est$sparsity[est$opt.index]
est$opt.icov = est$icov[[est$opt.index]]
}
est$criterion = criterion
class(est) = "select"
return(est)
}
}
print.select = function(x, ...)
{
if(x$cov.input){
cat("Model selection is not available when using the covariance matrix as input.\n")
return(NULL)
}
if(!x$cov.input)
{
if(x$method == "clime")
cat("Method: CLIME\n")
else
cat("Method: SLasso\n")
cat("selection criterion:",x$criterion,"\n")
cat("Graph dimension:",ncol(x$data),"\n")
cat("sparsity level:", x$opt.sparsity,"\n")
cat("optimal paramter:", x$opt.lambda,"\n")
}
if(x$criterion == "cv")
cat("cross validation loss used:",x$loss)
}
plot.select = function(x, ...){
if(x$cov.input){
cat("Model selection is not available when using the covariance matrix as input.\n")
return(NULL)
}
if(!x$cov.input)
{
par(mfrow=c(1,2), pty = "s", omi=c(0.3,0.3,0.3,0.3), mai = c(0.3,0.3,0.3,0.3))
g = graph.adjacency(as.matrix(x$refit), mode="undirected", diag=FALSE)
layout.grid = layout.fruchterman.reingold(g)
plot(g, layout=layout.grid, edge.color='gray50',vertex.color="red", vertex.size=3, vertex.label=NA)
plot(x$lambda, x$sparsity, log = "x", xlab = "Regularization Parameter", ylab = "Sparsity Level", type = "l",xlim = rev(range(x$lambda)), main = "Solution path sparsity levels")
lines(x$opt.lambda,x$opt.sparsity,type = "p")
}
} |
prune_sg<-function(g, level=1, verbose=FALSE) {
if(!is(g,"sg")) stop("g not sg object.")
if(is.null(level)) return(g)
if(level<=0)return(g)
g <- sg2sym(g)
edges <- prune_c(g$edges, level, verbose)
as.sg(edges,type=g$type, pars=g$parameters,
note=c(g$note, paste("pruned with level=", as.integer(level),sep="")))
} |
sample_CPT<-function(CPT,states)
{
probs<-1:ncol(CPT[[2]])
for(i in 1:length(states))
probs<-probs[-(which(!CPT[[2]][i,]==states[i]))]
probs<-cumsum(CPT[[1]][,probs])
rando<-runif(1)
if(length(probs)==0)
{warning("State combination ",states," doesn't exist in CPT.")
return(NA)}
state<-names(probs)[min(which(probs>rando))]
return(state)
} |
william <-
function(numattable1, crds1, board1, round1, currentbet, mychips1, pot1,
roundbets, blinds1, chips1, ind1, dealer1, tablesleft){
a1 = 0
if(mychips1 < 3*blinds1) a1 = mychips1
if((crds1[1,1] == 14) && (crds1[2,1] == 14)) a1 = mychips1
if((crds1[1,1] == 10) && (crds1[2,1] == 9)){
u1 = runif(1)
if(u1 < .4) a1 = mychips1
if(u1 > .4) a1 = 0
}
if(currentbet == blinds1) a1 = mychips1
if((crds1[1,1] == crds1[2,1]) && (crds1[1,1] > 11.5) && (numattable1<10)) a1 = mychips1
a1
} |
hl2_test <- function(x,
y,
alternative = c("two.sided", "greater", "less"),
delta = ifelse(var.test, 1, 0),
method = c("asymptotic", "permutation", "randomization"),
scale = c("S1", "S2"),
n.rep = 10000,
na.rm = FALSE,
var.test = FALSE,
wobble = FALSE,
wobble.seed = NULL) {
check_test_input(x = x, y = y, alternative = alternative, delta = delta,
method = method, scale = scale, n.rep = n.rep, na.rm = na.rm,
var.test = var.test, wobble = wobble, wobble.seed = wobble.seed,
test.name = "hl2_test")
dname <- paste(deparse(substitute(x)), "and", deparse(substitute(y)))
alternative <- match.arg(alternative)
scale <- match.arg(scale)
prep <- preprocess_data(x = x, y = y, delta = delta, na.rm = na.rm,
wobble = wobble, wobble.seed = wobble.seed,
var.test = var.test)
if (!all(is.na(prep))) {
x <- prep$x
y <- prep$y
delta <- prep$delta
} else {
return(NA)
}
if (scale == "S1") {
type <- "HL21"
} else if (scale == "S2") {
type <- "HL22"
}
method <- select_method(x = x, y = y, method = method, test.name = "hl2_test",
n.rep = n.rep)
if (method %in% c("permutation", "randomization")) {
n.rep <- min(choose(length(x) + length(y), length(x)), n.rep)
test.results <- compute_results_finite(x = x, y = y, alternative = alternative,
delta = delta, method = method, type = type,
n.rep = n.rep)
} else if (method == "asymptotic") {
test.results <- compute_results_asymptotic(x = x, y = y, alternative = alternative,
delta = delta, type = type)
}
statistic <- test.results$statistic
estimates <- test.results$estimates
p.value <- test.results$p.value
if (var.test) {
names(estimates) <- c("HL2 of log(x^2) and log(y^2)")
names(delta) <- "ratio of squared scale parameters"
delta <- exp(delta)
} else {
names(estimates) <- c("HL2 of x and y")
names(delta) <- "location shift"
}
names(statistic) <- ifelse(var.test, "S", "D")
if (method == "randomization") {
method <- paste0("Randomization test based on HL2-estimator ", "(", n.rep, " random permutations)")
} else if (method == "permutation") {
method <- "Exact permutation test based on HL2-estimator"
} else method <- "Asymptotic test based on HL2-estimator"
res <- list(statistic = statistic, parameter = NULL, p.value = p.value,
estimate = estimates, null.value = delta, alternative = alternative,
method = method, data.name = dname)
class(res) <- "htest"
return(res)
} |
.onLoad <- function(libname, pkgname) {
options("DataPackageR_interact" = interactive())
options("DataPackageR_packagebuilding" = FALSE)
} |
create.dmdf=function(x,parameter,time.varying=NULL,fields=NULL)
{
last= -parameter$num
begin.num=parameter$begin+1
chp = process.ch(x$data$ch)
firstseen=chp$first
nocc=x$nocc
time.intervals=x$time.intervals
if(is.null(x$data$begin.time))
begin.time=x$begin.time
else
begin.time=x$data$begin.time
df=create.base.dmdf(x,parameter)
if(is.null(df))return(NULL)
if(length(begin.time)==1 & is.vector(time.intervals))
{
timedf=data.frame(occ=1:nocc,time=begin.time+c(0,cumsum(time.intervals)))
if(parameter$interval)
if(!all(time.intervals==1))
timedf$time.interval=c(time.intervals,NA)
df=merge(df,timedf,by="occ")
timedf=data.frame(id=x$data$id,cohort=timedf$time[firstseen])
df=merge(df,timedf,by="id")
}else
{
if(length(begin.time)==1)
begin.time=rep(begin.time,nrow(x$data))
if(is.vector(time.intervals))
time.intervals=matrix(time.intervals,nrow=nrow(x$data),ncol=length(time.intervals),byrow=TRUE)
cum.time.intervals=t(apply(time.intervals,1,cumsum))
times=begin.time+cbind(rep(0,nrow(x$data)),cum.time.intervals)
cohort=rep(times[cbind(1:nrow(x$data),firstseen)],each=ncol(times))
if(!parameter$interval | all(time.intervals==1))
timedf=data.frame(occid=apply(expand.grid(occ=1:nocc,id=factor(1:nrow(x$data))),1,paste,collapse=""),
cohort=cohort,time=as.vector(t(times)))
else
timedf=data.frame(occid=apply(expand.grid(occ=1:nocc,id=factor(1:nrow(x$data))),1,paste,collapse=""),
cohort=cohort,time=as.vector(t(times)),time.interval=as.vector(t(cbind(time.intervals,rep(NA,nrow(x$data))))))
df$occid=paste(df$occ,df$id,sep="")
df=merge(df,timedf,by="occid")
df$idocc=NULL
}
if(any(time.intervals==0))
{
firstocc=data.frame(id=factor(1:nrow(x$data)),firstocc=firstseen)
df=merge(df,firstocc,by="id")
}
df=df[order(df$seq),]
df$age=df$time-df$cohort
if(!is.null(x$data$initial.age)) df$age=df$age+x$data$initial.age[df$id]
times=df$time[df$id==1]
tcv=NULL
if(!is.null(time.varying))
{
for (i in 1:length(time.varying))
{
vnames=paste(time.varying[i],times,sep="")
if( !all(vnames %in% names(x$data)))
stop("Missing time varying variable ",paste(vnames[!vnames%in%names(x$data)],collapse=","))
if(i==1)
tcv=data.frame(as.vector(t(as.matrix(x$data[, vnames]))))
else
tcv=cbind(tcv,as.vector(t(as.matrix(x$data[, vnames]))))
x$data=x$data[,!names(x$data)%in%vnames]
}
names(tcv)=time.varying
}
if(!is.null(tcv))
df=cbind(df,tcv)
if(is.null(fields))
fields=names(x$data)[!names(x$data)%in%c("ch","initial.age")]
else
fields=c(fields,"id")
df=merge(df,x$data[,fields],by="id")
df=df[order(df$seq),]
df$seq=NULL
df$Time=df$time-min(df$time)
df$Cohort=df$cohort-min(df$cohort)
df$age[df$age<0]=0
df$time=factor(df$time)
df$Age=df$age
df$age=factor(df$age)
df$cohort=factor(df$cohort)
if("group"%in%names(df))
levels(df$group)=apply(x$group.covariates,1,paste,collapse="")
if(!is.null(x$strata_data)&!is.null(df$stratum))
df=cbind(df,x$strata_data)
return(df)
}
create.base.dmdf=function(x,parameter)
{
last= -parameter$num
begin.num=parameter$begin+1
nocc=x$nocc + parameter$num
occasions=begin.num:(parameter$begin+nocc)
sl=factor(x$strata.labels)
nstrata=length(sl)
if(nchar(x$model)>=4 & substr(x$model,1,4)=="MVMS")
{
if(!is.null(parameter$obs) & parameter$obs)
dfl=mvms_design_data(x$strata.list$df.states,x$strata.list$df,transition=parameter$tostrata)
else
dfl=mvms_design_data(x$strata.list$df.states,transition=parameter$tostrata)
df=expand.grid(occ=occasions,id=factor(1:nrow(x$data)))
dfl=dfl[rep(1:nrow(dfl),each=nrow(df)),,drop=FALSE]
df=cbind(df,dfl)
if(parameter$tostrata)
df=df[order(df$id,df$occ,df$stratum,df$tostratum),]
else
df=df[order(df$id,df$occ,df$stratum),]
df$seq=1:nrow(df)
rownames(df)=df$seq
} else
{
if(!is.null(x$strata.list))
{
st.index=which("states"==names(x$strata.list))
oth.index=which("states"!=names(x$strata.list))
oth.name=names(x$strata.list)[oth.index]
oth=factor(rep(x$strata.list[[oth.index]],each=length(x$strata.list$states)))
states=factor(rep(x$strata.list$states,times=length(x$strata.list[[oth.index]])))
if(parameter$whichlevel!=0)
{
if(parameter$whichlevel==1)
sl=factor(x$strata.list$states)
else
sl=factor(x$strata.list[[oth.index]])
nstrata=length(sl)
x$strata.list=NULL
}
}
if(!parameter$bystratum)
{
df=expand.grid(occ=occasions,id=factor(1:nrow(x$data)))
df$seq=1:nrow(df)
}
else
{
if(parameter$tostrata)
{
df=expand.grid(tostratum=sl[1:nstrata],stratum=sl[1:nstrata],occ=occasions,id=factor(1:nrow(x$data)))
df=df[,c("stratum","tostratum","occ","id")]
df$seq=1:nrow(df)
}
else
{
df=expand.grid(stratum=sl[1:nstrata],occ=occasions,id=factor(1:nrow(x$data)))
df$seq=1:nrow(df)
}
if(!is.null(x$strata.list))
{
state.df=data.frame(stratum=sl[1:nstrata],state=states,oth=oth)
df=merge(df,state.df,by="stratum")
if(parameter$tostrata)
{
state.df=data.frame(tostratum=sl[1:nstrata],tostate=states,tooth=oth)
df=merge(df,state.df,by="tostratum")
}
if(parameter$whichlevel!=0)
{
if(parameter$whichlevel==1){
names(df)[names(df)=="stratum"]="state"
names(df)[names(df)=="tostratum"]="tostate"
}
if(parameter$whichlevel==2) {
names(df)[names(df)=="stratum"]=oth.name
names(df)[names(df)=="tostratum"]=paste("to",oth.name,sep="")
}
}else
{
names(df)[names(df)=="oth"]=oth.name
names(df)[names(df)=="tooth"]=paste("to",oth.name,sep="")
}
}else
{
if(parameter$whichlevel!=0)
{
if(parameter$whichlevel==1)names(df)[names(df)=="stratum"]="state"
if(parameter$whichlevel==2) names(df)[names(df)=="stratum"]=oth.name
if(parameter$whichlevel==1)names(df)[names(df)=="tostratum"]="tostate"
if(parameter$whichlevel==2) names(df)[names(df)=="tostratum"]=paste("to",oth.name,sep="")
}
}
}
}
return(df)
} |
setMethod(f = "terms", signature(x = "fREG"), definition =
function(x, ...)
{
ans <- stats::terms(slot(x, "fit"), ...)
ans
})
|
pa2conr <-
function(x) {
fix=as.logical(x)
x=replace(x,list=which(x==1),0)
un=setdiff(unique(x),0)
y=matrix(0,0,length(x))
for(i in un) {
z=which(x==i)
for(j in 2:length(z)) {
k=rep(0,length(x))
k[z[1]]=1
k[z[j]]=-1
y=rbind(y,k)
}
}
pa = list(free=fix,conr=y)
return(pa)
} |
if (interactive()) savehistory();
library("aroma.affymetrix");
log <- Verbose(threshold=-10, timestamp=TRUE);
chipType <- "Mapping50K_Xba240";
footer <- list(
createdOn = format(Sys.time(), "%Y%m%d %H:%M:%S", usetz=TRUE),
createdBy = list(
fullname = "Henrik Bengtsson",
email = sprintf("%s@%s", "henrik.bengtsson", "aroma-project.org")
),
srcFiles = list()
);
cdf <- AffymetrixCdfFile$byChipType(chipType);
print(cdf);
ptb <- AffymetrixProbeTabFile$byChipType(chipType);
print(ptb);
acs <- AromaCellSequenceFile$allocateFromCdf(cdf, tags="*,HB20080803");
print(acs);
importFrom(acs, ptb, verbose=log);
inferMmFromPm(acs, cdf=cdf, verbose=log); |
pptxListInput=function(id){
ns=NS(id)
tagList(
checkboxInput("showpreprocessing","show preprocessing"),
conditionalPanel(condition="input.showpreprocessing==true",
textAreaInput(ns("preprocessing"),"preprocessing",value="",width='100%',height = '100%')
),
uiOutput(ns("pptListUI"))
)
} |
context("Testing qsub_lapply")
skip_on_cran()
if (Sys.getenv("PRISM_HOST") != "") {
host <- Sys.getenv("PRISM_HOST")
remote_tmp_path <- Sys.getenv("PRISM_REMOTEPATH")
qsub_config <- create_qsub_config(
remote = host,
local_tmp_path = tempfile(),
remote_tmp_path = remote_tmp_path
)
} else if (file.exists(config_file_location())) {
qsub_config <- get_default_qsub_config()
} else {
qsub_config <- NULL
}
if (!is.null(qsub_config)) {
test_that("qsub_lapply works", {
out <- qsub_lapply(2:4, function(i) i + 1, qsub_config = qsub_config)
expect_equal(out, list(3,4,5))
})
test_that("qsub_lapply works with characters X", {
out <- qsub_lapply(letters, function(char) paste0("__", char, "__"), qsub_config = qsub_config)
expect_equal(out, as.list(paste0("__", letters, "__")))
})
test_that("batch_tasks functionality", {
out <- qsub_lapply(
X = seq_len(100000),
FUN = function(i) i + 1,
qsub_config = override_qsub_config(qsub_config, batch_tasks = 10000)
)
expect_equal(out, as.list(seq_len(100000) + 1))
})
test_that("wait functionality works", {
handle <- qsub_lapply(2:4, function(i) i + 1, qsub_config = override_qsub_config(qsub_config, wait = FALSE))
out <- qsub_retrieve(handle)
expect_equal(out, list(3,4,5))
})
test_that("postfun functionality works", {
handle <- qsub_lapply(2:4, function(i) i + 1, qsub_config = override_qsub_config(qsub_config, wait = FALSE))
out <- qsub_retrieve(handle, post_fun = function(index, out) out * 2)
expect_equal(out, list(6,8,10))
})
test_that("postfun in combination with batch tasks works", {
handle <- qsub_lapply(
X = seq_len(100000),
FUN = function(i) i + 1,
qsub_config = override_qsub_config(qsub_config, wait = FALSE, batch_tasks = 10000)
)
out <- qsub_retrieve(handle, post_fun = function(index, out) out * 2)
expect_equal(out, as.list((seq_len(100000) + 1)*2))
})
test_that("environment objects are passed correctly", {
y <- 10
out <- qsub_lapply(
X = seq_len(4)+5,
FUN = function(i) i + y,
qsub_config = override_qsub_config(qsub_config),
qsub_environment = c("y")
)
expect_equal(out, as.list(seq_len(4) + 15))
})
} |
plot_evpi <- function(EVPIresults,
decision_vars,
input_table = NULL,
new_names = NULL,
unit = NULL,
x_axis_name = "Expected Value of Perfect Information",
y_axis_name = NULL,
bar_color = "cadetblue",
base_size = 11,
...){
assertthat::assert_that("EVPI_outputs" %in% class(EVPIresults),
msg = "EVPIresults is not class 'EVPI_outputs', please provide a valid object. This does not appear to have been generated with the 'multi_EVPI' function.")
if (!is.null(input_table))
assertthat::assert_that(any(class(input_table) %in% c("tbl_df", "tbl", "data.frame")),
msg = "The input_table is not a data.frame or tibble (tbl, tbl_df) class, please provide a valid object.")
full_evpi_data <- NULL
for (i in 1:length(EVPIresults)) {
data <- EVPIresults[[i]]
data["output_variable"] <- names(EVPIresults)[i]
if (is.null(full_evpi_data))
full_evpi_data <- data else
full_evpi_data <- dplyr::bind_rows(full_evpi_data, data)
}
rownames(full_evpi_data) <- NULL
if (!(is.null(input_table)))
combined_table <- dplyr::left_join(full_evpi_data,
input_table, by = c( "variable" = "variable")) else
combined_table <- full_evpi_data
assertthat::assert_that(any(decision_vars %in% combined_table$output_variable),
msg = "The names provided for decision_vars do not match the names in the EVPIresults. Make sure that they are in the EVPIresults and are spelled correctly.")
filtered_table <- dplyr::filter(combined_table, EVPI > 0)
data <- dplyr::filter(filtered_table, output_variable %in% decision_vars)
if(nrow(data) == 0) {
warning("There are no variables with a positive EVPI. You probably do not need a plot for that.",
call. = FALSE)
return(invisible(NULL)) }
if (is.null(new_names))
decision_labels <- decision_vars else
decision_labels <- new_names
data$output_variable <- factor(data$output_variable,
levels = decision_vars, labels = decision_labels)
if (!is.null(input_table))
y_axis <- "label" else
y_axis <- "variable"
if (is.null(unit))
unit <- ""
ggplot2::ggplot(data,
ggplot2::aes(x = EVPI, y = stats::reorder(!!ggplot2::ensym(y_axis), EVPI))) +
ggplot2::geom_col(fill = bar_color) +
ggplot2::scale_x_continuous(expand = ggplot2::expansion(mult = c(0, 0.01)),
labels = scales::dollar_format(prefix = unit)) +
ggplot2::labs(y = y_axis_name, x = x_axis_name) +
ggplot2::facet_wrap( ~ output_variable, scales = "free") +
ggplot2::theme_bw(base_size = base_size) +
ggplot2::theme(strip.background = ggplot2::element_blank()) +
ggplot2::theme(...)
} |
test_that("tangram", {
scene <- system.file("examples/tangram/www/scene.yaml", package = "leaflet.extras2")
m <- leaflet() %>%
addTangram(scene = scene, group = "tangram") %>%
setView(11, 49.4, 14)
expect_is(m, "leaflet")
deps <- findDependencies(m)
expect_equal(deps[[length(deps)]]$name, "lfx-tangram")
expect_equal(m$x$calls[[length(m$x$calls)]]$method,
"addTangram")
})
test_that("tangram-error", {
expect_error(
leaflet() %>%
addTangram()
)
expect_error(
leaflet() %>%
addTangram(scene = NULL)
)
expect_error(
leaflet() %>%
addTangram(scene = "scene")
)
}) |
dbIsReadOnly_DBIConnector <- function(dbObj, ...) {
dbIsReadOnly([email protected], ...)
}
setMethod("dbIsReadOnly", signature("DBIConnector"), dbIsReadOnly_DBIConnector) |
Echidna_simulate_repertoire <- function(initial.size.of.repertoire,
species,
cell.type,
cd4.proportion,
duration.of.evolution,
complete.duration,
vdj.productive,
vdj.model,
vdj.insertion.mean,
vdj.insertion.stdv,
vdj.branch.prob,
clonal.selection,
cell.division.prob,
sequence.selection.prob,
special.v.gene,
class.switch.prob,
class.switch.selection.dependent,
class.switch.independent,
SHM.method,
SHM.nuc.prob,
SHM.isotype.dependent,
SHM.phenotype.dependent,
max.cell.number,
max.clonotype.number,
death.rate,
igraph.on,
transcriptome.on,
transcriptome.switch.independent,
transcriptome.switch.prob,
transcriptome.switch.isotype.dependent,
transcriptome.switch.SHM.dependent,
transcriptome.switch.selection.dependent,
transcriptome.states,
transcriptome.noise,
seq.name
){
load(url("https://polybox.ethz.ch/index.php/s/zETU3ruyfTjj8T8/download"))
class_switch_prob_hum <- class_switch_prob_hum
class_switch_prob_mus <- class_switch_prob_mus
hum_b_h <- hum_b_h
hum_b_l <- hum_b_l
hum_b_trans <- hum_b_trans
hum_t_h <- hum_t_h
hum_t_l <- hum_t_l
hum_t_trans <- hum_t_trans
iso_SHM_prob <- iso_SHM_prob
mus_b_h <- mus_b_h
mus_b_l <- mus_b_l
mus_b_trans <- mus_b_trans
mus_t_h <- mus_t_h
mus_t_l <- mus_t_l
mus_t_trans <- mus_t_trans
pheno_SHM_prob <- pheno_SHM_prob
productive_seq <- productive_seq
special_v <- special_v
trans_switch_prob_b <- trans_switch_prob_b
trans_switch_prob_t <- trans_switch_prob_t
vae_seq <- vae_seq
if(missing(species)) species<-"mus"
if(missing(cell.type)) cell.type<-"B"
if(missing(cd4.proportion)) cd4.proportion<-1
if(missing(vdj.productive)) vdj.productive<-"random"
if(missing(initial.size.of.repertoire)) initial.size.of.repertoire <- 10
if(missing(vdj.model)) vdj.model <- "naive"
if(missing(vdj.insertion.mean)) vdj.insertion.mean<-0.1
if(missing(vdj.insertion.stdv)) vdj.insertion.stdv<-0.05
if(missing(duration.of.evolution)) duration.of.evolution<-20
if(missing(complete.duration)) complete.duration<-T
if(missing(vdj.branch.prob)) vdj.branch.prob<-0.2
if(missing(clonal.selection)) clonal.selection<-F
if(missing(cell.division.prob)) cell.division.prob<-c(0.1,0.1)
if(missing(sequence.selection.prob)) sequence.selection.prob<-0.01
if(missing(special.v.gene)) special.v.gene<-F
if(missing(class.switch.prob)&species=="mus") class.switch.prob<-class_switch_prob_mus
if(missing(class.switch.prob)&species=="hum") class.switch.prob<-class_switch_prob_hum
if(missing(class.switch.selection.dependent)) class.switch.selection.dependent<-F
if(missing(class.switch.independent)) class.switch.independent<-T
if(missing(SHM.nuc.prob)) SHM.nuc.prob<-0.001
if(missing(SHM.method)) SHM.method<-"naive"
if(missing(SHM.isotype.dependent)) SHM.isotype.dependent<-F
if(missing(SHM.phenotype.dependent)) SHM.phenotype.dependent<-F
if(missing(max.cell.number)) max.cell.number<-1500
if(missing(max.clonotype.number)) max.clonotype.number<-20
if(missing(death.rate)) death.rate<-0.001
if(missing(igraph.on)&cell.type=="T") igraph.on<-F
if(missing(igraph.on)&cell.type=="B") igraph.on<-T
if(missing(transcriptome.on)) transcriptome.on<-T
if(missing(transcriptome.switch.independent)) transcriptome.switch.independent<-T
if(missing(transcriptome.switch.prob)&cell.type=="B") transcriptome.switch.prob<-trans_switch_prob_b
if(missing(transcriptome.switch.prob)&cell.type=="T") transcriptome.switch.prob<-trans_switch_prob_t
if(missing(transcriptome.switch.isotype.dependent)) transcriptome.switch.isotype.dependent<-F
if(missing(transcriptome.switch.SHM.dependent)) transcriptome.switch.SHM.dependent<-F
if(missing(transcriptome.switch.selection.dependent)) transcriptome.switch.selection.dependent<-F
if(missing(transcriptome.states)&species=="mus"&cell.type=="B") transcriptome.states<-mus_b_trans
if(missing(transcriptome.states)&species=="hum"&cell.type=="B") transcriptome.states<-hum_b_trans
if(missing(transcriptome.states)&species=="mus"&cell.type=="T") transcriptome.states<-mus_t_trans
if(missing(transcriptome.states)&species=="hum"&cell.type=="T") transcriptome.states<-hum_t_trans
if(missing(transcriptome.noise)) transcriptome.noise<-"rnorm(nrow(transcriptome.states), mean = 1, sd = 0.3)"
if(missing(seq.name)) seq.name<-F
if(is.logical(transcriptome.switch.independent) & is.logical(transcriptome.switch.isotype.dependent) &is.logical( transcriptome.switch.SHM.dependent)==F){
stop("transcriptome.switch.* is a T or F input")
}
if(!(nrow(transcriptome.states)==length(eval(parse(text=transcriptome.noise))))){
stop("transcriptome.noise vector length different from transcriptome gene length")
}
if(length(transcriptome.noise)>1&length(transcriptome.noise)!=ncol(transcriptome.states)){
stop("plase assgin as many transcriptome.noise vector items as the number of transcriptome.states or just assign a common one")
}
if(!missing(transcriptome.states)) cd4.proportion<-1
if(all(!(rownames(transcriptome.switch.prob) == colnames(transcriptome.switch.prob)&rownames(transcriptome.switch.prob) == colnames(transcriptome.states)))){
stop("transcriptome.state colnames and transcriptome.switch.prob colnames and rownames should be the same")
}
if(length(cell.division.prob)==1){
cell.division.prob<-c(cell.division.prob,cell.division.prob)
}
if(max(cell.division.prob)>1){
stop("Any value in cell.division.prob should less than 1")
}
barcode<-c()
raw_contig_id<-c()
chain<-c()
v_gene<-c()
d_gene<-c()
j_gene<-c()
c_gene<-c()
v_seq<-c()
d_seq<-c()
j_seq<-c()
ref_seq<-c()
raw_clonotype_id<-c()
clonotype_num<-initial.size.of.repertoire
seq<-c()
Length<-c()
clonotype_id<-c()
seq_combi<-c()
barcode_uniq<-c()
gen<-c()
isotype<-c()
seq.number<-c()
seq.history<-c()
igraph.index<-list()
barcode.history<-c()
igraph.index.attr<-list()
igraph_list<-list()
igraph.index.jr<-list()
colors<-colors
pie.values.list<-list()
pie.values<-list()
trans_dis<-c()
trans_ls<-list()
trans_state<-c()
trans_state_his<-c()
igraph_list_trans<-list()
pie_values_trans_list<-list()
cd4_prob<-cd4.proportion
cdr3<-c()
cdr3_nt<-c()
selected_seq<-c()
selected_rate<-c()
if(length(transcriptome.noise)>1){
for (i in 1:ncol(transcriptome.states)){
trans_dis[i]<-paste0("transcriptome.states[",i,"]*",transcriptome.noise[i])
}
}
if(length(transcriptome.noise)==1){
for (i in 1:ncol(transcriptome.states)){
trans_dis[i]<-paste0("transcriptome.states[",i,"]*",transcriptome.noise)
}
}
if(cell.type=="B" & species=="mus" | species=="mouse" | species=="blc6"){
if(vdj.productive=="random"){
seq_input_h<-mus_b_h
seq_input_l<-mus_b_l
}
if(vdj.productive=="naive"){
seq_input_h<-productive_seq$mus_b_h
seq_input_l<-productive_seq$mus_b_l
}
if(vdj.productive=="vae"){
seq_input_h<-vae_seq$mus_b_h
seq_input_l<-vae_seq$mus_b_l
}
c_genename_h<-"IGHM"
}
if(cell.type=="B" & species=="hum" | species=="human"){
if(vdj.productive=="random"){
seq_input_h<-hum_b_h
seq_input_l<-hum_b_l
}
if(vdj.productive=="naive"){
seq_input_h<-productive_seq$hum_b_h
seq_input_l<-productive_seq$hum_b_l
}
c_genename_h<-"IGHM"
if(vdj.productive=="vae"){
seq_input_h<-vae_seq$hum_b_h
seq_input_l<-vae_seq$hum_b_l
}
c_genename_h<-"IGHM"
}
if(cell.type=="T" & species=="mus" | species=="mouse" | species=="blc6" ){
if(vdj.productive=="random"){
seq_input_h<-mus_t_h
seq_input_l<-mus_t_l
}
if(vdj.productive=="naive"){
seq_input_h<-productive_seq$mus_t_h
seq_input_l<-productive_seq$mus_t_l
}
if(vdj.productive=="vae"){
seq_input_h<-vae_seq$mus_t_h
seq_input_l<-vae_seq$mus_t_l
}
c_genename_h<-"TRBC"
}
if(cell.type=="T" & species=="hum" | species=="human"){
if(vdj.productive=="random"){
seq_input_h<-hum_t_h
seq_input_l<-hum_t_l
}
if(vdj.productive=="naive"){
seq_input_h<-productive_seq$hum_t_h
seq_input_l<-productive_seq$hum_t_l
}
if(vdj.productive=="vae"){
seq_input_h<-vae_seq$hum_t_h
seq_input_l<-vae_seq$hum_t_l
}
c_genename_h<-"TRBC"
}
barcode<-.GENERATE.BARCODE(initial.size.of.repertoire)
for(i in 1:initial.size.of.repertoire){
if(vdj.productive=="random"){
indV <- sample(x = 1:nrow(seq_input_h[[1]]),size = 1,replace = FALSE)
indD <- sample(x = 1:nrow(seq_input_h[[2]]),size = 1,replace=FALSE)
indJ <- sample(x = 1:nrow(seq_input_h[[3]]),size = 1,replace=FALSE)
indVL <- sample(x = 1:nrow(seq_input_l[[1]]),size = 1,replace = FALSE)
indJL <- sample(x = 1:nrow(seq_input_l[[2]]),size=1,replace=FALSE)
seq[2*i-1]<- as.character(.VDJ_RECOMBIN_FUNCTION(as.character(seq_input_h[[1]][[2]][indV]),as.character(seq_input_h[[2]][[2]][indD]),as.character(seq_input_h[[3]][[2]][indJ]),
method=vdj.model,
chain.type="heavy",
species=species,
vdj.insertion.mean=vdj.insertion.mean,
vdj.insertion.stdv=vdj.insertion.stdv))
seq[2*i] <- as.character(.VDJ_RECOMBIN_FUNCTION(as.character(seq_input_l[[1]][[2]][indVL]),"",as.character(seq_input_l[[2]][[2]][indJL]),
method=vdj.model,
chain.type="light",
species=species,
vdj.insertion.mean=vdj.insertion.mean,
vdj.insertion.stdv=vdj.insertion.stdv))
v_gene[2*i-1]<-as.character(seq_input_h[[1]][[1]][indV])
v_gene[2*i]<-as.character(seq_input_l[[1]][[1]][indVL])
d_gene[2*i-1]<-as.character(seq_input_h[[2]][[1]][indD])
d_gene[2*i]<-"None"
j_gene[2*i-1]<-as.character(seq_input_h[[3]][[1]][indJ])
j_gene[2*i]<-as.character(seq_input_l[[2]][[1]][indJL])
c_gene[2*i-1]<-c_genename_h
c_gene[2*i]<-paste0(stringr::str_sub(v_gene[2*i],1,3),"C")
v_seq[2*i-1]<-as.character(seq_input_h[[1]][[2]][indV])
v_seq[2*i]<-as.character(seq_input_l[[1]][[2]][indVL])
d_seq[2*i-1]<-as.character(seq_input_h[[2]][[2]][indD])
d_seq[2*i]<-"None"
j_seq[2*i-1]<-as.character(seq_input_h[[3]][[2]][indJ])
j_seq[2*i]<-as.character(seq_input_l[[2]][[2]][indJL])
ref_seq[2*i-1]<-seq[2*i-1]
ref_seq[2*i]<-seq[2*i]
}
if(vdj.productive=="naive"|vdj.productive=="vae"){
indH<-sample(x=1:nrow(seq_input_h),size=1)
indL<-sample(x=1:nrow(seq_input_l),size=1)
seq[2*i-1]<- tolower(seq_input_h$targetSequences[indH])
seq[2*i] <- tolower(seq_input_l$targetSequences[indL])
v_seq[2*i-1]<-tolower(seq_input_h$v_seq[indH])
v_seq[2*i]<-tolower(seq_input_l$v_seq[indL])
indH<-which(toupper(seq[2*i-1])==seq_input_h$targetSequences)
indL<-which(toupper(seq[2*i])==seq_input_l$targetSequences)
v_gene[2*i-1]<-seq_input_h$bestVHit[indH]
v_gene[2*i]<-seq_input_l$bestVHit[indL]
d_gene[2*i-1]<-seq_input_h$bestDHit[indH]
d_gene[2*i]<-"None"
j_gene[2*i-1]<-seq_input_h$bestJHit[indH]
j_gene[2*i]<-seq_input_l$bestJHit[indL]
c_gene[2*i-1]<-c_genename_h
c_gene[2*i]<-paste0(stringr::str_sub(v_gene[2*i],1,3),"C")
cdr3[2*i-1]<-seq_input_h$aaSeqCDR3[indH]
cdr3[2*i]<-seq_input_h$aaSeqCDR3[indL]
cdr3_nt[2*i-1]<-seq_input_h$nSeqCDR3[indH]
cdr3_nt[2*i]<-seq_input_h$nSeqCDR3[indL]
ref_seq[2*i-1]<-seq[2*i-1]
ref_seq[2*i]<-seq[2*i]
}
chain[2*i-1]<-stringr::str_sub(v_gene[2*i-1],1,3)
chain[2*i]<-stringr::str_sub(v_gene[2*i],1,3)
Length[2*i-1]<-nchar(seq[2*i-1])
Length[2*i]<-nchar(seq[2*i])
raw_contig_id[2*i-1]<-paste(barcode[2*i-1],"contig_1",sep="_")
raw_contig_id[2*i]<-paste(barcode[2*i],"contig_2",sep="_")
raw_clonotype_id[2*i-1]<-paste0("clonotype",i)
raw_clonotype_id[2*i]<-paste0("clonotype",i)
seq_combi[i]<- paste0(chain[2*i-1],":",seq[2*i-1],";",chain[2*i],":",seq[2*i])
clonotype_id[i]<- paste0("clonotype",i)
barcode_uniq[i]<-barcode[2*i]
gen[i]<-1
seq.number[i]<-i
seq.history[i]<-seq_combi[i]
igraph.index[[i]]<-c(seq.number[i])
isotype[i]<-1
trans_state[i]<-1
if(cell.type=="T"&length(cd4_prob)>0){
trans_state[i]<-sample(x=c(1,4),size = 1,replace = T, prob = c(cd4_prob,1-cd4_prob))
}
trans_state_his[i]<- trans_state[i]
if(length(cell.division.prob)>2&special.v.gene==T){
pei<-which(special_v[,1]==v_gene[2*i-1])
pei2<-which(special_v[,2]==v_gene[2*i])
exe<-F
if(length(pei)>0){
if(length(pei2)>0|any(special_v[pei,2]=="")) exe<-T
}
if(length(pei2)>0){
if(length(pei)>0|any(special_v[pei2,1]=="")) exe<-T
}
if(exe==T){
special_row<-c(pei,pei2)[which(c(pei,pei2)>0)[1]]
seq_selection<-sample(x=c(0,1),size = 1,replace = T, prob = c(special_v[,3][special_row],1-special_v[,3][special_row]))
if(seq_selection==0){
selected_rate<-c(selected_rate,stats::runif(1,cell.division.prob[3],cell.division.prob[length(cell.division.prob)]))
selected_seq<-c(selected_seq,seq.number[i])
}
}
}
}
if(length(cell.division.prob)>2){
seq_selection<-sample(x=c(0,1),size = length(seq.number),replace = T, prob = c(sequence.selection.prob,1-sequence.selection.prob))
selected_rate<-c(selected_rate,stats::runif(sum(seq_selection==0),cell.division.prob[3],cell.division.prob[length(cell.division.prob)]))
selected_seq<-c(selected_seq,seq.number[which(seq_selection==0)])
if(special.v.gene==T){
selected_rate<-selected_rate[!duplicated(selected_seq)]
selected_seq<-selected_seq[!duplicated(selected_seq)]
}
}
barcode.history<-barcode_uniq
if(duration.of.evolution>=1){
for(i in 1:duration.of.evolution){
is_new_VDJ <- sample(x=c(0,1), replace=TRUE,size = 1, prob=c(vdj.branch.prob,1- vdj.branch.prob))
if (is_new_VDJ==0 & length(barcode_uniq)<max.cell.number & clonotype_num< max.clonotype.number){
clonotype_num<-clonotype_num+1
l<-length(barcode)
barcode<-.ADD.BARCODE(barcode)
if(vdj.productive=="random"){
indV <- sample(x = 1:nrow(seq_input_h[[1]]),size = 1,replace = FALSE)
indD <- sample(x = 1:nrow(seq_input_h[[2]]),size = 1,replace=FALSE)
indJ <- sample(x = 1:nrow(seq_input_h[[3]]),size = 1,replace=FALSE)
indVL <- sample(x = 1:nrow(seq_input_l[[1]]),size = 1,replace = FALSE)
indJL <- sample(x = 1:nrow(seq_input_l[[2]]),size=1,replace=FALSE)
seq[l+1]<- as.character(.VDJ_RECOMBIN_FUNCTION(as.character(seq_input_h[[1]][[2]][indV]),as.character(seq_input_h[[2]][[2]][indD]),as.character(seq_input_h[[3]][[2]][indJ]),
method=vdj.model,
chain.type="heavy",
species=species,
vdj.insertion.mean=vdj.insertion.mean,
vdj.insertion.stdv=vdj.insertion.stdv))
seq[l+2] <- as.character(.VDJ_RECOMBIN_FUNCTION(as.character(seq_input_l[[1]][[2]][indVL]),"",as.character(seq_input_l[[2]][[2]][indJL]),
method=vdj.model,
chain.type="light",
species=species,
vdj.insertion.mean=vdj.insertion.mean,
vdj.insertion.stdv=vdj.insertion.stdv))
v_gene[l+1]<-as.character(seq_input_h[[1]][[1]][indV])
v_gene[l+2]<-as.character(seq_input_l[[1]][[1]][indVL])
d_gene[l+1]<-as.character(seq_input_h[[2]][[1]][indD])
d_gene[l+2]<-"None"
j_gene[l+1]<-as.character(seq_input_h[[3]][[1]][indJ])
