code
stringlengths
1
13.8M
sbn_strahler <- function(g) { if (max(igraph::degree(g, igraph::V(g), mode = "in")) > 2) stop("network must not have vertices with more that two connected upstream verticies") res <- rep(0, igraph::gorder(g)) names(res) <- 1:igraph::gorder(g) dg <- igraph::degree(g, mode = "in") res[dg == 0] <- 1 while(any(res == 0)) { xx <- unique(unlist(igraph::adjacent_vertices(g, v = names(res[res > 0]), mode = "out"))) xx <- res[xx] xx <- as.numeric(names(xx[xx == 0])) for (i in xx) { zz <- igraph::adjacent_vertices(g, v = i, mode = "in") vs <- res[unlist(zz)] if (all(vs > 0)) { if (length(unique(vs)) == 1 & length(vs) == 2) { res[i] <- max(vs) + 1 } else {res[i] <- max(vs)} } } } return(res) }
expected <- eval(parse(text="c(\"/\", \" not meaningful for factors\")")); test(id=0, code={ argv <- eval(parse(text="list(NULL, c(\"/\", \" not meaningful for factors\"))")); .Internal(gettext(argv[[1]], argv[[2]])); }, o=expected);
context("apa_print.htest()") test_that( "t-Test for means" , { t_test <- t.test(extra ~ group, data = sleep) t_test_output <- apa_print(t_test) expect_is(t_test_output, "list") expect_equal(names(t_test_output), container_names) expect_is(t_test_output$stat, "character") expect_equal(t_test_output$stat, "$t(17.78) = -1.86$, $p = .079$") expect_is(t_test_output$est, "character") expect_equal(t_test_output$est, "$\\Delta M = -1.58$, 95\\% CI $[-3.37$, $0.21]$") expect_is(t_test_output$full, "character") expect_equal(t_test_output$full, "$\\Delta M = -1.58$, 95\\% CI $[-3.37$, $0.21]$, $t(17.78) = -1.86$, $p = .079$") t_test <- t.test(extra ~ group, data = sleep, paired = TRUE) t_test_output <- apa_print(t_test) expect_equal(t_test_output$full, "$M_d = -1.58$, 95\\% CI $[-2.46$, $-0.70]$, $t(9) = -4.06$, $p = .003$") t_test <- t.test(sleep$extra, mu = 0) t_test_output <- apa_print(t_test) expect_equal(t_test_output$full, "$M = 1.54$, 95\\% CI $[0.60$, $2.48]$, $t(19) = 3.41$, $p = .003$") t_test_output <- apa_print(t_test, ci = matrix(c(1, 2), ncol = 2, dimnames = list(NULL, c("2.5 \\%", "97.5 \\%")))) expect_equal(t_test_output$est, "$M = 1.54$, 95\\% CI $[1.00$, $2.00]$") t_test_output <- apa_print(t_test, stat_name = "foobar") expect_equal(t_test_output$stat, "$foobar(19) = 3.41$, $p = .003$") t_test_output <- apa_print(t_test, est_name = "foobar") expect_equal(t_test_output$est, "$foobar = 1.54$, 95\\% CI $[0.60$, $2.48]$") t_test_output <- apa_print(t_test, digits = 3) expect_equal(t_test_output$est, "$M = 1.540$, 95\\% CI $[0.596$, $2.484]$") } ) test_that( "Wilcoxon tests" , { wilcox_test <- wilcox.test(extra ~ group, data = sleep, exact = FALSE) wilcox_test_output <- apa_print(wilcox_test) expect_equal(names(wilcox_test_output), container_names) expect_is(wilcox_test_output$stat, "character") expect_equal(wilcox_test_output$stat, "$W = 25.50$, $p = .069$") wilcox_test <- wilcox.test(extra ~ group, data = sleep, conf.int = TRUE, exact = FALSE) wilcox_test_output <- apa_print(wilcox_test) expect_is(wilcox_test_output$est, "character") expect_equal(wilcox_test_output$est, "$Mdn_d = -1.35$, 95\\% CI $[-3.60$, $0.10]$") expect_is(wilcox_test_output$full, "character") expect_equal(wilcox_test_output$full, "$Mdn_d = -1.35$, 95\\% CI $[-3.60$, $0.10]$, $W = 25.50$, $p = .069$") wilcox_test <- wilcox.test(extra ~ group, data = sleep, paired = TRUE, exact = FALSE) wilcox_test_output <- apa_print(wilcox_test) expect_equal(wilcox_test_output$stat, "$V = 0.00$, $p = .009$") wilcox_test <- wilcox.test(sleep$extra, mu = 0, conf.int = TRUE, exact = FALSE) wilcox_test_output <- apa_print(wilcox_test) expect_equal(wilcox_test_output$full, "$Mdn^* = 1.60$, 95\\% CI $[0.45$, $2.65]$, $V = 162.50$, $p = .007$") } ) test_that( "Tests for correlations" , { x <- c(44.4, 45.9, 41.9, 53.3, 44.7, 44.1, 50.7, 45.2, 60.1) y <- c( 2.6, 3.1, 2.5, 5.0, 3.6, 4.0, 5.2, 2.8, 3.8) cor_test <- cor.test(x, y) cor_test_output <- apa_print(cor_test) expect_is(cor_test_output, "list") expect_equal(names(cor_test_output), container_names) expect_is(cor_test_output$stat, "character") expect_equal(cor_test_output$stat, "$t(7) = 1.84$, $p = .108$") expect_is(cor_test_output$est, "character") expect_equal(cor_test_output$est, "$r = .57$, 95\\% CI $[-.15$, $.90]$") expect_is(cor_test_output$full, "character") expect_equal(cor_test_output$full, "$r = .57$, 95\\% CI $[-.15$, $.90]$, $t(7) = 1.84$, $p = .108$") cor_test <- cor.test(x, y, method = "spearman") cor_test_output <- apa_print(cor_test) expect_equal(cor_test_output$full, "$r_{\\mathrm{s}} = .60$, $S = 48.00$, $p = .097$") cor_test <- cor.test(x, y, method = "kendall") cor_test_output <- apa_print(cor_test) expect_equal(cor_test_output$full, "$\\uptau = .44$, $T = 26.00$, $p = .119$") cor_test <- cor.test(x, y, method = "kendall", exact = FALSE) cor_test_output <- apa_print(cor_test) expect_equal(cor_test_output$full, "$\\uptau = .44$, $z = 1.67$, $p = .095$") } ) test_that( "Chi-squared for contingency tables" , { smokers <- c(83, 90, 129, 70) patients <- c(86, 93, 136, 82) prop_test <- prop.test(smokers, patients) expect_error(apa_print(prop_test), "Please provide the sample size to report.") prop_test_output <- suppressWarnings(apa_print(prop_test, n = sum(patients))) expect_is(prop_test_output, "list") expect_equal(names(prop_test_output), container_names) expect_is(prop_test_output$stat, "character") expect_equal(prop_test_output$stat, "$\\chi^2(3, n = 397) = 12.60$, $p = .006$") } ) test_that( "Bartlett test" , { bartlett_test <- bartlett.test(count ~ spray, data = InsectSprays) bartlett_test_output <- apa_print(bartlett_test) expect_is(bartlett_test_output, "list") expect_equal(names(bartlett_test_output), container_names) expect_is(bartlett_test_output$stat, "character") expect_equal(bartlett_test_output$stat, "$K^2(5) = 25.96$, $p < .001$") } ) test_that( "Mauchly test" , { tmp <- capture.output(utils::example(SSD)) mauchly_data <- data.frame( deg = gl(3, 1, 6, labels = c(0, 4, 8)) , noise = gl(2, 3, 6, labels = c("A", "P")) ) mauchly_test <- mauchly.test(mlmfit, X = ~ deg + noise, idata = mauchly_data) mauchly_output <- apa_print(mauchly_test) expect_is(mauchly_output, "list") expect_equal(names(mauchly_output), container_names) expect_is(mauchly_output$stat, "character") expect_equal(mauchly_output$stat, "$W = 0.89$, $p = .638$") mauchly_test <- mauchly.test(mlmfit, M = ~ deg + noise, X = ~ noise, idata = mauchly_data) mauchly_output <- apa_print(mauchly_test) expect_is(mauchly_output$stat, "character") expect_equal(mauchly_output$stat, "$W = 0.96$, $p = .850$") } ) test_that( "One-way ANOVA" , { oneway_test <- oneway.test(extra ~ group, data = sleep) oneway_output <- apa_print(oneway_test) expect_is(oneway_output, "list") expect_equal(names(oneway_output), container_names) expect_is(oneway_output$stat, "character") expect_equal(oneway_output$stat, "$F(1, 17.78) = 3.46$, $p = .079$") } ) test_that( "One-sided t test (with infty in CI)" , { t_out <- t.test(formula = yield ~ N, data = npk, alternative = "greater") apa_out <- apa_print(t_out) t2 <- t.test(formula = yield ~ N, data = npk, alternative = "less") apa2 <- apa_print(t2) expect_identical( object = apa_out$full_result , expected = "$\\Delta M = -5.62$, 95\\% CI $[-9.54$, $\\infty]$, $t(21.88) = -2.46$, $p = .989$" ) expect_identical( object = apa_out$estimate , expected = "$\\Delta M = -5.62$, 95\\% CI $[-9.54$, $\\infty]$" ) expect_identical( object = apa2$full_result , expected = "$\\Delta M = -5.62$, 95\\% CI $[-\\infty$, $-1.70]$, $t(21.88) = -2.46$, $p = .011$" ) expect_identical( object = apa2$estimate , expected = "$\\Delta M = -5.62$, 95\\% CI $[-\\infty$, $-1.70]$" ) } )
library(ggplot2) library(plyr) bnames <- read.csv("baby-names-by-state.csv", stringsAsFactors = F) bnames <- subset(bnames, !is.na(number)) bnames$state <- factor(bnames$state) births <- read.csv("births.csv") bnames <- merge(bnames, births, by = c("state", "year", "sex")) bnames$prop <- bnames$number / bnames$births bnames$namesex <- paste(bnames$name, bnames$sex, sep = "-") counts <- ddply(bnames, c("namesex"), summarise, n = length(namesex), number = sum(number)) counts <- counts[order(-counts$number), ] counts <- subset(counts, n > 1250 * 0.25 & number > 1e5) top <- subset(bnames, namesex %in% counts$namesex) show_name <- function(name) { one <- top[top$namesex == name, ] qplot(year, prop, data = one, geom = "line", group = state) } bystate <- cast(top, namesex + year ~ state, value = "prop") cors <- dlply(bystate, "namesex", function(df) cor(as.matrix(df[, -(1:2)]), use = "pairwise.complete.obs")) arrange(ldply(cors, min, na.rm = T), V1) patterns <- dlply(top, c("namesex"), function(df) { lm(prop ~ factor(year), data = df, weight = sqrt(births)) }, .progress = "text") rsq <- function(mod) { summarise(summary(mod), rsq = r.squared, sigma = sigma) } qual <- arrange(merge(ldply(patterns, rsq), counts), -rsq) sub <- c(as.character(qual$namesex[seq(1, nrow(qual), by = 5)]), "Juan-boy") interesting <- subset(bnames, namesex %in% sub) write.table(interesting, "interesting-names.csv", sep = ",", row = F)
same_size_clustering <- function(mat, diss = FALSE, clsize = NULL, algo = c("nnit", "hcbottom", "kmvar"), method = c( "maxd", "random", "mind", "elki", "ward.D", "average", "complete", "single" )) { stopifnot(is.numeric(clsize)) algo <- match.arg(algo) method <- match.arg(method) do.call(algo, args = list(mat = mat, diss = diss, clsize = clsize, method = method)) } nnit <- function(mat, clsize = NULL, diss = FALSE, method = "maxd") { stopifnot(is.logical(diss)) clsize.rle <- rle(as.numeric(cut(1:nrow(mat), ceiling(nrow(mat) / clsize)))) clsize <- clsize.rle$lengths lab <- rep(NA, nrow(mat)) if (isFALSE(diss)) { dmat <- as.matrix(dist(mat)) } else { dmat <- mat } cpt <- 1 while (sum(is.na(lab)) > 0) { lab.ii <- which(is.na(lab)) dmat.m <- dmat[lab.ii, lab.ii] ii <- switch(method, maxd = which.max(rowSums(dmat.m)), mind = which.min(rowSums(dmat.m)), random = sample.int(nrow(dmat.m), 1), stop("unsupported method in 'nnit'!") ) lab.m <- rep(NA, length(lab.ii)) lab.m[head(order(dmat.m[ii, ]), clsize[cpt])] <- cpt lab[lab.ii] <- lab.m cpt <- cpt + 1 } if (any(is.na(lab))) { lab[which(is.na(lab))] <- cpt } lab } kmvar <- function(mat, clsize = NULL, diss = FALSE, method = "maxd") { stopifnot(is.logical(diss)) k <- ceiling(nrow(mat) / clsize) if (isFALSE(diss)) { km.o <- kmeans(mat, k) centd <- lapply(1:k, function(kk) { euc <- t(mat) - km.o$centers[kk, ] sqrt(apply(euc, 2, function(x) sum(x^2))) }) centd <- matrix(unlist(centd), ncol = k) } else { message("PAM algorithm is applied when input distance matrix.") pam.o <- cluster::pam(mat, k, diss = TRUE) centd <- mat[, pam.o$id.med, drop = FALSE] } labs <- rep(NA, nrow(mat)) clsizes <- rep(0, k) ptord <- switch(method, maxd = order(-apply(centd, 1, max)), mind = order(apply(centd, 1, min)), random = sample.int(nrow(mat)), elki = order(apply(centd, 1, min) - apply(centd, 1, max)), stop("unsupported method in 'kmvar'!") ) for (ii in ptord) { bestcl <- which.max(centd[ii, ]) labs[ii] <- bestcl clsizes[bestcl] <- clsizes[bestcl] + 1 if (clsizes[bestcl] >= clsize) { centd[, bestcl] <- NA } } return(labs) } hcbottom <- function(mat, clsize = NULL, diss = FALSE, method = "ward.D") { stopifnot(is.logical(diss)) method <- match.arg(method, choices = c("ward.D", "average", "complete", "single")) if (isFALSE(diss)) { dmat <- as.matrix(dist(mat)) } else { dmat <- mat } clsize.rle <- rle(as.numeric(cut(1:nrow(mat), ceiling(nrow(mat) / clsize)))) clsizes <- clsize.rle$lengths cpt <- 1 lab <- rep(NA, nrow(mat)) for (clss in clsizes[-1]) { lab.ii <- which(is.na(lab)) hc.o <- hclust(as.dist(dmat[lab.ii, lab.ii]), method = method) clt <- 0 ct <- length(lab.ii) - clss while (max(clt) < clss) { cls <- cutree(hc.o, ct) clt <- table(cls) ct <- ct - 1 } cl.sel <- which(cls == as.numeric(names(clt)[which.max(clt)])) lab[lab.ii[head(cl.sel, clss)]] <- cpt cpt <- cpt + 1 } lab[is.na(lab)] <- cpt lab }
makeClusterFunctionsDocker = function(image, docker.args = character(0L), image.args = character(0L), scheduler.latency = 1, fs.latency = 65) { assertString(image) assertCharacter(docker.args, any.missing = FALSE) assertCharacter(image.args, any.missing = FALSE) user = Sys.info()["user"] submitJob = function(reg, jc) { assertRegistry(reg, writeable = TRUE) assertClass(jc, "JobCollection") assertIntegerish(jc$resources$ncpus, lower = 1L, any.missing = FALSE, .var.name = "resources$ncpus") assertIntegerish(jc$resources$memory, lower = 1L, any.missing = FALSE, .var.name = "resources$memory") timeout = if (is.null(jc$resources$walltime)) character(0L) else sprintf("timeout %i", asInt(jc$resources$walltime, lower = 0L)) cmd = c("docker", docker.args, "run", "--detach=true", image.args, sprintf("-e DEBUGME='%s'", Sys.getenv("DEBUGME")), sprintf("-e OMP_NUM_THREADS=%i", jc$resources$omp.threads %??% jc$resources$threads), sprintf("-e OPENBLAS_NUM_THREADS=%i", jc$resources$blas.threads %??% jc$resources$threads), sprintf("-e MKL_NUM_THREADS=%i", jc$resources$blas.threads %??% jc$resources$threads), sprintf("-c %i", jc$resources$ncpus), sprintf("-m %im", jc$resources$memory), sprintf("--memory-swap %im", jc$resources$memory), sprintf("--label batchtools=%s", jc$job.hash), sprintf("--label user=%s", user), sprintf("--name=%s_bt_%s", user, jc$job.hash), image, timeout, "Rscript", stri_join("-e", shQuote(sprintf("batchtools::doJobCollection('%s', '%s')", jc$uri, jc$log.file)), sep = " ")) res = runOSCommand(cmd[1L], cmd[-1L]) if (res$exit.code > 0L) { housekeeping(reg) no.res.msg = "no resources available" if (res$exit.code == 1L && any(stri_detect_fixed(res$output, no.res.msg))) return(makeSubmitJobResult(status = 1L, batch.id = NA_character_, msg = no.res.msg)) return(cfHandleUnknownSubmitError(stri_flatten(cmd, " "), res$exit.code, res$output)) } else { if (length(res$output != 1L)) { matches = which(stri_detect_regex(res$output, "^[[:alnum:]]{64}$")) if (length(matches) != 1L) stopf("Command '%s' did not return a long UUID identitfier", stri_flatten(cmd, " ")) res$output = res$output[matches] } return(makeSubmitJobResult(status = 0L, batch.id = stri_sub(res$output, 1L, 12L))) } } listJobs = function(reg, filter = character(0L)) { assertRegistry(reg, writeable = FALSE) args = c(docker.args, "ps", "--format={{.ID}}", "--filter 'label=batchtools'", filter) res = runOSCommand("docker", args) if (res$exit.code > 0L) OSError("Listing of jobs failed", res) if (length(res$output) == 0L || !nzchar(res$output)) return(character(0L)) res$output } housekeeping = function(reg, ...) { batch.ids = chintersect(listJobs(reg, "--filter 'status=exited'"), reg$status$batch.id) if (length(batch.ids) > 0L) runOSCommand("docker", c(docker.args, "rm", batch.ids)) invisible(TRUE) } killJob = function(reg, batch.id) { assertRegistry(reg, writeable = TRUE) assertString(batch.id) cfKillJob(reg, "docker", c(docker.args, "kill", batch.id)) } listJobsRunning = function(reg) { assertRegistry(reg, writeable = FALSE) listJobs(reg, sprintf("--filter 'user=%s'", user)) } makeClusterFunctions(name = "Docker", submitJob = submitJob, killJob = killJob, listJobsRunning = listJobsRunning, store.job.collection = TRUE, scheduler.latency = scheduler.latency, fs.latency = fs.latency, hooks = list(post.submit = housekeeping, post.sync = housekeeping)) }
m <- mean( ~ duration, data = geyser) s <- sd( ~ duration, data = geyser) ml <- maxLik(loglik.faithful, x = geyser$duration, start = c(0.5, m - 1, m + 1, s, s)) mle <- coef(ml); mle loglik.faithful(mle, x = geyser$duration) logLik(ml) ml0 <- maxLik(loglik0.faithful, x = geyser$duration, start = c(m - 1, m + 1, s, s)) mle0 <- coef(ml0); mle0 logLik(ml0) lrt.stat <- 2 * (logLik(ml) - logLik(ml0)); lrt.stat 1 - pchisq(lrt.stat, df = 1)
context("mle") test_that("mle works correctly for default Gaussian models", { AbaIdtmle <-mle(AbaloneIdt) BestM <- 1 names(BestM) <- "NModCovC1" expect_equal(BestModel(AbaIdtmle),BestM) AllAbnames <- paste(names(AbaloneIdt),rep(c("MidP","LogR"),each=ncol(AbaloneIdt)),sep=".") Abmeans <- c( 0.5071875, 0.396145833, 0.166666667, 1.078052083, 0.45571875, 0.224302083, 0.3373125, -1.296114861, -1.534997069, -2.235509665, 0.095119706, -0.699579885, -1.43648703, -1.176694026 ) Abstddevs <- c( 0.126984892, 0.106306307, 0.099868838, 0.463170117, 0.204648509, 0.09817756, 0.159985436, 0.599929088, 0.646096586, 0.872978407, 1.098762777, 1.13577332, 1.108493279, 1.229327926 ) Abcor <- matrix( c( 1, 0.993982764, 0.46722427, 0.943204961, 0.806954256, 0.877049526, 0.8988425, 0.197447713, 0.215699101, 0.254071722, 0.791917195, 0.767629178, 0.776267869, 0.717014941, 0.993982764, 1, 0.460916165, 0.949745049, 0.801663444, 0.883022118, 0.914306533, 0.156517814, 0.176048065, 0.214254783, 0.75904035, 0.737417731, 0.74382086, 0.677761255, 0.46722427, 0.460916165, 1, 0.507651246, 0.534390369, 0.492541963, 0.377370092, 0.206446863, 0.211721929, 0.621096109, 0.451146829, 0.457607674, 0.438228753, 0.374981242, 0.943204961, 0.949745049, 0.507651246, 1, 0.911504486, 0.949135574, 0.923149776, 0.220628059, 0.237353382, 0.279750403, 0.76107623, 0.751149887, 0.746209619, 0.679318984, 0.806954256, 0.801663444, 0.534390369, 0.911504486, 1, 0.914368882, 0.747872639, 0.444048709, 0.461436449, 0.494848721, 0.810320958, 0.832231663, 0.803650431, 0.723120244, 0.877049526, 0.883022118, 0.492541963, 0.949135574, 0.914368882, 1, 0.825795256, 0.358369732, 0.37524005, 0.398271111, 0.794065249, 0.787335437, 0.807205016, 0.715729116, 0.8988425, 0.914306533, 0.377370092, 0.923149776, 0.747872639, 0.825795256, 1, 0.051592822, 0.068467193, 0.096948743, 0.639028743, 0.609158995, 0.608926341, 0.627478887, 0.197447713, 0.156517814, 0.206446863, 0.220628059, 0.444048709, 0.358369732, 0.051592822, 1, 0.992566651, 0.84448339, 0.696977234, 0.739845117, 0.717739093, 0.667198309, 0.215699101, 0.176048065, 0.211721929, 0.237353382, 0.461436449, 0.37524005, 0.068467193, 0.992566651, 1, 0.835603923, 0.694992692, 0.741356203, 0.717499093, 0.665089517, 0.254071722, 0.214254783, 0.621096109, 0.279750403, 0.494848721, 0.398271111, 0.096948743, 0.84448339, 0.835603923, 1, 0.692460681, 0.721881721, 0.702482351, 0.666151817, 0.791917195, 0.75904035, 0.451146829, 0.76107623, 0.810320958, 0.794065249, 0.639028743, 0.696977234, 0.694992692, 0.692460681, 1, 0.990235553, 0.994727084, 0.960669307, 0.767629178, 0.737417731, 0.457607674, 0.751149887, 0.832231663, 0.787335437, 0.609158995, 0.739845117, 0.741356203, 0.721881721, 0.990235553, 1, 0.986396398, 0.930830052, 0.776267869, 0.74382086, 0.438228753, 0.746209619, 0.803650431, 0.807205016, 0.608926341, 0.717739093, 0.717499093, 0.702482351, 0.994727084, 0.986396398, 1, 0.952600258, 0.717014941, 0.677761255, 0.374981242, 0.679318984, 0.723120244, 0.715729116, 0.627478887, 0.667198309, 0.665089517, 0.666151817, 0.960669307, 0.930830052, 0.952600258, 1), nrow=2*ncol(AbaloneIdt),ncol=2*ncol(AbaloneIdt) ) names(Abmeans) <- names(Abstddevs) <- rownames(Abcor) <- colnames(Abcor) <- AllAbnames expect_equal(mean(AbaIdtmle),Abmeans) expect_equal(sd(AbaIdtmle),Abstddevs) expect_equal(cor(AbaIdtmle),Abcor) } ) test_that("mle computes correct standar errors for default Gaussian models", { for (Cv in 1:4) { AbaIdtmle <-mle(AbaloneIdt, CovCase = Cv) n <- nrow(AbaloneIdt) q <- 2*ncol(AbaloneIdt) AbmeanStder <- sd(AbaIdtmle) / sqrt(n) expect_equal(stdEr(AbaIdtmle)$mu,AbmeanStder) vcovb_AbmeanStder <- sqrt(diag(vcov(AbaIdtmle)[1:q,1:q])) names(vcovb_AbmeanStder) <- names(AbmeanStder) <- NULL expect_equal(vcovb_AbmeanStder,AbmeanStder) mlecov <- var(AbaIdtmle) mlecov[mlecov==0.] <- NA mlevar <- diag(mlecov) AbcovStder <- sqrt( (mlecov^2 + outer(mlevar,mlevar)) / (n-1) ) expect_equal(stdEr(AbaIdtmle)$Sigma,AbcovStder) if (Cv==1) { vcovb_AbcovStder <- matrix(nrow=q,ncol=q) vcovb_AbcovStder[lower.tri(vcovb_AbcovStder,diag=TRUE)] <- sqrt(diag(vcov(AbaIdtmle)[-(1:q),-(1:q)])) vcovb_AbcovStder[upper.tri(vcovb_AbcovStder)] <- t(vcovb_AbcovStder)[upper.tri(t(vcovb_AbcovStder))] dimnames(vcovb_AbcovStder) <- dimnames(AbcovStder) expect_equal(vcovb_AbcovStder,AbcovStder) } } } )
ogsrre<-function (formula, r, R, dpn, delt, k, data = NULL, na.action, ...) { k <- as.matrix(k) k1 <- k[1L] ogsrres <- function(formula, r, R, dpn, delt, k1, data = NULL, na.action, ...) { cal <- match.call(expand.dots = FALSE) mat <- match(c("formula", "data", "na.action"), names(cal)) cal <- cal[c(1L, mat)] cal[[1L]] <- as.name("model.frame") cal <- eval(cal) y <- model.response(cal) md <- attr(cal, "terms") x <- model.matrix(md, cal, contrasts) s <- t(x) %*% x xin <- solve(s) r <- as.matrix(r) RC <- matrix(R, NCOL(x)) RR <- t(RC) if (is.matrix(R)) RR <- R else RR <- RR if (length(dpn) == 1L) shi <- dpn else if (is.matrix(dpn)) shi <- dpn else shi <- diag(dpn) de1 <- as.matrix(delt) I <- diag(NCOL(x)) bb <- xin %*% t(x) %*% y ev <- (t(y) %*% y - t(bb) %*% t(x) %*% y)/(NROW(x) - NCOL(x)) ev <- diag(ev) w1 <- solve(s/ev + t(RR) %*% solve(shi) %*% RR) w2 <- (t(x) %*% y)/ev + t(RR) %*% solve(shi) %*% r bm <- w1 %*% w2 tk <- solve(s + k1 * I) %*% s bsrr <- tk %*% bm bsrrve<-as.vector(bsrr) j<-0 sumsq<-0 for (j in 1:NROW(bsrrve)) { sumsq=(bsrrve[j])^2+sumsq } cval<-sumsq ahat<-bsrr%*%t(bsrr)%*%solve(ev*xin+bsrr%*%t(bsrr)) bogsrre<-ahat%*%bb colnames(bogsrre) <- c("Estimate") dbd <- ev*(ahat%*%xin%*%t(ahat)) Standard_error <- sqrt(diag(abs(dbd))) rdel <- matrix(delt, NROW(RR)) lenr <- length(RR) dlpt <- diag(RR %*% xin %*% t(RR)) if (lenr == ncol(RR)) ilpt <- sqrt(solve(abs(dlpt))) else ilpt <- sqrt(solve(diag(abs(dlpt)))) upt <- RR %*% bsrr tb <- t(upt) t_statistic <- ((tb - t(rdel)) %*% ilpt)/sqrt(ev) tst <- t(2L * pt(-abs(t_statistic), df <- (NROW(x) - NCOL(x)))) pvalue <- c(tst, rep(NA, (NCOL(x) - NROW(RR)))) dbd <- ev*(ahat%*%xin%*%t(ahat)) rval<-(1/cval)*bsrr%*%t(bsrr) mse1 <-cval^2*ev*tr(ev*rval*solve(ev*xin+cval*rval)%*%xin%*%solve(ev*xin+cval*rval)%*%rval)+ev^2*t(bsrr)%*%solve(ev*I+cval*rval%*%s)%*%solve(ev*I+cval*rval%*%s)%*%bsrr mse1<-as.vector(mse1) mse1 <- round(mse1, digits <- 4L) names(mse1) <- c("MSE") t_statistic <- c(t_statistic, rep(NA, (NCOL(x) - NROW(RR)))) ans1 <- cbind(bogsrre, Standard_error, t_statistic, pvalue) ans <- round(ans1, digits <- 4L) anw <- list(`*****Ordinary Generalized Stochastic Restricted Ridge Estimator*****` = ans, `*****Mean square error value*****` = mse1) return(anw) } npt <- ogsrres(formula, r, R, dpn, delt, k1, data, na.action) plotogsrre <- function(formula, r, R, dpn, delt, k, data = NULL, na.action, ...) { j <- 0 arr <- 0 for (j in 1:nrow(k)) { ogsrrem <- function(formula, r, R, dpn, delt, k, data, na.action, ...) { cal <- match.call(expand.dots = FALSE) mat <- match(c("formula", "data", "na.action"), names(cal)) cal <- cal[c(1L, mat)] cal[[1L]] <- as.name("model.frame") cal <- eval(cal) y <- model.response(cal) md <- attr(cal, "terms") x <- model.matrix(md, cal, contrasts) s <- t(x) %*% x xin <- solve(s) r <- as.matrix(r) RC <- matrix(R, NCOL(x)) RR <- t(RC) if (is.matrix(R)) RR <- R else RR <- RR if (length(dpn) == 1L) shi <- dpn else if (is.matrix(dpn)) shi <- dpn else shi <- diag(dpn) de1 <- as.matrix(delt) I <- diag(NCOL(x)) bb <- xin %*% t(x) %*% y ev <- (t(y) %*% y - t(bb) %*% t(x) %*% y)/(NROW(x) - NCOL(x)) ev <- diag(ev) w1 <- solve(s/ev + t(RR) %*% solve(shi) %*% RR) w2 <- (t(x) %*% y)/ev + t(RR) %*% solve(shi) %*% r bm <- w1 %*% w2 tk <- solve(s + k * I) %*% s bsrr <- tk %*% bm bsrrve<-as.vector(bsrr) j<-0 sumsq<-0 for (j in 1:NROW(bsrrve)) { sumsq=(bsrrve[j])^2+sumsq } cval<-sumsq ahat<-bsrr%*%t(bsrr)%*%solve(ev*xin+bsrr%*%t(bsrr)) dbd <-ev*(ahat%*%xin%*%t(ahat)) rval<-(1/cval)*bsrr%*%t(bsrr) mse1 <-cval^2*ev*tr(ev*rval*solve(ev*xin+cval*rval)%*%xin%*%solve(ev*xin+cval*rval)%*%rval)+ev^2*t(bsrr)%*%solve(ev*I+cval*rval%*%s)%*%solve(ev*I+cval*rval%*%s)%*%bsrr mse1<-as.vector(mse1) return(mse1) } arr[j] <- ogsrrem(formula, r, R, dpn, delt, k[j], data, na.action) } MSE <- arr Parameter <- k pvl <- cbind(Parameter, MSE) colnames(pvl) <- c("Parameter", "MSE") sval <- pvl return(sval) } psrre <- plotogsrre(formula, r, R, dpn, delt, k, data, na.action) if (nrow(k) > 1L) val <- psrre else val <- npt val }
add_besthit <- function(x, sep=":"){ Class<-Domain<- Family<- Genus<- Genus.Species<- NULL Order<- Phylum<- Species<-NULL x.nw <- x if(length(rank_names(x.nw))== 6){ colnames(tax_table(x.nw)) <- c("Domain", "Phylum", "Class", "Order", "Family", "Genus") } if(length(rank_names(x.nw))==7){ colnames(tax_table(x.nw)) <- c("Domain", "Phylum", "Class", "Order", "Family", "Genus", "Species") } tax.tib <- .get_taxa_tib_unite(x) tax.tib <- tax.tib %>% dplyr::mutate(Domain =ifelse(is.na(Domain), "Unclassifed", Domain), Phylum =ifelse(is.na(Phylum), Domain, Phylum), Class =ifelse(is.na(Class), Phylum, Class), Order =ifelse(is.na(Order), Class, Order), Family =ifelse(is.na(Family), Order, Family), Genus =ifelse(is.na(Genus), Family, Genus)) if(length(rank_names(x))==7){ tax.tib <- tax.tib %>% dplyr::mutate(Species =ifelse(is.na(Species), Genus, Species)) } best_hit <- paste0(taxa_names(x), sep,tax.tib[,ncol(tax.tib)]) taxa_names(x) <- best_hit return(x) } .get_taxa_tib_unite <- function(x){ Genus<- Species <- Genus.Species<- NULL tax.tib <- tax_table(x) %>% as.matrix() %>% as.data.frame() if(any(rank_names(x) == "Species") && any(rank_names(x) == "Genus")){ tax.tib <- tax.tib %>% dplyr::mutate(Genus.Species = ifelse(!is.na(Species), paste0(Genus, ".", Species), Species)) %>% dplyr::select(-Species) %>% dplyr::rename(Species = Genus.Species) } return(tax.tib) }
alfaridge.plot <- function(y, x, a, lambda = seq(0, 5, by = 0.1) ){ z <- alfa(x, a, h = TRUE)$aff Compositional::ridge.plot(y, z, lambda = lambda ) }
library("knitr") opts_chunk$set( collapse = TRUE, eval = !(Sys.getenv("NASS_KEY") == ""), comment = " ) library("usdarnass") nass_data(year = 2012, short_desc = "AG LAND, INCL BUILDINGS - ASSET VALUE, MEASURED IN $", county_name = "WAKE", state_name = "NORTH CAROLINA") nass_param("source_desc") nass_param("group_desc", state_name = "OHIO", agg_level_desc = "COUNTY", year = 2000) nass_param("commodity_desc", group_desc = "dairy", state_name = "OHIO", agg_level_desc = "COUNTY", year = ">2000") nass_count() nass_count(commodity_desc = "AG LAND", agg_level_desc = "COUNTY") nass_data(commodity_desc = "AG LAND", agg_level_desc = "COUNTY") years <- 2000:2017 sapply(years, function(x) nass_count(year = x, commodity_desc = "AG LAND", agg_level_desc = "COUNTY")) agland_params <- nass_param("short_desc", commodity_desc = "AG LAND", agg_level_desc = "COUNTY") agland_params sapply(agland_params, function(x) nass_count(short_desc = x, commodity_desc = "AG LAND", agg_level_desc = "COUNTY")) agland_domain <- nass_param("domain_desc", short_desc = "AG LAND - TREATED, MEASURED IN ACRES", commodity_desc = "AG LAND", agg_level_desc = "COUNTY") sapply(agland_domain, function(x) nass_count(domain_desc = x, short_desc = "AG LAND - TREATED, MEASURED IN ACRES", commodity_desc = "AG LAND", agg_level_desc = "COUNTY"))
print.svocc <- function (x, digits, ...) { if (missing(digits)) digits <- max(3, getOption("digits") - 3) cat("\nCall:", deparse(x$call, width.cutoff = floor(getOption("width") * 0.85)), "", sep = "\n") cat(paste("Single visit site-occupancy model", sep = "")) pen <- if (x$penalized) "Penalized " else "" cat(paste("\n", pen, "Maximum Likelihood estimates (", x$method, " method)\n\n", sep = "")) cat(paste("Coefficients for occurrence (", x$link$sta, " link):\n", sep = "")) print.default(format(x$coefficients$sta, digits = digits), print.gap = 2, quote = FALSE) cat(paste("Coefficients for detection (", x$link$det, " link):\n", sep = "")) print.default(format(x$coefficients$det, digits = digits), print.gap = 2, quote = FALSE) Conv <- if (!x$penalized) x$converged[1] else x$converged[2] if (!Conv) cat("Warning:\n Model did not converge\n\n") cat("\n") invisible(x) }
as.transactions <- function(x){ as(as.matrix(x), "transactions") }
library(tibble) credit <- read.csv("credit.csv") credit_tbl <- as_tibble(credit) credit_tbl library(dplyr) credit <- as_tibble(read.csv("credit.csv")) credit %>% filter(age >= 21) %>% mutate(years_loan_duration = months_loan_duration / 12) %>% select(default, years_loan_duration) %>% group_by(default) %>% summarize(mean_duration = mean(years_loan_duration)) library(readr) credit <- read_csv("credit.csv") library(rio) credit <- import("credit.csv") export(credit, "credit.xlsx") convert("credit.csv", "credit.dta") library(DBI) library(SQLite) con <- dbConnect(RSQLite::SQLite(), "credit.sqlite3") dbListTables(con) res <- dbSendQuery(con, "SELECT * FROM credit WHERE age >= 45") credit_age45 <- dbFetch(res) summary(credit_age45$age) dbClearResult(res) dbDisconnect(con) library(DBI) con <- dbConnect(odbc:odbc(), "my_data_source_name") library(DBI) con <- dbConnect(odbc::odbc(), database = "my_database", uid = "my_username", pwd = "my_password", host = "my.server.address", port = 1234) library(DBI) con <- dbConnect(RSQLite::SQLite(), "credit.sqlite3") credit_tbl <- con %>% tbl("credit") library(dplyr) credit_tbl %>% filter(age >= 45) %>% select(age) %>% collect() %>% summary() library(RODBC) my_db <- odbcConnect("my_dsn") my_db <- odbcConnect("my_dsn", uid = "my_username", pwd = "my_password") my_query <- "select * from my_table where my_value = 1" results_df <- sqlQuery(channel = my_db, query = my_query, stringsAsFactors = FALSE) odbcClose(my_db) library(dplyr) credit <- read_csv("credit.csv") credit_db_conn <- src_sqlite("credit.sqlite3", create = TRUE) copy_to(credit_db_conn, credit, temporary = FALSE) credit_db_conn <- src_sqlite("credit.sqlite3") credit_tbl <- tbl(credit_db_conn, "credit") select(credit_tbl, amount) mydata <- read.csv("http://www.mysite.com/mydata.csv") mytext <- readLines("http://www.mysite.com/myfile.txt") download.file("http://www.mysite.com/myfile.zip", "myfile.zip") library(RCurl) packt_page <- getURL("https://www.packtpub.com") str(packt_page, nchar.max = 200) library(httr) packt_page <- GET("https://www.packtpub.com") str(packt_page, max.level = 1) str(content(packt_page, type = "text"), nchar.max = 200) library(rvest) packt_page <- read_html("https://www.packtpub.com") html_node(packt_page, "title") %>% html_text() library(rvest) cran_ml <- read_html("http://cran.r-project.org/web/views/MachineLearning.html") cran_ml ml_packages <- html_nodes(cran_ml, "li a") head(ml_packages, n = 5) ml_packages %>% html_text() %>% head() library(XML) library(xml2) library(jsonlite) ml_book <- list(book_title = "Machine Learning with R", author = "Brett Lantz") toJSON(ml_book) ml_book_json <- "{ \"title\": \"Machine Learning with R\", \"author\": \"Brett Lantz\", \"publisher\": { \"name\": \"Packt Publishing\", \"url\": \"https://www.packtpub.com\" }, \"topics\": [\"R\", \"machine learning\", \"data mining\"], \"MSRP\": 54.99 }" ml_book_r <- fromJSON(ml_book_json) str(ml_book_r) library(httr) music_search <- GET("https://itunes.apple.com/search", query = list(term = "Beatles", media = "music", entity = "album", limit = 10)) music_search library(jsonlite) music_results <- fromJSON(content(music_search)) str(music_results) music_results$results$collectionName library(igraph) karate <- read.graph("karate.txt", "edgelist", directed = FALSE) plot(karate) degree(karate) betweenness(karate) library(data.table) credit <- fread("credit.csv") credit[credit_history == "good", mean(amount)] credit[, mean(amount), by=.(credit_history)] library(ff) credit <- read.csv.ffdf(file = "credit.csv", header = TRUE) mean(credit$amount) library(ffbase) mean(credit$amount) system.time(rnorm(1000000)) library(parallel) detectCores() system.time(l1 <- unlist(mclapply(1:10, function(x) { rnorm(1000000)}, mc.cores = 1))) system.time(l2 <- unlist(mclapply(1:10, function(x) { rnorm(1000000)}, mc.cores = 2))) system.time(l4 <- unlist(mclapply(1:10, function(x) { rnorm(1000000) }, mc.cores = 4))) system.time(l8 <- unlist(mclapply(1:10, function(x) { rnorm(1000000) }, mc.cores = 8))) cl1 <- makeCluster(4) clusterCall(cl1, function() { Sys.info()["nodename"] }) clusterCall(cl1, function() { print("ready!") }) clusterApply(cl1, c('A', 'B', 'C', 'D'), function(x) { paste("Cluster", x, "ready!") }) stopCluster(cl1) library(foreach) system.time(l1 <- rnorm(100000000)) system.time(l4 <- foreach(i = 1:4, .combine = 'c') %do% rnorm(25000000)) library(doParallel) detectCores() registerDoParallel(cores = 4) system.time(l4p <- foreach(i = 1:4, .combine = 'c') %dopar% rnorm(25000000)) stopImplicitCluster() library(caret) credit <- read.csv("credit.csv",, stringsAsFactors = TRUE) system.time(train(default ~ ., data = credit, method = "rf", trControl = trainControl(allowParallel = FALSE))) library(doParallel) registerDoParallel(cores = 8) system.time(train(default ~ ., data = credit, method = "rf")) library(sparklyr) spark_install(version = "2.1.0") spark_cluster <- spark_connect(master = "local") credit_spark <- spark_read_csv(spark_cluster, "credit.csv") splits <- sdf_partition(credit_spark, train = 0.75, test = 0.25, seed = 123) credit_rf <- splits$train %>% ml_random_forest(default ~ .) pred <- ml_predict(credit_rf, splits$test) ml_binary_classification_evaluator(pred, metric_name = "areaUnderROC") library(ranger) credit <- read.csv("credit.csv", stringsAsFactors = TRUE) m <- ranger(default ~ ., data = credit, num.trees = 500, mtry = 4) p <- predict(m, credit) head(p$predictions) library(h2o) h2o_instance <- h2o.init() credit.hex <- h2o.uploadFile("credit.csv") h2o.randomForest(y = "default", training_frame = credit.hex, ntrees = 500, seed = 123)
