code
stringlengths 1
13.8M
|
---|
.simpleAD <- function(dataset, groups, indexMat) {
groups <- as.factor(groups)
B <- NCOL(indexMat)
nObs <- NROW(dataset)
p <- NCOL(dataset)
C <- length(tab <- table(groups))
K <- C * (C - 1)/2
labsMat <- t(outer(levels(groups), levels(groups), FUN = paste, sep = "-"))
labsPC <- labsMat[lower.tri(labsMat)]
T <- array(NA, c(B + 1, p, K))
DM <- NULL
for(j in seq_len(p)) {
DM <- cbind(DM, .dummyze(dataset[,j]))
}
Q <- as.integer(apply(dataset, MARGIN = 2, FUN = function(x) nlevels(factor(x))))
CM <- -.DesM(tab) / rep(tab, tab)
SM <- array(1/nObs, c(nObs, K))
CS <- diag(max(Q))
CS[upper.tri(CS)] <- 1
sq1 <- c(0L, cumsum(Q))
CS.bd <- array(0, c(sum(Q), sum(Q)))
fSM <- array(0, c(sum(Q) - length(Q), length(Q)))
dd <- diag(p)
for(k in seq_along(Q)) {
CS.bd[(sq1[k] + 1):sq1[k + 1], (sq1[k] + 1):sq1[k + 1]] <- CS[1:Q[k], 1:Q[k]]
fSM[, k] <- rep(dd[k, ], times = (Q - 1))
}
FM <- DM %*% CS.bd
colnames(FM) <- colnames(DM)
num <- crossprod(CM, FM)[, -cumsum(Q)]
temp <- crossprod(SM, FM)[, -cumsum(Q)]
den <- temp * (1 - temp)
den[den < .Machine$double.eps] <- 0
stat <- num / sqrt(den)
stat[!is.finite(stat)] <- 0
T[1, , ] <- t(stat %*% fSM)
for(bb in 2L:(B + 1))
{
ind <- indexMat[, bb - 1]
FM.p <- FM[ind, ]
num <- crossprod(CM, FM.p)[, -cumsum(Q)]
temp <- crossprod(SM, FM.p)[, -cumsum(Q)]
den <- temp * (1 - temp)
den[den < .Machine$double.eps] <- 0
stat <- t(num / sqrt(den))
stat[!is.finite(stat)] <- 0
T[bb, , ] <- t(crossprod(stat, fSM))
}
dimnames(T) <- list(
c("p-obs", paste("p-*", seq_len(B), sep = "")), colnames(dataset), labsPC
)
return(T)
} |
library(testthat)
library(ramlegacy)
test_check("ramlegacy", filter = "load|Load") |
print.qif <- function(x, digits = NULL, quote = FALSE, prefix = "", ...)
{
if(is.null(digits)) digits <- options()$digits else options(digits =
digits)
cat("\n", x$title)
cat("\n", x$version, "\n")
cat("\nModel:\n")
cat(" Link: ", x$model$link, "\n")
cat(" Variance to Mean Relation:", x$model$varfun, "\n")
if(!is.null(x$model$M))
cat(" Correlation Structure: ", x$model$corstr, ", M =", x$
model$M, "\n")
else cat(" Correlation Structure: ", x$model$corstr, "\n")
cat("\nCall:\n")
dput(x$call)
cat("\nNumber of observations : ", length(x$y), "\n")
cat("\nNumber of clusters : ", length(x$nobs), "\n")
cat("\nMaximum cluster size : ", x$max.id, "\n")
cat("\n\nStatistics:\n")
print(x$statistics, digits = digits)
cat("\n\nCoefficients:\n")
print(x$coefficients, digits = digits)
cat("\nEstimated Scale Parameter: ", x$scale, "\n")
cat("\nNumber of Iterations: ", x$iteration,"\n")
invisible(x)
}
print.summary.qif <- function(x, digits = NULL, quote = FALSE, prefix = "", ... )
{
if(is.null(digits))
digits <- options()$digits
else options(digits = digits)
cat("\n",x$title)
cat("\n",x$version,"\n")
cat("\nModel:\n")
cat(" Link: ",x$model$link,"\n")
cat(" Variance to Mean Relation:",x$model$varfun,"\n")
if(!is.null(x$model$M))
cat(" Correlation Structure: ",x$model$corstr,", M =",x$model$M,"\n")
else cat(" Correlation Structure: ",x$model$corstr,"\n")
cat("\nCall:\n")
dput(x$call)
cat("\nSummary of Residuals:\n")
print(x$residual.summary, digits = digits)
cat("\n\nCoefficients:\n")
print(x$coefficients, digits = digits)
cat("\nEstimated Scale Parameter: ", x$scale,"\n")
cat("\nNumber of Iterations: ", x$iteration,"\n")
invisible(x)
}
summary.qif <- function(object, correlation = TRUE, ...)
{
coef <- object$coefficients
resid <- object$residuals
n <- length(resid)
summary <- list()
summary$call <- object$call
summary$version <- object$version
summary$nobs <- length(object$nobs)
summary$residual.summary <- quantile(as.vector(object$residuals))
names(summary$residual.summary) <- c("Min", "1Q", "Median", "3Q", "Max")
summary$model<- object$model
summary$title <- object$title
summary$coefficients <- object$parameter
summary$scale <- object$scale
summary$iteration <- object$iteration
attr(summary,"class") <- "summary.qif"
summary
}
qif <- function (formula = formula(data), id = id, data = parent.frame(), b = NULL,
tol = 1e-8, maxiter = 1000, family = gaussian, corstr = "independence", invfun="finv")
{
if ((invfun!="finv")&&(invfun!="ginv")){
stop("Unknown inverse function. Only finv or ginv.")
}
call <- match.call()
m <- match.call(expand.dots = FALSE)
m$b <- m$tol <- m$maxiter <- m$link <- m$varfun <- m$corstr <- m$family <- m$invfun <- NULL
if (is.null(m$id))
m$id <- as.name("id")
m[[1]] <- as.name("model.frame")
m <- eval(m, parent.frame())
Terms <- attr(m, "terms")
y <- as.matrix(model.extract(m, "response"))
x <- model.matrix(Terms, m)
QR <- qr(x)
if (QR$rank < ncol(x))
stop("rank-deficient model matrix")
if (dim(y)[2] > 1)
stop("Only one response (1 column)")
id <- model.extract(m, id)
if (is.null(id)) {
stop("Id variable not found")
}
nobs <- nrow(x)
np <- ncol(x)
xnames <- dimnames(x)[[2]]
if (is.null(xnames)) {
xnames <- paste("x", 1:np, sep = "")
dimnames(x) <- list(NULL, xnames)
}
if (is.character(family))
family <- get(family)
if (is.function(family))
family <- family()
if (!is.null(b)) {
beta <- matrix(as.double(b), ncol = 1)
if (nrow(beta) != np) {
stop("Dim beta != ncol(x)")
}
}
else {
mm <- match.call(expand.dots = FALSE)
mm$b <- mm$tol <- mm$maxiter <- mm$link <- mm$varfun <- mm$corstr <- mm$id <- mm$invfun <- NULL
mm[[1]] <- as.name("glm")
beta <- eval(mm, parent.frame())$coef
beta <- as.numeric(beta)
}
if (length(id) != length(y))
stop("Id and y not same length")
maxiter <- as.integer(maxiter)
links <- c("identity", "log", "logit", "inverse")
fams <- c("gaussian", "poisson", "binomial", "Gamma")
varfuns <- c("constant", "mu", "mu(1-mu)", "mu^2")
corstrs <- c("independence", "exchangeable", "AR-1", "unstructured")
famv <- match(family$family, fams, -1)
dist <- family$family
linkv <- as.integer(match(c(family$link), links, -1))
if (famv < 1)
stop("unknown family")
if (famv <= 4)
varfunv <- famv
else varfunv <- match(family$varfun, varfuns, -1)
varfunv <- as.integer(varfunv)
corstrv <- as.integer(match(corstr, corstrs, -1))
if (linkv < 1)
stop("unknown link.")
if (varfunv < 1)
stop("unknown varfun.")
if (corstrv < 1)
stop("unknown corstr.")