j_gene[l+2]<-as.character(seq_input_l[[2]][[1]][indJL])
c_gene[l+1]<-c_genename_h
c_gene[l+2]<-paste0(stringr::str_sub(v_gene[l+2],1,3),"C")
v_seq[l+1]<-as.character(seq_input_h[[1]][[2]][indV])
v_seq[l+2]<-as.character(seq_input_l[[1]][[2]][indVL])
d_seq[l+1]<-as.character(seq_input_h[[2]][[2]][indD])
d_seq[l+2]<-"None"
j_seq[l+1]<-as.character(seq_input_h[[3]][[2]][indJ])
j_seq[l+2]<-as.character(seq_input_l[[2]][[2]][indJL])
r<-length(ref_seq)
ref_seq[r+1]<-seq[l+1]
ref_seq[r+2]<-seq[l+2]
}
if(vdj.productive=="naive"|vdj.productive=="vae"){
indH<-sample(x=1:nrow(seq_input_h),size=1)
indL<-sample(x=1:nrow(seq_input_l),size=1)
seq[l+1]<- tolower(seq_input_h$targetSequences[indH])
seq[l+2] <- tolower(seq_input_l$targetSequences[indL])
v_seq[l+1]<-tolower(seq_input_h$v_seq[indH])
v_seq[l+2]<-tolower(seq_input_l$v_seq[indL])
v_gene[l+1]<-seq_input_h$bestVHit[indH]
v_gene[l+2]<-seq_input_l$bestVHit[indL]
d_gene[l+1]<-seq_input_h$bestDHit[indH]
d_gene[l+2]<-"None"
j_gene[l+1]<-seq_input_h$bestJHit[indH]
j_gene[l+2]<-seq_input_l$bestJHit[indL]
c_gene[l+1]<-c_genename_h
c_gene[l+2]<-paste0(stringr::str_sub(v_gene[l+2],1,3),"C")
cdr3[l+1]<-seq_input_h$aaSeqCDR3[indH]
cdr3[l+2]<-seq_input_l$aaSeqCDR3[indL]
cdr3_nt[l+1]<-seq_input_h$nSeqCDR3[indH]
cdr3_nt[l+2]<-seq_input_l$nSeqCDR3[indL]
r<-length(ref_seq)
ref_seq[r+1]<-seq[l+1]
ref_seq[r+2]<-seq[l+2]
}
chain[l+1]<-stringr::str_sub(v_gene[l+1],1,3)
chain[l+2]<-stringr::str_sub(v_gene[l+2],1,3)
Length[l+1]<-nchar(seq[l+1])
Length[l+2]<-nchar(seq[l+2])
raw_contig_id[l+1]<-paste(barcode[l+1],"contig_1",sep="_")
raw_contig_id[l+2]<-paste(barcode[l+2],"contig_2",sep="_")
raw_clonotype_id[l+1]<-paste("clonotype",clonotype_num,sep="")
raw_clonotype_id[l+2]<-paste("clonotype",clonotype_num,sep="")
seq_combi[0.5*l+1]<- paste(chain[l+1],":",seq[l+1],";",chain[l+2],":",seq[l+2],sep="")
clonotype_id[0.5*l+1]<- raw_clonotype_id[l+1]
barcode_uniq[0.5*l+1]<- barcode[l+2]
gen[0.5*l+1]<-1
trans_state[0.5*l+1]<-1
hisl<-length(seq.history)
barcode.history[hisl+1]<-barcode_uniq[0.5*l+1]
seq.number[hisl+1]<-max(seq.number)+1
seq.history[hisl+1]<-seq_combi[0.5*l+1]
igraph.index[[clonotype_num]]<-c(seq.number[hisl+1])
isotype[hisl+1]<-1
if(cell.type=="T"&length(cd4_prob)>0){
trans_state[0.5*l+1]<-sample(x=c(1,4),size = 1,replace = T, prob = c(cd4_prob,1-cd4_prob))
}
trans_state_his[hisl+1]<-trans_state[0.5*l+1]
if(length(cell.division.prob)>2){
seq_selection<-sample(x=c(0,1),size = 1, prob = c(sequence.selection.prob,1-sequence.selection.prob))
if(special.v.gene==T){
pei<-which(special_v[,1]==v_gene[l+1])
pei2<-which(special_v[,2]==v_gene[l+2])
exe<-F
if(length(pei)>0){
if(length(pei2)>0|any(special_v[pei,2]=="")) exe<-T
}
if(length(pei2)>0){
if(length(pei)>0|any(special_v[pei2,1]=="")) exe<-T
}
if(exe==T){
special_row<-c(pei,pei2)[which(c(pei,pei2)>0)[1]]
seq_selection<-sample(x=c(0,1),size = 1,replace = T, prob = c(special_v[,3][special_row],1-special_v[,3][special_row]))
if(seq_selection==0){
selected_rate<-c(selected_rate,stats::runif(1,cell.division.prob[3],cell.division.prob[length(cell.division.prob)]))
selected_seq<-c(selected_seq,seq.number[hisl+1])
}
}
}
if(special.v.gene==F){
if(seq_selection==0){
selected_rate<-c(selected_rate,stats::runif(1,cell.division.prob[3],cell.division.prob[length(cell.division.prob)]))
selected_seq<-c(selected_seq,seq.number[hisl+1])
}
}
}
}
if(complete.duration==F&!(length(barcode_uniq)<max.cell.number & clonotype_num< max.clonotype.number)) break
if(length(barcode_uniq)<max.cell.number & clonotype_num< max.clonotype.number){
for(j in 1:length(barcode_uniq)){
if(clonal.selection==F){
is_cell_division<- .CELL.DIVISION.LINEAR.INVERSE(clonotype_id,j,cell.division.prob)
}
if(clonal.selection==T){
is_cell_division<- .CELL.DIVISION.LINEAR(clonotype_id,j,cell.division.prob)
}
if(length(cell.division.prob)>2){
seq_number_j<-seq.number[which(barcode.history==barcode_uniq[j])]
if(length(which(selected_seq==seq_number_j))>0){
rate_j<-selected_rate[which(selected_seq==seq_number_j)]
is_cell_division<-sample(x=c(0,1),size=1,prob =c(rate_j,1-rate_j))
}
}
if (is_cell_division==0&length(barcode_uniq)<max.cell.number & clonotype_num< max.clonotype.number ){
l<-length(barcode)
barcode<-.ADD.BARCODE(barcode)
seq[l+1]<-seq[2*j-1]
seq[l+2]<-seq[2*j]
Length[l+1]<-nchar(seq[2*j-1])
Length[l+2]<-nchar(seq[2*j])
raw_contig_id[l+1]<-paste(barcode[l+1],"contig_1",sep="_")
raw_contig_id[l+2]<-paste(barcode[l+2],"contig_2",sep="_")
raw_clonotype_id[l+1]<-clonotype_id[j]
raw_clonotype_id[l+2]<-clonotype_id[j]
if(vdj.productive=="random"){
d_seq[l+1]<-d_seq[2*j-1]
d_seq[l+2]<-"None"
j_seq[l+1]<-j_seq[2*j-1]
j_seq[l+2]<-j_seq[2*j]
}
v_seq[l+1]<-v_seq[2*j-1]
v_seq[l+2]<-v_seq[2*j]
v_gene[l+1]<-v_gene[2*j-1]
v_gene[l+2]<-v_gene[2*j]
d_gene[l+1]<-d_gene[2*j-1]
d_gene[l+2]<-"None"
j_gene[l+1]<-j_gene[2*j-1]
j_gene[l+2]<-j_gene[2*j]
c_gene[l+1]<-c_gene[2*j-1]
c_gene[l+2]<-c_gene[2*j]
if(vdj.productive=="naive"|vdj.productive=="vae"){
cdr3[l+1]<-cdr3[2*j-1]
cdr3[l+2]<-cdr3[2*j]
cdr3_nt[l+1]<-cdr3_nt[2*j-1]
cdr3_nt[l+2]<-cdr3_nt[2*j]
}
chain[l+1]<-stringr::str_sub(v_gene[l+1],1,3)
chain[l+2]<-stringr::str_sub(v_gene[l+2],1,3)
trans_state[0.5*l+1]<-trans_state[j]
seq_combi[0.5*l+1]<- paste(chain[l+1],":", seq[l+1],";",chain[l+2],":",seq[l+2],sep ="")
clonotype_id[0.5*l+1]<- raw_clonotype_id[l+1]
barcode_uniq[0.5*l+1]<-barcode[l+1]
gen[0.5*l+1]<-gen[j]+1
n<- which(barcode.history==barcode_uniq[j])
hisl<-length(seq.history)
isotype[hisl+1]<-isotype[n]
barcode.history[hisl+1]<-barcode[l+1]
seq.number[hisl+1]<-seq.number[n]
seq.history[hisl+1]<-seq.history[n]
trans_state_his[hisl+1]<-trans_state_his[n]
}
}
}
if(complete.duration==F&!(length(barcode_uniq)<max.cell.number & clonotype_num< max.clonotype.number)) break
trans_switch<-rep(F,length(barcode_uniq))
if(transcriptome.switch.independent== T){
for(k in 1: length(barcode_uniq)) {
switched<-.TRANS.SWITCH(trans_state[k],transcriptome.switch.prob)
if(switched[[2]]){
trans_state[k]<-switched[[1]]
m<-which(barcode.history==barcode_uniq[k])
trans_state_his[m]<-switched[[1]]
trans_switch[k]<-T
}
}
}
if(transcriptome.switch.selection.dependent==T){
for(k in 1: length(barcode_uniq)) {
m<-which(barcode.history==barcode_uniq[k])
if(length(which(selected_seq==seq.number[m]))>0&trans_state[k]==1){
switched<-.TRANS.SWITCH.DEPENDANT(trans_state[k],transcriptome.switch.prob)
trans_state[k]<-switched[[1]]
m<-which(barcode.history==barcode_uniq[k])
trans_state_his[m]<-switched[[1]]
trans_switch[k]<-T
}
}
}
if (cell.type =="B"){
for(k in 1: length(barcode_uniq)) {
n<- which(barcode.history==barcode_uniq[k])
selected<-(length(which(selected_seq==seq.number[n]))>0)
if(class.switch.independent==T){
switched<-.TRANS.SWITCH(isotype[n],class.switch.prob)
if(switched[[2]]){
isotype[n]<-switched[[1]]
c_gene[2*k-1]<-colnames(class.switch.prob)[switched[[1]]]
}
}
if(class.switch.selection.dependent==T&isotype[n]==1&selected){
switched<-.TRANS.SWITCH.DEPENDANT(isotype[n],class.switch.prob)
isotype[n]<-switched[[1]]
c_gene[2*k-1]<-colnames(class.switch.prob)[switched[[1]]]
}
if(switched[[2]]&trans_switch[k] == F & transcriptome.switch.isotype.dependent== T&sum(transcriptome.switch.prob[trans_state[k],])>0){
switched<-.TRANS.SWITCH.DEPENDANT(trans_state[k],transcriptome.switch.prob)
trans_state[k]<-switched[[1]]
m<-which(barcode.history==barcode_uniq[k])
trans_state_his[m]<-switched[[1]]
trans_switch[k]<-T
}
if((SHM.isotype.dependent==F|length(which(iso_SHM_prob[,1]==c_gene[2*k-1]))==0)&
(SHM.phenotype.dependent==F|length(which(pheno_SHM_prob[,1]==colnames(transcriptome.switch.prob)[trans_state[k]]))==0)
){
mut_h<-.SHM_FUNCTION_SEQUENCE4(seq[2*k-1],SHM.method,v_seq[2*k-1],SHM.nuc.prob)
mut_l<-.SHM_FUNCTION_SEQUENCE4(seq[2*k],SHM.method,v_seq[2*k],SHM.nuc.prob)
Ctrl<-mut_h[[2]]+mut_l[[2]]
}
if(!(
(SHM.isotype.dependent==F|length(which(iso_SHM_prob[,1]==c_gene[2*k-1]))==0)&
(SHM.phenotype.dependent==F|length(which(pheno_SHM_prob[,1]==colnames(transcriptome.switch.prob)[trans_state[k]]))==0)
)){
new.SHM.nuc.prob<-max(iso_SHM_prob[which(iso_SHM_prob[,1]==c_gene[2*k-1]),2],pheno_SHM_prob[which(pheno_SHM_prob[,1]==colnames(transcriptome.switch.prob)[trans_state[k]]),2])
mut_h<-.SHM_FUNCTION_SEQUENCE4(seq[2*k-1],SHM.method,v_seq[2*k-1],new.SHM.nuc.prob)
mut_l<-.SHM_FUNCTION_SEQUENCE4(seq[2*k],SHM.method,v_seq[2*k],new.SHM.nuc.prob)
Ctrl<-mut_h[[2]]+mut_l[[2]]
}
if(Ctrl>0){
seq[2*k-1]<- mut_h[[1]]
seq[2*k]<-mut_l[[1]]
Length[2*k-1]<-nchar(seq[2*k-1])
Length[2*k]<-nchar(seq[2*k])
seq_combi[k]<- paste(chain[2*k-1],":",seq[2*k-1],";",chain[2*k],":",seq[2*k],sep ="")
hisl<-length(seq.history)
m<-which(barcode.history == barcode_uniq[k])
barcode.history[m]<-NA
barcode.history[hisl+1]<-barcode_uniq[k]
seq.number[hisl+1]<-max(seq.number)+1
seq.history[hisl+1]<-seq_combi[k]
isotype[hisl+1]<-isotype[m]
trans_state_his[hisl+1] <- trans_state_his[m]
clonotype.number<-as.numeric(stringr::str_sub(clonotype_id[k],10,-1))
igraph.index[[clonotype.number]]<-c(igraph.index[[clonotype.number]],seq.number[m],seq.number[hisl+1])
if(length(cell.division.prob)>2){
seq_selection<-sample(x=c(0,1),size = 1,prob = c(sequence.selection.prob,1-sequence.selection.prob))
if(seq_selection==0){
selected_rate<-c(selected_rate,stats::runif(1,cell.division.prob[3],cell.division.prob[length(cell.division.prob)]))
selected_seq<-c(selected_seq,seq.number[hisl+1])
}
}
if(trans_switch[k] == F & transcriptome.switch.isotype.dependent== T&sum(transcriptome.switch.prob[trans_state[k],])>0){
switched<-.TRANS.SWITCH.DEPENDANT(trans_state[k],transcriptome.switch.prob)
trans_state[k]<-switched[[1]]
m<-which(barcode.history==barcode_uniq[k])
trans_state_his[m]<-switched[[1]]
trans_switch[k]<-T
}
}
}
}
if(length(barcode_uniq<max.cell.number)&clonotype_num<max.clonotype.number){
for(k in 1:length(barcode_uniq)){
is_death <- sample(x=c(0,1), replace=TRUE,size = 1, prob=c(death.rate, 1- death.rate))
if (is_death ==0){
del<-c(-(2*k-1),-2*k)
del.his<-which(barcode.history==barcode_uniq[k])
barcode<-barcode[del]
seq<-seq[del]
Length<-Length[del]
raw_contig_id<-raw_contig_id[del]
raw_clonotype_id<-raw_clonotype_id[del]
v_gene<-v_gene[del]
d_gene<-d_gene[del]
j_gene<-j_gene[del]
c_gene<-c_gene[del]
chain<-chain[del]
v_seq<- v_seq[del]
d_seq<-d_seq[del]
j_seq<-j_seq[del]
cdr3<-cdr3[del]
cdr3_nt<-cdr3_nt[del]
barcode_uniq<-barcode_uniq[-k]
seq_combi<-seq_combi[-k]
clonotype_id<-clonotype_id[-k]
gen<-gen[-k]
trans_state<-trans_state[-k]
barcode.history[del.his]<-NA
}
}
}
}
}
is_cell<-rep("Ture",length(barcode))
high_confidence<-is_cell
full_length<-is_cell
productive<-is_cell
reads<-rep(1000,length(barcode))
umis<-rep(10,length(barcode))
if(vdj.productive=="random"){
cdr3<-rep("KKKK",length(barcode))
cdr3_nt<-rep("AAAAAAAAAAAA",length(barcode))
all_contig_annotations<-data.frame(barcode,is_cell,raw_contig_id,high_confidence,Length,chain,v_gene,d_gene,j_gene,c_gene,full_length,productive,cdr3,cdr3_nt,reads,umis,raw_clonotype_id)
all_contig_annotations$raw_consensus_id<-paste(raw_clonotype_id,"consensus",substr(raw_contig_id,nchar(raw_contig_id),nchar(raw_contig_id)),sep = "_")
}
clonotypes<-as.data.frame(table(clonotype_id))
colnames(clonotypes)<-c("clonotype_id","frequency")
clonotypes$proportion<-clonotypes$frequency/sum(clonotypes$frequency)
if(vdj.productive=="naive"|vdj.productive=="vae"){
cdr3_combi<-.GENERATE.COMBI(cdr3,chain)
cdr3_nt_combi<-.GENERATE.COMBI(cdr3_nt,chain)
cdr3_df<-data.frame(clonotype_id,cdr3_combi,cdr3_nt_combi)
clonotypes<-merge(clonotypes,cdr3_df,by="clonotype_id",all.x=T)
clonotypes<-clonotypes[!(duplicated(clonotypes$clonotype_id)),]
names(clonotypes)[4:5]<-c("cdr3","cdr3_nt")
all_contig_annotations<-data.frame(barcode,is_cell,raw_contig_id,high_confidence,Length,chain,v_gene,d_gene,j_gene,c_gene,full_length,productive,cdr3,cdr3_nt,reads,umis,raw_clonotype_id)
all_contig_annotations$raw_consensus_id<-paste(raw_clonotype_id,"consensus",substr(raw_contig_id,nchar(raw_contig_id),nchar(raw_contig_id)),sep = "_")
}
raw_consensus<-.WRITE.CONSENSUS(clonotype_id,sequence.combined = seq_combi,barcode.unique = barcode_uniq,clonotypes.dataframe = clonotypes)
consensus<-raw_consensus[,-1]
all_contig<-data.frame(raw_contig_id,seq)
if(vdj.productive=="random"){
reference_id<-paste0(raw_clonotype_id,"_concat_ref_",stringr::str_sub(raw_contig_id,-1,-1))
reference_seq<-c()
d_seq1<-gsub(pattern = "None",replacement = "",x = d_seq)
reference_seq<-paste0(v_seq,d_seq1,j_seq)
reference<-data.frame(reference_id,reference_seq)
reference<-reference[!(duplicated(reference$reference_id)),]
reference_id_real<-c()
for(cn in 1:clonotype_num){
reference_id_real[2*cn-1]<-paste0("clonotype",cn,"_concat_ref_",1)
reference_id_real[2*cn]<-paste0("clonotype",cn,"_concat_ref_",2)
}
reference_real<-data.frame(reference_id_real,ref_seq)
colnames(reference_real)<-c("reference_id","reference_seq")
}
if(vdj.productive=="naive"|vdj.productive=="vae"){
reference_id<-c()
for(cn in 1:clonotype_num){
reference_id[2*cn-1]<-paste0("clonotype",cn,"_concat_ref_",1)
reference_id[2*cn]<-paste0("clonotype",cn,"_concat_ref_",2)
}
reference_real<-data.frame(reference_id,ref_seq)
colnames(reference_real)<-c("reference_id","reference_seq")
reference<-reference_real
}
history<-data.frame(seq.number,barcode.history,seq.history,isotype,trans_state_his)
if(igraph.on==T){
size.of.vertex<-as.data.frame(stats::aggregate(barcode.history~seq.number,history,length,na.action = stats::na.pass))
size.of.vertex1<-as.data.frame(stats::aggregate(barcode.history~seq.number,history,length))
size.of.vertex<-merge(size.of.vertex1,size.of.vertex,all=T, by="seq.number")[,-3]
size.of.vertex[!(size.of.vertex$seq.number %in% size.of.vertex1$seq.number),2]<-0
colnames(size.of.vertex)<-c("seq.number","size")
rm(size.of.vertex1)
history$isotype[is.na(history$barcode.history)]<-9999
history$trans_state_his[is.na(history$barcode.history)]<-9999
isotype.distribution<-reshape2::dcast(history, seq.number~isotype, value.var ="isotype",length)[,-1]
if(length(which(colnames(isotype.distribution)==9999))!=0){
isotype.distribution<-isotype.distribution[,1:ncol(isotype.distribution)-1]
}
isotype.name<-colnames(isotype.distribution)
isotype.distribution <-as.list(as.data.frame(t(isotype.distribution)))
trans_state_distribution<-reshape2::dcast(history, seq.number~trans_state_his, value.var ="trans_state_his",length)[,-1]
if(length(which(colnames(trans_state_distribution)==9999))!=0){
trans_state_distribution<-trans_state_distribution[,1:ncol(trans_state_distribution)-1]
}
trans_state_name<-colnames(trans_state_distribution)
trans_state_distribution <-as.list(as.data.frame(t(trans_state_distribution)))
for (i in 1:length(igraph.index)){
if (length(igraph.index[[i]])>1){
igraph.index[[i]]<-c(0,igraph.index[[i]])
igraph.index.attr[[i]]<-data.frame(igraph.index[[i]])
colnames(igraph.index.attr[[i]])<-"seq.number"
igraph.index.jr[[i]]<-data.frame(igraph.index[[i]])
colnames(igraph.index.jr[[i]])<-"seq.number"
igraph.index.attr[[i]]<-subset(igraph.index.attr[[i]],!duplicated(igraph.index.attr[[i]]$seq.number))
igraph.index.attr[[i]]<-merge(size.of.vertex,igraph.index.attr[[i]],by="seq.number",all.y=T)
igraph.index.attr[[i]]$size[1]<-0
igraph.index.attr[[i]]$adj_size<-(igraph.index.attr[[i]]$size*60/(range(igraph.index.attr[[i]]$size)[2]-range(igraph.index.attr[[i]]$size)[1]))^0.5+15
igraph.index.attr[[i]]$adj_size<-replace(igraph.index.attr[[i]]$adj_size, igraph.index.attr[[i]]$size==0, 10)
igraph.index.jr[[i]]$No<-match(x=igraph.index.jr[[i]]$seq.number,table=igraph.index.attr[[i]]$seq.number)
size0<-which(igraph.index.attr[[i]]$size==0)
No<- igraph.index.jr[[i]]$No
pie.values<-list()
for(j in 2:length(igraph.index.attr[[i]]$seq.number)){
pie.values[[j]]<-isotype.distribution[[igraph.index.attr[[i]]$seq.number[j]]]
}
pie.values.list[[i]]<-pie.values
pie_values_trans<-list()
for(j in 2:length(igraph.index.attr[[i]]$seq.number)){
pie_values_trans[[j]]<-trans_state_distribution[[igraph.index.attr[[i]]$seq.number[j]]]
}
pie_values_trans_list[[i]]<-pie_values_trans
g<-igraph::graph(No,directed = T)
g$layout<-igraph::layout_as_tree
igraph::V(g)$label<-igraph.index.attr[[i]]$size
igraph::V(g)$label[1]<-"Germline"
igraph::V(g)$size<-igraph.index.attr[[i]]$adj_size
igraph::V(g)$label.dist<-3
igraph::V(g)$shape<-"pie"
if(length(size0)>1){
for(k in 1:length(size0)){
igraph::V(g)$shape[[size0[k]]]<-"circle"
}
}
if(length(size0)==1 ){
igraph::V(g)$shape[[size0]]<-"circle"
}
igraph::V(g)$pie.color<-list(colors)
igraph::V(g)$color<-"gray"
igraph::V(g)$color[1]<-"black"
p<-g
igraph::V(g)$pie<-pie.values.list[[i]]
igraph::V(p)$pie<-pie_values_trans_list[[i]]
igraph_list[[i]]<-g
igraph_list_trans[[i]]<-p
}
if (length(igraph.index[[i]])==1){
igraph.index.attr[[i]]<-size.of.vertex$size[which(size.of.vertex$seq.number==igraph.index[[i]])]
igraph.index.jr[[i]]<-data.frame(igraph.index[[i]])
pie.values.list[[i]]<-list(isotype.distribution[igraph.index[[i]]][[1]])
pie_values_trans_list[[i]]<-list(trans_state_distribution[igraph.index[[i]]][[1]])
g<-igraph::graph(c(1,1), edges = NULL)
g$layout<-igraph::layout_as_tree
igraph::V(g)$size<-igraph.index.attr[[i]]/30+20
igraph::V(g)$label<-igraph.index.attr[[i]]
igraph::V(g)$label.dist<-5
igraph::V(g)$shape<-"pie"
igraph::V(g)$pie.color<-list(colors)
p<-g
igraph::V(g)$pie<-pie.values.list[[i]]
igraph::V(p)$pie<-pie_values_trans_list[[i]]
igraph_list[[i]]<-g
igraph_list_trans[[i]]<-p
}
}
}
if(igraph.on==F){
igraph_list<-"none"
igraph_list_trans<-"none"
}
if(transcriptome.on==T){
ngene<-nrow(transcriptome.states)
ncell<-length(barcode_uniq)
transcriptome<-as.data.frame(matrix(0,ngene,ncell,dimnames = list(rownames(transcriptome.states),barcode_uniq)))
for(i in 1:length(barcode_uniq)){
transcriptome[,i]<-eval(parse(text=trans_dis[trans_state[i]]))
}
transcriptome<-as.matrix(transcriptome)
transcriptome[transcriptome<0]<-0
}
if(transcriptome.on==F){
transcriptome<-"none"
}
Seq_Name<-"none"
if(seq.name!=F){
if(seq.name>clonotype_num){
warning("seq.name > total number of clones")
seq.name<-clonotype_num
}
c_gene_h<-c_gene[which(nrow(c_gene)%%2!=0)]
Name<-paste0(clonotype_id,"_",c_gene_h,"_",barcode_uniq,"_cluster",trans_state)
seq_germ<-c()
for(i in 1:clonotype_num){
seq_germ[i]<-paste(reference$reference_seq[2*i-1],reference$reference_seq[2*i],sep = "_")
}
clonotype_id_germ<-paste0("clonotype",1:clonotype_num)
Name_germ<-rep("germline_clusterUnknown",clonotype_num)
Seq<-c(seq_germ,seq_combi)
Seq<-gsub(pattern = ";IGK:",replacement = "_",x = Seq)
Seq<-gsub(pattern = ";IGL:",replacement = "_",x = Seq)
Seq<-gsub(pattern = ";IGH:",replacement = "",x = Seq)
Name<-c(Name_germ,Name)
clonotype_id_temp<-c(clonotype_id_germ,clonotype_id)
Seq_Name_temp<-data.frame(Seq,Name,clonotype_id_temp)
frequency<-NULL
uniq_clone<-dplyr::arrange(clonotypes,dplyr::desc(frequency))[1:seq.name,1]
Seq_Name<-list()
for(s in 1:length(uniq_clone)){
Seq_Name[[s]]<- Seq_Name_temp[which(Seq_Name_temp$clonotype_id_temp==uniq_clone[s]),-3]
}
}
version<-R.Version()
parameters<-list(initial.size.of.repertoire,
species,
cell.type,
cd4.proportion,
duration.of.evolution,
complete.duration,
vdj.productive,
vdj.model,
vdj.insertion.mean,
vdj.insertion.stdv,
vdj.branch.prob,
clonal.selection,
cell.division.prob,
sequence.selection.prob,
special.v.gene,
class.switch.prob,
class.switch.selection.dependent,
class.switch.independent,
SHM.method,
SHM.nuc.prob,
SHM.isotype.dependent,
SHM.phenotype.dependent,
max.cell.number,
max.clonotype.number,
death.rate,
igraph.on,
transcriptome.on,
transcriptome.switch.independent,
transcriptome.switch.prob,
transcriptome.switch.isotype.dependent,
transcriptome.switch.SHM.dependent,
transcriptome.switch.selection.dependent,
transcriptome.states,
transcriptome.noise,
seq.name)
names(parameters)<-c("initial.size.of.repertoire",
"species",
"cell.type",
"cd4.proportion",
"duration.of.evolution",
"complete.duration",
"vdj.productive",
"vdj.model",
"vdj.insertion.mean",
"vdj.insertion.stdv",
"vdj.branch.prob",
"clonal.selection",
"cell.division.prob",
"sequence.selection.prob",
"special.v.gene",
"class.switch.prob",
"class.switch.selection.dependent",
"class.switch.independent",
"SHM.method",
"SHM.nuc.prob",
"SHM.isotype.dependent",
"SHM.phenotype.dependent",
"max.cell.number",
"max.clonotype.number",
"death.rate",
"igraph.on",
"transcriptome.on",
"transcriptome.switch.independent",
"transcriptome.switch.prob",
"transcriptome.switch.isotype.dependent",
"transcriptome.switch.SHM.dependent",
"transcriptome.switch.selection.dependent",
"transcriptome.states",
"transcriptome.noise",
"seq.name")
output_list<-list(all_contig_annotations,clonotypes,all_contig,consensus,reference,reference_real,transcriptome,igraph_list,igraph_list_trans,Seq_Name,igraph.index.attr,history,igraph.index,selected_seq,version,parameters)
names(output_list)<-c("all_contig_annotations","clonotypes","all_contig","consensus","reference","reference_real","transcriptome","igraph_list_iso","igraph_list_trans","Seq_Name","igraph.index.attr","history","igraph.index","selected.seq","version","parameters")
return(output_list)
} |
plotCellMapping = function (feat.object, control) {
assertClass(feat.object, "FeatureObject")
if (missing(control))
control = list()
assertList(control)
blocks = feat.object$blocks
assertIntegerish(blocks, lower = 1, len = 2)
approach = control_parameter(control, "gcm.approach", "min")
assertChoice(x = approach, choices = c("min", "mean", "near"))
cf.power = control_parameter(control, "gcm.cf_power", 256L)
orig.margins = par("mar")
on.exit(par(mar = orig.margins))
par(mar = control_parameter(control, "gcm.margin", c(5, 5, 4, 4)))
yvals = getObjectivesByApproach(feat.object, approach)
sparse.matrix = calculateSparseMatrix(feat.object, yvals)
canonical.list = computeCanonical(sparse.matrix)
fundamental.list = computeFundamental(
canonical.list = canonical.list, cf.power = cf.power)
fundamental.mat = fundamental.list$fundamental.mat
permutation.index = fundamental.list$permutation.index
attractors = seq_len(ncol(fundamental.mat))
colors = matrix(NA, nrow = blocks[1L], ncol = blocks[2L])
color.index = apply(fundamental.mat != 0, 1, function(x) {
if (sum(x) > 1) {
return (1L)
} else {
return (2L + which(x))
}
})
colors[permutation.index] = color.index
colors[permutation.index[attractors]] = 2L
arrow.mat = NULL
for (attractor.id in attractors) {
attractor.cell = celltoz(permutation.index[attractor.id], blocks)
attracted.cells = which(fundamental.mat[, attractor.id] != 0)
attracted.cells = attracted.cells[attracted.cells != attractor.id]
if (length(attracted.cells) == 0)
next
arrows.to.attractor = vapply(attracted.cells, FUN = function(attracted.id) {
attracted.cell = celltoz(permutation.index[attracted.id], blocks)
direction = normalizeVector(attractor.cell - attracted.cell)
weighted.direction = direction * fundamental.mat[attracted.id, attractor.id]
return(c(attracted.cell, weighted.direction))
}, double(4L))
if (is.null(arrow.mat)) {
arrow.mat = arrows.to.attractor
} else {
arrow.mat = cbind(arrow.mat, arrows.to.attractor)
}
}
rownames(arrow.mat) = c("from.x", "from.y", "component.x", "component.y")
col.attr = control_parameter(control, "gcm.color_attractor", "
col.uncert = control_parameter(control, "gcm.color_uncertain", "
col.basin = control_parameter(control, "gcm.color_basin", function(n) {
hues = seq(15, 375, length = n + 1L)
hcl(h = hues, l = 65, c = 100)[seq_len(n)]
})
palette = c(col.uncert, col.attr, col.basin(length(attractors)))
image(x = seq_len(blocks[1]), y = seq_len(blocks[2]), z = colors,
useRaster = TRUE, col = palette, xlab = "", ylab = "", las = 1,
breaks = seq(0.5, length(attractors) + 2.5, 1),
xlim = c(0.5, blocks[1] + 0.5), ylim = c(0.5, blocks[2] + 0.5),
xaxt = "n", yaxt = "n"
)
grid.col = control_parameter(control, "gcm.color_grid", "
abline(v = seq(0.5, blocks[1] + 0.5), col = grid.col,
xlim = c(0.5, blocks[1] + 0.5), ylim = c(0.5, blocks[2] + 0.5)
)
abline(h = seq(0.5, blocks[2] + 0.5), col = grid.col,
xlim = c(0.5, blocks[1] + 0.5), ylim = c(0.5, blocks[1] + 0.5)
)
if (control_parameter(control, "gcm.plot_arrows", TRUE)) {
arrow.type = control_parameter(control, "gcm.arrowhead.type", "triangle")
assertChoice(arrow.type,
choices = c("simple", "curved", "triangle", "circle", "ellipse", "T"))
arrow.length_x = control_parameter(control, "gcm.arrow.length_x", 0.9)
arrow.length_y = control_parameter(control, "gcm.arrow.length_y", 0.9)
arrowhead.length = control_parameter(control, "gcm.arrowhead.length", 0.1)
arrowhead.width = control_parameter(control, "gcm.arrowhead.width", 0.1)
assertNumber(arrow.length_x, lower = 0)
assertNumber(arrow.length_y, lower = 0)
assertNumber(arrowhead.length, lower = 0)
assertNumber(arrowhead.width, lower = 0)
apply(arrow.mat, 2, FUN = function(arrow) {
arrow.length = sqrt(sum(arrow[3:4]^2))
shape::Arrows(x0 = arrow[1], y0 = arrow[2],
x1 = arrow[1] + arrow[3] * arrow.length_x,
y1 = arrow[2] + arrow[4] * arrow.length_y,
arr.length = arrow.length * arrowhead.length,
arr.width = arrow.length * arrowhead.width,
arr.type = arrow.type)
})
}
if (control_parameter(control, "gcm.plot_coord_labels", TRUE)) {
xlab_coord = control_parameter(control, "gcm.label.x_coord",
"Cell Coordinate (1st Dimension)")
ylab_coord = control_parameter(control, "gcm.label.y_coord",
"Cell Coordinate (2nd Dimension)")
axis(1, at = seq_len(blocks[1]), labels = rep("", blocks[1]))
text(x = seq_len(blocks[1]), y = 0.25, pos = 1, xpd = TRUE,
sprintf("%.1e", unique(feat.object$cell.centers[[1]])), srt = 45)
mtext(side = 1, xlab_coord, line = 4, cex = par("cex"))
axis(2, at = seq_len(blocks[2]), labels = rep("", blocks[2]))
text(y = seq_len(blocks[2]), x = 0.45, pos = 2, xpd = TRUE,
sprintf("%.1e", unique(feat.object$cell.centers[[2]])), srt = 45)
mtext(side = 2, ylab_coord, line = 4, cex = par("cex"))
}
if (control_parameter(control, "gcm.plot_id_labels", TRUE)) {
xlab_id = control_parameter(control, "gcm.label.x_id",
"Cell ID (1st Dimension)")
ylab_id = control_parameter(control, "gcm.label.y_id",
"Cell ID (2nd Dimension)")
mtext(side = 3, xlab_id, line = 2.5, cex = par("cex"))
axis(side = 3, at = seq_len(blocks[1]))
mtext(side = 4, ylab_id, line = 2.5, cex = par("cex"))
axis(side = 4, at = seq_len(blocks[2]), las = 1)
}
} |
stienen <- function(X, ..., bg="grey", border=list(bg=NULL)) {
Xname <- short.deparse(substitute(X))
stopifnot(is.ppp(X))
if(npoints(X) <= 1) {
W <- Window(X)
dont.complain.about(W)
do.call(plot,
resolve.defaults(list(x=quote(W)),
list(...),
list(main=Xname)))
return(invisible(NULL))
}
d <- nndist(X)
b <- bdist.points(X)
Y <- X %mark% d
observed <- (b >= d)
Yobserved <- Y[observed]
gp <- union(graphicsPars("symbols"), "lwd")
dont.complain.about(Yobserved)
do.call.plotfun(plot.ppp,
resolve.defaults(list(x=quote(Yobserved),
markscale=1),
list(...),
list(bg=bg),
list(main=Xname)),
extrargs=gp)
if(!identical(border, FALSE)) {
if(!is.list(border)) border <- list()
Ycensored <- Y[!observed]
dont.complain.about(Ycensored)
do.call.plotfun(plot.ppp,
resolve.defaults(list(x=quote(Ycensored),
markscale=1,
add=TRUE),
border,
list(...),
list(bg=bg),
list(cols=grey(0.5), lwd=2)),
extrargs=gp)
}
return(invisible(NULL))
}
stienenSet <- function(X, edge=TRUE) {
stopifnot(is.ppp(X))
nnd <- nndist(X)
if(!edge) {
ok <- bdist.points(X) >= nnd
X <- X[ok]
nnd <- nnd[ok]
}
n <- npoints(X)
if(n == 0) return(emptywindow(Window(X)))
if(n == 1) return(Window(X))
rad <- nnd/2
if(!all(ok <- (rad > 0))) {
eps <- min(rad[ok], shortside(Frame(X)))/100
rad <- pmax(rad, eps)
}
delta <- 2 * pi * max(rad)/128
Z <- disc(rad[1], X[1], delta=delta)
for(i in 2:n) Z <- union.owin(Z, disc(rad[i], X[i], delta=delta))
return(Z)
} |
data("KarnatakaForest")
data("NouraguesHD")
KarnatakaForest <- KarnatakaForest[1:100, ]
D <- KarnatakaForest$D
coord <- cbind(KarnatakaForest$long, KarnatakaForest$lat)
WD <- suppressMessages(getWoodDensity(KarnatakaForest$genus, KarnatakaForest$species))
H <- retrieveH(D, model = modelHD(NouraguesHD$D, NouraguesHD$H, method = "log2", useWeight = TRUE))
context("Function to compute the AGB")
test_that("ComputeAGB with H", {
expect_error(computeAGB(D, WD$meanWD[1:65]), "different lenghts")
expect_error(computeAGB(D, WD$meanWD), "You need to provide either H or coord")
expect_length(computeAGB(D, WD$meanWD, H = H$H), 100)
expect_error(computeAGB(D, WD$meanWD, H$H[1:50]))
H1 <- H$H
H1[1] <- NA
expect_warning(
computeAGB(D, WD$meanWD, H = H1),
"NA values"
)
D1 <- D
D1[1] <- NA
expect_warning(
computeAGB(D1, WD$meanWD, H = H1),
"NA values in D"
)
})
test_that("ComputeAGB with Dlim", {
expect_true(any(computeAGB(D, WD$meanWD, H = H$H, Dlim = 5) == 0))
expect_true(any(computeAGB(D, WD$meanWD, H = H$H, Dlim = 5) > 0))
}) |
costdistances <- function(landscape, locs, method, NN)
{
fric.mat <- transition(landscape,function(x) 1/x[2],NN)
fric.mat@crs@projargs<- "+proj=merc +units=m"
fric.mat.cor <- geoCorrection(fric.mat)
if (method=="leastcost") cd.mat <-costDistance(fric.mat.cor, locs, locs)
if (method=="rSPDistance") cd.mat <- rSPDistance(fric.mat.cor, locs, locs, theta=1)
if (method=="commute") cd.mat <-as.matrix(commuteDistance(fric.mat.cor,locs))
colnames(cd.mat) <- row.names(locs)
rownames(cd.mat) <- row.names(locs)
return (cd.mat)
} |
library(aster)
set.seed(42)
m <- 10
n <- 5
a <- matrix(rnorm(m * n), nrow = m)
b <- rnorm(n)
out <- .C(aster:::C_aster_mat_vec_mult,
nrow = as.integer(m),
ncol = as.integer(n),
a = as.double(a),
b = as.double(b),
c = double(m))
all.equal(out$c, as.numeric(a %*% b))
b <- rnorm(m)
out <- .C(aster:::C_aster_vec_mat_mult,
nrow = as.integer(m),
ncol = as.integer(n),
a = as.double(a),
b = as.double(b),
c = double(n))
all.equal(out$c, as.numeric(b %*% a))
out <- .C(aster:::C_aster_mat_vec_mat_mult,
nrow = as.integer(m),
ncol = as.integer(n),
a = as.double(a),
b = as.double(b),
c = matrix(as.double(0), n, n))
all.equal(out$c, t(a) %*% diag(b) %*% a)
b <- matrix(rnorm(n * n), n)
out <- .C(aster:::C_aster_diag_mat_mat_mat_mult,
nrow = as.integer(m),
ncol = as.integer(n),
a = as.double(a),
b = as.double(b),
c = double(m))
all.equal(out$c, diag(a %*% b %*% t(a))) |
export.ui = function(ps=get.ps()) {
restore.point("export.ui")
make.export.handlers()
if (ps$show.download.rmarkdown) {
rmarkdown.ui = list(
downloadButton("downloadRmdBtn","Download as RMarkdown"),
helpText("You can download the problem set with your current solution as an RMarkdown text file. Save it in a directory and open it with RStudio, to run freely the code on your computer and to create HTML, Word or PDF files from your solution. (Note: If you directly open the file with RStudio without saving it first, the file is probably stored in a directory to which you have no write access and RStudio gives the error 'Access denied' if you want to knit the file.)"),
br())
} else {
rmarkdown.ui = NULL
}
if (file.exists("downloads.zip")) {
zip.ui = list(
downloadButton("downloadZipBtn","Download additional material"),
helpText("The ZIP file contains additional material, e.g. data or R scipts that is needed to replicate the analysis and run the RMarkdown file on your computer. You need to extract the zip file into the folder of your RMarkdown file.")