summod <- function(x, y, mod) UseMethod("summod") summod.default <- function(x, y, mod) stop ("x, y and mod have to be specified as vli objects or 32 bits integers") summod.numeric <- function(x, y, mod){ if ( abs(x) < 2147483648 ) x = vliC(toString(x)) else stop("The x object passed as argument is neither a vli object nor a 32 bits integer") if ( !is.vli(y) ){ if ( is.numeric(y) & (abs(y) < 2147483648) ){ y = vliC(toString(y)) } else stop("The y object passed as argument is neither a vli object nor a 32 bits integer") } if ( !is.vli(mod) ){ if ( is.numeric(mod) & (abs(mod) < 2147483648) ){ mod = vliC(toString(mod)) } else stop("The mod object passed as argument is neither a vli object nor a 32 bits integer") } if ( eqC(mod, .pkgenv$zero) ) stop("mod argument can not be equal to zero") return( divbaseC( sumC(x,y), mod)[[2]] ) } summod.vli <- function(x, y, mod){ if ( !is.vli(y) ){ if ( is.numeric(y) & (abs(y) < 2147483648) ){ y = vliC(toString(y)) } else stop("The y object passed as argument is neither a vli object nor a 32 bits integer") } if ( !is.vli(mod) ){ if ( is.numeric(mod) & (abs(mod) < 2147483648) ){ mod = vliC(toString(mod)) } else stop("The mod object passed as argument is neither a vli object nor a 32 bits integer") } if ( eqC(mod, .pkgenv$zero) ) stop("mod argument can not be equal to zero") return( divbaseC( sumC(x,y), mod)[[2]] ) } submod <- function(x, y, mod) UseMethod("submod") submod.default <- function(x, y, mod) stop ("x, y and mod have to be specified as vli objects or 32 bits integers") submod.numeric <- function(x, y, mod){ if ( abs(x) < 2147483648 ) x = vliC(toString(x)) else stop("The x object passed as argument is neither a vli object nor a 32 bits integer") if ( !is.vli(y) ){ if ( is.numeric(y) & (abs(y) < 2147483648) ){ y = vliC(toString(y)) } else stop("The y object passed as argument is neither a vli object nor a 32 bits integer") } if ( !is.vli(mod) ){ if ( is.numeric(mod) & (abs(mod) < 2147483648) ){ mod = vliC(toString(mod)) } else stop("The mod object passed as argument is neither a vli object nor a 32 bits integer") } if ( eqC(mod, .pkgenv$zero) ) stop("mod argument can not be equal to zero") return( divbaseC( subC(x,y), mod)[[2]] ) } submod.vli <- function(x, y, mod){ if ( !is.vli(y) ){ if ( is.numeric(y) & (abs(y) < 2147483648) ){ y = vliC(toString(y)) } else stop("The y object passed as argument is neither a vli object nor a 32 bits integer") } if ( !is.vli(mod) ){ if ( is.numeric(mod) & (abs(mod) < 2147483648) ){ mod = vliC(toString(mod)) } else stop("The mod object passed as argument is neither a vli object nor a 32 bits integer") } if ( eqC(mod, .pkgenv$zero) ) stop("mod argument can not be equal to zero") return( divbaseC( subC(x,y), mod)[[2]] ) } mulmodbase <- function(x, y, mod){ if ( max(c(x$length, y$length) ) < 40 ){ return(divbaseC( ( mulC( divbaseC(x,mod)[[2]], divbaseC(y,mod)[[2]] ) ),mod)[[2]] ) } else{ return(divbaseC( ( karC( divbaseC(x,mod)[[2]], divbaseC(y,mod)[[2]] ) ),mod)[[2]] ) } } mulmod <- function(x, y, mod) UseMethod("mulmod") mulmod.default <- function(x, y, mod) stop("x, y and mod have to be specified as vli objects or 32 bits integers") mulmod.numeric <- function(x, y, mod){ if ( abs(x) < 2147483648 ){ x = vliC(toString(x)) } else stop("The x object passed as argument is neither a vli object nor a 32 bits integer") if ( !is.vli(y) ){ if ( is.numeric(y) & (abs(y) < 2147483648) ){ y = vliC(toString(y)) } else stop("The y object passed as argument is neither a vli object nor a 32 bits integer") } if ( !is.vli(mod) ){ if ( is.numeric(mod) & (abs(mod) < 2147483648) ){ mod = vliC(toString(mod)) } else stop("The mod object passed as argument is neither a vli object nor a 32 bits integer") } if ( eqC(mod, .pkgenv$zero) ) stop("mod argument can not be equal to zero") return(mulmodbase(x, y, mod)) } mulmod.vli <- function(x, y, mod){ if ( !is.vli(y) ){ if ( is.numeric(y) & (abs(y) < 2147483648) ){ y = vliC(toString(y)) } else stop("The y object passed as argument is neither a vli object nor a 32 bits integer") } if ( !is.vli(mod) ){ if ( is.numeric(mod) & (abs(mod) < 2147483648) ){ mod = vliC(toString(mod)) } else stop("The mod object passed as argument is neither a vli object nor a 32 bits integer") } if ( eqC(mod, .pkgenv$zero) ) stop("mod argument can not be equal to zero") return(mulmodbase(x, y, mod)) } is.even <- function(x){ ((tail(x$value, 1)) %% 2) == 0 } powmodbase <- function(x, n, mod){ res = .pkgenv$one x = divbaseC(x, mod)[[2]] while( gtC(n, .pkgenv$zero) ){ if ( !is.even(n) ){ res = mulmodbase(res, x, mod) } n = divbaseC(n, .pkgenv$two)[[1]] x = mulmod(x, x, mod) } res } powmod <- function(x, n, mod) UseMethod("powmod") powmod.default <- function(x, n, mod) stop("x, y and mod have to be specified as vli objects or 32 bits integers") powmod.numeric <- function(x, n, mod){ if ( abs(x) < 2147483648 ){ x = vliC(toString(x)) } else stop("The x object passed as argument is neither a vli object nor a 32 bits integer") if ( !is.vli(n) ){ if ( is.numeric(n) & (abs(n) < 2147483648) ){ n = vliC(toString(n)) } else stop("The y object passed as argument is neither a vli object nor a 32 bits integer") } if ( !is.vli(mod) ){ if ( is.numeric(mod) & (abs(mod) < 2147483648) ){ mod = vliC(toString(mod)) } else stop("The mod object passed as argument is neither a vli object nor a 32 bits integer") } if ( eqC(mod, .pkgenv$zero) ) stop("mod argument can not be equal to zero") return(powmodbase(x, n, mod)) } powmod.vli <- function(x, n, mod){ if ( !is.vli(n) ){ if ( is.numeric(n) & (abs(n) < 2147483648) ){ n = vliC(toString(n)) } else stop("The y object passed as argument is neither a vli object nor a 32 bits integer") } if ( !is.vli(mod) ){ if ( is.numeric(mod) & (abs(mod) < 2147483648) ){ mod = vliC(toString(mod)) } else stop("The mod object passed as argument is neither a vli object nor a 32 bits integer") } if ( eqC(mod, .pkgenv$zero) ) stop("mod argument can not be equal to zero") return(powmodbase(x, n, mod)) } invmodbase <- function(x, n){ if ( neqC( gcdbase(x, n), .pkgenv$one) ){ stop("x and n are not coprimes so it does not exists a multiplicative inverse of x in the ring of integer modulo n") } else return(exteuclidbase(x, n)[[2]]) } invmod <- function(x, n) UseMethod("invmod") invmod.default <- function(x, n) stop("x and n have to be specified as vli objects or 32 bits integers") invmod.numeric <- function(x, n){ if ( abs(x) < 2147483648 ){ if ( x >= 0 ){ x = vliC(toString(x)) } else stop("invmod is only defined for positive integer numbers") } else stop("The first object passed as argument is neither a vli object nor a 32 bits integer") if ( !is.vli(n) ){ if ( is.numeric(n) & (abs(n) < 2147483648) ){ if ( n >= 0 ){ n = vliC(toString(n)) } else stop("invmod is only defined for positive integer numbers") } else stop("The second object passed as argument is neither a vli object nor a 32 bits integer") } else if ( n$sign == -1 ) stop("invmod is only defined for positive integer numbers") if ( eqC(n, .pkgenv$zero) ) stop("n can not be equal to zero") return(invmodbase(x, n)) } invmod.vli <- function(x, n){ if ( x$sign == -1 ) stop("invmod is only defined for positive integer numbers") if ( !is.vli(n) ){ if ( is.numeric(n) & (abs(n) < 2147483648) ){ if ( n >= 0 ){ n = vliC(toString(n)) } else stop("invmod is only defined for positive integer numbers") } else stop("The second object passed as argument is neither a vli object nor a 32 bits integer") } else if ( n$sign == -1 ) stop("invmod is only defined for positive integer numbers") if ( eqC(n, .pkgenv$zero) ) stop("n can not be equal to zero") return(invmodbase(x, n)) } divmodbase <- function(x, y, mod){ if ( neqC( gcdbase(y, mod), .pkgenv$one) ){ stop("y and mod are not coprimes so it does not exists a multiplicative inverse of y in the ring of integer modulo mod and modular division is not defined") } mulbaseC(invmodbase(y, mod), x) %% mod } divmod <- function(x, y, mod) UseMethod("divmod") divmod.default <- function(x, y, mod) stop("x, y and mod have to be specified as vli objects or 32 bits integers") divmod.numeric <- function(x, y, mod){ if ( abs(x) < 2147483648 ){ x = vliC(toString(x)) } else stop("The x object passed as argument is neither a vli object nor a 32 bits integer") if ( !is.vli(y) ){ if ( is.numeric(y) & (abs(y) < 2147483648) ){ y = vliC(toString(y)) } else stop("The y object passed as argument is neither a vli object nor a 32 bits integer") } if ( !is.vli(mod) ){ if ( is.numeric(mod) & (abs(mod) < 2147483648) ){ mod = vliC(toString(mod)) } else stop("The mod object passed as argument is neither a vli object nor a 32 bits integer") } if ( eqC(mod, .pkgenv$zero) ) stop("mod argument can not be equal to zero") return(divmodbase(x, y, mod)) } divmod.vli <- function(x, y, mod){ if ( !is.vli(y) ){ if ( is.numeric(y) & (abs(y) < 2147483648) ){ y = vliC(toString(y)) } else stop("The y object passed as argument is neither a vli object nor a 32 bits integer") } if ( !is.vli(mod) ){ if ( is.numeric(mod) & (abs(mod) < 2147483648) ){ mod = vliC(toString(mod)) } else stop("The mod object passed as argument is neither a vli object nor a 32 bits integer") } if ( eqC(mod, .pkgenv$zero) ) stop("mod argument can not be equal to zero") return(divmodbase(x, y, mod)) }
useRepos <- function(repos=NULL, where=c("before", "after", "replace"), unique=TRUE, fallback=TRUE, ...) { if (is.null(repos)) { return(options("repos")) } if (is.list(repos)) { old <- options(repos) return(old) } repos <- parseRepos(sets=repos, where=where, fallback=fallback, ...) if (unique) { names <- names(repos) if (length(names) > 0L) { dups <- (nzchar(names) & duplicated(names)) repos <- repos[!dups] } } reposT <- grep("^@[^@]+@$", repos, value=TRUE, invert=TRUE) isUrl <- isUrl(reposT) bad <- repos[!isUrl] if (length(bad) > 0L) { stop("Detected reposities that are not specified as URLs: ", bad) } old <- options(repos=repos) invisible(old) } parseRepos <- function(sets=NULL, where=c("before", "after", "replace"), fallback=TRUE, ...) { reposKnownToR <- function() { p <- file.path(Sys.getenv("HOME"), ".R", "repositories") if (!file.exists(p)) p <- file.path(R.home("etc"), "repositories") ns <- getNamespace("tools") .read_repositories <- get(".read_repositories", envir=ns) a <- .read_repositories(p) repos <- a$URL names <- rownames(a) names(repos) <- names repos } reposCustom <- function() { c("braju.com"="https://braju.com/R") } reposFallback <- function() { c("CRAN"="https://cran.r-project.org") } reposAll <- function() { c(reposKnownToR(), reposCustom()) } superPattern <- function(name="all") { known <- list( CRAN = "^(CRAN.*)$", BioC = "^(BioC.*)$", all = "", current = "<current>" ) known$`mainstream` <- c(known$CRAN, known$BioC) known$`braju.com` <- c("^braju[.]com$", known$mainstream) known$`R-Forge` <- c("^R-Forge$", known$mainstream) known$`rforge.net` <- c("^rforge[.]net$", known$mainstream) if (!is.element(name, names(known))) return(NULL) known[[name]] } reposSubst <- function(repos, known=repos) { pattern <- "^@[^@]+@$" subs <- grep(pattern, repos) if (length(subs) > 0L) { known <- grep(pattern, known, value=TRUE, invert=TRUE) names <- names(repos)[subs] reposT <- known[names] .stop_if_not(length(reposT) == length(subs)) ok <- !is.na(reposT) reposT <- reposT[ok] if (length(reposT) > 0L) { idxs <- match(names(reposT), names) subs <- subs[idxs] repos[subs] <- reposT } } repos } if (is.null(sets)) return(getOption("repos")) .stop_if_not(is.character(sets)) where <- match.arg(where) repos00 <- c(getOption("repos"), reposAll()) if (where == "after") { repos0 <- repos00 } else if (where == "before") { repos0 <- c(reposAll(), getOption("repos")) } else { repos0 <- reposAll() } sets <- unlist(strsplit(sets, split=",", fixed=TRUE), use.names=FALSE) names <- names(sets) sets <- sapply(sets, FUN=trim) names(sets) <- names if (is.character(sets)) { repos <- c() patternS <- "^\\[(.*)\\]$" for (kk in seq_along(sets)) { set <- sets[kk] if (regexpr(patternS, set) != -1L) { pattern <- gsub(patternS, "\\1", set) if (regexpr(patternS, pattern) != -1L) { name <- gsub(patternS, "\\1", pattern) pattern <- superPattern(name) if (length(pattern) == 0L) { stop("Unknown repository super set: ", name) } } if (identical(pattern, "<current>")) { repos <- getOption("repos") } else { keep <- lapply(pattern, FUN=grep, names(repos0)) keep <- unique(unlist(keep)) repos <- c(repos, repos0[keep]) } } else if (isUrl(set)) { repos <- c(repos, set) } else { repos <- c(repos, repos0[set]) } } } repos <- reposSubst(repos) repos <- reposSubst(repos, known=repos00) if (fallback) { repos0 <- repos repos <- reposSubst(repos, known=reposFallback()) if (!identical(repos, repos0)) { idxs <- which(repos0 != repos) diff <- sprintf("%s -> %s", sQuote(repos0[idxs]), sQuote(repos[idxs])) keys <- names(repos[idxs]) if (!is.null(keys)) diff <- sprintf("%s: %s", keys, diff) diff <- paste(diff, collapse=", ") warning("Had to fall back to a set of predefined repositories (please make sure to set your package repositories properly, cf. ?setRepositories): ", diff) } } keys <- paste(names(repos), repos, sep=":") repos <- repos[!duplicated(keys)] .stop_if_not(is.character(repos)) repos }
knitr::opts_chunk$set(collapse = TRUE, echo=TRUE,comment = " cache=FALSE) library(crimelinkage) library(crimelinkage) data(crimes) data(offenders) seriesData = makeSeriesData(crimedata=crimes,offenderTable=offenders) set.seed(1) allPairs = makePairs(seriesData,thres=365,m=40) varlist = list( spatial = c("X", "Y"), temporal = c("DT.FROM","DT.TO"), categorical = c("MO1", "MO2", "MO3")) X = compareCrimes(allPairs,crimedata=crimes,varlist=varlist,binary=TRUE) Y = ifelse(allPairs$type=='linked',1,0) set.seed(3) train = sample(c(TRUE,FALSE),nrow(X),replace=TRUE,prob=c(.7,.3)) test = !train D.train = data.frame(X[train,],Y=Y[train]) vars = c("spatial","temporal","tod","dow","MO1","MO2","MO3") fmla.all = as.formula(paste("Y ~ ", paste(vars, collapse= "+"))) NB = naiveBayes(fmla.all,data=D.train,weights=weight,df=10,nbins=15,partition='quantile') estimateBF <- function(X){ predict(NB,newdata=X) } unsolved = subset(crimes, !crimeID %in% seriesData$crimeID) tree = crimeClust_hier(unsolved,varlist,estimateBF,linkage='average', binary=TRUE) plot_hcc(tree,yticks=seq(-2,6,by=2),type="triangle",hang=.05,main="Average Linkage") subset(crimes,crimeID %in% c('C:431','C:460')) cp = clusterPath('C:429',tree) cp[cp$logBF>0,] solved = subset(crimes, crimeID %in% seriesData$crimeID) unsolved = subset(crimes, !crimeID %in% seriesData$crimeID) crime = unsolved[2,] crime results = seriesID(crime,solved,seriesData,varlist,estimateBF) head(results$score) subset(results$groups,group=='12') subset(results$groups,group=='154') subset(results$groups,group=='9') crime4 = unsolved[4,] results4 = seriesID(crime4,solved,seriesData,varlist,estimateBF) head(results4$score) pairs = data.frame(i1=unsolved$crimeID[4],i2=unique(unsolved$crimeID[-4])) X = compareCrimes(pairs,unsolved,varlist,binary=TRUE) score = data.frame(pairs,logBF=estimateBF(X)) head(score[order(-score$logBF),]) C429 = which(unsolved$crimeID %in% 'C:429') pairs = data.frame(i1=unsolved$crimeID[C429],i2=unique(unsolved$crimeID[-C429])) X = compareCrimes(pairs,unsolved,varlist,binary=TRUE) score = data.frame(pairs,logBF=estimateBF(X)) head(score[order(-score$logBF),]) cp = clusterPath('C:429',tree) cp[cp$logBF>0,] load("MCMC-results.RData") library(fields) ind.unsolved = which(is.na(A$CG)) n = nrow(A) fields::image.plot(1:n,ind.unsolved,pp[1:n,ind.unsolved], xlab="Crime",ylab="Unsolved Crime", main="Probability crimes are linked") unsolved.probs = apply(pp[ind.unsolved,],1,max,na.rm=TRUE) plot(ind.unsolved,unsolved.probs,xlab="unsolved crime",ylab='maximum probability of linkage') abline(h=0.25) ind = ind.unsolved[unsolved.probs > 0.25] investigate = as.character(A$crimeID[ind]) investigate bp = bayesProb(pp[A$crimeID %in% "C:417"]) bp$crimeID = A$crimeID[bp$index] bp$CG = A$CG[bp$index] head(bp)
check_ped <- function(ped_file){ if (class(ped_file) != "data.frame") { stop("ped_file must be a data.frame with the following variables:\n FamID, ID, dadID, momID, sex, affected") } if (!"FamID" %in% colnames(ped_file) | !"ID" %in% colnames(ped_file) | !"dadID" %in% colnames(ped_file) | !"momID" %in% colnames(ped_file) | !"sex" %in% colnames(ped_file) | !"affected" %in% colnames(ped_file)) { stop('please provide a data.frame with the following variables:\n FamID, ID, dadID, momID, sex, affected') } if(any(is.na(ped_file$ID))) { stop('ID contains missing values.\n Please ensure all individuals have a valid ID.') } if (any(!ped_file$affected %in% c(TRUE, FALSE, NA))) { stop('For the variable "affected" please use the following convention TRUE = affected by disease FALSE = unaffected NA = unknown disease-affection status.\n') } moms <- unique(ped_file$momID[!is.na(ped_file$momID)]) dads <- unique(ped_file$dadID[!is.na(ped_file$dadID)]) if (any(ped_file$sex[which(ped_file$ID %in% moms)] != 1) | any(ped_file$sex[which(ped_file$ID %in% dads)] != 0)){ wrong_sex <- c(ped_file$ID[which(ped_file$sex[which(ped_file$ID %in% dads)] != 0)], ped_file$ID[which(ped_file$sex[which(ped_file$ID %in% moms)] != 1)]) stop(paste0('Sex improperly specifed ID: ', sep = '', wrong_sex, '. Please ensure that for males: sex = 0; and for females: sex = 1.')) } if (any(!moms %in% ped_file$ID) | any(!dads %in% ped_file$ID)) { wrong_par <- c(ped_file$ID[which(ped_file$momID == moms[which(!moms %in% ped_file$ID)])], ped_file$ID[which(ped_file$dadID == dads[which(!dads %in% ped_file$ID)])]) stop(paste0('ID: ', sep = '', wrong_par, '. Non-founders must have a mother and a father. Founders have neither.')) } if (any(!is.na(ped_file$momID[is.na(ped_file$dadID)])) | any(!is.na(ped_file$dadID[is.na(ped_file$momID)]))) { stop("Non-founders must have both a mother and a father, while founders have missing momID and dadID.") } }
"_PACKAGE" .onAttach <- function(libname, pkgname){ if (!has_cxx17()) packageStartupMessage("The kdtools package was compiled without c++17 and will have reduced functionality\n") }
context("test-hierarchy.R") test_that("test of hierarchy method", { expect_equal(flag_hierarchy(c("p","b","s","b","u","e","b"), flag_list = c("e","s","t")),"e") expect_equal(flag_hierarchy(c("p","b","s","b","u","b"), flag_list = c("e","s","t")),"s") expect_equal(flag_hierarchy(c("p","b","b","u","b"), flag_list = c("e","s","t")),NA) expect_equal(flag_hierarchy(c(NA,NA,NA,NA), flag_list = c("e","s","t")),NA) })
options(prompt=" ", continue=" ", width=100) library(fbRanks) temp=create.fbRanks.dataframes(scores.file="scores-web.csv") scores=temp$scores head(scores[,1:5]) ranks1=rank.teams(scores=scores) temp=create.fbRanks.dataframes(scores.file="scores-web.csv", teams.file="teams-web.csv") scores=temp$scores teams=temp$teams head(teams[,c("name","age","region","fall.league")]) ranks2=rank.teams(scores=scores, teams=teams) print(ranks2, fall.league="RCL D1 U12") names(scores) ranks4=rank.teams(scores=scores,teams=teams,add=c("surface","adv")) coef(ranks4$fit$cluster.1)["surface.fTurf"] coef(ranks4$fit$cluster.1)["adv.fhome"] ranks.summer=rank.teams(scores=scores,teams=teams,add=c("surface"), max.date="2012-9-5") simulate(ranks.summer, venue="RCL D1") predict(ranks.summer, venue="RCL D1", date=as.Date("2012-09-16")) fantasy.teams=c("Seattle United Copa B00","Seattle United Tango B00", "Seattle United Samba B00","Seattle United S Black B00") home.team=combn(fantasy.teams,2)[1,] away.team=combn(fantasy.teams,2)[2,] fantasy.games=data.frame( date="2013-1-1", home.team=home.team, home.score=NaN, away.team=away.team, away.score=NaN, surface="Grass", home.adv="neutral", away.adv="neutral") simulate(ranks4, newdata=fantasy.games, points.rule="tournament10pt") options(prompt="> ", continue="+ ")
lncDIFF<-function(edata,group,covariate=NULL,link.function='log',CompareGroups=NULL,simulated.pvalue=FALSE,permutation=100){ group.labels<-names(table(group)) if(is.null(CompareGroups)) { cat('Compared groups are not specified, default to all groups','\n') CompareGroups<-group.labels } if(length(CompareGroups)>length(group.labels)) stop('Duplicates or unspecified groups in CompareGroups') if(sum(!CompareGroups %in% group)>0) stop('Groups to be compared (CompareGroups) are not in the range of labels') if(length(CompareGroups)==1) stop('Specify at least 2 groups to be compared') if(!is.vector(group)) stop('Treatment groups or phenotypes of interest (group) must be a vector ') if(!is.null(covariate)){ if(length(group)!=nrow(covariate)) stop('Dimensions of covariate and group do not match') } if(length(group)!=ncol(edata)) stop('Dimensions of counts (edata) and group do not match') if(length(CompareGroups)>2) cat('More than 2 groups are compared, fold change are not computed','\n') full.coefficients=which(group.labels %in% CompareGroups) if(! 1 %in% full.coefficients){ group<-factor(group,levels = c(CompareGroups,group.labels[-full.coefficients])) group.labels<-names(table(group)) full.coefficients=which(group.labels %in% CompareGroups) } pdata=as.data.frame(cbind(group,covariate)) formula='~' for(i in colnames(pdata)[-ncol(pdata)]){ formula=paste(formula,i,'+',sep = '') } formula=paste(formula,colnames(pdata)[ncol(pdata)],sep='') design.matrix=model.matrix(as.formula(formula),pdata) colnames(design.matrix)[2:length(group.labels)]=paste(deparse(substitute(group)),group.labels[-1],sep = '') ZIQML.fit.full=ZIQML.fit(edata,design.matrix,link=link.function) test.coef=sort(full.coefficients)[-1] n=nrow(design.matrix) g=nrow(edata) test=LRT(ZIQML.fit.full,coef=test.coef) LRT.stat=test$LRT.stat LRT.pvalue=test$LRT.pvalue LRT.fdr=p.adjust(LRT.pvalue,method = 'BH') DE.Gene=ifelse(LRT.fdr<0.05,'Yes','No') results=data.frame(test.statistics=LRT.stat,Pvalue=LRT.pvalue,FDR=LRT.fdr,DE.Gene=DE.Gene) compare.id=group %in% CompareGroups sub.edata=t(edata[,compare.id]) groupwise.mean=aggregate(sub.edata,by=list(group[compare.id]),FUN=mean) rownames(groupwise.mean)=groupwise.mean[,1] groupwise.mean=t(groupwise.mean[,-1]) colnames(groupwise.mean)=paste('Mean',colnames(groupwise.mean),sep ='_' ) results=cbind(results,groupwise.mean) if(simulated.pvalue){ LRT.STAT=NULL for(i in 1:permutation){ id=sample(1:n,n) ZIQML.fit.null=ZIQML.fit(edata,design.matrix[id,],link = ZIQML.fit.full$link) test=LRT(ZIQML.fit.null,coef=test.coef) LRT.STAT=cbind(LRT.STAT,test$LRT.stat) } LRT.simulated.pvalue=(0.1+rowSums(LRT.STAT>LRT.stat))/permutation LRT.simulated.pvalue=lapply(LRT.simulated.pvalue,function(x)min(x,1)) LRT.simulated.fdr=p.adjust(LRT.simulated.pvalue,method = 'BH') results$Simulated.Pvalue=LRT.simulated.pvalue results$Simulated.FDR=LRT.simulated.fdr results$DE.Gene.Simulated.Fdr=ifelse(results$Simulated.FDR<0.05,'Yes','No') } if(length(CompareGroups)==2){ results$Fold.Change=groupwise.mean[,1]/groupwise.mean[,2] results$Log2.Fold.Change=log2(groupwise.mean[,1]/groupwise.mean[,2]) } rownames(results)=rownames(ZIQML.fit.full$edata) output=list(DE.results=results,full.model.fit=ZIQML.fit.full) return(output) }
BS_call <- function(V, D, T., r, vol){ lens <- c(length(V), length(D), length(T.), length(r), length(vol)) if(all(lens == 1)) return(drop(BS_call_cpp(V = V, D = D, T = T., r = r, vol = vol))) .check_args(V = V, D = D, T. = T., r = r, vol = vol) args <- .get_eq_length_args( lens = lens, V = V, D = D, T = T., r = r, vol = vol) with.default( args, drop(mapply(BS_call_cpp, V = V, D = D, T = T, r = r, vol = vol))) }
edgecluster = function(data, h1n, h2n, maxval, bw = max(h1n, h2n)/qnorm(0.975), asteps = 4, estimator = "M_median", kernel = "gauss", score = "gauss", sigma = 1, kernelfunc = NULL) { if (estimator == "test_mean" || estimator == "test_median") test = TRUE else test = FALSE ep = eplist(edgepoints(data, h1n, h2n, asteps = asteps, estimator = estimator, kernel = kernel, score = score, sigma = sigma, kernelfunc = kernelfunc), maxval, test = test) list(oregMclust(ep, bw = bw), ep) }
use_distmat <- function(distmat, x, centroids) { if (!inherits(distmat, "Distmat")) stop("Invalid distance matrix in control.") i <- 1L:length(x) j <- if (is.null(centroids)) i else distmat$id_cent distmat[i, j, drop = FALSE] } get_dots <- function(dist_entry, x, centroids, ...) { dots <- list(...) if (is.null(dots$window.size)) { dots$window.type <- "none" } else if (is.null(dots$window.type)) { dots$window.type <- "slantedband" } dots$error.check <- FALSE if (tolower(dist_entry$names[1L]) == "dtw" && is.null(dots$dist.method) && is_multivariate(c(x, centroids))) { dots$dist.method <- "L1" } valid_args <- names(dots) if (is.function(dist_entry$FUN)) { if (!has_dots(dist_entry$FUN)) { valid_args <- union(names(formals(proxy::dist)), names(formals(dist_entry$FUN))) } } else { valid_args <- names(formals(proxy::dist)) } dots[intersect(names(dots), valid_args)] } split_parallel_symmetric <- function(n, num_workers, adjust = 0L) { if (num_workers <= 2L || n <= 4L) { mid_point <- as.integer(n / 2) ul_trimat <- 1L:mid_point + adjust ll_trimat <- (mid_point + 1L):n + adjust trimat <- list(ul = ul_trimat, ll = ll_trimat) attr(trimat, "trimat") <- TRUE trimat <- list(trimat) mid_point <- mid_point + adjust attr(ul_trimat, "rows") <- ll_trimat mat <- list(ul_trimat) ids <- c(trimat, mat) } else { mid_point <- as.integer(n / 2) rec1 <- split_parallel_symmetric(mid_point, as.integer(num_workers / 4), adjust) rec2 <- split_parallel_symmetric(n - mid_point, as.integer(num_workers / 4), mid_point + adjust) endpoints <- parallel::splitIndices(mid_point, max(length(rec1) + length(rec2), num_workers)) endpoints <- endpoints[lengths(endpoints) > 0L] mat <- lapply(endpoints, function(ids) { ids <- ids + adjust attr(ids, "rows") <- (mid_point + 1L):n + adjust ids }) ids <- c(rec1, rec2, mat) } chunk_sizes <- unlist(lapply(ids, function(x) { if (is.null(attr(x, "trimat"))) length(x) else median(lengths(x)) })) ids[sort(chunk_sizes, index.return = TRUE)$ix] } parallel_symmetric <- function(d_desc, ids, x, distance, dots) { attach.big.matrix <- get("attach.big.matrix", asNamespace("bigmemory"), mode = "function") dd <- attach.big.matrix(d_desc) if (isTRUE(attr(ids, "trimat"))) { ul <- ids$ul if (length(ul) > 1L) { dd[ul,ul] <- base::as.matrix(quoted_call( proxy::dist, x = x[ul], y = NULL, method = distance, dots = dots )) } ll <- ids$ll if (length(ll) > 1L) { dd[ll,ll] <- base::as.matrix(quoted_call( proxy::dist, x = x[ll], y = NULL, method = distance, dots = dots )) } } else { rows <- attr(ids, "rows") mat_chunk <- base::as.matrix(quoted_call( proxy::dist, x = x[rows], y = x[ids], method = distance, dots = dots )) dd[rows,ids] <- mat_chunk dd[ids,rows] <- t(mat_chunk) } } ddist2 <- function(distance, control) { dist_entry <- proxy::pr_DB$get_entry(distance) symmetric <- isTRUE(control$symmetric) warned <- FALSE export <- c("check_consistency", "quoted_call", "parallel_symmetric", "distance", "dist_entry") ret <- function(result, ...) { ret <- structure(result, method = toupper(distance), ...) if (!is.null(attr(ret, "call"))) { attr(ret, "call") <- NULL } ret } distfun <- function(x, centroids = NULL, ...) { x <- tslist(x) if (!is.null(centroids)) centroids <- tslist(centroids) if (length(x) == 1L && is.null(centroids)) { return(ret(base::matrix(0, 1L, 1L), class = "crossdist", dimnames = list(names(x), names(x)))) } if (!is.null(control$distmat)) { return(ret(use_distmat(control$distmat, x, centroids))) } dots <- get_dots(dist_entry, x, centroids, ...) if (!dist_entry$loop) { dm <- base::as.matrix(quoted_call( proxy::dist, x = x, y = centroids, method = distance, dots = dots )) if (isTRUE(dots$pairwise)) { dim(dm) <- NULL return(ret(dm, class = "pairdist")) } else { return(ret(dm, class = "crossdist")) } } if (is.null(centroids) && symmetric && !isTRUE(dots$pairwise)) { multiple_workers <- foreach::getDoParWorkers() > 1L if (multiple_workers && isNamespaceLoaded("bigmemory")) { len <- length(x) seed <- get0(".Random.seed", .GlobalEnv, mode = "integer") big.matrix <- get("big.matrix", asNamespace("bigmemory"), mode = "function") bigmemory_describe <- get("describe", asNamespace("bigmemory"), mode = "function") d <- big.matrix(len, len, "double", 0) d_desc <- bigmemory_describe(d) assign(".Random.seed", seed, .GlobalEnv) ids <- integer() foreach( ids = split_parallel_symmetric(len, foreach::getDoParWorkers()), .combine = c, .multicombine = TRUE, .noexport = c("d"), .packages = c(control$packages, "bigmemory"), .export = export ) %op% { if (!check_consistency(dist_entry$names[1L], "dist")) { do.call(proxy::pr_DB$set_entry, dist_entry, TRUE) } parallel_symmetric(d_desc, ids, x, distance, dots) NULL } return(ret(d[,], class = "crossdist", dimnames = list(names(x), names(x)))) } else if (multiple_workers && !warned && isTRUE(getOption("dtwclust_suggest_bigmemory", TRUE))) { warned <<- TRUE warning("Package 'bigmemory' is not available, cannot parallelize computation with '", distance, "'. Use options(dtwclust_suggest_bigmemory = FALSE) to avoid this warning.") } else { dm <- base::as.matrix(quoted_call( proxy::dist, x = x, y = NULL, method = distance, dots = dots )) return(ret(dm, class = "crossdist")) } } if (is.null(centroids)) centroids <- x dim_names <- list(names(x), names(centroids)) x <- split_parallel(x) if (isTRUE(dots$pairwise)) { centroids <- split_parallel(centroids) validate_pairwise(x, centroids) combine <- c } else { centroids <- lapply(1L:foreach::getDoParWorkers(), function(dummy) { centroids }) if (length(centroids) > length(x)) centroids <- centroids[1L:length(x)] combine <- rbind } d <- foreach( x = x, centroids = centroids, .combine = combine, .multicombine = TRUE, .packages = control$packages, .export = export ) %op% { if (!check_consistency(dist_entry$names[1L], "dist")) { do.call(proxy::pr_DB$set_entry, dist_entry, TRUE) } quoted_call(proxy::dist, x = x, y = centroids, method = distance, dots = dots) } if (isTRUE(dots$pairwise)) { attr(d, "class") <- "pairdist" } else { attr(d, "class") <- "crossdist" attr(d, "dimnames") <- dim_names } ret(d) } distfun }
Field <- R6Class( "Field", public = list( initialize = function(descriptor, base_path = NULL, strict = NULL, missingValues = as.list(config::get("DEFAULT_MISSING_VALUES", file = system.file("config/config.yml", package = "tableschema.r"))), ...) { if (missing(base_path)) { private$base_path <- NULL } else { private$base_path <- base_path } if (missing(strict)) { private$strict <- NULL } else { private$strict <- strict } if (missing(descriptor)) { private$descriptor_ <- NULL } else { private$descriptor_ <- descriptor } private$missingValues <- missingValues private$descriptor_ <- helpers.expandFieldDescriptor(descriptor) }, cast_value = function(...) { return(private$castValue(...)) }, testValue = function(value, constraints = TRUE) { result <- tryCatch({ private$castValue(value, constraints) TRUE }, warning = function(w) { return(FALSE) }, error = function(e) { return(FALSE) }, finally = { }) return(result) } ), active = list( descriptor = function() { return(private$descriptor_) }, required = function(){ if (!is.null(private$descriptor_)) { return(identical(private$descriptor_$required, TRUE)) } else{ return(FALSE) } }, name = function() { return(private$descriptor_$name) }, type = function() { return(private$descriptor_$type) }, format = function() { return(private$descriptor_$format) }, constraints = function() { if (is.list(private$descriptor_) && "constraints" %in% names(private$descriptor_)) { return(private$descriptor_$constraints) } else { return(list()) } } ), private = list( missingValues = NULL, base_path = NULL, strict = NULL, descriptor_ = NULL, types = Types$new(), constraints_ = Constraints$new()$constraints, castFunction = function() { options <- list() if (self$type == 'number') { lapply(list('decimalChar', 'groupChar', 'currency'), function(key) { value <- private$descriptor_[[key]] if (!is.null(value)) { options[[key]] <- value } }) } func <- private$types$casts[[stringr::str_interp("cast${stringr::str_to_title(self$type)}")]] if (is.null(func)) stop(stringr::str_interp("Not supported field type ${self$type}")) cast <- purrr::partial(func, format = self$format) return(cast) }, castValue = function(value, constraints = TRUE, ...) { if (value %in% private$missingValues) { value <- NULL } castValue <- value if (!is.null(value)) { castFunction <- private$castFunction() castValue <- castFunction(value) if (identical(castValue , config::get("ERROR", file = system.file("config/config.yml", package = "tableschema.r")))) { err_message <- stringr::str_interp( "Field ${private$name} can't cast value ${value} for type ${self$type} with format ${self$format}" ) stop(err_message) } } if (constraints || is.list(constraints)) { checkFunctions <- private$checkFunctions() if (is.list(checkFunctions) & length(checkFunctions) > 0) { names_ <- Filter(function(n) { if (!is.list(constraints)) { return(TRUE) } else if (n %in% names(constraints)) { return(TRUE) } else return(FALSE) }, names(checkFunctions)) lapply(checkFunctions[names_], function(check) { passed <- check(castValue) if (!passed) { err_message <- stringr::str_interp( "Field ${private$name} has constraint ${name} which is not satisfied for value ${value}" ) stop(err_message) } }) } } return(castValue) }, checkFunctions = function() { checks <- list() cast <- purrr::partial(private$castValue, constraints = FALSE) for (name in names(self$constraints)) { constraint <- self$constraints[[name]] castConstraint <- constraint if (name %in% list('enum')) { castConstraint <- lapply(constraint, cast) } if (name %in% list('maximum', 'minimum')) { castConstraint <- cast(constraint) } func <- private$constraints_[[stringr::str_interp("check${paste0(toupper(substr(name, 1, 1)), substr(name, 2, nchar(name)))}")]] check <- purrr::partial(func, constraint = castConstraint) checks[[name]] <- check } return(checks) } ) )
library(OutliersO3) library(ggplot2) data(Election2005) data <- Election2005[, c(6, 10, 17, 28)] O3s <- O3prep(data, method="HDo", tols=0.05, boxplotLimits=6) O3s1 <- O3plotT(O3s, caseNames=Election2005$Name) O3s1$gO3 + theme(plot.margin = unit(c(0, 2, 0, 0), "cm")) O3x <- O3prep(data, method="HDo", tols=c(0.1, 0.05, 0.01), boxplotLimits=c(3, 6, 10)) O3x1 <- O3plotT(O3x) library(gridExtra) grid.arrange(O3x1$gO3, O3x1$gpcp, ncol=1) O3m <- O3prep(data, method=c("HDo", "PCS")) O3m1 <- O3plotM(O3m) grid.arrange(O3m1$gO3, O3m1$gpcp, ncol=1) O3y <- O3prep(data, method=c("HDo", "PCS", "BAC", "adjOut", "DDC", "MCD")) O3y1 <- O3plotM(O3y) cx <- data.frame(outlier_method=names(O3y1$nOut), number_of_outliers=O3y1$nOut) knitr::kable(cx, row.names=FALSE) grid.arrange(O3y1$gO3, O3y1$gpcp, ncol=1)
SurvivalFromCumhaz <- function(cumhaz, time.max, surv.factor = 10, surv.epsilon = 0.0000000001){ K <- length(cumhaz) eval.vec <- seq(0, (time.max - surv.epsilon), length = surv.factor*K) cumhaz.interpolated <- approxfun( (time.max/K)*(0:K), c(0, cumhaz) ) surv <- function(t){exp(-cumhaz.interpolated(t))} return(surv(eval.vec)) }
rkt_prep <- function(scores, positives, negatives = totals - positives, totals = 1) { if(missing(scores)) stop("\"scores\" is required") if(missing(positives)) stop("\"positives\" is required") if (!missing(negatives) && !missing(totals)) { stopifnot(all(positives + negatives == totals)) } stopifnot(all(totals >= 0)) stopifnot(all(positives >= 0)) stopifnot(all(negatives >= 0)) out <- new.env(parent = emptyenv()) out$pos_ecdf <- rkt_ecdf(scores, positives) out$neg_ecdf <- rkt_ecdf(scores, negatives) out$pos_n <- sum(positives) out$neg_n <- sum(negatives) class(out) <- c("rkt_prep", class(out)) out } print.rkt_prep <- function(x, ...) { cat(".:: ROCket Prep Object \n") cat("Positives (pos_n):", x$pos_n, "\n") cat("Negatives (neg_n):", x$neg_n, "\n") cat("Pos ECDF (pos_ecdf):",class(x$pos_ecdf), "\n") cat("Neg ECDF (neg_ecdf):",class(x$neg_ecdf), "\n") } plot.rkt_prep <- function(x, ...) { inargs <- list(...) s <- get_cutoffs(x) outargs <- list(x = 1 - x$neg_ecdf(s), y = 1 - x$pos_ecdf(s), xlim = c(0, 1), ylim = c(0, 1), xlab = expression(FPR), ylab = expression(TPR), main = 'ROC', v = c(0, 1), h = c(0, 1)) outargs[names(inargs)] <- inargs do.call(plot_points, outargs) invisible() }
cubecsi<-function(m,ordinal,W,starting,maxiter,toler){ tt0<-proc.time() n<-length(ordinal) W<-as.matrix(W) if (ncol(W)==1){ W<-as.numeric(W) } q<-length(starting)-3 pai<-starting[1]; gama<-starting[2:(q+2)]; phi<-starting[q+3]; loglikzero<-loglikcubecsi(m,ordinal,W,pai,gama,phi) param<-c(pai,gama,phi) optimparam<-optim(param,effecubecsi,ordinal=ordinal,W=W,m=m,method="L-BFGS-B",lower=c(0.01,rep(-Inf,q+1),0.01), upper=c(0.99,rep(Inf,q+1),0.3),gr=NULL,hessian=TRUE) paramest<-optimparam$par pai<-paramest[1] gama<-paramest[2:(q+2)] phi<-paramest[q+3] hessian<-optimparam$hessian loglik<-loglikcubecsi(m,ordinal,W,pai,gama,phi) vettestim<-c(pai,gama,phi) nparam<-length(vettestim) AICCUBEcsi<- -2*loglik+2*nparam BICCUBEcsi<- -2*loglik+log(n)*nparam if (det(hessian)<=0){ warning("Variance-Covariance matrix is not positive definite") varmat<-ddd<-cormat<-matrix(NA,nrow=nparam,ncol=nparam) errstd<-wald<-pval<-rep(NA,nparam) ICOMP<-trvarmat<-NA } else { varmat<-solve(hessian) errstd<-sqrt(diag(varmat)) ddd<-diag(sqrt(1/diag(varmat))) wald<-vettestim/errstd pval<-2*(1-pnorm(abs(wald))) cormat<-(ddd%*%varmat)%*%ddd trvarmat<-sum(diag(varmat)) ICOMP<- -2*loglik + nparam*log(trvarmat/nparam) - log(det(varmat)) errstd<-errstd wald<-wald pval<-pval } stime<-vettestim durata<-proc.time()-tt0;durata<-durata[1]; results<-list('estimates'=stime, 'loglik'=loglik, 'varmat'=varmat, 'BIC'= BICCUBEcsi,'time'=durata,'niter'=1) }
kap <- function(data, ...) { UseMethod("kap") } kap <- new_class_metric( kap, direction = "maximize" ) kap.data.frame <- function(data, truth, estimate, weighting = "none", na_rm = TRUE, ...) { metric_summarizer( metric_nm = "kap", metric_fn = kap_vec, data = data, truth = !!enquo(truth), estimate = !!enquo(estimate), na_rm = na_rm, metric_fn_options = list(weighting = weighting) ) } kap.table <- function(data, weighting = "none", ...) { check_table(data) metric_tibbler( .metric = "kap", .estimator = finalize_estimator(data, metric_class = "kap"), .estimate = kap_table_impl(data, weighting = weighting) ) } kap.matrix <- function(data, weighting = "none", ...) { data <- as.table(data) kap.table(data, weighting = weighting) } kap_vec <- function(truth, estimate, weighting = "none", na_rm = TRUE, ...) { estimator <- finalize_estimator(truth, metric_class = "kap") kap_impl <- function(truth, estimate, weighting) { xtab <- vec2table( truth = truth, estimate = estimate ) kap_table_impl(xtab, weighting = weighting) } metric_vec_template( metric_impl = kap_impl, truth = truth, estimate = estimate, na_rm = na_rm, estimator = estimator, cls = "factor", weighting = weighting ) } kap_table_impl <- function(data, weighting) { full_sum <- sum(data) row_sum <- rowSums(data) col_sum <- colSums(data) expected <- outer(row_sum, col_sum) / full_sum n_levels <- nrow(data) w <- make_weighting_matrix(weighting, n_levels) n_disagree <- sum(w * data) n_chance <- sum(w * expected) 1 - n_disagree / n_chance } make_weighting_matrix <- function(weighting, n_levels) { validate_weighting(weighting) if (is_no_weighting(weighting)) { w <- matrix(1L, nrow = n_levels, ncol = n_levels) diag(w) <- 0L return(w) } if (is_linear_weighting(weighting)) { power <- 1L } else { power <- 2L } w <- rlang::seq2(0L, n_levels - 1L) w <- matrix(w, nrow = n_levels, ncol = n_levels) w <- abs(w - t(w)) ^ power w } validate_weighting <- function(x) { if (!rlang::is_string(x)) { abort("`weighting` must be a string.") } ok <- is_no_weighting(x) || is_linear_weighting(x) || is_quadratic_weighting(x) if (!ok) { abort("`weighting` must be 'none', 'linear', or 'quadratic'.") } invisible(x) } is_no_weighting <- function(x) { identical(x, "none") } is_linear_weighting <- function(x) { identical(x, "linear") } is_quadratic_weighting <- function(x) { identical(x, "quadratic") }
DATA_PATH <- "50_Data/" COMPONENT_PATH <- "03_Components/" PAGE_PATH <- "04_Pages/"
track_progress <- function(job_id = "") { captr_CHECKAUTH() if ( is.null(job_id) | identical(job_id, "")) stop("Provide a Valid Job ID.") h <- new_handle() handle_setopt(h, customrequest = "GET") handle_setheaders(h, "Captricity-API-Token" = Sys.getenv("CaptricityToken")) tag_con <- curl_fetch_memory(paste0("https://shreddr.captricity.com/api/v1/job/", job_id), handle = h) tag <- fromJSON(rawToChar(tag_con$content)) tag }