y <- as.matrix(y)
x <- as.matrix(x)
obs <- lapply(split(id, id), "length")
nobs <- as.numeric(obs)
nsub <- length(nobs)
np <- dim(x)[[2]]
time1 <- date()
betadiff <- 1
iteration <- 0
betanew <- beta
while(betadiff > tol && iteration < maxiter)
{
beta <- betanew
if (corstr == "independence") {
sumg <- matrix(rep(0,np),nrow=np)
sumc <- matrix(rep(0,np*np),nrow=np)
arsumg <- matrix(rep(0,np),nrow=np)
arsumc <- matrix(rep(0,np*np),nrow=np)
gi <- matrix(rep(0,np),nrow=np)
arsumgfirstdev <- matrix(rep(0,np*np),nrow=np)
firstdev <- matrix(rep(0,np*np),nrow=np)
}
else {
sumg <- matrix(rep(0,2*np),nrow=2*np)
sumc <- matrix(rep(0,2*np*2*np),nrow=2*np)
arsumg <- matrix(rep(0,2*np),nrow=2*np)
arsumc <- matrix(rep(0,2*np*2*np),nrow=2*np)
gi <- matrix(rep(0,2*np),nrow=2*np)
arsumgfirstdev <- matrix(rep(0,2*np*np),nrow=2*np)
firstdev <- matrix(rep(0,2*np*np),nrow=2*np)
}
if (corstr == "unstructured") {
n1 <- nobs[1]
m0 <- diag(n1)
m1 <- matrix(rep(0,n1*n1),n1)
loc1 <- 0
loc2 <- 0
for (i in 1:nsub) {
loc1 <- loc2+1
loc2 <- loc1+nobs[i]-1
yi <- as.matrix(y[loc1:loc2,])
xi <- x[loc1:loc2,]
ni <- nrow(yi)
if (dist == "gaussian") {
ui <- xi %*% beta
}
else if (dist == "poisson") {
ui <- exp(xi %*% beta)
}
else if (dist == "Gamma") {
ui <- 1 / (xi %*% beta)
}
else if (dist == "binomial") {
ui <- 1 /(1 + exp(- xi %*% beta))
}
m1 <- m1 + (yi-ui) %*% t(yi-ui)
}
m1 <- 1/nsub * m1
}
loc1 <- 0
loc2 <- 0
for (i in 1:nsub)
{
loc1 <- loc2+1
loc2 <- loc1+nobs[i]-1
yi <- as.matrix(y[loc1:loc2,])
xi <- x[loc1:loc2,]
ni <- nrow(yi)
m0 <- diag(ni)
if (corstr == "independence") {
m1 <- matrix(rep(0,ni*ni),ni)
}
else if (corstr == "exchangeable") {
m1 <- matrix(rep(1,ni*ni),ni) - m0
}
else if (corstr == "AR-1") {
m1 <- matrix(rep(0,ni*ni),ni)
for (k in 1:ni) {
for (l in 1:ni) {
if (abs(k-l)==1) m1[k,l] <-1
}
}
}
if (dist == "gaussian") {
ui <- xi %*% beta
fui <- ui
fui_dev <- diag(ni)
vui <- diag(ni)
}
else if (dist == "poisson") {
ui <- exp(xi %*% beta)
fui <- log(ui)
fui_dev <- diag(as.vector(ui))
vui <- diag(as.vector(sqrt(1/ui)))
}
else if (dist == "Gamma") {
ui <- 1 / (xi %*% beta)
fui <- 1 / ui
fui_dev <- -diag(as.vector(ui)) %*% diag(as.vector(ui))
vui <- diag(as.vector(1/ui))
}
else if (dist == "binomial") {
ui <- 1 /(1 + exp(- xi %*% beta))
fui <- log(ui) - log(1-ui)
fui_dev <- diag(as.vector(ui)) %*% diag(as.vector(1-ui))
vui <- diag(as.vector(sqrt(1/ui))) %*% diag(as.vector(sqrt(1/(1-ui))))
}
if (corstr == "independence") {
wi <- t(xi) %*% fui_dev %*% vui %*% m0 %*% vui
gi0 <- (1/nsub)*wi %*% (yi-ui)
gi[1:np,] <- gi0
arsumc <- arsumc + gi %*% t(gi)
arsumg <- arsumg + gi
di0 <- -(1/nsub) * wi %*% fui_dev %*% xi
firstdev[1:np,] <- di0
arsumgfirstdev <- arsumgfirstdev + firstdev
}
else if (corstr == "unstructured") {
wi <- t(xi) %*% fui_dev %*% m0
zi <- t(xi) %*% fui_dev %*% m1
gi0 <- (1/nsub)*wi %*% (yi-ui)
gi1 <- (1/nsub)*zi %*% (yi-ui)
gi[1:np,] <- gi0
gi[(np+1):(2*np),] <- gi1
arsumc <- arsumc + gi %*% t(gi)
arsumg <- arsumg + gi
if (is.na(arsumc[1,1])) {
}
di0 <- -(1/nsub) * wi %*% fui_dev %*% xi
di1 <- -(1/nsub) * zi %*% fui_dev %*% xi
firstdev[1:np,] <- di0
firstdev[(np+1):(2*np),] <- di1
arsumgfirstdev <- arsumgfirstdev + firstdev
}
else {
wi <- t(xi) %*% fui_dev %*% vui %*% m0 %*% vui
zi <- t(xi) %*% fui_dev %*% vui %*% m1 %*% vui
gi0 <- (1/nsub)*wi %*% (yi-ui)
gi1 <- (1/nsub)*zi %*% (yi-ui)
gi[1:np,] <- gi0
gi[(np+1):(2*np),] <- gi1
arsumc <- arsumc + gi %*% t(gi)
arsumg <- arsumg + gi
if (is.na(arsumc[1,1])) {
}
di0 <- -(1/nsub) * wi %*% fui_dev %*% xi
di1 <- -(1/nsub) * zi %*% fui_dev %*% xi
firstdev[1:np,] <- di0
firstdev[(np+1):(2*np),] <- di1
arsumgfirstdev <- arsumgfirstdev + firstdev
}
}
if (invfun=="finv") {
a <- arsumc
storage.mode(a)<-"double"
lda<-as.integer(nrow(a))
n<-as.integer(ncol(a))
z <- .Fortran("finv", a=a, lda, n)
arcinv <- z$a
}
else arcinv=ginv(arsumc)
Q <- t(arsumg) %*% arcinv %*% arsumg
arqif1dev <- t(arsumgfirstdev) %*% arcinv %*% arsumg
arqif2dev <- t(arsumgfirstdev) %*% arcinv %*% arsumgfirstdev
if (invfun=="finv") {
a <- arqif2dev
storage.mode(a)<-"double"
lda<-as.integer(nrow(a))
n<-as.integer(ncol(a))
z <- .Fortran("finv", a=a, lda, n)
invarqif2dev <- z$a
}
else invarqif2dev <- ginv(arqif2dev)
betanew <- beta - invarqif2dev %*% arqif1dev
betadiff <- abs(sum(betanew - beta))
iteration <- iteration +1
}
time2 <- date()
fit <- list()
attr(fit, "class") <- c("qif", "glm")
fit$title <- "QIF: Quadratic Inference Function"
fit$version <- "QIF function, version 1.5 modified 2019/07/2"
links <- c("Identity", "Logarithm", "Logit", "Reciprocal")
varfuns <- c("Gaussian", "Poisson", "Binomial", "Gamma")
corstrs <- c("Independent", "Exchangeable", "AR-1","Unstructured")
fit$model <- list()
fit$model$link <- links[linkv]
fit$model$varfun <- varfuns[varfunv]
fit$model$corstr <- corstrs[corstrv]
fit$terms <- Terms
fit$formula <- as.vector(attr(Terms, "formula"))
fit$call <- call
fit$nobs <- nobs
fit$iteration <- iteration
fit$coefficients <- as.vector(beta)
names(fit$coefficients) <- xnames
fit$linear.predictors <- as.matrix(x %*% beta)
if (dist == "gaussian") {
mu <- x %*% beta
pearson <- y - mu
}
else if (dist == "poisson") {
mu <- exp(x %*% beta)
pearson <- (y - mu) / sqrt(mu)
}
else if (dist == "Gamma") {
mu <- 1 / (x %*% beta)
pearson <- (y - mu) / mu
}
else if (dist == "binomial") {
mu <- 1 /(1 + exp(- x %*% beta))
pearson <- (y - mu) / sqrt(mu * (1-mu))
}
fit$fitted.value <- as.matrix(mu)
fit$residuals <- y - mu
fit$pearson.resi <- pearson
fit$scale <- sum(pearson**2)/(length(y)-length(beta))
fit$family <- family
fit$y <- y
fit$x <- x
fit$id <- unique(id)
fit$max.id <- max(nobs)
fit$xnames <- xnames
pvalue <- 1 - pchisq(Q,np)
if (corstr == "indenpendence") {
AIC <- Q
BIC <- Q
}
else {
AIC <- Q + 2*np
BIC <- Q + np*log(nsub)
}
statistics <- c(Q, np, pvalue, AIC, BIC)
names(statistics) <- c("Q", "D.F.", "pvalue","AIC","BIC")
fit$statistics <- statistics
betase <- sqrt(diag(invarqif2dev))
Z <- as.vector(beta)/betase
betapvalue <- 2*(1-pnorm(abs(Z)))
parameter <- cbind(beta, betase, Z, betapvalue)
dimnames(parameter)[[2]] <- c("estimate", "stderr", "Z", "pvalue")
dimnames(parameter)[[1]] <- xnames
fit$parameter <- parameter
dimnames(invarqif2dev)[[1]] <- xnames
dimnames(invarqif2dev)[[2]] <- xnames
fit$covariance <- invarqif2dev
fit
} |
download_t1_data = function(...) {
x = kirby21.base::download_kirby21_data(modality = "T1", ...)
return(x)
} |
context("manual - ")
only_test_with_token<-function(expr){
testthat::test_that("only test with token: ",
{
if(!lx_has_token()){
skip(crayon::blue("no 'LIFX' api token in renvironment"))
return(invisible(NULL))
}
expr
}
)
}
user_confirm<-function(expectation){
user_input<-readline(prompt = paste(expectation, "?", " (enter if correct; 'n' if not)"))
result<-FALSE
if(user_input==""){result<-TRUE}
expect_true(result,label = " expectation")
}
only_test_with_token({
lx_color(color_name = "red",brightness = 1,duration = 0, power = "on")
user_confirm("bright red?")
})
only_test_with_token({
lx_color(power = "off")
user_confirm("light off?")
})
only_test_with_token({
lx_color(color_name = "cyan", brightness = 1, duration = 3,power = "on")
user_confirm("to cyan in 3 seconds?")
})
only_test_with_token({
lx_color(brightness = 0.01,duration = 0)
user_confirm("jump to very dim cyan?")
})
only_test_with_token({
lx_color(saturation = 0,duration = 1)
user_confirm("1 second to white?")
})
only_test_with_token({
lx_color(kelvin = 2000,brightness = 1,duration = 0)
user_confirm("immediate bright warm?")
})
only_test_with_token({
lx_color(kelvin = 3000,delta = T, duration = 1)
user_confirm("1 second to cold light?")
})
only_test_with_token({
lx_effect_breathe("red","blue",period = 1,cycles = 3)
user_confirm("breath red blue 3x?")
})
only_test_with_token({
lx_color(hue = 255, saturation = 0, power = "off")
user_confirm("lights off?")