)
} else {
zip.ui = NULL
}
sub.ui = list(
downloadButton("downloadSubBtn","Download Submission File"),
helpText("Downloads a binary file with filetype .sub that contains the solution of your problem set. This file will be saved in your download folder. Your course instructor may have provided a website, e.g. on Moodle, where you can upload that submission file for grading."),
br()
)
list(
br(),
rmarkdown.ui,
sub.ui,
zip.ui
)
}
make.export.handlers = function(session=ps$session,ps=get.ps(), app=getApp()) {
if(ps$show.download.rmarkdown){
setDownloadHandler("downloadRmdBtn",
filename = paste0(ps$name, ".Rmd"),
content = function(file) {
restore.point("downLoadAsRmdHandler")
txt = shiny.to.rmd.txt()
Encoding(txt) <- "UTF-8"
writeLines(txt, file,useBytes = TRUE)
},
contentType = "text/Rmd"
)
}
setDownloadHandler("downloadSubBtn",
filename = paste0(ps$name,"__",ps$user.name,".sub"),
content = function(file) {
restore.point("downLoadSubHandler")
ups.to.sub.file(sub.file=file)
},
contentType = "application/octet-stream"
)
setDownloadHandler("downloadZipBtn",
filename <- paste0(ps$name, "_extra_material.zip"),
content <- function(file) {
file.copy("downloads.zip", file)
},
contentType = "application/zip"
)
}
shiny.to.rmd.txt = function(ps=get.ps(), user.name=get.user.name()) {
restore.point("shiny.to.rmd.txt")
cdt = ps$cdt
rps = ps$rps
txt = rps$empty.rmd.txt
cl = rps$empty.rmd.chunk.lines
rownames(cl) = cl$chunk.name
chunks = intersect(cdt$chunk.name, cl$chunk.name)
cl.ind = match(chunks, cl$chunk.name)
cdt.ind = match(chunks, cdt$chunk.name)
stud.code = cdt$stud.code[cdt.ind]
start.lines = cl$start.line[cl.ind]
clear.lines = do.call("c",lapply(cl.ind, function(i) int.seq(cl$start.line[i]+1,cl$end.line[i]-1)))
txt[start.lines] = paste0(txt[start.lines],"\n",stud.code)
addon.lines = which(str.starts.with(txt,"
if (length(addon.lines)>0)
txt[addon.lines] = sapply(txt[addon.lines],make.rmd.addon.txt,ps=ps)
info.lines = which((str.starts.with(txt,"info(")))
for (line in info.lines) {
header = txt[line]
info.name = str.between(header,'"','"')
info = rps$infos[[info.name]]
str = paste0(info$rmd, collapse="\n")
if (is.true(info$as.note))
str = paste0("
txt[line] = str
}
if (length(clear.lines)>0)
txt = txt[-clear.lines]
unlist(txt)
}
make.rmd.addon.txt = function(str, ps=get.ps(), ups=get.ups()) {
restore.point("make.rmd.addon.txt")
id = str.right.of(str, "
str = str.right.of(str,"
type = str.left.of(str,"__")
name = str.right.of(str,"__")
Addon = ps$rps$Addons[[type]]
ao = ps$rps$addons[[id]]
rta = ao$rta
res = Addon$out.txt.fun(ao,solved=isTRUE(rta$was.solved))
paste0(res, collapse="\n")
} |
mrbayes.lset <- function(..., partition){
args <- list(...)
args <- lapply(args, format, scientific = FALSE, trim = TRUE)
arg.set <- list(
nucmodel = c("4by4", "doublet", "codon", "protein"),
nst = c("1", "2", "6", "mixed"),
code = c("universal",
"vertmt",
"mycoplasma",
"yeast",
"ciliates",
"metmt"),
ploidy = c("haploid", "diploid", "zlinked"),
rates = c("equal",
"gamma",
"propinv",
"invgamma",
"adgamma"),
ngammacat = format(1:24, trim = TRUE),
nbetacat = format(1:24, trim = TRUE),
omegavar = c("equal", "ny98", "m3"),
covarion = c("no", "yes"),
coding = c("all",
"variable",
"noabsencesites",
"nopresencesites"),
parsmodel = c("no", "yes")
)
no.arg <- setdiff(names(args), names(arg.set))
if ( length(no.arg) > 0 ){
stop(paste('"', no.arg[1],'" is not valid argument', sep = ""))
}
for ( i in names(args) ){
args[[i]] <- match.arg(args[[i]], arg.set[[i]])
}
if ( !missing(partition) ){
attr(args, "partition") <- partition
}
args
} |
library(RcppZiggurat)
load("RcppZiggurat.RData") |
updateNu = function(Varmeank) {
return(rowMeans(Varmeank))
}
updateLambda = function(Varmeank, Varcovk, nu) {
d = dim(Varcovk)[1]
K = dim(Varcovk)[3]
lambda = 0
for (k in 1:K) {
lambda = lambda + Trace(Varcovk[,,k]) + sum(Varmeank[,k]^2)
- 2 * t(nu) %*% Varmeank[,k]
+ sum(nu^2)
}
return(lambda / (d * K))
} |
anaglyph <- function(d3, blue, red, cex = 1) {
d2 <- project3d(d3)
with(d2, points(right, y, col = blue, pch = 20, cex = cex))
with(d2, points(left, y, col = red, pch = 20, cex = cex))
}
project3d <- function(d3, length = par("din")[1] * 25.4, z0 = 300, d = 30) {
length <- length * 0.3
x <- d3[, 1] * length
y <- d3[, 2] * length
z <- (1.5 + d3[, 3]) * length / 2
d2 <- data.frame(
left = (z0 * x - z * d) / (z0 - z),
right = (z0 * x + z * d) / (z0 - z),
y = (z0 * y) / (z0 - z)
) / length * 0.5
}
display_stereo <- function(blue, red, cex = 1, ...) {
labels <- NULL
init <- function(data, ...) {
labels <<- abbreviate(colnames(data), 2)
}
render_frame <- function() {
par(pty = "s", bg = "grey85")
blank_plot(xlim = c(-1, 1), ylim = c(-1, 1))
}
render_transition <- function() {
}
render_data <- function(data, proj, geodesic) {
render_frame()
anaglyph(data %*% proj, blue, red, cex = cex)
axes <- project3d(proj)
with(axes, {
segments(0, 0, right, y, col = blue)
segments(0, 0, left, y, col = red)
text(right, y, col = blue, label = labels)
text(left, y, col = red, label = labels)
})
}
list(
init = init,
render_frame = render_frame,
render_transition = render_transition,
render_data = render_data,
render_target = nul
)
}
animate_stereo <- function(data, tour_path = grand_tour(3), blue = rgb(0, 0.91, 0.89), red = rgb(0.98, 0.052, 0), ...) {
animate(
data = data, tour_path = tour_path,
display = display_stereo(blue, red, ...),
...
)
} |
.lapply <- function(X, FUN, ..., mc.cores=1L) {
parallel::mclapply(X, FUN, ..., mc.cores=mc.cores)
} |
sig_tally <- function(object, ...) {
timer <- Sys.time()
send_info("Started.")
on.exit(send_elapsed_time(timer))
UseMethod("sig_tally")
}
sig_tally.CopyNumber <- function(object,
method = "Wang",
ignore_chrs = NULL,
indices = NULL,
add_loh = FALSE,
feature_setting = sigminer::CN.features,
cores = 1,
keep_only_matrix = FALSE,
...) {
method <- match.arg(method, choices = c("Wang", "W", "Tao & Wang", "T", "X", "S"))
if (startsWith(method, "T") | method == "X") {
send_warning("Currently, the method 'T' is in experimental stage, please don't use it for now!")
cn_list <- get_cnlist(object, ignore_chrs = ignore_chrs, add_index = TRUE)
} else {
cn_list <- get_cnlist(object, ignore_chrs = ignore_chrs)
}
if (startsWith(method, "W")) {
send_info("Step: getting copy number features.")
cn_features <- get_features_wang(
CN_data = cn_list, cores = cores,
genome_build = object@genome_build,
feature_setting = feature_setting
)
send_success("Gotten.")
send_info("Step: generating copy number components.")
if (!inherits(feature_setting, "sigminer.features")) {
feature_setting <- get_feature_components(feature_setting)
}
send_success("{.code feature_setting} checked.")
send_info("Step: counting components.")
cn_components <- purrr::map2(cn_features, names(cn_features),
count_components_wrapper,
feature_setting = feature_setting
)
send_success("Counted.")
if ("BoChr" %in% names(cn_features)) {
cn_features$BoChr <- cn_features$BoChr[cn_features$BoChr$value != 0]
}
send_info("Step: generating components by sample matrix.")
cn_matrix <- data.table::rbindlist(cn_components, fill = TRUE, use.names = TRUE) %>%
dplyr::as_tibble() %>%
tibble::column_to_rownames(var = "component") %>%
as.matrix()
cn_matrix <- cn_matrix[feature_setting$component, ] %>%
t()
if (any(is.na(cn_matrix))) {
send_warning("{.code NA} detected. There may be an issue, please contact the developer!")
send_warning("Data will still returned, but please take case of it.")
}
feature_setting$n_obs <- colSums(cn_matrix, na.rm = TRUE)
} else if (startsWith(method, "S")) {
send_info("When you use method 'S', please make sure you have set 'join_adj_seg' to FALSE and 'add_loh' to TRUE in 'read_copynumber() in the previous step!")
mat_list <- get_matrix_mutex_sv(data.table::rbindlist(cn_list, idcol = "sample"))
cn_features <- NULL
cn_components <- mat_list$data
cn_matrix <- mat_list$CN_40
} else {
send_info("Step: getting copy number features.")
cn_features <- get_features_mutex(
CN_data = cn_list,
add_loh = add_loh,
XVersion = method == "X",
cores = cores
)
send_success("Gotten.")
send_info("Step: generating copy number components based on combination.")
cn_components <- get_components_mutex(cn_features, XVersion = method == "X")
send_success("Classified and combined.")
send_info("Step: generating components by sample matrix.")
if (method != "X") {
cn_matrix_list <- get_matrix_mutex(cn_components,
indices = indices
)
} else {
cn_matrix_list <- get_matrix_mutex_xv(cn_components,
indices = indices
)
}
cn_matrix <- cn_matrix_list$ss_mat
if (keep_only_matrix) {
send_info("When keep_only_matrix is TRUE, only standard matrix kept.")
}
}
send_success("Matrix generated.")
if (keep_only_matrix) {
cn_matrix
} else {
if (startsWith(method, "W")) {
para_df <- feature_setting
} else if (startsWith(method, "T")) {
para_df <- "Message: No this info for method T."
} else if (startsWith(method, "X")) {
para_df <- "Message: No this info for method X."
} else if (startsWith(method, "S")) {
para_df <- "Message: No this info for method S."
}
if (startsWith(method, "T") | method == "X" | method == "S") {
res_list <- list(
features = cn_features,
components = cn_components,
parameters = para_df,
nmf_matrix = cn_matrix,
all_matrices = if (method == "X") {
list(
simplified_matrix = cn_matrix_list$ss_mat,
standard_matrix = cn_matrix_list$s_mat
)
} else if (method == "S") {
list(
CN_40 = mat_list$CN_40,
CN_48 = mat_list$CN_48
)
} else {
list(
simplified_matrix = cn_matrix_list$ss_mat,
standard_matrix = cn_matrix_list$s_mat,
complex_matrix = cn_matrix_list$c_mat
)
}
)
} else {
res_list <- list(
features = cn_features,
components = cn_components,
parameters = para_df,
nmf_matrix = cn_matrix
)
}
return(res_list)
}
}
sig_tally.RS <- function(object, keep_only_matrix = FALSE, ...) {
svlist <- get_svlist(object)
send_success("Successfully get RS list!")
sv_features <- get_features_sv(svlist)
send_success("Successfully get RS features!")
sv_component <- get_components_sv(sv_features)
send_success("Successfully get RS component!")
sv_matrix_list <- get_matrix_sv(CN_components = sv_component)
send_success("Successfully get RS matrix!")
res_list <- list(
features = sv_features,
components = sv_component,
nmf_matrix = sv_matrix_list$RS_32,
all_matrices = sv_matrix_list
)
if (keep_only_matrix) {
return(res_list$nmf_matrix)
} else {
return(res_list)
}
}
sig_tally.MAF <- function(object, mode = c("SBS", "DBS", "ID", "ALL"),
ref_genome = "BSgenome.Hsapiens.UCSC.hg19",
genome_build = NULL,
add_trans_bias = FALSE,
ignore_chrs = NULL,
use_syn = TRUE,
keep_only_matrix = FALSE,
...) {
if (!requireNamespace("BSgenome", quietly = TRUE)) {
send_stop("Please install 'BSgenome' package firstly.")
}
mode <- match.arg(mode)
hsgs.installed <- BSgenome::installed.genomes(splitNameParts = TRUE)
data.table::setDT(x = hsgs.installed)
if (nrow(hsgs.installed) == 0) {
send_stop("Could not find any installed BSgenomes. Use {.code BSgenome::available.genomes()} for options.")
}
send_info("We would assume you marked all variants' position in + strand.")
if (is.null(ref_genome)) {
send_info("User did not set {.code ref_genome}.")
send_success("Found following BSgenome installtions. Using first entry.\n")
print(hsgs.installed)
ref_genome <- hsgs.installed$pkgname[1]
} else {
if (!ref_genome %in% hsgs.installed$pkgname) {
send_error("Could not find BSgenome {.code ", ref_genome, "}.")
send_info("Found following BSgenome installtions. Correct {.code ref_genome} argument if necessary.")
print(hsgs.installed)
send_stop("Exit.")
}
}
if (is.null(genome_build)) {
if (grepl("hg19", ref_genome)) {
genome_build <- "hg19"
} else if (grepl("hg38", ref_genome)) {
genome_build <- "hg38"
} else if (grepl("mm10$", ref_genome)) {
genome_build <- "mm10"
} else if (grepl("mm9$", ref_genome)) {
genome_build <- "mm9"
} else {
send_stop("Cannot guess the genome build, please set it by hand!")
}
}
ref_genome <- BSgenome::getBSgenome(genome = ref_genome)
send_success("Reference genome loaded.")
query <- maftools::subsetMaf(
maf = object,
query = "Variant_Type %in% c('SNP', 'DNP', 'INS', 'DEL')", fields = "Chromosome",
includeSyn = use_syn, mafObj = FALSE
)
query <- query[!is.na(query$Reference_Allele) & !is.na(query$Tumor_Seq_Allele2)]
send_success("Variants from MAF object queried.")
if (!is.null(ignore_chrs)) {
query <- query[!query$Chromosome %in% ignore_chrs]
send_success("Unwanted contigs removed.")
}
if (nrow(query) == 0) {
send_stop("Zero variants to analyze!")
}
query$Chromosome <- sub(
pattern = "chr",
replacement = "chr",
x = as.character(query$Chromosome),
ignore.case = TRUE
)
query$Chromosome <- ifelse(startsWith(query$Chromosome, "chr"),
query$Chromosome,
paste0("chr", query$Chromosome)
)
send_success("Chromosome names checked.")
query$Chromosome <- sub(
pattern = "x",
replacement = "X",
x = as.character(query$Chromosome),
ignore.case = TRUE
)
query$Chromosome <- sub(
pattern = "y",
replacement = "Y",
x = as.character(query$Chromosome),
ignore.case = TRUE
)
query$Chromosome <- sub("23", "X", query$Chromosome)
query$Chromosome <- sub("24", "Y", query$Chromosome)
send_success("Sex chromosomes properly handled.")
query <- query[query$Chromosome %in% paste0("chr", c(1:22, "X", "Y", "M", "MT"))]
send_success("Only variants located in standard chromosomes (1:22, X, Y, M/MT) are kept.")
query$Start_Position <- as.numeric(as.character(query$Start_Position))
query$End_Position <- as.numeric(as.character(query$End_Position))
send_success("Variant start and end position checked.")
query_seq_lvls <- query[, .N, Chromosome]
ref_seqs_lvls <- BSgenome::seqnames(x = ref_genome)
query_seq_lvls_missing <- query_seq_lvls[!Chromosome %in% ref_seqs_lvls]
if (nrow(query_seq_lvls_missing) > 3) {
send_warning("Too many chromosome names cannot match reference genome. Try dropping 'chr' prefix to fix it...")
query$Chromosome <- sub(
pattern = "chr",
replacement = "",
x = as.character(query$Chromosome),
ignore.case = TRUE
)
query_seq_lvls <- query[, .N, Chromosome]
query_seq_lvls_missing <- query_seq_lvls[!Chromosome %in% ref_seqs_lvls]
send_info("Dropped.")
}
if (nrow(query_seq_lvls_missing) > 0) {
send_warning(paste0(
"Chromosome names in MAF must match chromosome names in reference genome.\nIgnorinig ",
query_seq_lvls_missing[, sum(N)],
" single nucleotide variants from missing chromosomes ",
paste(query_seq_lvls_missing[, Chromosome], collapse = ", ")
))
}
query <- query[!Chromosome %in% query_seq_lvls_missing[, Chromosome]]
send_success("Variant data for matrix generation preprocessed.")
if (mode == "SBS") {
res <- generate_matrix_SBS(query, ref_genome, genome_build = genome_build, add_trans_bias = add_trans_bias)
} else if (mode == "DBS") {
res <- generate_matrix_DBS(query, ref_genome, genome_build = genome_build, add_trans_bias = add_trans_bias)
} else if (mode == "ID") {
res <- generate_matrix_INDEL(query, ref_genome, genome_build = genome_build, add_trans_bias = add_trans_bias)
} else {
send_info("All types of matrices generation - start.")
res_SBS <- tryCatch(
generate_matrix_SBS(query, ref_genome, genome_build = genome_build, add_trans_bias = add_trans_bias),
error = function(e) {
if (e$message == "") {
NULL
} else {
send_error("Unexpected error occurred:")
send_stop(e$message)
}
}
)
res_DBS <- tryCatch(
generate_matrix_DBS(query, ref_genome, genome_build = genome_build, add_trans_bias = add_trans_bias),
error = function(e) {
if (e$message == "") {
NULL
} else {
send_error("Unexpected error occurred:")
send_stop(e$message)
}
}
)
res_ID <- tryCatch(
generate_matrix_INDEL(query, ref_genome, genome_build = genome_build, add_trans_bias = add_trans_bias),
error = function(e) {
if (e$message == "") {
NULL
} else {
send_error("Unexpected error occurred:")
send_stop(e$message)
}
}
)
send_info("All types of matrices generation (APOBEC scores included) - end.")
res <- c(res_SBS$all_matrices, res_DBS$all_matrices, res_ID$all_matrices)
res$APOBEC_scores <- res_SBS$APOBEC_scores
}
send_success("Done.")
if (keep_only_matrix) {
if (mode == "ALL") {
send_warning("Mode 'ALL' cannot return a single matrix.")
return(res)
}
return(res$nmf_matrix)
} else {
return(res)
}
}
utils::globalVariables(
c(
".N",
"Chromosome"
)
) |
rtvvar <- function(n, alpha, beta = 1, simple = FALSE) {
x <- h <- hm <- numeric(n)
for (i in 2:n) {
if (simple == FALSE) {
h[i] <- h_fun(i, beta, n)
hm[i] <- sqrt(h[i]^2 + alpha * x[i-1]^2)
x[i] <- hm[i] * rnorm(1)
} else {
x[i] <- (i/n) * rnorm(1)
}
}
as.ts(x)
}
h_fun <- function(t, beta, n) {
10 - 10 * sin(beta*pi*t/n + pi/6) * (1 + t/n)
} |
test_that("output test", {
expect_snapshot({
pillar(add_special(as.POSIXct("2017-07-28 18:04:35 +0200")))
pillar(add_special(as.POSIXlt("2017-07-28 18:04:35 +0200")))
})
withr::with_options(
list(digits.secs = 4),
expect_snapshot({
pillar(add_special(as.POSIXlt("2017-07-28 18:04:35 +0200")))
})
)
testthat::skip_if(getRversion() < "3.3")
expect_snapshot({
pillar(add_special(as.difftime(8:11, units = "secs")))
})
}) |
"cdfgov" <-
function(x, para) {
if(! are.pargov.valid(para)) return()
U <- para$para[1]
A <- para$para[2]
B <- para$para[3]
lo <- U
hi <- U+A
"afunc" <- function(x, f) return(x - quagov(f, para))
f <- sapply(1:length(x), function(i) {
tmp <- NULL
try(tmp <- uniroot(afunc, lower=0, upper=1, x=x[i]), silent=TRUE)
ifelse(is.null(tmp), return(NA), return(tmp$root)) } )
f[x < lo] <- 0
f[x > hi] <- 1
names(f) <- NULL
f[! is.finite(f)] <- NA
return(f)
} |
"tgp.postprocess" <-
function(ll, Xnames, response, pred.n, zcov, Ds2x, improv, sens.p, Zm0r1, params, rmfiles=TRUE)
{
ll$X <- framify.X(ll$X, Xnames, ll$d)
ll$Xsplit <- framify.X(ll$Xsplit, Xnames, ll$d)
ll$nsplit <- NULL
if(is.null(response)) ll$response <- "z"
else ll$response <- response
if(Ds2x == FALSE) { ll$Ds2x <- NULL; }
if(improv == FALSE || is.null(improv)) { ll$improv <- NULL; }
if(ll$nn == 0 || (ll$BTE[2]-ll$BTE[1])==0 || !is.null(sens.p)) {
ll$XX <- ll$ZZ.mean <- ll$ZZ.s2 <- ll$ZZ.q <- ll$ZZ.km <- ll$ZZ.ks2 <- ll$ZZ.vark <- NULL
ll$ZZ.q1 <- ll$ZZ.med <- ll$ZZ.q2 <- ll$ZpZZ.s2 <- ll$Ds2x <- ll$improv <- NULL
} else {
if((!is.null(ll$improv)) && sum(is.nan(ll$improv) > 0)) {
warning(paste("encountered", sum(is.nan(ll$improv)),
"NaN in Improv, replaced with zeros"), call.=FALSE)
ll$improv[is.nan(ll$improv)] <- 0
}
ll$XX <- framify.X(ll$XX, Xnames, ll$d)
}
if(!is.null(improv)){
ll$irank[ll$irank == 0] <- ll$nn
ll$improv <- data.frame(improv=ll$improv, rank=ll$irank)
}
ll$irank <- NULL
if(pred.n == FALSE || ll$BTE[2]-ll$BTE[1] == 0) {
ll$Zp.mean <- ll$Zp.q <- ll$Zp.q1 <- ll$Zp.q2 <- NULL;
ll$Zp.s2 <- ll$ZpZZ.s2 <- ll$Zp.km <- ll$Zp.vark <- ll$Zp.ks2 <- ll$Zp.med <- NULL
}
if(file.exists(paste("./", "best_parts_1.out", sep=""))) {
ll$parts <- as.matrix(read.table("best_parts_1.out"))
if(rmfiles) unlink("best_parts_1.out")
} else { ll$parts <- NULL }
ll$trees <- tgp.get.trees(ll$Xsplit, rmfiles)
ll$posts <- read.table("tree_m0_posts.out", header=TRUE)
if(ll$BTE[2] - ll$BTE[1] == 0) ll$posts <- NULL
if(rmfiles) unlink("tree_m0_posts.out")
if(ll$trace) ll$trace <- tgp.read.traces(ll$n, ll$nn, ll$d, params$corr, ll$verb, rmfiles)
else ll$trace <- NULL
ll$params <- params
ll$verb <- NULL; ll$state <- NULL; ll$tree <- NULL; ll$MAP <- NULL; ll$nt <- NULL
ll$ncol <- NULL; ll$hier <- NULL;
ll$pred.n <- ll$nnprime <- ll$krige <- ll$bDs2x <- NULL
nt <- as.integer(ll$itemps[1])
lambda <- ll$itemps[length(ll$itemps)]
if(lambda == 1) lambda <- "opt"
else if(lambda == 2) lambda <- "naive"
else if(lambda == 3) lambda <- "st"
else stop(paste("bad lambda = ", lambda, sep=""))
ll$itemps <- list(c0n0=as.integer(ll$itemps[2:3]), k=ll$itemps[4:(nt+3)],
pk=ll$itemps[(nt+4):(2*nt+3)],
counts=as.integer(ll$itemps[(2*nt+4):(3*nt+3)]),
lambda=lambda)
if(nt == 1) ll$ess <- ll$ess[1]
else {
ll$ess=list(combined=ll$ess[1],
each=data.frame(k=ll$itemps$k, count=ll$ess[2:(nt+1)], ess=ll$ess[(nt+2):(2*nt+1)]))
}
if(ll$linburn) ll$linburn <- TRUE
else ll$linburn <- FALSE
ll$gpcs[is.nan(ll$gpcs)] <- NA
ll$gpcs <- data.frame(t(ll$gpcs))
names(ll$gpcs) <- c("grow", "prune", "change", "swap")
if(!is.null(sens.p)){
names(sens.p) <- NULL
sens.par <- list(nn.lhs=sens.p[1], rect=matrix(sens.p[2:(ll$d*2+1)], nrow=2),
shape=sens.p[(ll$d*2+2):(ll$d*3+1)], mode=sens.p[(ll$d*3+2):(ll$d*4+1)],
ngrid=ll$sens.ngrid, span=ll$sens.span)
sens <- list()
sens$par <- sens.par
sens$ngrid <- NULL
sens$span <- NULL
sens$Xgrid <- matrix(ll$sens.Xgrid, ncol=ll$d)
sens$ZZ.mean <- matrix(ll$sens.ZZ.mean, ncol=ll$d)
sens$ZZ.q1 <- matrix(ll$sens.ZZ.q1, ncol=ll$d)
sens$ZZ.q2 <- matrix(ll$sens.ZZ.q2, ncol=ll$d)
sens$S <- matrix(ll$sens.S, ncol=ll$d, byrow=TRUE)
sens$T <- matrix(ll$sens.T, ncol=ll$d, byrow=TRUE)
} else{ sens <- NULL }
ll$sens.Xgrid <- ll$sens.ZZ.mean <- ll$sens.ZZ.q1 <- ll$sens.ZZ.q2 <- NULL
ll$sens.ngrid <- ll$sens.span <- ll$sens.S <- ll$sens.T <- NULL
ll$sens <- sens
if(!is.null(Zm0r1)) {
ll$Z <- undo.mean0.range1(ll$Z,Zm0r1$undo)
ll$Zp.mean <- undo.mean0.range1(ll$Zp.mean,Zm0r1$undo)
ll$ZZ.mean <- undo.mean0.range1(ll$ZZ.mean,Zm0r1$undo)
ll$Zp.km <- undo.mean0.range1(ll$Zp.km,Zm0r1$undo)
ll$ZZ.km <- undo.mean0.range1(ll$ZZ.km,Zm0r1$undo)
ll$Zp.vark <- undo.mean0.range1(ll$Zp.vark,Zm0r1$undo, nomean=TRUE, s2=TRUE)
ll$ZZ.vark <- undo.mean0.range1(ll$ZZ.vark,Zm0r1$undo, nomean=TRUE, s2=TRUE)
ll$Zp.ks2 <- undo.mean0.range1(ll$Zp.ks2,Zm0r1$undo, nomean=TRUE, s2=TRUE)
ll$ZZ.ks2 <- undo.mean0.range1(ll$ZZ.ks2,Zm0r1$undo, nomean=TRUE, s2=TRUE)
ll$ZpZZ.ks2 <- undo.mean0.range1(ll$ZpZZ.ks2,Zm0r1$undo, nomean=TRUE, s2=TRUE)
ll$Zp.q <- undo.mean0.range1(ll$Zp.q,Zm0r1$undo, nomean=TRUE)
ll$ZZ.q <- undo.mean0.range1(ll$ZZ.q,Zm0r1$undo, nomean=TRUE)
ll$Zp.s2 <- undo.mean0.range1(ll$Zp.s2,Zm0r1$undo, nomean=TRUE, s2=TRUE)
ll$ZZ.s2 <- undo.mean0.range1(ll$ZZ.s2,Zm0r1$undo, nomean=TRUE, s2=TRUE)
ll$Zp.q1 <- undo.mean0.range1(ll$Zp.q1,Zm0r1$undo)
ll$Zp.med <- undo.mean0.range1(ll$Zp.med,Zm0r1$undo)
ll$Zp.q2 <- undo.mean0.range1(ll$Zp.q2,Zm0r1$undo)
ll$ZZ.q1 <- undo.mean0.range1(ll$ZZ.q1,Zm0r1$undo)
ll$ZZ.med <- undo.mean0.range1(ll$ZZ.med,Zm0r1$undo)
ll$ZZ.q2 <- undo.mean0.range1(ll$ZZ.q2,Zm0r1$undo)
for(j in 1:ll$d){
ll$sens.ZZ.mean[,j] <- undo.mean0.range1(ll$sens.ZZ.mean[,j],Zm0r1$undo)
ll$sens.ZZ.q1[,j] <- undo.mean0.range1(ll$sens.ZZ.q1[,j],Zm0r1$undo)
ll$sens.ZZ.q2[,j] <- undo.mean0.range1(ll$sens.ZZ.q2[,j],Zm0r1$undo)
}
ll$m0r1 <- TRUE
} else { ll$m0r1 <- FALSE }
if(!is.null(ll$Zp.s2) && ll$zcov) ll$Zp.s2 <- matrix(ll$Zp.s2, ncol=ll$n)
if(!is.null(ll$ZZ.s2) && ll$zcov) ll$ZZ.s2 <- matrix(ll$ZZ.s2, ncol=ll$nn)
if(!is.null(ll$ZpZZ.s2) && ll$zcov) ll$ZpZZ.s2 <- t(matrix(ll$ZpZZ.s2, ncol=ll$n))
else ll$ZpZZ.s2 <- NULL
ll$zcov <- NULL
class(ll) <- "tgp"
return(ll)
}
"tgp.get.trees" <-
function(X, rmfiles=TRUE)
{
trees <- list()
tree.files <- list.files(pattern="tree_m0_[0-9]+.out")
if(length(tree.files) == 0) return(NULL)
for(i in 1:length(tree.files)) {
h <- as.numeric(strsplit(tree.files[i], "[_.]")[[1]][3])
trees[[h]] <- read.table(tree.files[i], header=TRUE)
if(rmfiles) unlink(tree.files[i])
if(nrow(trees[[h]]) == 1) next;
nodes <- (1:length(trees[[h]]$var))[trees[[h]]$var != "<leaf>"]
for(j in 1:length(nodes)) {
col <- as.numeric(as.character(trees[[h]]$var[nodes[j]])) + 1
m <- which.min(abs(X[,col] - trees[[h]]$val[nodes[j]]))
trees[[h]]$val[nodes[j]] <- X[m,col]
}
}
return(trees)
} |
ict.test <- function(y, treat, J = NA, alpha = 0.05, n.draws = 250000, gms = TRUE, pi.table = TRUE){
if(class(y)=="matrix") design <- "modified"
else design = "standard"
if (design == "modified") {
J <- ncol(y) - 1
treat <- ifelse(!is.na(y[,J+1]), 1, 0)
for (j in 1:(J+1))
for (i in 1:nrow(y))
y[i,j] <- ifelse(is.na(y[i,j]), 0, y[i,j])
y <- apply(y, 1, sum)
} else {
if (is.na(J))
stop("You must fill in the option J, the number of control items.")
}
condition.values <- sort(unique(treat))
treatment.values <- condition.values[condition.values!=0]
if(length(treatment.values) > 1) multi <- TRUE
else multi <- FALSE
y.all <- y
treat.all <- treat
bonferroni <- rep(NA, length(treatment.values))
for (curr.treat in treatment.values) {
y <- y.all[treat.all == 0 | treat.all == curr.treat]
treat <- treat.all[treat.all == 0 | treat.all == curr.treat]
treat <- treat > 0
t.y1 <- pi.y1 <- rep(NA, J)
for(j in 0:(J-1)) {
pi.y1[j+1] <- mean(y[treat==0] <= j) - mean(y[treat==1] <= j)
try(t.y1[j+1] <- t.test(y[treat==0] <= j, y[treat==1] <= j, alternative = "less")$p.value)
}
t.y0 <- pi.y0 <- rep(NA, J)
for(j in 1:J) {
pi.y0[j] <- mean(y[treat==1] <= j) - mean(y[treat==0] <= (j - 1))
try(t.y0[j] <- t.test(y[treat==1] <= j, y[treat==0] <= (j - 1), alternative = "less")$p.value)
}
n <- length(y)
y.comb <- c(0:(J-1), 1:J)
t.comb <- c(rep(1, J), rep(0, J))
cond.y1 <- pi.y1 == 0
cond.y0 <- pi.y0 == 0
if (gms == TRUE) {
cond.y1 <- (pi.y1 == 0) | (sqrt(n) * pi.y1 / sqrt(var(pi.y1)) > sqrt(log(n)))
cond.y0 <- (pi.y0 == 0) | (sqrt(n) * pi.y0 / sqrt(var(pi.y0)) > sqrt(log(n)))
}
rho.pi <- cov.pi <- sd.pi <- matrix(NA, ncol = length(y.comb), nrow = length(y.comb))
sd <- rep(NA, length(y.comb))
for(j in 1:length(y.comb)) {
if(t.comb[j]==1) sd[j] <- sqrt(((mean(y[treat==1] <= y.comb[j])*(1-mean(y[treat==1] <= y.comb[j])))/sum(treat==1) + (mean(y[treat==0] <= y.comb[j])*(1-mean(y[treat==0] <= y.comb[j])))/sum(treat==0)))
if(t.comb[j]==0) sd[j] <- sqrt(((mean(y[treat==1] <= (y.comb[j]-1+1))*(1-mean(y[treat==1] <= (y.comb[j]-1+1))))/sum(treat==1) + (mean(y[treat==0] <= (y.comb[j]-1+0))*(1-mean(y[treat==0] <= (y.comb[j]-1+0))))/sum(treat==0)))
}
for(j in 1:length(y.comb)) {
for(k in 1:length(y.comb)) {
if(t.comb[j]==1 & t.comb[k]==1) {
if(y.comb[j]==y.comb[k]) cov.pi[j,k] <- sd[j]^2
else if(y.comb[j] < y.comb[k]) cov.pi[j,k] <- (mean(y[treat==1] <= y.comb[j])*(1-mean(y[treat==1] <= y.comb[k]))/sum(treat==1) + mean(y[treat==0] <= y.comb[j])*(1-mean(y[treat==0] <= y.comb[k]))/sum(treat==0))
else cov.pi[j,k] <- 0
if(y.comb[j] <= y.comb[k]) rho.pi[j,k] <- cov.pi[j,k] / (sd[j]*sd[k])
else rho.pi[j,k] <- 0
}
if(t.comb[j]==0 & t.comb[k]==0) {
if(y.comb[j]==y.comb[k]) cov.pi[j,k] <- sd[j]^2
else if(y.comb[j] <= y.comb[k]) cov.pi[j,k] <- (mean(y[treat==1] <= (y.comb[j] -1 +1))*(1-mean(y[treat==1] <= (y.comb[k]-1+1)))/sum(treat==1) + mean(y[treat==0] <= (y.comb[j] - 1 + 0))*(1-mean(y[treat==0] <= (y.comb[k] - 1 + 0)))/sum(treat==0))
else cov.pi[j,k] <- 0
if(y.comb[j] <= y.comb[k]) rho.pi[j,k] <- cov.pi[j,k] / (sd[j]*sd[k])
else rho.pi[j,k] <- 0
}
if(t.comb[j]==0 & t.comb[k]==1) {
if(y.comb[j] <= y.comb[k]) cov.pi[j,k] <- (-1)*(mean(y[treat==1] <= (y.comb[j]-1+1))*(1-mean(y[treat==1] <= y.comb[k]))/sum(treat==1) + mean(y[treat==0] <= (y.comb[j]-1+0))*(1-mean(y[treat==0] <= y.comb[k]))/sum(treat==0))
else cov.pi[j,k] <- 0
if(y.comb[j] <= y.comb[k]) rho.pi[j,k] <- cov.pi[j,k] / (sd[j]*sd[k])
else rho.pi[j,k] <- 0
}
if(t.comb[j]==1 & t.comb[k]==0) {
if(y.comb[j] < y.comb[k]) cov.pi[j,k] <- (-1) * ( mean(y[treat==1] <= y.comb[j])*(1-mean(y[treat==1] <= (y.comb[k]-1+1)))/sum(treat==1) + mean(y[treat==0] <= y.comb[j])*(1-mean(y[treat==0] <= (y.comb[k] - 1+ 0)))/sum(treat==0))
else if(y.comb[j]==y.comb[k]) cov.pi[j,k] <- (-1) * (mean(y[treat==1] <= (y.comb[j]-1+1))*(1-mean(y[treat==1] <= y.comb[k]))/sum(treat==1) + mean(y[treat==0] <= (y.comb[j]-1+0))*(1-mean(y[treat==0] <= y.comb[j]))/sum(treat==0))
else cov.pi[j,k] <- 0
if(y.comb[j] <= y.comb[k]) rho.pi[j,k] <- cov.pi[j,k] / (sd[j]*sd[k])
else rho.pi[j,k] <- 0
}
}
}
for(i in 1:nrow(rho.pi)){
for(j in 1:ncol(rho.pi)){
if(y.comb[i]>y.comb[j]) rho.pi[i,j] <- rho.pi[j,i]
if(y.comb[i]>y.comb[j]) cov.pi[i,j] <- cov.pi[j,i]
}
}
if (length(pi.y1) > 0) {
rho.pi.y1 <- rho.pi[1:length(pi.y1), 1:length(pi.y1)]
cov.pi.y1 <- cov.pi[1:length(pi.y1), 1:length(pi.y1)]
}
if (length(pi.y0) > 0) {
rho.pi.y0 <- rho.pi[(length(pi.y1)+1):(length(pi.y1) + length(pi.y0)),
(length(pi.y1)+1):(length(pi.y1) + length(pi.y0))]
cov.pi.y0 <- cov.pi[(length(pi.y1)+1):(length(pi.y1) + length(pi.y0)),
(length(pi.y1)+1):(length(pi.y1) + length(pi.y0))]
}
y.comb.tb <- c(0:J, 0:J)
t.comb.tb <- c(rep(1, J+1), rep(0, J+1))
sd.tb <- rep(NA, length(y.comb.tb))
for(j in 1:length(y.comb.tb)) {
if(t.comb.tb[j]==1) sd.tb[j] <- sqrt(((mean(y[treat==1] <= y.comb.tb[j])*(1-mean(y[treat==1] <= y.comb.tb[j])))/sum(treat==1) + (mean(y[treat==0] <= y.comb.tb[j])*(1-mean(y[treat==0] <= y.comb.tb[j])))/sum(treat==0)))
if(t.comb.tb[j]==0) sd.tb[j] <- sqrt(((mean(y[treat==1] <= (y.comb.tb[j]-1+1))*(1-mean(y[treat==1] <= (y.comb.tb[j]-1+1))))/sum(treat==1) + (mean(y[treat==0] <= (y.comb.tb[j]-1+0))*(1-mean(y[treat==0] <= (y.comb.tb[j]-1+0))))/sum(treat==0)))
}
pi.y1.tb <- rep(NA, J+1)
for(j in 0:J) {
pi.y1.tb[j+1] <- mean(y[treat==0] <= j) - mean(y[treat==1] <= j)
}
pi.y0.tb <- rep(NA, J+1)
for(j in 0:J) {
pi.y0.tb[j+1] <- mean(y[treat==1] <= j) - mean(y[treat==0] <= (j - 1))
}
tb <- round(rbind(cbind(pi.y1.tb, sd.tb[1:(J+1)]), cbind(pi.y0.tb, sd.tb[(J+2):((J+1)*2)])), 4)
rownames(tb) <- c(paste("pi(Y_i(0) = ", 0:J, ", Z_i = 1)", sep = ""),
paste("pi(Y_i(0) = ", 0:J, ", Z_i = 0)", sep = ""))
colnames(tb) <- c("est.", "s.e.")