data_dir <- file.path("..", "testdata") tempfile_nc <- function() { tempfile_helper("hoursum_") } file_out <- tempfile_nc() hoursum("SIS", file.path(data_dir, "ex_hourx.nc"), file_out) file <- nc_open(file_out) test_that("data is correct", { actual <- ncvar_get(file) expected_data <- c(18102.0,18162.0,18121.0,18080.0,18140.0,18099.0,18058.0, 18118.0,18077.0,18036.0,18096.0,18055.0,18014.0,18074.0, 18033.0,17992.0,18052.0,18011.0,17970.0,18030.0,17989.0, 17948.0,18008.0,17967.0,17926.0,17986.0,17945.0,17904.0, 17964.0,17923.0,17882.0,17942.0,17901.0,17860.0,17920.0, 17879.0,17838.0,17898.0,17857.0,17816.0,17876.0,17936.0, 17895.0,17955.0,18015.0,17974.0,18034.0,18094.0,18053.0, 18055.0,18014.0,18074.0,18033.0,17992.0,18052.0,18011.0, 17970.0,18030.0,17989.0,17948.0,18008.0,17967.0,17926.0, 17986.0,17945.0,17904.0,17964.0,17923.0,17882.0,17942.0, 17901.0,17860.0,17920.0,17879.0,17838.0,17898.0,17857.0, 17816.0,17876.0,17936.0,17895.0,17955.0,18015.0,17974.0, 18034.0,18094.0,18053.0,18113.0,18173.0,18132.0,18091.0, 18151.0,18110.0,18069.0,18129.0,18088.0,18047.0,18107.0, 18008.0,17967.0,17926.0,17986.0,17945.0,17904.0,17964.0, 17923.0,17882.0,17942.0,17901.0,17860.0,17920.0,17879.0, 17838.0,17898.0,17857.0,17816.0,17876.0,17936.0,17895.0, 17955.0,18015.0,17974.0,18034.0,18094.0,18053.0,18113.0, 18173.0,18132.0,18091.0,18151.0,18110.0,18069.0,18129.0, 18088.0,18047.0,18107.0,18066.0,18025.0,18085.0,18044.0, 18003.0,18063.0,18022.0,17981.0,18041.0,18000.0,17959.0) expected <- array(expected_data, dim = c(7, 7, 3)) expect_equivalent(actual[1:147], expected) }) test_that("variable attributes are correct", { actual <- ncatt_get(file, "SIS", "units")$value expect_equal(actual, "W m-2") actual <- ncatt_get(file, "SIS", "_FillValue")$value expect_equal(actual, -999) actual <- ncatt_get(file, "SIS", "standard_name")$value expect_equal(actual, "SIS_standard") actual <- ncatt_get(file, "SIS", "long_name")$value expect_equal(actual, "Surface Incoming Shortwave Radiation") actual <- ncatt_get(file, "SIS", "missing_value")$value expect_equal(actual, 0) }) test_that("attributes are correct", { actual <- ncatt_get(file, "lon", "units")$value expect_equal(actual, "degrees_east") actual <- ncatt_get(file, "lon", "long_name")$value expect_equal(actual, "longitude") actual <- ncatt_get(file, "lon", "standard_name")$value expect_equal(actual, "longitude") actual <- ncatt_get(file, "lon", "axis")$value expect_equal(actual, "X") actual <- ncatt_get(file, "lat", "units")$value expect_equal(actual, "degrees_north") actual <- ncatt_get(file, "lat", "long_name")$value expect_equal(actual, "latitude") actual <- ncatt_get(file, "lat", "standard_name")$value expect_equal(actual, "latitude") actual <- ncatt_get(file, "lat", "axis")$value expect_equal(actual, "Y") actual <- ncatt_get(file, "time", "units")$value expect_equal(actual, "minutes since 1983-01-01 00:00:00") actual <- ncatt_get(file, "time", "long_name")$value expect_equal(actual, "time") actual <- ncatt_get(file, "time", "standard_name")$value expect_equal(actual, "time") actual <- ncatt_get(file, "time", "calendar")$value expect_equal(actual, "standard") actual <- ncatt_get(file, "SIS", "standard_name")$value expect_equal(actual, "SIS_standard") actual <- ncatt_get(file, "SIS", "long_name")$value expect_equal(actual, "Surface Incoming Shortwave Radiation") actual <- ncatt_get(file, "SIS", "units")$value expect_equal(actual, "W m-2") actual <- ncatt_get(file, "SIS", "_FillValue")$value expect_equal(actual, -999) actual <- ncatt_get(file, "SIS", "cmsaf_info")$value expect_equal(actual, "cmsafops::hoursum for variable SIS") global_attr <- ncatt_get(file, 0) expect_equal(length(global_attr), 1) actual <- names(global_attr[1]) expect_equal(actual, "Info") actual <- global_attr[[1]] expect_equal(actual, "Created with the CM SAF R Toolbox.") }) test_that("coordinates are correct", { actual <- ncvar_get(file, "lon") expect_identical(actual, array(seq(5, 8, 0.5))) actual <- ncvar_get(file, "lat") expect_identical(actual, array(seq(45, 48, 0.5))) actual <- ncvar_get(file, "time") expect_equal(actual[1:3], array(c(8941680, 8941740, 8941800))) }) nc_close(file) file_out <- tempfile_nc() hoursum("SIS", file.path(data_dir, "ex_hourx.nc"), file_out, nc34 = 4) file <- nc_open(file_out) test_that("data is correct", { actual <- ncvar_get(file) expected_data <- c(18102.0,18162.0,18121.0,18080.0,18140.0,18099.0,18058.0, 18118.0,18077.0,18036.0,18096.0,18055.0,18014.0,18074.0, 18033.0,17992.0,18052.0,18011.0,17970.0,18030.0,17989.0, 17948.0,18008.0,17967.0,17926.0,17986.0,17945.0,17904.0, 17964.0,17923.0,17882.0,17942.0,17901.0,17860.0,17920.0, 17879.0,17838.0,17898.0,17857.0,17816.0,17876.0,17936.0, 17895.0,17955.0,18015.0,17974.0,18034.0,18094.0,18053.0, 18055.0,18014.0,18074.0,18033.0,17992.0,18052.0,18011.0, 17970.0,18030.0,17989.0,17948.0,18008.0,17967.0,17926.0, 17986.0,17945.0,17904.0,17964.0,17923.0,17882.0,17942.0, 17901.0,17860.0,17920.0,17879.0,17838.0,17898.0,17857.0, 17816.0,17876.0,17936.0,17895.0,17955.0,18015.0,17974.0, 18034.0,18094.0,18053.0,18113.0,18173.0,18132.0,18091.0, 18151.0,18110.0,18069.0,18129.0,18088.0,18047.0,18107.0, 18008.0,17967.0,17926.0,17986.0,17945.0,17904.0,17964.0, 17923.0,17882.0,17942.0,17901.0,17860.0,17920.0,17879.0, 17838.0,17898.0,17857.0,17816.0,17876.0,17936.0,17895.0, 17955.0,18015.0,17974.0,18034.0,18094.0,18053.0,18113.0, 18173.0,18132.0,18091.0,18151.0,18110.0,18069.0,18129.0, 18088.0,18047.0,18107.0,18066.0,18025.0,18085.0,18044.0, 18003.0,18063.0,18022.0,17981.0,18041.0,18000.0,17959.0) expected <- array(expected_data, dim = c(7, 7, 3)) expect_equivalent(actual[1:147], expected) }) test_that("variable attributes are correct", { actual <- ncatt_get(file, "SIS", "units")$value expect_equal(actual, "W m-2") actual <- ncatt_get(file, "SIS", "_FillValue")$value expect_equal(actual, -999) actual <- ncatt_get(file, "SIS", "standard_name")$value expect_equal(actual, "SIS_standard") actual <- ncatt_get(file, "SIS", "long_name")$value expect_equal(actual, "Surface Incoming Shortwave Radiation") actual <- ncatt_get(file, "SIS", "missing_value")$value expect_equal(actual, 0) }) test_that("attributes are correct", { actual <- ncatt_get(file, "lon", "units")$value expect_equal(actual, "degrees_east") actual <- ncatt_get(file, "lon", "long_name")$value expect_equal(actual, "longitude") actual <- ncatt_get(file, "lon", "standard_name")$value expect_equal(actual, "longitude") actual <- ncatt_get(file, "lon", "axis")$value expect_equal(actual, "X") actual <- ncatt_get(file, "lat", "units")$value expect_equal(actual, "degrees_north") actual <- ncatt_get(file, "lat", "long_name")$value expect_equal(actual, "latitude") actual <- ncatt_get(file, "lat", "standard_name")$value expect_equal(actual, "latitude") actual <- ncatt_get(file, "lat", "axis")$value expect_equal(actual, "Y") actual <- ncatt_get(file, "time", "units")$value expect_equal(actual, "minutes since 1983-01-01 00:00:00") actual <- ncatt_get(file, "time", "long_name")$value expect_equal(actual, "time") actual <- ncatt_get(file, "time", "standard_name")$value expect_equal(actual, "time") actual <- ncatt_get(file, "time", "calendar")$value expect_equal(actual, "standard") global_attr <- ncatt_get(file, 0) expect_equal(length(global_attr), 1) actual <- names(global_attr[1]) expect_equal(actual, "Info") actual <- global_attr[[1]] expect_equal(actual, "Created with the CM SAF R Toolbox.") }) test_that("coordinates are correct", { actual <- ncvar_get(file, "lon") expect_identical(actual, array(seq(5, 8, 0.5))) actual <- ncvar_get(file, "lat") expect_identical(actual, array(seq(45, 48, 0.5))) actual <- ncvar_get(file, "time") expect_equal(actual[1:3], array(c(8941680, 8941740, 8941800))) }) nc_close(file) file_out <- tempfile_nc() test_that("error is thrown if ncdf version is wrong", { expect_error( hoursum("SIS", file.path(data_dir, "ex_hourx.nc"), file_out, nc34 = 7), "nc version must be in c(3, 4), but was 7", fixed = TRUE ) }) file_out <- tempfile_nc() test_that("ncdf version NULL throws an error", { expect_error( hoursum("SIS", file.path(data_dir, "ex_hourx.nc"), file_out, nc34 = NULL), "nc_version must not be NULL" ) }) file_out <- tempfile_nc() test_that("warning is shown if var does not exist", { expect_warning(hoursum("notExist", file.path(data_dir, "ex_hourx.nc"), file_out), "Variable 'notExist' not found. Variable 'SIS' will be used instead.") }) file <- nc_open(file_out) test_that("data is correct", { actual <- ncvar_get(file) expected_data <- c(18102.0,18162.0,18121.0,18080.0,18140.0,18099.0,18058.0, 18118.0,18077.0,18036.0,18096.0,18055.0,18014.0,18074.0, 18033.0,17992.0,18052.0,18011.0,17970.0,18030.0,17989.0, 17948.0,18008.0,17967.0,17926.0,17986.0,17945.0,17904.0, 17964.0,17923.0,17882.0,17942.0,17901.0,17860.0,17920.0, 17879.0,17838.0,17898.0,17857.0,17816.0,17876.0,17936.0, 17895.0,17955.0,18015.0,17974.0,18034.0,18094.0,18053.0, 18055.0,18014.0,18074.0,18033.0,17992.0,18052.0,18011.0, 17970.0,18030.0,17989.0,17948.0,18008.0,17967.0,17926.0, 17986.0,17945.0,17904.0,17964.0,17923.0,17882.0,17942.0, 17901.0,17860.0,17920.0,17879.0,17838.0,17898.0,17857.0, 17816.0,17876.0,17936.0,17895.0,17955.0,18015.0,17974.0, 18034.0,18094.0,18053.0,18113.0,18173.0,18132.0,18091.0, 18151.0,18110.0,18069.0,18129.0,18088.0,18047.0,18107.0, 18008.0,17967.0,17926.0,17986.0,17945.0,17904.0,17964.0, 17923.0,17882.0,17942.0,17901.0,17860.0,17920.0,17879.0, 17838.0,17898.0,17857.0,17816.0,17876.0,17936.0,17895.0, 17955.0,18015.0,17974.0,18034.0,18094.0,18053.0,18113.0, 18173.0,18132.0,18091.0,18151.0,18110.0,18069.0,18129.0, 18088.0,18047.0,18107.0,18066.0,18025.0,18085.0,18044.0, 18003.0,18063.0,18022.0,17981.0,18041.0,18000.0,17959.0) expected <- array(expected_data, dim = c(7, 7, 3)) expect_equivalent(actual[1:147], expected) }) test_that("variable attributes are correct", { actual <- ncatt_get(file, "SIS", "units")$value expect_equal(actual, "W m-2") actual <- ncatt_get(file, "SIS", "_FillValue")$value expect_equal(actual, -999) actual <- ncatt_get(file, "SIS", "standard_name")$value expect_equal(actual, "SIS_standard") actual <- ncatt_get(file, "SIS", "long_name")$value expect_equal(actual, "Surface Incoming Shortwave Radiation") actual <- ncatt_get(file, "SIS", "missing_value")$value expect_equal(actual, 0) }) test_that("attributes are correct", { actual <- ncatt_get(file, "lon", "units")$value expect_equal(actual, "degrees_east") actual <- ncatt_get(file, "lon", "long_name")$value expect_equal(actual, "longitude") actual <- ncatt_get(file, "lon", "standard_name")$value expect_equal(actual, "longitude") actual <- ncatt_get(file, "lon", "axis")$value expect_equal(actual, "X") actual <- ncatt_get(file, "lat", "units")$value expect_equal(actual, "degrees_north") actual <- ncatt_get(file, "lat", "long_name")$value expect_equal(actual, "latitude") actual <- ncatt_get(file, "lat", "standard_name")$value expect_equal(actual, "latitude") actual <- ncatt_get(file, "lat", "axis")$value expect_equal(actual, "Y") actual <- ncatt_get(file, "time", "units")$value expect_equal(actual, "minutes since 1983-01-01 00:00:00") actual <- ncatt_get(file, "time", "long_name")$value expect_equal(actual, "time") actual <- ncatt_get(file, "time", "standard_name")$value expect_equal(actual, "time") actual <- ncatt_get(file, "time", "calendar")$value expect_equal(actual, "standard") global_attr <- ncatt_get(file, 0) expect_equal(length(global_attr), 1) actual <- names(global_attr[1]) expect_equal(actual, "Info") actual <- global_attr[[1]] expect_equal(actual, "Created with the CM SAF R Toolbox.") }) test_that("coordinates are correct", { actual <- ncvar_get(file, "lon") expect_identical(actual, array(seq(5, 8, 0.5))) actual <- ncvar_get(file, "lat") expect_identical(actual, array(seq(45, 48, 0.5))) actual <- ncvar_get(file, "time") expect_equal(actual[1:3], array(c(8941680, 8941740, 8941800))) }) nc_close(file) file_out <- tempfile_nc() test_that("error is thrown if variable is NULL", { expect_error( hoursum(NULL, file.path(data_dir, "ex_hourx.nc"), file_out), "variable must not be NULL" ) }) file_out <- tempfile_nc() test_that("warning is shown if var is empty", { expect_warning(hoursum("", file.path(data_dir, "ex_hourx.nc"), file_out), "Variable '' not found. Variable 'SIS' will be used instead.") }) file <- nc_open(file_out) test_that("data is correct", { actual <- ncvar_get(file) expected_data <- c(18102.0,18162.0,18121.0,18080.0,18140.0,18099.0,18058.0, 18118.0,18077.0,18036.0,18096.0,18055.0,18014.0,18074.0, 18033.0,17992.0,18052.0,18011.0,17970.0,18030.0,17989.0, 17948.0,18008.0,17967.0,17926.0,17986.0,17945.0,17904.0, 17964.0,17923.0,17882.0,17942.0,17901.0,17860.0,17920.0, 17879.0,17838.0,17898.0,17857.0,17816.0,17876.0,17936.0, 17895.0,17955.0,18015.0,17974.0,18034.0,18094.0,18053.0, 18055.0,18014.0,18074.0,18033.0,17992.0,18052.0,18011.0, 17970.0,18030.0,17989.0,17948.0,18008.0,17967.0,17926.0, 17986.0,17945.0,17904.0,17964.0,17923.0,17882.0,17942.0, 17901.0,17860.0,17920.0,17879.0,17838.0,17898.0,17857.0, 17816.0,17876.0,17936.0,17895.0,17955.0,18015.0,17974.0, 18034.0,18094.0,18053.0,18113.0,18173.0,18132.0,18091.0, 18151.0,18110.0,18069.0,18129.0,18088.0,18047.0,18107.0, 18008.0,17967.0,17926.0,17986.0,17945.0,17904.0,17964.0, 17923.0,17882.0,17942.0,17901.0,17860.0,17920.0,17879.0, 17838.0,17898.0,17857.0,17816.0,17876.0,17936.0,17895.0, 17955.0,18015.0,17974.0,18034.0,18094.0,18053.0,18113.0, 18173.0,18132.0,18091.0,18151.0,18110.0,18069.0,18129.0, 18088.0,18047.0,18107.0,18066.0,18025.0,18085.0,18044.0, 18003.0,18063.0,18022.0,17981.0,18041.0,18000.0,17959.0) expected <- array(expected_data, dim = c(7, 7, 3)) expect_equivalent(actual[1:147], expected) }) test_that("variable attributes are correct", { actual <- ncatt_get(file, "SIS", "units")$value expect_equal(actual, "W m-2") actual <- ncatt_get(file, "SIS", "_FillValue")$value expect_equal(actual, -999) actual <- ncatt_get(file, "SIS", "standard_name")$value expect_equal(actual, "SIS_standard") actual <- ncatt_get(file, "SIS", "long_name")$value expect_equal(actual, "Surface Incoming Shortwave Radiation") actual <- ncatt_get(file, "SIS", "missing_value")$value expect_equal(actual, 0) }) test_that("attributes are correct", { actual <- ncatt_get(file, "lon", "units")$value expect_equal(actual, "degrees_east") actual <- ncatt_get(file, "lon", "long_name")$value expect_equal(actual, "longitude") actual <- ncatt_get(file, "lon", "standard_name")$value expect_equal(actual, "longitude") actual <- ncatt_get(file, "lon", "axis")$value expect_equal(actual, "X") actual <- ncatt_get(file, "lat", "units")$value expect_equal(actual, "degrees_north") actual <- ncatt_get(file, "lat", "long_name")$value expect_equal(actual, "latitude") actual <- ncatt_get(file, "lat", "standard_name")$value expect_equal(actual, "latitude") actual <- ncatt_get(file, "lat", "axis")$value expect_equal(actual, "Y") actual <- ncatt_get(file, "time", "units")$value expect_equal(actual, "minutes since 1983-01-01 00:00:00") actual <- ncatt_get(file, "time", "long_name")$value expect_equal(actual, "time") actual <- ncatt_get(file, "time", "standard_name")$value expect_equal(actual, "time") actual <- ncatt_get(file, "time", "calendar")$value expect_equal(actual, "standard") global_attr <- ncatt_get(file, 0) expect_equal(length(global_attr), 1) actual <- names(global_attr[1]) expect_equal(actual, "Info") actual <- global_attr[[1]] expect_equal(actual, "Created with the CM SAF R Toolbox.") }) test_that("coordinates are correct", { actual <- ncvar_get(file, "lon") expect_identical(actual, array(seq(5, 8, 0.5))) actual <- ncvar_get(file, "lat") expect_identical(actual, array(seq(45, 48, 0.5))) actual <- ncvar_get(file, "time") expect_equal(actual[1:3], array(c(8941680, 8941740, 8941800))) }) nc_close(file) file_out <- tempfile_nc() test_that("error is thrown if input file does not exist", { expect_error( hoursum("SIS", file.path(data_dir, "xemaple1.nc"), file_out), "Input file does not exist") }) file_out <- tempfile_nc() test_that("error is thrown if input filename is empty", { expect_error( hoursum("SIS", "", file_out), "Input file does not exist") }) file_out <- tempfile_nc() test_that("error is thrown if input filename is NULL", { expect_error( hoursum("SIS", NULL, file_out), "Input filepath must be of length one and not NULL" ) }) file_out <- tempfile_nc() cat("test\n", file = file_out) test_that("error is thrown if output file already exists", { expect_error( hoursum("SIS", file.path(data_dir, "ex_dayx.nc"), file_out), paste0("File '", file_out, "' already exists. Specify 'overwrite = TRUE' if you want to overwrite it."), fixed = TRUE ) expect_equal(readLines(con = file_out), "test") }) file_out <- tempfile_nc() cat("test\n", file = file_out) test_that("no error is thrown if overwrite = TRUE", { expect_error( hoursum("SIS", file.path(data_dir, "ex_hourx.nc"), file_out, overwrite = TRUE ), NA ) }) file <- nc_open(file_out) test_that("data is correct", { actual <- ncvar_get(file) expected_data <- c(18102.0,18162.0,18121.0,18080.0,18140.0,18099.0,18058.0, 18118.0,18077.0,18036.0,18096.0,18055.0,18014.0,18074.0, 18033.0,17992.0,18052.0,18011.0,17970.0,18030.0,17989.0, 17948.0,18008.0,17967.0,17926.0,17986.0,17945.0,17904.0, 17964.0,17923.0,17882.0,17942.0,17901.0,17860.0,17920.0, 17879.0,17838.0,17898.0,17857.0,17816.0,17876.0,17936.0, 17895.0,17955.0,18015.0,17974.0,18034.0,18094.0,18053.0, 18055.0,18014.0,18074.0,18033.0,17992.0,18052.0,18011.0, 17970.0,18030.0,17989.0,17948.0,18008.0,17967.0,17926.0, 17986.0,17945.0,17904.0,17964.0,17923.0,17882.0,17942.0, 17901.0,17860.0,17920.0,17879.0,17838.0,17898.0,17857.0, 17816.0,17876.0,17936.0,17895.0,17955.0,18015.0,17974.0, 18034.0,18094.0,18053.0,18113.0,18173.0,18132.0,18091.0, 18151.0,18110.0,18069.0,18129.0,18088.0,18047.0,18107.0, 18008.0,17967.0,17926.0,17986.0,17945.0,17904.0,17964.0, 17923.0,17882.0,17942.0,17901.0,17860.0,17920.0,17879.0, 17838.0,17898.0,17857.0,17816.0,17876.0,17936.0,17895.0, 17955.0,18015.0,17974.0,18034.0,18094.0,18053.0,18113.0, 18173.0,18132.0,18091.0,18151.0,18110.0,18069.0,18129.0, 18088.0,18047.0,18107.0,18066.0,18025.0,18085.0,18044.0, 18003.0,18063.0,18022.0,17981.0,18041.0,18000.0,17959.0) expected <- array(expected_data, dim = c(7, 7, 3)) expect_equivalent(actual[1:147], expected) }) test_that("variable attributes are correct", { actual <- ncatt_get(file, "SIS", "units")$value expect_equal(actual, "W m-2") actual <- ncatt_get(file, "SIS", "_FillValue")$value expect_equal(actual, -999) actual <- ncatt_get(file, "SIS", "standard_name")$value expect_equal(actual, "SIS_standard") actual <- ncatt_get(file, "SIS", "long_name")$value expect_equal(actual, "Surface Incoming Shortwave Radiation") actual <- ncatt_get(file, "SIS", "missing_value")$value expect_equal(actual, 0) }) test_that("attributes are correct", { actual <- ncatt_get(file, "lon", "units")$value expect_equal(actual, "degrees_east") actual <- ncatt_get(file, "lon", "long_name")$value expect_equal(actual, "longitude") actual <- ncatt_get(file, "lon", "standard_name")$value expect_equal(actual, "longitude") actual <- ncatt_get(file, "lon", "axis")$value expect_equal(actual, "X") actual <- ncatt_get(file, "lat", "units")$value expect_equal(actual, "degrees_north") actual <- ncatt_get(file, "lat", "long_name")$value expect_equal(actual, "latitude") actual <- ncatt_get(file, "lat", "standard_name")$value expect_equal(actual, "latitude") actual <- ncatt_get(file, "lat", "axis")$value expect_equal(actual, "Y") actual <- ncatt_get(file, "time", "units")$value expect_equal(actual, "minutes since 1983-01-01 00:00:00") actual <- ncatt_get(file, "time", "long_name")$value expect_equal(actual, "time") actual <- ncatt_get(file, "time", "standard_name")$value expect_equal(actual, "time") actual <- ncatt_get(file, "time", "calendar")$value expect_equal(actual, "standard") global_attr <- ncatt_get(file, 0) expect_equal(length(global_attr), 1) actual <- names(global_attr[1]) expect_equal(actual, "Info") actual <- global_attr[[1]] expect_equal(actual, "Created with the CM SAF R Toolbox.") }) test_that("coordinates are correct", { actual <- ncvar_get(file, "lon") expect_identical(actual, array(seq(5, 8, 0.5))) actual <- ncvar_get(file, "lat") expect_identical(actual, array(seq(45, 48, 0.5))) actual <- ncvar_get(file, "time") expect_equal(actual[1:3], array(c(8941680, 8941740, 8941800))) }) nc_close(file)
library(uGMAR) context("functions used in the genetic algorithm") params12 <- c(1.0, 0.9, 0.25, 4.5, 0.7, 3.0, 0.8) params22t <- c(1.4, 0.8, 0.05, 0.27, 3.5, 0.9, -0.18, 3.1, 0.7, 203, 3) params23 <- c(2.7, 0.8, -0.06, 0.3, 3.5, 0.8, -0.07, 2.6, 7.2, 0.3, -0.01, 0.1, 0.6, 0.25) params12tr <- c(0.8, 0.96, 0.9, 0.4, 5.8, 0.9, 4, 272) params23r <- c(1.7, 1.9, 2.1, 0.8, -0.05, 0.3, 0.7, 4.5, 0.7, 0.2) params23tr <- c(1.9, 1.6, 2.1, 0.8, -0.02, 0.4, 0.1, 3.9, 0.6, 0.3, 15, 200, 220) R1 <- matrix(c(1, 0, 0, 0, 0, 1), ncol=2) R2 <- diag(1, ncol=3, nrow=3) R3 <- matrix(c(0.5, 0.5), ncol=1) R4 <- diag(1, ncol=2, nrow=2) params21c <- c(1, 0.9, 1, 3) params22c <- c(1, 0.1, -0.1, 1, 2, 0.2, 2, 0.8, 11, 12) params33c <- c(1, 0.1, 0.1, 0.1, 1, 2, 0.2, 0.2, 0.2, 2, 3, 0.3, -0.3, 3, 0.5, 0.4) params21cr <- c(1, 1, 1) params22cr <- c(1, 2, 0.8, 1, 2, 0.7, 11, 12) params32cr <- c(1, 2, 0.3, -0.3, 1, 2, 0.6) params22gs <- c(1, 0.1, 0.1, 1, 2, 0.2, 0.2, 2, 0.3, 10) params23gsr <- c(1, 2, 3, 0.5, 0.05, 1, 2, 3, 0.4, 0.4, 20, 30) test_that("extract_regime extracts the right regime", { expect_equal(extract_regime(2, c(1, 2), params23gsr, model="G-StMAR", restricted=TRUE, regime=1), c(1, 1)) expect_equal(extract_regime(2, c(1, 2), params23gsr, model="G-StMAR", restricted=TRUE, regime=3), c(3, 3, 30)) expect_equal(extract_regime(2, c(1, 2), params23gsr, model="G-StMAR", restricted=TRUE, regime=3, with_dfs=FALSE), c(3, 3)) expect_equal(extract_regime(2, c(1, 1), params22gs, model="G-StMAR", regime=2), c(2, 0.2, 0.2, 2, 10)) expect_equal(extract_regime(2, c(1, 1), params22gs, model="G-StMAR", regime=2, with_dfs=FALSE), c(2, 0.2, 0.2, 2)) expect_equal(extract_regime(2, c(1, 1), params22gs, model="G-StMAR", regime=1), c(1, 0.1, 0.1, 1)) expect_equal(extract_regime(1, 2, params12, regime=1), c(1.00, 0.90, 0.25)) expect_equal(extract_regime(2, 2, params22t, model="StMAR", regime=2), c(3.50, 0.90, -0.18, 3.10, 3.00)) expect_equal(extract_regime(2, 2, params22t, model="StMAR", regime=2, with_dfs=FALSE), c(3.50, 0.90, -0.18, 3.10)) expect_equal(extract_regime(2, 3, params23, regime=3), c(7.20, 0.30, -0.01, 0.10)) expect_equal(extract_regime(1, 2, params12tr, model="StMAR", restricted=TRUE, regime=2), c(0.96, 5.80, 272.00)) expect_equal(extract_regime(1, 2, params12tr, model="StMAR", restricted=TRUE, regime=2, with_dfs=FALSE), c(0.96, 5.80)) expect_equal(extract_regime(2, 3, params23r, restricted=TRUE, regime=2), c(1.9, 0.7)) expect_equal(extract_regime(2, 3, params23tr, model="StMAR", restricted=TRUE, regime=3), c(2.1, 3.9, 220.0)) expect_equal(extract_regime(2, 3, params23tr, model="StMAR", restricted=TRUE, regime=3, with_dfs=FALSE), c(2.1, 3.9)) expect_equal(extract_regime(2, 1, params21c, model="StMAR", constraints=list(R3), regime=1), c(1.0, 0.9, 1.0, 3.0)) expect_equal(extract_regime(2, 1, params21c, model="StMAR", constraints=list(R3), regime=1, with_dfs=FALSE), c(1.0, 0.9, 1.0)) expect_equal(extract_regime(2, 2, params22c, model="StMAR", constraints=list(R4, R3), regime=2), c(2.0, 0.2, 2.0, 12)) expect_equal(extract_regime(3, 3, params33c, constraints=list(R2, R2, R1), regime=2), c(2.0, 0.2, 0.2, 0.2, 2.0)) expect_equal(extract_regime(3, 3, params33c, constraints=list(R2, R2, R1), regime=3), c(3.0, 0.3, -0.3, 3.0)) expect_equal(extract_regime(2, 1, params21cr, restricted=TRUE, constraints=R3, regime=1), c(1, 1)) expect_equal(extract_regime(2, 2, params22cr, model="StMAR", restricted=TRUE, constraints=R3, regime=1), c(1, 1, 11)) expect_equal(extract_regime(2, 2, params22cr, model="StMAR", restricted=TRUE, constraints=R3, regime=2), c(2, 2, 12)) expect_equal(extract_regime(2, 2, params22cr, model="StMAR", restricted=TRUE, constraints=R3, regime=2, with_dfs=FALSE), c(2, 2)) expect_equal(extract_regime(3, 2, params32cr, restricted=TRUE, constraints=R1, regime=1), c(1, 1)) expect_equal(extract_regime(3, 2, params32cr, restricted=TRUE, constraints=R1, regime=2), c(2, 2)) }) params12 <- c(1.0, 0.9, 0.25, 4.5, 0.7, 3.0, 0.8) params22t <- c(1.4, 0.8, 0.05, 0.27, 3.5, 0.9, -0.18, 3.1, 0.7, 203, 3) params23 <- c(2.7, 0.8, -0.06, 0.3, 3.5, 0.8, -0.07, 2.6, 7.2, 0.3, -0.01, 0.1, 0.6, 0.25) params12tr <- c(0.8, 0.96, 0.9, 0.4, 5.8, 0.9, 4, 272) params23r <- c(1.7, 1.9, 2.1, 0.8, -0.05, 0.3, 0.7, 4.5, 0.7, 0.2) params23tr <- c(1.9, 1.6, 2.1, 0.8, -0.02, 0.4, 0.1, 3.9, 0.6, 0.3, 15, 200, 220) R1 <- matrix(c(1, 0, 0, 0, 0, 1), ncol=2) R2 <- diag(1, ncol=3, nrow=3) R3 <- matrix(c(0.5, 0.5), ncol=1) R4 <- diag(1, ncol=2, nrow=2) params21c <- c(1, 0.9, 1, 3) params22c <- c(1, 0.1, -0.1, 1, 2, 0.2, 2, 0.8, 11, 12) params33c <- c(1, 0.1, 0.1, 0.1, 1, 2, 0.2, 0.2, 0.2, 2, 3, 0.3, -0.3, 3, 0.5, 0.4) params21cr <- c(1, 1, 1) params22cr <- c(1, 2, 0.8, 1, 2, 0.7, 11, 12) params32cr <- c(1, 2, 0.3, -0.3, 1, 2, 0.6) params22gs <- c(1, 0.1, 0.1, 1, 2, 0.2, 0.2, 2, 0.3, 10) params23gsr <- c(1, 2, 3, 0.5, 0.05, 1, 2, 3, 0.4, 0.4, 20, 30) test_that("change_regime changes the right regime correctly", { expect_equal(change_regime(2, c(1, 2), params23gsr, model="G-StMAR", restricted=TRUE, regime_params=c(7, 7, 70), regime=3), c(1, 2, 7, 0.5, 0.05, 1, 2, 7, 0.4, 0.4, 20, 70)) expect_equal(change_regime(2, c(1, 2), params23gsr, model="G-StMAR", restricted=TRUE, regime_params=c(7, 7), regime=1), c(7, 2, 3, 0.5, 0.05, 7, 2, 3, 0.4, 0.4, 20, 30)) expect_equal(change_regime(2, c(1, 1), params22gs, model="G-StMAR", regime_params=c(3, 0.3, 0.3, 3, 30), regime=2), c(1, 0.1, 0.1, 1, 3, 0.3, 0.3, 3, 0.3, 30)) expect_equal(change_regime(2, c(1, 1), params22gs, model="G-StMAR", regime_params=c(3, 0.3, 0.3, 3), regime=1), c(3, 0.3, 0.3, 3, 2, 0.2, 0.2, 2, 0.3, 10)) expect_equal(change_regime(1, 2, params12, regime_params=c(99, 98, 97), regime=1), c(99.0, 98.0, 97.0, 4.5, 0.7, 3.0, 0.8)) expect_equal(change_regime(2, 2, params22t, model="StMAR", regime_params=c(9, 8, 7, 6, 5), regime=2), c(1.4, 0.8, 0.05, 0.27, 9, 8, 7, 6, 0.7, 203, 5)) expect_equal(change_regime(2, 3, params23, regime_params=c(9, 8, 7, 6), regime=3), c(2.7, 0.8, -0.06, 0.3, 3.5, 0.8, -0.07, 2.6, 9, 8, 7, 6, 0.6, 0.25)) expect_equal(change_regime(1, 2, params12tr, model="StMAR", restricted=TRUE, regime_params=c(9, 8, 7), regime=2), c(0.8, 9, 0.9, 0.4, 8, 0.9, 4, 7)) expect_equal(change_regime(2, 3, params23r, restricted=TRUE, regime_params=c(11, 12), regime=2), c(1.7, 11, 2.1, 0.8, -0.05, 0.3, 12, 4.5, 0.7, 0.2)) expect_equal(change_regime(2, 3, params23tr, model="StMAR", restricted=TRUE, regime_params=c(99, 88, 77), regime=3), c(1.9, 1.6, 99, 0.8, -0.02, 0.4, 0.1, 88, 0.6, 0.3, 15, 200, 77)) expect_equal(change_regime(2, 1, params21c, model="StMAR", constraints=list(R3), regime_params=c(9, 8, 7, 6), regime=1), c(9, 8, 7, 6)) expect_equal(change_regime(2, 2, params22c, model="StMAR", constraints=list(R4, R3), regime_params=c(9, 8, 7, 6), regime=2), c(1, 0.1, -0.1, 1, 9, 8, 7, 0.8, 11, 6)) expect_equal(change_regime(3, 3, params33c, constraints=list(R2, R2, R1), regime_params=c(9, 8, 7, 6), regime=3), c(1, 0.1, 0.1, 0.1, 1, 2, 0.2, 0.2, 0.2, 2, 9, 8, 7, 6, 0.5, 0.4)) expect_equal(change_regime(2, 1, params21cr, restricted=TRUE, constraints=R3, regime_params=c(9, 8), regime=1), c(9, 1, 8)) expect_equal(change_regime(2, 2, params22cr, model="StMAR", restricted=TRUE, constraints=R3, regime_params=c(9, 8, 7), regime=1), c(9, 2, 0.8, 8, 2, 0.7, 7, 12)) expect_equal(change_regime(3, 2, params32cr, restricted=TRUE, constraints=R1, regime_params=c(9, 8), regime=2), c(1, 9, 0.3, -0.3, 1, 8, 0.6)) }) test_that("GA functions don't throw errors", { test_length0 <- function(x, length_x)expect_equal(length(x), length_x) test_length0(regime_distance(1:3, 2:4), 1) test_length0(random_regime(p=4, mu_scale=1:2, sigma_scale=3, forcestat=TRUE), 4 + 2) test_length0(random_arcoefs(p=5, forcestat=TRUE), 5) test_length0(add_dfs(1, how_many=3), 4) test_length0(random_ind_int(p=1, M=1, model="StMAR", mu_scale=1:2, sigma_scale=1), 4) test_length0(smart_ind_int(p=1, M=2, params=params12, model="GMAR", mu_scale=1:2, sigma_scale=1, accuracy=1, which_random=2), 7) })
rbase.median <- function(input, maxiter=496, eps=1e-6, parallel=FALSE){ if ((class(input))!="riemdata"){ stop("* rbase.median : the input must be of 'riemdata' class. Use 'riemfactory' first to manage your data.") } mfdname = tolower(input$name) newdata = aux_stack3d(input) if (is.matrix(newdata)){ output = list() output$x = newdata output$iteration = 0 return(output) } if (dim(newdata)[3]==1){ output = list() output$x = matrix(newdata,nrow=nrow(newdata)) output$iteration = 0 return(output) } tmpinit = engine_mean(newdata, mfdname, 10, as.double(eps)) xinit = tmpinit$x nCores = parallel::detectCores() if (parallel==FALSE){ output = engine_median(newdata, mfdname, as.integer(maxiter), as.double(eps), xinit) } else { if ((nCores==1)||(is.na(nCores))){ output = engine_median(newdata, mfdname, as.integer(maxiter), as.double(eps), xinit) } else { output = engine_median_openmp(newdata, mfdname, as.integer(maxiter), as.double(eps), nCores, xinit) } } return(output) }
simto <- function(entry.ij, from.ij, mpl, eta.ij, x.i, max.time, pme){ exit.ij <- simexit(entry.ij, all.bhr = mpl[[from.ij]]$bhr, x.i = x.i, eta.ij = eta.ij, max.time = max.time, pme = pme)$new.exit hr.at.exit.ij <- rep(NA, length(eta.ij)) for(hi in mpl[[from.ij]]$all.to){ hr.at.exit.ij[hi] <- hr(bhr = mpl[[from.ij]]$bhr[[hi]], t = exit.ij, eta.ij = eta.ij[[hi]], x.i = x.i) * pme[hi] } hr.at.exit.ij <- hr.at.exit.ij[!is.na(hr.at.exit.ij)] if(length(hr.at.exit.ij) > 1.5){ probs <- hr.at.exit.ij/sum(hr.at.exit.ij) to.ij <- sample(mpl[[from.ij]]$all.to, size = 1, prob = probs) }else{ to.ij <- as.numeric(mpl[[from.ij]]$all.to) } return(list(entry.ij = entry.ij, exit.ij = exit.ij, from.ij = from.ij, to.ij = to.ij))}
tidy_chisquare <- function(.n = 50, .df = 1, .ncp = 1, .num_sims = 1){ n <- as.integer(.n) num_sims <- as.integer(.num_sims) df <- as.numeric(.df) ncp <- as.numeric(.ncp) if(!is.integer(n) | n < 0){ rlang::abort( "The parameters '.n' must be of class integer. Please pass a whole number like 50 or 100. It must be greater than 0." ) } if(!is.integer(num_sims) | num_sims < 0){ rlang::abort( "The parameter `.num_sims' must be of class integer. Please pass a whole number like 50 or 100. It must be greater than 0." ) } if(!is.numeric(df) | !is.numeric(ncp)){ rlang::abort( "The parameters of .df and .ncp must be of class numeric." ) } if(df < 0 | ncp < 0){ rlang::abort("The parameters of .df and .ncp must be greater than or equal to 0.") } x <- seq(1, num_sims, 1) ps <- seq(-n, n-1, 2) qs <- seq(0, 1, (1/(n-1))) df <- dplyr::tibble(sim_number = as.factor(x)) %>% dplyr::group_by(sim_number) %>% dplyr::mutate(x = list(1:n)) %>% dplyr::mutate(y = list(stats::rchisq(n = n, df = df, ncp = ncp))) %>% dplyr::mutate(d = list(density(unlist(y), n = n)[c("x","y")] %>% purrr::set_names("dx","dy") %>% dplyr::as_tibble())) %>% dplyr::mutate(p = list(stats::pchisq(ps, df = df, ncp = ncp))) %>% dplyr::mutate(q = list(stats::qchisq(qs, df = df, ncp = ncp))) %>% tidyr::unnest(cols = c(x, y, d, p, q)) %>% dplyr::ungroup() attr(df, ".df") <- .df attr(df, ".ncp") <- .ncp attr(df, ".n") <- .n attr(df, ".num_sims") <- .num_sims attr(df, "tibble_type") <- "tidy_chisquare" attr(df, "ps") <- ps attr(df, "qs") <- qs return(df) }
tar_traceback <- function( name, envir = NULL, packages = NULL, source = NULL, characters = getOption("width"), store = targets::tar_config_get("store") ) { tar_assert_scalar(characters, "characters must have length 1.") tar_assert_dbl(characters, "characters must be numeric.") tar_assert_positive(characters, "characters must be positive.") if (!is.null(envir) || !is.null(packages) || !is.null(source)) { tar_warn_deprecate( "The envir, packages, and source arguments of tar_traceback() ", "are deprectaed in targets > 0.3.1 (2021-03-28)." ) } name <- tar_deparse_language(substitute(name)) tar_assert_chr(name) tar_assert_scalar(name) workspace <- workspace_read(name = name, path_store = store) out <- workspace$target$metrics$traceback if (is.null(out)) { return(character(0)) } min <- max(which(grepl("^build_eval_fce17be7", out))) %||% 1 %||NA% 1 if (is.finite(min) && length(min) == 1L) { out <- out[seq(min + 1, length(out))] } characters <- min(characters, max(nchar(out))) substr(out, 0, characters) }
set_y_values2 <- function(d, optimize_y){ set_y_values( set_order(fix_columns(d, col.event = "event", col.start = "start", col.end = "end", col.group = "group", col.color = "color", col.fontcolor = "fontcolor", col.tooltip = "tooltip")), optimize_y ) } test_that("1 group -> do is sophisticated", { dat <- data.frame( event = 1:4, start = c("2019-01-01", "2019-01-10"), end = c("2019-01-01", "2019-01-10"), subplot = 1, stringsAsFactors = FALSE ) expect_equal(set_y_values2(dat, TRUE)$y, rep(2:1, 2)) expect_equal(set_y_values2(dat, FALSE)$y, rev(as.integer(factor(dat$event)))) }) test_that("Events begin top left with first event", { d = read.csv(stringsAsFactors = FALSE,text = "event,start,duration,group compile datasets,0,2,descriptive analysis baseline data,1,2,descriptive analysis areas,1,1,visualisation routes,1.5,1,visualisation route networks,2,2,visualisation") start_date = as.Date("2018-05-01") d$start = start_date + d$start * 7 d$end = d$start + d$duration * 7 d$target_y <- c(5,4,2,1,2) actual <- set_y_values2(d, TRUE)[,c("event", "y")] expected <- d[,c("event", "target_y")] result <- merge(actual,expected) expect_equal(result$y, result$target_y) d$target_y <- c(6,5,3,2,1) actual <- set_y_values2(d, FALSE)[,c("event", "y")] expected <- d[,c("event", "target_y")] result <- merge(actual,expected) expect_equal(result$y, result$target_y) }) test_that("Subsequent Events are on same y level when optimize_y = TRUE and on different otherwise", { d = read.csv(stringsAsFactors = FALSE,text = "event,start,end compile datasets,2020-01-01,2020-02-01 route networks,2020-02-01,2020-02-05") d$target_y <- c(1,1) expect_equal(set_y_values2(d, TRUE)$y, d$target_y) expect_equal(set_y_values2(d, FALSE)$y, c(2,1)) }) test_that("Events start from top not from bottom of chart", { d <- data.frame( event = 1:3, start = c("2019-01-01", "2019-01-09", "2019-01-11"), end = c("2019-01-10", "2019-01-12", "2019-01-14"), subplot = 1, stringsAsFactors = F) expect_equal(set_y_values2(d, TRUE)$y, c(2,1,2)) }) test_that("optimize_y starts on top", { data <- read.csv(text="event,start,end Phase 1,2020-12-15,2020-12-24 Phase 2,2020-12-23,2020-12-29 Phase 3,2020-12-28,2021-01-06 Phase 4,2021-01-06,2021-02-02") with_optimize <- set_y_values2(data, optimize_y = T) without_optimize <- set_y_values2(data, optimize_y = F) expect_equal(without_optimize$y, c(4,3,2,1)) expect_equal(with_optimize$y, c(2,1,2,2)) }) test_that("event is inside another event", { df <- read.csv(text = "event,start,end, event2,2020-12-16,2020-12-20, event3,2020-12-18,2020-12-19") expect_equal(set_y_values2(df, TRUE)$y, c(2,1)) }) test_that("subsequent can be optimized", { df <- read.csv(text = "event,start,end, event2,2020-12-16,2020-12-20, event3,2020-12-20,2020-12-22") expect_equal(set_y_values2(df, TRUE)$y, c(1,1)) })
.FormatBstsDataAndOptions <- function(family, response, predictors, model.options, timestamp.info) { if (family != "gaussian" && model.options$bma.method == "ODA") { warning("Orthoganal data augmentation is not available with a", "non-Gaussian model family. Switching to SSVS.") model.options$bma.method <- "SSVS" } if (family %in% c("gaussian", "student")) { if (is.matrix(response) && ncol(response) != 1) { stop("Matrix responses only work for logit and Poisson models. ", "Did you mean to specify a different model family?") } data.list <- list(response = as.numeric(response), predictors = predictors, response.is.observed = !is.na(response)) } else if (family == "logit") { if (!is.null(dim(response)) && length(dim(response)) > 1) { stopifnot(length(dim(response)) == 2, ncol(response) == 2) trials <- response[, 1] + response[, 2] response <- response[, 1] } else { response <- response > 0 trials <- rep(1, length(response)) } stopifnot(all(trials > 0, na.rm = TRUE), all(response >= 0, na.rm = TRUE), all(trials >= response, na.rm = TRUE)) stopifnot(all(abs(response - as.integer(response)) < 1e-8, na.rm = TRUE)) stopifnot(all(abs(trials - as.integer(trials)) < 1e-8, na.rm = TRUE)) data.list <- list(response = as.numeric(response), trials = trials, predictors = predictors, response.is.observed = !is.na(response)) model.options$clt.threshold <- as.integer(3) } else if (family == "poisson") { if (!is.null(dim(response)) && length(dim(response)) > 1) { stopifnot(length(dim(response)) == 2, ncol(response) == 2) exposure <- response[, 2] response <- response[, 1] } else { exposure <- rep(1, length(response)) } stopifnot(is.numeric(response)) stopifnot(all(exposure > 0, na.rm = TRUE), all(response >= 0, na.rm = TRUE)) stopifnot(all(abs(response - as.integer(response)) < 1e-8, na.rm = TRUE)) data.list <- list(response = as.numeric(response), exposure = exposure, predictors = predictors, response.is.observed = !is.na(response)) } else { stop("Unrecognized value for 'family' argument in bsts.") } data.list$timestamp.info <- timestamp.info return(list(data.list = data.list, model.options = model.options)) }