})
context("lx_list_lights")
expected_items <-
c("id", "uuid", "label", "connected", "power", "color", "brightness",
"effect", "group", "location", "product", "last_seen", "seconds_since_seen"
)
only_test_with_token(
{
expect_true(all(expected_items %in% names(lx_list_lights()[[1]])))
})
context("lx_rate_limit")
only_test_with_token({
ratelimit <- lx_rate_limit()
expect_true(all(names(ratelimit)==c("limit", "remaining", "reset")))
expect_true(is.numeric(ratelimit))
expect_true(all(ratelimit>0))
}) |
library(sf)
library(dplyr)
library(tidyverse)
library(data.table)
library(mapview)
source("./prep_data/prep_functions.R")
update <- 2010
root_dir <- "L:\\
setwd(root_dir)
dir.create("./disaster_risk_area")
destdir_raw <- paste0("./disaster_risk_area/",update)
dir.create(destdir_raw)
dir.create("./disaster_risk_area/shapes_in_sf_cleaned", showWarnings = FALSE)
destdir_clean <- paste0("./disaster_risk_area/shapes_in_sf_cleaned/",update)
dir.create(destdir_clean)
download.file("ftp://geoftp.ibge.gov.br/organizacao_do_territorio/tipologias_do_territorio/populacao_em_areas_de_risco_no_brasil/base_de_dados/PARBR2018_BATER.zip" ,
destfile= paste0(destdir_raw,"/PARBR2018_BATER.zip"))
setwd(destdir_raw)
zipfiles <- list.files(pattern = ".zip")
unzip(zipfiles)
temp_sf <- st_read("PARBR2018_BATER.shp")
names(temp_sf)
temp_sf$ID <- NULL
temp_sf$AREA_GEO <- NULL
temp_sf <- rename(temp_sf, code_state = GEO_UF,)
temp_sf <- rename(temp_sf, code_muni = GEO_MUN)
temp_sf <- rename(temp_sf, name_muni = MUNICIPIO)
temp_sf <- rename(temp_sf, geo_bater = GEO_BATER)
temp_sf <- rename(temp_sf, origem = ORIGEM)
temp_sf <- rename(temp_sf, acuracia = ACURACIA)
temp_sf <- rename(temp_sf, obs = OBS)
temp_sf <- rename(temp_sf, num = NUM)
temp_sf$name_muni <- stringi::stri_encode(as.character(temp_sf$name_muni), "UTF-8")
original_crs <- sf::st_crs(temp_sf)
temp_sf <- as.data.table(temp_sf)
temp_sf[ code_state== 11, abbrev_state := "RO" ]
temp_sf[ code_state== 12, abbrev_state := "AC" ]
temp_sf[ code_state== 13, abbrev_state := "AM" ]
temp_sf[ code_state== 14, abbrev_state := "RR" ]
temp_sf[ code_state== 15, abbrev_state := "PA" ]
temp_sf[ code_state== 16, abbrev_state := "AP" ]
temp_sf[ code_state== 17, abbrev_state := "TO" ]
temp_sf[ code_state== 21, abbrev_state := "MA" ]
temp_sf[ code_state== 22, abbrev_state := "PI" ]
temp_sf[ code_state== 23, abbrev_state := "CE" ]
temp_sf[ code_state== 24, abbrev_state := "RN" ]
temp_sf[ code_state== 25, abbrev_state := "PB" ]
temp_sf[ code_state== 26, abbrev_state := "PE" ]
temp_sf[ code_state== 27, abbrev_state := "AL" ]
temp_sf[ code_state== 28, abbrev_state := "SE" ]
temp_sf[ code_state== 29, abbrev_state := "BA" ]
temp_sf[ code_state== 31, abbrev_state := "MG" ]
temp_sf[ code_state== 32, abbrev_state := "ES" ]
temp_sf[ code_state== 33, abbrev_state := "RJ" ]
temp_sf[ code_state== 35, abbrev_state := "SP" ]
temp_sf[ code_state== 41, abbrev_state := "PR" ]
temp_sf[ code_state== 42, abbrev_state := "SC" ]
temp_sf[ code_state== 43, abbrev_state := "RS" ]
temp_sf[ code_state== 50, abbrev_state := "MS" ]
temp_sf[ code_state== 51, abbrev_state := "MT" ]
temp_sf[ code_state== 52, abbrev_state := "GO" ]
temp_sf[ code_state== 53, abbrev_state := "DF" ]
head(temp_sf)
temp_sf <- st_as_sf(temp_sf, crs=original_crs)
temp_sf <- harmonize_projection(temp_sf)
temp_sf <- lwgeom::st_make_valid(temp_sf)
setcolorder(temp_sf, c('geo_bater', 'origem', 'acuracia', 'obs', 'num', 'code_muni', 'name_muni', 'code_state', 'abbrev_state', 'geometry'))
temp_sf <- to_multipolygon(temp_sf)
temp_sf7 <- st_transform(temp_sf, crs=3857) %>%
sf::st_simplify(preserveTopology = T, dTolerance = 100) %>%
st_transform(crs=4674)
head(temp_sf7)
setwd(root_dir)
readr::write_rds(temp_sf, path= paste0(destdir_clean,"/disaster_risk_area2010.rds"), compress = "gz")
sf::st_write(temp_sf, dsn= paste0(destdir_clean,"/disaster_risk_area2010.gpkg") )
sf::st_write(temp_sf7, dsn= paste0(destdir_clean,"/disaster_risk_area2010 _simplified", ".gpkg")) |
init_test_pkgzip <- function() {
path <- tempfile(tmpdir = get_wspace_dir(), pattern = "pkgzip_")
dir.create(path, recursive = T)
path <- normalizePath(path)
on_test_exit(function() {
unlink(path, recursive = T, force = T)
})
return(list(
path = path,
get_pkgzip_fpath = function() {
files <- list.files(path, pattern = sprintf("%s_pkgzip_.*[.]zip", Sys.Date()), full.names = T)
expect_length(files, 1)
return(files)
}
))
}
expect_that_pkgzip_contains <- function(names, type, pkgzip, optional_names = c()) {
files <- pkgzip$get_pkgzip_fpath()
cont_path <- file.path(pkgzip$path, "cont")
expect_success({
unzip(zipfile = files, exdir = file.path(pkgzip$path, "cont"))
succeed()
})
c_url <- RSuite:::rsuite_contrib_url(repos = sprintf("file:///%s", cont_path), type = type)
avail <- data.frame(available.packages(contriburl = c_url, filters = c()),
stringsAsFactors = F)$Package
avail <- avail[order(avail)]
names <- c(names, intersect(optional_names, avail))
names <- names[order(names)]
expect_equal(object = avail, expected = names)
} |
eblup.mse.f.c2 <-
function(gamma.i
, X.i
, X.bar.i
, sum.A.i
,...){
x.bar.i <- as.matrix(apply(X.i, 2, mean))
x.tmp <- (X.bar.i - gamma.i * x.bar.i)
res <- t(x.tmp) %*% solve(sum.A.i) %*% x.tmp
return(res)
} |
fclustering <- function(curve_sets, k, type = c("area", "st", "erl", "cont"), ...) {
if(!(length(class(curve_sets)) == 1 && class(curve_sets) == "list")) {
curve_sets <- list(curve_sets)
}
curve_sets <- lapply(curve_sets, FUN=convert_to_curveset)
if(any(sapply(curve_sets, FUN=curve_set_is1obs))) stop("Some or all sets of curves have one observed function.")
checkequal <- function(f) {
all(sapply(curve_sets, FUN=function(curve_set) { f(curve_set) == f(curve_sets[[1]]) }))
}
if(!checkequal(curve_set_nfunc))
stop("The numbers of functions in curve sets differ.")
if(!checkequal(curve_set_narg))
warning("The numbers of points where the curves are observed (r) differ in the given curve sets.")
type <- match.arg(type)
if(type %in% c("erl", "cont"))
warning("Type is ", type, ". Check if the triangular inequality is equal to 1. \n",
"If not, the measure does not form a metric. pam should not be used.")
if(type == "st") {
measure <- "max"; scaling <- "st"
}
else {
measure <- type; scaling <- NULL
}
n <- length(curve_sets)
lstats <- list()
jr <- NULL
jstats <- NULL
for(j in 1:n) {
nr <- curve_set_narg(curve_sets[[j]])
nfunc <- curve_set_nfunc(curve_sets[[j]])
funcs <- curve_set_funcs(curve_sets[[j]])
co <- combn(nfunc, 2, simplify = FALSE)
stats <- array(0, c(2*length(co), nr))
for(i in 1:length(co)) {
stats[i,] <- funcs[, co[[i]][1]]-funcs[, co[[i]][2]]
}
for(i in 1:length(co)) {
stats[length(co)+i, ] <- funcs[, co[[i]][2]]-funcs[, co[[i]][1]]
}
lstats[[j]] <- stats
jr <- c(jr, curve_sets[[1]][['r']])
jstats <- cbind(jstats, lstats[[j]])
}
jstats <- rbind(jstats, rep(0, length(jr)))
data <- create_curve_set(list(r=jr, obs=t(jstats)))
b <- dist(data_and_sim_curves(curve_sets[[1]]))
if(measure == "max")
fo <- forder(data, measure="max", scaling=scaling)
else
fo <- 1 - forder(data, measure=measure, scaling=scaling)
b[1:length(b)] <- fo[1:length(b)]
resultpamF <- pam(b, k=k)
bb <- as.matrix(b)
nr1 <- curve_set_narg(curve_sets[[1]])
r <- NULL
for(i in 1:(nr1-2)) {
for(j in (i+1):(nr1-1)) {
for(kk in (j+1):(nr1)) {
r <- c(r, bb[i,j] + bb[j,kk] >= bb[i,kk] - 0.00000001)
}
}
}
res <- list(curve_sets=curve_sets, k=k, type=type,
pam=resultpamF, dis=b,
triangineq = sum(r)/length(r))
class(res) <- "fclust"
res
}
print.fclust <- function(x, ...) {
cat("Functional clustering:\n")
cat(" * Based on the measure \'", x$type, "\' at ", x$k, " clusters \n", sep="")
cat(" * Triangular inequality is satisfied in", x$triangineq*100, "% of cases.\n")
cat("The object contains:\n")
cat("$pam - Results of the partitioning around medoids\n")
cat("$pam$clustering - The clustering vector\n")
cat("$dis - The dissimilarity matrix\n")
}
plot.fclust <- function(x, plotstyle = c("marginal", "joined"), coverage = 0.5,
nstep, ncol, ...) {
csets <- x$curve_sets
n <- length(csets)
k <- x$k
type <- x$type
plotstyle <- match.arg(plotstyle)
if(coverage < 0 | coverage > 1) stop("Unreasonable coverage.")
if(missing(ncol)) ncol <- k+1
if(!is.numeric(ncol) || length(ncol) != 1) stop("Unreasonable ncol.")
if(type %in% "st") centralf <- min
else centralf <- max
if(missing(nstep)) {
nstep <- 1
checkequal <- function(f) {
all(sapply(csets, FUN=function(curve_set) { f(curve_set) == f(csets[[1]]) }))
}
if(!checkequal(curve_set_narg))
nstep <- 2
}
if(!(nstep %in% c(1,2))) stop("Invalid value of nstep.")
if(!all(sapply(csets, FUN = curve_set_is1d)))
stop("Plots are valid only for 1-dimensional curve_set objects.")
resultpamF <- x$pam
resultpamT <- x$pam$clustering
nis <- as.numeric(table(resultpamT))
cr_all <- vector("list", n)
if(plotstyle == "marginal") {
for(j in 1:n) {
cr <- vector("list", k)
ff <- vector("list", k)
for(i in 1:k) {
clusteri <- subset(csets[[j]], resultpamT==i)
if(nis[i] > 3) {
cr[[i]] <- central_region(clusteri, type=type, coverage=coverage)
}
else {
cr[[i]] <- data.frame(r=clusteri[['r']], central=1, lo=NA, hi=NA)
}
cr[[i]]$central <- curve_set_funcs(csets[[j]])[, resultpamF$id.med[i]]
}
cr_all[[j]] <- cr
}
}
else {
cr <- vector("list", k)
ff <- vector("list", k)
for(i in 1:k) {
if(nis[i] > 3) {
clusteri <- lapply(csets, FUN=subset, subset=resultpamT==i)
cr[[i]] <- central_region(clusteri, type=type, coverage=coverage, nstep=nstep)
if(n > 1) for(z in 1:n) cr[[i]][[z]]$central <- curve_set_funcs(csets[[z]])[, resultpamF$id.med[i]]
else cr[[i]]$central <- curve_set_funcs(csets[[1]])[, resultpamF$id.med[i]]
}
}
for(j in 1:n) cr_all[[j]] <- lapply(cr, FUN=function(z) { z[[j]] })
}
alt <- "two.sided"
d <- list(xlab="", ylab="")
labels <- paste("Group", 1:k)
if(n < 2) {
n_of_plots <- k + 1
ncols_of_plots <- min(n_of_plots, ncol)
nrows_of_plots <- ceiling(n_of_plots / ncols_of_plots)
scales <- "fixed"
}
else scales <- "free_y"
if(!is.null(names(csets))) csetnames <- names(csets)
else csetnames <- paste("Curves", 1:n)
df <- NULL
for(i in 1:n) {
df_i <- combined_df_construction(cr_all[[i]], labels=labels)
df_i$cset <- csetnames[i]
df <- rbind(df, df_i)
}
df$cset <- factor(df$cset, levels=csetnames)
funcs <- lapply(csets, FUN=curve_set_funcs)
nams <- lapply(funcs, FUN=function(x) { n <- colnames(x); if(!is.null(n)) n else 1:ncol(x) })
funcs.df <- do.call(rbind, lapply(1:length(funcs), FUN = function(i) {
data.frame(r = rep(cr_all[[1]][[i]][['r']], times=ncol(funcs[[i]])),
curves = c(funcs[[i]]),
id = factor(rep(nams[[i]], each=length(cr_all[[1]][[i]][['r']])), levels = nams[[i]]),
plotmain = factor(rep(paste("Group", resultpamT), each=length(cr_all[[1]][[i]][['r']])), levels = labels),
cset = csetnames[i])
}))
size <- 0.3
df$Group <- df$plotmain
p1 <- ( ggplot()
+ geom_line(data = df, aes_(x = ~r, y = ~curves, group = ~Group,
linetype = ~Group), size = size, col='black')
+ set_envelope_legend_position()
+ labs(title = "", x = d$xlab, y = d$ylab)
)
if(n > 1) p1 <- ( p1 + facet_grid(cset~type, scales="free_y") )
else p1 <- ( p1 + facet_wrap(~type, scales="free_y") )
p2 <- ( ggplot()
+ geom_line(data = funcs.df, aes_(x = ~r, y = ~curves, group = ~id), col='grey70')
+ basic_stuff_for_fclustplot(df, d$xlab, d$ylab, main="", size=size)
+ guides(linetype = "none")
)
if(n > 1) p2 <- (p2 + facet_grid(cset~plotmain, scales=scales))
else p2 <- (p2 + facet_wrap(~ plotmain, scales=scales,
nrow=nrows_of_plots, ncol=ncols_of_plots))
list(p1, p2)
} |
probs_qtl2_to_doqtl <-
function(probs)
{
is_x_chr <- attr(probs, "is_x_chr")
n_geno <- sapply(probs, ncol)
crosstype <- attr(probs, "crosstype")
if(is.null(crosstype))
warning('Expecting crosstype "do" but it is missing.')