pi.y1 <- pi.y1[cond.y1 == FALSE]
pi.y0 <- pi.y0[cond.y0 == FALSE]
t.y1 <- t.y1[cond.y1 == FALSE]
t.y0 <- t.y0[cond.y0 == FALSE]
rho.pi.y1 <- rho.pi.y1[cond.y1 == FALSE, cond.y1 == FALSE]
cov.pi.y1 <- cov.pi.y1[cond.y1 == FALSE, cond.y1 == FALSE]
rho.pi.y0 <- rho.pi.y0[cond.y0 == FALSE, cond.y0 == FALSE]
cov.pi.y0 <- cov.pi.y0[cond.y0 == FALSE, cond.y0 == FALSE]
if (length(pi.y1) > 1) {
par.y1 <- rep(0, length(pi.y1))
Dmat <- 2*ginv(cov.pi.y1)
Amat <- diag(length(pi.y1))
if (sum(pi.y1 < 0) > 0) {
lambda <- solve.QP(Dmat, par.y1, Amat, bvec = -pi.y1)$value
} else {
lambda <- 0
}
w <- rep(NA, length(pi.y1)+1)
rho.pi.y1.partial <- cor2pcor(rho.pi.y1)
if (length(pi.y1)==2) {
w[3] <- .5 * pi^(-1) * acos(rho.pi.y1[1,2])
w[2] <- .5
w[1] <- .5 - .5 * pi^(-1) * acos(rho.pi.y1[1,2])
} else if (length(pi.y1)==3) {
rho.pi.y1.partial.12.3 <- (rho.pi.y1[1,2] - rho.pi.y1[1,3] *
rho.pi.y1[2,3])/(sqrt(1-rho.pi.y1[1,3]^2) * sqrt(1-rho.pi.y1[2,3]^2))
rho.pi.y1.partial.13.2 <- (rho.pi.y1[1,3] - rho.pi.y1[1,2] *
rho.pi.y1[3,2])/(sqrt(1-rho.pi.y1[1,2]^2) * sqrt(1-rho.pi.y1[3,2]^2))
rho.pi.y1.partial.23.1 <- (rho.pi.y1[2,3] - rho.pi.y1[2,1] *
rho.pi.y1[3,1])/(sqrt(1-rho.pi.y1[2,1]^2) * sqrt(1-rho.pi.y1[3,1]^2))
w[1] <- .25 * pi^(-1) * (2 * pi - acos(rho.pi.y1[1,2]) - acos(rho.pi.y1[1,3]) - acos(rho.pi.y1[2,3]))
w[2] <- .25 * pi^(-1) * (3 * pi - acos(rho.pi.y1.partial.12.3) -
acos(rho.pi.y1.partial.13.2) - acos(rho.pi.y1.partial.23.1))
w[3] <- .5 - w[1]
w[4] <- .5 - w[2]
} else if (length(pi.y1)==4) {
w[4] <- .125 * pi^(-1) * (-4 * pi + acos(rho.pi.y1[4,3]) + acos(rho.pi.y1[3,2]) + acos(rho.pi.y1[4,2]))
w[3] <- .25 * pi^(-2) * ( acos(rho.pi.y1[4,3]) * (pi - acos(rho.pi.y1.partial[2,1])))
w[2] <- .125 * pi^(-1) * ( 8 * pi - acos(rho.pi.y1[4,3]) + acos(rho.pi.y1[3,2]) + acos(rho.pi.y1[4,2]))
w[1] <- pmvnorm(mean = pi.y1, sigma = cov.pi.y1, lower = rep(0, length(pi.y1)))
w[5] <- .5 - w[1] - w[3]
} else if (length(pi.y1)>4) {
draws <- mvrnorm(n = n.draws, mu = par.y1, Sigma = cov.pi.y1)
pi.tilde <- matrix(NA, nrow = n.draws, ncol = length(pi.y1))
for (i in 1:n.draws) {
if (sum(draws[i,] < 0) > 1) {
pi.tilde[i,] <- solve.QP(Dmat, par.y1, Amat, bvec = -draws[i,])$solution + draws[i,]
} else {
pi.tilde[i,] <- draws[i, ]
}
}
pi.tilde.pos.count <- apply(pi.tilde, 1, function(x) { sum(x > 0) })
for(k in 0:J)
w[k+1] <- mean(pi.tilde.pos.count==(J-k))
}
p.y1 <- 0
for(k in 0:length(pi.y1))
p.y1 <- p.y1 + w[k+1] * pchisq(lambda, df = k, lower.tail = FALSE)
} else if (length(pi.y1) == 1) {
p.y1 <- t.y1
}
if (length(pi.y0) > 1) {
par.y0 <- rep(0, length(pi.y0))
Dmat <- 2*ginv(cov.pi.y0)
Amat <- diag(length(pi.y0))
if (sum(pi.y0 < 0) > 0) {
lambda <- solve.QP(Dmat, par.y0, Amat, bvec = -pi.y0)$value
} else {
lambda <- 0
}
w <- rep(NA, length(pi.y0)+1)
rho.pi.y0.partial <- cor2pcor(rho.pi.y0)
if (length(pi.y0)==2) {
w[3] <- .5 * pi^(-1) * acos(rho.pi.y0[1,2])
w[2] <- .5
w[1] <- .5 - .5 * pi^(-1) * acos(rho.pi.y0[1,2])
} else if (length(pi.y0)==3) {
rho.pi.y0.partial.12.3 <- (rho.pi.y0[1,2] - rho.pi.y0[1,3] *
rho.pi.y0[2,3])/(sqrt(1-rho.pi.y0[1,3]^2) * sqrt(1-rho.pi.y0[2,3]^2))
rho.pi.y0.partial.13.2 <- (rho.pi.y0[1,3] - rho.pi.y0[1,2] *
rho.pi.y0[3,2])/(sqrt(1-rho.pi.y0[1,2]^2) * sqrt(1-rho.pi.y0[3,2]^2))
rho.pi.y0.partial.23.1 <- (rho.pi.y0[2,3] - rho.pi.y0[2,1] *
rho.pi.y0[3,1])/(sqrt(1-rho.pi.y0[2,1]^2) * sqrt(1-rho.pi.y0[3,1]^2))
w[1] <- .25 * pi^(-1) * (2 * pi - acos(rho.pi.y0[1,2]) - acos(rho.pi.y0[1,3]) - acos(rho.pi.y0[2,3]))
w[2] <- .25 * pi^(-1) * (3 * pi - acos(rho.pi.y0.partial.12.3) -
acos(rho.pi.y0.partial.13.2) - acos(rho.pi.y0.partial.23.1))
w[3] <- .5 - w[1]
w[4] <- .5 - w[2]
} else if (length(pi.y0)==4) {
w[4] <- .125 * pi^(-1) * (-4 * pi + acos(rho.pi.y0[4,3]) + acos(rho.pi.y0[3,2]) + acos(rho.pi.y0[4,2]))
w[3] <- .25 * pi^(-2) * ( acos(rho.pi.y0[4,3]) * (pi - acos(rho.pi.y0.partial[2,1])))
w[2] <- .125 * pi^(-1) * ( 8 * pi - acos(rho.pi.y0[4,3]) + acos(rho.pi.y0[3,2]) + acos(rho.pi.y0[4,2]))
w[1] <- pmvnorm(mean = pi.y0, sigma = cov.pi.y0, lower = rep(0, length(pi.y0)))
w[5] <- .5 - w[1] - w[3]
} else if (length(pi.y0)>4) {
draws <- mvrnorm(n = n.draws, mu = par.y0, Sigma = cov.pi.y0)
pi.tilde <- matrix(NA, nrow = n.draws, ncol = length(pi.y0))
for(i in 1:n.draws) {
if (sum(draws[i,] < 0) > 1) {
pi.tilde[i,] <- solve.QP(Dmat, par.y0, Amat, bvec = -draws[i,])$solution + draws[i,]
} else {
pi.tilde[i,] <- draws[i, ]
}
}
pi.tilde.pos.count <- apply(pi.tilde, 1, function(x) { sum(x > 0) })
for(k in 0:length(pi.y0))
w[k+1] <- mean(pi.tilde.pos.count==(J-k))
}
p.y0 <- 0
for(k in 0:length(pi.y0))
p.y0 <- p.y0 + w[k+1] * pchisq(lambda, df = k, lower.tail = FALSE)
} else if (length(pi.y0) == 1) {
p.y0 <- t.y0
}
if ((length(pi.y1) > 0) & (length(pi.y0) > 0))
bonferroni[curr.treat] <- 2 * min(p.y1, p.y0)
else if (length(pi.y1) > 0)
bonferroni[curr.treat] <- 2 * p.y1
else if (length(pi.y0) > 0)
bonferroni[curr.treat] <- 2 * p.y0
else
bonferroni[curr.treat] <-1
}
names(bonferroni) <- paste("Sensitive Item", treatment.values)
bonferroni <- pmin(bonferroni, 1)
if (pi.table == FALSE)
return.object <- list(p = bonferroni)
else
return.object <- list(p = bonferroni, pi.table = tb)
class(return.object) <- "ict.test"
return.object
}
print.ict.test <- function(x, ...){
cat("\nTest for List Experiment Design Effects\n\n")
if (!is.null(x$pi.table)) {
cat("Estimated population proportions \n")
print(x$pi.table)
cat("\n Y_i(0) is the (latent) count of 'yes' responses to the control items. Z_i is the (latent) binary response to the sensitive item.\n\n")
}
cat("Bonferroni-corrected p-value\nIf this value is below alpha, you reject the null hypothesis of no design effect. If it is above alpha, you fail to reject the null.\n\n")
print(x$p)
cat("\n")
invisible(x)
} |
.Logistik_edited <- function(data, member, member.type = "group", match = "score",
anchor = 1:ncol(data), type = "both", criterion = "LRT",
all.cov = FALSE) {
R2 <- function(m, n) 1 - (exp(-m$null.deviance / 2 + m$deviance / 2))^(2 / n)
R2max <- function(m, n) 1 - (exp(-m$null.deviance / 2))^(2 / n)
R2DIF <- function(m, n) R2(m, n) / R2max(m, n)
dev <- R2full <- R2simple <- deltaR <- NULL
mFull <- mSimple <- seFull <- seSimple <- matrix(
0, ncol(data),
4
)
if (all.cov) {
cov.matM0 <- cov.matM1 <- vector("list", ncol(data))
} else {
cov.matM0 <- cov.matM1 <- NULL
}
if (member.type == "group") {
GROUP <- as.factor(member)
} else {
GROUP <- member
}
for (item in 1:ncol(data)) {
if (match[1] == "score") {
data2 <- rbind(data[, anchor])
if (sum(anchor == item) == 0) {
data2 <- cbind(data2, data[, item])
}
SCORES <- rowSums(data2, na.rm = TRUE)
} else if (match[1] == "zscore") {
data2 <- rbind(data[, anchor])
if (sum(anchor == item) == 0) {
data2 <- cbind(data2, data[, item])
}
SCORES <- scale(rowSums(data2, na.rm = TRUE))
} else {
SCORES <- match
}
ITEM <- data[, item]
m0 <- switch(type,
both = glm(ITEM ~ SCORES * GROUP, family = "binomial"),
udif = glm(ITEM ~ SCORES + GROUP, family = "binomial"),
nudif = glm(ITEM ~ SCORES * GROUP, family = "binomial")
)
m1 <- switch(type,
both = glm(ITEM ~ SCORES, family = "binomial"),
udif = glm(ITEM ~ SCORES, family = "binomial"),
nudif = glm(ITEM ~ SCORES + GROUP, family = "binomial")
)
if (criterion == "LRT") {
dev[item] <- deviance(m1) - deviance(m0)
} else {
if (criterion != "Wald") {
stop("'criterion' must be either 'LRT' or Wald'",
call. = FALSE
)
} else {
coeff <- as.numeric(coef(m0))
covMat <- summary(m0)$cov.scaled
if (type == "udif") {
C <- rbind(c(0, 0, 1))
} else {
if (type == "nudif") {
C <- rbind(c(0, 0, 0, 1))
} else {
C <- rbind(c(0, 0, 1, 0), c(0, 0, 0, 1))
}
}
dev[item] <- t(C %*% coeff) %*% solve(C %*% covMat %*%
t(C)) %*% C %*% coeff
}
}
R2full[item] <- R2DIF(m0, nrow(data))
R2simple[item] <- R2DIF(m1, nrow(data))
deltaR[item] <- R2DIF(m0, nrow(data)) - R2DIF(m1, nrow(data))
mFull[item, 1:length(m0$coefficients)] <- m0$coefficients
mSimple[item, 1:length(m1$coefficients)] <- m1$coefficients
seFull[item, 1:length(m0$coefficients)] <- sqrt(diag(vcov(m0)))
seSimple[item, 1:length(m1$coefficients)] <- sqrt(diag(vcov(m1)))
if (all.cov) {
cov.matM0[[item]] <- vcov(m0)
}
if (all.cov) {
cov.matM1[[item]] <- vcov(m1)
}
}
colnames(mFull) <- colnames(mSimple) <- colnames(seFull) <- colnames(seSimple) <- c(
"(Intercept)",
"SCORE", "GROUP", "SCORE:GROUP"
)
res <- list(
stat = dev, R2M0 = R2full, R2M1 = R2simple, deltaR2 = deltaR,
parM0 = mFull, parM1 = mSimple, seM0 = seFull, seM1 = seSimple,
cov.M0 = cov.matM0, cov.M1 = cov.matM1, criterion = criterion,
member.type = member.type, match = ifelse(match[1] ==
"score", "score", ifelse(match[1] == "zscore", "zscore", "matching variable"))
)
return(res)
} |
overallmean <-
function(x){
overall <- mean(x)
n1 <- dim(x)[1]
n2 <- dim(x)[2]
matrix(nrow=n1,ncol=n2,data=rep(overall,n1*n2))
} |
cr_buildstep <- function(name,
args = NULL,
id = NULL,
prefix = "gcr.io/cloud-builders/",
entrypoint = NULL,
dir = "",
env = NULL,
waitFor = NULL,
volumes = NULL){
if(is.null(prefix) || is.na(prefix)){
prefix <- "gcr.io/cloud-builders/"
}
if(!is.null(entrypoint)){
assert_that(is.string(entrypoint))
}
if(dir %in% c("",NA)) dir <- NULL
if(grepl("^gcr.io", name)){
prefix <- ""
}
list(structure(
rmNullObs(list(
name = paste0(prefix, name),
entrypoint = entrypoint,
args = string_to_list(args),
id = id,
dir = dir,
env = string_to_list(env),
volumes = volumes,
waitFor = string_to_list(waitFor)
)), class = c("cr_buildstep","list")))
}
is.cr_buildstep <- function(x){
inherits(x, "cr_buildstep")
}
cr_buildstep_df <- function(x){
assert_that(
is.data.frame(x),
all(c('name') %in% names(x))
)
if(is.null(x$prefix)){
x$prefix <- ""
}
if(is.null(x$dir)){
x$dir <- ""
}
xx <- x[, intersect(c("name",
"args",
"id",
"prefix",
"entrypoint",
"dir",
"env",
"volumes",
"waitFor"), names(x))]
apply(xx, 1, function(row){
cr_buildstep(name = row[["name"]],
args = row[["args"]],
id = row[["id"]],
prefix = row[["prefix"]],
entrypoint = row[["entrypoint"]],
env = row[["env"]],
volumes = row[["volumes"]],
waitFor = row[["waitFor"]],
dir = row[["dir"]])[[1]]
})
}
cr_buildstep_extract <- function(x, step = NULL){
assert_that(is.gar_Build(x))
the_step <- x$steps[[step]]
the_step$prefix <- ""
do.call(cr_buildstep, args = the_step)
}
cr_buildstep_edit <- function(x,
...){
xx <- x[[1]]
assert_that(is.cr_buildstep(xx))
dots <- list(...)
the_name <- dots$name
if(is.null(the_name)){
the_name <- xx$name
}
dots$name <- the_name
do.call(cr_buildstep, args = modifyList(xx, dots))
} |
AttributeCreate <- function(name, otype=c("V", "E", "G"), g){
otype = match.arg(otype)
if(otype=="V"){
g <- set.vertex.attribute(graph=g, name=name, value=NA)
}
if(otype=="E"){
g <- set.edge.attribute(graph=g, name=name, value=NA)
}
g
}
AttributeIsMeaningful <- function(name, otype=c("V", "E", "G"), g){
otype = match.arg(otype)
res = switch(EXPR=otype
,V = name %in% list.vertex.attributes(g)
,E = name %in% list.edge.attributes(g)
,G = TRUE
)
res
}
AttributeSet <- function(name, value, oids=NULL, oProgIds=NULL, otype=c("V", "E", "G"), g, add=TRUE, quiet=FALSE){
if(length(oProgIds)>0){
oids = switch(EXPR=otype
, none = vector()
, V = as.numeric(V(g)[ProgId %in% oProgIds])
, E = as.numeric(E(g)[ProgId %in% oProgIds])
, G = which(names(g$groups) %in% oProgIds)
)
}
otype = match.arg(otype)
if(!AttributeIsMeaningful(name=name, otype=otype, g=g)){
if(add){
g <- AttributeCreate(name=name, otype=otype, g=g)
} else {
if(!quiet){
type = switch(EXPR=otype, V="vertex", E="edge", G="group")
g <- MsgToLogObj(Msg="Attribute `"%.%name%.%"` has no mening for `"%.%type%.%"`. Use add=TRUE or create one by your self.", g=g, add=FALSE)
}
return(g)
}
}
if(otype=="V"){
g <- set.vertex.attribute(graph=g, name=name, index=oids, value=value)
}
if(otype=="E"){
g <- set.edge.attribute(graph=g, name=name, index=oids, value=value)
}
if(otype=="G"){
if (length(g$groups) >= oids){
if(any(g$groups[[oids]]$closed)){
oids = as.numeric(V(g)[ProgId==g$groups[[oids]]$ProgId])[1]
g <- Recall(name, value, oids, otype=c("V"), g=g, add=FALSE, quiet=FALSE)
} else {
if(!all(name %in% c("ProgId", "ProgType"))){
g$groups[[oids]][[name]] = value
}
}
}
}
g
}
AttributeAllSet <- function(name, value, g){
AO = GetActiveObject(g=g)
if(AO$type!="none"){
g <- AttributeSet(name=name, value=value, oProgIds=AO$ProgId, otype=AO$type, g=g, add=FALSE, quiet=FALSE)
} else {
if(length(V(g)[selected])>0 || length(E(g)[selected])>0){
VMeaningful = AttributeIsMeaningful(name, otype="V", g=g)
EMeaningful = AttributeIsMeaningful(name, otype="E", g=g)
if(VMeaningful|EMeaningful){
g <- AttributeSet(name=name, value=value, oids=as.numeric(V(g)[selected]), otype="V", g=g, add=FALSE, quiet=TRUE)
g <- AttributeSet(name=name, value=value, oids=as.numeric(E(g)[selected]), otype="E", g=g, add=FALSE, quiet=TRUE)
} else {
g <- MsgToLogObj(Msg="Attribute `"%.%name%.%"` has no mening nor for vertex nor for edge. Use AttributeCreate to create one.", g=g, add=FALSE)
}
} else {
VO = GetViewObject(g=g)
if(VO$type!="none"){
g <- AttributeSet(name=name, value=value, oProgIds=VO$ProgId, otype=VO$type, g=g, add=FALSE, quiet=FALSE)
}
}
}
g
}
AttributeChange <- function(AttrCommand, g){
eq = tryCatch({parse(text=AttrCommand)[[1]]},
error = function(TechnicalMessage) {
NULL
}, warning = function(TechnicalMessage) {
NULL
})
name = NULL
value = NULL
if(is.call(eq)){
if(as.character(eq[[1]])=="=" && length(eq)==3){
name = as.character(eq[[2]])
value = eq[[3]]
}
}
if(!is.null(name) && !is.null(value)){
g <- AttributeAllSet(name=name, value=value, g=g)
} else {
g <- MsgToLogObj(Msg="Spelling error... try next time.", g=g, add=FALSE)
}
g
} |
library(testthat)
library(rly)
context("Declaration of a state without error")
Lexer <- R6::R6Class("Lexer",
public = list(
tokens = c('NUMBER', 'PLUS','MINUS'),
states = list(c('comment', 'exclusive')),
t_PLUS = '\\+',
t_MINUS = '-',
t_NUMBER = '\\d+',
t_comment = function(re='/\\*', t) {
t$lexer$begin('comment')
},
t_comment_body_part = function(re='(.|\\n)*\\*/', t) {
t$lexer$begin('INITIAL')
},
t_error = function(t) { }
)
)
test_that("no error rule for state", {
expect_output(rly::lex(Lexer),
"WARN .* No error rule is defined for exclusive state 'comment'
WARN .* No ignore rule is defined for exclusive state 'comment'")
}) |
confid.int.theta <-
function(x, y, method=c("chi-sq", "simulate"), conf.level = 0.95, grd = .001,
B = 1000, tol=1e-7, maxit=500){
method <- match.arg(method)
alfa<-1-conf.level
m<-length(x)
n<-length(y)
N<-m+n
lambda<-m/N
z<-c(y,x)
r<-rank(z, ties.method = "max")[1:n]
theta0<-dd.est(x,y)
p0<-phi(N, theta0, lambda)/N
res<-mrle.sporm(x, y, theta0, p0)
phat<-res$p
theta.hat<-res$theta
ell<-res$ell
if(method == "chi-sq"){
Calfa<-qchisq(conf.level,1)
}
else{
LR.b<-NULL
sim.c<-function(){
u<-runif(m)
v<-runif(n)
v<-v/(theta.hat-(theta.hat-1)*v)
rv<-rank(c(v,u), ties.method = "max")[1:n]
theta0<-dd.est(u,v)
p0<-phi(N, theta0, lambda)/N
ell.star<-try(mrle.sporm(u, v, theta0, p0)$ell, TRUE)
p0<-phi(N, theta.hat, lambda)/N
2*(ell.star-try(elltheta(theta.hat, p0, rv, tol, maxit)$ell, TRUE))
}
LR.b <- lapply(1:B, function(i) try(sim.c(), TRUE))
LR.b <-unlist(LR.b[sapply(LR.b, function(x) !inherits(x, "try-error"))])
Calfa<-quantile(LR.b, conf.level)
}
theta<-theta.hat+grd
p<-phat
LR.theta<-2*(ell-elltheta(theta, p, r, tol, maxit)$ell)
while(LR.theta<Calfa){
theta<-theta+grd
tmp<-elltheta(theta, p, r, tol, maxit)
LR.theta<-2*(ell-tmp$ell)
p<-tmp$p
}
theta.U<-theta
theta<-theta.hat-grd
LR.theta<-2*(ell-elltheta(theta, p, r, tol, maxit)$ell)
while(LR.theta<Calfa & theta>0){
theta<-theta-grd
tmp<-elltheta(theta, p, r, tol, maxit)
LR.theta<-2*(ell-tmp$ell)
p<-tmp$p
}
theta.L<-theta
list(theta.L=theta.L, theta.U=theta.U, theta.hat=theta.hat, Calpha=Calfa)
} |
x1 = 1
x2 <- 2
x1
x2
(x3 = 3)
x = c(1, 5, 4, 9, 0)
typeof(x)
length(x)
x = 1:7; x
y <- 2:-2; y
seq(1, 3, by=0.2)
seq(1, 5, length.out=4)
seq(1,5, along.with = c(1,2,13,15,6,7,8,20))
x=c(1,2,13,15,6,7,8,20,30,60); length(x)
x1=110:150
length(x1)
seq(0,1, length.out = length(x1))
seq(0,1, along.with = x1)
seq(0,1, length.out = 60)
(x3=c('S1','S2',"S3"))
class(x3)
(x4=1:10)
class(x4)
(x5=c(TRUE, FALSE, TRUE))
class(x4)
(x5b=c(F, T, T, F))
class(x5b)
x = c(1, 5.4, TRUE, "hello")
x
typeof(x)
u = c(10, 20, 30)
v = c(1, 2, 3, 4, 5, 6, 7, 8, 9)
u + v
u[1]
u[-3]
s = c("aa", "bb", "cc", "dd", "ee")
s[c(2, 3)]
s[-c(4,5)]
s[c(-2,3)]
s[c(2,3,2)]
s[c(2:5)]
s[2:5]
s[c(10)]
s = c("aa", "bb", "cc", "dd", "ee")
L = c(FALSE, TRUE, FALSE, TRUE, FALSE)
s[L]
x = 1:10
x[x<5]
(v = c("Mary", "Sue") )
names(v) = c("First", "Last")
v
v["First"]
v[c("Last", "First")]
(x = 1:10)
x = NULL
x
v1 = c(3,8,4,5,0,11)
v2 = c(4,11,0,8,1,2)
(add.result = v1+v2)
(sub.result = v1-v2)
(multi.result = v1*v2)
(divi.result = v1/v2)
(v1/2)
v = c(3,8,4,5,0,11, -9, 304)
sort(v)
sort(v, decreasing=T)
nums = scan()
nums
names = scan(what='character')
names
x = c(1,4,7,NA,12,19,15,21,20)
mean(x)
mean(x, na.rm=T)
is.na(x)
x[!is.na(x)] |
mdp_check_square_stochastic <- function(X) {
error_msg <- ''
s1 <- dim(X)[1]
s2 <- dim(X)[2]
if (s1 != s2) {
error_msg <- 'MDP Toolbox ERROR: Matrix must be square'
} else if ( max(abs(rowSums(X) - rep(1,s2))) > 10^(-12) ) {
error_msg <- 'MDP Toolbox ERROR: Row sums of the matrix must be 1'
} else if (length(which(X < 0)) > 0) {
error_msg <- 'MDP Toolbox ERROR: Probabilities must be non-negative'
}
return(error_msg)
} |
library("geigen")
source("testgsvd.R")
A <- matrix(1:15, nrow=5,ncol=3)
B <- matrix(c(8,1,6,
3,5,7,
4,9,2), nrow=3)
A
B
z <- gsvd(A,B)
testgsvd(z,A,B) |
comm.as.gbd <- function(X, balance.method = .pbd_env$SPMD.IO$balance.method,
rank.source = .pbd_env$SPMD.CT$rank.source,
comm = .pbd_env$SPMD.CT$comm){
COMM.RANK <- spmd.comm.rank(comm)
ncol.X <- integer(1)
if(COMM.RANK == rank.source){
if(!is.matrix(X)){
stop("X should be a matrix.")
}
ncol.X <- ncol(X)
}
ncol.X <- spmd.bcast.integer(ncol.X, rank.source = rank.source, comm = comm)
if(COMM.RANK != rank.source){
X <- matrix(0, nrow = 0, ncol = ncol.X)
}
ret <- comm.load.balance(X, balance.method = balance.method, comm = comm)
ret
} |
data_file <- "../test_data/test_table_pangia.txt"
the_list <- load_edge_assignments(data_file, type = 'pangia')
expect_that(length(the_list), equals(3))
expect_that(names(the_list)[3], equals("test_all_taxa"))
expect_that(load_edge_assignments("../test_data/nonexistentfile.txt", type = 'pangia'), throws_error()) |
.newMethodObj_ODSDesign <- function(info, par, minData) {
npar <- length(x = par)
ccObj <- .newMethodObj_CaseCohort(info = list("wg" = 1.0, "wb" = 1.0),
par = par[1L:{npar-2L}],
minData = minData)
return( c(info, ccObj,
"pi1" = 1.0 / {1.0 + exp(x = -par[npar-1L])},
"pi2" = 1.0 / {1.0 + exp(x = -par[npar])}) )
}
.G <- function(object, ...) {
Su <- object$baseInfo$U$S
Sv <- object$baseInfo$V$S
G1 <- object$I1 * {1.0-Su} + object$I2 * {Su - Sv}
G2 <- object$I3 * {Su - Sv}
return( list("G1" = G1, "G2" = G2) )
}
.dG <- function(object, i, ...) {
dSu <- .derivS(object = object$baseInfo$U,
i = i,
beta = object$baseInfo$beta,
et = object$baseInfo$et)
dSv <- .derivS(object = object$baseInfo$V,
i = i,
beta = object$baseInfo$beta,
et = object$baseInfo$et)
G1t <- -object$I1[i]*dSu$St + object$I2[i]*{dSu$St-dSv$St}
G2t <- object$I3[i]*{dSu$St - dSv$St}
G1tt <- -object$I1[i]*dSu$Stt + object$I2[i]*{dSu$Stt - dSv$Stt}
G2tt <- object$I3[i]*{dSu$Stt - dSv$Stt}
return( list("d1g1" = unname(obj = G1t),
"d1g2" = unname(obj = G2t),
"d2g1" = unname(obj = G1tt),
"d2g2" = unname(obj = G2tt)) )
}
.d1G <- function(object, ...) {
dSu <- .deriv1S(object = object$baseInfo$U,
beta = object$baseInfo$beta,
et = object$baseInfo$et)
dSv <- .deriv1S(object = object$baseInfo$V,
beta = object$baseInfo$beta,
et = object$baseInfo$et)
G1t <- -object$I1*dSu + object$I2*{dSu-dSv}
G2t <- object$I3*{dSu - dSv}
return( list("d1g1" = unname(obj = G1t), "d1g2" = unname(obj = G2t)) )
}
.piece <- function(object) {
Gs <- .G(object = object)
slz <- sum(log(x = {object$n0 +
object$n1*Gs$G1/object$pi1 +
object$n2*Gs$G2/object$pi2}))
res <- slz + object$n1*log(x = object$pi1) + object$n2*log(x = object$pi2)
return( res )
}
.dPiece <- function(object) {
Gs <- .G(object = object)
n1p1 <- object$n1 / object$pi1
n2p2 <- object$n2 / object$pi2
temp2 <- -n1p1*Gs$G1*{1.0-object$pi1}
temp3 <- -n2p2*Gs$G2*{1.0-object$pi2}
temp4 <- 1.0/{object$n0 + n1p1*Gs$G1 + n2p2*Gs$G2}
temp5 <- c(rep(x = 0, times = object$np),
object$n1*{1.0-object$pi1},
object$n2*{1.0-object$pi2})
dG1 <- .d1G(object = object)
temp1 <- n1p1*dG1$d1g1 + n2p2*dG1$d1g2
n <- nrow(x = temp1)
l2xi <- cbind(temp1*temp4, temp2*temp4, temp3*temp4)
return( unname(obj = t(x = {t(x = l2xi) + temp5/n})) )
}
.ddPiece <- function(object) {
np <- object$np + 2L
Gs <- .G(object = object)
n1p1 <- object$n1 / object$pi1
n2p2 <- object$n2 / object$pi2
term <- object$n0 + n1p1*Gs$G1 + n2p2*Gs$G2
hess2 <- matrix(data = 0.0, nrow = 2L, ncol = 2L)
temp33 <- n1p1*Gs$G1*{1.0-object$pi1}/term
temp34 <- n2p2*Gs$G2*{1.0-object$pi2}/term
hess2[1L,1L] <- sum(temp33*{temp33 - 1.0})
hess2[1L,2L] <- sum(temp33*temp34)
hess2[2L,2L] <- sum(temp34*{temp34 - 1.0})
res <- matrix(data = 0.0, nrow = {np-2L}, ncol = {np-2L})
hess4 <- matrix(data = 0.0, nrow = 2L, ncol = {np-2L})
for (i in 1L:length(x = term)) {
dGs <- .dG(object = object, i = i)
temp21 <- n1p1*dGs$d2g1 + n2p2*dGs$d2g2
temp22 <- n1p1*dGs$d1g1 + n2p2*dGs$d1g2
temp22 <- temp22 %o% temp22
itemp23 <- 1.0/term[i]
res <- res + {-temp21 + temp22*itemp23}*itemp23
temp31 <- n1p1*dGs$d1g1*{1.0-object$pi1}*itemp23
temp32 <- n2p2*dGs$d1g2*{1.0-object$pi2}*itemp23
temp35 <- {n1p1*dGs$d1g1 + n2p2*dGs$d1g2}*itemp23
hess4[1L,] <- hess4[1L,] + {temp31 - temp35*temp33[i]}
hess4[2L,] <- hess4[2L,] + {temp32 - temp35*temp34[i]}
}
hess1 <- res
hess3 <- t(x = hess4)
hess2[1L,1L] <- hess2[1L,1L] - object$n1*object$pi1*(object$pi1-1L)
hess2[2L,2L] <- hess2[2L,2L] - object$n2*object$pi2*(object$pi2-1L)
hess2[2L,1L] <- hess2[1L,2L]
return( -rbind(cbind(hess1, hess3),cbind(hess4,hess2)) )
}
.loglik_ODSDesign <- function(object, ...) {
if (object$pi1 < 1e-8 || object$pi1 >= 1.0) return( Inf )
if (object$pi2 < 1e-8 || object$pi2 >= 1.0) return( Inf )
logl <- - .loglik_CaseCohort(object = object, ...)
res <- -{logl - .piece(object = object)}
if (is.nan(x = res)) return( Inf )
return( res )
}
.dloglik_ODSDesign <- function(object, ...) {
lxi <- .dloglik_CaseCohort(object = object, ...)
lxi <- cbind(-lxi, 0.0, 0.0)
l2 <- .dPiece(object = object)
lxi <- lxi - l2
return( -lxi )
}
.ddloglik_ODSDesign <- function(object, ...) {
hess1 <- .ddloglik_CaseCohort(object = object, ...)
hess1 <- rbind(cbind(hess1, 0, 0),0,0)
hess2 <- .ddPiece(object = object)
return( unname(obj = hess1 + hess2) )
}
.se_ODSDesign <- function(object, ...) {
np <- length(x = object$baseInfo$beta)
Jh <- .ddloglik_ODSDesign(object = object)
res <- .dloglik_ODSDesign(object = object)
V0 <- cov(x = res[1L:object$n0,,drop=FALSE])
V1 <- cov(x = res[{object$n0+1L}:{object$n0+object$n1},,drop=FALSE])
V2 <- cov(x = res[{object$n0+object$n1+1L}:{object$n0+object$n1+object$n2},,drop=FALSE])
Sigh <- object$n0*V0 + object$n1*V1 + object$n2*V2
Sigma <- ginv(X = Jh) %*% Sigh %*% ginv(X = Jh)
se <- sqrt(x = diag(Sigma[1L:np,1L:np,drop=FALSE]))
names(x = se) <- names(x = object$baseInfo$beta)
return( se )
} |
add_nodes_attr <- function(graph,
input = "df",
data,
dir_path = NULL,
layer = NULL,
index = "Id",
include = "all"){
if(!inherits(graph, "igraph")){
stop("'graph' must be an object of class 'igraph'.")
} else if (is.null(igraph::V(graph)$name)){
stop("'graph' must have nodes' names.")
}
nds.names <- as.character(igraph::V(graph)$name)
if(input == "df"){
if(!inherits(data, "data.frame")){
stop("'data' must be a data.frame when 'input = 'df''.")
} else if (!(index %in% names(data))){
stop("'index' must be the name of a column of 'data'.")
}
} else if (input == "shp"){
if(any(c(is.null(dir_path),
is.null(layer)))){
stop("'dir_path' and 'layer' must be character strings when
'input = 'shp''.")
} else if(!all(c(inherits(dir_path, "character"),
inherits(layer, "character")))){
stop("'dir_path' and 'layer' must be character strings when
'input = 'shp''.")
} else {
sink("aux")
data <- suppressWarnings(sf::as_Spatial(sf::st_read(dsn = dir_path,
layer = layer)))
sink(NULL)
data <- data.frame(data@data)
if (!(index %in% names(data))){
stop("'index' must be the name of a column of the attribute table
of 'layer'.")
}
}
} else {
stop("You must specify a correct 'input' option ('df' or 'shp').")
}
data.names <- as.character(data[, index])
if(!all(nds.names %in% data.names)){
stop("Column 'index' from input data must contain the nodes names
of 'data'.")
}
data <- data[which(data.names %in% nds.names), ]
data <- data[match(nds.names, data[, index]), ]
attrib <- setdiff( names(data), index )
if(inherits(include, "character")){
if(length(include) > 1){
attrib <- attrib[which(attrib %in% include)]
} else if (include == "all"){
NULL
} else {
attrib <- attrib[which(attrib %in% include)]
}
} else {
stop("'include' must be a character string or a vector
of character strings.")
}
if(length(attrib) == 0){
stop("Elements of 'include' must be attributes names from input data.")
}
for (i in 1:length(attrib)){
graph <- igraph::set_vertex_attr(graph, attrib[i],
value = data[, attrib[i]])
}
return(graph)
} |
order_eepg <- function(size,spec,lambda,a,k,n,alpha=0.05,...){
sample <- qeepg(initial_order(size,k,n),spec,lambda,a,...)
pdf <- factorial(size)*cumprod(deepg(sample,spec,lambda,a,...))[size]
if(size>5){
return(list(sample=sample,pdf=pdf,ci_median=interval_median(size,sample,alpha)))
}
cat("---------------------------------------------------------------------------------------------\n")
cat("We cannot report the confidence interval. The size of the sample is less or equal than five.\n")
return(list(sample=sample,pdf=pdf))
} |
simulationSpectral <-function(object,conditionalSimulation=FALSE,Ncos=100){
theta <- object$dmodeltheta
lsq <- 1/theta
mu <- object$mu
sigmas <- object$ssq
dimension <- length(theta)
omegavar <- 2/lsq
omega <- matrix(rnorm(Ncos*dimension,0,sqrt(omegavar)),dimension)
phi <- runif(Ncos,-pi,pi)
multiplier <- sqrt(sigmas) * sqrt(2/Ncos)
fun <- function(xx){
xx <- normalizeMatrix2(data.matrix(xx),0,1,object$normalizexmin,object$normalizexmax)
y <- multiplier * colSums( cos(t(xx%*%omega)+ phi))
y <- y+mu
return(y)
}
force(fun)
if(conditionalSimulation){
objectSim <- object
xsim <- objectSim$x
ysim <- object$y-fun(xsim)
objectSim$y <- ysim
objectSim$yonemu <- ysim
objectSim$mu <- 0
force(objectSim)
funConditional <- function(xx){
y <- fun(xx) + predict(objectSim,xx)$y
return(y)
}
return(funConditional)
}else{
return(fun)
}
}
simulationDecompose <- function(object,nsim=1,xsim,conditionalSimulation=TRUE,returnAll=FALSE,...){
len <- nrow(xsim)
noise <- matrix(rnorm(len*nsim),len, nsim)
covar <- getCorrelationMatrix(object,xsim)
if(conditionalSimulation){
object$returnCrossCor <- TRUE
ret <- predict(object,xsim)
y <- ret$y
psi <- ret$psi
covarDifference <- covar - psi %*% object$Psinv %*% t(psi)
eigv <- eigen(object$ssq *covarDifference,symmetric=T)
covarDecomposed <- eigv$vectors %*% diag(sqrt(abs(eigv$values))) %*% eigv$vectors
ysim <- covarDecomposed %*% noise
y <- matrix(y,len,nsim) + ysim
}else{
eigv <- eigen(object$ssq * covar,symmetric=T)
covarDecomposed <- eigv$vectors %*% diag(sqrt(abs(eigv$values))) %*% eigv$vectors
y <- object$mu + covarDecomposed %*% noise
}
res <- list(y=y,psi=covar)
if(returnAll)
return(res)
else
return(y)
}
simulate.kriging <- function(object,nsim=1,seed=NA,xsim,method="decompose",conditionalSimulation=TRUE,Ncos=10,returnAll=FALSE,...){
if (!is.na(seed)){
if (!exists(".Random.seed", envir = .GlobalEnv, inherits = FALSE))
runif(1)
R.seed <- get(".Random.seed", envir = .GlobalEnv)
set.seed(seed)
on.exit(assign(".Random.seed", R.seed, envir = .GlobalEnv))
}
if(method=="decompose"){
simresult <- simulationDecompose(object=object,xsim=xsim,nsim=nsim,conditionalSimulation=conditionalSimulation,returnAll=returnAll)
return(simresult)
}else if(method=="spectral"){
simresult <- NULL
simfun <- NULL
for(i in 1:nsim){
res <- simulationSpectral(object=object,conditionalSimulation=conditionalSimulation,Ncos=Ncos)
simresult <- cbind(simresult,res(xsim))
simfun <- c(simfun,res)
}
if(returnAll){
return(list(y=simresult,simfun=simfun))
}else{
return(simresult)
}
}else{
stop("The specified method used in simulate.kriging does not exist. Use 'decompose' or 'spectal'")
}
}
getCorrelationMatrix <- function(object,x){
x <- normalizeMatrix2(data.matrix(x),0,1,object$normalizexmin,object$normalizexmax)
k <- ncol(x)
n <- nrow(x)
A<-matrix(0,k,n*n)
for(i in 1:k){
if(object$types[i]!="factor"){
A[i,]<-as.numeric(as.matrix(dist(x[,i])))
}else {
tmp <- outer(x[,i],x[,i],'!=')
class(tmp) <- "numeric"
A[i,]<-tmp
}
}
theta <- object$dmodeltheta
if(object$optimizeP)
p <- object$P
else
p <- rep(2,k)
A <- abs(A)^p
Psi <- exp(-matrix(colSums(theta*A),n,n))
if(object$useLambda){
lambda <- object$dmodellambda
Psi <- Psi+diag(lambda,n)
}
Psi
}
simulateFunction <- function(object,nsim=1, seed=NA, method="spectral", xsim=NA, Ncos=10,
conditionalSimulation=TRUE){
if(any(is.na(xsim)) & method=="decompose"){
stop("simulatedBenchmarkFunction can not create a benchmark function via simulation, if method=='decompose' and xsim is not provided (is NA).")