library(checkargs) context("isStrictlyNegativeIntegerVectorOrNull") test_that("isStrictlyNegativeIntegerVectorOrNull works for all arguments", { expect_identical(isStrictlyNegativeIntegerVectorOrNull(NULL, stopIfNot = FALSE, message = NULL, argumentName = NULL), TRUE) expect_identical(isStrictlyNegativeIntegerVectorOrNull(TRUE, stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isStrictlyNegativeIntegerVectorOrNull(FALSE, stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isStrictlyNegativeIntegerVectorOrNull(NA, stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isStrictlyNegativeIntegerVectorOrNull(0, stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isStrictlyNegativeIntegerVectorOrNull(-1, stopIfNot = FALSE, message = NULL, argumentName = NULL), TRUE) expect_identical(isStrictlyNegativeIntegerVectorOrNull(-0.1, stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isStrictlyNegativeIntegerVectorOrNull(0.1, stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isStrictlyNegativeIntegerVectorOrNull(1, stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isStrictlyNegativeIntegerVectorOrNull(NaN, stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isStrictlyNegativeIntegerVectorOrNull(-Inf, stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isStrictlyNegativeIntegerVectorOrNull(Inf, stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isStrictlyNegativeIntegerVectorOrNull("", stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isStrictlyNegativeIntegerVectorOrNull("X", stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isStrictlyNegativeIntegerVectorOrNull(c(TRUE, FALSE), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isStrictlyNegativeIntegerVectorOrNull(c(FALSE, TRUE), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isStrictlyNegativeIntegerVectorOrNull(c(NA, NA), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isStrictlyNegativeIntegerVectorOrNull(c(0, 0), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isStrictlyNegativeIntegerVectorOrNull(c(-1, -2), stopIfNot = FALSE, message = NULL, argumentName = NULL), TRUE) expect_identical(isStrictlyNegativeIntegerVectorOrNull(c(-0.1, -0.2), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isStrictlyNegativeIntegerVectorOrNull(c(0.1, 0.2), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isStrictlyNegativeIntegerVectorOrNull(c(1, 2), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isStrictlyNegativeIntegerVectorOrNull(c(NaN, NaN), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isStrictlyNegativeIntegerVectorOrNull(c(-Inf, -Inf), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isStrictlyNegativeIntegerVectorOrNull(c(Inf, Inf), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isStrictlyNegativeIntegerVectorOrNull(c("", "X"), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isStrictlyNegativeIntegerVectorOrNull(c("X", "Y"), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isStrictlyNegativeIntegerVectorOrNull(NULL, stopIfNot = TRUE, message = NULL, argumentName = NULL), TRUE) expect_error(isStrictlyNegativeIntegerVectorOrNull(TRUE, stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isStrictlyNegativeIntegerVectorOrNull(FALSE, stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isStrictlyNegativeIntegerVectorOrNull(NA, stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isStrictlyNegativeIntegerVectorOrNull(0, stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_identical(isStrictlyNegativeIntegerVectorOrNull(-1, stopIfNot = TRUE, message = NULL, argumentName = NULL), TRUE) expect_error(isStrictlyNegativeIntegerVectorOrNull(-0.1, stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isStrictlyNegativeIntegerVectorOrNull(0.1, stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isStrictlyNegativeIntegerVectorOrNull(1, stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isStrictlyNegativeIntegerVectorOrNull(NaN, stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isStrictlyNegativeIntegerVectorOrNull(-Inf, stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isStrictlyNegativeIntegerVectorOrNull(Inf, stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isStrictlyNegativeIntegerVectorOrNull("", stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isStrictlyNegativeIntegerVectorOrNull("X", stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isStrictlyNegativeIntegerVectorOrNull(c(TRUE, FALSE), stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isStrictlyNegativeIntegerVectorOrNull(c(FALSE, TRUE), stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isStrictlyNegativeIntegerVectorOrNull(c(NA, NA), stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isStrictlyNegativeIntegerVectorOrNull(c(0, 0), stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_identical(isStrictlyNegativeIntegerVectorOrNull(c(-1, -2), stopIfNot = TRUE, message = NULL, argumentName = NULL), TRUE) expect_error(isStrictlyNegativeIntegerVectorOrNull(c(-0.1, -0.2), stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isStrictlyNegativeIntegerVectorOrNull(c(0.1, 0.2), stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isStrictlyNegativeIntegerVectorOrNull(c(1, 2), stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isStrictlyNegativeIntegerVectorOrNull(c(NaN, NaN), stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isStrictlyNegativeIntegerVectorOrNull(c(-Inf, -Inf), stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isStrictlyNegativeIntegerVectorOrNull(c(Inf, Inf), stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isStrictlyNegativeIntegerVectorOrNull(c("", "X"), stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isStrictlyNegativeIntegerVectorOrNull(c("X", "Y"), stopIfNot = TRUE, message = NULL, argumentName = NULL)) })
NULL setGeneric("mpm_has_prop", function(object) { standardGeneric("mpm_has_prop") } ) setMethod("mpm_has_prop", signature = "CompadreMat", function(object) { "prop" %in% object@matrixClass$MatrixClassOrganized } ) setMethod("mpm_has_prop", signature = "CompadreDB", function(object) { vapply(object@data$mat, function(m) "prop" %in% m@matrixClass$MatrixClassOrganized, logical(1)) } ) setGeneric("mpm_has_active", function(object) { standardGeneric("mpm_has_active") } ) setMethod("mpm_has_active", signature = "CompadreMat", function(object) { "active" %in% object@matrixClass$MatrixClassOrganized } ) setMethod("mpm_has_active", signature = "CompadreDB", function(object) { vapply(object@data$mat, function(m) "active" %in% m@matrixClass$MatrixClassOrganized, logical(1)) } ) setGeneric("mpm_has_dorm", function(object) { standardGeneric("mpm_has_dorm") } ) setMethod("mpm_has_dorm", signature = "CompadreMat", function(object) { "dorm" %in% object@matrixClass$MatrixClassOrganized } ) setMethod("mpm_has_dorm", signature = "CompadreDB", function(object) { vapply(object@data$mat, function(m) "dorm" %in% m@matrixClass$MatrixClassOrganized, logical(1)) } ) setGeneric("mpm_first_active", function(object) { standardGeneric("mpm_first_active") } ) setMethod("mpm_first_active", signature = "CompadreMat", function(object) { mclass <- object@matrixClass$MatrixClassOrganized ifelse(!"active" %in% mclass, NA_integer_, min(which(mclass == "active"))) } ) setMethod("mpm_first_active", signature = "CompadreDB", function(object) { vapply(object@data$mat, function(m) { mclass <- m@matrixClass$MatrixClassOrganized ifelse(!"active" %in% mclass, NA_integer_, min(which(mclass == "active"))) }, integer(1)) } )
singular <- function() { structure("", class = "singular") } rep.singular <- function(x, ...) { structure(NextMethod(), class = "singular") } print.singular <- function(x, ...) cat("<singular>\n") as.data.frame.singular <- function(x, ...) { df <- list(x) attr(df, "row.names") <- .set_row_names(length(x)) class(df) <- "data.frame" df } vector_type.singular <- function(x) "singular" scale_singular <- function(vis, property, name = property, label = name, points = TRUE, domain = NULL, override = NULL) { vis <- scale_nominal(vis, domain = "", property = property, name = name, label = "", points = points, override = override) vis <- add_axis(vis, property, tick_size_major = 0) vis }
"slp75_81"
"aovFbyrow" <- function(x=matrix(rnorm(1000),ncol=20), cl = factor(rep(1:3, c(7,9,4)))){ y <- t(x) qr.obj <- qr(model.matrix(~cl)) qty.obj <- qr.qty(qr.obj,y) tab <- table(factor(cl)) dfb <- length(tab)-1 dfw <- sum(tab)-dfb-1 ms.between <- apply(qty.obj[2:(dfb+1), , drop=FALSE]^2, 2, sum)/dfb ms.within <- apply(qty.obj[-(1:(dfb+1)), , drop=FALSE]^2, 2, sum)/dfw Fstat <- ms.between/ms.within }
'fn.isPD' <- function(A) { as.logical(all(eigen(A)$values>0)) }
setValidity("named.list",function(object){ if(all(is.na(object@names))) "list is unnamed" else if(length([email protected])!=length(object@names[nzchar(object@names)])){ znames <- which(!nzchar(object@names)) paste( if(length(znames) == 1) "element" else "elements", paste(znames,collapse=", "), if(length(znames) == 1) "is" else "are", "unnamed" ) } else if(length(unique(object@names)) != length(object@names)) paste( "list has duplicate names:", paste(dQuote(object@names[duplicated(object@names)]),collapse=", ") ) else TRUE }) setValidity("data.set",function(object){ isItemVector <- sapply(object,is,"item.vector") if(!all(isItemVector)) { wrong.els <- object[!isItemVector] wrong.classes <- sapply(wrong.els,class) wrong.names <- object@names[!isItemVector] paste( "object has elements of wrong class:", paste( paste("class(",wrong.names,") = ",wrong.classes,sep=""), collapse=", " ) ) } else if(any(length(object@row_names) != sapply(object,length))){ wrong.els <- object[!isItemVector] wrong.names <- object@names[!isItemVector] wront.lengths <- sapply(object,length) paste( if(length(which(wrong.lengths)) > 1) "elements have" else "element has", "wrong length: ", paste( paste("class(",wrong.names,") = ",wrong.classes,sep=""), collapse=", " ), "where", length(object@row_names), "is required" ) } else TRUE }) setMethod("initialize","named.list",function(.Object,...){ args <- list(...) if(is.list(args[[1]])) args <- unclass(args[[1]]) [email protected] <- unname(args) .Object@names <- as.character(names(args)) if(validObject(.Object)) .Object }) setMethod("initialize","item.list",function(.Object,...){ args <- list(...) if(is.list(args[[1]])) args <- unclass(args[[1]]) [email protected] <- unname(lapply(args,as.item)) .Object@names <- as.character(names(args)) if(validObject(.Object)) .Object }) setMethod("show","named.list",function(object) print.default(unclass(object)) ) setLength <- function(x,n){ tmp <- unname(x) length(x) <- n x[] <- tmp attributes(x) <- attributes(tmp) x } setMethod("initialize","data.set",function(.Object,...,row.names=NULL,document=character()){ args <- list(...) if(is.list(args[[1]])) args <- unclass(args[[1]]) nr <- max(sapply(args,length)) args <- lapply(args,setLength,n=nr) args <- lapply(args,as.item) [email protected] <- unname(args) .Object@names <- as.character(names(args)) if (is.null(row.names)) row.names <- seq_len(nr) else { if (is.object(row.names) || !is.integer(row.names)) row.names <- as.character(row.names) if (any(is.na(row.names))) stop("row names contain missing values") if (any(duplicated(row.names))) stop("duplicate row.names: ", paste(unique(row.names[duplicated(row.names)]), collapse = ", ")) } .Object@row_names <- row.names .Object@document <- document if(validObject(.Object)) .Object }) setAs("data.set","named.list",function(from,to){ new(to,structure([email protected],names=from@names)) }) setMethod("dim","data.set",function(x) c( length(x@row_names), length([email protected]) ) ) setMethod("row.names","data.set",function(x){ x@row_names }) setReplaceMethod("row.names","data.set",function(x,value){ nr <- length([email protected][[1]]) if(is.null(value)){ value <- seq_len(nr) } else if(length(value) != nr) stop("invalid 'row.names' given for data set") x@row_names <- value x }) setMethod("dimnames","data.set",function(x) list(x@row_names,x@names)) setReplaceMethod("dimnames","data.set",function(x,value) { d <- dim(x) if (!is.list(value) || length(value) != 2L) stop("invalid 'dimnames' given for data set") value[[1L]] <- as.character(value[[1L]]) value[[2L]] <- as.character(value[[2L]]) if (d[[1L]] != length(value[[1L]]) || d[[2L]] != length(value[[2L]])) stop("invalid 'dimnames' given for data set") row.names(x) <- value[[1L]] names(x) <- value[[2L]] x }) setMethod("[",signature(x="data.set",i="atomic",j="atomic",drop="ANY"), function(x,i,j,...,drop=FALSE){ frame <- structure([email protected],row.names=x@row_names,names=x@names,class="data.frame") frame <- frame[i,j,drop=drop] if(is.data.frame(frame)) new("data.set", unclass(frame), document=x@document ) else frame }) setMethod("[",signature(x="data.set",i="atomic",j="missing",drop="ANY"), function(x,i,j,...,drop=FALSE){ Narg <- nargs()-!missing(drop) frame <- structure([email protected],row.names=x@row_names,names=x@names,class="data.frame") if(Narg > 2){ frame <- frame[i,,drop=drop] if(!is.data.frame(frame)) frame else new("data.set", unclass(frame), document=x@document ) } else { frame <- frame[i] if(!is.data.frame(frame)) frame else new("data.set", unclass(frame), document=x@document ) } }) setMethod("[",signature(x="data.set",i="missing",j="atomic",drop="ANY"), function(x,i,j,...,drop=FALSE){ frame <- structure([email protected],row.names=x@row_names,names=x@names,class="data.frame") frame <- frame[,j,drop=drop] if(is.data.frame(frame)) new("data.set", unclass(frame), document=x@document ) else frame }) setMethod("[",signature(x="data.set",i="missing",j="missing",drop="ANY"), function(x,i,j,...,drop=FALSE){ frame <- structure([email protected],row.names=x@row_names,names=x@names,class="data.frame") frame <- frame[,,drop=drop] if(is.data.frame(frame)) new("data.set", unclass(frame), document=x@document ) else frame }) setReplaceMethod("[",signature(x="data.set",i="ANY",j="ANY",value="ANY"), function(x,i,j,value){ frame <- structure([email protected],row.names=x@row_names,names=x@names,class="data.frame") frame[i,j] <- value new("data.set", unclass(frame), document=x@document ) }) "[[<-.data.set" <- function(x,...,value){ frame <- structure([email protected],row.names=x@row_names,names=x@names,class="data.frame") frame[[...]] <- value new("data.set", unclass(frame), document=x@document ) } as.list.data.set <- function(x,...)structure([email protected],names=x@names) as.data.frame.data.set <- function(x, row.names = NULL, optional = FALSE, ...){ as.data.frame(as.list(x), row.names=if(length(row.names)) rownames else x@row_names, optional=optional) } data.set <- function(..., row.names = NULL, check.rows = FALSE, check.names = TRUE, stringsAsFactors = FALSE, document = NULL){ args <- list(...) if(!length(names(args))){ subst <- substitute(list(...)) names(args) <- as.character(subst[-1]) } argn <- names(args) args <- lapply(seq_along(args),function(i){ x <- args[[i]] n <- names(args)[[i]] if(is(x,"item.vector")) structure(list(x),class="data.frame",row.names=seq_len(length(x)),names=n) else if(is(x,"data.set")) structure(as.list(x),class="data.frame",row.names=x@row_names) else x }) names(args) <- argn frame <- do.call(data.frame, c(args, row.names=row.names, check.rows=check.rows, check.names=check.names, stringsAsFactors=stringsAsFactors )) new("data.set", frame, document=as.character(document) ) } setMethod("annotation","data.set",function(x){ d <- lapply(x,annotation) if(length(d)) structure(d,names=x@names,class="annotation.list") else NULL }) print.data.set <- function(x,max.obs=Inf,width=Inf,...){ frame <- structure([email protected],row.names=x@row_names,names=x@names,class="data.frame") print_frame_internal(frame,max.obs=max.obs,width=width,...) } print_frame_internal <- function(x,max.obs=Inf,width=Inf,...){ if(is.finite(max.obs)){ if(nrow(x)<=max.obs) { max.obs <- Inf res <- x } else res <- x[seq_len(max.obs),,drop=FALSE] } else res <- x varn <- names(res) rown <- rownames(res) res <- lapply(res,format) res <- mapply(c,varn,res) res <- apply(res,2,format,justify="right") res <- apply(cbind(c("",rown),res),2,format,justify="right") if(is.finite(width) && ncol(res)){ ww <- cumsum(nchar(res[1,])+1)-1 if(any(ww > width)){ keep <- which(ww < width - 3) res <- cbind(res[,keep],"...") } } if(is.finite(max.obs) && nrow(res)){ mkdots <- function(n) paste(rep(".",n),collapse="") ww <- nchar(res[1,]) res <- rbind(res,sapply(ww,mkdots)) res <- apply(res,1,paste,collapse=" ") res <- c(res,paste("(",length(res)-2," of ",nrow(x)," observations shown)",sep="")) } else res <- apply(res,1,paste,collapse=" ") writeLines(res) } setMethod("show","data.set",function(object){ cat("\nData set with",nrow(object),"observations and",ncol(object),"variables\n\n") print.data.set(object,max.obs=getOption("show.max.obs"),width=getOption("width")) }) setMethod("print","data.set",function(x,...)print.data.set(x,...)) is.data.set <- function(x) is(x,"data.set") str.data.set <- function (object, ...) { cat("Data set ","with ", nrow(object), " obs. of ", (p <- ncol(object)), " variable", if (p != 1) "s", if (p > 0) ":", "\n", sep = "") object <- structure(as.list(object),class="data.frame") if (length(l <- list(...)) && any("give.length" == names(l))) invisible(NextMethod("str", ...)) else invisible(NextMethod("str", give.length = FALSE, ...)) } subset.data.set <- function (x, subset, select, drop = FALSE, ...) { r <- if (missing(subset)) rep_len(TRUE, nrow(x)) else { e <- substitute(subset) r <- eval(e, x, parent.frame()) if (!is.logical(r)) stop("'subset' must be logical") r & !is.na(r) } vars <- if (missing(select)) rep_len(TRUE, ncol(x)) else { nl <- as.list(seq_along(x)) names(nl) <- names(x) eval(substitute(select), nl, parent.frame()) } x[r, vars, drop = drop] } setMethod("within","data.set",function (data, expr, ...) { parent <- parent.frame() encl <- new.env(parent=parent) frame <- structure([email protected],row.names=data@row_names,names=data@names,class="data.frame") nr <- nrow(frame) rn <- row.names(frame) assign("N_",nr,envir=encl) e <- evalq(environment(), frame, encl) ret <- eval(substitute(expr), e) l <- rev(as.list(e)) length1 <- sapply(l,length) == 1 if(any(length1)){ ii <- which(length1) for(i in ii){ l[[i]] <- rep(l[[i]],nr) } } wrong.length <- sapply(l,length) != nr if(any(wrong.length)){ warning("Variables ",paste(sQuote(names(l)[wrong.length]),collapse=","), " have wrong length, removing them.") l[wrong.length] <- NULL } coercable <- sapply(l,is.atomic) | sapply(l,is.factor) items <- sapply(l,is,"item") if(any(!items & coercable)) l[!items & coercable] <- lapply(l[!items & coercable],as.item) if(any(!items & !coercable)){ warning("Cannot change variables ",paste(sQuote(names(l)[!items & !coercable]),collapse=","), " into items, removing them.") l[!items & !coercable] <- NULL } frame[names(l)] <- l use <- names(frame) %in% names(l) frame <- frame[use] row.names(frame) <- rn new("data.set", frame, document=data@document) }) cbind.data.set <- function (..., deparse.level = 1) data.set(..., check.names = FALSE) setMethod("description","data.set",function(x){ res <- lapply(x,description) structure(res,class="descriptions") }) print.descriptions <- function(x,quote=FALSE,...){ Write.descriptions(x,file=stdout()) } Write.descriptions <- function(x,file=stdout(),...){ x <- sapply(x,function(des){ if(length(des)) sQuote(des) else " (none) " }) out <- c( "", paste("",format(names(x),justify="left"),format(x,justify="left")), "" ) writeLines(out,con=file) } as.data.frame.descriptions <- function(x,...){ data.frame(variable=names(x), description=as.character(x)) } setMethod("unique","data.set",function(x, incomparables = FALSE, ...){ frame <- structure([email protected],row.names=x@row_names,names=x@names,class="data.frame") new("data.set", unique(frame,incomparables=incomparables,...), document=x@document ) }) fapply.data.set <- function(formula,data,...) fapply.default(formula,data=as.data.frame(data,optional=TRUE),...) setMethod("as.data.set","list",function(x,row.names=NULL,...){ class(x) <- "data.frame" if(length(row.names)){ if(length(row.names)!=nrow(x)) stop("row.names argument has wrong length") attr(x,"row.names") <- row.names } else attr(x,"row.names") <- seq_len(nrow(x)) new("data.set",x) }) setMethod("merge",signature(x="data.set","data.set"),function(x,y,...){ x <- new("data.frame",as.list(x),row.names=x@row_names) y <- new("data.frame",as.list(y),row.names=y@row_names) z <- merge(x,y,...) new("data.set",z) }) setMethod("merge",signature(x="data.set","data.frame"),function(x,y,...){ x <- new("data.frame",as.list(x),row.names=x@row_names) z <- merge(x,y,...) new("data.set",z) }) setMethod("merge",signature(x="data.frame","data.set"),function(x,y,...){ y <- new("data.frame",as.list(y),row.names=y@row_names) z <- merge(x,y,...) new("data.set",z) }) setMethod("rbind2",signature(x="data.set",y="data.set"),function(x,y){ x <- asS4(new("data.frame",as.list(x),row.names=x@row_names),FALSE) y <- asS4(new("data.frame",as.list(y),row.names=y@row_names),FALSE) z <- rbind(x,y) new("data.set",z) }) setMethod("rbind2",signature(x="data.set",y="data.frame"),function(x,y){ x <- asS4(new("data.frame",as.list(x),row.names=x@row_names),FALSE) z <- cbind(x,y) new("data.set",z) }) setMethod("cbind2",signature(x="data.set",y="data.set"),function(x,y){ x <- asS4(new("data.frame",as.list(x),row.names=x@row_names),FALSE) y <- asS4(new("data.frame",as.list(y),row.names=y@row_names),FALSE) z <- cbind(x,y) new("data.set",z) }) setMethod("cbind2",signature(x="data.frame",y="data.set"),function(x,y){ y <- asS4(new("data.frame",as.list(y),row.names=y@row_names),FALSE) z <- cbind(x,y) new("data.set",z) }) setMethod("cbind2",signature(x="data.set",y="data.frame"),function(x,y){ x <- asS4(new("data.frame",as.list(x),row.names=x@row_names),FALSE) z <- cbind(x,y) new("data.set",z) }) rbind.data.set <- function(...,deparse.level=1){ args <- list(...) to.data.frame <- function(x){ if(inherits(x,"data.set")) structure( [email protected], names=x@names, row.names=x@row_names, class="data.frame" ) else as.data.frame(x) } args <- lapply(args,to.data.frame) res <- do.call("rbind",c(args,list(deparse.level=deparse.level))) new("data.set",res,row.names=row.names(res)) } dsView <- function(x){ title <- paste("Data set:", deparse(substitute(x))[1]) Data <- lapply([email protected],format,justify="left") document <- x@document row.names <- x@row_names .names <- x@names frame <- structure(Data,row.names=row.names,names=x@names, class="data.frame") for(n in names(frame)){ d <- description(x[[n]]) if(length(d)) attr(frame[[n]],"label") <- d } View.call <- call("View",x=frame,title=title) eval(View.call,globalenv()) } collect.data.set <- function(..., names=NULL,inclusive=TRUE,fussy=FALSE,warn=TRUE, sourcename=".origin"){ args <- list(...) subst <- substitute(list(...)) if(length(names)) { if(length(names)!=length(args)) stop("names argument has wrong length") } else { if(length(names(args))) names <- names(args) else { names <- sapply(lapply(subst[-1],deparse),paste,collapse=" ") } } all.vars <- lapply(args,names) common.vars <- reduce(all.vars,intersect) all.vars <- reduce(all.vars,union) other.vars <- setdiff(all.vars,common.vars) source <- rep(seq_along(args),sapply(args,nrow)) nrow.items <- sapply(args,nrow) nrow.total <- sum(nrow.items) ix <- split(seq_len(nrow.total),source) res <- lapply(common.vars,function(var){ vecs <- lapply(args,function(x)x[[var]]) collOne(vecs,source=source,nrow.items=nrow.items,varname=var,fussy=fussy) }) names(res) <- common.vars if(inclusive){ res1 <- lapply(other.vars,function(var){ vecs <- lapply(args,function(x)x[[var]]) collOne(vecs,source=source,nrow.items=nrow.items,varname=var,fussy=fussy) }) names(res1) <- other.vars res <- c(res,res1) } res[[sourcename]] <- factor(source,labels=names) as.data.set(res) } setMethod("summary","data.set", function(object, maxsum = 7, digits = max(3, getOption("digits") -3), ...){ z <- lapply(as.list(object), summary, maxsum = maxsum, digits = 12, ...) nv <- length(object) nm <- names(object) lw <- numeric(nv) nr <- max(unlist(lapply(z, NROW))) for (i in 1:nv) { sms <- z[[i]] if (is.matrix(sms)) { cn <- paste(nm[i], gsub("^ +", "", colnames(sms)), sep = ".") tmp <- format(sms) if (nrow(sms) < nr) tmp <- rbind(tmp, matrix("", nr - nrow(sms), ncol(sms))) sms <- apply(tmp, 1, function(x) paste(x, collapse = " ")) wid <- sapply(tmp[1, ], nchar, type = "w") blanks <- paste(character(max(wid)), collapse = " ") pad0 <- floor((wid - nchar(cn, type = "w"))/2) pad1 <- wid - nchar(cn, type = "w") - pad0 cn <- paste(substring(blanks, 1, pad0), cn, substring(blanks, 1, pad1), sep = "") nm[i] <- paste(cn, collapse = " ") z[[i]] <- sms } else { lbs <- format(names(sms)) sms <- paste(lbs, ":", format(sms, digits = digits), " ", sep = "") lw[i] <- nchar(lbs[1], type = "w") length(sms) <- nr z[[i]] <- sms } } z <- unlist(z, use.names = TRUE) dim(z) <- c(nr, nv) blanks <- paste(character(max(lw) + 2), collapse = " ") pad <- floor(lw - nchar(nm, type = "w")/2) nm <- paste(substring(blanks, 1, pad), nm, sep = "") dimnames(z) <- list(rep.int("", nr), nm) attr(z, "class") <- c("table") z }) as.list.item.list <- function(x,...)structure([email protected],names=x@names) setMethod("head",signature(x="data.set"), function(x,n=20,...){ y <- utils::head.matrix(x,n=n,...) rownames(y) <- rownames(x)[1:n] return(y) }) setMethod("tail",signature(x="data.set"), function(x,n=20,...){ y <- utils::tail.matrix(x,n=n,...) rownames(y) <- rownames(x)[seq.int(to=nrow(x),length.out=n)] return(y) }) as.data.table.data.set <- function(x, ...){ dataf <- as.data.frame(as.list(x), row.names=if(length(row.names)) rownames else x@row_names) as.data.table(dataf,...) }
plot.MinED <- function(x, name, ...){ Dose_Level <- Lower_Efficacy <- Lower_Toxicity <- Posterior_Efficacy_Est <- NULL Posterior_Toxicity_Est <- Sec.. <- Upper_Efficacy <- Upper_Toxicity <- NULL X..Pts.response.to.eff <- X..Pts.response.to.tox <- X..Pts.treated <- NULL if (class(x)[1] != "MinED"){ stop("the object putting here is not correct") } else { if (is.matrix(x)){ df <- data.frame(t(x[, -6])) df$Dose_Level <- rownames(df) rownames(df) <- c() if (tolower(name) == "sel%"){ p <- ggplot(data = df, aes(x = Dose_Level, y = Sec..)) + geom_bar(stat = "identity") + xlab("Dose Level") + ylab("MinED Selection %") } else if (tolower(name) == " p <- ggplot(data = df, aes(x = Dose_Level, y = X..Pts.treated)) + geom_bar(stat = "identity") + xlab("Dose Level") + ylab("Number of Patients Treated") } else if (tolower(name) == " p <- ggplot(data = df, aes(x = Dose_Level, y = X..Pts.response.to.tox)) + geom_bar(stat = "identity") + xlab("Dose Level") + ylab("Number of Toxicities") } else if (tolower(name) == " p <- ggplot(data = df, aes(x = Dose_Level, y = X..Pts.response.to.eff)) + geom_bar(stat = "identity") + xlab("Dose Level") + ylab("Number of Efficacy Responses") } } else if (is.list(x)){ df <- x[[3]] df[, 1] <- factor(df[, 1], levels = 1:length(df[, 1])) df <- df[rowSums(is.na(df)) == 0, ] eff_plot <- ggplot() + geom_errorbar(data = df, aes(x = Dose_Level, ymin = Lower_Efficacy, ymax = Upper_Efficacy), width = 0.2, size = 1, color = "blue") + geom_point(data = df, aes(x = Dose_Level, y = Posterior_Efficacy_Est), size = 4, shape = 21, fill = "white") + ylim(c(0, 1)) + geom_hline(yintercept = x[[2]][, 1], linetype="dashed", color = "red", size=1) + ylab("Posterior Efficacy Est") + xlab("Dose Level") + scale_x_discrete(drop = F) tox_plot <- ggplot() + geom_errorbar(data = df, aes(x = Dose_Level, ymin = Lower_Toxicity, ymax = Upper_Toxicity), width = 0.2, size = 1, color = "blue") + geom_point(data = df, aes(x = Dose_Level, y = Posterior_Toxicity_Est), size = 4, shape = 21, fill = "white") + ylim(c(0, 1)) + geom_hline(yintercept = x[[2]][, 2], linetype = "dashed", color = "red", size = 1) + ylab("Posterior Toxicity Est") + xlab("Dose Level") + scale_x_discrete(drop = F) p <- grid.arrange(eff_plot, tox_plot, nrow = 1) } } p }
auth0_app <- function(app_url, app_name, key, secret) { function(app_url) { httr::oauth_app(appname = app_name, key = key, secret = secret, redirect_uri = app_url) } } auth0_api <- function(auth0_url, request, access) { httr::oauth_endpoint(base_url = auth0_url, request = request, authorize = "authorize", access = access) } has_auth_code <- function(params, state) { is.null(params$error) && !is.null(params$code) && params$state == state } auth0_server_verify <- function(session, app, api, state) { u_search <- session[["clientData"]]$url_search params <- shiny::parseQueryString(u_search) if (has_auth_code(params, state)) { cred <- httr::oauth2.0_access_token(api, app(redirect_uri), params$code) token <- httr::oauth2.0_token( app = app(redirect_uri), endpoint = api, cache = FALSE, credentials = cred, user_params = list(grant_type = "authorization_code")) userinfo_url <- sub("authorize", "userinfo", api$authorize) resp <- httr::RETRY( verb = "GET" , url = userinfo_url , httr::config(token = token) , times = 5 ) assign("auth0_credentials", token$credentials, envir = session$userData) assign("auth0_info", httr::content(resp, "parsed"), envir = session$userData) } } auth0_state <- function(server) { paste(sample(c(letters, LETTERS, 0:9), 10, replace = TRUE), collapse = "") } auth0_info <- function(config) { if (missing(config)) config <- auth0_config() if (!is.list(config) && is.character(config)) config <- auth0_config(config) scope <- config$auth0_config$scope state <- auth0_state() conf <- config$auth0_config app <- auth0_app(app_name = config$name, key = conf$credentials$key, secret = conf$credentials$secret) api <- auth0_api(conf$api_url, conf$request, conf$access) audience <- conf$audience rurl <- config$remote_url if (is.null(rurl)) rurl <- config$shiny_config$remote_url list(scope = scope, state = state, app = app, api = api, audience=audience, remote_url = rurl) } auth0_config <- function(config_file) { if (missing(config_file)) config_file <- auth0_find_config_file() config <- yaml::read_yaml(config_file, eval.expr = TRUE) if (is.null(config$auth0_config)) { stop("Missing 'auth0_config' tag in YAML file.") } config_names <- names(unlist(config$auth0_config)) required_names <- c("api_url", "credentials.key", "credentials.secret") missing_args <- setdiff(required_names, config_names) s <- strrep("s", max(length(missing_args) - 1L, 0)) if (length(missing_args) > 0) { msg <- sprintf("Missing '%s' tag%s in YAML file", paste(missing_args, collapse = "','"), s) stop(msg) } scp <- config$auth0_config$scope if (is.null(scp)) scp <- "openid profile" defaults <- list(scope = scp, request = "oauth/token", access = "oauth/token") for (nm in names(defaults)) { if (!nm %in% config_names) { config$auth0_config[[nm]] <- defaults[[nm]] } } config } use_auth0 <- function(path = ".", file = "_auth0.yml", overwrite = FALSE) { f <- paste0(normalizePath(path), "/", file) if (file.exists(f) && !overwrite) { stop("File exists and overwrite is FALSE.") } ks <- list(key = 'Sys.getenv("AUTH0_KEY")', secret = 'Sys.getenv("AUTH0_SECRET")') api_url <- "paste0('https://', Sys.getenv('AUTH0_USER'), '.auth0.com')" attr(ks[[1]], "tag") <- "!expr" attr(ks[[2]], "tag") <- "!expr" attr(api_url, "tag") <- "!expr" yaml_list <- list( name = "myApp", remote_url = "", auth0_config = list(api_url = api_url, credentials = ks)) yaml::write_yaml(yaml_list, f) }
library(httpuv) app <- list( call = function(req) { wsUrl = paste(sep='', '"', "ws://", ifelse(is.null(req$HTTP_HOST), req$SERVER_NAME, req$HTTP_HOST), '"') list( status = 200L, headers = list( 'Content-Type' = 'text/html' ), body = paste( sep = "\r\n", "<!DOCTYPE html>", "<html>", "<head>", '<style type="text/css">', 'body { font-family: Helvetica; }', 'pre { margin: 0 }', '</style>', "<script>", sprintf("var ws = new WebSocket(%s);", wsUrl), "ws.onmessage = function(msg) {", ' var msgDiv = document.createElement("pre");', ' msgDiv.innerHTML = msg.data.replace(/&/g, "&amp;").replace(/\\</g, "&lt;");', ' document.getElementById("output").appendChild(msgDiv);', "}", "function sendInput() {", " var input = document.getElementById('input');", " ws.send(input.value);", " input.value = '';", "}", "</script>", "</head>", "<body>", '<h3>Send Message</h3>', '<form action="" onsubmit="sendInput(); return false">', '<input type="text" id="input"/>', '<h3>Received</h3>', '<div id="output"/>', '</form>', "</body>", "</html>" ) ) }, onWSOpen = function(ws) { ws$onMessage(function(binary, message) { ws$send(message) }) } ) browseURL("http://localhost:9454/") runServer("0.0.0.0", 9454, app, 250)
permuANOVA <- function(y,x,z, perm.type="unrestricted", reps=5000){ if(!missing(z)){ if(perm.type=="restricted"){ l <- summary(aov(y ~ x+z))[[1]]$F[1] x = as.factor(x) z = as.factor(z) results1<-numeric(reps) for (i in 1:reps) { for (n in 1:nlevels(z)){ assign(paste("z", n, sep = ""), sample(y[z==levels(z)[n]])) } temp1 <- c(get0("z1"),get0("z2"), get0("z3"), get0("z4"), get0("z5"), get0("z6"), get0("z7"), get0("z8"), get0("z9"), get0("z10")) results1[i] <- summary(aov(temp1 ~ x[order(z)]+z[order(z)]))[[1]]$F[1] } p.value1 <- (sum(results1 >= l)) / reps k <- summary(aov(y ~ x+z))[[1]]$F[2] results<- numeric(reps) for (i in 1:reps) { for (n in 1:nlevels(x)){ assign(paste("x", n, sep = ""), sample(y[x==levels(x)[n]])) } temp <- c(get0("x1"),get0("x2"), get0("x3"), get0("x4"), get0("x5"), get0("x6"), get0("x7"), get0("x8"), get0("x9"), get0("x10")) results[i] <- summary(aov(temp ~ x[order(x)]+z[order(x)]))[[1]]$F[2] } p.value2 <- (sum(results >= k)) / reps } else{ if(perm.type=="unrestricted"){ h <- summary(aov(y ~ x*z))[[1]]$F[1] l <- summary(aov(y ~ x*z))[[1]]$F[2] results <- numeric(reps) results1 <- numeric(reps) for (i in 1:reps) { temp <- sample(y) results[i] <- summary(aov(temp ~ x*z))[[1]]$F[1] results1[i] <- summary(aov(temp ~ x*z))[[1]]$F[2] } p.value1 <- (sum(results >= h)) / reps p.value2 <- (sum(results1 >= l)) / reps} else {return(" perm.type must be restricted or unrestricted")} } j <- summary(aov(y ~ x*z))[[1]]$F[3] results2 <- numeric(reps) for (i in 1:reps) { temp2 <- sample(y) results2[i] <- summary(aov(temp2 ~ x*z))[[1]]$F[3] } p.value3 <- (sum(results2 >= j)) / reps p.values <- c(p.value1, p.value2, p.value3) as.data.frame(p.values, row.names=c("Variable_x", "Variable_z", "x:z")) } else{ z <- summary(aov(y ~ x))[[1]]$F[1] results <- numeric(reps) for (i in 1:reps) { temp <- sample(y) results[i] <- summary(aov(temp ~ x))[[1]]$F[1] } p.value4 <- sum(results >= z) / reps p.value <- c(p.value4) as.data.frame(x = p.value, row.names="Variable_x") } }
.uncertaintyOpticut1 <- function (object, which=NULL, type=c("asymp", "boot", "multi"), B=99, pb=FALSE, ...) { dots <- setdiff(names(object$call)[-1L], c("X", "Y", "formula", "data", "strata", "dist", "comb", "sset", "cl")) if (length(dots) > 0) stop("Extra arguments detected in opticut call (...)") type <- match.arg(type) if (missing(which)) stop("specify which argument") if (!length(which)) stop("which argument must have length 1") linkinv <- .get_linkinv(object, ...) scale <- object$scale obj <- object$species[[which]] n <- nobs(object) k <- which.max(obj$logLR) if (type == "asymp") { if (length(B) > 1) stop("Provide single integer for B.") niter <- B bm <- rownames(obj)[k] mle <- getMLE(object, which, vcov=TRUE, ...) if (!is.function(object$dist) && .opticut_dist(object$dist, make_dist=TRUE) == "rsf") { cf <- MASS::mvrnorm(niter, mle$coef[-1L], mle$vcov[-1L,-1L,drop=FALSE]) cf <- rbind(mle$coef[c(1L, 2L)], cbind(0, cf)[,c(1L, 2L)]) } else { cf <- MASS::mvrnorm(niter, mle$coef, mle$vcov) cf <- rbind(mle$coef[c(1L, 2L)], cf[,c(1L, 2L)]) } cf0 <- linkinv(cf[,1L]) cf1 <- linkinv(cf[,1L] + cf[,2L]) I <- abs(tanh(cf[,2L] * scale)) out <- data.frame(best=bm, I=I, mu0=cf0, mu1=cf1) } else { if (length(B) == 1) { niter <- B if (!is.function(object$dist) && .opticut_dist(object$dist, make_dist=TRUE) %in% c("rsf", "rspf")) { avail <- which(object$Y[,1]==0) used <- which(object$Y[,1]==1) nused <- length(used) BB <- replicate(niter, c(sample(used, nused, replace=TRUE), avail)) } else { BB <- replicate(niter, sample.int(n, replace=TRUE)) } } else { BB <- B niter <- ncol(B) } nstr <- check_strata(object, BB) if (!all(nstr)) stop("Not all strata represented in resampling") } if (type == "boot") { bm <- rownames(obj)[k] m1 <- .extractOpticut(object, which, boot=FALSE, internal=TRUE, full_model=FALSE, best=TRUE, ...)[[1L]] cf <- if (pb) { t(pbapply::pbapply(BB, 2, function(z, ...) { .extractOpticut(object, which, boot=z, internal=TRUE, full_model=FALSE, best=TRUE, ...)[[1L]]$coef[c(1L, 2L)] })) } else { t(apply(BB, 2, function(z, ...) { .extractOpticut(object, which, boot=z, internal=TRUE, full_model=FALSE, best=TRUE, ...)[[1L]]$coef[c(1L, 2L)] })) } cf <- rbind(m1$coef[c(1L, 2L)], cf) cf0 <- linkinv(cf[,1L]) cf1 <- linkinv(cf[,1L] + cf[,2L]) I <- abs(tanh(cf[,2L] * scale)) out <- data.frame(best=bm, I=I, mu0=cf0, mu1=cf1) } if (type == "multi") { bm <- character(niter + 1L) bm[1L] <- rownames(obj)[k] mat <- matrix(NA, niter + 1L, 3) colnames(mat) <- c("I", "mu0", "mu1") tmp <- as.numeric(obj[k, -1L]) names(tmp) <- colnames(obj)[-1L] mat[1L, ] <- tmp[c("I", "mu0", "mu1")] if (pb) { pbar <- pbapply::startpb(0, niter) on.exit(pbapply::closepb(pbar), add=TRUE) } for (j in seq_len(niter)) { mod <- .extractOpticut(object, which, boot=BB[,j], internal=FALSE, best=FALSE, ...)[[1L]] k <- which.max(mod$logLR) bm[j + 1L] <- rownames(mod)[k] tmp <- as.numeric(mod[k, -1L]) names(tmp) <- colnames(mod)[-1L] mat[j + 1L, ] <- tmp[c("I", "mu0", "mu1")] if (pb) pbapply::setpb(pbar, j) } out <- data.frame(best=bm, mat) attr(out, "est") <- attr(obj, "est") } class(out) <- c("uncertainty1_opti", "uncertainty1", "data.frame") attr(out, "B") <- niter attr(out, "type") <- type attr(out, "scale") <- scale attr(out, "collapse") <- object$collapse out }
cpgram <- function(ts, taper = 0.1, main = paste("Series: ", deparse1(substitute(ts))), ci.col = "blue") { main if(NCOL(ts) > 1) stop("only implemented for univariate time series") x <- as.vector(ts) x <- x[!is.na(x)] x <- spec.taper(scale(x, TRUE, FALSE), p=taper) y <- Mod(fft(x))^2/length(x) y[1L] <- 0 n <- length(x) x <- (0:(n/2))*frequency(ts)/n if(length(x)%%2==0) { n <- length(x)-1 y <- y[1L:n] x <- x[1L:n] } else y <- y[seq_along(x)] xm <- frequency(ts)/2 mp <- length(x)-1 crit <- 1.358/(sqrt(mp)+0.12+0.11/sqrt(mp)) oldpty <- par(pty ="s") on.exit(par(oldpty)) plot(x, cumsum(y)/sum(y), type="s", xlim=c(0, xm), ylim=c(0, 1), xaxs="i", yaxs="i", xlab="frequency", ylab="") lines(c(0, xm*(1-crit)), c(crit, 1), col = ci.col, lty = 2) lines(c(xm*crit, xm), c(0, 1-crit), col = ci.col, lty = 2) title(main = main) invisible() }