else if(crosstype!="do")
warning('Expecting crosstype "do" but it is "', crosstype, '"')
n_pos <- sapply(probs, function(a) dim(a)[3])
if(all(n_geno==8)) {
result <- array(dim=c(nrow(probs[[1]]), ncol(probs[[1]]), sum(n_pos)))
dimnames(result) <- list(rownames(probs[[1]]), colnames(probs[[1]]),
unlist(lapply(probs, function(a) dimnames(a)[[3]])))
cur <- 0
for(i in seq_along(probs)) {
result[,,cur + 1:n_pos[i]] <- probs[[i]]
cur <- cur + n_pos[i]
}
return(result)
}
else {
if(!all(n_geno[is_x_chr] == 44) || !all(n_geno[!is_x_chr]==36))
stop("There should be 44 genotypes on the X and 36 on the autosomes.")
alleles <- attr(probs, "alleles")
if(is.null(alleles)) alleles <- LETTERS[1:8]
if(length(alleles) != 8)
stop("length(alleles) != 8")
homozyg <- paste0(alleles, alleles)
hemizyg <- paste0(alleles, "Y")
for(chr in names(probs)[is_x_chr]) {
probs[[chr]][,homozyg,] <- probs[[chr]][,homozyg,,drop=FALSE] + probs[[chr]][,hemizyg,,drop=FALSE]
probs[[chr]] <- probs[[chr]][,1:36,,drop=FALSE]
}
mat <- rbind(rep(1:8, each=8), rep(1:8, 8))
geno_labels <- apply(mat[,mat[1,] <= mat[2,]], 2, function(a) paste(alleles[a], collapse=""))
result <- array(dim=c(nrow(probs[[1]]), ncol(probs[[1]]), sum(n_pos)))
dimnames(result) <- list(rownames(probs[[1]]), geno_labels,
unlist(lapply(probs, function(a) dimnames(a)[[3]])))
cur <- 0
for(i in seq_along(probs)) {
result[,,cur + 1:n_pos[i]] <- probs[[i]][,geno_labels,,drop=FALSE]
cur <- cur + n_pos[i]
}
return(result)
}
} |
plotBaseline <- function(x, y, specNo = 1, grid = FALSE, labels = 1:n,
rev.x = FALSE,
zoom = list(xz = 1, yz = 1, xc = 0, yc = 0),
...) {
if(!missing(y)) warning("Argument 'y' is ignored")
spectrum <- getSpectra(x)[specNo,]
baseline <- getBaseline(x)[specNo,]
corrected <- getCorrected(x)[specNo,]
n <- length(spectrum)
if (is.numeric(labels)) {
xvals <- labels
xaxt <- par("xaxt")
} else {
xvals <- 1:n
xaxt <- "n"
}
par(bg="white", cex.main=0.7, pty="m", mar=c(3,2,2,1), mfrow=c(2,1))
yu <- max(spectrum); yl <- min(spectrum)
p <- yu-yl
ylim <- c(-p*0.025/zoom$yz + p*zoom$yc/100 + yl,
p*1.025/zoom$yz + p*zoom$yc/100 + yl)
yuc <- max(corrected); ylc <- min(corrected)
pc <- yuc-ylc
ylimc <- c(-pc*0.025/zoom$yz + pc*zoom$yc/100 + ylc,
pc*1.025/zoom$yz + pc*zoom$yc/100 + ylc)
xr <- range(xvals)
xc <- mean(xr)
xhwd <- diff(xr) / 2
xlim <- (xr - xc)/zoom$xz + xc + xhwd * zoom$xc/100
if(rev.x) xlim <- rev(xlim)
plot(xvals, spectrum, type = "l", xlim = xlim, ylim = ylim, xaxt = xaxt,
xlab = "", ylab = "", main = "Original spectrum")
lines(xvals, baseline, col = 2)
if (!is.numeric(labels)) {
ticks <- axTicks(1)
ticks <- ticks[ticks >= 1 & ticks <= length(labels)]
axis(1, ticks, labels[ticks], ...)
}
if(grid) grid()
plot(xvals, corrected, type = "l", xlim = xlim, ylim = ylimc, xaxt = xaxt,
xlab = "", ylab = "", main = "Baseline corrected spectrum")
lines(xvals, numeric(n), col = 2)
if (!is.numeric(labels)) axis(1, ticks, labels[ticks], ...)
if(grid) grid()
}
setMethod("plot", "baseline",
function(x, y, specNo = 1, grid = FALSE, labels = 1:n,
rev.x = FALSE, zoom = NULL,
...) {
if(!missing(y)) warning("Argument 'y' is ignored")
n <- dim(getSpectra(x))[2]
if (!isTRUE(zoom)) {
if (missing(zoom)) zoom <- list(xz = 1, yz = 1, xc = 0, yc = 0)
plotBaseline(x, specNo = specNo, grid = grid,
labels = labels, rev.x = rev.x,
zoom = zoom)
} else {
if(requireNamespace("gWidgets", quietly = TRUE)){
xz <- 1; yz <- 1; xc <- 0; yc <- 0
if (length(dev.list()) == 0) dev.new()
mydevice <- dev.cur()
updatePlot <- function() {
currdevice <- dev.cur()
if (currdevice != mydevice) dev.set(mydevice)
plotBaseline(x, specNo = specNo, grid = grid,
labels = labels, rev.x = rev.x,
zoom = list(xz = xz, yz = yz, xc = xc, yc = yc))
if (currdevice != mydevice) dev.set(currdevice)
}
zoomX <- gWidgets::gslider(from=1,to=100,by=.1, value=1, handler = function(h,...){ xz <<- gWidgets::svalue(zoomX); updatePlot()})
zoomY <- gWidgets::gslider(from=1,to=100,by=.5, value=1, handler = function(h,...){ yz <<- gWidgets::svalue(zoomY); updatePlot()})
centerX <- gWidgets::gslider(from=-100,to=100,by=.1, value=0, handler = function(h,...){ xc <<- gWidgets::svalue(centerX); updatePlot()})
centerY <- gWidgets::gslider(from=-100,to=100,by=.1, value=0, handler = function(h,...){ yc <<- gWidgets::svalue(centerY); updatePlot()})
resetZoom <- gWidgets::gbutton(text = "Reset zoom and center", handler = function(h,...){ gWidgets::svalue(zoomX)<-1; gWidgets::svalue(zoomY)<-1; gWidgets::svalue(centerX)<-0; gWidgets::svalue(centerY)<-0; updatePlot()})
gridCheck <- gWidgets::gcheckbox('Grid', handler = function(h,...){ grid <<- gWidgets::svalue(gridCheck); updatePlot()})
zoomWindow <- gWidgets::gwindow(paste("Zoom: Device", mydevice), width=300)
superGroup <- gWidgets::ggroup(horizontal=FALSE,container=zoomWindow)
subgroupXz <- gWidgets::gframe("X zoom",horizontal=FALSE)
gWidgets::add(subgroupXz,zoomX,expand=TRUE)
subgroupXc <- gWidgets::gframe("X center",horizontal=FALSE)
gWidgets::add(subgroupXc,centerX,expand=TRUE)
gWidgets::add(superGroup,subgroupXz,expand=TRUE)
gWidgets::add(superGroup,subgroupXc,expand=TRUE)
addSpace(superGroup,20,horizontal=FALSE)
subgroupYz <- gWidgets::gframe("Y zoom",horizontal=FALSE)
gWidgets::add(subgroupYz,zoomY,expand=TRUE)
subgroupYc <- gWidgets::gframe("Y center",horizontal=FALSE)
gWidgets::add(subgroupYc,centerY,expand=TRUE)
gWidgets::add(superGroup,subgroupYz,expand=TRUE)
gWidgets::add(superGroup,subgroupYc,expand=TRUE)
subgroup3 <- ggroup(horizontal=TRUE,expand=TRUE)
gWidgets::add(subgroup3,resetZoom,expand=TRUE)
gWidgets::add(subgroup3,gridCheck,expand=FALSE)
gWidgets::add(superGroup,subgroup3,expand=TRUE)
updatePlot()
} else {
warning('Package gWidgets not installed')
return(list())
}
}
}
) |
"r.con" <-
function(rho,n,p=.95,twotailed=TRUE) {
z <- fisherz(rho)
if(n<4) {stop("number of subjects must be greater than 3")}
se <- 1/sqrt(n-3)
p <- 1-p
if(twotailed) p<- p/2
dif <- qnorm(p)
zlow <- z + dif*se
zhigh <- z - dif*se
ci <- c(zlow,zhigh)
ci <- fisherz2r(ci)
return(ci)
}
"r2t" <-
function(rho,n) {
return( rho*sqrt((n-2)/(1-rho^2))) }
|
test_that("tbl_subset_col()", {
data <- tibble(a = 1:2, b = 3:4)
expect_equal(tbl_subset_col(data, 2), data[2])
}) |
departures.icm <- function(dat, at) {
if (dat$param$vital == FALSE) {
return(dat)
}
nDepartures <- 0
idsElig <- which(dat$attr$active == 1 & dat$attr$status == "s")
nElig <- length(idsElig)
if (nElig > 0) {
rates <- dat$param$ds.rate
vecDepartures <- which(rbinom(nElig, 1, rates) == 1)
if (length(vecDepartures) > 0) {
idsDpt <- idsElig[vecDepartures]
nDepartures <- length(idsDpt)
dat$attr$active[idsDpt] <- 0
}
}
if (at == 2) {
dat$epi$ds.flow <- c(0, nDepartures)
} else {
dat$epi$ds.flow[at] <- nDepartures
}
nDepartures <- 0
idsElig <- which(dat$attr$active == 1 & dat$attr$status == "i")
nElig <- length(idsElig)
if (nElig > 0) {
rates <- dat$param$di.rate
vecDepartures <- which(rbinom(nElig, 1, rates) == 1)
if (length(vecDepartures) > 0) {
idsDpt <- idsElig[vecDepartures]
nDepartures <- length(idsDpt)
dat$attr$active[idsDpt] <- 0
}
}
if (at == 2) {
dat$epi$di.flow <- c(0, nDepartures)
} else {
dat$epi$di.flow[at] <- nDepartures
}
nDepartures <- 0
idsElig <- which(dat$attr$active == 1 & dat$attr$status == "r")
nElig <- length(idsElig)
if (nElig > 0) {
rates <- dat$param$dr.rate
vecDepartures <- which(rbinom(nElig, 1, rates) == 1)
if (length(vecDepartures) > 0) {
idsDpt <- idsElig[vecDepartures]
nDepartures <- length(idsDpt)