}
force(object)
if (!is.na(seed)){
if (!exists(".Random.seed", envir = .GlobalEnv, inherits = FALSE))
runif(1)
R.seed <- get(".Random.seed", envir = .GlobalEnv)
set.seed(seed)
on.exit(assign(".Random.seed", R.seed, envir = .GlobalEnv))
}
if(method=="decompose"){
simfit <- simulate(object=object,nsim=nsim,seed=NA,xsim=xsim,conditionalSimulation=conditionalSimulation,returnAll=TRUE)
ynew <- simfit$y
object$Psi <- simfit$psi
object$Psinv <- MASS::ginv(object$Psi)
object$x <- xsim
object$scaledx <- normalizeMatrix2(data.matrix(xsim),0,1,object$normalizexmin,object$normalizexmax)
fun <- list()
for(i in 1:nsim){
object$y <- ynew[,i,drop=FALSE]
object$yonemu <- ynew[,i,drop=FALSE] - object$mu
testFun <- NULL
assign("testFun", eval(substitute(
function(x){
predict(object,x)$y
},
list(object=object)
)
),
envir=environment())
fun[[i]] <- testFun
}
}else if(method=="spectral"){
fun <- list()
for(i in 1:nsim){
fun[[i]] <- simulationSpectral(object,conditionalSimulation=conditionalSimulation,Ncos=Ncos)
}
}else{
stop("The specified method in simulatedBenchmarkFunction does not exist. Use 'decompose' or 'spectal'")
}
return(fun)
} |
context("test-leafgl-color_utils")
library(leaflet)
library(sf)
library(jsonify)
n = 1e2
df1 = data.frame(id = 1:n, id2 = n:1,
x = rnorm(n, 10, 1),
y = rnorm(n, 49, 0.8))
pts = st_as_sf(df1, coords = c("x", "y"), crs = 4326)
lines = suppressWarnings(st_cast(st_as_sf(atlStorms2005), "LINESTRING"));
polys <- suppressWarnings(st_cast(st_as_sf(gadmCHE), "POLYGON"))
test_that("Character as color", {
m <- leaflet() %>%
addGlPoints(data = pts,
fillColor = "red",
group = "pts");
expect_is(m, "leaflet")
expect_is(m$x$calls[[1]]$args[[2]], "json")
expect_true(validate_json(m$x$calls[[1]]$args[[2]]))
rm(m)
m <- leaflet() %>%
addGlPoints(data = pts,
fillColor = "red",
src = TRUE,
group = "pts")
expect_is(m, "leaflet")
expect_identical(m$x$calls[[1]]$method, "addGlifyPointsSrc")
rm(m)
m <- leaflet() %>%
addGlPoints(data = st_sfc(st_geometry(pts)),
fillColor = "red",
group = "pts");
expect_is(m, "leaflet")
expect_is(m$x$calls[[1]]$args[[2]], "json")
expect_true(validate_json(m$x$calls[[1]]$args[[2]]))
rm(m)
m <- leaflet() %>%
addGlPolylines(data = lines,
color = "red",
group = "lns");
expect_is(m, "leaflet")
expect_is(m$x$calls[[1]]$args[[2]], "json")
expect_true(validate_json(m$x$calls[[1]]$args[[2]]))
rm(m)
m <- leaflet() %>%
addGlPolygons(data = polys,
color = "red",
group = "lns");
expect_is(m, "leaflet")
expect_is(m$x$calls[[1]]$args[[2]], "json")
expect_true(validate_json(m$x$calls[[1]]$args[[2]]))
rm(m)
m <- leaflet() %>%
addGlPoints(data = pts,
fillColor = "id",
group = "pts");
expect_is(m, "leaflet")
expect_is(m$x$calls[[1]]$args[[2]], "json")
expect_true(validate_json(m$x$calls[[1]]$args[[2]]))
rm(m)
m <- leaflet() %>%
addGlPolylines(data = lines,
color = "Name",
group = "lns");
expect_is(m, "leaflet")
expect_is(m$x$calls[[1]]$args[[2]], "json")
expect_true(validate_json(m$x$calls[[1]]$args[[2]]))
rm(m)
m <- leaflet() %>%
addGlPolygons(data = polys,
color = "NUTS_ID",
group = "lns");
expect_is(m, "leaflet")
expect_is(m$x$calls[[1]]$args[[2]], "json")
expect_true(validate_json(m$x$calls[[1]]$args[[2]]))
rm(m)
m <- leaflet() %>%
addGlPoints(data = pts,
fillColor = "
group = "pts");
expect_is(m, "leaflet")
expect_is(m$x$calls[[1]]$args[[2]], "json")
expect_true(validate_json(m$x$calls[[1]]$args[[2]]))
rm(m)
m <- leaflet() %>%
addGlPolylines(data = lines,
color = "
group = "lns");
expect_is(m, "leaflet")
expect_is(m$x$calls[[1]]$args[[2]], "json")
expect_true(validate_json(m$x$calls[[1]]$args[[2]]))
rm(m)
m <- leaflet() %>%
addGlPolygons(data = polys,
color = "
group = "lns");
expect_is(m, "leaflet")
expect_is(m$x$calls[[1]]$args[[2]], "json")
expect_true(validate_json(m$x$calls[[1]]$args[[2]]))
rm(m)
m <- leaflet() %>%
addGlPolylines(data = lines,
color = "FGN",
group = "lns");
expect_is(m, "leaflet")
expect_is(m$x$calls[[1]]$args[[2]], "json")
expect_true(validate_json(m$x$calls[[1]]$args[[2]]))
rm(m)
m <- leaflet() %>%
addGlPolylines(data = lines,
color = "FGN",
palette = "rainbow",
group = "lns");
expect_is(m, "leaflet")
expect_is(m$x$calls[[1]]$args[[2]], "json")
expect_true(validate_json(m$x$calls[[1]]$args[[2]]))
rm(m)
})
test_that("Formula as color", {
m <- leaflet() %>%
addGlPoints(data = pts,
fillColor = ~id,
group = "pts");
expect_is(m, "leaflet")
expect_is(m$x$calls[[1]]$args[[2]], "json")
expect_true(validate_json(m$x$calls[[1]]$args[[2]]))
rm(m)
m <- leaflet() %>%
addGlPoints(data = pts,
fillColor = ~id,
palette = "rainbow",
group = "pts");
expect_is(m, "leaflet")
expect_is(m$x$calls[[1]]$args[[2]], "json")
expect_true(validate_json(m$x$calls[[1]]$args[[2]]))
rm(m)
m <- leaflet() %>%
addGlPoints(data = pts,
fillColor = ~id,
palette = "rainbow",
group = "pts",
src = TRUE)
expect_is(m, "leaflet")
expect_null(m$x$calls[[1]]$args[[1]])
rm(m)
m <- leaflet() %>%
addGlPolylines(data = lines,
color = ~Name,
group = "lns");
expect_is(m, "leaflet")
expect_is(m$x$calls[[1]]$args[[2]], "json")
expect_true(validate_json(m$x$calls[[1]]$args[[2]]))
rm(m)
m <- leaflet() %>%
addGlPolylines(data = lines,
color = ~Name,
palette = "rainbow",
group = "lns");
expect_is(m, "leaflet")
expect_is(m$x$calls[[1]]$args[[2]], "json")
expect_true(validate_json(m$x$calls[[1]]$args[[2]]))
rm(m)
m <- leaflet() %>%
addGlPolylines(data = lines,
color = ~Name,
palette = "rainbow",
group = "lns",
src = TRUE);
expect_is(m, "leaflet")
expect_null(m$x$calls[[1]]$args[[1]])
rm(m)
m <- leaflet() %>%
addGlPolygons(data = polys,
color = ~NAME_1,
group = "lns");
expect_is(m, "leaflet")
expect_is(m$x$calls[[1]]$args[[2]], "json")
expect_true(validate_json(m$x$calls[[1]]$args[[2]]))
rm(m)
m <- leaflet() %>%
addGlPolygons(data = polys,
color = ~NAME_1,
palette = "rainbow",
group = "lns");
expect_is(m, "leaflet")
expect_is(m$x$calls[[1]]$args[[2]], "json")
expect_true(validate_json(m$x$calls[[1]]$args[[2]]))
rm(m)
m <- leaflet() %>%
addGlPolygons(data = polys,
color = ~NAME_1,
palette = "rainbow",
group = "lns",
src = TRUE)
expect_is(m, "leaflet")
expect_null(m$x$calls[[1]]$args[[1]])
})
test_that("Tables as color", {
m <- leaflet() %>%
addGlPoints(data = pts,
fillColor = cbind(180,1,10),
group = "pts");
expect_is(m, "leaflet")
expect_is(m$x$calls[[1]]$args[[2]], "json")
expect_true(validate_json(m$x$calls[[1]]$args[[2]]))
rm(m)
m <- leaflet() %>%
addGlPoints(data = pts,
fillColor = cbind("180","1","10"),
group = "pts");
expect_is(m, "leaflet")
expect_is(m$x$calls[[1]]$args[[2]], "json")
expect_true(validate_json(m$x$calls[[1]]$args[[2]]))
rm(m)
m <- leaflet() %>%
addGlPoints(data = pts,
fillColor = cbind(0.12, 0.9, 0.01),
group = "pts");
expect_is(m, "leaflet")
expect_is(m$x$calls[[1]]$args[[2]], "json")
expect_true(validate_json(m$x$calls[[1]]$args[[2]]))
rm(m)
m <- leaflet() %>%
addGlPolylines(data = lines,
color = cbind(180,1,10),
group = "lns");
expect_is(m, "leaflet")
expect_is(m$x$calls[[1]]$args[[2]], "json")
expect_true(validate_json(m$x$calls[[1]]$args[[2]]))
rm(m)
m <- leaflet() %>%
addGlPolygons(data = polys,
color = cbind(180,1,10),
group = "lns");
expect_is(m, "leaflet")
expect_is(m$x$calls[[1]]$args[[2]], "json")
expect_true(validate_json(m$x$calls[[1]]$args[[2]]))
rm(m)
m <- leaflet() %>%
addGlPoints(data = pts,
fillColor = matrix(sample(1:255, nrow(pts)*3, TRUE), ncol = 3),
group = "pts");
expect_is(m, "leaflet")
expect_is(m$x$calls[[1]]$args[[2]], "json")
expect_true(validate_json(m$x$calls[[1]]$args[[2]]))
rm(m)
m <- leaflet() %>%
addGlPolylines(data = lines,
color = matrix(sample(1:255, nrow(lines)*3, TRUE), ncol = 3),
group = "lns");
expect_is(m, "leaflet")
expect_is(m$x$calls[[1]]$args[[2]], "json")
expect_true(validate_json(m$x$calls[[1]]$args[[2]]))
rm(m)
m <- leaflet() %>%
addGlPolygons(data = polys,
color = matrix(sample(1:255, nrow(polys)*3, TRUE), ncol = 3),
group = "lns");
expect_is(m, "leaflet")
expect_is(m$x$calls[[1]]$args[[2]], "json")
expect_true(validate_json(m$x$calls[[1]]$args[[2]]))
rm(m)
m <- leaflet() %>%
addGlPoints(data = pts,
fillColor = data.frame(cbind(180,1,10)),
group = "pts");
expect_is(m, "leaflet")
expect_is(m$x$calls[[1]]$args[[2]], "json")
expect_true(validate_json(m$x$calls[[1]]$args[[2]]))
rm(m)
m <- leaflet() %>%
addGlPoints(data = pts,
fillColor = data.frame(matrix(sample(1:255, nrow(pts)*3, TRUE), ncol = 3)),
group = "pts");
expect_is(m, "leaflet")
expect_is(m$x$calls[[1]]$args[[2]], "json")
expect_true(validate_json(m$x$calls[[1]]$args[[2]]))
rm(m)
})
test_that("Numeric as color", {
m <- leaflet() %>%
addGlPoints(data = pts,
fillColor = 120L,
group = "pts");
expect_is(m, "leaflet")
expect_is(m$x$calls[[1]]$args[[2]], "json")
expect_true(validate_json(m$x$calls[[1]]$args[[2]]))
rm(m)
m <- leaflet() %>%
addGlPolylines(data = lines,
color = 120L,
group = "lns");
expect_is(m, "leaflet")
expect_is(m$x$calls[[1]]$args[[2]], "json")
expect_true(validate_json(m$x$calls[[1]]$args[[2]]))
rm(m)
m <- leaflet() %>%
addGlPolygons(data = polys,
color = 120L,
group = "lns");
expect_is(m, "leaflet")
expect_is(m$x$calls[[1]]$args[[2]], "json")
expect_true(validate_json(m$x$calls[[1]]$args[[2]]))
rm(m)
m <- leaflet() %>%
addGlPoints(data = pts,
fillColor = 30.43,
group = "pts");
expect_is(m, "leaflet")
expect_is(m$x$calls[[1]]$args[[2]], "json")
expect_true(validate_json(m$x$calls[[1]]$args[[2]]))
rm(m)
m <- leaflet() %>%
addGlPolylines(data = lines,
color = 30.43,
group = "lns");
expect_is(m, "leaflet")
expect_is(m$x$calls[[1]]$args[[2]], "json")
expect_true(validate_json(m$x$calls[[1]]$args[[2]]))
rm(m)
m <- leaflet() %>%
addGlPolygons(data = polys,
color = 30.43,
group = "lns");
expect_is(m, "leaflet")
expect_is(m$x$calls[[1]]$args[[2]], "json")
expect_true(validate_json(m$x$calls[[1]]$args[[2]]))
rm(m)
m <- leaflet() %>%
addGlPoints(data = pts,
fillColor = as.factor(130),
group = "pts");
expect_is(m, "leaflet")
expect_is(m$x$calls[[1]]$args[[2]], "json")
expect_true(validate_json(m$x$calls[[1]]$args[[2]]))
rm(m)
m <- leaflet() %>%
addGlPoints(data = pts,
fillColor = as.factor(c("asd")),
group = "pts");
expect_is(m, "leaflet")
expect_is(m$x$calls[[1]]$args[[2]], "json")
expect_true(validate_json(m$x$calls[[1]]$args[[2]]))
rm(m)
m <- expect_warning(leaflet() %>%
addGlPoints(data = pts,
fillColor = as.factor(c("asd","bdc","fds")),
group = "pts"))
expect_is(m, "leaflet")
expect_is(m$x$calls[[1]]$args[[2]], "json")
expect_true(validate_json(m$x$calls[[1]]$args[[2]]))
rm(m)
m <- leaflet() %>%
addGlPolylines(data = lines,
fillColor = as.factor(130),
group = "lns");
expect_is(m, "leaflet")
expect_is(m$x$calls[[1]]$args[[2]], "json")
expect_true(validate_json(m$x$calls[[1]]$args[[2]]))
rm(m)
m <- leaflet() %>%
addGlPolygons(data = polys,
color = as.factor(130),
group = "lns");
expect_is(m, "leaflet")
expect_is(m$x$calls[[1]]$args[[2]], "json")
expect_true(validate_json(m$x$calls[[1]]$args[[2]]))
rm(m)
})
test_that("List as color", {
m <- expect_warning(leaflet() %>%
addGlPoints(data = pts,
fillColor = list(1,2),
group = "pts"))
expect_is(m, "leaflet")
expect_is(m$x$calls[[1]]$args[[2]], "json")
expect_true(validate_json(m$x$calls[[1]]$args[[2]]))
rm(m)
m <- leaflet() %>%
addGlPoints(data = pts,
fillColor = list(100),
group = "pts")
expect_is(m, "leaflet")
expect_is(m$x$calls[[1]]$args[[2]], "json")
expect_true(validate_json(m$x$calls[[1]]$args[[2]]))
rm(m)
m <- leaflet() %>%
addGlPoints(data = pts,
fillColor = list(matrix(sample(1:255, nrow(pts)*3, replace = T), ncol = 3)),
group = "pts")
expect_is(m, "leaflet")
expect_is(m$x$calls[[1]]$args[[2]], "json")
expect_true(validate_json(m$x$calls[[1]]$args[[2]]))
rm(m)
m <- leaflet() %>%
addGlPoints(data = pts,
fillColor = lapply(1:nrow(pts), function(x) matrix(sample(1:255, 3), ncol = 3)),
group = "pts")
expect_is(m, "leaflet")
expect_is(m$x$calls[[1]]$args[[2]], "json")
expect_true(validate_json(m$x$calls[[1]]$args[[2]]))
rm(m)
m <- expect_warning(leaflet() %>%
addGlPoints(data = pts,
fillColor = list(c(100,200), cbind(2,1)),
group = "pts"))
expect_is(m, "leaflet")
expect_is(m$x$calls[[1]]$args[[2]], "json")
expect_true(validate_json(m$x$calls[[1]]$args[[2]]))
rm(m)
})
test_that("JSON as color", {
m <- leaflet() %>%
addGlPoints(data = pts,
fillColor = jsonify::to_json(list(matrix(sample(1:255, nrow(pts)*3, replace = T), ncol = 3))),
group = "pts");
expect_is(m, "leaflet")
expect_is(m$x$calls[[1]]$args[[2]], "json")
expect_true(validate_json(m$x$calls[[1]]$args[[2]]))
rm(m)
m <- leaflet() %>%
addGlPoints(data = pts,
fillColor = jsonify::to_json(data.frame(r = 54, g = 186, b = 1)),
group = "pts");
expect_is(m, "leaflet")
expect_is(m$x$calls[[1]]$args[[2]], "json")
expect_true(validate_json(m$x$calls[[1]]$args[[2]]))
rm(m)
m <- expect_warning(leaflet() %>%
addGlPoints(data = pts,
fillColor = jsonify::to_json(data.frame(r = c(54, 123),
g = c(1, 186),
b = c(1, 123))),
group = "pts"))
expect_is(m, "leaflet")
expect_is(m$x$calls[[1]]$args[[2]], "json")
expect_true(validate_json(m$x$calls[[1]]$args[[2]]))
rm(m)
})
test_that("Date/POSIX* as color", {
m <- leaflet() %>%
addGlPoints(data = pts,
fillColor = as.POSIXlt(Sys.time(), "America/New_York"),
group = "pts");
expect_is(m, "leaflet")
expect_is(m$x$calls[[1]]$args[[2]], "json")
expect_true(validate_json(m$x$calls[[1]]$args[[2]]))
rm(m)
m <- leaflet() %>%
addGlPoints(data = pts,
fillColor = Sys.time(),
group = "pts");
expect_is(m, "leaflet")
expect_is(m$x$calls[[1]]$args[[2]], "json")
expect_true(validate_json(m$x$calls[[1]]$args[[2]]))
rm(m)
m <- leaflet() %>%
addGlPoints(data = pts,
fillColor = Sys.Date(),
group = "pts");
expect_is(m, "leaflet")
expect_is(m$x$calls[[1]]$args[[2]], "json")
expect_true(validate_json(m$x$calls[[1]]$args[[2]]))
rm(m)
})
test_that("Warnings / Errors", {
m <- expect_warning(leaflet() %>%
addGlPoints(data = pts,
fillColor = matrix(33:98, ncol = 3, byrow = F),
group = "pts"))
expect_is(m, "leaflet")
expect_is(m$x$calls[[1]]$args[[2]], "json")
expect_true(validate_json(m$x$calls[[1]]$args[[2]]))
rm(m)
m <- expect_warning(leaflet() %>%
addGlPoints(data = pts,
fillColor = data.frame(matrix(33:98, ncol = 3, byrow = F)),
group = "pts"));
expect_is(m, "leaflet")
expect_is(m$x$calls[[1]]$args[[2]], "json")
expect_true(validate_json(m$x$calls[[1]]$args[[2]]))
rm(m)
m <- expect_warning(leaflet() %>%
addGlPoints(data = pts,
fillColor = 1:33,
group = "pts"))
expect_is(m, "leaflet")
expect_is(m$x$calls[[1]]$args[[2]], "json")
expect_true(validate_json(m$x$calls[[1]]$args[[2]]))
rm(m)
expect_warning(expect_error(leaflet() %>%
addGlPoints(data = pts,
fillColor = cbind("asf","fasd", "fasd"),
group = "pts")))
}) |
knitr::opts_chunk$set(
collapse = TRUE,
comment = "
fig.width=6,
fig.height=5
)
library(synr)
library(dbscan)
library(plotly)
plot_color_clusters <- function(
color_matrix,
cluster_vector,
grapheme_vector=NULL,
ax_min = 0, ax_max = 1
) {
if (!is.null(grapheme_vector)) {
fig <- plot_ly(
x=color_matrix[, 1],
y=color_matrix[, 2],
z=color_matrix[, 3],
type="scatter3d",
mode="markers",
color=cluster_vector,
customdata = grapheme_vector,
hovertemplate = 'Axis 1: %{x}<br>Axis 2: %{y}<br>Axis 3: %{z}<br>Grapheme: %{customdata}'
)
} else {
fig <- plot_ly(
x=color_matrix[, 1],
y=color_matrix[, 2],
z=color_matrix[, 3],
type="scatter3d",
mode="markers",
color=cluster_vector,
hovertemplate = 'Axis 1: %{x}<br>Axis 2: %{y}<br>Axis 3: %{z}<br>'
)
}
axis_title_font <- list(
family = "Courier New, monospace",
size = 18,
color = "
)
x_axis_layout <- list(
title = list(
text = "Axis 1",
font = axis_title_font
),
range = c(ax_min, ax_max)
)
y_axis_layout <- list(
title = list(
text = "Axis 2",
font = axis_title_font
),
range = c(ax_min, ax_max)
)
z_axis_layout <- list(
title = list(
text = "Axis 3",
font = axis_title_font
),
range = c(ax_min, ax_max)
)
fig <- fig %>% layout(
scene = list(
xaxis = x_axis_layout,
yaxis = y_axis_layout,
zaxis = z_axis_layout
)
) %>%
partial_bundle()
return(fig)
}
plot_actual_colors <- function(
color_matrix,
hex_codes,
grapheme_vector = NULL,
ax_min = 0,
ax_max = 1
) {
if (!is.null(grapheme_vector)) {
fig <- plot_ly(
x=color_matrix[, 1],
y=color_matrix[, 2],
z=color_matrix[, 3],
type="scatter3d",
mode="markers",
customdata = grapheme_vector,
marker = list(color = hex_codes),
hovertemplate = 'Axis 1: %{x}<br>Axis 2: %{y}<br>Axis 3: %{z}<br>Grapheme: %{customdata}'
)
} else {
fig <- plot_ly(
x=color_matrix[, 1],
y=color_matrix[, 2],
z=color_matrix[, 3],
type="scatter3d",
mode="markers",
marker = list(color = hex_codes),
hovertemplate = 'Axis 1: %{x}<br>Axis 2: %{y}<br>Axis 3: %{z}<br>'
)
}
axis_title_font <- list(
family = "Courier New, monospace",
size = 18,
color = "
)
x_axis_layout <- list(
title = list(
text = "Axis 1",
font = axis_title_font
),
range = c(ax_min, ax_max)
)
y_axis_layout <- list(
title = list(
text = "Axis 2",
font = axis_title_font
),
range = c(ax_min, ax_max)
)
z_axis_layout <- list(
title = list(
text = "Axis 3",
font = axis_title_font
),
range = c(ax_min, ax_max)
)
fig <- fig %>% layout(
scene = list(
xaxis = x_axis_layout,
yaxis = y_axis_layout,
zaxis = z_axis_layout
)
) %>%
partial_bundle()
return(fig)
}
p <- Participant$new()
g <- Grapheme$new(symbol='A')
g$set_colors(c("
p$add_grapheme(g)
for (l in LETTERS[2:length(LETTERS)]) {
g <- Grapheme$new(symbol=l)
g$set_colors(c("
p$add_grapheme(g)
}
p$get_plot()
get_random_color <- function() {
r_val <- runif(1, 0, 1)
g_val <- runif(1, 0, 1)
b_val <- runif(1, 0, 1)
alpha_val <- runif(1, 0, 1)
hex_val <- rgb(r_val, g_val, b_val, alpha_val)
return(hex_val)
}
p <- Participant$new(id="1")
for (l in LETTERS) {
g <- Grapheme$new(symbol=l)
g$set_colors(c(get_random_color(), get_random_color(), get_random_color()), "Luv")
p$add_grapheme(g)
}
p$get_plot()
get_bluegreenish_color <- function(green_val) {
hex_val <- rgb(0, green_val, 1, 1)
return(hex_val)
}
p <- Participant$new(id="1")
green_vals <- seq(0, 1, length.out = length(LETTERS) * 3)
val_counter <- 1
for (l in LETTERS) {
g <- Grapheme$new(symbol=l)
g$set_colors(
c(
get_bluegreenish_color(green_vals[val_counter]),
get_bluegreenish_color(green_vals[val_counter + 1]),
get_bluegreenish_color(green_vals[val_counter + 2])
),
"Luv"
)
p$add_grapheme(g)
val_counter <- val_counter + 3
}
p$get_plot()
p <- Participant$new(id="1")
green_vals <- seq(0.65, 0.8, length.out = length(LETTERS) * 3)
val_counter <- 1
for (l in LETTERS) {
g <- Grapheme$new(symbol=l)
g$set_colors(
c(
get_bluegreenish_color(green_vals[val_counter]),
get_bluegreenish_color(green_vals[val_counter + 1]),
get_bluegreenish_color(green_vals[val_counter + 2])
),
"Luv"
)
p$add_grapheme(g)
val_counter <- val_counter + 3
}
p$get_plot()
get_random_color_bright_color <- function() {
r_val <- runif(1, 0.3, 1)
g_val <- runif(1, 0.3, 1)
b_val <- runif(1, 0.3, 1)
hex_val <- rgb(r_val, g_val, b_val, 1)
return(hex_val)
}
p <- Participant$new(id="1")
for (dig in as.character(0:9)) {
g <- Grapheme$new(symbol=dig)
g$set_colors(
c(
get_random_color_bright_color(),
get_random_color_bright_color(),
get_random_color_bright_color()
),
"sRGB"
)
p$add_grapheme(g)
}
color_mat <- p$get_nonna_color_resp_mat()
hex_vals <- apply(color_mat, 1, function(x) {rgb(x[1], x[2], x[3])})
mid_point <- apply(color_mat, 2, function(x) {mean(x)})
mid_hex <- rgb(0, 0, 0)
plot_actual_colors(
rbind(color_mat, mid_point),
c(hex_vals, mid_hex),
c(rep(0:9, each=3), 'MIDDLE')
)
p_dbscan_ex <- Participant$new(id="1")
resp_colors <- c(
'
'
'
'
'
'
'
)
resp_counter <- 1
for (dig in as.character(0:6)) {
g <- Grapheme$new(symbol=dig)
g$set_colors(
c(
resp_colors[resp_counter],
resp_colors[resp_counter+1],
resp_colors[resp_counter+2]
),
"sRGB"
)
p_dbscan_ex$add_grapheme(g)
resp_counter <- resp_counter + 3
}
color_mat_dbscan_ex <- p_dbscan_ex$get_nonna_color_resp_mat()
hex_vals_dbscan_ex <- apply(color_mat_dbscan_ex, 1, function(x) {rgb(x[1], x[2], x[3])})
plot_actual_colors(
color_mat_dbscan_ex,
hex_vals_dbscan_ex,
rep(0:6, each=3)
)
dbscan_res_dbscan_ex <- dbscan(color_mat_dbscan_ex, eps = 0.15, minPts = 3)
plot_color_clusters(
color_mat_dbscan_ex,
dbscan_res_dbscan_ex$cluster,
rep(0:6, each=3)
)
get_bluereddish_color <- function(red_val) {
hex_val <- rgb(red_val, 0, 1, 1)
return(hex_val)
}
p <- Participant$new(id="1")
letts1 <- LETTERS[1:6]
letts2 <- LETTERS[7:12]
green_vals <- seq(0, 1, length.out = length(letts1) * 3)
red_vals <- seq(0, 1, length.out = length(letts1) * 3)
val_counter <- 1
for (l in letts1) {
g <- Grapheme$new(symbol=l)
g$set_colors(
c(
get_bluegreenish_color(green_vals[val_counter]),
get_bluegreenish_color(green_vals[val_counter + 1]),
get_bluegreenish_color(green_vals[val_counter + 2])
),
"sRGB"
)
p$add_grapheme(g)
val_counter <- val_counter + 3
}
red_vals <- seq(0, 1, length.out = length(letts1) * 3)
val_counter <- 1
for (l in letts2) {
g <- Grapheme$new(symbol=l)
g$set_colors(
c(
get_bluereddish_color(green_vals[val_counter]),
get_bluereddish_color(green_vals[val_counter + 1]),
get_bluereddish_color(green_vals[val_counter + 2])
),
"sRGB"
)
p$add_grapheme(g)
val_counter <- val_counter + 3
}
color_mat <- p$get_nonna_color_resp_mat()
hex_vals <- apply(color_mat, 1, function(x) {rgb(x[1], x[2], x[3])})
plot_actual_colors(
color_mat,
hex_vals,
c(rep(letts1, each=3), rep(letts2, each=3))
)
pg <- create_participantgroup(
raw_df=synr_exampledf_large,
n_trials_per_grapheme=3,
id_col_name="participant_id",
symbol_col_name="trial_symbol",
color_col_name="response_color",
time_col_name="response_time",
color_space_spec="Luv"
)
set.seed(1)
val_df <- pg$check_valid_get_twcv_scores(
min_complete_graphemes = 4,
dbscan_eps = 20,
dbscan_min_pts = 4,
max_var_tight_cluster = 150,
max_prop_single_tight_cluster = 0.6,
safe_num_clusters = 3,
safe_twcv = 250,
complete_graphemes_only = TRUE,
symbol_filter = LETTERS
)
head(val_df)
val_id_df <- cbind(list(participant_id=pg$get_ids()), val_df)
head(val_id_df) |
Profile_likelihood_cd_nm_joint_D_KT_neg <-
function (par,listr,x,
Zestfun,...,v,
silly=-10^(40))
{
n <- NULL
sig <- NULL
sumX <- NULL
no_of_roots <- NULL
no_of_roots_star <- NULL
temp <- NULL
Zq <- NULL
Zstarq <- NULL
xstar <- NULL
xdstar <- NULL
s <- NULL
cond_alphas <- NULL
cond_ord_dep <- NULL
cond_ord_pairs <- NULL
vdep <- NULL
z <- list()
Pl <- silly
X <- vector('list',length(listr))
Y <- vector('list',length(listr))
Z <- vector('list',length(listr))
Zstar <- vector('list',length(listr))
index_alpha <- seq(1,((2*(length(listr)) ) -1),by=2)
index_beta <- seq(2,((2*(length(listr)) ) ),by=2)
alpha <- par[index_alpha]
beta <- par[index_beta]
xstar <- rep(v,(length(listr)-1))
xdstar <- rep(v,(length(listr)-1))
xdepstar <- rep(vdep,length(listr))
for(i in 1:length(listr))
{
cond_alphas[i] <- ((alpha[i]) <= 1)
temp <- as.matrix(listr[[i]])
X[[i]] <- temp[,1][temp[,1]>x]
vdep[i] <- max(X[[i]])
n[i] <- length(X[[i]])
Y[[i]] <- temp[,2][temp[,1]>x]
Z[[i]] <- (Y[[i]] - alpha[i]*X[[i]])/(X[[i]]^beta[i])
Zstar[[i]] <- (Y[[i]] + X[[i]])
Zq[i] <- Zestfun(Z[[i]],...)
Zstarq[i] <- Zestfun(Zstar[[i]],...)
sig[i] <- (1/n[i]) * sum ((Z[[i]]-mean(Z[[i]]))^2)
sumX[i] <- sum(beta[i]*log(X[[i]]))
}
if(all(cond_alphas==TRUE))
{
for(i in 1:length(listr))
{
temp_roots_star <- roots(lev=v,a=alpha[i],c=-1,
b=beta[i],d=0,Zj=Zq[i],
Zk=Zstarq[i])
xdepstar[i] <- temp_roots_star$xstar
}
}
if(all(alpha <= 1) & all(alpha >= -1) & all(beta <= 1) &
all(cond_alphas==TRUE))
{
for(j in 1:length(listr))
{
cond_ord_dep[j] <- ( -1 <=
(min(alpha[j],(Dcond(v,alpha[j],beta[j],-1,0,
Zq[j],Zstarq[j])),
(Dcond(xdepstar[j],alpha[j],beta[j],-1,
0,Zq[j],
Zstarq[j])))))
}
condition <- (all(cond_ord_dep==TRUE))
if( condition == TRUE )
{
Pl <- sum(((-(n/2)*log (2*pi*sig)) - sumX - (n/2)))
}
if(condition == FALSE)
{
Pl <- silly
}
}
if((all(alpha <= 1) ==FALSE) || (all(alpha >= -1)==FALSE) ||
(all(beta < 1)==FALSE) || (all(cond_alphas==TRUE)==FALSE))
{
Pl <- silly
}
z$Pl <- Pl
return(z$Pl)
} |
[
{
"title": "Putting together multinomial discrete regressions by combining simple logits",
"href": "http://andrewgelman.com/2011/06/29/putting_togethe/"
},
{
"title": "R in the insurance industry",
"href": "http://www.magesblog.com/2011/09/r-and-insurance.html"
},
{
"title": "Strategy Diversification in R – follow up",
"href": "https://rbresearch.wordpress.com/2012/06/25/strategy-diversification-in-r-follow-up/"
},
{
"title": "R 3.0.0 and Raring Ringtail (Ubuntu 13.04)",
"href": "http://www.personal.psu.edu/mar36/blogs/the_ubuntu_r_blog/2013/04/r-300-and-raring-ringtail-ubuntu-1304.html"
},
{
"title": "Videos from ‘Tiki + PluginR’ workshop available",
"href": "http://ueb.vhir.org/blogpost3-Videos-from-27Tiki-2B-PluginR-27-workshop-available"
},
{
"title": "Set up R/Stan on Amazon EC2",
"href": "http://christophergandrud.blogspot.com/2014/12/set-up-rstan-on-amazon-ec2.html"
},
{
"title": "Temporal networks with igraph and R (with 20 lines of code!)",
"href": "http://estebanmoro.org/2012/11/temporal-networks-with-igraph-and-r-with-20-lines-of-code/"
},
{
"title": "(Another) introduction to R",
"href": "https://beckmw.wordpress.com/2013/05/27/another-introduction-to-r/"
},
{
"title": "Improved filtfilt() for R",
"href": "http://dankelley.github.io//r/2014/02/19/filtfilt.html"
},
{
"title": "A quick look at RStudio’s R notebooks",
"href": "http://www.win-vector.com/blog/2016/10/a-quick-look-at-rstudios-r-notebooks/"
},
{
"title": "Unit root versus breaking trend: Perron’s criticism",
"href": "http://programming-r-pro-bro.blogspot.com/2011/11/unit-root-versus-breaking-trend-perrons.html"
},
{
"title": "The shadows and light of models",
"href": "https://feedproxy.google.com/~r/PortfolioProbeRLanguage/~3/1s4TcXWKKSg/"
},
{
"title": "Banging on the JGBs",
"href": "http://timelyportfolio.blogspot.com/2013/04/banging-on-jgbs.html"
},
{
"title": "Contribute to The R Journal with LyX/knitr",
"href": "http://yihui.name/en/2013/02/contribute-to-the-r-journal-with-lyx-knitr/"
},
{
"title": "New shinyjs version: Useful tools for any Shiny app developer + easily call JavaScript functions as R code",
"href": "http://deanattali.com/2015/05/31/shinyjs-extend/"
},
{
"title": "Rcpp11 3.1.2.0",
"href": "https://web.archive.org/web/http://blog.r-enthusiasts.com/2014/11/10/rcpp11-3-1-2-0/"
},
{
"title": "How to save high frequency data in mongodb",
"href": "https://web.archive.org/web/http://www.investuotojas.eu/2012/02/24/save-high-frequency-data-in-mongodb/"
},
{
"title": "use simplify to remove redundancy of enriched GO terms",
"href": "https://web.archive.org/web/http://ygc.name/2015/10/21/use-simplify-to-remove-redundancy-of-enriched-go-terms/"
},
{
"title": "R activity around the world",
"href": "http://blog.rapporter.net/2014/04/r-activity-around-world.html?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%3A+rapporter-r+%28R+stories+by+Rapporter%29"
},
{
"title": "analyze the basic stand alone medicare claims public use files (bsapufs) with r and monetdb",
"href": "http://www.asdfree.com/2012/12/analyze-basic-stand-alone-medicare.html"
},
{
"title": "Naive Bayes: A Generative Model and Big Data Classifier",
"href": "https://www.rstudio.com/rviews/2016/11/02/naive-bayes-a-generative-model-and-big-data-classifier/"
},
{
"title": "Timeline graph with ggplot2",
"href": "https://web.archive.org/web/http://fishyoperations.com/r/timeline-graph-with-ggplot2/?utm_source=rss&utm_medium=rss&utm_campaign=timeline-graph-with-ggplot2"
},
{
"title": "Maximum likelihood",
"href": "http://www.quantumforest.com/2011/10/maximum-likelihood/"
},
{
"title": "Loops in R: Think different",
"href": "http://blog.revolutionanalytics.com/2010/11/loops-in-r.html"
},
{
"title": "Animated GIF Annual Correlation of 48 Industries for 50 Years",
"href": "http://timelyportfolio.blogspot.com/2012/08/animated-gif-annual-correlation-of-48.html"
},
{
"title": "Ack! Duplicates in the Data!",
"href": "https://rforwork.info/2012/05/04/ack-duplicates/"
},
{
"title": "Look Familiar? Mapping in R",
"href": "http://0utlier.blogspot.com/2013/05/look-familiar-mapping-in-r.html"
},
{
"title": "Reduce Memory Use for Large Datasets",
"href": "http://www.rtexttools.com/blog/reduce-memory-use-for-large-datasets"
},
{
"title": "Horizon plots with ggplot (not)",
"href": "http://stevepowell.blot.im/horizon-plots-with-ggplot-not/"
},
{
"title": "R Style Guide",
"href": "https://csgillespie.wordpress.com/2010/11/23/r-style-guide/"
},
{
"title": "Flying: Boredom and Terror",
"href": "https://feedproxy.google.com/~r/graphoftheweek/fzVA/~3/KpRN-JToFiU/flying-boredom-and-terror.html"
},
{
"title": "Preferential attachment applied to frequency of accessing a variable",
"href": "http://shape-of-code.coding-guidelines.com/2013/05/17/preferential-attachment-applied-to-frequency-of-accessing-a-variable/"
},
{
"title": "R and RStudio incompatibility with Yosemite Mac OS X 10.10",
"href": "http://www.compmath.com/blog/2014/10/r-and-rstudio-incompatibility-with-yosemite-mac-os-x-10-10/"
},
{
"title": "analyze the progress in international reading literacy study (pirls) with r",
"href": "http://www.asdfree.com/2015/06/analyze-progress-in-international.html"
},
{
"title": "BayesFactor version 0.9.10 released to CRAN",
"href": "http://bayesfactor.blogspot.com/2015/02/bayesfactor-version-0910-released-to.html"
},
{
"title": "Cleaning up oversized github repositories for R and beyond",
"href": "http://robinlovelace.net/r/2014/06/25/pruning-a-giant-gh-repo.html"
},
{
"title": "Simple Pharmacokinetics with Jags",
"href": "http://wiekvoet.blogspot.com/2014/03/simple-pharmacokinetics-with-jags.html"
},
{
"title": "Shiny 0.12: Interactive Plots with ggplot2",
"href": "https://blog.rstudio.org/2015/06/16/shiny-0-12-interactive-plots-with-ggplot2/"
},
{
"title": "Another release day: ggRandomForests V1.1.3",
"href": "https://jehrlinger.wordpress.com/2015/01/08/another-release-day-ggrandomforests-v1-1-3/"
},
{
"title": "More Recursion in R",
"href": "http://www.stat.tamu.edu/site-directory/?q=node%2F48"
},
{
"title": "Using Sweave",
"href": "https://web.archive.org/web/http://sharpstatistics.co.uk/r/using-sweave/"
},
{
"title": "A Data Scientist’s Perspective on Microsoft R",
"href": "http://blog.revolutionanalytics.com/2016/04/data-scientist-perspective.html"
},
{
"title": "Yet another post on google scholar data analysis",
"href": "http://tuxette.nathalievilla.org/?p=1682"
},
{
"title": "Using R for Introductory Statistics, Chapter 5, hypergeometric distribution",
"href": "http://digitheadslabnotebook.blogspot.com/2011/02/using-r-for-introductory-statistics_21.html"
},
{
"title": "How to Add WAR Metrics to your Lahman Database",
"href": "https://www.datascienceriot.com/how-to-add-war-metrics-to-your-lahman-database/kris/"
},
{
"title": "Bertrand or (The Importance of Defining Problems Properly)",
"href": "https://aschinchon.wordpress.com/2015/05/13/bertrand-or-the-importance-of-defining-problems-properly/"
},
{
"title": "I’m Hiring!",
"href": "http://www.gettinggeneticsdone.com/2012/02/im-hiring.html"
},
{
"title": "Secure HTTPS Connections for R",
"href": "https://blog.rstudio.org/2015/08/17/secure-https-connections-for-r/"
},
{
"title": "Colouring a 3D plot according to z-values",
"href": "https://rtricks.wordpress.com/2009/05/03/colouring-a-3d-plot-according-to-z-values/"
},
{
"title": "”How to draw the line” with ggplot2",
"href": "https://martinsbioblogg.wordpress.com/2013/05/31/how-to-draw-the-line-with-ggplot2/"
}
] |
ggm_compare <- function(Yg1, Yg2, method = "spearman",
alpha = 0.05){
fit1 <- ggm_inference(Yg1, method = method)
fit2 <- ggm_inference(Yg2, method = method)
diff <- fit1$boot_samps - fit2$boot_samps
ci_lower <- alpha / 2
ci_upper <- 1 - ci_lower
p <- ncol(Yg1)
adj <- wadj <- matrix(0, nrow = p, ncol = p)
cis <- t(apply(diff, 2, quantile, probs = c(ci_lower, ci_upper)))
adj[upper.tri(adj)] <- ifelse(cis[, 1] < 0 & cis[, 2] > 0, 0, 1)
adj <- symm_mat(adj)
wadj[upper.tri(diag(p))] <- colMeans(diff)
wadj <- symm_mat(wadj) * adj
returned_object <- list(adj = adj,
wadj = wadj,
cis = cis)
class(returned_object) <- c("ggmnonreg",
"ggm_compare")
return(returned_object)
} |
scale_point_colour_discrete =
function(..., aesthetics = "point_colour") scale_colour_hue(..., aesthetics = aesthetics)
scale_point_color_discrete = scale_point_colour_discrete
scale_point_colour_continuous = function(..., aesthetics = "point_colour", guide = "colourbar2") {
scale_colour_continuous(..., aesthetics = aesthetics, guide = guide)
}
scale_point_color_continuous = scale_point_colour_continuous
scale_point_fill_discrete =
function(..., aesthetics = "point_fill") scale_colour_hue(..., aesthetics = aesthetics)
scale_point_fill_continuous = function(..., aesthetics = "point_fill", guide = "colourbar2") {
scale_colour_continuous(..., aesthetics = aesthetics, guide = guide)
}
scale_point_alpha_continuous = function(..., range = c(0.1, 1)) {
continuous_scale("point_alpha", "point_alpha_c", rescale_pal(range), ...)