accessSlotsByName <- function(x,i,j,drop=FALSE) { names <- slotNames(x) if (!(i %in% names)) stop(paste(i, "is not a valid slot specification")) return(slot(x, i)) } accessReplaceSlotsByName <- function(x,i,j,value) { names <- slotNames(x) if (!(i %in% names)) stop(paste(i, "dis not a valid slot specification")) else slot(x, i) <- value validObject(x) return(x) } setMethod(f="[", signature = CLASS_CLIST, def = accessSlotsByName) setMethod(f="[", signature = CLASS_FIT, def = accessSlotsByName) setMethod(f="[", signature = CLASS_RM, def = accessSlotsByName) setReplaceMethod(f="[", signature = CLASS_CLIST, accessReplaceSlotsByName) setReplaceMethod(f="[", signature = CLASS_FIT, accessReplaceSlotsByName) setReplaceMethod(f="[", signature = CLASS_RM,accessReplaceSlotsByName) setMethod('c', signature=c(CLASS_CLIST), function(x, ..., recursive = FALSE) R.c(x, ...) ) resolve <- function(e1, e2, sign) { d <- list() if (e1@name==sign && (len.e1 <- length(e1@submodels)) < MAXSUB) { for (i in 1:len.e1) d[[i]] <- e1@submodels[[i]] } else { len.e1 <- 1 d[[1]] <- if (is.character(e1)) stop("characters cannot be combined with 'RMmodels'") else e1 } d[[len.e1 + 1]] <- (if (is.character(e2)) stop("characters cannot be combined with 'RMmodels'") else e2) if (sign == RM_MULT[1]) { model <- do.call(sign, d) } else model <- do.call(sign, d) return(model) } warn.resolve.txt <- "A large vector consists fully of NAs -- the model is probably not correct.\nNote that it is always better to define the covariance model in the first\nsummands and then the trend. Also better use explicitely 'R.c', 'RMcovariate'\nand 'R.const' if the model is more complicated" resolveRight<- function(e1, e2, sign) { d <- list() if (e1@name==sign && (len.e1 <- length(e1@submodels)) < MAXSUB) { for (i in 1:len.e1) d[[i]] <- e1@submodels[[i]] } else { len.e1 <- 1 d[[1]] <- (if (is.character(e1)) stop("characters cannot be combined with 'RMmodels'") else e1) } d[[len.e1 + 1]] <- if (is.list(e2)) do.call(R_C, e2) else if (length(e2)==1) do.call(R_CONST, list(e2)) else if (!all(is.finite(e2))) { if (all(is.na(e2)) && length(e2)>5) warning(warn.resolve.txt) do.call(R_C, list(e2)) } else if (sign == RM_PLUS[1]) { tmpList <- list(RM_COVARIATE) tmpList[[COVARIATE_C_NAME]] <- e2 tmpList[[COVARIATE_X_NAME]] <- NULL tmpList[[COVARIATE_ADDNA_NAME]] <- TRUE do.call(RM_COVARIATE, tmpList) } else do.call(R_C, list(e2)) model <- do.call(sign, d) return(model) } resolveLeft<- function(e1, e2, sign) { d <- list() len.e1 <- 1 d[[1]] <- if (is.list(e1)) do.call(R_C, e1) else if (length(e1)==1) do.call(R_CONST, list(e1)) else if (!all(is.finite(e1))) { if (all(is.na(e1)) && length(e1)>5) warning(warn.resolve.txt) do.call(R_C, list(e1)) } else if (sign == RM_PLUS[1]) { tmpList <- list(RM_COVARIATE) tmpList[[COVARIATE_C_NAME]] <- e1 tmpList[[COVARIATE_X_NAME]] <- NULL tmpList[[COVARIATE_ADDNA_NAME]] <- TRUE do.call(RM_COVARIATE, tmpList) } else do.call(R_C, list(e1)) d[[len.e1 + 1]] <- (if (is.character(e2)) stop("characters cannot be combined with 'RMmodels'") else e2) model <- do.call(sign, d) return(model) } setMethod('+', signature=c(CLASS_CLIST, CLASS_CLIST), function(e1, e2) resolve(e1, e2, RM_PLUS[1])) setMethod('+', signature=c(CLASS_CLIST, 'numeric'), function(e1, e2) resolveRight(e1, e2, RM_PLUS[1])) setMethod('+', signature=c(CLASS_CLIST, 'logical'), function(e1, e2) resolveRight(e1, e2, RM_PLUS[1])) setMethod('+', signature=c(CLASS_CLIST, 'factor'), function(e1, e2) resolveRight(e1, e2, RM_PLUS[1])) setMethod('+', signature=c(CLASS_CLIST, 'list'), function(e1, e2) resolveRight(e1, e2, RM_PLUS[1])) setMethod('+', signature=c('numeric', CLASS_CLIST), function(e1, e2) resolveLeft(e1, e2, RM_PLUS[1])) setMethod('+', signature=c('logical', CLASS_CLIST), function(e1, e2) resolveLeft(e1, e2, RM_PLUS[1])) setMethod('+', signature=c('data.frame', CLASS_CLIST), function(e1, e2) resolveLeft(e1, e2, RM_PLUS[1])) setMethod('+', signature=c('factor', CLASS_CLIST), function(e1, e2) resolveLeft(e1, e2, RM_PLUS[1])) setMethod('+', signature=c(CLASS_CLIST, 'character'), function(e1, e2) resolve(e1, e2, RM_PLUS[1])) setMethod('+', signature=c('character', CLASS_CLIST), function(e1, e2) resolve(e1, e2, RM_PLUS[1])) setMethod('*', signature=c(CLASS_CLIST, CLASS_CLIST), function(e1, e2) resolve(e1, e2, RM_MULT[1])) setMethod('*', signature=c('numeric', CLASS_CLIST), function(e1, e2) resolveLeft(e1, e2, RM_MULT[1])) setMethod('*', signature=c('logical', CLASS_CLIST), function(e1, e2) resolveLeft(e1, e2, RM_MULT[1])) setMethod('*', signature=c(CLASS_CLIST, 'logical'), function(e1, e2) resolveRight(e1, e2, RM_MULT[1])) setMethod('*', signature=c(CLASS_CLIST, 'numeric'), function(e1, e2) resolveRight(e1, e2, RM_MULT[1])) setMethod('*', signature=c(CLASS_CLIST, 'character'), function(e1, e2) resolve(e1, e2, RM_MULT[1])) setMethod('*', signature=c('character', CLASS_CLIST), function(e1, e2) resolve(e1, e2, RM_MULT[1])) Xresolve <- function(e1, e2, model) { d <- list() len.e1 <- 1 d[[1]] <- (if (is.character(e1)) stop("characters cannot be combined with 'RMmodels'") else e1) d[[len.e1 + 1]] <- ( if (is.character(e2)) stop("characters cannot be combined with 'RMmodels'") else e2) model <- do.call(model, d) return(model) } XresolveLeft <- function(e1, e2, model) { d <- list() len.e1 <- 1 if (length(e1)==1) d[[1]] <- do.call(R_CONST, list(e1)) else { e <- list(e1) d[[1]] <- do.call(R_CONST, e) } d[[len.e1 + 1]] <- (if (is.character(e2)) stop("characters cannot be combined with 'RMmodels'") else e2) model <- do.call(model, d) return(model) } XresolveRight <- function(e1, e2, model) { d <- list() len.e1 <- 1 d[[1]] <- (if (is.character(e1)) stop("characters cannot be combined with 'RMmodels'") else e1) if (length(e2)==1) d[[len.e1 + 1]] <- do.call(R_CONST, list(e2)) else { e <- list(e2) d[[len.e1 + 1]] <- do.call(R_CONST, e) } model <- do.call(model, d) return(model) } setMethod('-', signature=c(CLASS_CLIST, CLASS_CLIST), function(e1, e2) Xresolve(e1, e2, "R.minus")) setMethod('-', signature=c('numeric', CLASS_CLIST), function(e1, e2) XresolveLeft(e1, e2, "R.minus")) setMethod('-', signature=c('logical', CLASS_CLIST), function(e1, e2) XresolveLeft(e1, e2, "R.minus")) setMethod('-', signature=c(CLASS_CLIST, 'numeric'), function(e1, e2) XresolveRight(e1, e2, "R.minus")) setMethod('-', signature=c(CLASS_CLIST, 'logical'), function(e1, e2) XresolveRight(e1, e2, "R.minus")) setMethod('-', signature=c(CLASS_CLIST, 'character'), function(e1, e2) Xresolve(e1, e2, "R.minus")) setMethod('-', signature=c('character', CLASS_CLIST), function(e1, e2) Xresolve(e1, e2, "R.minus")) setMethod('/', signature=c(CLASS_CLIST, CLASS_CLIST), function(e1, e2) Xresolve(e1, e2, "R.div")) setMethod('/', signature=c('numeric', CLASS_CLIST), function(e1, e2) XresolveLeft(e1, e2, "R.div")) setMethod('/', signature=c('logical', CLASS_CLIST), function(e1, e2) XresolveLeft(e1, e2, "R.div")) setMethod('/', signature=c(CLASS_CLIST, 'numeric'), function(e1, e2) XresolveRight(e1, e2, "R.div")) setMethod('/', signature=c(CLASS_CLIST, 'logical'), function(e1, e2) XresolveRight(e1, e2, "R.div")) setMethod('/', signature=c('RMmodel', 'character'), function(e1, e2) Xresolve(e1, e2, "R.div")) setMethod('/', signature=c('character', 'RMmodel'), function(e1, e2) Xresolve(e1, e2, "R.div")) setMethod('^', signature=c(CLASS_CLIST, CLASS_CLIST), function(e1, e2) Xresolve(e1, e2, "R.pow")) setMethod('^', signature=c('numeric', CLASS_CLIST), function(e1, e2) XresolveLeft(e1, e2, "R.pow")) setMethod('^', signature=c('logical', CLASS_CLIST), function(e1, e2) XresolveLeft(e1, e2, "R.pow")) setMethod('^', signature=c(CLASS_CLIST, 'numeric'), function(e1, e2) XresolveRight(e1, e2, "R.pow")) setMethod('^', signature=c(CLASS_CLIST, 'logical'), function(e1, e2) XresolveRight(e1, e2, "R.pow")) setMethod('^', signature=c('RMmodel', 'character'), function(e1, e2) Xresolve(e1, e2, "R.pow")) setMethod('^', signature=c('character', 'RMmodel'), function(e1, e2) Xresolve(e1, e2, "R.pow")) str.RMmodel <- function(object, max.level = NA, vec.len = strO$vec.len, digits.d = strO$digits.d, nchar.max = 128, give.attr = TRUE, give.head = TRUE, give.length = give.head, width = getOption("width"), nest.lev = 0, indent.str = paste(rep.int(" ", max(0, nest.lev + 1)), collapse = ".."), comp.str = "$ ", no.list = FALSE, envir = baseenv(), strict.width = strO$strict.width, drop.deparse.attr = strO$drop.deparse.attr, formatNum = strO$formatNum, list.len = 99, ...) { oDefs <- c("strict.width", "vec.len", "digits.d", "drop.deparse.attr", "formatNum") strO <- getOption("str") if (!is.list(strO)) { warning("invalid options('str') -- using defaults instead") strO <- strOptions() } else { if (!all(names(strO) %in% oDefs)) warning("invalid components in options('str'): ", paste(setdiff(names(strO), oDefs), collapse = ", ")) strO <- modifyList(strOptions(), strO) } strict.width <- match.arg(strict.width, choices = c("no", "cut", "wrap")) if (strict.width != "no") { ss <- capture.output(str(object, max.level = max.level, vec.len = vec.len, digits.d = digits.d, drop.deparse.attr = drop.deparse.attr, nchar.max = nchar.max, give.attr = give.attr, give.head = give.head, give.length = give.length, width = width, nest.lev = nest.lev, indent.str = indent.str, comp.str = comp.str, no.list = no.list || is.data.frame(object), envir = envir, strict.width = "no", ...)) if (strict.width == "wrap") { nind <- nchar(indent.str) + 2 ss <- strwrap(ss, width = width, exdent = nind) } if (any(iLong <- nchar(ss) > width)) ss[iLong] <- sub(sprintf("^(.{1,%d}).*", width - 2), "\\1..", ss[iLong]) cat(ss, sep = "\n") return(invisible()) } oo <- options(digits = digits.d) on.exit(options(oo)) le <- length(object) P0 <- function(...) paste(..., sep = "") `%w/o%` <- function(x, y) x[is.na(match(x, y))] nfS <- names(fStr <- formals()) strSub <- function(obj, ...) { nf <- nfS %w/o% c("object", "give.length", "comp.str", "no.list", names(match.call())[-(1:2)], "...") aList <- as.list(fStr)[nf] aList[] <- lapply(nf, function(n) eval(as.name(n))) if ("par.general" %in% names(obj)){ is.RFdefault <- unlist(lapply(obj$par.general, FUN=function(x){ !is(x, CLASS_CLIST) && !is.na(x) && x==RM_DEFAULT })) obj$par.general[is.RFdefault] <- NULL if (all(is.RFdefault)) obj$par.general <- list() } do.call(utils::str, c(list(object = obj), aList, list(...)), quote = TRUE) } v.len <- vec.len std.attr <- "names" cl <- if ((S4 <- isS4(object))) class(object) else oldClass(object) has.class <- S4 || !is.null(cl) mod <- "" char.like <- FALSE if (give.attr) a <- attributes(object) if (is.null(object)) cat(" NULL\n") else if (S4) { a <- sapply(methods::.slotNames(object), methods::slot, object = object, simplify = FALSE) cat("Formal class", " '", paste(cl, collapse = "', '"), "' [package \"", attr(cl, "package"), "\"] with ", length(a), " slots\n", sep = "") strSub(a, comp.str = "@ ", no.list = TRUE, give.length = give.length, indent.str = paste(indent.str, ".."), nest.lev = nest.lev + 1) return(invisible()) } } summary.RMmodel <- function(object, max.level=5, ...) summary(PrepareModel2(object, ...), max.level=max.level) summary.RM_model <- function(object, ...) { class(object) <- "summary.RMmodel" object } print.summary.RMmodel <- function(x, max.level=5, ...) { str(x, no.list=TRUE, max.level = max.level, give.attr=FALSE) invisible(x) } print.RM_model <- function(x, max.level=5,...) { print.summary.RMmodel(summary.RM_model(x, max.level=max.level,...), max.level=max.level) } print.RMmodel <- function(x, max.level=5,...) { print.summary.RMmodel(summary.RMmodel(x, max.level=max.level, ...), max.level=max.level) } setMethod(f="show", signature=CLASS_CLIST, definition=function(object) print.RMmodel(object)) print.RMmodelgenerator <- function(x, ...) { cat("*** object of Class '", CLASS_RM, "' ***\n", sep="") str(args([email protected])) cat(" type : \t", paste(x@type, collapse=", "), "\n") cat(" domain : \t", paste(x@domain, collapse=", "), "\n") cat(" isotropy : \t", paste(x@isotropy, collapse=", "), "\n") cat(" monotoniciy :\t", paste(x@monotone, collapse=", "), "\n") cat(" multivariate:\t", if (x@vdim >= 0) x@vdim else if (x@vdim == PARAM_DEP) "parameter dependent" else if (x@vdim == PREVMODEL_DEP) "depends on calling model" else if (x@vdim == SUBMODEL_DEP) "submodel dependent" else "specification unclear -- please contact maintainer", "\n") cat(" max. dimen. :\t", if (x@maxdim >= 0) x@maxdim else if (x@maxdim == PARAM_DEP) "parameter dependent" else if (x@maxdim == PREVMODEL_DEP) "depends on calling model" else if (x@maxdim == SUBMODEL_DEP) "submodel dependent" else "specification unclear -- please contact maintainer", "\n") cat(" finite range:\t", x@finiterange, "\n") cat(" operator : \t", x@operator, "\n") cat(" simple fctn :\t", x@simpleArguments, "\n") } setMethod("show", signature=CLASS_RM, definition=function(object) print.RMmodelgenerator(object)) rfConvertRMmodel2string <- function(model){ if (!is(model, class2=CLASS_CLIST)) stop("model must be of class '", CLASS_CLIST, "'") par <- c([email protected], [email protected]) idx.random <- unlist(lapply(par, FUN=isRMmodel)) if (is.null(idx.random)){ param.string <- "" param.random.string <- "" } else { idx.default <- par[!idx.random] == RM_DEFAULT param.string <- paste(names(par[!idx.random][!idx.default]), par[!idx.random][!idx.default], sep="=", collapse=", ") string.vector <- lapply(par[idx.random], FUN=rfConvertRMmodel2string) param.random.string <- paste(names(par[idx.random]), string.vector, sep="=", collapse=", ") } if (length(model@submodels) > 0){ string.vector <- lapply(model@submodels, FUN=rfConvertRMmodel2string) submodel.string <- paste(names(model@submodels), string.vector, sep="=", collapse=", ") if (!(nchar(param.string)==0)) submodel.string <- paste(submodel.string, ", ", sep="") } else submodel.string <- "" string <- paste(model@name, "(", submodel.string, param.random.string, param.string, ")", sep="") return(string) } preparePlotRMmodel <- function(x, xlim, ylim, n.points, dim, fct.type, MARGIN, fixed.MARGIN, ...){ types <- c("Cov", "Variogram", "Fctn") verballist <- paste("'", types, "'", sep="", collapse="") if (!missing(fct.type) && length(fct.type) > 0) { if (!(fct.type %in% types)) stop("fct.type must be NULL or of the types ", verballist) types <- fct.type } all.fct.types <- character(length(x)) all.vdim <- numeric(length(x)) for (i in 1:length(x)) { fct.type <- types m <- list("", PrepareModel2(x[[i]]), ...) while (length(fct.type) > 0 && { m[[1]] <- fct.type[1]; !is.numeric(vdim <- try( InitModel(MODEL_AUX, m, dim), silent=TRUE)) }) fct.type <- fct.type[-1] if (!is.numeric(vdim)) { stop(attr(vdim, "condition")$message) } if (vdim[1] != vdim[2]) stop("only simple models can be plotted") all.vdim[i] <- vdim[1] all.fct.types[i] <- fct.type[1] } if (!all(all.vdim == all.vdim[1])) stop("models have different multivariability") if (is.null(xlim)) { xlim <- if (dim > 1 || all.vdim[1] > 1) c(-1, 1) * 1.75 else c(0, 1.75) } if (is.null(ylim) && dim > 1) ylim <- xlim distance <- seq(xlim[1], xlim[2], length=n.points) if (prod(xlim) <= 0) distance <- sort(c(if (!any(distance==0)) 0, 1e-5, distance)) if (dim > 1) { distanceY <- seq(ylim[1], ylim[2], length=n.points) if (prod(ylim) < 0 & !(any(distanceY==0))) distanceY <- sort(c(0, distanceY)) } if (all(all.fct.types[1] == all.fct.types)) { switch(all.fct.types[1], "Cov" = { main <-"Covariance function" ylab <- "C(distance)" }, "Variogram" = { main <- "Variogram" ylab <- expression(gamma(distance)) }, "Fctn" = { main<- "" ylab <- "f(distance)" }, stop("method only implemented for ", verballist) ) } else { main <- "" ylab <- "f(distance)" } if (length(x) == 1) { for.what <- rfConvertRMmodel2string(x[[1]]) if (nchar(for.what) > 20) for.what <- strsplit(for.what,"\\(")[[1]][1] } else { for.what <- "various models" } main <- paste("plot for ", for.what, "\n", sep="") if (dim >= 3) main <- paste(sep="", main, "; component", if (dim>3) "s", " ", paste((1:dim)[-MARGIN], collapse=", "), " fixed to the value", if (dim>3) "s", " ", paste(format(fixed.MARGIN, digits=4), collapse=", ")) return(list(main=main, fctcall=all.fct.types, ylab=ylab, distance=distance, distanceY = if (dim > 1) distanceY, xlim=xlim, ylim=ylim)) } singleplot <- function(cov, dim, li, plotmethod, dots, dotnames) { if (dim==1) { D <- li$distance iszero <- D == 0 if (plotmethod == "matplot") { plotpoint <- any(iszero) && diff(range(dots$ylim)) * 1e-3 < diff(range(cov)) - diff(range(cov[!iszero])) if (plotpoint) D[iszero] <- NA } else plotpoint <- FALSE liXY <- if (plotmethod=="plot.xy") list(xy = xy.coords(x=D, y=cov)) else list(x=D, y=cov) do.call(plotmethod, args=c(dots, liXY)) if (plotpoint) { for (i in 1:ncol(cov)) points(0, cov[iszero, i], pch=19 + i, col = dots$col[i]) } } else { if (!("zlim" %in% dotnames)) dots$zlim <- range(unlist(cov), finite=TRUE) addgiven <- "add" %in% dotnames local.dots <- dots local.dots$col <- NULL local.dots$lty <- NULL is.contour <- is.character(plotmethod) && plotmethod == "contour" if (!is.contour) { if (ncol(cov) > 1) stop("several models can be plotted at once only with 'contour'") col <- default.image.par(dots$zlim, NULL)$data$default.col } for (i in 1:ncol(cov)) { if (!addgiven && is.contour) local.dots$add <- i > 1 do.call(plotmethod, args=c(list(x=li$distance, y=li$distanceY, col=if (is.contour) dots$col[i] else col, lty = dots$lty[i], z=matrix(cov[, i], nrow=length(li$distance))), local.dots)) } } } RFplotModel <- function(x, y, dim=1, n.points= if (dim==1 || is.contour) 200 else 100, fct.type=NULL, MARGIN, fixed.MARGIN, maxchar=15, ..., plotmethod=if (dim==1) "matplot" else "contour") { is.contour <- is.character(plotmethod) && plotmethod == "contour" RFopt <- RFoptions() if (ex.red <- RFopt$internal$examples_reduced) n.points <- as.integer(min(n.points, ex.red - 2)) stopifnot(length(dim)==1) if (!(dim %in% 1:10)) stop("only 'dim==1', 'dim==2' and 'dim==3' are allowed") if (dim==3) if (missing(MARGIN) || missing(fixed.MARGIN)) stop("'MARGIN' and 'fixed.MARGIN' must be given if dim >=3") if ((!missing(MARGIN)) || (!missing(fixed.MARGIN))) { stopifnot((!missing(MARGIN)) && (!missing(fixed.MARGIN))) if (dim < 3) stop("'MARGIN' and 'fixed.MARGIN' should only be given for dim>=3") stopifnot(is.numeric(MARGIN) && length(MARGIN)==2) stopifnot(is.numeric(fixed.MARGIN) && (length(fixed.MARGIN) == dim - 2)) } dots <- list(...) dotnames <- names(dots) models <- substr(dotnames, 1, 5) == "model" x <- c(list(x), dots[models]) mnames <- c("", substr(dotnames[models], 6, 100)) idx <- substr(mnames, 1, 1) == "." mnames[idx] <- substr(mnames[idx], 2, 1000) for (i in which(!idx)) { mnames[i] <- rfConvertRMmodel2string(x[[i]]) nmn <- nchar(mnames[i]) - 1 if (substr(mnames[i], nmn, nmn) == "(") { mnames[i] <- substr(mnames[i], 1, nmn - 1) } msplit <- strsplit(mnames[i], "RM")[[1]] if (length(msplit) == 2 && msplit[1]=="") mnames[i] <- msplit[2] } mnames <- substr(mnames, 1, maxchar) dots <- mergeWithGlobal(dots[!models]) dotnames <- names(dots) if (!("type" %in% dotnames)) dots$type <- "l" li <- preparePlotRMmodel(x=x, xlim=dots$xlim, ylim=dots$ylim, n.points=n.points, dim=dim, fct.type=fct.type, MARGIN=MARGIN, fixed.MARGIN=fixed.MARGIN) dots$xlim <- li$xlim if (!is.null(li$ylim)) dots$ylim <- li$ylim if (!("main" %in% dotnames)) dots$main <- li$main if (!("cex" %in% dotnames)) dots$cex <- 1 if (!("cex.main" %in% dotnames)) dots$cex.main <- 1.3 * dots$cex if (!("cex.axis" %in% dotnames)) dots$cex.axis <- 1.0 * dots$cex if (!("cex.lab" %in% dotnames)) dots$cex.lab <- 1.0 * dots$cex if (!("col" %in% dotnames)) dots$col <- rep(1:7, length.out=length(x)) cov <- list() if (dim==1) { for (i in 1:length(x)) cov[[i]] <- rfeval(x=li$distance, model=x[[i]], fctcall=li$fctcall[i]) lab <- xylabs("distance", li$ylab) if (!("ylim" %in% dotnames)) dots$ylim <- range(0, unlist(cov), finite=TRUE) if (!("xlab" %in% dotnames)) dots$xlab <- lab$x if (!("ylab" %in% dotnames)) dots$ylab <- lab$y } else { lab <- xylabs("", "") if (!("xlab" %in% dotnames)) dots$xlab <- lab$x if (!("ylab" %in% dotnames)) dots$ylab <- lab$y dots$type <- NULL if (dim==2) { di <- as.matrix(expand.grid(li$distance, li$distanceY)) for (i in 1:length(x)) { cov[[i]] <- rfeval(x=di, model=x[[i]], fctcall=li$fctcall[i]) } } else if (dim>=3) { m1 <- expand.grid(li$distance, li$distanceY) m2 <- matrix(NA, ncol=dim, nrow=nrow(m1)) m2[,MARGIN] <- as.matrix(m1) m2[,-MARGIN] <- rep(fixed.MARGIN, each=nrow(m1)) for (i in 1:length(x)) cov[[i]] <- rfeval(x=m2, model=x[[i]], fctcall=li$fctcall[i]) } else stop("this error should never appear") } if ((is.null(dots$xlab) || dots$xlab=="") && (is.null(dots$ylab) || dots$ylab=="")) { margins <- c(3, 3, if (dots$main=="") 0 else 2, 0) + 0.2 } else { margins <- c(5, 5, if (dots$main=="") 0 else 2, 0) + 0.2 } dimcov <- dim(cov[[1]]) graphics <- RFopt$graphics if (plotmethod != "plot.xy") { if (is.null(dimcov)) { ArrangeDevice(graphics, c(1,1)) } else { figs <- dimcov[2:3] ArrangeDevice(graphics, figs) } } scr <- NULL if (is.null(dimcov)) { cov <- sapply(cov, function(x) x) if (!("lty" %in% dotnames)) dots$lty <- 1:5 singleplot(cov=cov, dim=dim, li=li, plotmethod, dots=dots, dotnames=dotnames) if (length(x) > 1) legend(x="topright", legend=mnames, col=dots$col, lty=dots$lty) } else { scr <- matrix(split.screen(figs=figs), ncol=dimcov[2], byrow=TRUE) par(oma=margins) title(main=dots$main, xlab=dots$xlab, ylab=dots$ylab, outer=TRUE, cex.main=dots$cex.main) dots.axis = dots[names(dots) != "type"] dots.axis$col = dots.axis$col.axis if (!("axes" %in% dotnames)) dots$axes <- FALSE for (i in 1:ncol(scr)) { for (j in 1:nrow(scr)) { dots$main <- eval(parse(text=paste("expression(C[", i, j,"])", sep=""))) screen(scr[i,j]) par(mar=c(0,0,2,1)) singleplot(cov = sapply(cov, function(x) x[, i,j]), dim = dim, li=li, plotmethod=plotmethod, dots=dots, dotnames = dotnames) box() if (i==1) do.call(graphics::axis, args=c(dots.axis, list(side=1, outer = TRUE, line=1))) if (j==1) do.call(graphics::axis, args=c(dots.axis, list(side=2, outer = TRUE, line=1))) } } } if (graphics$split_screen && graphics$close_screen) { close.screen(scr) scr <- NULL } return(scr) } points.RMmodel <- function(x, ..., type="p") RFplotModel(x, ...,type=type, plotmethod="plot.xy") lines.RMmodel <- function(x, ..., type="l") RFplotModel(x, ...,type=type, plotmethod="plot.xy") list2RMmodel <- function(x) { if (!is.list(x)) return(x) name <- x[[1]] if (!is.character(name)) return(x) if (name == RM_DECLARE) return(NULL) len <- length(x) if (name %in% DOLLAR) return(list2RMmodel(c(x[[len]], x[-c(1, len)]))) if (name==SYMBOL_PLUS) name <- RM_PLUS[1] else if (name==SYMBOL_MULT) name <- RM_MULT[1] else if (!(name %in% list2RMmodel_Names)) { if (!(name %in% list2RMmodel_oldNames)) stop(paste("'", name, "' is not the name of a valid model", sep="")) } if (len==1) return(eval(parse(text=paste(name, "()", sep="")))) else { x <- lapply(x, FUN=list2RMmodel) if (length(idx <- which("anisoT" == names(x))) == 1){ names(x)[idx] <- "Aniso" x[[idx]] <- t(x[[idx]]) } return(do.call(name, args=x[-1])) } } setMethod(f="plot", signature(x=CLASS_CLIST, y="missing"), function(x, y, ...) RFplotModel(x, ...)) setMethod(f="lines", signature(x=CLASS_CLIST), function(x, ..., type="l") RFplotModel(x, ..., type=type, plotmethod="plot.xy")) setMethod(f="points", signature(x=CLASS_CLIST), function(x, ..., type="p") RFplotModel(x, ..., type=type, plotmethod="plot.xy")) setMethod(f="persp", signature(x=CLASS_CLIST), function(x, ..., dim=2, zlab="") RFplotModel(x,...,dim=dim,zlab=zlab,plotmethod="persp")) setMethod(f="image", signature(x=CLASS_CLIST), function(x, ..., dim=2) RFplotModel(x,...,dim=dim,plotmethod="image"))
describe("Confront", { it("returns a validation object", { rules <- validator(x > 1, y < x, x == 0) con <- dbplyr::src_memdb() d <- data.frame(x = 1, y = 2) tbl_d <- dplyr::copy_to(con, d, overwrite=TRUE) cf <- confront(tbl_d, rules) expect_true(is(cf, "tbl_validation")) }) it("handles linear constraints", { rules <- validator(x > 1, y < x, y == 2) con <- dbplyr::src_memdb() d <- data.frame(x = c(2, NA), y = 2:1) tbl_d <- dplyr::copy_to(con, d, overwrite=TRUE) cf <- confront(tbl_d, rules) res <- values(cf, type = "list", simplify=FALSE) expect_equal(res, list( V1 = c(TRUE, NA) , V2 = c(FALSE, NA) , V3=c(TRUE, FALSE)) ) }) it("handles categorical constraints", { rules <- validator( a %in% c("A1", "A2") , b %in% c("B1", "B2") ) con <- dbplyr::src_memdb() d <- data.frame(a = c("A1", "A3", NA), b = c("B3", NA, "B2")) tbl_d <- dplyr::copy_to(con, d, overwrite=TRUE) cf <- confront(tbl_d, rules) res <- values(cf, type = "list", simplify=FALSE) expect_equal(res, list( V1 = c(TRUE, FALSE,NA) , V2 = c(FALSE, NA, TRUE) ) ) }) it("handles conditional constraints", { rules <- validator( a %in% c("A1", "A2") , b %in% c("B1", "B2") , if (a == "A1") b == "B1" , if (b == "B2") x > 0 ) con <- dbplyr::src_memdb() d <- data.frame(a = c("A1", "A3", NA), b = c("B3", NA, "B2"), x = c(NA, 1,-1)) tbl_d <- dplyr::copy_to(con, d, overwrite=TRUE) cf <- confront(tbl_d, rules) res <- values(cf, type = "list", simplify=FALSE) expect_equal(res, list( V1 = c(TRUE, FALSE,NA) , V2 = c(FALSE, NA, TRUE) , V3 = c(FALSE, NA, NA) , V4 = c(NA, NA, FALSE) ) ) }) it ("warns on not working rules",{ f <- function(x){x} rules <- validator(f(x) > 0, x > 0, y < 0) con <- dbplyr::src_memdb() d <- data.frame(x=c(NA, 1, -1)) tbl_d <- dplyr::copy_to(con, d, overwrite=TRUE) expect_warning(cf <- confront(tbl_d, rules)) res <- values(cf, type = "list", simplify=FALSE) expect_equal(res, list( V1 = NULL, V2 = c(NA, TRUE, FALSE), V3 = NULL )) expect_equal(length(cf$errors), 2) }) })
AlleleFreq.default <- function(object, variants, ...) { variants <- unique(x = variants) meta_row_mat <- as.data.frame( x = stri_split_fixed( str = rownames(x = object), pattern = "-", simplify = TRUE ), stringsAsFactors = TRUE ) colnames(meta_row_mat) = c("letter", "position", "strand") variant_df <- data.frame( variant = variants, position = factor( x = substr( x = variants, start = 1, stop = nchar(x = variants) - 3), levels = levels(x = meta_row_mat$position) ), ref = factor( x = substr( x = variants, start = nchar(x = variants) - 2, stop = nchar(x = variants) - 2), levels = levels(x = meta_row_mat$letter) ), alt = factor( x = substr( x = variants, start = nchar(x = variants), stop = nchar(x = variants)), levels = levels(x = meta_row_mat$letter) ) ) ref_letter <- paste0(meta_row_mat$position, meta_row_mat$letter) alt_letter <- paste0(variant_df$position, variant_df$alt) idx_numerator <- lapply( X = alt_letter, FUN = function(x) { which(ref_letter == x) } ) fwd_half_idx <- sapply(X = idx_numerator, FUN = `[[`, 1) rev_half_idx <- sapply(X = idx_numerator, FUN = `[[`, 2) if (!all.equal( target = meta_row_mat[fwd_half_idx, 2], current = meta_row_mat[rev_half_idx, 2] )) { stop("Variant count matrix does not have the required structure") } numerator_counts <- object[fwd_half_idx, ] + object[rev_half_idx, ] rownames(x = numerator_counts) <- variants denom_counts <- sapply(X = variant_df$position, FUN = function(x) { idx <- which(meta_row_mat$position == x) total_coverage <- colSums(x = object[idx, ]) return(total_coverage) }) denom_counts <- t(x = denom_counts) rownames(x = denom_counts) <- variant_df$variant allele_freq_matrix <- numerator_counts / denom_counts colnames(x = allele_freq_matrix) <- colnames(x = object) allele_freq_matrix@x[is.nan(x = allele_freq_matrix@x)] <- 0 return(allele_freq_matrix[variants, ]) } AlleleFreq.Assay <- function(object, variants, ...) { mat <- GetAssayData(object = object, slot = "counts") allele.freq <- AlleleFreq(object = mat, variants = variants, ...) allele.assay <- CreateAssayObject(counts = allele.freq) return(allele.assay) } AlleleFreq.Seurat <- function( object, variants, assay = NULL, new.assay.name = "alleles", ... ) { assay <- SetIfNull(x = assay, y = DefaultAssay(object = object)) allele.assay <- AlleleFreq( object = object[[assay]], variants = variants, ... ) object[[new.assay.name]] <- allele.assay return(object) } ClusterClonotypes <- function(object, assay = NULL, group.by = NULL) { if (is.null(x = group.by)) { object$allele_ident_stash_clon <- Idents(object = object) } else { object$allele_ident_stash_clon <- object[[]][[group.by]] } md <- object[[]] assay <- SetIfNull(x = assay, y = DefaultAssay(object = object)) mat <- GetAssayData(object = object, assay = assay, slot = "data") matty <- sapply( X = unique(x = object$allele_ident_stash_clon), FUN = function(x) { cells <- rownames(x = md[md$allele_ident_stash_clon == x, ]) return(rowMeans(x = sqrt(x = mat[, cells]))) }) object$allele_ident_stash_clon <- NULL cos_matty <- cosine(x = matty) cos_matty_t <- cosine(x = t(x = matty)) cos_matty[is.nan(x = cos_matty)] <- 0 cos_matty_t[is.nan(x = cos_matty_t)] <- 0 hc <- hclust(d = dist(x = cos_matty)) hf <- hclust(d = dist(x = cos_matty_t)) return(list("cells" = hc, "features" = hf)) } FindClonotypes <- function( object, assay = NULL, features = NULL, metric = "cosine", resolution = 1, k = 10, algorithm = 3 ) { assay <- SetIfNull(x = assay, y = DefaultAssay(object = object)) features <- SetIfNull(x = features, y = rownames(x = object[[assay]])) mat <- GetAssayData(object = object, assay = assay, slot = "data")[features, ] mat <- sqrt(x = t(x = mat)) graph <- FindNeighbors(object = mat, k.param = k, annoy.metric = metric) object[[paste0(assay, "_nn")]] <- graph$nn object[[paste0(assay, "_snn")]] <- graph$snn object <- FindClusters( object = object, graph.name = paste0(assay, "_snn"), resolution = resolution, algorithm = algorithm ) hc <- ClusterClonotypes(object = object, assay = assay, group.by = NULL) features <- as.character(rownames(x = object[[assay]])[hc$features$order]) VariableFeatures(object = object, assay = assay) <- features levels(x = object) <- hc$cells$order - 1 return(object) } ReadMGATK <- function(dir, verbose = TRUE) { if (!dir.exists(paths = dir)) { stop("Directory not found") } a.path <- list.files(path = dir, pattern = "*.A.txt.gz", full.names = TRUE) c.path <- list.files(path = dir, pattern = "*.C.txt.gz", full.names = TRUE) t.path <- list.files(path = dir, pattern = "*.T.txt.gz", full.names = TRUE) g.path <- list.files(path = dir, pattern = "*.G.txt.gz", full.names = TRUE) refallele.path <- list.files( path = dir, pattern = "*_refAllele.txt*", full.names = TRUE ) depthfile.path <- list.files( path = dir, pattern = "*.depthTable.txt", full.names = TRUE ) if (verbose) { message("Reading allele counts") } column.names <- c("pos", "cellbarcode", "plus", "minus") a.counts <- read.table( file = a.path, sep = ",", header = FALSE, stringsAsFactors = FALSE, col.names = column.names ) c.counts <- read.table( file = c.path, sep = ",", header = FALSE, stringsAsFactors = FALSE, col.names = column.names ) t.counts <- read.table( file = t.path, sep = ",", header = FALSE, stringsAsFactors = FALSE, col.names = column.names ) g.counts <- read.table( file = g.path, sep = ",", header = FALSE, stringsAsFactors = FALSE, col.names = column.names ) if (verbose) { message("Reading metadata") } refallele <- read.table( file = refallele.path, header = FALSE, stringsAsFactors = FALSE, col.names = c("pos", "ref") ) refallele$ref <- toupper(x = refallele$ref) depth <- read.table( file = depthfile.path, header = FALSE, stringsAsFactors = FALSE, col.names = c("cellbarcode", "mito.depth"), row.names = 1 ) cellbarcodes <- unique(x = rownames(depth)) cb.lookup <- seq_along(along.with = cellbarcodes) names(cb.lookup) <- cellbarcodes if (verbose) { message("Building matrices") } maxpos <- dim(refallele)[1] a.mat <- SparseMatrixFromBaseCounts( basecounts = a.counts, cells = cb.lookup, dna.base = "A", maxpos = maxpos ) c.mat <- SparseMatrixFromBaseCounts( basecounts = c.counts, cells = cb.lookup, dna.base = "C", maxpos = maxpos ) t.mat <- SparseMatrixFromBaseCounts( basecounts = t.counts, cells = cb.lookup, dna.base = "T", maxpos = maxpos ) g.mat <- SparseMatrixFromBaseCounts( basecounts = g.counts, cells = cb.lookup, dna.base = "G", maxpos = maxpos ) counts <- rbind(a.mat[[1]], c.mat[[1]], t.mat[[1]], g.mat[[1]], a.mat[[2]], c.mat[[2]], t.mat[[2]], g.mat[[2]]) return(list("counts" = counts, "depth" = depth, "refallele" = refallele)) } IdentifyVariants.default <- function( object, refallele, stabilize_variance = TRUE, low_coverage_threshold = 10, verbose = TRUE, ... ) { coverages <- ComputeTotalCoverage(object = object, verbose = verbose) a.df <- ProcessLetter( object = object, letter = "A", coverage = coverages, ref_alleles = refallele, stabilize_variance = stabilize_variance, low_coverage_threshold = low_coverage_threshold, verbose = verbose ) t.df <- ProcessLetter( object = object, letter = "T", coverage = coverages, ref_alleles = refallele, stabilize_variance = stabilize_variance, low_coverage_threshold = low_coverage_threshold, verbose = verbose ) c.df <- ProcessLetter( object = object, letter = "C", coverage = coverages, ref_alleles = refallele, stabilize_variance = stabilize_variance, low_coverage_threshold = low_coverage_threshold, verbose = verbose ) g.df <- ProcessLetter( object = object, letter = "G", coverage = coverages, ref_alleles = refallele, stabilize_variance = stabilize_variance, low_coverage_threshold = low_coverage_threshold, verbose = verbose ) return(rbind(a.df, t.df, c.df, g.df)) } IdentifyVariants.Assay <- function( object, refallele, ... ) { counts <- GetAssayData(object = object, slot = 'counts') df <- IdentifyVariants(object = counts, refallele = refallele, ...) return(df) } IdentifyVariants.Seurat <- function( object, refallele, assay = NULL, ... ) { assay <- SetIfNull(x = assay, y = DefaultAssay(object = object)) assay.obj <- GetAssay(object = object, assay = assay) df <- IdentifyVariants(object = assay.obj, refallele = refallele, ...) return(df) } SparseMatrixFromBaseCounts <- function(basecounts, cells, dna.base, maxpos) { fwd.mat <- sparseMatrix( i = c(basecounts$pos,maxpos), j = c(cells[basecounts$cellbarcode],1), x = c(basecounts$plus,0) ) colnames(x = fwd.mat) <- names(x = cells) rownames(x = fwd.mat) <- paste( dna.base, seq_len(length.out = nrow(fwd.mat)), "fwd", sep = "-" ) rev.mat <- sparseMatrix( i = c(basecounts$pos,maxpos), j = c(cells[basecounts$cellbarcode],1), x = c(basecounts$minus,0) ) colnames(x = rev.mat) <- names(x = cells) rownames(x = rev.mat) <- paste( dna.base, seq_len(length.out = nrow(rev.mat)), "rev", sep = "-" ) return(list(fwd.mat, rev.mat)) } ComputeTotalCoverage <- function(object, verbose = TRUE) { if (verbose) { message("Computing total coverage per base") } rowstep <- nrow(x = object) / 8 mat.list <- list() for (i in seq_len(length.out = 8)) { mat.list[[i]] <- object[(rowstep * (i - 1) + 1):(rowstep * i), ] } coverage <- Reduce(f = `+`, x = mat.list) coverage <- as.matrix(x = coverage) rownames(x = coverage) <- seq_along(along.with = rownames(x = coverage)) return(coverage) } globalVariables( names = c("forward", "reverse", ".", "variant"), package = "Signac" ) ProcessLetter <- function( object, letter, ref_alleles, coverage, stabilize_variance = TRUE, low_coverage_threshold = 10, verbose = TRUE ) { if (verbose) { message("Processing ", letter) } boo <- ref_alleles$ref != letter & ref_alleles$ref != "N" cov <- coverage[boo, ] variant_name <- paste0( as.character(ref_alleles$pos), ref_alleles$ref, ">", letter )[boo] nucleotide <- paste0( ref_alleles$ref, ">", letter )[boo] position_filt <- ref_alleles$pos[boo] fwd.counts <- GetMutationMatrix( object = object, letter = letter, strand = "fwd" )[boo, ] rev.counts <- GetMutationMatrix( object = object, letter = letter, strand = "rev" )[boo, ] fwd.ijx <- summary(fwd.counts) rev.ijx <- summary(rev.counts) bulk <- (rowSums(fwd.counts + rev.counts) / rowSums(cov)) bulk[is.na(bulk)] <- 0 bulk[is.nan(bulk)] <- 0 both.strand <- data.table(cbind(fwd.ijx, rev.ijx$x)) both.strand$i <- variant_name[both.strand$i] colnames(both.strand) <- c("variant", "cell_idx", "forward", "reverse") cor_dt <- suppressWarnings(expr = both.strand[, .(cor = cor( x = forward, y = reverse, method = "pearson", use = "pairwise.complete") ), by = list(variant)]) cor_vec_val <- cor_dt$cor names(cor_vec_val) <- as.character(cor_dt$variant) mat <- (fwd.counts + rev.counts) / cov rownames(mat) <- variant_name mat@x[!is.finite(mat@x)] <- 0 if (stabilize_variance) { idx_mat <- which(cov < low_coverage_threshold, arr.ind = TRUE) idx_mat_mean <- bulk[idx_mat[, 1]] ones <- 1 - sparseMatrix( i = c(idx_mat[, 1], dim(x = mat)[1]), j = c(idx_mat[, 2], dim(x = mat)[2]), x = 1 ) means_mat <- sparseMatrix( i = c(idx_mat[, 1], dim(x = mat)[1]), j = c(idx_mat[, 2], dim(x = mat)[2]), x = c(idx_mat_mean, 0) ) mmat2 <- mat * ones + means_mat variance <- SparseRowVar(x = mmat2) } else { variance <- SparseRowVar(x = mat) } detected <- (fwd.counts >= 2) + (rev.counts >= 2) var_summary_df <- data.frame( position = position_filt, nucleotide = nucleotide, variant = variant_name, vmr = variance / (bulk + 0.00000000001), mean = round(x = bulk, digits = 7), variance = round(x = variance, digits = 7), n_cells_conf_detected = rowSums(x = detected == 2), n_cells_over_5 = rowSums(x = mat >= 0.05), n_cells_over_10 = rowSums(x = mat >= 0.10), n_cells_over_20 = rowSums(x = mat >= 0.20), strand_correlation = cor_vec_val[variant_name], mean_coverage = rowMeans(x = cov), stringsAsFactors = FALSE, row.names = variant_name ) return(var_summary_df) } GetMutationMatrix <- function(object, letter, strand) { keep.rows <- paste( letter, seq_len(length.out = nrow(x = object) / 8), strand, sep = "-" ) return(object[keep.rows, ]) }
lowres <- function(x, np=2, which.fac=NULL, ...) { if (is(x, "SpatialGrid")) fullgrid(x) = FALSE if (!inherits(x, "SpatialPixelsDataFrame")) stop("x should be of class \"SpatialPixelsDataFrame\"") pfs <- proj4string(x) gr <- gridparameters(x) if (nrow(gr) > 2) stop("x should be defined in two dimensions") if ((gr[1, 2] - gr[2, 2])> get(".adeoptions", envir=.adehabitatMAEnv)$epsilon) stop("the cellsize should be the same in x and y directions") res <- list() for (i in 1:(ncol(slot(x,"data")))) { nc <- gr[2, 3] nr <- gr[1, 3] cs <- gr[2, 2] maa<-as.image.SpatialGridDataFrame(x[,i]) y <- maa$z typ <- "numeric" if (i%in%which.fac) typ="factor" y<-y[1:(nr-(((nr/np)-floor(nr/np)))*np), 1:(nc-(((nc/np)-floor(nc/np)))*np)] nr<-nrow(y) nc<-ncol(y) if (typ=="factor") { repr<- as.numeric(levels(factor(as.vector(y)))) y <- as.numeric(as.character(factor(y))) y <- matrix(y, nrow=nr, ncol=nc) } y[is.na(y)]<--9999 xs<-matrix(0, nrow=nr/np, ncol=nc/np) if (typ == "numeric") { mat<-.C("regrouascnumr", as.double(t(y)), as.double(t(xs)), as.double(nrow(y)), as.double(ncol(y)), as.double(nrow(xs)), as.double(ncol(xs)), PACKAGE = "adehabitatMA")[[2]] } else { mat<-.C("regroufacascr", as.double(t(y)), as.double(t(xs)), as.integer(np), as.integer(length(repr)), as.integer(nrow(y)), as.integer(ncol(y)), as.integer(nrow(xs)), as.integer(ncol(xs)), PACKAGE = "adehabitatMA")[[2]] } mat<-matrix(mat,ncol=ncol(xs), byrow=TRUE) mat[mat==-9999]<-NA maa$z <- mat maa$x <- mean(maa$x[1:np]) + c(0:(nr/np - 1)) * cs*np maa$y <- mean(maa$y[1:np]) + c(0:(nc/np - 1)) * cs*np maa <- image2Grid(maa) maa <- as(maa, "SpatialPixelsDataFrame") gridded(maa) <- TRUE res[[i]] <- maa } names(res) <- names(slot(x, "data")) re <- do.call("data.frame",lapply(res, function(x) x[[1]])) coordinates(re) <- coordinates(res[[1]]) gridded(re) <- TRUE if (!is.na(pfs)) proj4string(re) <- CRS(pfs) return(re) }