dat$attr$active[idsDpt] <- 0
}
}
if (at == 2) {
dat$epi$dr.flow <- c(0, nDepartures)
} else {
dat$epi$dr.flow[at] <- nDepartures
}
return(dat)
}
arrivals.icm <- function(dat, at) {
if (dat$param$vital == FALSE) {
return(dat)
}
a.rate <- dat$param$a.rate
nOld <- dat$epi$num[at - 1]
nArrivals <- sum(rbinom(nOld, 1, a.rate))
totArrivals <- nArrivals
dat$attr$active <- c(dat$attr$active, rep(1, totArrivals))
dat$attr$group <- c(dat$attr$group, c(rep(1, nArrivals)))
dat$attr$status <- c(dat$attr$status, rep("s", totArrivals))
dat$attr$infTime <- c(dat$attr$infTime, rep(NA, totArrivals))
if (at == 2) {
dat$epi$a.flow <- c(0, nArrivals)
} else {
dat$epi$a.flow[at] <- nArrivals
}
return(dat)
}
departures.icm.bip <- function(dat, at) {
if (dat$param$vital == FALSE) {
return(dat)
}
group <- dat$attr$group
nDepartures <- nDeparturesG2 <- 0
idsElig <- which(dat$attr$active == 1 & dat$attr$status == "s")
nElig <- length(idsElig)
if (nElig > 0) {
gElig <- group[idsElig]
rates <- c(dat$param$ds.rate, dat$param$ds.rate.g2)
ratesElig <- rates[gElig]
vecDepartures <- which(rbinom(nElig, 1, ratesElig) == 1)
if (length(vecDepartures) > 0) {
idsDpt <- idsElig[vecDepartures]
nDepartures <- sum(group[idsDpt] == 1)
nDeparturesG2 <- sum(group[idsDpt] == 2)
dat$attr$active[idsDpt] <- 0
}
}
if (at == 2) {
dat$epi$ds.flow <- c(0, nDepartures)
dat$epi$ds.flow.g2 <- c(0, nDeparturesG2)
} else {
dat$epi$ds.flow[at] <- nDepartures
dat$epi$ds.flow.g2[at] <- nDeparturesG2
}
nDepartures <- nDeparturesG2 <- 0
idsElig <- which(dat$attr$active == 1 & dat$attr$status == "i")
nElig <- length(idsElig)
if (nElig > 0) {
gElig <- group[idsElig]
rates <- c(dat$param$di.rate, dat$param$di.rate.g2)
ratesElig <- rates[gElig]
vecDepartures <- which(rbinom(nElig, 1, ratesElig) == 1)
if (length(vecDepartures) > 0) {
idsDpt <- idsElig[vecDepartures]
nDepartures <- sum(group[idsDpt] == 1)
nDeparturesG2 <- sum(group[idsDpt] == 2)
dat$attr$active[idsDpt] <- 0
}
}
if (at == 2) {
dat$epi$di.flow <- c(0, nDepartures)
dat$epi$di.flow.g2 <- c(0, nDeparturesG2)
} else {
dat$epi$di.flow[at] <- nDepartures
dat$epi$di.flow.g2[at] <- nDeparturesG2
}
nDepartures <- nDeparturesG2 <- 0
idsElig <- which(dat$attr$active == 1 & dat$attr$status == "r")
nElig <- length(idsElig)
if (nElig > 0) {
gElig <- group[idsElig]
rates <- c(dat$param$dr.rate, dat$param$dr.rate.g2)
ratesElig <- rates[gElig]
vecDepartures <- which(rbinom(nElig, 1, ratesElig) == 1)
if (length(vecDepartures) > 0) {
idsDpt <- idsElig[vecDepartures]
nDepartures <- sum(group[idsDpt] == 1)
nDeparturesG2 <- sum(group[idsDpt] == 2)
dat$attr$active[idsDpt] <- 0
}
}
if (at == 2) {
dat$epi$dr.flow <- c(0, nDepartures)
dat$epi$dr.flow.g2 <- c(0, nDeparturesG2)
} else {
dat$epi$dr.flow[at] <- nDepartures
dat$epi$dr.flow.g2[at] <- nDeparturesG2
}
return(dat)
}
arrivals.icm.bip <- function(dat, at) {
if (dat$param$vital == FALSE) {
return(dat)
}
a.rate <- dat$param$a.rate
a.rate.g2 <- dat$param$a.rate.g2
nOld <- dat$epi$num[at - 1]
nArrivals <- nArrivalsG2 <- 0
nOldG2 <- dat$epi$num.g2[at - 1]
if (is.na(a.rate.g2)) {
nArrivals <- sum(rbinom(nOld, 1, a.rate))
nArrivalsG2 <- sum(rbinom(nOld, 1, a.rate))
} else {
nArrivals <- sum(rbinom(nOld, 1, a.rate))
nArrivalsG2 <- sum(rbinom(nOldG2, 1, a.rate.g2))
}
totArrivals <- nArrivals + nArrivalsG2
dat$attr$active <- c(dat$attr$active, rep(1, totArrivals))
dat$attr$group <- c(dat$attr$group, c(rep(1, nArrivals), rep(2, nArrivalsG2)))
dat$attr$status <- c(dat$attr$status, rep("s", totArrivals))
dat$attr$infTime <- c(dat$attr$infTime, rep(NA, totArrivals))
if (at == 2) {
dat$epi$a.flow <- c(0, nArrivals)
dat$epi$a.flow.g2 <- c(0, nArrivalsG2)
} else {
dat$epi$a.flow[at] <- nArrivals
dat$epi$a.flow.g2[at] <- nArrivalsG2
}
return(dat)
} |
`seq_range` <-
function (r, n = 80)
seq(min(r), max(r), len = n) |
coef.pense_fit <- function (object, lambda, alpha = NULL, sparse = NULL, standardized = FALSE,
exact = deprecated(), correction = deprecated(), ...) {
if (is_present(exact)) {
deprecate_stop('2.0.0', 'coef(exact=)')
}
if (is_present(correction)) {
deprecate_stop('2.0.0', 'coef(correction=)')
}
if (length(lambda) > 1L) {
warn("Only first element in `lambda` is used.")
}
cl <- match.call(expand.dots = TRUE)
concat <- !isFALSE(cl$concat)
lambda <- .as(lambda[[1L]], 'numeric')
lambda_index <- .lambda_index_cvfit(object, lambda = lambda, alpha = alpha, se_mult = 0)
if (length(lambda_index) > 1L) {
warn(paste("Requested penalization level not part of the sequence.",
"Returning interpolated coefficients."))
return(.interpolate_coefs(object, indices = lambda_index, lambda = lambda,
sparse = sparse, envir = parent.frame(),
standardized = standardized, concat = concat))
} else {
return(.concat_coefs(object$estimates[[lambda_index]], object$call,
sparse = sparse, envir = parent.frame(),
standardized = standardized, concat = concat))
}
}
coef.pense_cvfit <- function (object, alpha = NULL, lambda = 'min', se_mult = 1, sparse = NULL,
standardized = FALSE,
exact = deprecated(), correction = deprecated(), ...) {
if (is_present(exact)) {
deprecate_stop('2.0.0', 'coef(exact=)')
}
if (is_present(correction)) {
deprecate_stop('2.0.0', 'coef(correction=)')
}
cl <- match.call(expand.dots = TRUE)
concat <- !isFALSE(cl$concat)
lambda_index <- .lambda_index_cvfit(object, lambda = lambda, alpha = alpha, se_mult = se_mult)
if (length(lambda_index) > 1L) {
warn(paste("Requested penalization level not part of the sequence.",
"Returning interpolated coefficients."))
.interpolate_coefs(object, indices = lambda_index,
lambda = .as(lambda[[1L]], 'numeric'),
sparse = sparse, envir = parent.frame(),
standardized = standardized, concat = concat)
} else {
.concat_coefs(object$estimates[[lambda_index]], call = object$call, sparse = sparse,
envir = parent.frame(), standardized = standardized, concat = concat)
}
}
.lambda_index_cvfit <- function (object, lambda, alpha, se_mult) {
if (is.character(lambda) && !identical(lambda, 'se')) {
se_mult <- .parse_se_string(lambda, only_fact = TRUE)
}
if (is.character(lambda)) {
if (!any(object$cvres$cvse > 0) && isTRUE(se_mult > 0)) {
warn(paste("Only a single cross-validation replication was performed.",
"Standard error not available. Using minimum lambda."))
}
considered_alpha <- if (!missing(alpha) && !is.null(alpha)) {
object$alpha[na.omit(.approx_match(.as(alpha, 'numeric'), object$alpha))]
} else {
object$alpha
}
if (length(considered_alpha) == 0L) {
abort("`object` was not fit with the requested `alpha` value.")
}
if (isTRUE(se_mult > 0) && !any(object$cvres$cvse > 0)) {
warn("Standard errors not available. Returning estimate for `lambda = \"min\"`.")
}
best_per_alpha <- vapply(considered_alpha, FUN.VALUE = numeric(2L), FUN = function (alpha) {
rows <- which((object$cvres$alpha - alpha)^2 < .Machine$double.eps)
se_selection <- .cv_se_selection(object$cvres$cvavg[rows],
object$cvres$cvse[rows], se_mult)
sel_index <- rows[[which(se_selection == 'se_fact')]]
c(lambda = object$cvres$lambda[[sel_index]],
cvavg = object$cvres$cvavg[[sel_index]])
})
best_alpha_index <- which.min(best_per_alpha['cvavg', ])
alpha <- considered_alpha[[best_alpha_index]]
lambda <- best_per_alpha['lambda', best_alpha_index]
}
if (missing(alpha) || is.null(alpha)) {
if (length(object$alpha) > 1L) {
warn(paste("`object` was fit for multiple `alpha` values.",
"Using first value in `object$alpha`.",
"To select a different value, specify parameter `alpha`."))