}
scale_point_alpha_discrete = function(..., range = c(0.1, 1)) {
discrete_scale("point_alpha", "point_alpha_d", function(n) seq(range[1], range[2], length.out = n), ...)
}
scale_point_size_continuous =
function(..., range = c(1, 6)) continuous_scale("point_size", "point_size_c", area_pal(range), ...)
scale_point_size_discrete = function(..., range = c(1, 6), na.translate = FALSE) {
force(range)
discrete_scale("point_size", "point_size_d", function(n) seq(range[1], range[2], length.out = n),
na.translate = na.translate, ...)
}
scale_interval_colour_discrete =
function(..., aesthetics = "interval_colour") scale_colour_hue(..., aesthetics = aesthetics)
scale_interval_color_discrete = scale_interval_colour_discrete
scale_interval_colour_continuous = function(..., aesthetics = "interval_colour", guide = "colourbar2") {
scale_colour_continuous(..., aesthetics = aesthetics, guide = guide)
}
scale_interval_color_continuous = scale_interval_colour_continuous
scale_interval_alpha_continuous = function(..., range = c(0.1, 1)) {
continuous_scale("interval_alpha", "interval_alpha_c", rescale_pal(range), ...)
}
scale_interval_alpha_discrete = function(..., range = c(0.1, 1)) {
discrete_scale("interval_alpha", "interval_alpha_d", function(n) seq(range[1], range[2], length.out = n), ...)
}
scale_interval_size_continuous =
function(..., range = c(1, 6)) continuous_scale("interval_size", "interval_size_c", area_pal(range), ...)
scale_interval_size_discrete = function(..., range = c(1, 6), na.translate = FALSE) {
force(range)
discrete_scale("interval_size", "interval_size_d", function(n) seq(range[1], range[2], length.out = n),
na.translate = na.translate, ...)
}
scale_interval_linetype_discrete = function(..., na.value = "blank") {
discrete_scale("interval_linetype", "interval_linetype_d", linetype_pal(), na.value = na.value, ...)
}
scale_interval_linetype_continuous = function(...) {
stop0("A continuous variable cannot be mapped to linetype")
}
scale_slab_colour_discrete =
function(..., aesthetics = "slab_colour") scale_colour_hue(..., aesthetics = aesthetics)
scale_slab_color_discrete = scale_slab_colour_discrete
scale_slab_colour_continuous = function(..., aesthetics = "slab_colour", guide = "colourbar2") {
scale_colour_continuous(..., aesthetics = aesthetics, guide = guide)
}
scale_slab_color_continuous = scale_slab_colour_continuous
scale_slab_fill_discrete =
function(..., aesthetics = "slab_fill") scale_colour_hue(..., aesthetics = aesthetics)
scale_slab_fill_continuous = function(..., aesthetics = "slab_fill", guide = "colourbar2") {
scale_colour_continuous(..., aesthetics = aesthetics, guide = guide)
}
scale_slab_alpha_continuous = function(..., limits = function(l) c(min(0, l[[1]]), l[[2]]), range = c(0, 1)) {
continuous_scale("slab_alpha", "slab_alpha_c", rescale_pal(range), limits = limits, ...)
}
scale_slab_alpha_discrete = function(..., range = c(0.1, 1)) {
discrete_scale("slab_alpha", "slab_alpha_d", function(n) seq(range[1], range[2], length.out = n), ...)
}
scale_slab_size_continuous =
function(..., range = c(1, 6)) continuous_scale("slab_size", "slab_size_c", area_pal(range), ...)
scale_slab_size_discrete = function(..., range = c(1, 6), na.translate = FALSE) {
force(range)
discrete_scale("slab_size", "slab_size_d", function(n) seq(range[1], range[2], length.out = n),
na.translate = na.translate, ...)
}
scale_slab_linetype_discrete = function(..., na.value = "blank") {
discrete_scale("slab_linetype", "slab_linetype_d", linetype_pal(), na.value = na.value, ...)
}
scale_slab_linetype_continuous = function(...) {
stop0("A continuous variable cannot be mapped to linetype")
}
scale_slab_shape_discrete = function(..., solid = TRUE) {
discrete_scale("slab_shape", "slab_shape_d", shape_pal(solid), ...)
}
scale_slab_shape_continuous = function (...) {
stop0("A continuous variable cannot be mapped to shape")
}
guide_colourbar2 = function(...) {
guide_colourbar(available_aes = union(guide_colourbar()$available_aes, c(
"point_colour",
"point_fill",
"interval_colour",
"slab_colour",
"slab_fill"
)))
}
guide_colorbar2 = guide_colourbar2 |
setClass("FLXMRnlm",
representation(start = "list",
family = "character",
refit = "function"),
contains = "FLXMR")
utils::globalVariables(c("w"))
FLXMRnlm <- function(formula = .~.,
family = c("gaussian", "Gamma"),
start = list(), offset = NULL)
{
formula <- as.formula(formula)
family <- match.arg(family)
z <- new("FLXMRnlm", weighted = TRUE, formula = formula, start = start,
name = paste("FLXMRnlm", family, sep=":"), offset = offset,
family = family, refit = refit)
if(family=="gaussian"){
z@defineComponent <- function(para){
predict <- function(x, ...){
data0 <- data.frame(x)
startEnv <- new.env(hash = FALSE, parent = environment(formula))
for (i in names(para$start)) assign(i, para$coef[[i]], envir = startEnv)
p <- eval(formula[[3L]], data0, startEnv)
p
}
logLik <- function(x, y, ...) dnorm(y, mean = predict(x, ...),
sd = para$sigma, log = TRUE)
new("FLXcomponent",
parameters=list(coef = para$coef, sigma = para$sigma),
logLik = logLik, predict = predict,
df = para$df)
}
z@fit <- function(formula, start, x, y, w)
{
fit <- nls.wfit(formula = formula, start = start,
data = data.frame(x,y,w))
z@defineComponent(para = list(coef = coef(fit),
start = as.list(fit$start),
df = length(fit$start)+1,
sigma = sqrt(sum(fit$weights *
fit$residuals^2 /
mean(fit$weights))/
(fit$df.residuals))))
}
}else if(family=="Gamma"){
z@defineComponent <- function(para){
predict <- function(x, ...){
dotarg <- list(...)
if("offset" %in% names(dotarg)) offset <- dotarg$offset
p <- sapply(seq_len(nrow(x)),
function(i) {
eval(parse(text = as.formula(formula[[3L]][[3L]])$term(
unlist(para$coef),x[i,])))
})
p <- as.matrix(p)
}
logLik <- function(x, y, ...) {
dgamma(y, shape = para$shape, scale = predict(x, ...)/para$shape,
log = TRUE)}
new("FLXcomponent", parameters = list(coef = para$coef,
shape = para$shape),
predict = predict, logLik = logLik, df = para$df)
}
z@fit <- function(formula, start, x, y, w)
{
fit <- gnm.wfit(formula = formula, start = start, data= data.frame(x,y,w),
family = Gamma(link="identity"))
z@defineComponent(para = list(fit = fit, coef = fit$coefficients,
df = length(start)+1,
shape = sum(fit$prior.weights)/
fit$deviance))
}
}
else stop(paste("Unknown family", family))
z
}
setMethod("FLXgetModelmatrix", signature(model = "FLXMRnlm"),
function(model, data, formula, start = list(),...)
{
if(is.null(model@formula)) model@formula <- formula
model@fullformula <- update.formula(formula, model@formula)
mt <- terms(formula, data = data)
varNamesRHS <- all.vars(formula[[3L]])
prednames <- varNamesRHS[varNamesRHS %in% names(data)]
model@x <- as.matrix(data[prednames])
response <- all.vars(update(formula, . ~ 1))
model@y <- as.matrix(data[response])
model
})
setMethod("FLXmstep", signature(model = "FLXMRnlm"),
function(model, weights, components,...) {
sapply(seq_len(ncol(weights)),
function(k) {
if(length(names(components[[k]]@parameters))==0)
model@fit(model@formula, model@start[[k]], model@x,
model@y, weights[,k])
else
model@fit(model@formula,
as.list(components[[k]]@parameters$coef),
model@x, model@y, weights[,k])
})
})
setMethod("FLXdeterminePostunscaled", signature(model = "FLXMRnlm"),
function(model, components, ...) {
sapply(components, function(x) x@logLik(model@x, model@y))
})
nls.wfit <- function(formula, start, data = list())
{
w <- data$w
fit <- nls(formula = formula, start = start, data = data,
weights = as.vector(w))
startEnv <- new.env(hash = FALSE, parent = environment(formula))
for (i in names(start)) assign(i, coef(fit)[[i]], envir = startEnv)
fit$fitted.values <- eval(formula[[3L]], data, startEnv)
response <- all.vars(update(formula, . ~ 1))
fit$residuals <- as.vector(residuals(fit))
fit$df.residuals <- df.residual(fit)
fit$weights <- weights(fit)
fit$formula <- formula
fit$start <- coef(fit)
fit
}
gnm.wfit <- function(formula, start, data = list(), family = list())
{
w <- data$w
fit <- gnm(formula = formula, family = Gamma(link = "identity"),
data = data, start = unlist(start), weights = as.vector(w),
verbose = FALSE, trace = FALSE, checkLinear = TRUE)
fit$df.residuals <- df.residual(fit)
fit$coefficients <- coef(fit)
fit$start <- as.list(unlist(coef(fit)))
fit$rank <- fit$rank[1]
fit
} |
print.Pred <- function(obj){
cat("\nPredication Results\n\n")
cat("Input: Predicate ", obj$P," Argument: ", obj$A, "\n\n")
cat("Predication Vector ($PA):\n ",(obj$PA), "\n\n")
cat("Predicate Vector without Argument ($P.Pred):\n ",(obj$P.Pred), "\n\n")
cat("Used neighborhood words ($neighbors):\n", obj$neighbors, "\n")
invisible(obj)
}
Predication <- function(P,A,m,k,tvectors=tvectors,breakdown=FALSE,norm="none"){
if(is.data.frame(tvectors)){
tvectors <- as.matrix(tvectors)
}else if("textmatrix" %in% class(tvectors)){
tvectors <- matrix(tvectors,
nrow=nrow(tvectors),ncol=ncol(tvectors),
dimnames=list(rownames(tvectors),colnames(tvectors)))
}
if(is.matrix(tvectors)){
if(breakdown==TRUE){
if(class(P) != "character"){
P <- as.character(P)
message("Note: P converted to character")
}
if(class(A) != "character"){
A <- as.character(A)
message("Note: A converted to character")
}
P <- breakdown(P)
A <- breakdown(A)
}
tvectors_P <- tvectors[P,]
tvectors_A <- tvectors[A,]
nrow <- nrow(tvectors)
near.P <- neighbors(P,(m+1),tvectors=tvectors,
breakdown=breakdown)[2:(m+1)]
near.PA <- multicos(A,names(near.P),tvectors=tvectors,
breakdown=breakdown)[1,]
near.PA <- sort(near.PA,decreasing=T)[1:k]
neighbors <- names(near.PA)
tvectors_PA <- tvectors[names(near.PA),]
if(k==1){
if(norm=="none"){
PA <- tvectors[P,]+tvectors[A,]+tvectors[names(near.PA),]
P.Pred <- tvectors[P,]+tvectors[names(near.PA),]
}
if(norm=="all"){
PA <- normalize(tvectors[P,]) + normalize(tvectors[A,]) + normalize(tvectors[names(near.PA),])
P.Pred <- normalize(tvectors[P,]) + normalize(tvectors[names(near.PA),])
}
if(norm=="block"){
PA <- normalize(tvectors[A,]) + normalize(tvectors[P,] + tvectors[names(near.PA),])
P.Pred <- normalize(tvectors[P,] + tvectors[names(near.PA),])
}
}
if(k >1){
if(norm=="none"){
PA <- tvectors[A,] + tvectors[P,] + colSums(tvectors[names(near.PA),])
P.Pred <- tvectors[P,] + colSums(tvectors[names(near.PA),])
}
if(norm=="all"){
normPA <- tvectors[names(near.PA),]
normPA <- t(apply(normPA,1,normalize))
PA <- normalize(tvectors[A,]) + normalize(tvectors[P,]) + colSums(normPA)
P.Pred <- normalize(tvectors[P,]) + colSums(normPA)
}
if(norm=="block"){
PA <- normalize(tvectors[A,]) + normalize(tvectors[P,] + colSums(tvectors[names(near.PA),]))
P.Pred <- normalize(tvectors[P,] + colSums(tvectors[names(near.PA),]))
}
}
out <- list(PA=PA,P.Pred=P.Pred,neighbors=neighbors,P=P,A=A)
class(out) <- "Pred"
return(out)
}else{
stop("tvectors must be a matrix!")
}
} |
hulfun <-
function(x)
{
n<-length(x)
a <-median(x)
y <- rep(0, n)
for (i in 1: n)
{
if( x[i] <= (a))
{
y[i] <-x[i]^2/2
}
else
y[i] <- a*x[i]-a^2/2
}
return(y)
} |
parameterFrequency <- function(configurations, parameters,
rows = 4, cols = 3,
filename = NULL,
pdf.width = 12,
col = "gray")
{
xlab <- "values"
ylab.cat <- "Frequency"
ylab.num <- "Probability density"
def.par <- par(no.readonly = TRUE)
on.exit(par(def.par), add = TRUE)
configurations <- removeConfigurationsMetaData(configurations)
param.names <- as.character(parameters$names)
nparams <- parameters$nbVariable
nlines <- ceiling(nparams / cols)
if (nlines < rows) rows <- nlines
nplot <- 1
cplot <- 1
if (!is.null(filename)) {
filename <- sub(".pdf", "", filename, fixed = TRUE)
pdf(file = paste0(filename, "-", cplot, ".pdf"), onefile = TRUE, width = pdf.width)
on.exit(dev.off(), add = TRUE)
}
par(mfrow=c(rows,cols), mar=0.1 + c(4,3,3,1))
for (param.name in param.names) {
if (parameters$isFixed[[param.name]]){
cat("Skipping fixed parameter:", param.name, "\n")
next
} else {
cat("Plotting:", param.name, "\n")
}
if (nplot > rows * cols) {
cat("Make new plot\n")
cplot <- cplot + 1
if (!is.null(filename)) {
dev.off()
pdf(file = paste0(filename, "-", cplot, ".pdf"), onefile = TRUE, width = pdf.width)
} else {
dev.new()
}
par(mfrow=c(rows, cols))
nplot <- 1
}
data <- configurations[, param.name]
type <- parameters$types[[param.name]]
domain <- parameters$domain[[param.name]]
if (type %in% c("c", "o")) {
data <- factor(data, domain)
data <- addNA(data, ifany = TRUE)
levels(data)[is.na(levels(data))] <- "<NA>"
data <- table(data)
barplot(data, main = param.name, xlab = xlab, ylab = ylab.cat, col = col)
} else if (type %in% c("i", "r")) {
data <- data[!is.na(data)]
if (length(data) == 0) {
cat("All values are NA for: ", param.name, ", skipping plot\n")
next
} else {
hist(data, xlim = domain, prob = TRUE,
main = param.name, xlab = xlab, ylab = ylab.num, col = col)
if (length(data) > 1) {
lines(density(data), col = "blue", lwd = 2)
} else {
abline(v = data[1], col = "blue", lwd = 2)
}
}
}
nplot <- nplot + 1
}
}
parcoordlabel <- function (configurations, parameters, col = "green", lty = 1,
lblcol="blue", title="Parameters parallel coordinates", ...)
{
replace.cat <- function(y, vals){
x <- rep(NA, length(y))
for(i in 1:length(vals))
x[y %in% vals[i]] <- i
return(x)
}
replace.na <- function(x,r) {
x <- unlist(x)
x <- (x-r[1])/(r[2]-r[1])
x[is.na(x)] <- 1
return(x)
}
add.level <- function(x, bound, type){
if (type == "i" || type == "r"){
x <- c(x, x[length(x)] + (x[2]-x[1]))
} else {
x <- c(x, x[length(x)] + x[length(x)]/length(bound))
}
return(x)
}
param.names <- colnames(configurations)
bound.num <- parameters$domain
for (i in 1:ncol(configurations)) {
pname <- param.names[i]
if (parameters$types[[pname]] %in% c("c","o")) {
configurations[,i]<- as.numeric(replace.cat(configurations[,i], bound.num[[pname]]))
bound.num[[pname]] <- seq(1,length(bound.num[[pname]]))
}
}
pr <- lapply(bound.num[param.names], pretty)
for(param in param.names)
pr[[param]] <- add.level( pr[[param]], bound.num[[param]], parameters$types[[param]])
rx <- lapply(pr, range, na.rm = TRUE)
configurations <- mapply(replace.na, as.data.frame(configurations), rx)
matplot(1:ncol(configurations), t(configurations), type = "l", col = col,
lty = lty, xlab = "", ylab = "", ylim=c(0,1), axes = FALSE, main=title, ...)
axis(1, at = 1:ncol(configurations), labels = colnames(configurations), las=2)
for (i in 1:ncol(configurations)) {
pnames <- param.names[i]
lines(c(i, i), c(0, 1), col = "grey70")
if(parameters$types[[param.names[i]]]=="c"){
labels <- c(parameters$domain[[param.names[i]]], "NA")
}else{
labels <- pr[[pnames]]
labels[length(labels)] <- "<NA>"
}
text(c(i, i), seq(0,1,length.out=length(labels)), labels = labels, xpd = NA, col=lblcol)
}
invisible()
}
parallelCoordinatesPlot <-
function(configurations, parameters, param_names=parameters$names,
hierarchy = TRUE, filename = NULL, pdf.width = 14 , mar = c(8,1,4,1))
{
getDependency <- function() {
sdep <- list()
independent <- c()
for (param in param_names) {
constraint <- all.vars(parameters$conditions[[param]])
if (length(constraint) < 1) {
independent <- unique(c(independent, param))
next
}
for(cc in constraint) {
if(is.null(sdep[[cc]]) || is.na(sdep[[cc]]))
sdep[[cc]] <- param
else
sdep[[cc]] <- c(sdep[[cc]], param)
}
}
return(list(independent=independent, dependencies=sdep))
}
configurations <- configurations[, grep("^\\.", colnames(configurations), invert=TRUE), drop = FALSE]
configurations <- configurations[, param_names]
if(hierarchy){
aux <- getDependency()
if(length(aux$independent) >= 2){
indconfigurations <- configurations[, aux$independent]
if(!is.null(filename))
pdf(file = paste0(filename,"_independent.pdf"), width=pdf.width)
else dev.new()
par(mar=mar)
parcoordlabel(indconfigurations, parameters, title="Independent parameter parallel coordinates")
if(!is.null(filename)) dev.off()
}else{
cat("Skipping independent parameters",aux$independent,"\n")
}
dep <- aux$dependencies
dnames <- names(dep)
for(i in seq_along(dep)){
if(length(dep[[i]]) < 2){
cat("Skipping parameters",dnames[i],"\n")
next
}
depconfigurations <- configurations[, dep[[i]]]
depconfigurations <- depconfigurations[!apply(apply(depconfigurations, 1, is.na), 2, all),]
if(nrow(depconfigurations) < 2 ){
cat("Skipping parameter",dnames[i],"\n")
next
}
if(!is.null(filename))
pdf(file = paste0(filename,"_",dnames[i],".pdf"), width=pdf.width)
else dev.new()
par(mar=mar)
parcoordlabel(depconfigurations, parameters,
title = paste0("Parameters of dependent of ", dnames[i], " parallel coordinates"))
if (!is.null(filename)) dev.off()
}
}else{
if(!is.null(filename))
pdf(file = paste0(filename,".pdf"), width=pdf.width)
par(mar=mar)
parcoordlabel(configurations, parameters)
if(!is.null(filename)) dev.off()
}
}
getFinalElites <- function(iraceResults = NULL, logFile = NULL, n = 0,
drop.metadata = FALSE)
{
if (is.null(iraceResults)) {
if (is.null(logFile))
stop("You must supply either 'iraceResults' or 'logFile' argument.\n")
else
load(logFile)
}
last.elites <- iraceResults$allElites[[length(iraceResults$allElites)]]
if (n == 0)
n <- length(last.elites)
if (length(last.elites) < n) {
cat("Only", length(last.elites), "configurations available, reducing n,\n")
n <- length(last.elites)
}
last.elites <- last.elites[1:n]
configurations <- subset(iraceResults$allConfigurations,
get(".ID.") %in% as.character(last.elites),
drop = FALSE)
if (drop.metadata)
configurations <- removeConfigurationsMetaData(configurations)
return(configurations)
}
getConfigurationById <- function(iraceResults = NULL, logFile = NULL,
ids, drop.metadata = FALSE)
{
if (is.null(iraceResults)) {
if (is.null(logFile))
stop("You must supply either iraceResults or iraceLog argument.\n")
else
load(logFile)
}
if (length(ids) < 1) stop("You must provide at least one configuration id.\n")
selection <- iraceResults$allConfigurations[,".ID."] %in% ids
if (length(selection) < 1) stop("No configuration found with id", ids,".\n")
configurations <-iraceResults$allConfigurations[selection, , drop = FALSE]
if (drop.metadata)
configurations <- removeConfigurationsMetaData(configurations)
return(configurations)
}
getConfigurationByIteration <- function(iraceResults = NULL, logFile = NULL,
iterations, drop.metadata = FALSE)
{
if (is.null(iraceResults)) {
if (is.null(logFile))
stop("You must supply either iraceResults or iraceLog argument.\n")
else
load(logFile)
}
if (length(iterations) < 1)
stop("You must provide at least one configuration id.\n")
iteration <- NULL
ids <- unique(subset(as.data.frame(iraceResults$experimentLog),
iteration %in% iterations,
select=c("configuration"), drop=TRUE))
selection <- iraceResults$allConfigurations[,".ID."] %in% ids
if (length(selection) < 1) stop("No configuration found with id", ids,".\n")
configurations <- iraceResults$allConfigurations[selection, , drop=FALSE]
if (drop.metadata)
configurations <- removeConfigurationsMetaData(configurations)
return(configurations)
}
configurationsBoxplot <- function(experiments, title = NULL,
xlabel = "Configuration ID",
ylabel = "Configuration cost",
filename = NULL)
{
plot.jitter.points <- function(x, y, factor = 10 / x, pch = 20, ...)
points(jitter(rep(x, length(y)), factor = factor),
y, pch = pch, col = rgb(0,0,0,.2), ...)
if (any(colSums(is.na(experiments)) > 0))
cat("Warning: There are NA values in the experiment results provided.\n")
data.labels <- colnames(experiments)
if (is.null(data.labels)) data.labels <- 1:ncol(experiments)
if (!is.null(filename)) {
filename <- paste0(filename, ".pdf.")
cat("Creating file", filename,"\n")
cairo_pdf(filename = filename, width=20, height=8)
on.exit(dev.off(), add = TRUE)
plot.mar <- c(7,11,4,1)
plot.lwd <- 5
cex.axis <- 3
cex.main <- 3
x.add <- 2
} else {
plot.mar <- c(2.5,9,4,1)
plot.lwd <- 2
cex.axis <- 1
cex.main <- 1
x.add <- 0
}
if (is.null(title)) plot.mar[3] <- 1
old.par <- par(las=1, mar=plot.mar, cex.axis=cex.axis, cex.main=cex.main, lwd=plot.lwd)
on.exit(old.par, add = TRUE)
boxplot(experiments, main = title, xaxt = "n", outline = TRUE)
for (i in 1:ncol(experiments)) {
plot.jitter.points (i, experiments[,i], cex = 1.5 * cex.axis)
}
axis(1, at=c(1:length(data.labels)), labels=data.labels, line = -0.5 + x.add,
tick=FALSE, las=1, cex.axis=cex.axis)
mtext(xlabel, side=1, line=1.5 + 2*x.add, cex=cex.axis, las=0)
mtext(ylabel, side=2, line=5+1.8*x.add, cex=cex.axis, las=0)
} |
localMaxima <- function(x) {
y <- diff(c(-.Machine$integer.max, x)) > 0L
rle(y)$lengths
y <- cumsum(rle(y)$lengths)
y <- y[seq.int(1L, length(y), 2L)]
if (x[[1]] == x[[2]]) {
y <- y[-1]
}
y
}
localMinima <- function(x) {
y <- diff(c(.Machine$integer.max, x)) > 0L
rle(y)$lengths
y <- cumsum(rle(y)$lengths)
y <- y[seq.int(1L, length(y), 2L)]
if (x[[1]] == x[[2]]) {
y <- y[-1]
}
y
} |
HSImin <- function(x){
HSI <- min(x, na.rm=TRUE)
if(HSI < 0 | HSI > 1){
HSIout <- "Habitat suitability index not within 0 to 1 range."
} else {
HSIout <- HSI
}
return(HSIout)
} |
NULL
optimCrit.maximizeInnerR2 <- function(matrixpls.res){
-sum(r2(matrixpls.res))
}
optimCrit.maximizeIndicatorR2 <- function(matrixpls.res){
matrixpls.res <- standardize(matrixpls.res)
lambda <- loadings(matrixpls.res)
IC <- attr(matrixpls.res,"IC")
-sum(diag(lambda %*% IC))
}
optimCrit.maximizeFullR2 <- function(matrixpls.res){
optimCrit.maximizeIndicatorR2(matrixpls.res) + optimCrit.maximizeInnerR2(matrixpls.res)
}
optimCrit.gsca <- function(matrixpls.res){
C <- attr(matrixpls.res,"C")
IC <- attr(matrixpls.res,"IC")
nativeModel <- attr(matrixpls.res,"model")
reflective <- nativeModel$reflective
reflective[which(reflective==1)] <- matrixpls.res[grep("=~",names(matrixpls.res))]
r <- apply(nativeModel$reflective != 0,1,any)
endo <- apply(nativeModel$inner != 0,1,any)
inner_resid <- (1 - r2(matrixpls.res)[endo])
refl_resid <- (1 - rowSums(t(IC[,r]) * reflective[r,]))
sum(inner_resid, refl_resid)
} |
clean_eval <- function(
occ.cl,
geo.space,
env.space = NULL,
level.filter = c("1_det_by_spec"),
r,
species = "species",
decimal.longitude = "decimalLongitude",
decimal.latitude = "decimalLatitude",
scientific.name,
longitude,
latitude
){
if (!missing(scientific.name)) {
warning("argument 'scientific.name' is deprecated; please use 'species' instead.",
call. = FALSE)
species <- scientific.name
}
if (!missing(latitude)) {
warning("argument 'latitude' is deprecated; please use 'decimal.latitude' instead.",
call. = FALSE)
decimal.latitude <- latitude
}
if (!missing(longitude)) {
warning("argument 'longitude' is deprecated; please use 'decimal.longitude' instead.",
call. = FALSE)
decimal.longitude <- longitude
}
natList_column <- "naturaList_levels" %in% colnames(occ.cl)
if(!natList_column){
stop("'occ.cl' must be classified by 'classify_occ' function")
}
if(is(geo.space, "SpatialPolygons")) {
geo.space <- sf::st_as_sf(geo.space)
}
if(!is(geo.space, "sf"))
errorCondition("geo.space must be of class: sf or SpatialPolygons*")
geo.space <- sf::st_geometry(geo.space)
if(!is.null(env.space)){
if(is(env.space, "SpatialPolygons")) {
env.space <- sf::st_as_sf(env.space)
}
if(!is(env.space, "sf"))
errorCondition("env.space must be of class: sf or SpatialPolygons*")
if(raster::nlayers(r) != 2) errorCondition("raster objetct must have two layers")
}
occ.full <- occ.cl %>%
dplyr::rename("species" = species ,
"decimalLongitude" = decimal.longitude,
"decimalLatitude" = decimal.latitude) %>%
dplyr::select(.data$decimalLongitude, .data$decimalLatitude, .data$species) %>%
dplyr::arrange(species)
occ.cleaned <- occ.cl %>%
dplyr::filter(.data$naturaList_levels %in% level.filter) %>%
dplyr::select(.data$decimalLongitude, .data$decimalLatitude, .data$species) %>%
dplyr::arrange(species)
occ.list <- list(occ.full = occ.full,
occ.cleaned = occ.cleaned)
names.sp.full <- as.character(unique(occ.full$species))
v <- ifelse(is.na(raster::values(r[[1]])),
NA, 0)
sitexsp <- matrix(rep(v, length(names.sp.full)),
nrow = raster::ncell(r),
ncol = length(names.sp.full))
colnames(sitexsp) <- names.sp.full
msg <- c("Calculating metrics before cleaning",
"Calculating metrics after cleaning")
res.list <- vector("list", 2)
for(i in seq_along(occ.list)){
occ <- occ.list[[i]]
message(msg[i])
geo.area <- rep(0, length(names.sp.full))
names(geo.area) <- names.sp.full
env.area <- rep(0, length(names.sp.full))
names(env.area) <- names.sp.full
names.current <- as.character(unique(occ$species))
names.sp <- names.sp.full %in% names.current
message("..Step 1 - Geographical space")
geo.polygon <- lapply(unique(occ$species), function(i){
x <- dplyr::filter(occ, .data$species == i)
pt <- sf::st_multipoint(as.matrix(x[,1:2]))
if(nrow(x) <=3){
sp.pol <- sf::st_buffer(pt, 0.5)
}
if(nrow(x) > 3){
sp.pol <- sf::st_convex_hull(pt)
sp.pol <- sf::st_buffer(sp.pol, 0.5)
}
geo <- sf::st_geometry(sp.pol)
sf::st_crs(geo) <- 4326
suppressMessages(sf::st_intersection(geo, geo.space))
})
res.geo.area <- sapply(geo.polygon, function(x) sum(sf::st_area(x)))
geo.area[names.sp] <- res.geo.area
geo.raster <- lapply(geo.polygon, function(x){
x <- sf::st_cast(x, "MULTIPOLYGON")
fasterize::fasterize(sf::st_sf(a = 1, x),
r[[1]],
background = 0)
})
stk <- raster::stack(geo.raster)
msk <- fasterize::fasterize(sf::st_sf(a = 1, geo.space),
r[[1]])
stk <- raster::mask(stk, msk)
sitexsp[,names.sp] <- raster::values(stk)
if(!is.null(env.space)){
message("..Step 2 - Enviromental space")
env.std <- vegan::decostand(raster::as.data.frame(r),
"range", na.rm = T)
env.polygon <- lapply(unique(occ$species), function(i){
x <- dplyr::filter(occ, .data$species == i)
sp.cell <- unique(raster::cellFromXY(r[[1]], x[, 1:2]))
env.row <- row.names(env.std) %in% sp.cell
env.xy <- env.std[sp.cell,]
if(any(is.na(env.xy))){
warningCondition("There are occurrence points in raster cells without values (NA)")
}
pt <- sf::st_multipoint(na.omit(as.matrix(env.xy)))
if(nrow(x) <=3){
sp.pol <- sf::st_buffer(pt, 0.025)
}
if(nrow(x) > 3){
sp.pol <- sf::st_convex_hull(pt)
sp.pol <- sf::st_buffer(sp.pol, 0.025)
}
suppressMessages(sf::st_intersection(sf::st_geometry(sp.pol), env.space))
})
res.env.area <- sapply(env.polygon, function(x) sum(sf::st_area(x)))
env.area[names.sp] <- res.env.area
res.list[[i]] <- list(geo.area = geo.area,
env.area = env.area,
sitexsp = sitexsp)
}
if(is.null(env.space)) {
res.list[[i]] <- list(geo.area = geo.area,
sitexsp = sitexsp)
}
}
message("Preparing outputs")
site.coords <- raster::coordinates(r)
remmain.geo.area <- round(res.list[[2]]$geo.area/res.list[[1]]$geo.area, 2)
if(!is.null(env.space)) {
remmain.env.area <- round(res.list[[2]]$env.area/res.list[[1]]$env.area, 2)
area <- data.frame(r.geo.area = remmain.geo.area,
r.env.area = remmain.env.area)
}
if(is.null(env.space)) {
area <- data.frame(r.geo.area = remmain.geo.area)
}
comp <- list(comp.BC = res.list[[1]]$sitexsp,
comp.AC = res.list[[2]]$sitexsp)
rich <- data.frame(rich.BC = rowSums(res.list[[1]]$sitexsp),
rich.AC = rowSums(res.list[[2]]$sitexsp))
results <- list(area = area,
comp = comp,
rich = rich,
site.coords = site.coords)
message("DONE!")
return(results)
} |
test_that("le_week() | scalar test", {
expect_equal(le_week(lubridate::dhours(2.3), lubridate::dhours(4.5), 5),
lubridate::as.duration(
stats::weighted.mean(c(lubridate::dhours(2.3),
lubridate::dhours(4.5)),
c(5, 2))))
expect_equal(le_week(lubridate::dhours(5.25), lubridate::dhours(1.25), 3),
lubridate::as.duration(
stats::weighted.mean(c(lubridate::dhours(5.25),
lubridate::dhours(1.25)),
c(3, 4))))
expect_equal(le_week(lubridate::as.duration(NA),
lubridate::dhours(2.35), 2),
lubridate::as.duration(NA))
})
test_that("le_week() | vector test", {
expect_equal(le_week(c(lubridate::dhours(2.4), lubridate::dhours(0.5)),
c(lubridate::dhours(2.4), lubridate::dhours(NA)),
c(3, 7)),
c(lubridate::duration(
stats::weighted.mean(c(lubridate::dhours(2.4),
lubridate::dhours(2.4)),
c(3, 4))),
lubridate::as.duration(NA)))
expect_equal(le_week(c(lubridate::dhours(1.8), lubridate::dhours(5.4)),
c(lubridate::dhours(6.7), lubridate::dhours(1.2)),
c(5, 6)),
c(lubridate::duration(
stats::weighted.mean(c(lubridate::dhours(1.8),
lubridate::dhours(6.7)),
c(5, 2))),
lubridate::duration(
stats::weighted.mean(c(lubridate::dhours(5.4),
lubridate::dhours(1.2)),
c(6, 1)))))
})
test_that("le_week() | error test", {
expect_error(le_week(1, lubridate::duration(1), 1),
"Assertion on 'le_w' failed")
expect_error(le_week(lubridate::duration(1), 1, 1),
"Assertion on 'le_f' failed")
expect_error(le_week(lubridate::duration(1), lubridate::duration(1), "a"),
"Assertion on 'wd' failed")
expect_error(le_week(lubridate::duration(1), lubridate::duration(1), 1.5),
"Assertion on 'wd' failed")
expect_error(le_week(lubridate::duration(1), lubridate::duration(1), -1),
"Assertion on 'wd' failed")
expect_error(le_week(lubridate::duration(1), lubridate::duration(1), 8),
"Assertion on 'wd' failed")
expect_error(le_week(lubridate::duration(1), lubridate::duration(1),
c(1, 1)))
}) |
context("Presence of ADMIXTOOLS on the system")
test_that("ADMIXTOOLS is present", {
skip_on_cran()
skip_on_os("windows")
expect_true(admixtools_present())
})
test_that("ADMIXTOOLS data is present", {
skip_on_cran()
skip_on_os("windows")
expect_true(dir.exists(file.path(admixtools_path(), "data")))
}) |
lm_cluster_compute_vcov <- function(mod, cluster, data)
{
require_namespace("sandwich")
if ( length(cluster) > 1 ){
v1 <- cluster
} else {
v1 <- data[,cluster, drop=TRUE]
}
dfr <- data.frame( cluster=v1 )
vcov2 <- sandwich::vcovCL( x=mod, cluster=dfr$cluster)
return(vcov2)
} |
context ("Creating a coefficient matrix")
cm_de <- coefficient_matrix_create (
data_table = iotable_get ( source = "germany_1990"),
total = "output",
digits = 4 )
ncol(coefficient_matrix_create ( data_table = iotable_get ( source = "germany_1990"),
total = "output",
digits = 4 ))
test_that("correct data is returned", {
expect_equal(as.numeric(unlist (cm_de[1, 2] )),
c(0.0258), tolerance=1e-3)
expect_equal(nrow(coefficient_matrix_create( iotable_get(), return = "primary_inputs" )), 13 )
})
test_that("households are treated correctly", {
expect_equal(ncol(coefficient_matrix_create ( data_table = iotable_get ( source = "germany_1990"),
total = "output",
households = TRUE,
digits = 4 )),
8)
expect_equal(ncol(coefficient_matrix_create ( data_table = iotable_get ( source = "germany_1990"),
total = "output",
digits = 4 )),
7)
}) |
result2tibble <- function(...) {
input <- list(...)[[1]][[1]]
if(length(list(...)) == 2) {
cols <- list(...)[[2]]
ma <- matrix(input, ncol=cols, byrow=TRUE)
colnames(ma) <- colnames(ma, do.NULL = FALSE, prefix = "X")
res_frame <- as.data.frame(ma, stringsAsFactors = FALSE)
res_frame <- suppressWarnings(adj_coltype(res_frame, input[1:cols]))
return(as_tibble(res_frame)) }
else {
template <- input[[1]] %>% str_replace_all("[\\[\\]]", "") %>% str_replace_all(", ", ",") %>%
str_replace_all("\"", "'") %>% strsplit(",") %>% .[[1]]
input <- input %>% str_replace_all("[\\[\\]]", "") %>% str_replace_all(", ", ",") %>% strsplit(",")
num_cols <- length(template)
num_rows <- length(input)
res_frame <- data.frame(matrix(ncol = num_cols, nrow = 0))
for (i in 1:num_rows) { res_frame <- rbindlist(list(res_frame, as.list(input[[i]]))) }
res_frame %<>% as.data.frame()
res_frame <- suppressWarnings(adj_coltype(res_frame, template))
return(as_tibble(res_frame))
}
} |
select_parameters <- function(model, ...) {
UseMethod("select_parameters")
}
select_parameters.lm <- function(model,
direction = "both",
steps = 1000,
k = 2,
...) {
junk <- utils::capture.output(best <- stats::step(model,
trace = 0,
direction = direction,
steps = steps,
k = k,
...