UqN <- function(beta,qvalue,N){ if(qvalue==1){qvalue=0.99999} value = ((1/beta)^(1-qvalue) - (1/N)^(1-qvalue)) / (1 - (1/N)^(1-qvalue)) return(value) }
check_homogeneity <- function(x, method = c("bartlett", "fligner", "levene", "auto"), ...) { UseMethod("check_homogeneity") } check_homogeneity.default <- function(x, method = c("bartlett", "fligner", "levene", "auto"), ...) { method <- match.arg(method) resp <- insight::find_response(x) pred <- insight::find_predictors(x, component = "conditional", flatten = TRUE) ws_pred <- pred != make.names(pred) if (any(ws_pred)) { pred[ws_pred] <- paste0("`", pred[ws_pred], "`") } if (length(pred) > 1) { pred <- paste0("interaction(", paste0(pred, collapse = ", "), ")", collapse = "") } f <- stats::as.formula(sprintf("%s ~ %s", resp, pred)) if (method == "auto") { check <- tryCatch( { utils::capture.output(p <- check_normality(x)) p }, error = function(e) { NULL } ) if (is.null(check)) { insight::print_color("'check_homogeneity()' cannot perform check for normality. Please specify the 'method'-argument for the test of equal variances.\n", "red") return(NULL) } method <- ifelse(check < 0.05, "fligner", "bartlett") } if (method == "fligner") { r <- stats::fligner.test(f, data = insight::get_data(x)) p.val <- r$p.value } else if (method == "bartlett") { r <- stats::bartlett.test(f, data = insight::get_data(x)) p.val <- r$p.value } else if (method == "levene") { insight::check_if_installed("car") r <- car::leveneTest(x, ...) p.val <- r$`Pr(>F)` } method.string <- switch(method, "bartlett" = "Bartlett Test", "fligner" = "Fligner-Killeen Test", "levene" = "Levene's Test" ) if (is.na(p.val)) { warning(paste0("Could not perform ", method.string, "."), call. = FALSE) invisible(NULL) } else if (p.val < 0.05) { insight::print_color(sprintf("Warning: Variances differ between groups (%s, p = %.3f).\n", method.string, p.val), "red") } else { insight::print_color(sprintf("OK: There is not clear evidence for different variances across groups (%s, p = %.3f).\n", method.string, p.val), "green") } attr(p.val, "object_name") <- deparse(substitute(x), width.cutoff = 500) attr(p.val, "method") <- method.string class(p.val) <- unique(c("check_homogeneity", "see_check_homogeneity", class(p.val))) invisible(p.val) } check_homogeneity.afex_aov <- function(x, method = "levene", ...) { if (!requireNamespace("car")) { stop("car required for this function to work.") } if (tolower(method) != "levene") { message("Only Levene's test for homogeneity supported for afex_aov") } if (length(attr(x, "between")) == 0) { stop("Levene test is only aplicable to ANOVAs with between-subjects factors.") } data <- x$data$long dv <- attr(x, "dv") id <- attr(x, "id") between <- names(attr(x, "between")) is_covar <- sapply(attr(x, "between"), is.null) ag_data <- stats::aggregate(data[, dv], data[, c(between, id)], mean) colnames(ag_data)[length(c(between, id)) + 1] <- dv if (any(is_covar)) { warning(insight::format_message("Levene's test is not appropriate with quantitative explanatory variables. Testing assumption of homogeneity among factor groups only."), call. = FALSE) between <- between[!is_covar] } form <- stats::formula(paste0(dv, "~", paste0(between, collapse = "*"))) test <- car::leveneTest(form, ag_data, center = mean, ...) p.val <- test[1, "Pr(>F)"] method.string <- "Levene's Test" if (is.na(p.val)) { warning(paste0("Could not perform ", method.string, "."), call. = FALSE) invisible(NULL) } else if (p.val < 0.05) { insight::print_color(sprintf("Warning: Variances differ between groups (%s, p = %.3f).\n", method.string, p.val), "red") } else { insight::print_color(sprintf("OK: There is not clear evidence for different variances across groups (%s, p = %.3f).\n", method.string, p.val), "green") } attr(p.val, "object_name") <- deparse(substitute(x), width.cutoff = 500) attr(p.val, "method") <- method.string class(p.val) <- unique(c("check_homogeneity", "see_check_homogeneity", class(p.val))) invisible(p.val) }
cdn_PaleyI<-function(order){ q <- (order-1) if(numbers::mod(q,4)==3 & is.prime(q)==TRUE){ return(ret_value=2) }else return(NULL) }
trend.test <- function(object, significance.level = 0.05) { data <- NULL if (is.element("precintcon.daily", class(object)) || is.element("precintcon.monthly", class(object))) { if (is.element("precintcon.monthly", class(object))) data <- object[[3]] else data <- as.vector((as.matrix(object[,3:33]))) } else if (is.vector(object) && class(object) == "numeric") data <- object else stop("Invalid data. Please, check your input object.") n <- length(data) data[is.na(data)] <- 0.0 S <- 0.0 for (i in 2:n) { r <- data[(i:n)] - data[i-1] S <- S + length(r[r>0]) + (-1 * length(r[r<0])) } S.var <- ((n * (n - 1) * (2 * n + 5))) / 18 Z <- 0.0 p.value <- 0.0 if (n > 10) { Z <- if (S > 0) (S - 1) / sqrt(S.var) else if (S == 0) 0 else (S + 1) /sqrt(S.var) p.value <- pnorm(Z) } return(data.frame(S=S, var.S=S.var, Z=Z,p.value=p.value, p.value.two.tailed=2*p.value)) }
plotPullup_gui <- function(env = parent.frame(), savegui = NULL, debug = FALSE, parent = NULL) { .gData <- NULL .gDataName <- NULL .gPlot <- NULL .theme <- c( "theme_grey()", "theme_bw()", "theme_linedraw()", "theme_light()", "theme_dark()", "theme_minimal()", "theme_classic()", "theme_void()" ) .scales <- c("fixed", "free_x", "free_y", "free") val_obj <- NULL fnc <- as.character(match.call()[[1]]) if (debug) { print(paste("IN:", fnc)) } strWinTitle <- "Plot pull-up" strChkGui <- "Save GUI settings" strBtnHelp <- "Help" strFrmDataset <- "Dataset and kit" strLblDataset <- "Pull-up dataset:" strDrpDataset <- "<Select dataset>" strLblSamples <- "samples" strLblKit <- "and the kit used:" strFrmOptions <- "Options" strChkOverride <- "Override automatic titles" strLblTitlePlot <- "Plot title:" strLblTitleX <- "X title:" strLblTitleY <- "Y title:" strLblTheme <- "Plot theme:" strChkSex <- "Exclude sex markers" strExpPoints <- "Data points" strLblShape <- "Shape:" strLblAlpha <- "Alpha:" strLblJitter <- "Jitter (width):" strExpAxes <- "Axes" strLblLimitY <- "Limit Y axis (min-max)" strLblLimitX <- "Limit X axis (min-max)" strLblScales <- "Scales:" strExpLabels <- "X labels" strLblSize <- "Text size (pts):" strLblAngle <- "Angle:" strLblJustification <- "Justification (v/h):" strFrmPlot <- "Plot pull-up data" strBtnRatioVsHeight <- "Ratio vs. Height" strBtnRatioVsAllele <- "Ratio vs. Allele" strBtnProcessing <- "Processing..." strFrmSave <- "Save as" strLblSave <- "Name for result:" strBtnSaveObject <- "Save as object" strBtnSaveImage <- "Save as image" strBtnObjectSaved <- "Object saved" strLblMainTitle <- "Pull-up ratio" strLblYTitle <- "Ratio" strLblXTitleHeight <- "Allele peak height (RFU)" strLblXTitleAllele <- "Allele designation" strMsgNull <- "Data frame is NULL or NA!" strMsgTitleError <- "Error" dtStrings <- getStrings(gui = fnc) if (!is.null(dtStrings)) { strtmp <- dtStrings["strWinTitle"]$value strWinTitle <- ifelse(is.na(strtmp), strWinTitle, strtmp) strtmp <- dtStrings["strChkGui"]$value strChkGui <- ifelse(is.na(strtmp), strChkGui, strtmp) strtmp <- dtStrings["strBtnHelp"]$value strBtnHelp <- ifelse(is.na(strtmp), strBtnHelp, strtmp) strtmp <- dtStrings["strFrmDataset"]$value strFrmDataset <- ifelse(is.na(strtmp), strFrmDataset, strtmp) strtmp <- dtStrings["strLblDataset"]$value strLblDataset <- ifelse(is.na(strtmp), strLblDataset, strtmp) strtmp <- dtStrings["strDrpDataset"]$value strDrpDataset <- ifelse(is.na(strtmp), strDrpDataset, strtmp) strtmp <- dtStrings["strLblSamples"]$value strLblSamples <- ifelse(is.na(strtmp), strLblSamples, strtmp) strtmp <- dtStrings["strLblKit"]$value strLblKit <- ifelse(is.na(strtmp), strLblKit, strtmp) strtmp <- dtStrings["strFrmOptions"]$value strFrmOptions <- ifelse(is.na(strtmp), strFrmOptions, strtmp) strtmp <- dtStrings["strChkOverride"]$value strChkOverride <- ifelse(is.na(strtmp), strChkOverride, strtmp) strtmp <- dtStrings["strLblTitlePlot"]$value strLblTitlePlot <- ifelse(is.na(strtmp), strLblTitlePlot, strtmp) strtmp <- dtStrings["strLblTitleX"]$value strLblTitleX <- ifelse(is.na(strtmp), strLblTitleX, strtmp) strtmp <- dtStrings["strLblTitleY"]$value strLblTitleY <- ifelse(is.na(strtmp), strLblTitleY, strtmp) strtmp <- dtStrings["strLblTheme"]$value strLblTheme <- ifelse(is.na(strtmp), strLblTheme, strtmp) strtmp <- dtStrings["strChkSex"]$value strChkSex <- ifelse(is.na(strtmp), strChkSex, strtmp) strtmp <- dtStrings["strExpPoints"]$value strExpPoints <- ifelse(is.na(strtmp), strExpPoints, strtmp) strtmp <- dtStrings["strLblShape"]$value strLblShape <- ifelse(is.na(strtmp), strLblShape, strtmp) strtmp <- dtStrings["strLblAlpha"]$value strLblAlpha <- ifelse(is.na(strtmp), strLblAlpha, strtmp) strtmp <- dtStrings["strLblJitter"]$value strLblJitter <- ifelse(is.na(strtmp), strLblJitter, strtmp) strtmp <- dtStrings["strExpAxes"]$value strExpAxes <- ifelse(is.na(strtmp), strExpAxes, strtmp) strtmp <- dtStrings["strLblLimitY"]$value strLblLimitY <- ifelse(is.na(strtmp), strLblLimitY, strtmp) strtmp <- dtStrings["strLblLimitX"]$value strLblLimitX <- ifelse(is.na(strtmp), strLblLimitX, strtmp) strtmp <- dtStrings["strLblScales"]$value strLblScales <- ifelse(is.na(strtmp), strLblScales, strtmp) strtmp <- dtStrings["strExpLabels"]$value strExpLabels <- ifelse(is.na(strtmp), strExpLabels, strtmp) strtmp <- dtStrings["strLblSize"]$value strLblSize <- ifelse(is.na(strtmp), strLblSize, strtmp) strtmp <- dtStrings["strLblAngle"]$value strLblAngle <- ifelse(is.na(strtmp), strLblAngle, strtmp) strtmp <- dtStrings["strLblJustification"]$value strLblJustification <- ifelse(is.na(strtmp), strLblJustification, strtmp) strtmp <- dtStrings["strFrmPlot"]$value strFrmPlot <- ifelse(is.na(strtmp), strFrmPlot, strtmp) strtmp <- dtStrings["strBtnRatioVsHeight"]$value strBtnRatioVsHeight <- ifelse(is.na(strtmp), strBtnRatioVsHeight, strtmp) strtmp <- dtStrings["strBtnRatioVsAllele"]$value strBtnRatioVsAllele <- ifelse(is.na(strtmp), strBtnRatioVsAllele, strtmp) strtmp <- dtStrings["strBtnProcessing"]$value strBtnProcessing <- ifelse(is.na(strtmp), strBtnProcessing, strtmp) strtmp <- dtStrings["strFrmSave"]$value strFrmSave <- ifelse(is.na(strtmp), strFrmSave, strtmp) strtmp <- dtStrings["strLblSave"]$value strLblSave <- ifelse(is.na(strtmp), strLblSave, strtmp) strtmp <- dtStrings["strBtnSaveObject"]$value strBtnSaveObject <- ifelse(is.na(strtmp), strBtnSaveObject, strtmp) strtmp <- dtStrings["strBtnSaveImage"]$value strBtnSaveImage <- ifelse(is.na(strtmp), strBtnSaveImage, strtmp) strtmp <- dtStrings["strBtnObjectSaved"]$value strBtnObjectSaved <- ifelse(is.na(strtmp), strBtnObjectSaved, strtmp) strtmp <- dtStrings["strLblMainTitle"]$value strLblMainTitle <- ifelse(is.na(strtmp), strLblMainTitle, strtmp) strtmp <- dtStrings["strLblYTitle"]$value strLblYTitle <- ifelse(is.na(strtmp), strLblYTitle, strtmp) strtmp <- dtStrings["strLblXTitleHeight"]$value strLblXTitleHeight <- ifelse(is.na(strtmp), strLblXTitleHeight, strtmp) strtmp <- dtStrings["strLblXTitleAllele"]$value strLblXTitleAllele <- ifelse(is.na(strtmp), strLblXTitleAllele, strtmp) strtmp <- dtStrings["strMsgNull"]$value strMsgNull <- ifelse(is.na(strtmp), strMsgNull, strtmp) strtmp <- dtStrings["strMsgTitleError"]$value strMsgTitleError <- ifelse(is.na(strtmp), strMsgTitleError, strtmp) } w <- gwindow(title = strWinTitle, visible = FALSE) addHandlerUnrealize(w, handler = function(h, ...) { .saveSettings() if (!is.null(parent)) { focus(parent) } if (gtoolkit() == "tcltk") { if (as.numeric(gsub("[^0-9]", "", packageVersion("gWidgets2tcltk"))) <= 106) { message("tcltk version <= 1.0.6, returned TRUE!") return(TRUE) } else { message("tcltk version >1.0.6, returned FALSE!") return(FALSE) } } else { message("RGtk2, returned FALSE!") return(FALSE) } }) gv <- ggroup( horizontal = FALSE, spacing = 5, use.scrollwindow = FALSE, container = w, expand = TRUE ) gh <- ggroup(container = gv, expand = FALSE, fill = "both") savegui_chk <- gcheckbox(text = strChkGui, checked = FALSE, container = gh) addSpring(gh) help_btn <- gbutton(text = strBtnHelp, container = gh) addHandlerChanged(help_btn, handler = function(h, ...) { print(help(fnc, help_type = "html")) }) f0 <- gframe( text = strFrmDataset, horizontal = TRUE, spacing = 2, container = gv ) glabel(text = strLblDataset, container = f0) dataset_drp <- gcombobox( items = c( strDrpDataset, listObjects( env = env, obj.class = "data.frame" ) ), selected = 1, editable = FALSE, container = f0, ellipsize = "none" ) f0_samples_lbl <- glabel( text = paste(" (0 ", strLblSamples, ") ", sep = ""), container = f0 ) glabel(text = strLblKit, container = f0) kit_drp <- gcombobox( items = getKit(), selected = 1, editable = FALSE, container = f0, ellipsize = "none" ) addHandlerChanged(dataset_drp, handler = function(h, ...) { val_obj <- svalue(dataset_drp) requiredCol <- c( "Sample.Name", "Marker", "Dye", "Allele", "Height", "Size", "Data.Point", "P.Marker", "P.Dye", "P.Allele", "P.Height", "P.Size", "P.Data.Point", "Delta", "Ratio" ) ok <- checkDataset( name = val_obj, reqcol = requiredCol, env = env, parent = w, debug = debug ) if (ok) { .gData <<- get(val_obj, envir = env) .gDataName <<- val_obj svalue(f5_save_edt) <- paste(val_obj, "_ggplot", sep = "") svalue(f0_samples_lbl) <- paste(" (", length(unique(.gData$Sample.Name)), " ", strLblSamples, ")", sep = "" ) kitIndex <- detectKit(.gData, index = TRUE) svalue(kit_drp, index = TRUE) <- kitIndex .enablePlotButtons() } else { .gData <<- NULL svalue(f5_save_edt) <- "" svalue(dataset_drp, index = TRUE) <- 1 svalue(f0_samples_lbl) <- paste(" (0 ", strLblSamples, ") ", sep = "") } }) f1 <- gframe( text = strFrmOptions, horizontal = FALSE, spacing = 2, container = gv ) titles_chk <- gcheckbox( text = strChkOverride, checked = FALSE, container = f1 ) addHandlerChanged(titles_chk, handler = function(h, ...) { .updateGui() }) titles_group <- ggroup( container = f1, spacing = 1, horizontal = FALSE, expand = TRUE, fill = TRUE ) glabel(text = strLblTitlePlot, container = titles_group, anchor = c(-1, 0)) title_edt <- gedit(expand = TRUE, fill = TRUE, container = titles_group) glabel(text = strLblTitleX, container = titles_group, anchor = c(-1, 0)) x_title_edt <- gedit(expand = TRUE, fill = TRUE, container = titles_group) glabel(text = strLblTitleY, container = titles_group, anchor = c(-1, 0)) y_title_edt <- gedit(expand = TRUE, fill = TRUE, container = titles_group) f1g2 <- glayout(container = f1) f1g2[1, 1] <- glabel(text = strLblTheme, anchor = c(-1, 0), container = f1g2) f1g2[1, 2] <- f1_theme_drp <- gcombobox( items = .theme, selected = 1, container = f1g2, ellipsize = "none" ) f1_drop_chk <- gcheckbox( text = strChkSex, checked = TRUE, container = f1 ) addHandlerChanged(f1_drop_chk, handler = function(h, ...) { .enablePlotButtons() }) f7 <- gframe( text = strFrmPlot, horizontal = TRUE, container = gv ) plot_height_btn <- gbutton(text = strBtnRatioVsHeight, container = f7) plot_allele_btn <- gbutton(text = strBtnRatioVsAllele, container = f7) addHandlerChanged(plot_height_btn, handler = function(h, ...) { requiredCol <- c( "Sample.Name", "Marker", "Dye", "Allele", "Height", "Size", "Data.Point", "P.Marker", "P.Dye", "P.Allele", "P.Height", "P.Size", "P.Data.Point", "Delta", "Ratio" ) ok <- checkDataset( name = val_obj, reqcol = requiredCol, env = env, parent = w, debug = debug ) if (ok) { enabled(plot_height_btn) <- FALSE .plotPullup(what = "Height") enabled(plot_height_btn) <- TRUE } }) addHandlerChanged(plot_allele_btn, handler = function(h, ...) { requiredCol <- c( "Sample.Name", "Marker", "Dye", "Allele", "Height", "Size", "Data.Point", "P.Marker", "P.Dye", "P.Allele", "P.Height", "P.Size", "P.Data.Point", "Delta", "Ratio" ) ok <- checkDataset( name = val_obj, reqcol = requiredCol, env = env, parent = w, debug = debug ) if (ok) { enabled(plot_allele_btn) <- FALSE .plotPullup(what = "Allele") enabled(plot_allele_btn) <- TRUE } }) f5 <- gframe( text = strFrmSave, horizontal = TRUE, spacing = 2, container = gv ) glabel(text = strLblSave, container = f5) f5_save_edt <- gedit(container = f5, expand = TRUE, fill = TRUE) f5_save_btn <- gbutton(text = strBtnSaveObject, container = f5) f5_ggsave_btn <- gbutton(text = strBtnSaveImage, container = f5) addHandlerClicked(f5_save_btn, handler = function(h, ...) { val_name <- svalue(f5_save_edt) blockHandlers(f5_save_btn) svalue(f5_save_btn) <- strBtnProcessing unblockHandlers(f5_save_btn) enabled(f5_save_btn) <- FALSE saveObject( name = val_name, object = .gPlot, parent = w, env = env, debug = debug ) blockHandlers(f5_save_btn) svalue(f5_save_btn) <- strBtnObjectSaved unblockHandlers(f5_save_btn) }) addHandlerChanged(f5_ggsave_btn, handler = function(h, ...) { val_name <- svalue(f5_save_edt) ggsave_gui( ggplot = .gPlot, name = val_name, parent = w, env = env, savegui = savegui, debug = debug ) }) e2 <- gexpandgroup( text = strExpPoints, horizontal = FALSE, container = f1 ) visible(e2) <- FALSE grid2 <- glayout(container = e2) grid2[1, 1] <- glabel(text = strLblShape, container = grid2) grid2[1, 2] <- e2_shape_spb <- gspinbutton( from = 0, to = 25, by = 1, value = 18, container = grid2 ) grid2[1, 3] <- glabel(text = strLblAlpha, container = grid2) grid2[1, 4] <- e2_alpha_spb <- gspinbutton( from = 0, to = 1, by = 0.01, value = 0.60, container = grid2 ) grid2[1, 5] <- glabel(text = strLblJitter, container = grid2) grid2[1, 6] <- e2_jitter_edt <- gedit(text = "0", width = 4, container = grid2) e3 <- gexpandgroup( text = strExpAxes, horizontal = FALSE, container = f1 ) visible(e3) <- FALSE grid3 <- glayout(container = e3, spacing = 1) grid3[1, 1:2] <- glabel(text = strLblLimitY, container = grid3) grid3[2, 1] <- e3_y_min_edt <- gedit(text = "", width = 5, container = grid3) grid3[2, 2] <- e3_y_max_edt <- gedit(text = "", width = 5, container = grid3) grid3[3, 1:2] <- glabel(text = strLblLimitX, container = grid3) grid3[4, 1] <- e3_x_min_edt <- gedit(text = "", width = 5, container = grid3) grid3[4, 2] <- e3_x_max_edt <- gedit(text = "", width = 5, container = grid3) grid3[1, 3] <- glabel(text = " ", container = grid3) grid3[1, 4] <- glabel(text = strLblScales, container = grid3) grid3[2:4, 4] <- e3_scales_opt <- gradio( items = .scales, selected = 2, horizontal = FALSE, container = grid3 ) addHandlerChanged(e3_scales_opt, handler = function(h, ...) { .enablePlotButtons() }) e4 <- gexpandgroup( text = strExpLabels, horizontal = FALSE, container = f1 ) visible(e4) <- FALSE grid4 <- glayout(container = e4) grid4[1, 1] <- glabel(text = strLblSize, container = grid4) grid4[1, 2] <- e4_size_edt <- gedit(text = "8", width = 4, container = grid4) grid4[1, 3] <- glabel(text = strLblAngle, container = grid4) grid4[1, 4] <- e4_angle_spb <- gspinbutton( from = 0, to = 360, by = 1, value = 270, container = grid4 ) grid4[2, 1] <- glabel(text = strLblJustification, container = grid4) grid4[2, 2] <- e4_vjust_spb <- gspinbutton( from = 0, to = 1, by = 0.1, value = 0.5, container = grid4 ) grid4[2, 3] <- e4_hjust_spb <- gspinbutton( from = 0, to = 1, by = 0.1, value = 0, container = grid4 ) .plotPullup <- function(what) { val_titles <- svalue(titles_chk) val_title <- svalue(title_edt) val_xtitle <- svalue(x_title_edt) val_ytitle <- svalue(y_title_edt) val_shape <- as.numeric(svalue(e2_shape_spb)) val_alpha <- as.numeric(svalue(e2_alpha_spb)) val_jitter <- as.numeric(svalue(e2_jitter_edt)) val_ymin <- as.numeric(svalue(e3_y_min_edt)) val_ymax <- as.numeric(svalue(e3_y_max_edt)) val_xmin <- as.numeric(svalue(e3_x_min_edt)) val_xmax <- as.numeric(svalue(e3_x_max_edt)) val_angle <- as.numeric(svalue(e4_angle_spb)) val_vjust <- as.numeric(svalue(e4_vjust_spb)) val_hjust <- as.numeric(svalue(e4_hjust_spb)) val_size <- as.numeric(svalue(e4_size_edt)) val_scales <- svalue(e3_scales_opt) val_kit <- svalue(kit_drp) val_drop <- svalue(f1_drop_chk) val_theme <- svalue(f1_theme_drp) if (debug) { print("val_title") print(val_title) print("val_xtitle") print(val_xtitle) print("val_ytitle") print(val_ytitle) print("val_shape") print(val_shape) print("val_alpha") print(val_alpha) print("val_jitter") print(val_jitter) print("val_ymin") print(val_ymin) print("val_ymax") print(val_ymax) print("val_angle") print(val_angle) print("val_vjust") print(val_vjust) print("val_hjust") print(val_hjust) print("val_size") print(val_size) print("str(.gData)") print(str(.gData)) print("val_drop") print(val_drop) print("val_kit") print(val_kit) print("val_theme") print(val_theme) } ymax <- NULL ymin <- NULL if (!is.na(.gData) && !is.null(.gData)) { .gData <- sortMarker( data = .gData, kit = val_kit, add.missing.levels = TRUE ) dyes <- unique(getKit(kit = val_kit, what = "Color")$Color) dyes <- addColor(data = dyes, have = "Color", need = "Dye") .gData$Dye <- factor(.gData$Dye, levels = dyes) .gData$P.Dye <- factor(.gData$P.Dye, levels = dyes) if (val_drop) { sexMarkers <- getKit(kit = val_kit, what = "Sex.Marker") if (length(sexMarkers) > 0) { n0 <- nrow(.gData) for (m in seq(along = sexMarkers)) { .gData <- .gData[.gData$Marker != sexMarkers[m], ] } n1 <- nrow(.gData) message(paste(n1, " rows after removing ", n0 - n1, " sex marker rows.", sep = "")) .gData$Marker <- factor(.gData$Marker, levels = levels(.gData$Marker)[!levels(.gData$Marker) %in% sexMarkers] ) } } if (!is.numeric(.gData$Height)) { .gData$Height <- as.numeric(as.character(.gData$Height)) message("'Height' not numeric, converting to numeric.") } if (!is.numeric(.gData$Ratio)) { .gData$Ratio <- as.numeric(as.character(.gData$Ratio)) message("'Ratio' not numeric, converting to numeric.") } markerDye <- data.frame(Marker = levels(.gData$Marker)) markerDye <- addColor(data = markerDye, kit = val_kit) markerDye <- markerDye[c("Marker", "Dye")] uniqueMarkerDye <- markerDye[!duplicated(markerDye), ] val_ncol <- unique(table(uniqueMarkerDye$Dye)) val_palette <- unique(getKit(kit = val_kit, what = "Color")$Color) val_palette <- addColor(data = val_palette, have = "Color", need = "R.Color") if (debug) { print("Before plot: str(.gData)") print(str(.gData)) print("Number of columns") print(val_ncol) print("val_palette") print(val_palette) } if (val_titles) { mainTitle <- val_title xTitle <- val_xtitle yTitle <- val_ytitle } if (!val_titles) { if (debug) { print("Using default titles.") } if (what == "Height") { mainTitle <- strLblMainTitle xTitle <- strLblXTitleHeight yTitle <- strLblYTitle } else if (what == "Allele") { mainTitle <- strLblMainTitle xTitle <- strLblXTitleAllele yTitle <- strLblYTitle } else { stop(paste("what=", what, " not handled!")) } } if (debug) { print("Titles:") print(mainTitle) print(xTitle) print(yTitle) } dt <- data.table::data.table(.gData) tmp <- dt[, list(Sum = sum(Ratio)), by = Marker] if (any(tmp$Sum == 0) || !all(levels(dt$Marker) %in% unique(dt$Marker))) { message("Empty facets detected! If this leads to plot error try another scale for axes.") } if (length(val_ncol) == 1) { if (debug) { print("Simple plot.") } if (what == "Height") { gp <- ggplot(.gData, aes_string(x = "Height", y = "Ratio", colour = "P.Dye")) } else if (what == "Allele") { gp <- ggplot(.gData, aes_string(x = "Allele", y = "Ratio", colour = "P.Dye")) } if (debug) { print("Plot created.") } gp <- gp + eval(parse(text = val_theme)) gp <- gp + geom_point( shape = val_shape, alpha = val_alpha, position = position_jitter(height = 0, width = val_jitter) ) gp <- gp + facet_grid("Dye ~ Marker") gp <- gp + facet_wrap(as.formula(paste("~", "Marker")), ncol = val_ncol, drop = FALSE, scales = val_scales ) gp <- gp + scale_colour_manual(guide = FALSE, values = val_palette, drop = FALSE) if (!is.na(val_ymin) && !is.na(val_ymax)) { val_y <- c(val_ymin, val_ymax) } else { val_y <- NULL } if (!is.na(val_xmin) && !is.na(val_xmax)) { val_x <- c(val_xmin, val_xmax) } else { val_x <- NULL } gp <- gp + coord_cartesian(xlim = val_x, ylim = val_y) if (debug) { print(paste( "Plot zoomed to xlim:", paste(val_x, collapse = ","), "ylim:", paste(val_y, collapse = ",") )) } gp <- gp + guides(fill = guide_legend(reverse = TRUE)) gp <- gp + theme(axis.text.x = element_text( angle = val_angle, hjust = val_hjust, vjust = val_vjust, size = val_size )) gp <- gp + labs(title = mainTitle) gp <- gp + xlab(xTitle) gp <- gp + ylab(yTitle) print(gp) svalue(f5_save_btn) <- strBtnSaveObject enabled(f5_save_btn) <- TRUE } else if (length(val_ncol) > 1) { if (debug) { print("Complex plot.") } if (val_scales %in% c("fixed", "free_x")) { ymax <- max(.gData$Ratio, na.rm = TRUE) * 1.05 ymin <- min(.gData$Ratio, na.rm = TRUE) * 0.95 } noDyes <- length(dyes) noRows <- length(dyes) + 2 g <- gtable::gtable( widths = grid::unit(c(1.5, 1), c("lines", "null")), heights = grid::unit(c(1.5, rep(1, noDyes), 1.5), c("line", rep("null", noDyes), "line")) ) g <- gtable::gtable_add_grob(g, grid::textGrob(mainTitle), t = 1, b = 1, l = 2, r = 2) g <- gtable::gtable_add_grob(g, grid::textGrob(xTitle), t = noRows, b = noRows, l = 2, r = 2) g <- gtable::gtable_add_grob(g, grid::textGrob(yTitle, rot = 90), t = 1, b = noRows, l = 1, r = 1) gLevel <- data.frame(Marker = levels(.gData$Marker)) gLevel <- addColor(data = gLevel, kit = val_kit) for (d in seq(along = dyes)) { gDataSub <- .gData[.gData$Dye == dyes[d], ] gDyeLevel <- as.character(gLevel$Marker[gLevel$Dye == dyes[d]]) if (nrow(gDataSub) == 0) { tmp <- data.frame( Sample.Name = "", Marker = gDyeLevel, Dye = dyes[d], Allele = "", Height = 0, Size = 0, Data.Point = 0, P.Marker = NA, P.Dye = dyes[d], P.Allele = NA, P.Height = 0, P.Size = 0, P.Data.Point = 0, Delta = 0, Ratio = 0 ) gDataSub <- plyr::rbind.fill(gDataSub, tmp) } gDataSub$Marker <- factor(gDataSub$Marker, levels = gDyeLevel) gDataSub$Dye <- factor(dyes[d]) gDataSub$P.Dye <- factor(gDataSub$P.Dye, levels = dyes) if (what == "Height") { gp <- ggplot(gDataSub, aes_string(x = "Height", y = "Ratio", colour = "P.Dye")) } else if (what == "Allele") { gp <- ggplot(gDataSub, aes_string(x = "Allele", y = "Ratio", colour = "P.Dye")) } gp <- gp + eval(parse(text = val_theme)) gp <- gp + geom_point( shape = val_shape, alpha = val_alpha, position = position_jitter(height = 0, width = val_jitter) ) gp <- gp + scale_colour_manual(guide = FALSE, values = val_palette, drop = FALSE) gp <- gp + facet_grid("Dye ~ Marker", scales = val_scales, drop = FALSE) gp <- gp + theme(plot.margin = grid::unit(c(0.25, 1.25, 0, 0), "lines")) if (!is.na(val_ymin) && !is.na(val_ymax)) { val_y <- c(val_ymin, val_ymax) } else { if (val_scales %in% c("fixed", "free_x")) { val_y <- c(ymin, ymax) } val_y <- NULL } if (!is.na(val_xmin) && !is.na(val_xmax)) { val_x <- c(val_xmin, val_xmax) } else { if (val_scales %in% c("fixed", "free_x")) { val_y <- c(ymin, ymax) } val_x <- NULL } gp <- gp + coord_cartesian(xlim = val_x, ylim = val_y) if (debug) { print(paste( "Plot zoomed to xlim:", paste(val_x, collapse = ","), "ylim:", paste(val_y, collapse = ",") )) } gp <- gp + labs(title = element_blank()) gp <- gp + theme(axis.title.x = element_blank()) gp <- gp + theme(axis.text.x = element_text( angle = val_angle, hjust = val_hjust, vjust = val_vjust, size = val_size )) gp <- gp + theme(axis.title.y = element_blank()) gp <- gp + theme(legend.position = "none") g <- gtable::gtable_add_grob(g, ggplotGrob(gp), t = (d + 1), b = (d + 1), l = 2, r = 2) } grid::grid.newpage() grid::grid.draw(g) gp <- gridExtra::arrangeGrob(g) svalue(f5_save_btn) <- strBtnSaveObject enabled(f5_save_btn) <- FALSE } else { stop(paste("Unsupported number of columns:", val_ncol)) } .gPlot <<- gp } else { gmessage( msg = strMsgNull, title = strMsgTitleError, icon = "error" ) } } .updateGui <- function() { val <- svalue(titles_chk) if (val) { enabled(titles_group) <- TRUE } else { enabled(titles_group) <- FALSE } } .enablePlotButtons <- function() { enabled(plot_allele_btn) <- TRUE enabled(plot_height_btn) <- TRUE } .loadSavedSettings <- function() { if (!is.null(savegui)) { svalue(savegui_chk) <- savegui enabled(savegui_chk) <- FALSE if (debug) { print("Save GUI status set!") } } else { if (exists(".strvalidator_plotPullup_gui_savegui", envir = env, inherits = FALSE)) { svalue(savegui_chk) <- get(".strvalidator_plotPullup_gui_savegui", envir = env) } if (debug) { print("Save GUI status loaded!") } } if (debug) { print(svalue(savegui_chk)) } if (svalue(savegui_chk)) { if (exists(".strvalidator_plotPullup_gui_title", envir = env, inherits = FALSE)) { svalue(title_edt) <- get(".strvalidator_plotPullup_gui_title", envir = env) } if (exists(".strvalidator_plotPullup_gui_title_chk", envir = env, inherits = FALSE)) { svalue(titles_chk) <- get(".strvalidator_plotPullup_gui_title_chk", envir = env) } if (exists(".strvalidator_plotPullup_gui_x_title", envir = env, inherits = FALSE)) { svalue(x_title_edt) <- get(".strvalidator_plotPullup_gui_x_title", envir = env) } if (exists(".strvalidator_plotPullup_gui_y_title", envir = env, inherits = FALSE)) { svalue(y_title_edt) <- get(".strvalidator_plotPullup_gui_y_title", envir = env) } if (exists(".strvalidator_plotPullup_gui_sex", envir = env, inherits = FALSE)) { svalue(f1_drop_chk) <- get(".strvalidator_plotPullup_gui_sex", envir = env) } if (exists(".strvalidator_plotPullup_gui_points_shape", envir = env, inherits = FALSE)) { svalue(e2_shape_spb) <- get(".strvalidator_plotPullup_gui_points_shape", envir = env) } if (exists(".strvalidator_plotPullup_gui_points_alpha", envir = env, inherits = FALSE)) { svalue(e2_alpha_spb) <- get(".strvalidator_plotPullup_gui_points_alpha", envir = env) } if (exists(".strvalidator_plotPullup_gui_points_jitter", envir = env, inherits = FALSE)) { svalue(e2_jitter_edt) <- get(".strvalidator_plotPullup_gui_points_jitter", envir = env) } if (exists(".strvalidator_plotPullup_gui_axes_y_min", envir = env, inherits = FALSE)) { svalue(e3_y_min_edt) <- get(".strvalidator_plotPullup_gui_axes_y_min", envir = env) } if (exists(".strvalidator_plotPullup_gui_axes_y_max", envir = env, inherits = FALSE)) { svalue(e3_y_max_edt) <- get(".strvalidator_plotPullup_gui_axes_y_max", envir = env) } if (exists(".strvalidator_plotPullup_gui_axes_x_min", envir = env, inherits = FALSE)) { svalue(e3_x_min_edt) <- get(".strvalidator_plotPullup_gui_axes_x_min", envir = env) } if (exists(".strvalidator_plotPullup_gui_axes_x_max", envir = env, inherits = FALSE)) { svalue(e3_x_max_edt) <- get(".strvalidator_plotPullup_gui_axes_x_max", envir = env) } if (exists(".strvalidator_plotPullup_gui_axes_scales", envir = env, inherits = FALSE)) { svalue(e3_scales_opt) <- get(".strvalidator_plotPullup_gui_axes_scales", envir = env) } if (exists(".strvalidator_plotPullup_gui_xlabel_size", envir = env, inherits = FALSE)) { svalue(e4_size_edt) <- get(".strvalidator_plotPullup_gui_xlabel_size", envir = env) } if (exists(".strvalidator_plotPullup_gui_xlabel_angle", envir = env, inherits = FALSE)) { svalue(e4_angle_spb) <- get(".strvalidator_plotPullup_gui_xlabel_angle", envir = env) } if (exists(".strvalidator_plotPullup_gui_xlabel_justh", envir = env, inherits = FALSE)) { svalue(e4_hjust_spb) <- get(".strvalidator_plotPullup_gui_xlabel_justh", envir = env) } if (exists(".strvalidator_plotPullup_gui_xlabel_justv", envir = env, inherits = FALSE)) { svalue(e4_vjust_spb) <- get(".strvalidator_plotPullup_gui_xlabel_justv", envir = env) } if (exists(".strvalidator_plotPullup_gui_theme", envir = env, inherits = FALSE)) { svalue(f1_theme_drp) <- get(".strvalidator_plotPullup_gui_theme", envir = env) } if (debug) { print("Saved settings loaded!") } } } .saveSettings <- function() { if (svalue(savegui_chk)) { assign(x = ".strvalidator_plotPullup_gui_savegui", value = svalue(savegui_chk), envir = env) assign(x = ".strvalidator_plotPullup_gui_sex", value = svalue(f1_drop_chk), envir = env) assign(x = ".strvalidator_plotPullup_gui_title", value = svalue(title_edt), envir = env) assign(x = ".strvalidator_plotPullup_gui_title_chk", value = svalue(titles_chk), envir = env) assign(x = ".strvalidator_plotPullup_gui_x_title", value = svalue(x_title_edt), envir = env) assign(x = ".strvalidator_plotPullup_gui_y_title", value = svalue(y_title_edt), envir = env) assign(x = ".strvalidator_plotPullup_gui_points_shape", value = svalue(e2_shape_spb), envir = env) assign(x = ".strvalidator_plotPullup_gui_points_alpha", value = svalue(e2_alpha_spb), envir = env) assign(x = ".strvalidator_plotPullup_gui_points_jitter", value = svalue(e2_jitter_edt), envir = env) assign(x = ".strvalidator_plotPullup_gui_axes_y_min", value = svalue(e3_y_min_edt), envir = env) assign(x = ".strvalidator_plotPullup_gui_axes_y_max", value = svalue(e3_y_max_edt), envir = env) assign(x = ".strvalidator_plotPullup_gui_axes_x_min", value = svalue(e3_x_min_edt), envir = env) assign(x = ".strvalidator_plotPullup_gui_axes_x_max", value = svalue(e3_x_max_edt), envir = env) assign(x = ".strvalidator_plotPullup_gui_axes_scales", value = svalue(e3_scales_opt), envir = env) assign(x = ".strvalidator_plotPullup_gui_xlabel_size", value = svalue(e4_size_edt), envir = env) assign(x = ".strvalidator_plotPullup_gui_xlabel_angle", value = svalue(e4_angle_spb), envir = env) assign(x = ".strvalidator_plotPullup_gui_xlabel_justh", value = svalue(e4_hjust_spb), envir = env) assign(x = ".strvalidator_plotPullup_gui_xlabel_justv", value = svalue(e4_vjust_spb), envir = env) assign(x = ".strvalidator_plotPullup_gui_theme", value = svalue(f1_theme_drp), envir = env) } else { if (exists(".strvalidator_plotPullup_gui_savegui", envir = env, inherits = FALSE)) { remove(".strvalidator_plotPullup_gui_savegui", envir = env) } if (exists(".strvalidator_plotPullup_gui_title", envir = env, inherits = FALSE)) { remove(".strvalidator_plotPullup_gui_title", envir = env) } if (exists(".strvalidator_plotPullup_gui_title_chk", envir = env, inherits = FALSE)) { remove(".strvalidator_plotPullup_gui_title_chk", envir = env) } if (exists(".strvalidator_plotPullup_gui_x_title", envir = env, inherits = FALSE)) { remove(".strvalidator_plotPullup_gui_x_title", envir = env) } if (exists(".strvalidator_plotPullup_gui_y_title", envir = env, inherits = FALSE)) { remove(".strvalidator_plotPullup_gui_y_title", envir = env) } if (exists(".strvalidator_plotPullup_gui_sex", envir = env, inherits = FALSE)) { remove(".strvalidator_plotPullup_gui_sex", envir = env) } if (exists(".strvalidator_plotPullup_gui_points_shape", envir = env, inherits = FALSE)) { remove(".strvalidator_plotPullup_gui_points_shape", envir = env) } if (exists(".strvalidator_plotPullup_gui_points_alpha", envir = env, inherits = FALSE)) { remove(".strvalidator_plotPullup_gui_points_alpha", envir = env) } if (exists(".strvalidator_plotPullup_gui_points_jitter", envir = env, inherits = FALSE)) { remove(".strvalidator_plotPullup_gui_points_jitter", envir = env) } if (exists(".strvalidator_plotPullup_gui_axes_y_min", envir = env, inherits = FALSE)) { remove(".strvalidator_plotPullup_gui_axes_y_min", envir = env) } if (exists(".strvalidator_plotPullup_gui_axes_y_max", envir = env, inherits = FALSE)) { remove(".strvalidator_plotPullup_gui_axes_y_max", envir = env) } if (exists(".strvalidator_plotPullup_gui_axes_x_min", envir = env, inherits = FALSE)) { remove(".strvalidator_plotPullup_gui_axes_x_min", envir = env) } if (exists(".strvalidator_plotPullup_gui_axes_x_max", envir = env, inherits = FALSE)) { remove(".strvalidator_plotPullup_gui_axes_x_max", envir = env) } if (exists(".strvalidator_plotPullup_gui_axes_scales", envir = env, inherits = FALSE)) { remove(".strvalidator_plotPullup_gui_axes_scales", envir = env) } if (exists(".strvalidator_plotPullup_gui_xlabel_size", envir = env, inherits = FALSE)) { remove(".strvalidator_plotPullup_gui_xlabel_size", envir = env) } if (exists(".strvalidator_plotPullup_gui_xlabel_angle", envir = env, inherits = FALSE)) { remove(".strvalidator_plotPullup_gui_xlabel_angle", envir = env) } if (exists(".strvalidator_plotPullup_gui_xlabel_justh", envir = env, inherits = FALSE)) { remove(".strvalidator_plotPullup_gui_xlabel_justh", envir = env) } if (exists(".strvalidator_plotPullup_gui_xlabel_justv", envir = env, inherits = FALSE)) { remove(".strvalidator_plotPullup_gui_xlabel_justv", envir = env) } if (exists(".strvalidator_plotPullup_gui_theme", envir = env, inherits = FALSE)) { remove(".strvalidator_plotPullup_gui_theme", envir = env) } if (debug) { print("Settings cleared!") } } if (debug) { print("Settings saved!") } } .loadSavedSettings() .updateGui() visible(w) <- TRUE focus(w) }