}
alpha <- object$alpha[[1L]]
}
if (length(lambda) > 1L) {
warn("Only first element in `lambda` is used.")
}
if (length(alpha) > 1L) {
warn("Only the first element in `alpha` is used.")
}
alpha <- .as(alpha[[1L]], 'numeric')
est_alpha <- vapply(object$estimates, FUN = `[[`, 'alpha', FUN.VALUE = numeric(1L))
alpha_ests_indices <- which((alpha - est_alpha)^2 < .Machine$double.eps)
if (length(alpha_ests_indices) == 0L) {
abort("`object` was not fit with the requested `alpha` value.")
}
lambda <- .as(lambda[[1L]], 'numeric')
est_lambda <- vapply(object$estimates[alpha_ests_indices],
FUN = `[[`, 'lambda', FUN.VALUE = numeric(1L))
selected_ests <- alpha_ests_indices[.approx_match(lambda, est_lambda)]
if (anyNA(selected_ests)) {
est_lambda_ord <- order(est_lambda, decreasing = TRUE)
max_lambda_index <- est_lambda_ord[[1L]]
min_lambda_index <- est_lambda_ord[[length(est_lambda_ord)]]
if (!isTRUE(lambda < est_lambda[[max_lambda_index]])) {
selected_ests <- alpha_ests_indices[[max_lambda_index]]
if (!isTRUE(sum(abs(object$estimates[[selected_ests]]$beta)) < .Machine$double.eps)) {
warn(paste("Selected `lambda` is larger than highest penalization level in `object`.",
"Returning estimate for highest penalization level."))
}
} else if (!isTRUE(lambda > est_lambda[[min_lambda_index]])) {
warn(paste("Selected `lambda` is smaller than smallest penalization level in `object`.",
"Returning estimate for smallest penalization level."))
selected_ests <- alpha_ests_indices[[min_lambda_index]]
} else {
lambda_diff <- est_lambda[est_lambda_ord] - lambda
lambda_ind_left <- min(which(lambda_diff < 0))
lambda_ind_right <- max(which(lambda_diff >= 0))
selected_ests <- alpha_ests_indices[est_lambda_ord[c(lambda_ind_left, lambda_ind_right)]]
}
}
selected_ests
}
.interpolate_coefs <- function (object, indices, lambda, ...) {
lambdas <- vapply(object$estimates[indices], FUN = `[[`, 'lambda', FUN.VALUE = numeric(1L))
interp_w <- 1 / abs(lambdas - lambda)
interp_w <- interp_w / sum(interp_w)
interp_beta <- interp_w[[1L]] * object$estimates[[indices[[1L]]]]$beta +
interp_w[[2L]] * object$estimates[[indices[[2L]]]]$beta
interp_int <- interp_w[[1L]] * object$estimates[[indices[[1L]]]]$intercept +
interp_w[[2L]] * object$estimates[[indices[[2L]]]]$intercept
interp_std_beta <- interp_w[[1L]] * object$estimates[[indices[[1L]]]]$std_beta +
interp_w[[2L]] * object$estimates[[indices[[2L]]]]$std_beta
interp_std_int <- interp_w[[1L]] * object$estimates[[indices[[1L]]]]$std_intercept +
interp_w[[2L]] * object$estimates[[indices[[2L]]]]$std_intercept
return(.concat_coefs(list(intercept = interp_int, beta = interp_beta,
std_intercept = interp_std_int, std_beta = interp_std_beta),
object$call, ...))
}
.concat_coefs <- function (coef, call, sparse, envir, standardized = FALSE, concat = TRUE) {
if (!concat) {
return(coef)
}
var_names <- tryCatch(colnames(eval(call$x, envir = envir)), error = function (e) NULL)
if (is.null(var_names)) {
var_names <- paste('X', seq_len(length(coef$beta)), sep = '')
}
var_names <- c('(Intercept)', var_names)
if (isTRUE(standardized)) {
beta <- coef$std_beta
intercept <- coef$std_intercept
} else {
beta <- coef$beta
intercept <- coef$intercept
}
if (!is.null(sparse) && pmatch(sparse[[1L]], 'matrix', nomatch = 0L) == 1L) {
if (is(beta, 'dsparseVector')) {
return(sparseMatrix(x = c(intercept, beta@x), i = c(1L, 1L + beta@i),
j = rep.int(1L, length(beta@i) + 1L),
dims = c(beta@length + 1L, 1L), dimnames = list(var_names, NULL)))
} else {
nz_ind <- which(abs(beta) > .Machine$double.eps)
return(sparseMatrix(x = c(intercept, beta[nz_ind]), i = c(1L, 1L + nz_ind),
j = rep.int(1L, length(nz_ind) + 1L),
dims = c(length(beta) + 1L, 1L), dimnames = list(var_names, NULL)))
}
} else if (isTRUE(sparse) || (is.null(sparse) && is(beta, 'dsparseVector'))) {
if (is(beta, 'dsparseVector')) {
return(sparseVector(c(intercept, beta@x), i = c(1L, beta@i + 1L), length = beta@length + 1L))
} else {
return(sparseVector(c(intercept, beta), i = seq_len(length(beta) + 1L),
length = length(beta) + 1L))
}
} else if (isFALSE(sparse) || (is.null(sparse) && is.numeric(beta))) {
coefvec <- c(intercept, as.numeric(beta))
names(coefvec) <- var_names
return(coefvec)
} else {
abort("argument `sparse` must be TRUE/FALSE or \"matrix\".")
}
} |
histPlot <- function(x,
col = fadeColor('black', '22'),
border = 'black',
breaks = "default",
probability = FALSE,
hollow = FALSE,
add = FALSE,
lty = 2,
lwd = 1,
freqTable = FALSE,
right = TRUE,
axes = TRUE,
xlab = NULL,
ylab = NULL,
xlim = NULL,
ylim = NULL,
...){
if(breaks[1] == 'default'){
breaks <- 'Sturges'
}
if(freqTable){
nObs <- sum(x[, 2])
xR <- range(x[, 1])
xR <- xR + c(-1, 1) * diff(xR) / 10^5
H <- list()
if(is.character(breaks)[1]){
breaks <- 10
}
if(length(breaks) == 1){
H$breaks <- pretty(xR, n = breaks, min.n = 1)
} else {
H$breaks <- breaks
}
H$mids <- H$breaks[-1] - diff(H$breaks) / 2
H$counts <- rep(0, length(H$mids))
for(i in 1:length(H$counts)){
if(right){
c1 <- x[, 1] <= H$breaks[i + 1]
c2 <- x[, 1] > H$breaks[i]
temp <- which(c1 & c2)
} else {
c1 <- x[, 1] < H$breaks[i + 1]
c2 <- x[, 1] >= H$breaks[i]
temp <- which(c1 & c2)
}
H$counts[i] <- sum(x[temp, 2])
}
H$density <- (H$counts / sum(H$counts)) / diff(H$breaks)
} else {
if(length(breaks) > 1 && is.numeric(breaks)[1]){
H <- graphics::hist(x,
breaks = breaks,
plot = FALSE,
right = right,
include.lowest = FALSE)
} else {
H <- graphics::hist(x,
breaks = breaks,
plot = FALSE,
right = right)
}
}
br <- H$breaks
mi <- H$mids
y <- H$counts
if(probability){
y <- H$density
}
if(is.null(ylab)){
ylab <- 'frequency'
if(probability){
ylab <- 'density'
}
}
if(is.null(xlab)){
xlab <- H$xname
}
if(is.null(xlim)){
xlim <- range(br)
}
if(is.null(ylim)){
ylim = c(0, max(y))
}
if(!add){
plot(x,
xlim = xlim,
ylim = ylim,
type = 'n',
axes = FALSE,
ylab = ylab,
xlab = xlab,
...)
graphics::abline(h = 0)
if(axes){
graphics::axis(1)
graphics::axis(2)
}
}
if(hollow){
n <- length(H$breaks)
br <- c(br[1], br)
y <- c(0, y, 0)
graphics::points(br, y,
type = 's',
col = border,
lty = lty,
lwd = lwd)
} else {
miL <- length(mi)
for(i in 1:miL){
rect(br[i], 0, br[i + 1], y[i],
border = '
lines(rep(br[i], 2), c(0, y[i]), col = border)
lines(br[i:(i + 1)], rep(y[i], 2), col = border)
if(i > 1){
if(y[i] < y[i-1]){
lines(rep(br[i], 2),
y[(i - 1):i],
col = border)
}
}
}
lines(rep(br[miL + 1], 2),
c(0, y[miL]),
col = border)
}
} |
`[.gtfs` <- function(x, value) {
subclass <- setdiff(class(x), c("gtfs", "list"))
return(new_gtfs(NextMethod(), subclass = subclass))
} |
aldvmm.pred <- function(par,
X,
y = NULL,
psi,
ncmp,
dist,
lcoef,
lcpar,
lcmp) {
parlist <- aldvmm.getpar(par = par,
lcoef = lcoef,
lcmp = lcmp,
lcpar = lcpar,
ncmp = ncmp)
if (ncmp > 1) {
exp_xd <- matrix(data = NA,
nrow = nrow(X[[2]]),
ncol = (ncmp - 1),
dimnames = list(rownames(X[[2]]),
paste0(lcmp, 1:(ncmp - 1))))
for (c in 1:(ncmp - 1)) {
exp_xd[, c] <- exp(X[[2]] %*% parlist[[lcoef[2]]][[c]])
}
p_c <- matrix(data = NA,
nrow = nrow(X[[2]]),
ncol = ncmp,
dimnames = list(rownames(X[[2]]),
paste0(lcmp, 1:ncmp)))
for (c in 1:(ncmp - 1)) {
p_c[, c] <- exp_xd[, c] / (1 + rowSums(exp_xd))
}
p_c[, ncmp] <- 1 - rowSums(p_c[, 1:(ncmp - 1), drop = FALSE])
} else {
p_c <- matrix(data = 1,
nrow = nrow(X[[1]]),
ncol = ncmp,
dimnames = list(rownames(X[[1]]),
paste0(lcmp, 1)))
}
if (dist == "normal") {
ev <- matrix(data = NA,
nrow = nrow(X[[1]]),
ncol = ncmp,
dimnames = list(rownames(X[[1]]),
paste0(lcmp, 1:ncmp)))
for (c in 1:ncmp) {
max <- 1 - stats::pnorm((max(psi) - X[[1]] %*% parlist[[lcoef[1]]][[c]]) /
exp(parlist[[lcpar[1]]][[c]]),
mean = 0,
sd = 1)
min <- stats::pnorm((min(psi) - X[[1]] %*% parlist[[lcoef[1]]][[c]]) /
exp(parlist[[lcpar[1]]][[c]]),
mean = 0,
sd = 1) * min(psi)
mid_a <- stats::pnorm((max(psi) - X[[1]] %*% parlist[[lcoef[1]]][[c]]) /
exp(parlist[[lcpar[1]]][[c]]),
mean = 0,
sd = 1)
mid_b <- stats::pnorm((min(psi) - X[[1]] %*% parlist[[lcoef[1]]][[c]]) /
exp(parlist[[lcpar[1]]][[c]]),
mean = 0,
sd = 1)
mid_c <- stats::dnorm((max(psi) - X[[1]] %*% parlist[[lcoef[1]]][[c]]) /
exp(parlist[[lcpar[1]]][[c]]),
mean = 0,
sd = 1)
mid_d <- stats::dnorm((min(psi) - X[[1]] %*% parlist[[lcoef[1]]][[c]]) /
exp(parlist[[lcpar[1]]][[c]]),
mean = 0,
sd = 1)
mid_e <- stats::pnorm((min(psi) - X[[1]] %*% parlist[[lcoef[1]]][[c]]) /
exp(parlist[[lcpar[1]]][[c]]),