))
best
}
select_parameters.merMod <- function(model,
direction = "backward",
steps = 1000,
...) {
insight::check_if_installed("cAIC4")
factors <- unique(c(
insight::find_random(model, split_nested = FALSE, flatten = TRUE),
insight::find_random(model, split_nested = TRUE, flatten = TRUE)
))
factors <- gsub(":", "/", factors, fixed = TRUE)
best <- suppressMessages(suppressWarnings(cAIC4::stepcAIC(model,
groupCandidates = factors,
direction = direction,
steps = steps,
allowUseAcross = TRUE
)$finalModel))
best
} |
print.lrpower <- function(x, ...) {
s = x$byStageResults;
t = x$overallResults;
k = length(s$informationRates)
if (k>1) {
df = t(data.frame(s$informationRates,
s$efficacyBounds,
s$futilityBounds,
s$cumulativeRejection,
s$cumulativeFutility,
s$cumulativeAlphaSpent,
s$numberOfEvents,
s$numberOfSubjects,
s$analysisTime,
s$efficacyHR,
s$futilityHR,
s$efficacyP,
s$futilityP,
s$information,
s$logRankHR,
t$overallReject,
t$alpha,
t$numberOfEvents,
t$expectedNumberOfEvents,
t$numberOfSubjects,
t$expectedNumberOfSubjects,
t$studyDuration,
t$expectedStudyDuration,
t$accrualDuration,
t$followupTime,
t$fixedFollowup,
t$rho1,
t$rho2))
df[seq(16,28), -1] <- NA
colnames(df) <- paste("stage", seq_len(ncol(df)), sep=" ")
} else {
df = t(data.frame(t$overallReject,
t$alpha,
t$numberOfEvents,
t$numberOfSubjects,
t$studyDuration,
t$accrualDuration,
t$followupTime,
t$fixedFollowup,
t$rho1,
t$rho2,
s$efficacyBounds,
s$efficacyHR,
s$efficacyP,
s$information,
s$logRankHR
))
colnames(df) <- NA
}
rownames(df) <- sub("^[[:alpha:]][[:alnum:]]*.", "", rownames(df))
print( round(df,3), ..., na.print = "" , quote = FALSE )
invisible(x)
} |
library(network)
test<-network.initialize(3)
set.vertex.attribute(test,c('a','b'),c(1,2))
if(!all(test%v%'a'==c(1,1,1) & test%v%'b'==c(2,2,2))){
stop('setting multiple attribute values with set.vertex.attribute failed')
}
test<-network.initialize(3)
set.vertex.attribute(test,list('a','b'),c(1,2))
if(!all(test%v%'a'==c(1,1,1) & test%v%'b'==c(2,2,2))){
stop('setting multiple attribute values with set.vertex.attribute failed')
}
test<-network.initialize(3)
set.vertex.attribute(test,c('a','b'),list(c(1,2,3),c(4,5,6)))
if(!all(test%v%'a'==c(1,2,3) & test%v%'b'==c(4,5,6))){
stop('setting multiple attribute values with set.vertex.attribute failed')
}
test<-network.initialize(3)
set.vertex.attribute(test,c('a','b'),list(list(1,2,3),list(4,5,6)))
if(!all(test%v%'a'==c(1,2,3) & test%v%'b'==c(4,5,6))){
stop('setting multiple attribute values with set.vertex.attribute failed')
}
test<-network.initialize(3)
obj<-list(one='a complex object',two=c('with muliple','parts'))
set.vertex.attribute(test,c('a','b'),list(list(as.list(obj)),list(as.list(obj))))
if(!all(all.equal(get.vertex.attribute(test,'a',unlist=FALSE)[[1]],obj) & all.equal(get.vertex.attribute(test,'b',unlist=FALSE)[[1]],obj))){
stop('setting multiple attribute values with list values in set.vertex.attribute failed')
}
net <- network.initialize(2)
netlist <- list(net)
set.network.attribute(netlist[[1]],"test","a value")
if (!"test" %in% list.network.attributes(netlist[[1]]))
stop('assignment to list of networks failed')
test<-network.initialize(3)
set.network.attribute(test,c("a","b"),1:2)
if (!all(test%n%'a'==1,test%n%'b'==2)){
stop('mulltiple attribute assignment failed for set.network.attribute')
}
test<-network.initialize(3)
set.network.attribute(test,list("a","b"),as.list(1:2))
if (!all(test%n%'a'==1,test%n%'b'==2)){
stop('mulltiple attribute assignment failed for set.network.attribute')
}
test<-network.initialize(3)
add.edges(test,tail=1:3,head=c(2,3,1))
net<-test
set.edge.attribute(net,c("a","b"),1:2)
if (!all(net%n%'a'==1,net%n%'b'==2)){
stop('mulltiple attribute assignment failed for set.edge.attribute')
}
net<-test
set.edge.attribute(net,c('a','b'),list(c(1,2,3),c(4,5,6)))
if(!all(net%e%'a'==c(1,2,3) & net%e%'b'==c(4,5,6))){
stop('setting multiple attribute values with set.edge.attribute failed')
}
net<-test
set.edge.attribute(net,c('a','b'),list(list(1,2,3),list(4,5,6)))
if(!all(net%e%'a'==c(1,2,3) & net%e%'b'==c(4,5,6))){
stop('setting multiple attribute values with set.edge.attribute failed')
}
net<-test
obj<-list(one='a complex object',two=c('with muliple','parts'))
set.edge.attribute(net,c('a','b'),list(list(as.list(obj)),list(as.list(obj))))
if(!all(all.equal(get.edge.attribute(net,'a',unlist=FALSE)[[1]],obj) & all.equal(get.edge.attribute(net,'b',unlist=FALSE)[[1]],obj))){
stop('setting multiple attribute values with list values in set.edge.attribute failed')
}
net<-network.initialize(3)
add.edges(net,c(1,2,3),c(2,3,1))
set.edge.attribute(net,'test',"a")
if(!all(get.edge.attribute(net,'test')==c("a","a","a"))){stop("overloading of get.edge.attribute to get.edge.value not working correctly ")}
delete.edges(net,2)
set.edge.attribute(net,'foo','bar',1)
if(!identical(list('bar',NULL,NULL),get.edge.attribute(net,'foo',unlist=FALSE, deleted.edges.omit = FALSE))){
stop("deleted.edges.omit argument causing bad return values in get.edge.attribute ")
}
if(!identical(list('bar',NULL),get.edge.attribute(net,'foo',unlist=FALSE, deleted.edges.omit = TRUE))){
stop("deleted.edges.omit argument causing bad return values in get.edge.attribute ")
}
if(!identical(c('bar'),get.edge.attribute(net,'foo',unlist=TRUE,deleted.edges.omit=TRUE))){
stop("omission argument causing bad return values in get.edge.attribute")
}
if(!identical(c('bar'),get.edge.attribute(net,'foo',unlist=TRUE,deleted.edges.omit=TRUE))){
stop("omission arguments causing bad return values in get.edge.attribute")
}
if(!identical(c('bar'),get.edge.attribute(net,'foo',unlist=TRUE,null.na=FALSE))){
stop("null.na arguments causing bad return values in get.edge.attribute")
}
if(!identical(c('bar',NA),get.edge.attribute(net,'foo',unlist=TRUE,null.na=TRUE))){
stop("null.na arguments causing bad return values in get.edge.attribute")
}
if(!identical(list('bar',NULL,NULL),get.edge.attribute(net,'foo',unlist=FALSE,null.na=FALSE))){
stop("null.na arguments causing bad return values in get.edge.attribute")
}
if(!identical(list('bar',NULL,NA),get.edge.attribute(net,'foo',unlist=FALSE,null.na=TRUE))){
stop("null.na arguments causing bad return values in get.edge.attribute")
}
set.edge.attribute(net,'na',TRUE,e=1)
if(!identical(list('bar',NULL,NULL),get.edge.attribute(net,'foo',unlist=FALSE,na.omit=FALSE))){
stop("na.omit argument causing bad return values in get.edge.attribute")
}
if(!identical(list(NULL,NULL),get.edge.attribute(net,'foo',unlist=FALSE,na.omit=TRUE))){
stop("na.omit argument causing bad return values in get.edge.attribute")
}
if(!identical(c('bar'),get.edge.attribute(net,'foo',unlist=TRUE,na.omit=FALSE))){
stop("na.omit argument causing bad return values in get.edge.attribute")
}
if(!identical(NULL,get.edge.attribute(net,'foo',unlist=TRUE,na.omit=TRUE))){
stop("na.omit argument causing bad return values in get.edge.attribute")
}
if(!identical(c(TRUE,FALSE),get.edge.attribute(net,'na',na.omit=FALSE))){
stop("get.edge.attribute did not return correct values for 'na' attribute with na.omit=FALSE")
}
if(!identical(c(FALSE),get.edge.attribute(net,'na',na.omit=TRUE))){
stop("get.edge.attribute did not return correct values for 'na' attribute with na.omit=TRUE")
}
if(!identical(list(),get.edge.attribute(network.initialize(3),'foo',unlist=FALSE))){
stop("get.edge.attribute did not return correct values network with no edges")
}
if(!identical(NULL,get.edge.attribute(network.initialize(3),'foo',unlist=TRUE))){
stop("get.edge.attribute did not return correct values network with no edges")
}
if(!identical(NULL,get.edge.attribute(net,'bar'))){
stop("get.edge.attribute did not return correct values for attribute that does not exist")
}
net<-network.initialize(3)
net[1,2]<-1
net[1,3]<-1
set.edge.attribute(net,'nullval',list(NULL))
if(!identical(list(NULL,NULL),get.edge.attribute(net,'nullval',unlist=FALSE,null.na=FALSE))){
stop("get.edge.attribute not returning NULL values stored as edge attribute correctly")
}
if(!identical(NULL,get.edge.attribute(net,'nullval',null.na=FALSE))){
stop("get.edge.attribute not returning NULL values stored as edge attribute correctly")
}
if(!identical(NULL,get.edge.attribute(net,'nullval',null.na=TRUE))){
stop("get.edge.attribute not returning NULL values stored as edge attribute correctly")
} |
knitr::opts_chunk$set(
collapse = TRUE,
comment = "
)
library(stoRy)
library(stoRy)
help(package = "stoRy")
?get_similar_stories
citation("stoRy")
which_lto()
set_lto(version = "demo")
print_lto()
?`lto-demo`
demo_metadata_tbl <- clone_active_metadata_tbl()
demo_themes_tbl <- clone_active_themes_tbl()
demo_stories_tbl <- clone_active_stories_tbl()
demo_collections_tbl <- clone_active_collections_tbl()
theme <- Theme$new(theme_name = "mass hysteria")
theme
theme$print(canonical = TRUE)
theme$annotations()
suppressMessages(library(dplyr))
library(stringr)
demo_themes_tbl <- clone_active_themes_tbl()
demo_themes_tbl %>% filter(str_detect(theme_name, "mass"))
story <- Story$new(story_id = "tz1959e1x22")
story
story$print(canonical = TRUE)
themes <- story$themes()
themes
title <- "The Monsters Are Due on Maple Street"
demo_stories_tbl <- clone_active_stories_tbl()
story_id <- demo_stories_tbl %>% filter(title == !!title) %>% pull(story_id)
story_id
story$collections()
collection <- Collection$new(collection_id = "Collection: tvseries: The Twilight Zone (1959)")
collection
collection$print(canonical = TRUE)
demo_collections_tbl <- clone_active_collections_tbl()
demo_collections_tbl
collection <- Collection$new(collection_id = "Collection: tvseries: The Twilight Zone (1959)")
result_tbl <- get_featured_themes(collection)
result_tbl
result_tbl <- get_featured_themes()
result_tbl
test_collection <- Collection$new(collection_id = "Collection: tvseries: The Twilight Zone (1959)")
result_tbl <- get_enriched_themes(test_collection)
result_tbl
result_tbl <- get_enriched_themes(test_collection, weights = list(choice = 1, major = 1, minor = 0))
result_tbl
query_story <- Story$new(story_id = "tz1959e1x22")
result_tbl <- get_similar_stories(query_story)
result_tbl |
test_that("errors on invalid input", {
expect_error(select_args_text(sum, "-xlab:"), "Failed to parse")
expect_error(select_args_text(sum, '"a"'), "numbers")
f <- function(x, y, z) {}
expect_error(select_args_text(f, "-x:z"), "numbers")
})
test_that("positive initial values starts from nothing", {
f <- function(x, y, z) {}
expect_equal(select_args_text(f, "x y"), c("x", "y"))
})
test_that("negative initial starts from everything", {
f <- function(x, y, z) {}
expect_equal(select_args_text(f, "-z"), c("x", "y"))
})
test_that("can alternative exclusion and inclusion", {
f <- function(x, y, z) {}
expect_equal(select_args_text(f, "-z z"), c("x", "y", "z"))
expect_equal(select_args_text(f, "z -z"), character())
}) |
check_n_N_class <- function(x)
{
if (class(x) == "select") {
class_x <- "select"
} else {
if (length(x) == 1) {
class_x <- "multiplier"
} else if (mode(x) == "numeric") {
class_x <- "vector"
} else {
class_x <- "list"
if (any(sapply(x, class) == "range")) {
class_x <- paste(class_x, "with ranges")
} else {
class_x <- paste(class_x, "without ranges")
}
}
}
return(class_x)
} |
arxiv_open <-
function(search_results, limit=20)
{
stopifnot(limit >= 1)
if(nrow(search_results) == 0)
return(invisible(NULL))
links <- search_results$link_abstract
links <- links[links != ""]
if(length(links) > limit) {
warning("More abstracts (", length(links), ") than maximum to be opened (", limit, ").")
links <- links[1:limit]
}
for(link in links) {
delay_if_necessary()
utils::browseURL(link)
}
invisible(links)
} |
estim.R2<-function(dataX,y, subset, logistic, any.cat, max.iter){
if(!logistic){
if(!any.cat){
X_<-as.matrix(dataX[,as.vector(subset)])
X_<-cbind(rep(1, nrow(X_)), X_)
estim.beta<-solve(t(X_)%*%X_)%*%t(X_)%*%y
R2<-1-(var(y-X_%*%estim.beta)/var(y))
}else{
X_<-dataX[,as.vector(subset)]
dat<-data.frame(y,X_)
R2<-summary(lm(y~., data=dat))$r.squared
}
}else{
fit.control=glm.control(maxit=max.iter)
X_<-dataX[,as.vector(subset)]
dat<-data.frame(y,X_)
sum_glm<-summary(glm(y~., data=dat,
family="binomial",
control=fit.control))
R2<-1-(sum_glm$deviance/sum_glm$null.deviance)
}
return(R2)
}
calc.lmg<-function(X, y, d, logistic, indices, comb_weights, any.cat, parl,clus, boot,max.iter, i=1:nrow(X)){
X<-X[i,]
y<-y[i]
R2s<-rep(list(0), d+1)
for(j in 1:d){
if(!is.null(parl)){
R2s[[j+1]]<-parallel::parApply(clus,indices[[j+1]], 2,estim.R2,
dataX=X,
y=y,
logistic=logistic,
any.cat=any.cat,
max.iter=max.iter)
}else{
R2s[[j+1]]<-apply(indices[[j+1]], 2,estim.R2,
dataX=X,
y=y,
logistic=logistic,
any.cat=any.cat,
max.iter=max.iter)
}
}
if(!is.null(parl)){
res_lmg <- foreach::foreach(i=1:d, .combine=cbind)%dopar%{
res=0
for(ord in 1:d){
if(ord==1){
idx<-which(indices[[ord+1]]==i)
res=res+comb_weights[ord]*R2s[[ord+1]][as.vector(idx)]
}else{
idx_j<-which(indices[[ord+1]]==i, arr.ind=T)[,2]
idx_woj<-which(apply(indices[[ord]]!=i, 2, all))
tot_incr<-sum(R2s[[ord+1]][as.vector(idx_j)]) - sum(R2s[[ord]][as.vector(idx_woj)])
res=res+comb_weights[ord]*tot_incr
}
}
res
}
}else{
res_lmg<-rep(0,d)
for(var_j in 1:d){
for(ord in 1:d){
if(ord==1){
idx<-which(indices[[ord+1]]==var_j)
res_lmg[var_j]=res_lmg[var_j]+comb_weights[ord]*R2s[[ord+1]][as.vector(idx)]
}else{
idx_j<-which(indices[[ord+1]]==var_j, arr.ind=T)[,2]
idx_woj<-which(apply(indices[[ord]]!=var_j, 2, all))
tot_incr<-sum(R2s[[ord+1]][as.vector(idx_j)]) - sum(R2s[[ord]][as.vector(idx_woj)])
res_lmg[var_j]=res_lmg[var_j]+comb_weights[ord]*tot_incr
}
}
}
}
res_lmg=res_lmg/d
if(boot){
return(res_lmg)
}else{
return(list("R2"=R2s,
"lmg"=res_lmg))
}
}
lmg<-function(X, y, logistic = FALSE, rank=FALSE, nboot = 0, conf=0.95, max.iter=1000, parl=NULL){
d<-ncol(X)
any.cat<-any(sapply(X,class)=="factor")
if(!(class(X)[1]=="matrix" | class(X)[1]=="data.frame")){
stop("X must be either a matrix of a data frame.")
}
if (logistic==F & !is.numeric(y)){
stop(paste("y must be a numeric vector of length ",nrow(X)," or a matrix with ", nrow(X), " rows and one column.", sep=""))
}else if(logistic==T & (all(!is.logical(y), !is.factor(y), !is.numeric(y))) ){
stop("y must be a logical, factor or numeric vector.")
}else if (length(y)!=nrow(X)){
stop(paste("y must be a vector of length ",nrow(X)," or a matrix with ", nrow(X), " rows and one column.", sep=""))
}
if(!is.logical(logistic)){
stop("The 'logistic' argument must be logical, either TRUE or FALSE.")
}
if(!is.logical(rank)){
stop("The 'rank' argument must be logical, either TRUE or FALSE.")
}else if (logistic & rank){
rank=F
warning("Impossible to perform a logistic regression with a rank transformation. Defaulted to rank=FALSE.")
}else if (any.cat & rank){
rank=F
warning("Impossible to perform a rank transformation with categorical inputs. Defaulted to rank=FALSE.")
}
if(!is.numeric(nboot)){
stop("The 'nboot' argument must be a positive integer.")
}else if (nboot%%1!=0 | nboot<0 | length(nboot)!=1){
stop("The 'nboot' argument must be a positive integer.")
}else if(nboot==0){
boot=F
}else{
boot=T
}
if(!is.numeric(parl)){
if(!is.null(parl)){
stop("The 'parl' argument must be NULL or a positive integer.")
}
}else if(parl%%1!=0 | parl<0 | length(parl)!=1){
stop("The 'parl' argument must be NULL or a positive integer.")
}else if (parl>parallel::detectCores()){
parl=parallel::detectCores()-1
warning(paste("Too many cores specified. Defaulted to ", parl, " cores.", sep=""))
}
if(rank){
X<-apply(X, 2, rank)
}
indices<-rep(list(0), d+1)
comb_weights<-rep(0,d)
for(j in 1:d){
indices[[j+1]]<-t(gtools::combinations(n=d, r=j))
comb_weights[j]<-1/choose(n=(d-1), j-1)
}
if(!is.null(parl)){
cl=parallel::makeCluster(parl)
doParallel::registerDoParallel(cl)
}else{
cl=NULL
}
res_lmg<-calc.lmg(X=X,
y=y,
d=d,
logistic=logistic,
indices=indices,
comb_weights=comb_weights,
any.cat=any.cat,
parl=parl,
clus=cl,
max.iter=max.iter,
boot=F)
res_lmg$lmg<-matrix(res_lmg$lmg, ncol=1)
colnames(res_lmg$lmg)<-"original"
rownames(res_lmg$lmg)<-colnames(X)
out<-list("call"=match.call(),
"lmg"=res_lmg$lmg,
"R2s"=res_lmg$R2,
"indices"=indices,
"w"=comb_weights,
"conf_int"=NULL,
"X"=X,
"y"=y,
"logistic"=logistic,
"boot"=boot,
"nboot"=nboot,
"rank"=rank,
"parl"=parl,
"conf"=conf
)
if(boot){
if(is.null(parl)){
boot_lmg<-boot(data=cbind(X),
statistic=calc.lmg,
R=nboot,
d=d,
y=y,
logistic=logistic,
indices=indices,
comb_weights=comb_weights,
any.cat=any.cat,
parl=NULL,
clus=NULL,
boot=boot,
max.iter=max.iter,
stype="i")
}else{
boot_lmg<-boot(data=cbind(X),
statistic=calc.lmg,
R=nboot,
d=d,
y=y,
logistic=logistic,
indices=indices,
comb_weights=comb_weights,
any.cat=any.cat,
parl=NULL,
clus=NULL,
boot=boot,
stype="i",
parallel="snow",
ncpus=parl,
max.iter=max.iter,
cl=cl)
}
CI_lmg<-bootstats(boot_lmg, conf, "basic")
rownames(CI_lmg)=colnames(X)
out$conf_int<-CI_lmg
}
if(!is.null(parl)){parallel::stopCluster(cl)}
class(out)<-"lmg"
return(out)
}
print.lmg<-function(x, ...){
cat("\nCall:\n", deparse(x$call), "\n", sep = "")
if(x$logistic){
cat("\nLMG decomposition of R2 for logistic model\n")
}else{
cat("\nLMG decomposition of R2 for linear model\n")
}
if(x$boot){
print(x$conf_int)
}else{
print(x$lmg)
}
}
plot.lmg<-function(x, ylim=c(0,1), ...){
if(x$logistic){
plot_title="LMG decomposition of R2 for logistic model"
}else{
plot_title="LMG decomposition of R2 for linear model"
}
plot(x$lmg,
ylim=ylim,
axes=F,
xlab="Inputs",
ylab="LMG",
main=plot_title,
...)
axis(2)
axis(1, at=seq_along(x$lmg), labels=colnames(x$X))
box()
graphics::grid()
if(x$boot){
segments(x0=1:ncol(x$X),
y0=x$conf_int$`min. c.i.`,
x1=1:ncol(x$X),
y1=x$conf_int$`max. c.i.`)
legend("topright",
pch=c(1,NA),
lty=c(NA,1),
legend=c("LMG values",
paste(x$conf*100, "% Confidence interval", sep="")),
bg="white")
}else{
legend("topright",
pch=1,
legend=c("LMG Values"),
bg="white")
}
} |
varranges <- function(E=NULL, F=NULL, G=NULL, H=NULL,
EqA, EqB=NULL, ispos=FALSE, tol=1e-8) {
if (! is.matrix(E) & ! is.null(E))
E <- t(as.matrix(E))
if (! is.matrix(G) & ! is.null(G))
G <- t(as.matrix(G))
if (! is.matrix(EqA) & ! is.null(EqA))
EqA <- t(as.matrix(EqA))
Neq <- nrow(E)
Nx <- ncol(E)
Nineq <- nrow(G)
if (is.null(Nineq))
Nineq <- 0
if (is.null(Neq))
Neq <- 0
NVar <- nrow(EqA)
con <- E
rhs <- F
dir <- rep("==",Neq)
if (Nineq > 0) {
con <- rbind(con,G)
rhs <- c(rhs,H)
dir <- c(dir,rep(">=",Nineq))
}
Range <- matrix(ncol=2,nrow=NVar,NA)
if (ispos) {
obj <- vector(length = Nx)
for (i in 1:NVar) {
obj <- EqA[i,]
lmin <- lp("min",obj,con,dir,rhs)
if (lmin$status == 0)
Range[i,1] <- lmin$objval else
if (lmin$status == 3)
Range[i,1] <- -1e30 else
Range[i,1] <- NA
lmax <- lp("max",obj,con,dir,rhs)
if (lmax$status == 0)
Range[i,2] <- lmax$objval else
if (lmax$status == 3)
Range[i,2] <- 1e30 else
Range[i,2] <- NA
}
} else {
Sol <- lsei(E=E,F=F,G=G,H=H)
if (Sol$residualNorm > tol) {
Sol <- ldei(E=E,F=F,G=G,H=H)
if (Sol$residualNorm > tol) {
warning (paste("cannot proceed: problem not solvable at requested tolerance",tol))
return(Range)
}
}
con <- cbind(con,-1*con)
EqA <- cbind(EqA,-1*EqA)
for (i in 1:NVar) {
obj <- EqA[i,]
lmin <- lp("min", obj, con, dir, rhs)
if(lmin$status == 0)
Range[i, 1] <- lmin$objval else
if(lmin$status == 3)
Range[i, 1] <- -1e30 else
Range[i, 1] <- NA
lmax <- lp("max", obj, con, dir, rhs)
if(lmax$status == 0)
Range[i, 2] <- lmax$objval else
if(lmax$status == 3)
Range[i, 2] <- 1e30 else
Range[i, 2] <- NA
}
}
if (!is.null(EqB)) {
Range[,1]<-Range[,1]-EqB
Range[,2]<-Range[,2]-EqB
}
colnames(Range) <- c("min","max")
rownames(Range) <- rownames(EqA)
return(Range)
} |
NULL
generate.PrecipitationOccurrenceModel <- function(x,newdata=NULL,previous=NULL,n=30,random=runif(n,min=0,max=1),exogen=NULL,monthly.factor=NULL,...) {
p <- x$p
if (p<1) previous <- NULL
if (!is.null(exogen)) newdata <- as.data.frame(exogen)
if (is.null(newdata) & is.null(monthly.factor)) {
newdata <- x$predictor
} else if (is.null(newdata)) {
newdata <- as.data.frame(array(NA,c(length(monthly.factor),0)))
}
if (!is.null(monthly.factor)) newdata$month <- factor(monthly.factor)
if (nrow(newdata)<n) {
warning("Warning: n is reduced, insufficient numbers of predictors!")
n <- nrow(newdata)
}
names_n <- names(newdata)
newdata <- as.data.frame(newdata[1:n,])
names(newdata) <- names_n
if (is.null(previous)) {
previous <- rnorm(x$p)>=0
}
out <- array(NA,n)
for (i in 1:n) {
prob <- 1-predict(x,newdata=newdata[i,],previous=previous,type="response",...)
out[i] <- random[i]>=prob
previous <- c(out[i],previous[-p])
}
return(out)
}
NULL
generate.CCGammaObjectListPerEachMonth <- function(x,...) {
class(x) <- "list"
out <- generate(x,...)
return(out)
}
NULL
generate.PrecipitationOccurrenceMultiSiteModel <- function(x,exogen,n=10,origin="1961-1-1",end="1990-1-1",previous=NULL,monthly.factor=NULL,...) {
out <- NULL
if (is.null(monthly.factor)) {
dates <- as.Date(origin):as.Date(end)
months <- adddate(as.data.frame(dates),origin=origin)$month
n <- length(months)
} else {
months <- monthly.factor
n <- length(months)
}
if (x$type=="wilks") {
monthsf <- sprintf("month%02d",months)
gen_wilks <- generate(x$ccgamma,FUN=rnorm,type="covariance",names=x$station,factor.series=monthsf)
for (c in 1:ncol(gen_wilks)) {
gen_wilks[,c] <- pnorm(gen_wilks[,c])
}
if (is.null(exogen)) {
exogen <- lapply(X=x$station,FUN=function(x){ NULL })
names(exogen) <- x$station
}
if (is.null(previous)) {
previous <- lapply(X=x$station,FUN=function(x){ NULL })
names(previous) <- x$station
}
out <- as.data.frame(array(NA,dim(gen_wilks)))
names(out) <- names(gen_wilks)
for (it in x$station) {
if (is.data.frame(exogen)) {
cols <- str_detect(names(exogen),it)
exogen_loc <- exogen[,cols]
} else if (is.list(exogen)) {
exogen_loc <- exogen[[it]]
} else {
exogen_loc <- exogen
}
if (is.data.frame(previous)) {
previous_loc <- previous[,it]
} else {
previous_loc <- previous[[it]]
}
message(paste("Processing",it))
out[,it] <- generate(x[[it]],previous=previous_loc,exogen=exogen_loc,monthly.factor=factor(months),random=gen_wilks[,it],n=n)
}
} else if (x$type=="logit") {
if (is.null(exogen)) {
exogen <- as.data.frame(array(NA,c(n,0)))
}
if (is.null(previous)) {
previous <- as.data.frame(array(rnorm(x$p*x$K)>=0,c(x$p,x$K)))
names(previous) <- x$station
} else {
previous <- previous[,x$station]
}
out <- as.data.frame(array(NA,c(n,length(x$station))))
names(out) <- x$station
percs <- seq(from=0,to=100,by=5)
npercs <- trunc(percs/100*n)
for (ncnt in 1:n) {
if (ncnt %in% npercs) {
valprec <- percs[npercs==ncnt]
message <- paste(sprintf("Processing: %0.2f",valprec),"%",sep="")
message(message)
}
out[ncnt,] <- unlist(lapply(X=x[x$station],FUN=generate,previous=previous,endogenous=x$station,exogen=exogen[ncnt,],monthly.factor=factor(months)[ncnt],n=1,...))
previous[-1,] <- previous[-x$p,]
previous[1,] <- out[ncnt,]
}
}
return(out)
} |
knitr::opts_chunk$set(
collapse = TRUE,
comment = "
)
library(SplitKnockoff) |
library(usethis)
source("data-raw/01-small_table.R")
source("data-raw/04-specifications.R")
source("data-raw/05-game_revenue.R")
source("data-raw/06-game_revenue_info.R")
usethis::use_data(
small_table,
specifications,
game_revenue,
game_revenue_info,
internal = FALSE, overwrite = TRUE
) |
figure_detectAllPoints <- function (aBinaryPlot,
sensitivity = 0.2,
point_shape = "circle",
point_size = 5) {
.metagearDependencies("EBImage")
point_shape <- switch(point_shape,
"circle" = "disc",
"square" = "box",
"diamond" = "diamond",
.metagearPROBLEM("error",
paste(point_shape, "is not a valid shape option"))
)
pointBrush <- EBImage::makeBrush(size = point_size, shape = point_shape, step = TRUE)
aPaintedFigure <- EBImage::opening(EBImage::distmap(aBinaryPlot), pointBrush)
detectedPointsFigure <- EBImage::watershed(EBImage::distmap(aPaintedFigure),
tolerance = sensitivity,
ext = 1)
return(detectedPointsFigure)
} |
knitr::opts_chunk$set(echo = TRUE,fig.width=8, fig.height=6)
library(Fiscore)
pdb_path<- system.file("extdata", "6kz5.pdb", package="Fiscore")
pdb_df<-PDB_process(pdb_path)
pdb_df
pdb_path<-system.file("extdata", "6kz5_A.pdb", package="Fiscore")
pdb_df<-PDB_prepare(pdb_path)
head(pdb_df)
phi_psi_plot(pdb_df)
phi_psi_bar_plot(pdb_df)
phi_psi_interactive(pdb_df)
B_plot_normalised(pdb_df)
phi_psi_3D(pdb_df)
Fi_score_plot(pdb_df)
Fi_score_region(pdb_df,50,70)
Fiscore_secondary(pdb_df)
hydrophobicity_plot(pdb_df,window = 9,weight = 25,model = "linear")
hydrophobicity_plot(pdb_df,window = 9,weight = 25,model = "exponential")
df<-cluster_ID(pdb_df)
df<-cluster_ID(pdb_df,clusters = 5, modelNames = "VVI")
density_plots(pdb_df)
density_plots(pdb_df, df) |
test_that("can create a basic workflow", {
workflow <- workflow()
expect_s3_class(workflow, "workflow")
expect_s3_class(workflow$pre, "stage_pre")
expect_s3_class(workflow$fit, "stage_fit")
expect_s3_class(workflow$post, "stage_post")
expect_equal(workflow$pre$actions, list())
expect_equal(workflow$pre$mold, NULL)
expect_equal(workflow$fit$actions, list())
expect_equal(workflow$fit$fit, NULL)
expect_equal(workflow$post$actions, list())
})
test_that("workflow must be the first argument when adding actions", {
rec <- recipes::recipe(mpg ~ cyl, mtcars)
mod <- parsnip::linear_reg()
expect_error(add_formula(1, mpg ~ cyl), "must be a workflow")
expect_error(add_recipe(1, rec), "must be a workflow")
expect_error(add_model(1, mod), "must be a workflow")
})
test_that("can add a model spec directly to a workflow", {
mod <- parsnip::linear_reg()
workflow <- workflow(spec = mod)
expect_identical(workflow$fit$actions$model$spec, mod)
})
test_that("can add a preprocessor directly to a workflow", {
preprocessor <- recipes::recipe(mpg ~ cyl, mtcars)
workflow <- workflow(preprocessor)
expect_identical(workflow$pre$actions$recipe$recipe, preprocessor)
preprocessor <- mpg ~ cyl
workflow <- workflow(preprocessor)
expect_identical(workflow$pre$actions$formula$formula, preprocessor)
preprocessor <- workflow_variables(mpg, cyl)
workflow <- workflow(preprocessor)
expect_identical(workflow$pre$actions$variables$variables, preprocessor)
})
test_that("model spec is validated", {
expect_snapshot(error = TRUE, workflow(spec = 1))
})
test_that("preprocessor is validated", {
expect_snapshot(error = TRUE, workflow(preprocessor = 1))
})
test_that("constructor validates input", {
expect_error(new_workflow(pre = 1), "must be a `stage`")
expect_error(new_workflow(fit = 1), "must be a `stage`")
expect_error(new_workflow(post = 1), "must be a `stage`")
expect_error(new_workflow(trained = 1), "must be a single logical value")
})
test_that("can check if a workflow is trained", {
rec <- recipes::recipe(mpg ~ cyl, mtcars)
mod <- parsnip::linear_reg()
mod <- parsnip::set_engine(mod, "lm")
wf <- workflow()
wf <- add_recipe(wf, rec)
wf <- add_model(wf, mod)
expect_false(is_trained_workflow(wf))
wf <- fit(wf, mtcars)
expect_true(is_trained_workflow(wf))
})
test_that("input must be a workflow", {
expect_snapshot_error(is_trained_workflow(1))
}) |
context("Full name")
test_that("fullname fallback", {
mockery::stub(fullname, "system", function(cmd, ...) {
if (grepl("^git config", cmd)) {
"Joe Jamba"
} else {
NULL
}
})
expect_equal(fullname(), "Joe Jamba")
})
test_that("fullname works", {
fn <- try(fullname(), silent = TRUE)
if (!inherits(fn, "try-error")) {
expect_equal(class(fn), "character")
expect_equal(length(fn), 1)
expect_match(fn, ".*")
}
})
test_that("FULLNAME env var", {
expect_equal(
withr::with_envvar(c("FULLNAME" = "Bugs Bunny"), fullname()),
"Bugs Bunny")
}) |
rpp_read <- function(filename, header=TRUE, selected=c(2, 3, 4, 0, 0, 1, 0, 0), ...) {
if (header == TRUE) {
dat <- read.csv(filename, na.strings = "NA", dec = ".", header = TRUE, strip.white = TRUE, skipNul = TRUE, ...)
colnames(dat) <- list()
}
else {
dat <- read.csv(filename, na.strings = "NA", dec = ".", header = FALSE, strip.white = TRUE, skipNul = TRUE, ...)
}
istrain <- selected[1]
istrain_rate <- selected[2]
istress <- selected[3]
ielast <- selected[4]
ivisco <- selected[5]
iraw_time <- selected[6]
iraw_stress<- selected[7]
iraw_strain <- selected[8]
if (istrain != 0) {
strain <- dat[istrain]
}
else {
print("strain is missing")
strain <- data.frame(numeric(length = dim(dat)[1]))
}
if (istrain_rate != 0) {
strain_rate <- dat[istrain_rate]
}
else {
print("strain_rate_is_missing")
strainrate <- data.frame(numeric(length = dim(dat)[1]))
}
if (istress != 0) {
stress <- dat[istress]
}
else {
print("stress is missing")
stress <- data.frame(numeric(length = dim(dat)[1]))
}
if (ielast != 0) {
elast_stress <- dat[ielast]
}
else {
print("Elastic-Stress is missing")
elast_stress <- data.frame(numeric(length = dim(dat)[1]))
}
if (ivisco != 0) {
visco_stress <- dat[ivisco]
}
else {
print("Visco-Stress is missing")
visco_stress <- data.frame(numeric(length = dim(dat)[1]))
}
if (iraw_time != 0) {
raw_time <- dat[iraw_time]
}
else {
print("Raw Time is missing")
raw_time <- data.frame(numeric(length = dim(dat)[1]))
}
if (iraw_stress != 0) {
raw_stress <- dat[iraw_stress]
}
else {
print("Raw Stress is missing")
raw_stress <- numeric(length = dim(dat)[1])
}
if (iraw_strain != 0) {
raw_strain <- dat[iraw_strain]
}
else {
print("Raw Strain is missing")
raw_strain <- numeric(length = dim(dat)[1])
}
ds <- data.frame(strain, strain_rate, stress, elast_stress, visco_stress, raw_time, raw_stress,raw_strain)
colnames(ds) <- c("strain", "strain_rate", "stress", "elast_stress", "visco_stress", "raw_time", "raw_stress","raw_strain")
return(ds)
}
rpp_read2 <- function(dat , selected=c(2, 3, 4, 0, 0, 1, 0, 0), ...) {
istrain <- selected[1]
istrain_rate <- selected[2]
istress <- selected[3]
ielast <- selected[4]
ivisco <- selected[5]
iraw_time <- selected[6]
iraw_stress<- selected[7]
iraw_strain <- selected[8]
if (istrain != 0) {
strain <- dat[istrain]
}
else {
print("strain is missing")
strain <- data.frame(numeric(length = dim(dat)[1]))
}
if (istrain_rate != 0) {
strain_rate <- dat[istrain_rate]
}
else {
print("strain_rate_is_missing")
strainrate <- data.frame(numeric(length = dim(dat)[1]))
}
if (istress != 0) {
stress <- dat[istress]
}
else {
print("stress is missing")
stress <- data.frame(numeric(length = dim(dat)[1]))
}
if (ielast != 0) {
elast_stress <- dat[ielast]
}
else {
print("Elastic-Stress is missing")
elast_stress <- data.frame(numeric(length = dim(dat)[1]))
}
if (ivisco != 0) {
visco_stress <- dat[ivisco]
}
else {
print("Visco-Stress is missing")
visco_stress <- data.frame(numeric(length = dim(dat)[1]))
}
if (iraw_time != 0) {
raw_time <- dat[iraw_time]
}
else {
print("Raw Time is missing")
raw_time <- data.frame(numeric(length = dim(dat)[1]))
}
if (iraw_stress != 0) {
raw_stress <- dat[iraw_stress]
}
else {
print("Raw Stress is missing")
raw_stress <- numeric(length = dim(dat)[1])
}
if (iraw_strain != 0) {
raw_strain <- dat[iraw_strain]
}
else {
print("Raw Strain is missing")
raw_strain <- numeric(length = dim(dat)[1])
}
ds <- data.frame(strain, strain_rate, stress, elast_stress, visco_stress, raw_time, raw_stress,raw_strain)
colnames(ds) <- c("strain", "strain_rate", "stress", "elast_stress", "visco_stress", "raw_time", "raw_stress","raw_strain")
return(ds)
} |
setMethod(f = "draw_heatmap_legend",
signature = "HeatmapList",
definition = function(object, legend_list = list(), ...) {
side = object@heatmap_legend_param$side
size = object@heatmap_legend_param$size
padding = object@heatmap_legend_param$padding
direction = object@direction
legend_grouping = object@ht_list_param$legend_grouping
ColorMappingList = list()
ColorMappingParamList = list()
for(i in seq_along(object@ht_list)) {
ht = object@ht_list[[i]]
if(direction == "horizontal") {
if(inherits(object@ht_list[[i]], "Heatmap")) {
if(!is.null(ht@left_annotation)) {
if(object@ht_list_param$merge_legends || legend_grouping == "adjusted") {
ColorMappingList = c.list(ColorMappingList, list = get_color_mapping_list(ht@left_annotation))
ColorMappingParamList = c.list(ColorMappingParamList, list = get_legend_param_list(ht@left_annotation))
}
}
if(!is.null(ht@top_annotation)) {
if(object@ht_list_param$merge_legends) {
ColorMappingList = c.list(ColorMappingList, list = get_color_mapping_list(ht@top_annotation))
ColorMappingParamList = c.list(ColorMappingParamList, list = get_legend_param_list(ht@top_annotation))
}
}
if(object@ht_list[[i]]@heatmap_param$show_heatmap_legend) {
ColorMappingList = c.list(ColorMappingList, object@ht_list[[i]]@matrix_color_mapping)
ColorMappingParamList = c.list(ColorMappingParamList, object@ht_list[[i]]@matrix_legend_param)
}
if(!is.null(ht@bottom_annotation)) {
if(object@ht_list_param$merge_legends) {
ColorMappingList = c.list(ColorMappingList, list = get_color_mapping_list(ht@bottom_annotation))
ColorMappingParamList = c.list(ColorMappingParamList, list = get_legend_param_list(ht@bottom_annotation))
}
}
if(!is.null(ht@right_annotation)) {
if(object@ht_list_param$merge_legends || legend_grouping == "adjusted") {
ColorMappingList = c.list(ColorMappingList, list = get_color_mapping_list(ht@right_annotation))
ColorMappingParamList = c.list(ColorMappingParamList, list = get_legend_param_list(ht@right_annotation))
}
}
} else if(inherits(object@ht_list[[i]], "HeatmapAnnotation")) {
if(object@ht_list_param$merge_legends || legend_grouping == "adjusted") {
ColorMappingList = c.list(ColorMappingList, list = get_color_mapping_list(object@ht_list[[i]]))
ColorMappingParamList = c.list(ColorMappingParamList, list = get_legend_param_list(object@ht_list[[i]]))
}
}
} else {
if(inherits(object@ht_list[[i]], "Heatmap")) {
if(!is.null(ht@left_annotation)) {
if(object@ht_list_param$merge_legends) {
ColorMappingList = c.list(ColorMappingList, list = get_color_mapping_list(ht@left_annotation))
ColorMappingParamList = c.list(ColorMappingParamList, list = get_legend_param_list(ht@left_annotation))
}
}
if(!is.null(ht@top_annotation)) {
if(object@ht_list_param$merge_legends || legend_grouping == "adjusted") {
ColorMappingList = c.list(ColorMappingList, list = get_color_mapping_list(ht@top_annotation))
ColorMappingParamList = c.list(ColorMappingParamList, list = get_legend_param_list(ht@top_annotation))
}
}
if(object@ht_list[[i]]@heatmap_param$show_heatmap_legend) {
ColorMappingList = c.list(ColorMappingList, object@ht_list[[i]]@matrix_color_mapping)
ColorMappingParamList = c.list(ColorMappingParamList, object@ht_list[[i]]@matrix_legend_param)
}
if(!is.null(ht@bottom_annotation)) {
if(object@ht_list_param$merge_legends || legend_grouping == "adjusted") {
ColorMappingList = c.list(ColorMappingList, list = get_color_mapping_list(ht@bottom_annotation))
ColorMappingParamList = c.list(ColorMappingParamList, list = get_legend_param_list(ht@bottom_annotation))
}
}
if(!is.null(ht@right_annotation)) {
if(object@ht_list_param$merge_legends) {
ColorMappingList = c.list(ColorMappingList, list = get_color_mapping_list(ht@right_annotation))
ColorMappingParamList = c.list(ColorMappingParamList, list = get_legend_param_list(ht@right_annotation))
}
}
} else if(inherits(object@ht_list[[i]], "HeatmapAnnotation")) {
if(object@ht_list_param$merge_legends || legend_grouping == "adjusted") {
ColorMappingList = c.list(ColorMappingList, list = get_color_mapping_list(object@ht_list[[i]]))
ColorMappingParamList = c.list(ColorMappingParamList, list = get_legend_param_list(object@ht_list[[i]]))
}
}
}
}
annotation_legend_side = object@annotation_legend_param$side
annotation_legend_size = object@annotation_legend_param$size
align_legend = object@heatmap_legend_param$align_legend
if(is.null(align_legend)) {
align_legend = guess_align_legend(object,
object@heatmap_legend_param$size, object@annotation_legend_param$size,
object@heatmap_legend_param$side, object@annotation_legend_param$side,
test_on = "heatmap_legend")
}
if(align_legend %in% c("global_center", "global-center")) {
if(side != annotation_legend_side) {
y = unit(0.5, "npc")
pushViewport(viewport(name = "heatmap_legend", x = unit(0.5, "npc"), y = y, width = size[1], height = size[2], just = c("center", "center")))
} else {
if(side %in% c("left", "right")) {
y1 = unit(0.5, "npc") + size[2]*0.5
y2 = unit(0.5, "npc") + annotation_legend_size[2]*0.5
y = max(y1, y2)
pushViewport(viewport(name = "heatmap_legend", x = unit(0.5, "npc"), y = y, width = size[1], height = size[2], just = c("center", "top")))
} else {
x1 = unit(0.5, "npc") - size[1]*0.5
x2 = unit(0.5, "npc") - annotation_legend_size[1]*0.5
x = min(x1, x2)
pushViewport(viewport(name = "heatmap_legend", x = x, y = unit(0.5, "npc"), width = size[1], height = size[2], just = c("left", "center")))
}
}
} else {
if(align_legend %in% c("heatmap_top", "heatmap-top")) {
if(!side %in% c("left", "right")) {
stop_wrap("Heatmap legends should be put on the left or right side of the heatmaps if `align_legend` is 'heatmap_top'.")