iirlp2mb <- function(b, ...) UseMethod("iirlp2mb") iirlp2mb.Arma <- function(b, Wo, Wt, type, ...) { iirlp2mb(b$b, b$a, Wo, Wt, type, ...) } iirlp2mb.Zpg <- function(b, Wo, Wt, type, ...) { ba <- as.Arma(b) iirlp2mb(ba$b, ba$a, Wo, Wt, type, ...) } iirlp2mb.Sos <- function(b, Wo, Wt, type, ...) { ba <- as.Arma(b) iirlp2mb(ba$b, ba$a, Wo, Wt, type, ...) } iirlp2mb.default <- function(b, a, Wo, Wt, type = c("pass", "stop"), ...) { type <- match.arg(type) if (type == "pass") { pass_stop <- -1 } else if (type == "stop") { pass_stop <- 1 } if (!isPosscal(Wo) || Wo > 1) { stop(paste("Frequency value Wo of prototype filter", "must be a scalar between 0 and 1")) } if (any(Wt < 0) || any(Wt > 1)) { stop("Frequency values Wt of target filter must be between 0 and 1") } Wt <- unique(sort(Wt)) K <- apd(pi * Wo) phi <- pi * Wt P <- apd(phi) PP <- rev(P) AllpassDen <- P - (K[2] * PP) AllpassDen <- AllpassDen / AllpassDen[1] AllpassNum <- pass_stop * rev(AllpassDen) ba <- transform(b, a, AllpassNum, AllpassDen, pass_stop) ba } apd <- function(phi) { Pkm1 <- 1 for (k in seq_along(phi)) { P <- pk(Pkm1, k, phi[k]) Pkm1 <- P } P } pk <- function(Pkm1, k, phik) { Pk <- rep(0L, k + 1) sin_k <- sin(phik / 2) cos_k <- cos(phik / 2) for (i in 1:k) { Pk[i] <- Pk[i] + sin_k * Pkm1[i] - ((-1)^k * cos_k * Pkm1[k + 1 - i]) Pk[i + 1] <- Pk[i + 1] + sin_k * Pkm1[i] + ((-1)^k * cos_k * Pkm1[k + 1 - i]) } Pk <- Pk / Pk[1] Pk } ppower <- function(Ppower, i, powcols) { if (i == 0) { p <- 1 } else { p <- NULL for (j in 1:powcols) { if (is.na(Ppower[i, j])) break p <- cbind(p, Ppower[i, j]) } } p } polysum <- function(p1, p2) { n1 <- length(p1) n2 <- length(p2) if (n1 > n2) { p2 <- c(p2, rep(0L, n1 - n2)) } else if (n2 > n1) { p1 <- c(p1, rep(0L, n2 - n1)) } poly <- p1 + p2 poly } transform <- function(B, A, PP, P, pass_stop) { na <- length(A) nb <- length(B) n <- max(na, nb) np <- length(P) powcols <- np + (np - 1) * (n - 2) Ppower <- matrix(NA, nrow = n - 1, ncol = powcols) Ptemp <- P for (i in 1:(n - 1)) { for (j in seq_along(Ptemp)) { Ppower[i, j] <- Ptemp[j] } Ptemp <- conv(Ptemp, P) } Num <- Den <- NULL for (i in 1:n) { if ((n - i) == 0) { p_pownmi <- 1 } else { p_pownmi <- ppower(Ppower, n - i, powcols) } if (i == 1) { pp_powim1 <- 1 } else { pp_powim1 <- rev(ppower(Ppower, i - 1, powcols)) } if (i <= nb) { Bterm <- (pass_stop ^ (i - 1)) * B[i] * conv(pp_powim1, p_pownmi) Num <- polysum(Num, Bterm) } if (i <= na) { Aterm <- (pass_stop ^ (i - 1)) * A[i] * conv(pp_powim1, p_pownmi) Den <- polysum(Den, Aterm) } } Den <- Den / Den[1] Num <- Num / Den[1] Arma(Num, Den) }
isStrictlyNegativeNumberOrNaOrNanOrInfScalarOrNull <- function(argument, default = NULL, stopIfNot = FALSE, message = NULL, argumentName = NULL) { checkarg(argument, "N", default = default, stopIfNot = stopIfNot, nullAllowed = TRUE, n = 1, zeroAllowed = FALSE, negativeAllowed = TRUE, positiveAllowed = FALSE, nonIntegerAllowed = TRUE, naAllowed = TRUE, nanAllowed = TRUE, infAllowed = TRUE, message = message, argumentName = argumentName) }
pat_dygraph <- function( pat = NULL, parameter = "pm25", sampleSize = 5000, title = NULL, xlab = NULL, ylab = NULL, tlim = NULL, rollPeriod = 1, showLegend = TRUE, colors = NULL, timezone = NULL ) { MazamaCoreUtils::stopIfNull(pat) if ( !pat_isPat(pat) ) stop("Parameter 'pat' is not a valid 'pa_timeseries' object.") if ( pat_isEmpty(pat) ) stop("Parameter 'pat' has no data.") pat <- pat_distinct(pat) if ( is.null(timezone) ) timezone <- pat$meta$timezone if ( !is.null(sampleSize) ) { if ( sampleSize > 1 ) { pat <- pat %>% pat_sample(sampleSize = sampleSize) } else { pat <- pat %>% pat_sample(sampleFraction = sampleSize) } } if ( !is.null(tlim) ) { dateWindow <- MazamaCoreUtils::parseDatetime(tlim, timezone = timezone) } else { dateWindow <- NULL } tzCount <- length(unique(pat$meta$timezone)) if (tzCount > 1) { warning(paste0(tzCount, " timezones found. Using UTC time.")) tzone <- "UTC" } else { tzone <- unique(pat$meta$timezone) } datetime <- pat$data$datetime pm25_A <- pat$data$pm25_A pm25_B <- pat$data$pm25_B temperature <- pat$data$temperature humidity <- pat$data$humidity pressure <- pat$data$pressure label <- pat$meta$label if ( is.null(parameter) || tolower(parameter) == "pm25" ) { channelA <- xts::xts(x = pm25_A, order.by = datetime, tzone = tzone) channelB <- xts::xts(x = pm25_B, order.by = datetime, tzone = tzone) timeseriesMatrix <- cbind(channelA, channelB) names(timeseriesMatrix) <- c("Channel A", "Channel B") if ( is.null(ylab) )( ylab <- "\u03bcg / m\u00b3" ) if ( is.null(colors) )( colors <- c("red", "blue") ) } else if ( tolower(parameter) == "humidity" ) { humidityData <- xts::xts(x = humidity, order.by = datetime, tzone = tzone) timeseriesMatrix <- cbind(humidityData) names(timeseriesMatrix) <- c(paste0(label, "-Humidity")) if ( is.null(ylab) )( ylab <- "RH%") } else if ( tolower(parameter) == "temperature" || tolower(parameter) == "temp" ) { temperatureData <- xts::xts(x = temperature, order.by = datetime, tzone = tzone) timeseriesMatrix <- cbind(temperatureData) names(timeseriesMatrix) <- c(paste0(label, "-Temperature")) if ( is.null(ylab) )( ylab <- "\u00b0F" ) } else if ( tolower(parameter) == "pressure" || tolower(parameter) == "hpa" ) { pressureData <- xts::xts(x = pressure, order.by = datetime, tzone = tzone) timeseriesMatrix <- cbind(pressureData) names(timeseriesMatrix) <- c(paste0(label, "-Pressure")) if ( is.null(ylab) )( ylab <- "hPa" ) } else { stop("Required parameter 'parameter' is not recognized") } if ( is.null(title) ) title <- label show <- ifelse(showLegend, "always", "never") graph <- dygraphs::dygraph(timeseriesMatrix, main = title, xlab = xlab, ylab = ylab) %>% dygraphs::dyOptions(useDataTimezone = TRUE) %>% dygraphs::dyLegend(show = show, width = 250, labelsSeparateLines = TRUE) %>% dygraphs::dyRangeSelector(dateWindow = dateWindow) %>% dygraphs::dyRoller(rollPeriod = rollPeriod) %>% dygraphs::dyOptions(colors = colors) return( graph ) }
teams <- read.csv("lahman/teams.csv") tail(teams) myteams <- subset(teams, yearID > 2000)[ , c("teamID", "yearID", "lgID", "G", "W", "L", "R", "RA")] tail(myteams) myteams$RD <- with(myteams, R - RA) myteams$Wpct <- with(myteams, W / (W + L)) plot(myteams$RD, myteams$Wpct, xlab="run differential", ylab="winning percentage") linfit <- lm(Wpct ~ RD, data=myteams) abline(a=coef(linfit)[1], b=coef(linfit)[2], lwd=2) myteams$linWpct <- predict(linfit) myteams$linResiduals <- residuals(linfit) plot(myteams$RD, myteams$linResiduals, xlab="run differential", ylab="residual") abline(h=0, lty=3) points(c(68, 88), c(.0749, -.0733), pch=19) text(68, .0749, "LAA '08", pos=4, cex=.8) text(88, -.0733, "CLE '06", pos=4, cex=.8) mean(myteams$linResiduals) linRMSE <- sqrt(mean(myteams$linResiduals ^ 2)) linRMSE nrow(subset(myteams, abs(linResiduals) < linRMSE)) / nrow(myteams) nrow(subset(myteams, abs(linResiduals) < 2 * linRMSE)) / nrow(myteams) myteams$pytWpct <- with(myteams, R ^ 2 / (R ^ 2 + RA ^ 2)) myteams$pytResiduals <- myteams$Wpct - myteams$pytWpct sqrt(mean(myteams$pytResiduals ^ 2)) myteams$logWratio <- log(myteams$W / myteams$L) myteams$logRratio <- log(myteams$R / myteams$RA) pytFit <- lm(logWratio ~ 0 + logRratio, data=myteams) pytFit gl2011 <- read.table("gl2011.txt", sep=",") glheaders <- read.csv("game_log_header.csv") names(gl2011) <- names(glheaders) BOS2011 <- subset(gl2011, HomeTeam=="BOS" | VisitingTeam=="BOS")[ , c("VisitingTeam", "HomeTeam", "VisitorRunsScored", "HomeRunsScore")] head(BOS2011) BOS2011$ScoreDiff <- with(BOS2011, ifelse(HomeTeam == "BOS", HomeRunsScore - VisitorRunsScored, VisitorRunsScored - HomeRunsScore)) BOS2011$W <- BOS2011$ScoreDiff > 0 aggregate(abs(BOS2011$ScoreDiff), list(W=BOS2011$W), summary) results <- gl2011[,c("VisitingTeam", "HomeTeam", "VisitorRunsScored", "HomeRunsScore")] results$winner <- ifelse(results$HomeRunsScore > results$VisitorRunsScored, as.character(results$HomeTeam), as.character(results$VisitingTeam)) results$diff <- abs(results$VisitorRunsScored - results$HomeRunsScore) onerungames <- subset(results, diff == 1) onerunwins <- as.data.frame(table(onerungames$winner)) names(onerunwins) <- c("teamID", "onerunW") teams2011 <- subset(myteams, yearID == 2011) teams2011[teams2011$teamID == "LAA", "teamID"] <- "ANA" teams2011 <- merge(teams2011, onerunwins) plot(teams2011$onerunW, teams2011$pytResiduals, xlab="one run wins", ylab="Pythagorean residuals") identify(teams2011$onerunW, teams2011$pytResiduals, labels=teams2011$teamID) pit <- read.csv("lahman/pitching.csv") top_closers <- subset(pit, GF > 50 & ERA < 2.5)[ ,c("playerID", "yearID", "teamID")] teams_top_closers <- merge(myteams, top_closers) summary(teams_top_closers$pytResiduals) D(expression(G * R ^ 2 / (R ^ 2 + RA ^ 2)), "R") IR <- function(RS=5, RA=5){ round((RS ^ 2 + RA ^ 2)^2 / (2 * RS * RA ^ 2), 1) } IRtable <- expand.grid(RS=seq(3, 6, .5), RA=seq(3, 6, .5)) rbind(head(IRtable), tail(IRtable)) IRtable$IRW <- IR(IRtable$RS, IRtable$RA) xtabs(IRW ~ RS + RA, data=IRtable)
TLS <- function(level){ x <- NULL if(level==1){ x1 <- github.cssegisanddata.covid19(country = "Timor-Leste") x2 <- ourworldindata.org(id = "TLS") x <- full_join(x1, x2, by = "date") } return(x) }
IsoTestBH <- function (rp, FDR, type = c("BH", "BY"), stat = c("E2", "Williams", "Marcus", "M", "ModifM")){ type <- match.arg(type) stat <- match.arg(stat) Probe.ID <- rp[,1] rpraw <- switch(stat, E2 = rp[,2], Williams = rp[,3], Marcus = rp[,4], M = rp[,5], ModifM = rp[,6]) adjp <- cbind(rpraw, p.adjust(rpraw, "BH"),p.adjust(rpraw,"BY")) place.keep33 <- if (type == "BH"){ which(adjp[,2] <= FDR) } else { which(adjp[,3] <= FDR) } sign.Probe.ID <- Probe.ID[place.keep33] if (type == "BH") { sign.genes <- data.frame(sign.Probe.ID, place.keep33, adjp[adjp[,2] <= FDR,1], adjp[adjp[,2] <= FDR,2]) } else { sign.genes <- data.frame(sign.Probe.ID, place.keep33, adjp[adjp[,3] <= FDR,1], adjp[adjp[,3] <= FDR,3]) } names(sign.genes) <- c("Probe.ID", "row.name", "raw p-values", paste(type, "adjusted p values", sep = " ")) return(sign.genes) }
knitr::opts_chunk$set(comment = NA) library(trelliscopejs) library(ggplot2) library(gapminder) str(gapminder) qplot(year, lifeExp, data = subset(gapminder, continent == "Europe")) + facet_wrap(~ country + continent) + theme_bw() qplot(year, lifeExp, data = gapminder) + xlim(1948, 2011) + ylim(10, 95) + theme_bw() + facet_wrap(~ country + continent) qplot(class, cty, data = mpg, geom = c("boxplot", "jitter")) + ylim(7, 37) + theme_bw() library(dplyr) library(tidyr) library(purrr) library(gapminder) by_country <- nest(gapminder, data = !one_of(c("country", "continent"))) by_country country_model <- function(df) lm(lifeExp ~ year, data = df) by_country <- by_country %>% mutate(model = map(data, country_model)) by_country library(plotly) library(trelliscopejs) country_plot <- function(data, model) { plot_ly(data = data, x = ~year, y = ~lifeExp, type = "scatter", mode = "markers", name = "data") %>% add_trace(data = data, x = ~year, y = ~predict(model), mode = "lines", name = "lm") %>% layout( xaxis = list(range = c(1948, 2011)), yaxis = list(range = c(10, 95)), showlegend = FALSE) } by_country <- by_country %>% mutate(data_plot = map2_plot(data, model, country_plot)) by_country by_country <- by_country %>% mutate(resid_mad = cog( map_dbl(model, ~ mad(resid(.x))), desc = "median absolute deviation of residuals"))
pkg_ref_cache.bug_reports_host <- function(x, ...) { UseMethod("pkg_ref_cache.bug_reports_host") } pkg_ref_cache.bug_reports_host.default <- function(x, ...) { if (is.null(x$bug_reports_url)) return(NULL) sapply(strsplit(domain(x$bug_reports_url), "\\."), function(dm) dm[length(dm)-1]) }
setOldClass(c("behavr", "data.table")) NULL behavr <- function(x, metadata){ check_conform(x, metadata) out <- data.table::copy(x) setbehavr(out, metadata) return(out) } setbehavr <- function(x, metadata){ check_conform(x, metadata) m <- data.table::copy(metadata) data.table::setattr(x,"metadata",m) data.table::setattr(x,"class",c("behavr","data.table","data.frame")) } "[.behavr" <- function(x, ..., meta=FALSE,verbose=FALSE){ m <- data.table::copy(meta(x)) old_key <- data.table::key(m) if(!identical(old_key, data.table::key(m))) stop("Something is wrong with this table. Keys in metadata and data are different!") if(meta==TRUE){ out <- m[...] inline <- ifelse(data.table::address(out) == data.table::address(m), TRUE, FALSE) if(inline){ if(!identical(old_key, data.table::key(out))) stop("You are trying to modify metadata in a way that removes its key. This is not allowed!") data.table::setattr(x,"metadata",m) } return(out) } out <- NextMethod() if(!data.table::is.data.table(out)) return(out) inline <- ifelse(data.table::address(out) == data.table::address(x), TRUE, FALSE) if(!identical(data.table::key(out), old_key)){ data.table::setattr(out,"metadata",NULL) data.table::setattr(out,"class",c("data.table","data.frame")) } else{ md <- meta(x) if(!inline){ unique_ids <- unique(utils::getS3method("[","data.table")(out, j=data.table::key(out), with=FALSE)) mismatches <- md[!unique_ids] if(nrow(mismatches) > 0){ if(verbose ==TRUE){ message(sprintf("Implicitly removing %i individuals from metadata (as they are absent from it)", nrow(mismatches))) } md <- md[unique_ids] } } data.table::setattr(out,"metadata",md) data.table::setattr(out,"class",c("behavr","data.table","data.frame")) } if(inline) invisible(out) return(out) } is.behavr <- function(x){ data.table::is.data.table(x) & "behavr" %in% class(x) } print.behavr <- function(x,...){ cat("\n ==== METADATA ====\n\n") print(x[meta=TRUE],class=TRUE,...) cat("\n ====== DATA ======\n\n") NextMethod(x, class=TRUE,...) } summary.behavr <- function(object, detailed = F, ...){ . = .SD = .N = NULL met <- object[meta=TRUE] n_key <- length(data.table::key(met)) n_mvar <- ncol(met) - n_key n_var <- ncol(object) - n_key n_reads <- nrow(object) if(!detailed){ cat("behavr table with:\n") cat(sprintf(" %i\tindividuals\n", nrow(met))) cat(sprintf(" %i\tmetavariables\n", n_mvar)) cat(sprintf(" %i\tvariables\n", n_var)) cat(sprintf(" %s\tmeasurements\n", format( as.double(n_reads), scientific=TRUE))) cat(sprintf(" %i\tkey (%s)\n", n_key, paste(data.table::key(met),collapse=", "))) } else{ cat("\n Summary of each individual (one per row):\n") if(!"t" %in% colnames(object)) sum_dt <- object[, .(data_points =.N), by = c(data.table::key(object))] else sum_dt <- object[, .(data_points =.N, time_range = sprintf("[%s -> %s (%s)]",min(t), max(t), max(t) -min(t))), by = c(data.table::key(object))] print(rejoin(sum_dt)) } }
"fa.rgraph" <- function(fa.results,out.file=NULL,labels=NULL,cut=.3,simple=TRUE, size=c(8,6), node.font=c("Helvetica", 14), edge.font=c("Helvetica", 10), rank.direction=c("RL","TB","LR","BT"), digits=1,main="Factor Analysis",graphviz=TRUE, ...){ if (!requireNamespace('Rgraphviz')) {stop("I am sorry, you need to have loaded the Rgraphviz package") nodes <- function() {} addEdge <- function() {} subGraph <- function(){} } Phi <- NULL if((!is.matrix(fa.results)) && (!is.data.frame(fa.results))) {factors <- as.matrix(fa.results$loadings) if(!is.null(fa.results$Phi)) Phi <- fa.results$Phi} else {factors <- fa.results} rank.direction <- match.arg(rank.direction) num.var <- dim(factors)[1] if (is.null(num.var) ){num.var <- length(factors) num.factors <- 1} else { num.factors <- dim(factors)[2]} if (simple) {k=1} else {k <- num.factors} vars <- paste("V",1:num.var,sep="") fact <- paste("F",1:num.factors,sep="") clust.graph <- new("graphNEL",nodes=c(vars,fact),edgemode="directed") graph.shape <- c(rep("box",num.var),rep("ellipse",num.factors)) graph.rank <- c(rep("sink",num.var),rep("min",num.factors)) names(graph.shape) <- nodes(clust.graph) names(graph.rank) <- nodes(clust.graph) edge.label <- rep("",num.var*k) edge.name <- rep("",num.var*k) names(edge.label) <- seq(1:num.var*k) edge.dir <- rep("forward",num.var*k) l <- factors if (num.factors ==1) { for (i in 1:num.var) { clust.graph <- addEdge(fact[1], vars[i], clust.graph,1) edge.label[i] <- round(factors[i],digits) edge.name[i] <- paste(fact[1],"~",vars[i],sep="") } } else { if(simple){ m1 <- matrix(apply(t(apply(l, 1, abs)), 1, which.max), ncol = 1) for (i in 1:num.var) {clust.graph <- addEdge(fact[m1[i]], vars[i], clust.graph,1) edge.label[i] <- round(factors[i,m1[i]],digits) edge.name[i] <- paste(fact[m1[i]],"~",vars[i],sep="") } } else { k <- 1 for (i in 1:num.var) { for (f in 1:num.factors) { if (abs(factors[i,f]) > cut) {clust.graph <- addEdge(fact[f], vars[i], clust.graph,1) edge.label[k] <- round(factors[i,f],digits) edge.name[k] <- paste(fact[f],"~",vars[i],sep="") k <- k+1 } } } } } if(!is.null(Phi)) { k <- num.var +1 for (f in 2:num.factors) { for (f1 in 1:(f-1)) { if(Phi[f,f1] > cut) { clust.graph <- addEdge(fact[f1], fact[f], clust.graph,1) edge.label[k] <- round(Phi[f,f1],digits) edge.name[k] <- paste(fact[f1],"~",fact[f],sep="") edge.dir[k] <- paste("both") k <- k+1} } } } nAttrs <- list() eAttrs <- list() if (!is.null(labels)) {var.labels <- c(labels,fact) names(var.labels) <- nodes(clust.graph) nAttrs$label <- var.labels names(edge.label) <- edge.name } names(edge.label) <- edge.name names(edge.dir) <- edge.name nAttrs$shape <- graph.shape nAttrs$rank <- graph.rank eAttrs$label <- edge.label eAttrs$dir <- edge.dir attrs <- list(node = list(shape = "ellipse", fixedsize = FALSE),graph=list(rankdir=rank.direction, fontsize=edge.font[2],bgcolor="white" )) obs.var <- subGraph(vars,clust.graph) cluster.vars <- subGraph(fact,clust.graph) observed <- list(list(graph=obs.var,cluster=TRUE,attrs=c(rank="sink")),list(graph=cluster.vars,cluster=FALSE ,attrs=c(rank = "source"))) observed <- list(list(graph=obs.var,cluster=TRUE,attrs=c(rank="sink"))) if(!is.null(out.file) ){toDotty(clust.graph,out.file,nodeAttrs = nAttrs, edgeAttrs = eAttrs, attrs = attrs) } plot(clust.graph, nodeAttrs = nAttrs, edgeAttrs = eAttrs, attrs = attrs,subGList=observed,main=main) return(clust.graph) }
library(glmnet) gregElasticNett <- function(data, xpopd, indices, alpha, lambda){ d <- data[indices,] y <- d[,1] pis <- d[,2] p <- dim(d)[2] - 2 xsample_d <- d[, 3:(p + 2)] pred.mod <- glmnet(x = as.matrix(xsample_d[,-1]), y = y, alpha = alpha, family = "gaussian", standardize = FALSE, weights = pis^{-1}) beta_hat <- predict(pred.mod, s = lambda, type = "coefficients")[1:dim(xsample_d)[2],] return(beta_hat %*% (xpopd) + t(y - xsample_d %*% beta_hat) %*% pis^(-1)) }
plot_spdsplits <- function(act_data, ...) UseMethod('plot_spdsplits') plot_spdsplits.list <- function(act_data, stoken, acts = 1, id = NULL, units = 'metric', fill = 'darkblue', ...){ act_data <- compile_activities(act_data, acts = acts, id = id, units = units) plot_spdsplits.default(act_data, stoken, size = size, units = units, fill = fill, ...) } plot_spdsplits.default <- function(act_data, stoken, units = 'metric', fill = 'darkblue', ...){ act <- get_activity(act_data$id[1], stoken) sptyp <- paste0('splits_', units) sptyp <- gsub('imperial$', 'standard', sptyp) splt <- lapply(act[[sptyp]], function(x) x[['average_speed']]) %>% do.call('rbind', .) %>% data.frame(spd = ., split = 1:length(.)) splt$spd <- 3.6 * splt$spd ave <- 3.6 * act$average_speed ylab <- 'Average Speed (km/hr)' xlab <- 'Split (km)' if(units == 'imperial'){ splt$spd <- splt$spd * 0.621371 ave <- 0.621371 * ave ylab <- gsub('km', 'mi', ylab) xlab <- gsub('km', 'mi', xlab) } p <- ggplot2::ggplot(splt, ggplot2::aes(x = factor(split), y = spd)) + ggplot2::geom_bar(stat = 'identity', fill = fill) + ggplot2::theme_bw() + ggplot2::scale_x_discrete(xlab) + ggplot2::scale_y_continuous(ylab) + ggplot2::geom_hline(ggplot2::aes(yintercept = ave), linetype = 'dashed') return(p) }
ped = function(id, fid, mid, sex, famid = "", reorder = TRUE, validate = TRUE, isConnected = FALSE, verbose = FALSE) { n = length(id) if(n == 0) stop2("`id` vector has length 0") if(length(fid) != n) stop2(sprintf("Incompatible input: length(id) = %d, but length(fid) = %d", n, length(fid))) if(length(mid) != n) stop2(sprintf("Incompatible input: length(id) = %d, but length(mid) = %d", n, length(mid))) if(length(sex) != n) stop2(sprintf("Incompatible input: length(id) = %d, but length(sex) = %d", n, length(sex))) id = as.character(id) fid = as.character(fid) mid = as.character(mid) sex = as.integer(sex) famid = as.character(famid) if(anyDuplicated.default(id) > 0) stop2("Duplicated entry in `id` vector: ", id[duplicated(id)]) missing = c("", "0", NA) FIDX = match(fid, id) FIDX[fid %in% missing] = 0L MIDX = match(mid, id) MIDX[mid %in% missing] = 0L if(any(is.na(FIDX))) stop2("`fid` entry does not appear in `id` vector: ", fid[is.na(FIDX)]) if(any(is.na(MIDX))) stop2("`mid` entry does not appear in `id` vector: ", mid[is.na(MIDX)]) if(all(FIDX + MIDX > 0)) stop2("Pedigree has no founders") if(length(famid) != 1) stop2("`famid` must be a character string: ", famid) if(!isConnected) { comps = connectedComponents(id, fidx = FIDX, midx = MIDX) if(length(comps) > 1) { famids = paste0(famid, "_comp", seq_along(comps)) pedlist = lapply(seq_along(comps), function(i) { idx = match(comps[[i]], id) ped(id = id[idx], fid = fid[idx], mid = mid[idx], sex = sex[idx], famid = famids[i], reorder = reorder, validate = validate, isConnected = TRUE, verbose = verbose) }) return(structure(pedlist, names = famids, class = c("pedList", "list"))) } } x = newPed(id, FIDX, MIDX, sex, famid) if(validate) validatePed(x) if(reorder) x = parentsBeforeChildren(x) x } singleton = function(id = 1, sex = 1, famid = "") { if (length(id) != 1) stop2("`id` must have length 1") sex = validate_sex(sex, nInd = 1) ped(id = id, fid = 0, mid = 0, sex = sex, famid = famid) } newPed = function(ID, FIDX, MIDX, SEX, FAMID) { if(!all(is.character(ID), is.integer(FIDX), is.integer(MIDX), is.integer(SEX), is.character(FAMID))) stop2("Type error in the creation of `ped` object") x = list(ID = ID, FIDX = FIDX, MIDX = MIDX, SEX = SEX, FAMID = FAMID, UNBROKEN_LOOPS = FALSE, LOOP_BREAKERS = NULL, FOUNDER_INBREEDING = NULL, MARKERS = NULL) if(length(ID) == 1) { class(x) = c("singleton", "ped") return(x) } class(x) = "ped" nucs = peelingOrder(x) lastnuc_link = nucs[[length(nucs)]]$link x$UNBROKEN_LOOPS = is.null(lastnuc_link) x } validatePed = function(x) { ID = x$ID; FIDX = x$FIDX; MIDX = x$MIDX; SEX = x$SEX; FAMID = x$FAMID n = length(ID) stopifnot2(is.character(ID), is.integer(FIDX), is.integer(MIDX), is.integer(SEX), is.character(FAMID), is.singleton(x) == (n == 1)) stopifnot2(n > 0, length(FIDX) == n, length(MIDX) == n, length(SEX) == n, all(FIDX >= 0), all(MIDX >= 0), all(FIDX <= n), all(MIDX <= n), length(FAMID) == 1) errs = character(0) has1parent = (FIDX > 0) != (MIDX > 0) if (any(has1parent)) errs = c(errs, paste("Individual", ID[has1parent], "has exactly 1 parent; this is not allowed")) if (!all(SEX %in% 0:2)) errs = c(errs, paste("Illegal sex:", unique(setdiff(SEX, 0:2)))) self_anc = any_self_ancestry(x) if(length(self_anc) > 0) errs = c(errs, paste("Individual", self_anc, "is their own ancestor")) if(anyDuplicated.default(ID) > 0) errs = c(errs, paste("Duplicated ID label:", ID[duplicated(ID)])) if(any(SEX[FIDX] == 2)) { female_fathers_int = intersect(which(SEX == 2), FIDX) first_child = ID[match(female_fathers_int, FIDX)] errs = c(errs, paste("Individual", ID[female_fathers_int], "is female, but appear as the father of", first_child)) } if(any(SEX[MIDX] == 1)) { male_mothers_int = intersect(which(SEX == 1), MIDX) first_child = ID[match(male_mothers_int, MIDX)] errs = c(errs, paste("Individual", ID[male_mothers_int], "is male, but appear as the mother of", first_child)) } if(length(errs) > 0) { errs = c("Malformed pedigree.", errs) stop2(paste0(errs, collapse = "\n ")) } invisible(NULL) } any_self_ancestry = function(x) { n = pedsize(x) nseq = 1:n FIDX = x$FIDX MIDX = x$MIDX self_parent = (nseq == FIDX) | (nseq == MIDX) if(any(self_parent)) return(labels(x)[self_parent]) fou_int = founders(x, internal = TRUE) OK = rep(FALSE, n) OK[fou_int] = TRUE for(i in 1:n) { parents = which(OK) children = which(FIDX %in% parents | MIDX %in% parents) fatherOK = OK[FIDX[children]] motherOK = OK[MIDX[children]] childrenOK = children[fatherOK & motherOK] if(all(OK[childrenOK])) break OK[childrenOK] = TRUE } labels(x)[!OK] }
context("code quality") library(lintr) test_that("Package Style", { skip_on_cran() major_lintr_version <- strsplit(as.character(packageVersion("lintr")), ".", fixed = TRUE)[[1]] if (as.integer(major_lintr_version[1]) >= 2) { lints <- with_defaults( line_length_linter = line_length_linter(120), cyclocomp_linter = cyclocomp_linter(37)) } else { lints <- with_defaults( line_length_linter = line_length_linter(120)) } lints <- lints[!(names(lints) %in% c("object_usage_linter", "camel_case_linter", "commas_linter", "multiple_dots_linter"))] code_files <- list.files( c("../../R", "../../tests"), "R$", full.names = TRUE, recursive = TRUE) code_files <- code_files[!(code_files %in% c("../../R/RcppExports.R"))] lint_results <- lintr:::flatten_lints(lapply(code_files, function(file) { if (interactive()) { message(".", appendLF = FALSE) } lint(file, linters = lints, parse_settings = FALSE) })) if (interactive()) { message() } lint_output <- NULL if (length(lint_results) > 0) { lint_results <- sapply(lint_results, function(lint_res) { paste(lint_res$filename, " (", lint_res$line_number, "): ", lint_res$message) }) print(lint_results) } expect_true(length(lint_results) == 0, paste(lint_results, sep = "\n", collapse = "\n")) })
knitr::opts_chunk$set( echo = TRUE, fig.width = 6, fig.asp = 0.7 ) library("sftrack") data('raccoon', package = 'sftrack') coords = raccoon[,c('longitude','latitude')] crs = '+init=epsg:4326' group = list(id = raccoon$animal_id,month = as.POSIXlt(raccoon$timestamp)$mon+1) active_group = c('id','month') time = as.POSIXct(raccoon$timestamp, tz='EST') error = raccoon$fix my_sftrack <- as_sftrack(data = raccoon, coords = coords, group = group, active_group = active_group, time = time, crs = crs, error = error) head(my_sftrack) raccoon$time <- as.POSIXct(raccoon$timestamp, tz='EST') raccoon$month <- as.POSIXlt(raccoon$timestamp)$mon+1 coords = c('longitude','latitude') group = c(id = 'animal_id', month = 'month') time = 'time' error = 'fix' my_sftraj <- as_sftraj(data = raccoon, coords = coords, group = group, time = time, error = error) head(my_sftraj) library("adehabitatLT") ltraj_df <- as.ltraj(xy=raccoon[,c('longitude','latitude')], date = as.POSIXct(raccoon$timestamp), id = raccoon$animal_id, typeII = TRUE, infolocs = raccoon[,1:6] ) my_sf <- as_sftrack(ltraj_df) head(my_sf) library("sf") df1 <- raccoon[!is.na(raccoon$latitude),] sf_df <- st_as_sf(df1, coords=c('longitude','latitude'), crs = crs) group = c(id = 'animal_id') time_col = 'time' new_sftraj <- as_sftraj(sf_df, group = group, time = time_col) head(new_sftraj) new_sftrack <- as_sftrack(sf_df, group = group, time= time_col) head(new_sftrack) coords = c('longitude','latitude') group = c(id = 'animal_id', month = 'month') time = 'time' error = 'fix' my_sftraj <- as_sftraj(data = raccoon, coords = coords, group = group, time = time, error = error) my_sftrack <- as_sftrack(data = raccoon, coords = coords, group = group, time = time, error = error) new_sftrack <- as_sftrack(my_sftraj) new_sftraj <- as_sftraj(my_sftrack) identical(my_sftraj,new_sftraj) identical(my_sftrack,new_sftrack) raccoon$time[1] <- raccoon$time[2] try(as_sftrack(data = raccoon, coords = coords, group = group, time = time, error = error)) which_duplicated(data = raccoon , group = group, time = time) raccoon <- raccoon[-2,] my_sftrack <- as_sftrack(data = raccoon, coords = coords, group = group, time = time, error = error)
odds.hk2malay <- function (x) { malay <- x malay[] <- NA_real_ malay[which(x > 0)] <- -100 / odds.hk2us(x[which(x > 0)]) malay }
normSpectra2D <- function(spectra, method = "zero2one") { .chkArgs(mode = 21L) chkSpectra(spectra) ok <- c("zero2one", "TotInt", "minusPlus") if (!method %in% ok) stop("Invalid method specified") ns <- length(spectra$names) if (method == "zero2one") { for (i in 1:ns) { rMin <- min(spectra$data[[i]], na.rm = TRUE) rMax <- max(spectra$data[[i]], na.rm = TRUE) spectra$data[[i]] <- .rescale(spectra$data[[i]], 0.0, 1.0, rMin, rMax) } } if (method == "minusPlus") { for (i in 1:ns) { rMin <- min(spectra$data[[i]], na.rm = TRUE) rMax <- max(spectra$data[[i]], na.rm = TRUE) spectra$data[[i]] <- .rescale(spectra$data[[i]], -1.0, 1.0, rMin, rMax) } } if (method == "TotInt") { for (i in 1:ns) { spectra$data[[i]] <- spectra$data[[i]] / sum(spectra$data[[i]], na.rm = TRUE) } } chkSpectra(spectra) return(spectra) }
NULL tidy.stanreg <- function(x, effects = "fixed", conf.int = FALSE, conf.level = 0.9, conf.method=c("quantile","HPDinterval"), ...) { conf.method <- match.arg(conf.method) effects <- match.arg(effects, several.ok = TRUE, choices = c( "fixed", "ran_vals", "ran_pars", "auxiliary" ) ) if (any(effects %in% c("ran_vals", "ran_pars"))) { if (!inherits(x, "lmerMod")) { stop("Model does not have varying ('ran_vals') or hierarchical ('ran_pars') effects.") } } nn <- c("estimate", "std.error") ret_list <- list() if ("fixed" %in% effects) { nv_pars <- names(rstanarm::fixef(x)) ret <- cbind( rstanarm::fixef(x), rstanarm::se(x)[nv_pars] ) if (inherits(x, "polr")) { cp <- x$zeta se_cp <- apply(as.matrix(x, pars = names(cp)), 2, stats::mad) ret <- rbind(ret, cbind(cp, se_cp)) nv_pars <- c(nv_pars, names(cp)) } if (conf.int) { cifix <- switch(conf.method, HPDinterval= { m <- as.matrix(x$stanfit) m <- m[,colnames(m) %in% nv_pars] coda::HPDinterval(coda::as.mcmc(m), prob=conf.level) }, quantile=rstanarm::posterior_interval( object = x, pars = nv_pars, prob = conf.level ) ) ret <- data.frame(ret, cifix) nn <- c(nn, "conf.low", "conf.high") } ret_list$non_ran_vals <- fix_data_frame(ret, newnames = nn, newcol="term") } if ("auxiliary" %in% effects) { nn <- c("estimate", "std.error") parnames <- rownames(x$stan_summary) auxpars <- c( "sigma", "shape", "overdispersion", "R2", "log-fit_ratio", grep("mean_PPD", parnames, value = TRUE) ) auxpars <- auxpars[which(auxpars %in% parnames)] ret <- summary(x, pars = auxpars)[, c("50%", "sd"), drop = FALSE] if (conf.int) { ints <- rstanarm::posterior_interval(x, pars = auxpars, prob = conf.level) ret <- data.frame(ret, ints) nn <- c(nn, "conf.low", "conf.high") } ret_list$auxiliary <- fix_data_frame(ret, newnames = nn, newcol="term") } if ("ran_pars" %in% effects) { ret <- (rstanarm::VarCorr(x) %>% as.data.frame() %>% mutate_if(is.factor,as.character) ) rscale <- "sdcor" ran_prefix <- c("sd", "cor") pfun <- function(x) { v <- na.omit(unlist(x)) if (length(v) == 0) v <- "Observation" p <- paste(v, collapse = ".") if (!identical(ran_prefix, NA)) { p <- paste(ran_prefix[length(v)], p, sep = "_") } return(p) } rownames(ret) <- paste(apply(ret[c("var1", "var2")], 1, pfun), ret[, "grp"], sep = "." ) ret_list$hierarchical <- fix_data_frame(ret[c("grp", rscale)], newcol="term", newnames = c("group", "estimate")) } if ("ran_vals" %in% effects) { nn <- c("estimate", "std.error") s <- summary(x, pars = "varying") ret <- cbind(s[, "50%"], rstanarm::se(x)[rownames(s)]) if (conf.int) { ciran <- rstanarm::posterior_interval(x, regex_pars = "^b\\[", prob = conf.level ) ret <- data.frame(ret, ciran) nn <- c(nn, "conf.low", "conf.high") } double_splitter <- function(x, split1, sel1, split2, sel2) { y <- unlist(lapply(strsplit(x, split = split1, fixed = TRUE), "[[", sel1)) unlist(lapply(strsplit(y, split = split2, fixed = TRUE), "[[", sel2)) } vv <- fix_data_frame(ret, newnames = nn, newcol="term") nn <- c("level", "group", "term", nn) nms <- vv$term vv$term <- NULL lev <- double_splitter(nms, ":", 2, "]", 1) grp <- double_splitter(nms, " ", 2, ":", 1) trm <- double_splitter(nms, " ", 1, "[", 2) vv <- data.frame(lev, grp, trm, vv) ret_list$ran_vals <- fix_data_frame(vv, newnames = nn, newcol="term") } return(dplyr::bind_rows(ret_list)) } glance.stanreg <- function(x, looic = FALSE, ...) { glance_stan(x, looic = looic, type = "stanreg", ...) } glance_stan <- function(x, looic = FALSE, ..., type) { sigma <- if (getRversion() >= "3.3.0") { get("sigma", asNamespace("stats")) } else { get("sigma", asNamespace("rstanarm")) } if (type == "stanreg") { algo <- x$algorithm sim <- x$stanfit@sim } else { algo <- x$fit@stan_args[[1]][["method"]] sim <- x$fit@sim } ret <- dplyr::tibble(algorithm = algo) if (algo != "optimizing") { pss <- sim$n_save if (algo == "sampling") { pss <- sum(pss - sim$warmup2) } ret <- dplyr::mutate(ret, pss = pss) } ret <- mutate(ret, nobs = stats::nobs(x)) if (length(sx <- sigma(x)) > 0) { ret <- dplyr::mutate(ret, sigma = sx) } if (looic) { if (algo == "sampling") { if (type == "stanreg") { loo1 <- rstanarm::loo(x, ...) } else { loo1 <- brms::loo(x, ...) } loo1_est <- loo1[["estimates"]] ret <- data.frame( ret, rbind(loo1_est[ c("looic", "elpd_loo", "p_loo"), "Estimate" ]) ) } else { message("looic only available for models fit using MCMC") } } dplyr::as_tibble(unrowname(ret)) }
plotIntervals <- function(intervals) { errorCheck(intervals, FALSE) intervals[, 'idx'] <- 1:nrow(intervals) idx <- intervals[, 'idx'] left <- intervals[, 'left'] right <- intervals[, 'right'] p <- ggplot2::ggplot() p <- p + ggplot2::theme(panel.border = ggplot2::element_blank()) p <- p + ggplot2::theme(panel.grid.major = ggplot2::element_blank(), panel.grid.minor = ggplot2::element_blank()) p <- p + ggplot2::geom_segment(data = intervals, ggplot2::aes(x = left, y = idx, xend = right, yend = idx)) p <- p + ggplot2::theme(axis.text.x = ggplot2::element_blank(), axis.ticks.x = ggplot2::element_blank()) p <- p + ggplot2::theme(axis.text.y = ggplot2::element_blank(), axis.ticks.y = ggplot2::element_blank()) p <- p + ggplot2::theme(axis.title.x = ggplot2::element_blank(), axis.title.y = ggplot2::element_blank()) p }
read.txt.Horiba <- function (file, cols = c (spc = "I / a.u.", .wavelength = expression (Delta*tilde(nu) / cm^-1)), header = TRUE, sep = "\t", row.names = NULL, check.names = FALSE, ...){ spc <- read.txt.wide (file, cols = cols, header = header, sep = sep, row.names = row.names, check.names = check.names, ...) spc } read.txt.Horiba.xy <- function (file, ...){ read.txt.Horiba (file = file, cols = c (x = expression (x / mu*m), y = expression (y / mu*m), spc = "I / a.u.", .wavelength = expression (Delta*tilde(nu) / cm^-1)), ...) } read.txt.Horiba.t <- function (file, header = TRUE, sep = "\t", row.names = NULL, check.names = FALSE, ...){ read.txt.Horiba (file, cols = c (t = "t / s", spc = "I / a.u.", .wavelength = expression (Delta*tilde(nu) / cm^-1)), ...) }
runARGES <- function(X, parentsOf, variableSelMat, setOptions, directed, verbose, ...){ package <- setOptions$package if(is.null(package)) package <- "huge" if(package == "huge"){ method <- setOptions$method if(is.null(method)) method <- "mb" criterion <- setOptions$criterion if(is.null(criterion)) criterion <- "ric" }else if(package == "flare"){ method <- setOptions$method if(is.null(method)) method <- "tiger" criterion <- setOptions$criterion if(is.null(criterion)) criterion <- "cv" }else{ stop(paste("Package", package, "not supported for CIG estimation. Valid options are 'huge' or 'flare'.")) } if(is.null(variableSelMat)){ if(package == "huge"){ hugeObj <- huge::huge(X, method = method, verbose = FALSE) hugeSel <- huge::huge.select(hugeObj, criterion = criterion, verbose = FALSE) variableSelMat <- hugeSel$refit }else{ flareObj <- flare::sugm(X, method = method, verbose = FALSE) flareSel <- flare::sugm.select(flareObj, criterion = criterion, verbose = FALSE) variableSelMat <- flareSel$refit } variableSelMat <- as.matrix(variableSelMat) variableSelMat[variableSelMat == 1] <- TRUE variableSelMat[variableSelMat == 0] <- FALSE } if(is.null(setOptions$adaptive)){ setOptions$adaptive <- "vstructures" }else{ if(setOptions$adaptive == "none") setOptions$adaptive <- "vstructures" } runGES(X, parentsOf, variableSelMat, setOptions, directed, verbose, ...) }
na_range_to_values <- function(x){ if( ! inherits(x, "haven_labelled_spss")) return(x) if ( is.null(attr(x, "na_range")) ) return(x) na_values <- vector (mode = "double", length = 0 ) if ( ! is.null(attr(x, "na_value"))) { na_values <- attr(x, "na_value") } na_min <- labelled::na_range(x)[1] na_max <- labelled::na_range(x)[2] if ( length(na_values) >0 ) { if (min(na_values) < na_min) { warning("Inconsistent missing ranges: min(na_values) < min(na_range)") na_min <- min(na_values) } if (max(na_values) > na_max) { warning("Inconsistent missing ranges: max(na_values) > max(na_range)") na_max <- max(na_values) } } above_min <- unclass(x)[(unclass(x) >= na_min)] na_values <- above_min[above_min <= na_max] if (length(na_values)==0) { na_values <- na_min:na_max } labelled::na_values(x) <- na_values labelled::na_range(x) <- c(na_min, na_max) x } is.na_range_to_values <- function(x) { !is.null(attr(x, "na_values")) && !is.null(attr(x, "na_range")) }
get_theta_ig <- function(alpha = 0.01, method = "integrate", Z, c = 3, eps = .Machine$double.eps, Kinv, equals = FALSE, a = 1,type="marginalt") { warning("implementation currently does not work for equals=TRUE (a=b), when both values are small") if(method != "integrate") stop("method not existing") if(!(type %in% c("integrate","marginalt"))) stop("method not existing") ztKz <- diag(Z%*%Kinv%*%t(Z)) if(NROW(Z) == 1 | NCOL(Z) == 1) { nknots <- 1 } else { nknots <- NROW(Z) } weights <- rep(1, nknots) alphafx <- alpha * weights / nknots eps2 <- eps3 <- eps4 <- eps marginal_df <- function(f, lambda, ztz, a) { if(equals == TRUE) a <- lambda if(type == "marginalt") { df <- 2 * a mu <- 0 sigma <- sqrt(ztz*(lambda/a)) res <- pt((f-mu) / sigma, df = df) - pt((-f-mu) / sigma, df = df) } else { integrand <- function(tau2, a=a) { dnorm(f, mean = 0, sd = sqrt(tau2 * ztz)) * ((lambda^a)/gamma(a) * tau2^(-a-1) * exp(-lambda/tau2)) } res <- try(integrate(integrand, 0, Inf,a=a)$value, TRUE) while(inherits(res, "try-error")) { eps2 <- eps2 * 10 res <- try(integrate(integrand, eps2, Inf,a=a)$value, TRUE) } } return(res) } marginal_Pf <- function(lambda, Cov, alpha) { if(method == "integrate") { tempvar <- 0 for(countnknots in 1:NROW(Z)) { if(type=="integrate") { contri <- try(2*integrate(Vectorize(marginal_df), -c, 0, lambda = lambda, ztz = Cov[countnknots], a=a)$value, TRUE) while(inherits(contri, "try-error")) { eps3 <- eps3 * 10 contri <- try(2*integrate(Vectorize(marginal_df), -c, eps3, lambda = lambda, ztz = Cov[countnknots],a=a)$value, TRUE) } } else { contri <- marginal_df(f=c, lambda = lambda, ztz = Cov[countnknots],a=a) } tempvar <- tempvar + contri } NROW(Z) - alpha - tempvar } else { stop("selected method not implemented.") } } result <- try(uniroot(marginal_Pf, interval = c(1000000000000*.Machine$double.eps, 1000), Cov = ztKz, alpha = alpha), TRUE) while(inherits(result, "try-error")) { eps4 <- eps4 * 10 result <- try(uniroot(marginal_Pf, interval = c(eps4, 1000), Cov = ztKz, alpha = alpha), TRUE) } return(result) }