mean = 0,
sd = 1)
mid_f <- stats::pnorm((max(psi) - X[[1]] %*% parlist[[lcoef[1]]][[c]]) /
exp(parlist[[lcpar[1]]][[c]]),
mean = 0,
sd = 1)
mid <- (mid_a - mid_b) * (X[[1]] %*% parlist[[lcoef[1]]][[c]] +
exp(parlist[[lcpar[1]]][[c]]) *
(mid_c - mid_d) / (mid_e - mid_f))
ev[, c] <- max + min + mid
}
}
pred <- list()
if (any(is.na(p_c))) {
warning("fitted probabilities of component membership include missing
values\n",
call. = FALSE)
}
pred[["prob"]] <- colMeans(p_c)
names(pred[["prob"]]) <- paste0(lcmp, 1:ncmp)
pred[["yhat"]] <- rowSums(p_c * ev)
names(pred[["yhat"]]) <- rownames(X[[1]])
if (!is.null(y)) {
pred[["y"]] <- y
names(pred[["y"]]) <- rownames(X[[1]])
pred[["res"]] <- pred[["y"]] - pred[["yhat"]]
names(pred[["res"]]) <- rownames(X[[1]])
}
if (any(is.na(pred[["yhat"]]))) {
warning("fitted values include missing values\n",
call. = FALSE)
}
return(pred)
} |
skip_on_cran()
tbl <-
dplyr::tibble(
a = 1:5,
b = letters[1:5],
c = c(3.5, 8.3, 6.7, 9.1, NA_real_)
)
test_that("`col_schema_match()` works properly", {
schema_obj_i_1 <-
col_schema(a = "integer", b = "character", d = "numeric")
schema_obj_i_2 <-
col_schema(a = "integer", b = "character", c = "character")
schema_obj_i_3 <-
col_schema(a = "integer", b = "character", c = "numeric", d = "numeric")
schema_obj_1_1 <-
col_schema(a = "integer", b = "character", c = "numeric")
schema_obj_1_1_i <-
col_schema(a = "integer_i", b = "character_i", c = "numeric_i")
schema_obj_2_1 <-
col_schema(b = "character", c = "numeric", a = "integer")
schema_obj_2_2 <-
col_schema(c = "numeric", a = "integer", b = "character")
schema_obj_2_1_i <-
col_schema(b = "character_i", c = "numeric_i", a = "integer_i")
schema_obj_2_2_i <-
col_schema(c = "numeric_i", a = "integer_i", b = "character_i")
schema_obj_3_1 <- col_schema(b = "character", c = "numeric")
schema_obj_3_2 <- col_schema(a = "integer", b = "character")
schema_obj_3_3 <- col_schema(a = "integer", c = "numeric")
schema_obj_3_4 <- col_schema(a = "integer")
schema_obj_3_5 <- col_schema(b = "character")
schema_obj_3_6 <- col_schema(c = "numeric")
schema_obj_3_1_i <- col_schema(b = "character_i", c = "numeric_i")
schema_obj_3_2_i <- col_schema(a = "integer_i", b = "character_i")
schema_obj_3_3_i <- col_schema(a = "integer_i", c = "numeric_i")
schema_obj_3_4_i <- col_schema(a = "integer_i")
schema_obj_3_5_i <- col_schema(b = "character_i")
schema_obj_3_6_i <- col_schema(c = "numeric_i")
schema_obj_4_1 <- col_schema(b = "character", c = "numeric")
schema_obj_4_2 <- col_schema(c = "numeric", b = "character")
schema_obj_4_3 <- col_schema(a = "integer", b = "character")
schema_obj_4_4 <- col_schema(b = "character", a = "integer")
schema_obj_4_5 <- col_schema(a = "integer", c = "numeric")
schema_obj_4_6 <- col_schema(c = "numeric", a = "integer")
schema_obj_4_1_i <- col_schema(b = "character_i", c = "numeric_i")
schema_obj_4_2_i <- col_schema(c = "numeric_i", b = "character_i")
schema_obj_4_3_i <- col_schema(a = "integer_i", b = "character_i")
schema_obj_4_4_i <- col_schema(b = "character_i", a = "integer_i")
schema_obj_4_5_i <- col_schema(a = "integer_i", c = "numeric_i")
schema_obj_4_6_i <- col_schema(c = "integer_i", a = "numeric_i")
expect_error(regexp = NA, tbl %>% col_schema_match(schema_obj_1_1, complete = TRUE, in_order = TRUE))
expect_error(tbl %>% col_schema_match(schema_obj_1_1_i, complete = TRUE, in_order = TRUE))
expect_error(tbl %>% col_schema_match(schema_obj_2_1, complete = TRUE, in_order = TRUE))
expect_error(tbl %>% col_schema_match(schema_obj_2_2, complete = TRUE, in_order = TRUE))
expect_error(tbl %>% col_schema_match(schema_obj_2_1_i, complete = TRUE, in_order = TRUE))
expect_error(tbl %>% col_schema_match(schema_obj_2_2_i, complete = TRUE, in_order = TRUE))
expect_error(tbl %>% col_schema_match(schema_obj_3_1, complete = TRUE, in_order = TRUE))
expect_error(tbl %>% col_schema_match(schema_obj_3_2, complete = TRUE, in_order = TRUE))
expect_error(tbl %>% col_schema_match(schema_obj_3_3, complete = TRUE, in_order = TRUE))
expect_error(tbl %>% col_schema_match(schema_obj_3_4, complete = TRUE, in_order = TRUE))
expect_error(tbl %>% col_schema_match(schema_obj_3_5, complete = TRUE, in_order = TRUE))
expect_error(tbl %>% col_schema_match(schema_obj_3_6, complete = TRUE, in_order = TRUE))
expect_error(tbl %>% col_schema_match(schema_obj_3_1_i, complete = TRUE, in_order = TRUE))
expect_error(tbl %>% col_schema_match(schema_obj_3_2_i, complete = TRUE, in_order = TRUE))
expect_error(tbl %>% col_schema_match(schema_obj_3_3_i, complete = TRUE, in_order = TRUE))
expect_error(tbl %>% col_schema_match(schema_obj_3_4_i, complete = TRUE, in_order = TRUE))
expect_error(tbl %>% col_schema_match(schema_obj_3_5_i, complete = TRUE, in_order = TRUE))
expect_error(tbl %>% col_schema_match(schema_obj_3_6_i, complete = TRUE, in_order = TRUE))
expect_error(tbl %>% col_schema_match(schema_obj_4_1, complete = TRUE, in_order = TRUE))
expect_error(tbl %>% col_schema_match(schema_obj_4_2, complete = TRUE, in_order = TRUE))
expect_error(tbl %>% col_schema_match(schema_obj_4_3, complete = TRUE, in_order = TRUE))
expect_error(tbl %>% col_schema_match(schema_obj_4_4, complete = TRUE, in_order = TRUE))
expect_error(tbl %>% col_schema_match(schema_obj_4_5, complete = TRUE, in_order = TRUE))
expect_error(tbl %>% col_schema_match(schema_obj_4_6, complete = TRUE, in_order = TRUE))
expect_error(tbl %>% col_schema_match(schema_obj_4_1_i, complete = TRUE, in_order = TRUE))
expect_error(tbl %>% col_schema_match(schema_obj_4_2_i, complete = TRUE, in_order = TRUE))
expect_error(tbl %>% col_schema_match(schema_obj_4_3_i, complete = TRUE, in_order = TRUE))
expect_error(tbl %>% col_schema_match(schema_obj_4_4_i, complete = TRUE, in_order = TRUE))
expect_error(tbl %>% col_schema_match(schema_obj_4_5_i, complete = TRUE, in_order = TRUE))
expect_error(tbl %>% col_schema_match(schema_obj_4_6_i, complete = TRUE, in_order = TRUE))
expect_error(tbl %>% col_schema_match(schema_obj_cnc_1, complete = TRUE, in_order = TRUE))
expect_error(tbl %>% col_schema_match(schema_obj_cnc_2, complete = TRUE, in_order = TRUE))
expect_error(tbl %>% col_schema_match(schema_obj_cnc_3, complete = TRUE, in_order = TRUE))
expect_error(regexp = NA, tbl %>% col_schema_match(schema_obj_2_1, complete = TRUE, in_order = FALSE))
expect_error(regexp = NA, tbl %>% col_schema_match(schema_obj_2_2, complete = TRUE, in_order = FALSE))
expect_error(regexp = NA, tbl %>% col_schema_match(schema_obj_1_1, complete = TRUE, in_order = FALSE))
expect_error(tbl %>% col_schema_match(schema_obj_2_1_i, complete = TRUE, in_order = FALSE))
expect_error(tbl %>% col_schema_match(schema_obj_2_2_i, complete = TRUE, in_order = FALSE))
expect_error(tbl %>% col_schema_match(schema_obj_3_1, complete = TRUE, in_order = FALSE))
expect_error(tbl %>% col_schema_match(schema_obj_3_2, complete = TRUE, in_order = FALSE))
expect_error(tbl %>% col_schema_match(schema_obj_3_3, complete = TRUE, in_order = FALSE))
expect_error(tbl %>% col_schema_match(schema_obj_3_4, complete = TRUE, in_order = FALSE))
expect_error(tbl %>% col_schema_match(schema_obj_3_5, complete = TRUE, in_order = FALSE))
expect_error(tbl %>% col_schema_match(schema_obj_3_6, complete = TRUE, in_order = FALSE))
expect_error(tbl %>% col_schema_match(schema_obj_3_1_i, complete = TRUE, in_order = FALSE))
expect_error(tbl %>% col_schema_match(schema_obj_3_2_i, complete = TRUE, in_order = FALSE))
expect_error(tbl %>% col_schema_match(schema_obj_3_3_i, complete = TRUE, in_order = FALSE))
expect_error(tbl %>% col_schema_match(schema_obj_3_4_i, complete = TRUE, in_order = FALSE))
expect_error(tbl %>% col_schema_match(schema_obj_3_5_i, complete = TRUE, in_order = FALSE))
expect_error(tbl %>% col_schema_match(schema_obj_3_6_i, complete = TRUE, in_order = FALSE))
expect_error(tbl %>% col_schema_match(schema_obj_4_1, complete = TRUE, in_order = FALSE))
expect_error(tbl %>% col_schema_match(schema_obj_4_2, complete = TRUE, in_order = FALSE))
expect_error(tbl %>% col_schema_match(schema_obj_4_3, complete = TRUE, in_order = FALSE))
expect_error(tbl %>% col_schema_match(schema_obj_4_4, complete = TRUE, in_order = FALSE))
expect_error(tbl %>% col_schema_match(schema_obj_4_5, complete = TRUE, in_order = FALSE))
expect_error(tbl %>% col_schema_match(schema_obj_4_6, complete = TRUE, in_order = FALSE))