}
if(object@direction == "horizontal") {
top_h = sum(component_height(object@ht_list[[ which_main_ht(object) ]], 1:4))
} else {
top_h = calc_before_h(object)
}
y = unit(1, "npc") - top_h
legend_just = "top"
x = unit(0.5, "npc")
} else if(align_legend %in% c("heatmap_left", "heatmap-left")) {
if(!side %in% c("top", "bottom")) {
stop_wrap("Heatmap legends should be put on the top or bottom side of the heatmaps if `align_legend` is 'heatmap_left'.")
}
if(object@direction == "vertical") {
left_w = sum(component_width(object@ht_list[[ which_main_ht(object) ]], 1:4))
} else {
left_w = calc_before_w(object)
}
x = left_w
legend_just = "left"
y = unit(0.5, "npc")
} else if(align_legend %in% c("heatmap_center", "heatmap-center")) {
if(side %in% c("left", "right")) {
if(object@direction == "horizontal") {
bottom_h = sum(component_height(object@ht_list[[ which_main_ht(object) ]], 6:9))
top_h = sum(component_height(object@ht_list[[ which_main_ht(object) ]], 1:4))
anno_bottom_extend = do.call("unit.c", lapply(object@ht_list, function(ht) {
if(inherits(ht, "HeatmapAnnotation")) {
ht@extended[1]
} else {
if(!is.null(ht@left_annotation)) {
u1 = ht@left_annotation@extended[1]
} else {
u1 = unit(0, "mm")
}
if(!is.null(ht@right_annotation)) {
u2 = ht@right_annotation@extended[1]
} else {
u2 = unit(0, "mm")
}
unit.c(u1, u2)
}
}))
bottom_h = max(unit.c(bottom_h, anno_bottom_extend))
bottom_h = convertHeight(bottom_h, "mm")
} else {
bottom_h = calc_after_h(object)
top_h = calc_before_h(object)
}
ht_h = unit(1, "npc") - top_h - bottom_h
y = bottom_h + ht_h*0.5
legend_just = "center"
x = unit(0.5, "npc")
} else {
if(object@direction == "horizontal") {
left_w = calc_before_w(object)
right_w = calc_after_w(object)
} else {
left_w = sum(component_width(object@ht_list[[ which_main_ht(object) ]], 1:4))
right_w = sum(component_width(object@ht_list[[ which_main_ht(object) ]], 6:9))
}
ht_w = unit(1, "npc") - left_w - right_w
x = left_w + ht_w*0.5
legend_just = "center"
y = unit(0.5, "npc")
}
} else {
stop_wrap("Wrong value for `align_heatmap_legend`.")
}
if(side != annotation_legend_side) {
pushViewport(viewport(name = "heatmap_legend", x = x, y = y, width = size[1], height = size[2], just = legend_just))
} else {
if(side %in% c("left", "right")) {
if(align_legend %in% c("heatmap_center", "heatmap-center")) {
y = bottom_h + ht_h*0.5 + max(size[2]*0.5, annotation_legend_size[2]*0.5)
legend_just = "top"
}
pushViewport(viewport(name = "heatmap_legend", x = x, y = y, width = size[1], height = size[2], just = legend_just))
} else {
if(align_legend %in% c("heatmap_center", "heatmap-center")) {
x = left_w + ht_w*0.5 - max(size[1]*0.5, annotation_legend_size[1]*0.5)
legend_just = "left"
}
pushViewport(viewport(name = "heatmap_legend", x = x, y = y, width = size[1], height = size[2], just = legend_just))
}
}
}
draw_legend(ColorMappingList, ColorMappingParamList, side = side, legend_list = legend_list, padding = padding, ...)
upViewport()
})
setMethod(f = "draw_annotation_legend",
signature = "HeatmapList",
definition = function(object, legend_list = list(), ...) {
side = object@annotation_legend_param$side
size = object@annotation_legend_param$size
padding = object@annotation_legend_param$padding
offset = object@annotation_legend_param$offset
direction = object@direction
legend_grouping = object@ht_list_param$legend_grouping
ColorMappingList = list()
ColorMappingParamList = list()
for(i in seq_along(object@ht_list)) {
ht = object@ht_list[[i]]
if(direction == "horizontal") {
if(inherits(ht, "Heatmap")) {
if(!is.null(ht@left_annotation)) {
if(legend_grouping == "original") {
ColorMappingList = c.list(ColorMappingList, list = get_color_mapping_list(ht@left_annotation))
ColorMappingParamList = c.list(ColorMappingParamList, list = get_legend_param_list(ht@left_annotation))
}
}
if(!is.null(ht@top_annotation)) {
ColorMappingList = c.list(ColorMappingList, list = get_color_mapping_list(ht@top_annotation))
ColorMappingParamList = c.list(ColorMappingParamList, list = get_legend_param_list(ht@top_annotation))
}
if(!is.null(ht@bottom_annotation)) {
ColorMappingList = c.list(ColorMappingList, list = get_color_mapping_list(ht@bottom_annotation))
ColorMappingParamList = c.list(ColorMappingParamList, list = get_legend_param_list(ht@bottom_annotation))
}
if(!is.null(ht@right_annotation)) {
if(legend_grouping == "original") {
ColorMappingList = c.list(ColorMappingList, list = get_color_mapping_list(ht@right_annotation))
ColorMappingParamList = c.list(ColorMappingParamList, list = get_legend_param_list(ht@right_annotation))
}
}
} else if(inherits(ht, "HeatmapAnnotation")) {
if(legend_grouping == "original") {
ColorMappingList = c.list(ColorMappingList, list = get_color_mapping_list(ht))
ColorMappingParamList = c.list(ColorMappingParamList, list = get_color_mapping_list(ht))
}
}
} else {
if(inherits(ht, "Heatmap")) {
if(!is.null(ht@left_annotation)) {
ColorMappingList = c.list(ColorMappingList, list = get_color_mapping_list(ht@left_annotation))
ColorMappingParamList = c.list(ColorMappingParamList, list = get_legend_param_list(ht@left_annotation))
}
if(!is.null(ht@top_annotation)) {
if(legend_grouping == "original") {
ColorMappingList = c.list(ColorMappingList, list = get_color_mapping_list(ht@top_annotation))
ColorMappingParamList = c.list(ColorMappingParamList, list = get_legend_param_list(ht@top_annotation))
}
}
if(!is.null(ht@bottom_annotation)) {
if(legend_grouping == "original") {
ColorMappingList = c.list(ColorMappingList, list = get_color_mapping_list(ht@bottom_annotation))
ColorMappingParamList = c.list(ColorMappingParamList, list = get_legend_param_list(ht@bottom_annotation))
}
}
if(!is.null(ht@right_annotation)) {
ColorMappingList = c.list(ColorMappingList, list = get_color_mapping_list(ht@right_annotation))
ColorMappingParamList = c.list(ColorMappingParamList, list = get_legend_param_list(ht@right_annotation))
}
} else if(inherits(ht, "HeatmapAnnotation")) {
if(legend_grouping == "original") {
ColorMappingList = c.list(ColorMappingList, list = get_color_mapping_list(ht))
ColorMappingParamList = c.list(ColorMappingParamList, list = get_color_mapping_list(ht))
}
}
}
}
heatmap_legend_side = object@heatmap_legend_param$side
heatmap_legend_size = object@heatmap_legend_param$size
align_legend = object@annotation_legend_param$align_legend
if(is.null(align_legend)) {
align_legend = guess_align_legend(object,
object@heatmap_legend_param$size, object@annotation_legend_param$size,
object@heatmap_legend_param$side, object@annotation_legend_param$side,
test_on = "annotation_legend")
}
if(align_legend %in% c("global_center", "global-center")) {
if(side != heatmap_legend_side) {
pushViewport(viewport(name = "annotation_legend", x = unit(0.5, "npc"), y = unit(0.5, "npc"), width = size[1], height = size[2], just = c("center", "center")))
} else {
if(side %in% c("left", "right")) {
y1 = unit(0.5, "npc") + size[2]*0.5
y2 = unit(0.5, "npc") + heatmap_legend_size[2]*0.5
y = max(y1, y2)
pushViewport(viewport(name = "annotation_legend", x = unit(0.5, "npc"), y = y, width = size[1], height = size[2], just = c("center", "top")))
} else {
x1 = unit(0.5, "npc") - size[1]*0.5
x2 = unit(0.5, "npc") - heatmap_legend_size[1]*0.5
x = min(x1, x2)
pushViewport(viewport(name = "annotation_legend", x = x, y = unit(0.5, "npc"), width = size[1], height = size[2], just = c("left", "center")))
}
}
} else {
if(align_legend %in% c("heatmap_top", "heatmap-top")) {
if(!side %in% c("left", "right")) {
stop_wrap("Annotation legends should be put on the left or right side of the heatmaps if `align_legend` is 'heatmap_top'.")
}
if(object@direction == "horizontal") {
top_h = sum(component_height(object@ht_list[[ which_main_ht(object) ]], 1:4))
} else {
top_h = calc_before_h(object)
}
y = unit(1, "npc") - top_h
legend_just = "top"
x = unit(0.5, "npc")
} else if(align_legend %in% c("heatmap_left", "heatmap-left")) {
if(!side %in% c("top", "bottom")) {
stop_wrap("Annotation legends should be put on the top or bottom side of the heatmaps if `align_legend` is 'heatmap_left'.")
}
if(object@direction == "vertical") {
left_w = sum(component_width(object@ht_list[[ which_main_ht(object) ]], 1:4))
} else {
left_w = calc_before_w(object)
}
x = left_w
legend_just = "left"
y = unit(0.5, "npc")
} else if(align_legend %in% c("heatmap_center", "heatmap-center")) {
if(side %in% c("left", "right")) {
if(object@direction == "horizontal") {
bottom_h = sum(component_height(object@ht_list[[ which_main_ht(object) ]], 6:9))
top_h = sum(component_height(object@ht_list[[ which_main_ht(object) ]], 1:4))
anno_bottom_extend = do.call("unit.c", lapply(object@ht_list, function(ht) {
if(inherits(ht, "HeatmapAnnotation")) {
ht@extended[1]
} else {
if(!is.null(ht@left_annotation)) {
u1 = ht@left_annotation@extended[1]
} else {
u1 = unit(0, "mm")
}
if(!is.null(ht@right_annotation)) {
u2 = ht@right_annotation@extended[1]
} else {
u2 = unit(0, "mm")
}
unit.c(u1, u2)
}
}))
bottom_h = max(unit.c(bottom_h, anno_bottom_extend))
bottom_h = convertHeight(bottom_h, "mm")
} else {
bottom_h = calc_after_h(object)
top_h = calc_before_h(object)
}
ht_h = unit(1, "npc") - top_h - bottom_h
y = bottom_h + ht_h*0.5
legend_just = "center"
x = unit(0.5, "npc")
} else {
if(object@direction == "horizontal") {
left_w = calc_before_w(object)
right_w = calc_after_w(object)
} else {
left_w = sum(component_width(object@ht_list[[ which_main_ht(object) ]], 1:4))
right_w = sum(component_width(object@ht_list[[ which_main_ht(object) ]], 6:9))
}
ht_w = unit(1, "npc") - left_w - right_w
x = left_w + ht_w*0.5
legend_just = "center"
y = unit(0.5, "npc")
}
} else {
stop_wrap("Wrong value for `align_annotation_legend`.")
}
if(side != heatmap_legend_side) {
pushViewport(viewport(name = "annotation_legend", x = x, y = y, width = size[1], height = size[2], just = legend_just))
} else {
if(side %in% c("left", "right")) {
if(align_legend %in% c("heatmap_center", "heatmap-center")) {
y = bottom_h + ht_h*0.5 + max(size[2]*0.5, heatmap_legend_size[2]*0.5)
legend_just = "top"
}
pushViewport(viewport(name = "annotation_legend", x = x, y = y, width = size[1], height = size[2], just = legend_just))
} else {
if(align_legend %in% c("heatmap_center", "heatmap-center")) {
x = left_w + ht_w*0.5 - max(size[1]*0.5, heatmap_legend_size[1]*0.5)
legend_just = "left"
}
pushViewport(viewport(name = "annotation_legend", x = x, y = y, width = size[1], height = size[2], just = legend_just))
}
}
}
draw_legend(ColorMappingList, ColorMappingParamList, side = side, legend_list = legend_list, padding = padding, ...)
upViewport()
})
calc_ht_h = function(ht_list, inlcude_bottom = FALSE) {
if(ht_list@direction == "horizontal") {
bottom_h = sum(component_height(ht_list@ht_list[[ which_main_ht(ht_list) ]], 6:9))
top_h = sum(component_height(ht_list@ht_list[[ which_main_ht(ht_list) ]], 1:4))
} else {
bottom_h = calc_after_h(ht_list)
top_h = calc_before_h(ht_list)
}
ht_h = unit(1, "npc") - top_h - bottom_h
if(inlcude_bottom) {
ht_h = unit(1, "npc") - top_h
}
ht_h
}
calc_ht_w = function(ht_list, include_right = FALSE) {
if(ht_list@direction == "horizontal") {
left_w = calc_before_w(ht_list)
right_w = calc_after_w(ht_list)
} else {
left_w = sum(component_width(ht_list@ht_list[[ which_main_ht(ht_list) ]], 1:4))
right_w = sum(component_width(ht_list@ht_list[[ which_main_ht(ht_list) ]], 6:9))
}
ht_w = unit(1, "npc") - left_w - right_w
if(include_right) {
ht_w = unit(1, "npc") - left_w
}
ht_w
}
calc_before_h = function(ht_list) {
i = which_first_ht(ht_list)
if(i > 1) {
unit(0, "mm")
} else {
sum(component_height(ht_list@ht_list[[ i ]], 6:9))
}
}
calc_after_h = function(ht_list) {
i = which_last_ht(ht_list)
if(i < length(ht_list@ht_list)) {
unit(0, "mm")
} else {
sum(component_height(ht_list@ht_list[[ i ]], 6:9))
}
}
calc_before_w = function(ht_list) {
i = which_first_ht(ht_list)
if(i > 1) {
unit(0, "mm")
} else {
sum(component_width(ht_list@ht_list[[ i ]], 1:4))
}
}
calc_after_w = function(ht_list) {
i = which_last_ht(ht_list)
if(i < length(ht_list@ht_list)) {
unit(0, "mm")
} else {
sum(component_width(ht_list@ht_list[[ i ]], 6:9))
}
}
guess_align_legend = function(ht_list,
heatmap_legend_size, annotation_legend_size,
heatmap_legend_side, annotation_legend_side,
test_on) {
if(test_on == "heatmap_legend") {
if(heatmap_legend_side == annotation_legend_side) {
if(!is.null(attr(annotation_legend_size, "multiple"))) {
if(attr(heatmap_legend_size, "multiple") != 1 || attr(annotation_legend_size, "multiple") != 1) {
return("global_center")
}
}
}
if(attr(heatmap_legend_size, "multiple") != 1) {
return("global_center")
}
}
if(test_on == "annotation_legend") {
if(heatmap_legend_side == annotation_legend_side) {
if(!is.null(attr(heatmap_legend_size, "multiple"))) {
if(attr(heatmap_legend_size, "multiple") != 1 || attr(annotation_legend_size, "multiple") != 1) {
return("global_center")
}
}
}
if(attr(annotation_legend_size, "multiple") != 1) {
return("global_center")
}
}
heatmap_legend_size
align_legend = NULL
if(heatmap_legend_side == annotation_legend_side) {
if(ifelse(test_on == "heatmap_legend", heatmap_legend_side, annotation_legend_side) %in% c("left", "right")) {
ht_h = calc_ht_h(ht_list)
if(convertHeight(ht_h, "mm", valueOnly = TRUE) >= max(as.numeric(heatmap_legend_size[2]), as.numeric(annotation_legend_size[2]))) {
align_legend = "heatmap_center"
}
} else {
ht_w = calc_ht_w(ht_list)
if(convertWidth(ht_w, "mm", valueOnly = TRUE) >= max(as.numeric(heatmap_legend_size[1]), as.numeric(annotation_legend_size[1]))) {
align_legend = "heatmap_center"
}
}
if(is.null(align_legend)) {
if(ifelse(test_on == "heatmap_legend", heatmap_legend_side, annotation_legend_side) %in% c("left", "right")) {
ht_h = calc_ht_h(ht_list, TRUE)
if(convertHeight(ht_h, "mm", valueOnly = TRUE) >= max(as.numeric(heatmap_legend_size[2]), as.numeric(annotation_legend_size[2]))) {
align_legend = "heatmap_top"
}
} else {
ht_w = calc_ht_w(ht_list, TRUE)
if(convertWidth(ht_w, "mm", valueOnly = TRUE) >= max(as.numeric(heatmap_legend_size[1]), as.numeric(annotation_legend_size[1]))) {
align_legend = "heatmap_left"
}
}
}
if(is.null(align_legend)) {
align_legend = "global_center"
}
} else {
if(ifelse(test_on == "heatmap_legend", heatmap_legend_side, annotation_legend_side) %in% c("left", "right")) {
ht_h = calc_ht_h(ht_list)
if(convertHeight(ht_h, "mm", valueOnly = TRUE) >=
ifelse(test_on == "heatmap_legend",
as.numeric(heatmap_legend_size[2]), as.numeric(annotation_legend_size[2]))) {
align_legend = "heatmap_center"
}
} else {
ht_w = calc_ht_w(ht_list)
if(convertWidth(ht_w, "mm", valueOnly = TRUE) >=
ifelse(test_on == "heatmap_legend",
as.numeric(heatmap_legend_size[1]), as.numeric(annotation_legend_size[1]))) {
align_legend = "heatmap_center"
}
}
if(is.null(align_legend)) {
if(ifelse(test_on == "heatmap_legend", heatmap_legend_side, annotation_legend_side) %in% c("left", "right")) {
ht_h = calc_ht_h(ht_list, TRUE)
if(convertHeight(ht_h, "mm", valueOnly = TRUE) >=
ifelse(test_on == "heatmap_legend",
as.numeric(heatmap_legend_size[2]), as.numeric(annotation_legend_size[2]))) {
align_legend = "heatmap_top"
}
} else {
ht_w = calc_ht_w(ht_list, TRUE)
if(convertWidth(ht_w, "mm", valueOnly = TRUE) >=
ifelse(test_on == "heatmap_legend",
as.numeric(heatmap_legend_size[1]), as.numeric(annotation_legend_size[1]))) {
align_legend = "heatmap_left"
}
}
}
if(is.null(align_legend)) {
align_legend = "global_center"
}
}
return(align_legend)
}
setMethod(f = "heatmap_legend_size",
signature = "HeatmapList",
definition = function(object, legend_list = list(), ...) {
side = object@heatmap_legend_param$side
padding = object@heatmap_legend_param$padding
direction = object@direction
legend_grouping = object@ht_list_param$legend_grouping
ColorMappingList = list()
ColorMappingParamList = list()
for(i in seq_along(object@ht_list)) {
ht = object@ht_list[[i]]
if(direction == "horizontal") {
if(inherits(object@ht_list[[i]], "Heatmap")) {
if(!is.null(ht@left_annotation)) {
if(object@ht_list_param$merge_legends || legend_grouping == "adjusted") {
ColorMappingList = c.list(ColorMappingList, list = get_color_mapping_list(ht@left_annotation))
ColorMappingParamList = c.list(ColorMappingParamList, list = get_legend_param_list(ht@left_annotation))
}
}
if(!is.null(ht@top_annotation)) {
if(object@ht_list_param$merge_legends) {
ColorMappingList = c.list(ColorMappingList, list = get_color_mapping_list(ht@top_annotation))
ColorMappingParamList = c.list(ColorMappingParamList, list = get_legend_param_list(ht@top_annotation))
}
}
if(object@ht_list[[i]]@heatmap_param$show_heatmap_legend) {
ColorMappingList = c.list(ColorMappingList, object@ht_list[[i]]@matrix_color_mapping)
ColorMappingParamList = c.list(ColorMappingParamList, object@ht_list[[i]]@matrix_legend_param)
}
if(!is.null(ht@bottom_annotation)) {
if(object@ht_list_param$merge_legends) {
ColorMappingList = c.list(ColorMappingList, list = get_color_mapping_list(ht@bottom_annotation))
ColorMappingParamList = c.list(ColorMappingParamList, list = get_legend_param_list(ht@bottom_annotation))
}
}
if(!is.null(ht@right_annotation)) {
if(object@ht_list_param$merge_legends || legend_grouping == "adjusted") {
ColorMappingList = c.list(ColorMappingList, list = get_color_mapping_list(ht@right_annotation))
ColorMappingParamList = c.list(ColorMappingParamList, list = get_legend_param_list(ht@right_annotation))
}
}
} else if(inherits(object@ht_list[[i]], "HeatmapAnnotation")) {
if(object@ht_list_param$merge_legends || legend_grouping == "adjusted") {
ColorMappingList = c.list(ColorMappingList, list = get_color_mapping_list(object@ht_list[[i]]))
ColorMappingParamList = c.list(ColorMappingParamList, list = get_legend_param_list(object@ht_list[[i]]))
}
}
} else {
if(inherits(object@ht_list[[i]], "Heatmap")) {
if(!is.null(ht@left_annotation)) {
if(object@ht_list_param$merge_legends) {
ColorMappingList = c.list(ColorMappingList, list = get_color_mapping_list(ht@left_annotation))
ColorMappingParamList = c.list(ColorMappingParamList, list = get_legend_param_list(ht@left_annotation))
}
}
if(!is.null(ht@top_annotation)) {
if(object@ht_list_param$merge_legends || legend_grouping == "adjusted") {
ColorMappingList = c.list(ColorMappingList, list = get_color_mapping_list(ht@top_annotation))
ColorMappingParamList = c.list(ColorMappingParamList, list = get_legend_param_list(ht@top_annotation))
}
}
if(object@ht_list[[i]]@heatmap_param$show_heatmap_legend) {
ColorMappingList = c.list(ColorMappingList, object@ht_list[[i]]@matrix_color_mapping)
ColorMappingParamList = c.list(ColorMappingParamList, object@ht_list[[i]]@matrix_legend_param)
}
if(!is.null(ht@bottom_annotation)) {
if(object@ht_list_param$merge_legends || legend_grouping == "adjusted") {
ColorMappingList = c.list(ColorMappingList, list = get_color_mapping_list(ht@bottom_annotation))
ColorMappingParamList = c.list(ColorMappingParamList, list = get_legend_param_list(ht@bottom_annotation))
}
}
if(!is.null(ht@right_annotation)) {
if(object@ht_list_param$merge_legends) {
ColorMappingList = c.list(ColorMappingList, list = get_color_mapping_list(ht@right_annotation))
ColorMappingParamList = c.list(ColorMappingParamList, list = get_legend_param_list(ht@right_annotation))
}
}
} else if(inherits(object@ht_list[[i]], "HeatmapAnnotation")) {
if(object@ht_list_param$merge_legends || legend_grouping == "adjusted") {
ColorMappingList = c.list(ColorMappingList, list = get_color_mapping_list(object@ht_list[[i]]))
ColorMappingParamList = c.list(ColorMappingParamList, list = get_legend_param_list(object@ht_list[[i]]))
}
}
}
}
size = draw_legend(ColorMappingList, ColorMappingParamList, side = side, plot = FALSE, legend_list = legend_list, padding = padding, ...)
return(size)
})
setMethod(f = "annotation_legend_size",
signature = "HeatmapList",
definition = function(object, legend_list = list(), ...) {
side = object@annotation_legend_param$side
padding = object@annotation_legend_param$padding
direction = object@direction
legend_grouping = object@ht_list_param$legend_grouping
ColorMappingList = list()
ColorMappingParamList = list()
for(i in seq_along(object@ht_list)) {
ht = object@ht_list[[i]]
if(direction == "horizontal") {
if(inherits(ht, "Heatmap")) {
if(!is.null(ht@left_annotation)) {
if(legend_grouping == "original") {
ColorMappingList = c.list(ColorMappingList, list = get_color_mapping_list(ht@left_annotation))
ColorMappingParamList = c.list(ColorMappingParamList, list = get_legend_param_list(ht@left_annotation))
}
}
if(!is.null(ht@top_annotation)) {
ColorMappingList = c.list(ColorMappingList, list = get_color_mapping_list(ht@top_annotation))
ColorMappingParamList = c.list(ColorMappingParamList, list = get_legend_param_list(ht@top_annotation))
}
if(!is.null(ht@bottom_annotation)) {
ColorMappingList = c.list(ColorMappingList, list = get_color_mapping_list(ht@bottom_annotation))
ColorMappingParamList = c.list(ColorMappingParamList, list = get_legend_param_list(ht@bottom_annotation))
}
if(!is.null(ht@right_annotation)) {
if(legend_grouping == "original") {
ColorMappingList = c.list(ColorMappingList, list = get_color_mapping_list(ht@right_annotation))
ColorMappingParamList = c.list(ColorMappingParamList, list = get_legend_param_list(ht@right_annotation))
}
}
} else if(inherits(ht, "HeatmapAnnotation")) {
if(legend_grouping == "original") {
ColorMappingList = c.list(ColorMappingList, list = get_color_mapping_list(ht))
ColorMappingParamList = c.list(ColorMappingParamList, list = get_legend_param_list(ht))
}
}
} else {
if(inherits(ht, "Heatmap")) {
if(!is.null(ht@left_annotation)) {
ColorMappingList = c.list(ColorMappingList, list = get_color_mapping_list(ht@left_annotation))
ColorMappingParamList = c.list(ColorMappingParamList, list = get_legend_param_list(ht@left_annotation))
}
if(!is.null(ht@top_annotation)) {
if(legend_grouping == "original") {
ColorMappingList = c.list(ColorMappingList, list = get_color_mapping_list(ht@top_annotation))
ColorMappingParamList = c.list(ColorMappingParamList, list = get_legend_param_list(ht@top_annotation))
}
}
if(!is.null(ht@bottom_annotation)) {
if(legend_grouping == "original") {
ColorMappingList = c.list(ColorMappingList, list = get_color_mapping_list(ht@bottom_annotation))
ColorMappingParamList = c.list(ColorMappingParamList, list = get_legend_param_list(ht@bottom_annotation))
}
}
if(!is.null(ht@right_annotation)) {
ColorMappingList = c.list(ColorMappingList, list = get_color_mapping_list(ht@right_annotation))
ColorMappingParamList = c.list(ColorMappingParamList, list = get_legend_param_list(ht@right_annotation))
}
} else if(inherits(ht, "HeatmapAnnotation")) {
if(legend_grouping == "original") {
ColorMappingList = c.list(ColorMappingList, list = get_color_mapping_list(ht))
ColorMappingParamList = c.list(ColorMappingParamList, list = get_legend_param_list(ht))
}
}
}
}
size = draw_legend(ColorMappingList, ColorMappingParamList, side = side, plot = FALSE, legend_list = legend_list, padding = padding, ...)
return(size)
})
draw_legend = function(ColorMappingList, ColorMappingParamList, side = c("right", "left", "top", "bottom"),
plot = TRUE, gap = unit(4, "mm"), legend_list = list(), padding = unit(c(0, 0, 0, 0), "mm"),
max_height = unit(par("din")[2], "in"), max_width = unit(par("din")[1], "in"), ...) {
side = match.arg(side)[1]
legend_names = sapply(ColorMappingList, function(x) x@name)
ColorMappingParamList2 = ColorMappingList2 = vector("list", length(unique(legend_names)))
names(ColorMappingParamList2) = names(ColorMappingList2) = unique(legend_names)
for(i in seq_along(legend_names)) {
if(is.null(ColorMappingList2[[ legend_names[i] ]])) {
ColorMappingList2[[ legend_names[i] ]] = ColorMappingList[[i]]
ColorMappingParamList2[[ legend_names[i] ]] = ColorMappingParamList[[i]]
} else {
if(ColorMappingList2[[ legend_names[i] ]]@type == "discrete" && ColorMappingList[[i]]@type == "discrete") {
ColorMappingList2[[ legend_names[i] ]] = c(ColorMappingList2[[ legend_names[i] ]], ColorMappingList[[i]], name = legend_names[i])
}
}
}
n = length(ColorMappingList2)
if(n == 0 && length(legend_list) == 0) {
u = unit(c(0, 0), "mm")
attr(u, "multiple") = 1
return(u)
} else {
cm_grob = c(lapply(seq_along(ColorMappingList2), function(i) color_mapping_legend(ColorMappingList2[[i]], param = ColorMappingParamList2[[i]], plot = FALSE, ...)), legend_list)
if(side %in% c("left", "right")) {
pk = packLegend(list = cm_grob, gap = ht_opt$legend_gap[1], direction = "vertical", max_height = max_height)
} else {
pk = packLegend(list = cm_grob, gap = ht_opt$legend_gap[2], direction = "horizontal", max_width = max_width)
}
}
width = width(pk)
height = height(pk)
if(plot) {
if(side == "right") {
draw(pk, x = padding[2] + width*0.5)
} else if(side == "left") {
draw(pk, x = width*0.5)
} else if(side == "top") {
draw(pk, y = padding[1] + height*0.5)
} else if(side == "bottom") {
draw(pk, y = height*0.5)
}
if(pk@multiple > 1) {
if(is_RStudio_current_dev()) {
if(ht_opt$message) {
message_wrap("It seems you are using RStudio IDE. There are many legends and they are wrapped into multiple rows/columns. The arrangement relies on the physical size of the graphics device. It only generates correct plot in the figure panel, while in the zoomed plot (by clicking the icon 'Zoom') or in the exported plot (by clicking the icon 'Export'), the legend positions might be wrong. You can directly use e.g. pdf() to save the plot into a file.\n\nUse `ht_opt$message = FALSE` to turn off this message.")
}
}
}
}
width = width + padding[2] + padding[4]
height = height + padding[1] + padding[3]
width = convertWidth(width, "mm")
height = convertHeight(height, "mm")
size = unit.c(width, height)
attr(size, "multiple") = pk@multiple
return(size)
} |
simDat.eQTL.scRNAseq = function(nSubj = 50,
nCellPerSubj = 100,
zero.p = 0.01,
m.int = 0,
sigma.int = 1,
slope = 1,
theta = 1,
MAF = 0.45
)
{
N = nSubj * nCellPerSubj
id = rep(seq_len(nSubj), each = nCellPerSubj)
pAA = MAF^2
pAB = 2*MAF*(1-MAF)
pBB = (1-MAF)^2
geno = rep(sample(x=c(2, 1, 0), size = nSubj, replace = TRUE,
prob = c(pAA, pAB, pBB)), each = nCellPerSubj)
counts = rep(0, N)
NBflag=sample(x=c(0,1), size=N, prob = c(zero.p, 1-zero.p), replace=TRUE)
pos.NB = which(NBflag == 1)
N.NB = length(pos.NB)
intercept = rep(rnorm(n=nSubj, mean = m.int, sd = sigma.int), each = nCellPerSubj)
mu = exp(intercept + slope * geno)
counts[pos.NB] = rnbinom(n = N.NB, size = theta, mu = mu)
frame = data.frame(id = id, geno = geno, counts = counts)
invisible(frame)
} |
library(perm)
library(coin)
packageDescription("coin")$Version
set.seed(1)
nsim<-3
n<-8
outperm1<-outcoin1<-rep(NA,nsim)
g<-factor(c(rep("a",n/2),rep("b",n/2)))
y<-rnorm(n)
permTS(y~g,method="exact.network",alternative="less")
independence_test(y~g,distribution=exact(),alternative="less")
permTS(y~g,method="pclt",alternative="less")
independence_test(y~g,distribution=asymptotic(),alternative="less")
permTS(y~g,method="exact.mc",alternative="less")
independence_test(y~g,distribution=approximate(),alternative="less")
for (i in 1:nsim){
y<-rnorm(n)
outperm1[i]<-permTS(y~g,method="exact.network",alternative="less")$p.value
outcoin1[i]<-pvalue(independence_test(y~g,distribution=exact(),alternative="less"))
}
all.equal(outperm1,outcoin1)
n<-100
g<-factor(c(rep("a",n/2),rep("b",n/2)))
for (i in 1:nsim){
y<-rnorm(n)
outperm1[i]<-permTS(y~g,method="pclt",alternative="less")$p.value
outcoin1[i]<-pvalue(independence_test(y~g,distribution=asymptotic(),alternative="less"))
}
all.equal(outperm1,outcoin1)
outperm2<-outcoin2<-rep(NA,nsim)
n<-100
set.seed(10301)
g<-factor(c(rep("a",n/4),rep("b",n/4),rep("c",n/4),rep("d",n/4)),levels=c("c","d","b","a"))
for (i in 1:nsim){
y<-rnorm(n)
outperm2[i]<-permKS(y~g,method="pclt")$p.value
outcoin2[i]<-pvalue(independence_test(y~g,teststat="quad",distribution=asymptotic()))
}
all.equal(outperm2,outcoin2) |
StrategyConfig <- R6Class(
"StrategyConfig",
public = list(
config = list(),
initialize = function(config) {
if (is.null(config$solver)) {
config$solver <- "glpk"
}
if (is.null(config$vol_var)) {
config$vol_var <- "rc_vol"
}
if (is.null(config$price_var)) {
config$price_var <- "ref_price"
}
self$config <- config
self$valid()
invisible(self)
},
getStrategyNames = function() {
setdiff(names(self$config$strategies), "joint")
},
getConfig = function(name) {
config_val <- self$config[[name]]
if (length(config_val) %in% 0) {
return(NULL)
}
config_val
},
getStrategyConfig = function(strategy, name) {
config_val <- self$config$strategies[[strategy]][[name]]
if (length(config_val) %in% 0) {
return(NULL)
}
if (!name %in% c("in_var", "constraints")) {
config_val <- as.numeric(config_val)
}
config_val
},
valid = function() {
top_level_required <-
c("vol_var",
"price_var",
"solver")
for (name in top_level_required) {
if (is.null(self$getConfig(name))) {
stop(paste0("Missing top-level setting: ", name))
}
}
if (length(self$getStrategyNames()) %in% 0) {
stop("No strategies found in config")
}
strategy_name_blacklist <- c("joint")
for (strategy in self$getStrategyNames()) {
required_config_vars <- c("strategy_capital",
"position_limit_pct_adv",
"position_limit_pct_lmv",
"position_limit_pct_smv",
"trading_limit_pct_adv",
"ideal_long_weight",
"ideal_short_weight",
"in_var"
)
for (config_var in required_config_vars) {
if (is.null(self$getStrategyConfig(strategy, config_var))) {
stop(paste0("Missing ", config_var, " setting in strategy config for strategy: ", strategy))
}
}
strategy_name_blacklist <- c(strategy_name_blacklist, self$getStrategyConfig(strategy, "in_var"))
constraint_config <- self$getStrategyConfig(strategy, "constraints")
for (constraint_name in names(constraint_config)) {
in_var <- constraint_config[[constraint_name]]$in_var
if (is.null(in_var) || length(in_var) %in% 0) {
stop(paste0("Missing in_var value for constraint: ", constraint_name))
}
constraint_type <- constraint_config[[constraint_name]]$type
if (is.null(constraint_type) || length(constraint_type) %in% 0) {
stop(paste0("Missing constraint_type value for constraint: ", constraint_name))
}
if (!constraint_type %in% c("factor", "category")) {
stop(paste0("Invalid constraint type of constraint: ", constraint_name))
}
strategy_name_blacklist <- c(strategy_name_blacklist, in_var)
}
}
if (any(self$getStrategyNames() %in% strategy_name_blacklist)) {
stop(paste0("Invalid strategy name found. Strategy names may not ",
"match signal or constraint in_var names. ",
"The strategy name 'joint' is reserved."))
}
TRUE
}
)) |
p.res <- function(s, z, mu, sig, w){
R <- dim(z)[1]; nlag = dim(z)[3]
ret <- numeric(R)
for(r in 1:R){
prev <- 1
for(lag in 1:nlag){
prev <- prev*sum(w[s,]*pnorm(z[r,s,lag], mu[s,,lag], sig[s,,lag]))
}
ret[r] <- prev
}
return(ret)
}
r.res <- function(R,S,nlag,w,m,s){
sim.Z <- array(0, dim=c(R,S,nlag))
for(sw in 1:S){
hwmany <- rmultinom(1, R, w[sw,])
r <- 1
c <- 1
while(r<R){
if(hwmany[c]>0){
if(dim(s)[3]==1){
sim.Z[r:(r+hwmany[c]-1),sw,] <- rnorm(hwmany[c], m[sw,c,], s[sw,c,])
}else{
sim.Z[r:(r+hwmany[c]-1),sw,] <- rmvnorm(hwmany[c], m[sw,c,], diag(s[sw,c,]^2))
}
}
r <- r+hwmany[c]
c <- c+1
}
}
sim.Z <- matrix(sim.Z, nrow=R, ncol=S*nlag)
return(sim.Z)
} |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.