context("Tests list-as-an-outcome ictreg.joint") rm(list=ls()) set.seed(1) data(mexico) test_that("ictreg.joint works", { skip_on_cran() loyal <- mexico[mexico$mex.loyal == 1,] notloyal <- mexico[mexico$mex.loyal == 0,] loyalreg <- ictreg.joint(formula = mex.y.all ~ mex.male + mex.age + mex.age2 + mex.education + mex.interest + mex.married + mex.wealth + mex.urban + mex.havepropoganda + mex.concurrent, data = loyal, treat = "mex.t", outcome = "mex.votecard", J = 3, constrained = TRUE, outcome.reg = "logistic", maxIter = 1000) summary(loyalreg) approvalreg <- ictreg.joint(formula = mex.y.all ~ mex.male + mex.age + mex.age2 + mex.education + mex.interest + mex.married + mex.urban + mex.cleanelections + mex.cleanelectionsmiss + mex.havepropoganda + mex.wealth + mex.northregion + mex.centralregion + mex.metro + mex.pidpriw2 + mex.pidpanw2 + mex.pidprdw2, data = mexico, treat = "mex.t", outcome = "mex.epnapprove", J = 3, constrained = TRUE, outcome.reg = "linear", maxIter = 1000) summary(approvalreg) loyalpred <- predict.ictreg.joint(loyalreg, se.fit = TRUE, interval = "confidence", level = 0.95, avg = TRUE, sensitive.value = "both", sensitive.diff = TRUE, return.draws = TRUE, predict.sensitive = TRUE) loyalpred$fit loyalpred$fitsens })
"data_cleaned_mlpca_c"
FPCA.FEM<-function(locations = NULL, datamatrix, FEMbasis,lambda, nPC = 1, validation = NULL, NFolds = 5, GCVmethod = "Stochastic", nrealizations = 100) { incidence_matrix=NULL if(class(FEMbasis$mesh) == "mesh.2D"){ ndim = 2 mydim = 2 }else if(class(FEMbasis$mesh) == "mesh.2.5D"){ ndim = 3 mydim = 2 }else if(class(FEMbasis$mesh) == "mesh.3D"){ ndim = 3 mydim = 3 }else{ stop('Unknown mesh class') } if(GCVmethod=="Stochastic") GCVmethod=2 else if(GCVmethod=="Exact") GCVmethod=1 else{ stop("GCVmethod must be either Stochastic or Exact") } checkSmoothingParametersFPCA(locations, datamatrix, FEMbasis, incidence_matrix, lambda, nPC, validation, NFolds, GCVmethod ,nrealizations) if(!is.null(locations)) locations = as.matrix(locations) datamatrix = as.matrix(datamatrix) if(!is.null(incidence_matrix)) incidence_matrix = as.matrix(incidence_matrix) lambda = as.matrix(lambda) checkSmoothingParametersSizeFPCA(locations, datamatrix, FEMbasis, incidence_matrix, lambda, ndim, mydim, validation, NFolds) bigsol = NULL if(class(FEMbasis$mesh) == 'mesh.2D'){ print('C++ Code Execution') bigsol = CPP_smooth.FEM.FPCA(locations, datamatrix, FEMbasis, incidence_matrix, lambda, ndim, mydim, nPC, validation, NFolds, GCVmethod, nrealizations) numnodes = nrow(FEMbasis$mesh$nodes) } else if(class(FEMbasis$mesh) == 'mesh.2.5D'){ print('C++ Code Execution') bigsol = CPP_smooth.manifold.FEM.FPCA(locations, datamatrix, FEMbasis, incidence_matrix, lambda, ndim, mydim, nPC, validation, NFolds, GCVmethod, nrealizations) numnodes = FEMbasis$mesh$nnodes } else if(class(FEMbasis$mesh) == 'mesh.3D'){ print('C++ Code Execution') bigsol = CPP_smooth.volume.FEM.FPCA(locations, datamatrix, FEMbasis, incidence_matrix, lambda, ndim, mydim, nPC, validation, NFolds, GCVmethod, nrealizations) numnodes = FEMbasis$mesh$nnodes } loadings=bigsol[[1]] loadings.FEM=FEM(loadings,FEMbasis) scores=bigsol[[2]] lambda=bigsol[[3]] variance_explained=bigsol[[4]] cumsum_percentage=bigsol[[5]] var=bigsol[[6]] reslist=list(loadings.FEM=loadings.FEM, scores=scores, lambda=lambda, variance_explained=variance_explained, cumsum_percentage=cumsum_percentage) return(reslist) }
apa_table <- function(x, ...) { UseMethod("apa_table", x) } apa_table.default <- function(x, ...) no_method(x) apa_table.apa_results_table <- function(x, escape = FALSE, ...) { NextMethod(x, escape = FALSE, ...) } apa_table.matrix <- function( x , caption = NULL , note = NULL , stub_indents = NULL , added_stub_head = NULL , col_spanners = NULL , midrules = NULL , placement = "tbp" , landscape = FALSE , font_size = NULL , escape = TRUE , span_text_columns = TRUE , ... , format.args = NULL ) { x <- data.frame( x , check.names = FALSE , fix.empty.names = FALSE , stringsAsFactors = FALSE ) apa_table( x , caption = caption , note = note , stub_indents = stub_indents , added_stub_head = added_stub_head , col_spanners = col_spanners , midrules = midrules , placement = placement , landscape = landscape , font_size = font_size , escape = escape , span_text_columns = span_text_columns , ... , format.args = format.args ) } apa_table.list <- function( x , caption = NULL , note = NULL , stub_indents = NULL , added_stub_head = NULL , col_spanners = NULL , midrules = NULL , placement = "tbp" , landscape = FALSE , font_size = NULL , escape = TRUE , merge_method = "indent" , span_text_columns = TRUE , ... , format.args = NULL ) { ellipsis <- list(...) row_names <- if(is.null(ellipsis$row.names)) TRUE else ellipsis$row.names validate(row_names, "row.names", check_class = "logical", check_length = 1) validate(merge_method, "merge_method", check_class = "character", check_length = 1) force_row_names <- !( ( all( sapply(x, function(y) all(as.character(rownames(y)) == as.character(1:nrow(y)))) ) ) || all( as.character(unlist(lapply(x, rownames))) == as.character(1:nrow(do.call(rbind.data.frame, x))) ) ) if(row_names & force_row_names) { x <- lapply( x , add_row_names , added_stub_head = added_stub_head , force = force_row_names ) } else { x <- lapply( x , data.frame , check.names = FALSE , fix.empty.names = FALSE , stringsAsFactors = FALSE ) } if(!merge_method %in% c("indent", "table_spanner")) { warning("merge_method '", merge_method, "' not supported. Defaulting to 'indent'.") merge_method <- "indent" } if(!is.null(ellipsis$format)) { output_format <- ellipsis$format } else { output_format <- knitr::opts_knit$get("rmarkdown.pandoc.to") if(length(output_format) == 0 || output_format == "markdown") output_format <- "latex" } if(merge_method == "table_spanner") { if(output_format %in% c("docx", "word")) { warning("merge_method '", merge_method, "' not supported for Word documents. Defaulting to 'indent'.") merge_method <- "indent" } else { if(!is.null(format.args)) validate(format.args, check_class = "list") ellipsis <- list(...) if(is.null(ellipsis$digits) & is.null(format.args$digits)) { format.args$digits <- 2 } else if(!is.null(ellipsis$digits)) { format.args$digits <- ellipsis$digits } x <- lapply(x, format_cells, format.args) if(!is.null(names(x))) { x <- mapply( add_table_spanner , x = x , name = names(x) , SIMPLIFY = FALSE ) } merged_table <- do.call(rbind.data.frame, x) rownames(merged_table) <- NULL } } list_indents <- list() if(merge_method == "indent") { merged_table <- do.call(rbind.data.frame, x) rownames(merged_table) <- NULL if(!is.null(names(x))) { list_indents <- lapply(x, function(x) 1:nrow(x)) for(i in seq_along(list_indents)[-1]) { list_indents[[i]] <- list_indents[[i]] + max(list_indents[[i - 1]]) } } } apa_table( merged_table , caption = caption , note = note , stub_indents = c(list_indents, stub_indents) , added_stub_head = added_stub_head , col_spanners = col_spanners , midrules = midrules , placement = placement , landscape = landscape , font_size = font_size , escape = escape , span_text_columns = span_text_columns , format.args = format.args , ... ) } apa_table.data.frame <- function( x , caption = NULL , note = NULL , stub_indents = NULL , added_stub_head = NULL , col_spanners = NULL , midrules = NULL , placement = "tbp" , landscape = FALSE , font_size = NULL , escape = TRUE , span_text_columns = TRUE , ... , format.args = NULL ) { if(!is.null(caption)) validate(caption, check_class = "character", check_length = 1) if(!is.null(note)) validate(note, check_class = "character", check_length = 1) if(!is.null(added_stub_head)) validate(added_stub_head, check_class = "character", check_length = 1) if(!is.null(stub_indents)) validate(stub_indents, check_class = "list") if(!is.null(format.args)) validate(format.args, check_class = "list") validate(escape, check_class = "logical", check_length = 1) validate(placement, check_class = "character", check_length = 1) validate(landscape, check_class = "logical", check_length = 1) ellipsis <- list(...) row_names <- if(is.null(ellipsis$row.names)) TRUE else ellipsis$row.names validate(row_names, "row.names", check_class = "logical", check_length = 1) if(is.null(ellipsis$digits) & is.null(format.args$digits)) { format.args$digits <- 2 } else if(!is.null(ellipsis$digits)) { format.args$digits <- ellipsis$digits } prep_table <- default_label(x) if(row_names) { prep_table <- add_row_names(x, added_stub_head = added_stub_head) } else { prep_table <- x } prep_table <- format_cells(prep_table, format.args) if(escape) { prep_table <- as.data.frame(lapply(prep_table, escape_latex, spaces = TRUE), check.names = FALSE, fix.empty.names = FALSE, stringsAsFactors = FALSE) colnames(prep_table) <- escape_latex(colnames(prep_table)) caption <- escape_latex(caption) note <- escape_latex(note) } else { prep_table <- as.data.frame(lapply(prep_table, function(x) gsub("([^\\\\]+)(%)", "\\1\\\\%", x)), check.names = FALSE, fix.empty.names = FALSE, stringsAsFactors = FALSE) prep_table <- as.data.frame(lapply(prep_table, function(x) gsub("([^\\\\])(&)", "\\1\\\\&", x)), check.names = FALSE, fix.empty.names = FALSE, stringsAsFactors = FALSE) } if(!is.null(stub_indents)) prep_table <- indent_stubs(prep_table, stub_indents, "\\ \\ \\ ") ellipsis$escape <- FALSE ellipsis$row.names <- FALSE if(!is.null(ellipsis$format)) { output_format <- ellipsis$format ellipsis$format <- NULL } else { output_format <- knitr::opts_knit$get("rmarkdown.pandoc.to") if(length(output_format) == 0 || output_format == "markdown") output_format <- "latex" } if(output_format == "latex") { if(!is.null(col_spanners)) { validate(col_spanners, check_class = "list") validate(unlist(col_spanners), "col_spanners", check_range = c(1, ncol(prep_table))) } do.call( function(...) apa_table.latex( x = prep_table , caption = caption , note = note , col_spanners = col_spanners , midrules = midrules , placement = placement , landscape = landscape , font_size = font_size , span_text_columns = span_text_columns , ... ) , ellipsis ) } else { do.call( function(...) apa_table.markdown( x = prep_table , caption = caption , note = note , ... ) , ellipsis ) } } apa_table.latex <- function( x , caption = NULL , note = NULL , col_spanners = NULL , midrules = NULL , placement = "tbp" , landscape = FALSE , font_size = NULL , span_text_columns = TRUE , ... ) { if(!is.null(font_size)) validate(font_size, check_class = "character", check_length = 1) apa_terms <- options()$papaja.terms ellipsis <- list(...) if(!is.null(ellipsis$small)) { validate(ellipsis$small, check_class = "logical", check_length = 1) if(ellipsis$small) { font_size <- "small" ellipsis$small <- NULL } } ellipsis$booktabs <- TRUE longtable <- if(!is.null(ellipsis$longtable)) ellipsis$longtable else FALSE if(longtable || landscape) { tabular_env <- "ThreePartTable" table_note_env <- "TableNotes" } else { tabular_env <- "threeparttable" table_note_env <- "tablenotes" } n_cols <- ncol(x) n_rows <- nrow(x) current_chunk <- knitr::opts_current$get("label") if(!is.null(current_chunk)) caption <- paste0("\\label{tab:", current_chunk, "}", caption) x <- default_label(x) colnames(x) <- paste0("\\multicolumn{1}{c}{", unlist(variable_label(x)), "}") colnames(x)[1] <- if(!is.na(variable_label(x)[[1]])) variable_label(x)[[1]] else "" res_table <- do.call(function(...) knitr::kable(x, format = "latex", ...), ellipsis) table_lines <- unlist(strsplit(res_table, "\n")) table_lines <- table_lines[!grepl("\\\\addlinespace", table_lines)] table_lines <- remove_excess_table_spanner_columns(table_lines) if(!is.null(col_spanners)) table_lines <- add_col_spanners(table_lines, col_spanners, n_cols) table_content_start <- grep("\\\\midrule", table_lines) if((longtable || landscape) & !is.null(caption)) { table_lines <- c( table_lines[1:2] , paste0("\\caption{", caption, "}\\\\") , table_lines[3:table_content_start] , "\\endfirsthead" , paste0("\\caption*{\\normalfont{Table \\ref{tab:", current_chunk, "} continued}}\\\\") , table_lines[3:table_content_start] , "\\endhead" , table_lines[-c(1:table_content_start)] ) table_content_start <- grep("\\\\endhead", table_lines) } table_content_end <- grep("\\\\bottomrule", table_lines) if(!is.null(note)) table_lines[table_content_end] <- paste(table_lines[table_content_end], "\\addlinespace", sep = "\n") if(!is.null(midrules)) { validate(midrules, check_class = "numeric", check_range = c(1, n_rows)) table_lines[table_content_start + midrules] <- paste( table_lines[table_content_start + midrules] , "\\midrule" ) } if(!is.null(note) & (longtable || landscape)) table_lines <- c(table_lines[-length(table_lines)], "\\insertTableNotes", table_lines[length(table_lines)]) if(longtable || landscape) { table_lines <- gsub("\\{tabular\\}", "{longtable}", table_lines) table_lines[grep("\\\\begin\\{longtable\\}", table_lines)] <- paste0( table_lines[grep("\\\\begin\\{longtable\\}", table_lines)] , "\\noalign{\\getlongtablewidth\\global\\LTcapwidth=\\longtablewidth}" ) } place_opt <- paste0("[", placement, "]") table_output <- "\n\n" if(landscape) { table_output <- c(table_output, "\\begin{lltable}") place_opt <- NULL } if(any(grepl("jou", c(rmarkdown::metadata$classoption, rmarkdown::metadata$class))) && span_text_columns) { table_env <- "table*" } else { table_env <- "table" } if(!landscape && !longtable) table_output <- c(table_output, paste0("\\begin{", table_env, "}", place_opt)) if(!landscape) table_output <- c(table_output, paste0("\n\\begin{center}\n\\begin{", tabular_env, "}")) if(!is.null(caption) && !(longtable || landscape)) table_output <- c(table_output, paste0("\n\\caption{", caption, "}")) if(!is.null(note) && (longtable || landscape)) table_output <- c(table_output, paste0("\n\\begin{", table_note_env, "}[para]\n\\normalsize{\\textit{", apa_terms$note, ".} ", note, "}\n\\end{", table_note_env, "}")) if(!is.null(font_size)) table_output <- c(table_output, paste0("\n\\", font_size, "{")) table_output <- c(table_output, table_lines) if(!is.null(font_size)) table_output <- c(table_output, "\n}") if(!is.null(note) & !(longtable || landscape)) table_output <- c(table_output, paste0("\n\\begin{", table_note_env, "}[para]\n\\normalsize{\\textit{", apa_terms$note, ".} ", note, "}\n\\end{", table_note_env, "}")) if(!landscape) table_output <- c(table_output, paste0("\n\\end{", tabular_env, "}\n\\end{center}")) if(!landscape && !longtable) table_output <- c(table_output, paste0("\n\\end{", table_env, "}")) if(landscape) { table_output <- c(table_output, "\n\\end{lltable}") } table_output <- c(table_output, "\n\n") knitr::asis_output(paste(table_output, collapse = "\n")) } apa_table.markdown <- function( x , caption = NULL , note = NULL , ... ) { ellipsis <- list(...) x <- default_label(x) colnames(x) <- unlist(variable_label(x)) colnames(x)[1] <- if(!is.na(variable_label(x)[[1]])) variable_label(x)[[1]] else "" table_output <- do.call(function(...) knitr::kable(x, format = "pandoc", ...), ellipsis) apa_terms <- options()$papaja.terms caption <- paste0("*", caption, "*") current_chunk <- knitr::opts_current$get("label") if(!is.null(current_chunk)) caption <- paste0("<caption>(\\ table_output <- c(caption, table_output) if(!is.null(note)) { table_output <- c( table_output , "\n<div custom-style='Compact'>" , paste0("*", apa_terms$note, ".* ", note) , "</div>\n\n&nbsp;\n\n" ) } knitr::asis_output(paste(table_output, collapse = "\n")) } format_cells <- function(x, format.args = NULL) { format.args$x <- x do.call("printnum.data.frame", format.args) } add_row_names <- function(x, added_stub_head, force = FALSE) { if(!is.null(rownames(x)) && (all(rownames(x) != 1:nrow(x))) || force) { row_names <- rownames(x) rownames(x) <- NULL mod_table <- data.frame(row_names, x, check.names = FALSE, fix.empty.names = FALSE, stringsAsFactors = FALSE) if(!is.null(added_stub_head)) { colnames(mod_table) <- c(added_stub_head, colnames(x)) if(is(mod_table, "apa_results_table")) variable_label(mod_table[, 1]) <- added_stub_head } else { colnames(mod_table) <- c("", colnames(x)) if(is(mod_table, "apa_results_table")) variable_label(mod_table[, 1]) <- "" } } else mod_table <- data.frame(x, check.names = FALSE, fix.empty.names = FALSE, stringsAsFactors = FALSE) rownames(mod_table) <- NULL mod_table } indent_stubs <- function(x, lines, filler = "\ \ \ ") { for(i in seq_along(lines)) { x[lines[[i]], 1] <- paste0(filler, x[lines[[i]], 1]) } section_titles <- lines[which(names(lines) != "")] section_titles <- sapply(section_titles, min) if(length(section_titles) > 0) { for(i in seq_along(section_titles)) { top <- if(section_titles[i] != 1) x[1:(section_titles[i] - 1 + (i-1)), ] else NULL bottom <- if(section_titles[i] != nrow(x)) x[(section_titles[i] + (i-1)):nrow(x), ] else x[nrow(x), ] x <- rbind.data.frame(top, c(names(section_titles[i]), rep("", ncol(x) - 1)), bottom) } } x } add_col_spanners <- function(table_lines, col_spanners, n_cols) { multicols <- sapply( seq_along(col_spanners) , function(i, names) { spanner_length <- diff(col_spanners[[i]]) if(length(spanner_length) == 0) spanner_length <- 0 paste0("\\multicolumn{", spanner_length + 1, "}{c}{", names[i], "}") } , names(col_spanners) ) multicol_spanners <- vapply(col_spanners, length, 1) > 1 n_ampersands <- c() if(sum(multicol_spanners) > 1) { for(i in 2:length(col_spanners)) { n_ampersands <- c(n_ampersands, min(col_spanners[[i]]) - max(col_spanners[[i - 1]])) } } n_ampersands <- c(n_ampersands, 0) leading_amps <- paste(rep(" &", min(unlist(col_spanners)) - 1), collapse = " ") trailing_amps <- if(n_cols - max(unlist(col_spanners)) > 0) { paste(rep(" &", n_cols - max(unlist(col_spanners))), collapse = " ") } else "" group_headings <- c() for(i in 1:(length(col_spanners))) { group_headings <- paste(group_headings, multicols[i], paste(rep("&", n_ampersands[i]), collapse = " ")) } group_headings <- paste(leading_amps, group_headings, trailing_amps, "\\\\", sep = "") group_midrules <- sapply( seq_along(col_spanners) , function(i) { paste0("\\cmidrule(r){", min(col_spanners[[i]]), "-", max(col_spanners[[i]]), "}") } ) group_midrules <- paste(group_midrules, collapse = " ") table_environment <- which(grepl("\\\\toprule", table_lines)) table_lines <- c( table_lines[1:table_environment] , group_headings , group_midrules , table_lines[(table_environment + 1):length(table_lines)] ) table_lines } add_table_spanner <- function(x, name, ...) { name <- paste0("!!bs!!multicolumn!!ob!!", ncol(x), "!!cb!!!!ob!!c!!cb!!!!ob!!", name, "!!cb!!!!bs!!!!bs!!REMOVE!!REST") table_spanner <- c(name, rep("", ncol(x)-1)) rbind(table_spanner, x) } remove_excess_table_spanner_columns <- function(x) { table_spanner_rows <- which(grepl("REMOVE!!REST", x)) x[table_spanner_rows] <- gsub("REMOVE!!REST.*", "", x[table_spanner_rows]) x[table_spanner_rows] <- gsub("!!bs!!", "\\\\", x[table_spanner_rows]) x[table_spanner_rows] <- gsub("!!ob!!", "{", x[table_spanner_rows]) x[table_spanner_rows] <- gsub("!!cb!!", "}", x[table_spanner_rows]) x } merge_tables <- function(x, empty_cells, row_names, added_stub_head) { table_names <- names(x) prep_table <- lapply(seq_along(x), function(i) { if(row_names[i]) { i_table <- add_row_names(x[[i]], added_stub_head = added_stub_head[(length(added_stub_head) == 2) + 1]) } else if(any(row_names)) { i_table <- cbind("", i_table) colnames(i_table) <- c("", colnames(i_table)) } else i_table <- x[[i]] prep_table <- cbind( c(table_names[i], rep("", nrow(x[[i]])-1)) , i_table ) if(row_names[i] && !is.null(rownames(x[[i]])) && length(added_stub_head) < 2) { second_col <- "" } else second_col <- NULL if(is.null(added_stub_head)) { colnames(prep_table) <- c("", second_col, colnames(x[[i]])) } else { colnames(prep_table) <- c(added_stub_head, second_col, colnames(x[[i]])) } as.data.frame(prep_table, stringsAsFactors = FALSE) }) prep_table }
source("ESEUR_config.r") library(MASS) library(numDeriv) pal_col=rainbow(3) data=read.csv(paste0(ESEUR_dir, "economics/Givon_et_al_Software_piracy_data.csv"), as.is=TRUE) yrmth=data$Year+data$Month/12 p<-0.00037 q<-0.0316 m<-15386100 stdev_generate<-0 stdev_observe<-0 timeperiods<-400 steps<-10 dt<-1/steps N<-c(0,rep(NA,timeperiods*steps)) n<-rep(NA,timeperiods*steps+1) for (i in 1:(timeperiods*steps)) { n[i+1]<-((p+q*N[i]/m)*(m-N[i]))*dt N[i+1]<-N[i]+n[i+1] } NObs<-N[seq(1,length(N),steps)] NObs<-NObs[13:length(NObs)] N<-N[(12*steps+1):length(N)] gen_pirate_diffusion<-function(xx) { set.seed(1) a<-xx[1] b1<-xx[2] b2<-xx[3] alpha<-xx[4] q11<-xx[5] q22<-xx[6] q12<-xx[7] rr1<-xx[8] epsilon<-xx[9] X<-vector() Y<-vector() x<-vector() y<-vector() X[1]<-0 Y[1]<-0 for (i in 2:120) { x[i]<-(a+alpha*(b1*X[i-1]+b2*Y[i-1])/NObs[i])*(NObs[i]-X[i-1]-Y[i-1]) y[i]<-(1-alpha)*(max(Y[i-1],1)^epsilon)*((b1*X[i-1]+b2*Y[i-1])/NObs[i])*(NObs[i]-X[i-1]-Y[i-1]) X[i]<-X[i-1]+x[i] Y[i]<-Y[i-1]+y[i] } plot(2:120,c(max(y[2:120]),rep(0,length(y[2:120])-1)),col="White",type="l",xlab="Time",ylab="Sales") lines(2:120,x[2:120],col="Black",type="l") lines(2:120,y[2:120],col="Red",type="l") x<<-x y<<-y X<<-X+rnorm(1,0,sqrt(r11)) Y<<-Y x_stored_generated<<-x y_stored_generated<<-y x_sim<<-x[53:120] y_sim<<-y[53:120] } a<-0.000200000 b1<-0.135310 b2<-0.1351100 alpha<-0.1438000 q11<-0 q22<-0 q12<-0 r11<-0 epsilon<-0 gen_pirate_diffusion(c(a,b1,b2,alpha,q11,q22,q12,r11,epsilon)) X[52] Y[52] X<-X[52]+cumsum(WordProcessors) Y[1]<-Y[52] Y[2:length(Y)]<-rep(NA,length(Y)-1) NObs<-NObs[53:length(NObs)] N<-N[(52*steps+1):length(N)] projectkalman<-function(xx) { a<-0.02*xx[1]^2/(1+xx[1]^2) b1<-xx[2]^2/(1+xx[2]^2) b2<-xx[3]^2/(1+xx[3]^2) alpha<-xx[4]^2/(1+xx[4]^2) q11<-10^9*xx[5]^2/(1+xx[5]^2) epsilon<-0.2*xx[6]/(1+abs(xx[6])) q22<-q11 q12<--q11/2 r11<-0 Q<-matrix(c(q11,q12,q12,q22),nrow=2) R<-matrix(r11,nrow=1) LL<-0 timeperiods<-length(X)-1 Xtt<-array(,c(timeperiods+1,2)) Xtt[1,1]<-X[1] Xtt[1,2]<-Y[1] Ptt<-array(,c(timeperiods+1,2,2)) Ptt[1,1,1]<-0 Ptt[1,1,2]<-0 Ptt[1,2,1]<-0 Ptt[1,2,2]<-0 ll<-vector() mse_comp<-vector() predict_observe<-vector() for (j in 1:timeperiods) { X_pred<-Xtt[j,] P_pred<-Ptt[j,,] for (i in 1:steps) { X1<-X_pred[1] X2<-X_pred[2] X_pred[1]<-X1+((a+alpha*(b1*X1+b2*X2)/N[j*steps+i])*(N[j*steps+i]-X1-X2))*dt X_pred[2]<-X2+((1-alpha)*(max(X2,1)^epsilon)*((b1*X1+b2*X2)/N[j*steps+i])*(N[j*steps+i]-X1-X2))*dt F11<-alpha*b1-a-2*alpha*(b1/N[j*steps+i])*X1-alpha*((b1+b2)/N[j*steps+i])*X2 F12<-alpha*b2-a-alpha*((b1+b2)/N[j*steps+i])*X1-2*alpha*(b2/N[j*steps+i])*X2 F21<-(1-alpha)*(max(X2,1)^epsilon)*(b1/N[j*steps+i])*(N[j*steps+i]-X1-X2)-(1-alpha)*(max(X2,1)^epsilon)*((b1*X1+b2*X2)/N[j*steps+i]) F22<-(1-alpha)*epsilon*(max(X2,1)^(epsilon-1))*((b1*X1+b2*X2)/N[j*steps+i])*(N[j*steps+i]-X1-X2)+(1-alpha)*(max(X2,1)^epsilon)*(b2/N[j*steps+i])*(N[j*steps+i]-X1-X2)-(1-alpha)*(max(X2,1)^epsilon)*((b1*X1+b2*X2)/N[j*steps+i]) F<-matrix(c(F11,F12,F21,F22),nrow=2,byrow=TRUE) P_pred<-P_pred+(F%*%P_pred+P_pred%*%t(F)+Q)*dt } Xttminus<-X_pred Pttminus<-P_pred Ht<-c(1,0) predict_observe[j+1]<-t(Ht)%*%Xttminus Kt<-Pttminus%*%Ht%*%(t(Ht)%*%Pttminus%*%Ht+R)^(-1) Xtt[j+1,]<-Xttminus+Kt%*%(X[j+1]-t(Ht)%*%Xttminus) Ptt[j+1,,]<-(diag(2)-Kt%*%t(Ht))%*%Pttminus LL<-LL+log((2*pi)^(-1/2)) + log((t(Ht)%*%Pttminus%*%Ht+R)^(-1/2)) + (-1/2)*(X[j+1]-t(Ht)%*%Xttminus)*(t(Ht)%*%Pttminus%*%Ht+R)^(-1)*(X[j+1]-t(Ht)%*%Xttminus) ll[j]<-log((2*pi)^(-1/2)) + log((t(Ht)%*%Pttminus%*%Ht+R)^(-1/2)) + (-1/2)*(X[j+1]-t(Ht)%*%Xttminus)*(t(Ht)%*%Pttminus%*%Ht+R)^(-1)*(X[j+1]-t(Ht)%*%Xttminus) mse_comp[j]<-(X[j+1]-t(Ht)%*%Xttminus)^2 } actual_sales<<-X[3:(timeperiods+1)]-X[2:(timeperiods)] predicted_sales<<-predict_observe[3:(timeperiods+1)]-X[2:(timeperiods)] plot(1:(timeperiods-1),actual_sales,col="Black",type="l",xlab="Time",ylab="Sales",main="Black=actual, red=predicted") lines(1:(timeperiods-1),predicted_sales,col="Red",type="l") ll<<-ll mse<<-sum(mse_comp)/timeperiods LL<<-LL LL } projectkalman_original_params<-function(xx) { a<-xx[1] b1<-xx[2] b2<-xx[3] alpha<-xx[4] q11<-xx[5]*10^9 epsilon<-xx[6] q22<-q11 q12<--q11/2 r11<-0 Q<-matrix(c(q11,q12,q12,q22),nrow=2) R<-matrix(r11,nrow=1) LL<-0 timeperiods<-length(X)-1 Xtt<-array(,c(timeperiods+1,2)) Xtt[1,1]<-X[1] Xtt[1,2]<-Y[1] Ptt<-array(,c(timeperiods+1,2,2)) Ptt[1,1,1]<-0 Ptt[1,1,2]<-0 Ptt[1,2,1]<-0 Ptt[1,2,2]<-0 ll<-vector() mse_comp<-vector() predict_observe<-vector() for (j in 1:timeperiods) { X_pred<-Xtt[j,] P_pred<-Ptt[j,,] for (i in 1:steps) { X1<-X_pred[1] X2<-X_pred[2] X_pred[1]<-X1+((a+alpha*(b1*X1+b2*X2)/N[j*steps+i])*(N[j*steps+i]-X1-X2))*dt X_pred[2]<-X2+((1-alpha)*(max(X2,1)^epsilon)*((b1*X1+b2*X2)/N[j*steps+i])*(N[j*steps+i]-X1-X2))*dt F11<-alpha*b1-a-2*alpha*(b1/N[j*steps+i])*X1-alpha*((b1+b2)/N[j*steps+i])*X2 F12<-alpha*b2-a-alpha*((b1+b2)/N[j*steps+i])*X1-2*alpha*(b2/N[j*steps+i])*X2 F21<-(1-alpha)*(max(X2,1)^epsilon)*(b1/N[j*steps+i])*(N[j*steps+i]-X1-X2)-(1-alpha)*(max(X2,1)^epsilon)*((b1*X1+b2*X2)/N[j*steps+i]) F22<-(1-alpha)*epsilon*(max(X2,1)^(epsilon-1))*((b1*X1+b2*X2)/N[j*steps+i])*(N[j*steps+i]-X1-X2)+(1-alpha)*(max(X2,1)^epsilon)*(b2/N[j*steps+i])*(N[j*steps+i]-X1-X2)-(1-alpha)*(max(X2,1)^epsilon)*((b1*X1+b2*X2)/N[j*steps+i]) F<-matrix(c(F11,F12,F21,F22),nrow=2,byrow=TRUE) P_pred<-P_pred+(F%*%P_pred+P_pred%*%t(F)+Q)*dt } Xttminus<-X_pred Pttminus<-P_pred Ht<-c(1,0) predict_observe[j+1]<-t(Ht)%*%Xttminus Kt<-Pttminus%*%Ht%*%(t(Ht)%*%Pttminus%*%Ht+R)^(-1) Xtt[j+1,]<-Xttminus+Kt%*%(X[j+1]-t(Ht)%*%Xttminus) Ptt[j+1,,]<-(diag(2)-Kt%*%t(Ht))%*%Pttminus LL<-LL+log((2*pi)^(-1/2)) + log((t(Ht)%*%Pttminus%*%Ht+R)^(-1/2)) + (-1/2)*(X[j+1]-t(Ht)%*%Xttminus)*(t(Ht)%*%Pttminus%*%Ht+R)^(-1)*(X[j+1]-t(Ht)%*%Xttminus) ll[j]<-log((2*pi)^(-1/2)) + log((t(Ht)%*%Pttminus%*%Ht+R)^(-1/2)) + (-1/2)*(X[j+1]-t(Ht)%*%Xttminus)*(t(Ht)%*%Pttminus%*%Ht+R)^(-1)*(X[j+1]-t(Ht)%*%Xttminus) mse_comp[j]<-(X[j+1]-t(Ht)%*%Xttminus)^2 } actual_sales<<-X[3:(timeperiods+1)]-X[2:(timeperiods)] predicted_sales<<-predict_observe[3:(timeperiods+1)]-X[2:(timeperiods)] plot(1:(timeperiods-1),actual_sales,col="Black",type="l",xlab="Time",ylab="Sales",main="Black=actual, red=predicted") lines(1:(timeperiods-1),predicted_sales,col="Red",type="l") ll<<-ll mse<<-sum(mse_comp)/timeperiods predict_observe<<-predict_observe mse_comp<<-mse_comp LL<<-LL LL } a<-0.000200000 b1<-0.135310 b2<-0.1351100 alpha<-0.1438000 q11<-1000 epsilon<-0.00 start_params<-c(a,b1,b2,alpha,q11,epsilon) trial_params<-c(((start_params[1]/0.02)/(1-(start_params[1]/0.02)))^0.5,(start_params[2]/(1-start_params[2]))^0.5,(start_params[3]/(1-start_params[3]))^0.5,(start_params[4]/(1-start_params[4]))^0.5,0.5,0) estvals<-optim(trial_params,projectkalman,hessian=TRUE,control=list(trace=3,maxit=2000,fnscale=-1)) pr<-estvals$par estpars<-c(0.02*pr[1]^2/(1+pr[1]^2),pr[2]^2/(1+pr[2]^2),pr[3]^2/(1+pr[3]^2),pr[4]^2/(1+pr[4]^2),pr[5]^2/(1+pr[5]^2),0.2*pr[6]/(1+abs(pr[6]))) esthess<-hessian(projectkalman_original_params,estpars) ll_projectkalman_original_params<-function(xx) { projectkalman_original_params(xx) ll } Iop_projectkalman_original_params<-function(xx) { jac<-jacobian(ll_projectkalman_original_params,xx) Iop<-matrix(0,nrow=ncol(jac),ncol=ncol(jac)) for (iopi in 1:nrow(jac)) { Iop<-Iop+jac[iopi,]%*%t(jac[iopi,]) } Iop<-Iop/nrow(jac) Iop } Iop<-Iop_projectkalman_original_params(estpars) varop<-(1/length(X))*solve(Iop) stdevs<-sqrt(diag(varop)) pvalues<-sapply(1:length(estpars),function(x) 2*(1-pnorm(abs(estpars[x]),0,stdevs[x]))) print(rbind(estpars,stdevs,pvalues,mse,LL[1,1]))
test_that("Check Inputs", { withr::local_options(list("given" = NULL, "family" = NULL, "email" = NULL, "orcid" = NULL, "github" = NULL)) expect_error(add_license(quiet = TRUE), "No 'DESCRIPTION' file found.") create_temp_compendium() add_description("John", "Doe", "[email protected]", "9999-9999-9999-9999", organisation = "society", open = FALSE, overwrite = FALSE, quiet = TRUE) expect_error(add_license(quiet = TRUE)) expect_error(add_license(license = NA, quiet = TRUE)) expect_error(add_license(license = numeric(0), quiet = TRUE)) expect_error(add_license(license = c("MIT", "GPL-2"), quiet = TRUE)) expect_error(add_license(license = "GPL2", quiet = TRUE)) expect_error(add_license(license = "GPL 2", quiet = TRUE)) expect_error(add_license(quiet = 0)) expect_error(add_license(quiet = NULL)) expect_error(add_license(quiet = "false")) expect_error(add_license(license = "MIT", quiet = TRUE)) expect_error(add_license(license = "MIT", "John", quiet = TRUE)) expect_error(add_license(license = "MIT", "John Doe", quiet = TRUE)) expect_error(add_license(license = "MIT", c("John", "Doe"), quiet = TRUE)) expect_error(add_license(license = "MIT", family = "Doe", quiet = TRUE)) expect_invisible(add_license(license = "MIT", "John", "Doe", quiet = TRUE)) }) test_that("Check Credentials", { withr::local_options(list("given" = "john", "family" = "doe", "email" = "[email protected]", "orcid" = "9999-9999-9999-9999")) create_temp_compendium() add_description(organisation = "society", open = FALSE, overwrite = FALSE, quiet = TRUE) expect_invisible(add_license(license = "MIT", quiet = TRUE)) }) test_that("Check Files and Overwrite", { withr::local_options(list("given" = "john", "family" = "doe", "email" = "[email protected]", "orcid" = "9999-9999-9999-9999")) create_temp_compendium() add_description(organisation = "society", open = FALSE, overwrite = FALSE, quiet = TRUE) add_license(license = "MIT", quiet = TRUE) expect_true("LICENSE" %in% list.files(getwd())) expect_true("LICENSE.md" %in% list.files(getwd())) content <- readLines("LICENSE.md") expect_length(grep("MIT License", content[1]), n = 1) add_license(license = "GPL-2", quiet = TRUE) expect_false("LICENSE" %in% list.files(getwd())) content <- readLines("LICENSE.md") expect_length(grep("GNU General Public License", content[1]), n = 1) }) test_that("Check DESCRIPTION Fields", { withr::local_options(list("given" = "john", "family" = "doe", "email" = "[email protected]", "orcid" = "9999-9999-9999-9999")) create_temp_compendium() add_description(organisation = "society", open = FALSE, overwrite = FALSE, quiet = TRUE) add_license(license = "MIT", quiet = TRUE) expect_equal(read_descr()$"License", "MIT + file LICENSE") add_license(license = "LGPL (>= 3)", quiet = TRUE) expect_equal(read_descr()$"License", "LGPL (>= 3)") })
Equal_Vertex_Normals <- function(plyFile) { VertFace <- vertex_to_face_list(plyFile) FaceVert <- plyFile$it v <- plyFile$vb rawNorms <- plyFile$normals * 0 rownames(rawNorms) <- c('x', 'y', 'z', 'length') for (i in 1:length(VertFace)) { Faces <- VertFace[[i]] VertFaceMatrix <- matrix(0, nrow=length(Faces), ncol=3) colnames(VertFaceMatrix) <- c('xpts', 'ypts', 'zpts') for (j in 1:length(Faces)) { Face <- Faces[j] pts <- FaceVert[,Face] pt1 <- v[,pts[1]] pt2 <- v[,pts[2]] pt3 <- v[,pts[3]] if (which(pts==i) == 1) { Vec1 <- pt2 - pt1 Vec2 <- pt3 - pt1 } if (which(pts==i) == 2) { Vec1 <- pt3 - pt2 Vec2 <- pt1 - pt2 } if (which(pts==i) == 3) { Vec1 <- pt1 - pt3 Vec2 <- pt2 - pt3 } pfNorm <- as.vector(c(Vec1[2]*Vec2[3]-Vec1[3]*Vec2[2], Vec1[3]*Vec2[1]- Vec1[1]*Vec2[3],Vec1[1]*Vec2[2]-Vec1[2]*Vec2[1])) Length <- sqrt(sum(pfNorm^2)) VertFaceMatrix[j,] <- pfNorm/Length } vNormRaw <- as.vector(colSums(VertFaceMatrix)) vNormRaw <- as.vector(c(vNormRaw, sqrt(sum(vNormRaw^2)))) rawNorms[,i] <- vNormRaw } Norms <- rawNorms %*% diag(1/rawNorms[4,]) plyFile$normals <- Norms return(plyFile) }
extractClustersMBM = function(resMBM,whichModel = 1){ v_distrib <- resMBM$fittedModel[[whichModel]]$paramEstim$v_distrib dataR6 <- formattingData(resMBM$list_Net,v_distrib) param <- resMBM$fittedModel[[whichModel]]$paramEstim vK_estim <- param$v_K clusters <- lapply(1:length(vK_estim),function(q){lapply(1:vK_estim[q],function(l){ namesq <- names(param$Z[[q]]) if (is.null(namesq)){namesq <- 1:length(param$Z[[q]])} clustql <- namesq[param$Z[[q]] == l] return(clustql)})}) names(clusters) <- dataR6$namesFG return(clusters) }
glm.prep <- function(offfull.list, offhalf.list, offnon.list) { non <- data.frame(rep("NON",length(offnon.list[!is.na(offnon.list)])),offnon.list[!is.na(offnon.list)]) hs <- data.frame(rep("HS",length(offhalf.list[!is.na(offhalf.list)])),offhalf.list[!is.na(offhalf.list)]) fs <- data.frame(rep("FS",length(offfull.list[!is.na(offfull.list)])),offfull.list[!is.na(offfull.list)]) rel.Y <- c(as.character(non[,1]),as.character(hs[,1]),as.character(fs[,1])) rel.X <- c(as.numeric(non[,2]),as.numeric(hs[,2]),as.numeric(fs[,2])) relate.data <- data.frame(as.factor(rel.Y),as.numeric(rel.X)) names(relate.data) <- c("Sib","Mxy") redata <- mlogit.data(relate.data,varying=NULL,choice="Sib",shape="wide") mlogit.model <- mlogit(Sib~1|Mxy, data=redata, reflevel="NON") sumlrm <- summary(mlogit.model) nonlog2 <- (log(1)-sumlrm[[1]][1])/sumlrm[[1]][3] nonlog3 <- (log(1)-sumlrm[[1]][2])/sumlrm[[1]][4] half <- min(nonlog2,nonlog3) return(list(half, sumlrm)) }
"boa.getiter" <- function(link, iter) { result <- NULL idx <- is.element(dimnames(link)[[1]], iter) if(any(idx)) result <- link[idx, , drop = FALSE] return(result) }
expected <- eval(parse(text="structure(c(TRUE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE), .Tsp = c(1, 101, 1), class = \"ts\")")); test(id=0, code={ argv <- eval(parse(text="list(structure(0:100, .Tsp = c(1, 101, 1), class = \"ts\"), 0)")); do.call(`<=`, argv); }, o=expected);
obs_exp <- function(model, covar, cut=NULL){ oe <- model$data oe$N <- predict(model) if(!is.null(cut)){ oe[[covar]] <- cut(oe[[covar]], breaks=cut) } oe <- plyr::ddply(oe, covar, function(x){ data.frame(Observed = sum(x$count), Expected = sum(x$N)) }) cn <- oe[,1] oe <- t(oe[,2:3]) colnames(oe) <- cn return(oe) }
set.seed(1234) x <- runif(300, min = -1, max = 1) y <- runif(300, min = -1, max = 1) red <- data.frame(x,y, color = "red") x <- runif(50, min = -1, max = 1) y <- runif(50, min = -1, max = 1) green <- data.frame(x,y, color = "green") mydata <- rbind(red,green) distance.matrix <- as.matrix(dist(mydata[,c("x","y")])) r.min.post.data <- min(distance.matrix[distance.matrix!=0]) r.max.post.data <- max(distance.matrix[distance.matrix!=0]) expect_that(nsinc.z(data = mydata, membership = "member", dim = 2), throws_error("There is no column names in the data called member!")) expect_that(nsinc.z(data = mydata, membership = "color", dim = 4), throws_error("dim must be either 2 or 3!")) colnames(mydata) <- c("a","y","color") expect_that(nsinc.z(data = mydata, membership = "color", dim = 2), throws_error("Data must contain a 'x' column!")) colnames(mydata) <- c("x","b","color") expect_that(nsinc.z(data = mydata, membership = "color", dim = 2), throws_error("Data must contain a 'y' column!")) colnames(mydata) <- c("x", "y", "color") box <- data.frame(min=-1, xmax=1, ymin=-1, ymax=1) expect_that(nsinc.z(data = mydata, membership = "color", dim = 2, box = box), throws_error("'box' must be a dataframe containing columns 'xmin','xmax','ymin' and 'ymax'!")) box <- data.frame(xmin=2, xmax=1, ymin=-1, ymax=1) expect_that(nsinc.z(data = mydata, membership = "color", dim = 2, box = box), throws_error("'xmax' or 'ymax' must be larger than 'xmin' or 'ymin' in 'box'!")) expect_that(nsinc.z(data = red, membership = "color", dim = 2), throws_error("There must be at least two memberships of signals in the input data!")) box <- data.frame(xmin=2, xmax=3, ymin=2, ymax=3) expect_that(nsinc.z(data = mydata, membership = "color", dim = 2, box = box), throws_error("There must be at least two memberships of signals enclosed in the study region!")) expect_that(nsinc.z(data = mydata, membership = "color", dim = 2, r.model = "other", r.max = 0.5), throws_error("If choose the 'other' for r.model, then r.min must be specified by the user!")) expect_that(nsinc.z(data = mydata, membership = "color", dim = 2, r.model = "other", r.min = 0.01), throws_error("If choose the 'other' for r.model, then r.max must be specified by the user!")) expect_that(nsinc.z(data = mydata, membership = "color", dim = 2, r.model = "other", r.min = r.min.post.data-0.1, r.max = 0.5), throws_error("r.min must be between the smallest and half of the largest interpoint distances")) expect_that(nsinc.z(data = mydata, membership = "color", dim = 2, r.model = "other", r.min = 0.5*r.max.post.data+0.1, r.max = 0.5), throws_error("r.min must be between the smallest and half of the largest interpoint distances")) expect_that(nsinc.z(data = mydata, membership = "color", dim = 2, r.model = "other", r.min = 0.01, r.max = r.min.post.data-0.1), throws_error("r.max must be between the smallest and half of the largest interpoint distances")) expect_that(nsinc.z(data = mydata, membership = "color", dim = 2, r.model = "other", r.min = 0.01, r.max = 0.5*r.max.post.data+0.1), throws_error("r.max must be between the smallest and half of the largest interpoint distances")) expect_that(nsinc.z(data = mydata, membership = "color", dim = 2, r.model = "other", r.min = 0.5, r.max = 0.01), throws_error("The r.min must be smaller than r.max!")) expect_that(nsinc.z(data = mydata, membership = "color", dim = 2, r.model = "other", r.min = 0.01, r.max = 0.5, r.adjust = -1), throws_error("The r.adjust must be a nonnegative number smaller than half of the difference between r.max and r.min!")) expect_that(nsinc.z(data = mydata, membership = "color", dim = 2, r.model = "other", r.min = 0.01, r.max = 0.5, r.adjust = 0.25), throws_error("The r.adjust must be a nonnegative number smaller than half of the difference between r.max and r.min!")) expect_that(nsinc.z(data = mydata, membership = "color", dim = 2, r.model = "Bayesian"), throws_error("r.model must be one of 'full'")) expect_that(nsinc.z(data = mydata, membership = "color", dim = 2, strata = TRUE, base.member = "blue"), throws_error("The specified base membership 'blue' is not found in the provided data!"))