expect_error(tbl %>% col_schema_match(schema_obj_4_1_i, complete = TRUE, in_order = FALSE))
expect_error(tbl %>% col_schema_match(schema_obj_4_2_i, complete = TRUE, in_order = FALSE))
expect_error(tbl %>% col_schema_match(schema_obj_4_3_i, complete = TRUE, in_order = FALSE))
expect_error(tbl %>% col_schema_match(schema_obj_4_4_i, complete = TRUE, in_order = FALSE))
expect_error(tbl %>% col_schema_match(schema_obj_4_5_i, complete = TRUE, in_order = FALSE))
expect_error(tbl %>% col_schema_match(schema_obj_4_6_i, complete = TRUE, in_order = FALSE))
expect_error(tbl %>% col_schema_match(schema_obj_cnc_1, complete = TRUE, in_order = FALSE))
expect_error(tbl %>% col_schema_match(schema_obj_cnc_2, complete = TRUE, in_order = FALSE))
expect_error(tbl %>% col_schema_match(schema_obj_cnc_3, complete = TRUE, in_order = FALSE))
expect_error(regexp = NA, tbl %>% col_schema_match(schema_obj_3_1, complete = FALSE, in_order = TRUE))
expect_error(regexp = NA, tbl %>% col_schema_match(schema_obj_3_2, complete = FALSE, in_order = TRUE))
expect_error(regexp = NA, tbl %>% col_schema_match(schema_obj_3_3, complete = FALSE, in_order = TRUE))
expect_error(regexp = NA, tbl %>% col_schema_match(schema_obj_3_4, complete = FALSE, in_order = TRUE))
expect_error(regexp = NA, tbl %>% col_schema_match(schema_obj_3_5, complete = FALSE, in_order = TRUE))
expect_error(regexp = NA, tbl %>% col_schema_match(schema_obj_3_6, complete = FALSE, in_order = TRUE))
expect_error(regexp = NA, tbl %>% col_schema_match(schema_obj_1_1, complete = FALSE, in_order = TRUE))
expect_error(regexp = NA, tbl %>% col_schema_match(schema_obj_4_1, complete = FALSE, in_order = TRUE))
expect_error(regexp = NA, tbl %>% col_schema_match(schema_obj_4_3, complete = FALSE, in_order = TRUE))
expect_error(regexp = NA, tbl %>% col_schema_match(schema_obj_4_5, complete = FALSE, in_order = TRUE))
expect_error(tbl %>% col_schema_match(schema_obj_3_1_i, complete = FALSE, in_order = TRUE))
expect_error(tbl %>% col_schema_match(schema_obj_3_2_i, complete = FALSE, in_order = TRUE))
expect_error(tbl %>% col_schema_match(schema_obj_3_3_i, complete = FALSE, in_order = TRUE))
expect_error(tbl %>% col_schema_match(schema_obj_3_4_i, complete = FALSE, in_order = TRUE))
expect_error(tbl %>% col_schema_match(schema_obj_3_5_i, complete = FALSE, in_order = TRUE))
expect_error(tbl %>% col_schema_match(schema_obj_3_6_i, complete = FALSE, in_order = TRUE))
expect_error(tbl %>% col_schema_match(schema_obj_2_1, complete = FALSE, in_order = TRUE))
expect_error(tbl %>% col_schema_match(schema_obj_2_2, complete = FALSE, in_order = TRUE))
expect_error(tbl %>% col_schema_match(schema_obj_4_2, complete = FALSE, in_order = TRUE))
expect_error(tbl %>% col_schema_match(schema_obj_4_4, complete = FALSE, in_order = TRUE))
expect_error(tbl %>% col_schema_match(schema_obj_4_6, complete = FALSE, in_order = TRUE))
expect_error(tbl %>% col_schema_match(schema_obj_4_1_i, complete = FALSE, in_order = TRUE))
expect_error(tbl %>% col_schema_match(schema_obj_4_2_i, complete = FALSE, in_order = TRUE))
expect_error(tbl %>% col_schema_match(schema_obj_4_3_i, complete = FALSE, in_order = TRUE))
expect_error(tbl %>% col_schema_match(schema_obj_4_4_i, complete = FALSE, in_order = TRUE))
expect_error(tbl %>% col_schema_match(schema_obj_4_5_i, complete = FALSE, in_order = TRUE))
expect_error(tbl %>% col_schema_match(schema_obj_4_6_i, complete = FALSE, in_order = TRUE))
expect_error(tbl %>% col_schema_match(schema_obj_cnc_1, complete = FALSE, in_order = TRUE))
expect_error(tbl %>% col_schema_match(schema_obj_cnc_2, complete = FALSE, in_order = TRUE))
expect_error(tbl %>% col_schema_match(schema_obj_cnc_3, complete = FALSE, in_order = TRUE))
expect_error(regexp = NA, tbl %>% col_schema_match(schema_obj_4_1, complete = FALSE, in_order = FALSE))
expect_error(regexp = NA, tbl %>% col_schema_match(schema_obj_4_2, complete = FALSE, in_order = FALSE))
expect_error(regexp = NA, tbl %>% col_schema_match(schema_obj_4_3, complete = FALSE, in_order = FALSE))
expect_error(regexp = NA, tbl %>% col_schema_match(schema_obj_4_4, complete = FALSE, in_order = FALSE))
expect_error(regexp = NA, tbl %>% col_schema_match(schema_obj_4_5, complete = FALSE, in_order = FALSE))
expect_error(regexp = NA, tbl %>% col_schema_match(schema_obj_4_6, complete = FALSE, in_order = FALSE))
expect_error(regexp = NA, tbl %>% col_schema_match(schema_obj_1_1, complete = FALSE, in_order = FALSE))
expect_error(regexp = NA, tbl %>% col_schema_match(schema_obj_2_1, complete = FALSE, in_order = FALSE))
expect_error(regexp = NA, tbl %>% col_schema_match(schema_obj_2_2, complete = FALSE, in_order = FALSE))
expect_error(regexp = NA, tbl %>% col_schema_match(schema_obj_3_1, complete = FALSE, in_order = FALSE))
expect_error(regexp = NA, tbl %>% col_schema_match(schema_obj_3_2, complete = FALSE, in_order = FALSE))
expect_error(regexp = NA, tbl %>% col_schema_match(schema_obj_3_3, complete = FALSE, in_order = FALSE))
expect_error(regexp = NA, tbl %>% col_schema_match(schema_obj_3_4, complete = FALSE, in_order = FALSE))
expect_error(regexp = NA, tbl %>% col_schema_match(schema_obj_3_5, complete = FALSE, in_order = FALSE))
expect_error(regexp = NA, tbl %>% col_schema_match(schema_obj_3_6, complete = FALSE, in_order = FALSE))
expect_error(tbl %>% col_schema_match(schema_obj_2_1_i, complete = FALSE, in_order = FALSE))
expect_error(tbl %>% col_schema_match(schema_obj_2_2_i, complete = FALSE, in_order = FALSE))
expect_error(tbl %>% col_schema_match(schema_obj_3_1_i, complete = FALSE, in_order = FALSE))
expect_error(tbl %>% col_schema_match(schema_obj_3_2_i, complete = FALSE, in_order = FALSE))
expect_error(tbl %>% col_schema_match(schema_obj_3_3_i, complete = FALSE, in_order = FALSE))
expect_error(tbl %>% col_schema_match(schema_obj_3_4_i, complete = FALSE, in_order = FALSE))
expect_error(tbl %>% col_schema_match(schema_obj_3_5_i, complete = FALSE, in_order = FALSE))
expect_error(tbl %>% col_schema_match(schema_obj_3_6_i, complete = FALSE, in_order = FALSE))
expect_error(tbl %>% col_schema_match(schema_obj_4_1_i, complete = FALSE, in_order = FALSE))
expect_error(tbl %>% col_schema_match(schema_obj_4_2_i, complete = FALSE, in_order = FALSE))
expect_error(tbl %>% col_schema_match(schema_obj_4_3_i, complete = FALSE, in_order = FALSE))
expect_error(tbl %>% col_schema_match(schema_obj_4_4_i, complete = FALSE, in_order = FALSE))
expect_error(tbl %>% col_schema_match(schema_obj_4_5_i, complete = FALSE, in_order = FALSE))
expect_error(tbl %>% col_schema_match(schema_obj_4_6_i, complete = FALSE, in_order = FALSE))
expect_error(tbl %>% col_schema_match(schema_obj_cnc_1, complete = FALSE, in_order = FALSE))
expect_error(tbl %>% col_schema_match(schema_obj_cnc_2, complete = FALSE, in_order = FALSE))
expect_error(tbl %>% col_schema_match(schema_obj_cnc_3, complete = FALSE, in_order = FALSE))
}) |
.set.btt <- function(btt, p, int.incl, Xnames) {
mstyle <- .get.mstyle("crayon" %in% .packages())
if (missing(btt) || is.null(btt)) {
if (p > 1L) {
if (int.incl) {
btt <- seq.int(from=2, to=p)
} else {
btt <- seq_len(p)
}
} else {
btt <- 1
}
} else {
if (is.character(btt)) {
btt <- grep(btt, Xnames)
if (length(btt) == 0L)
stop(mstyle$stop("Cannot identify coefficient(s) corresponding to the specified 'btt' string."))
} else {
btt <- sort(unique(round(btt)))
if (any(btt < 0) && any(btt > 0))
stop(mstyle$stop("Cannot mix positive and negative 'btt' values."))
btt <- seq_len(p)[btt]
btt <- btt[!is.na(btt)]
if (length(btt) == 0L)
stop(mstyle$stop("Non-existent coefficients specified via 'btt'."))
}
}
return(btt)
}
.format.btt <- function(btt) {
sav <- c()
if (length(btt) > 1L) {
while (length(btt) > 0L) {
x <- rle(diff(btt))
if (x$values[1] == 1 && length(x$values) != 0L) {
sav <- c(sav, c(btt[1], ":", btt[x$lengths[1] + 1]))
btt <- btt[-c(1:(x$lengths[1] + 1))]
sav <- c(sav, ",")
} else {
sav <- c(sav, btt[1], ",")
btt <- btt[-1]
}
}
sav <- paste0(sav[-length(sav)], collapse="")
} else {
sav <- paste0(btt)
}
return(sav)
}
.psort <- function(x,y) {
if (is.null(x) || length(x) == 0L)
return(NULL)
if (missing(y)) {
if (is.matrix(x)) {
xy <- x
} else {
xy <- rbind(x)
}
} else {
xy <- cbind(x,y)
}
n <- nrow(xy)
for (i in seq_len(n)) {
if (anyNA(xy[i,]))
next
xy[i,] <- sort(xy[i,])
}
colnames(xy) <- NULL
return(xy)
}
.tr <- function(X)
return(sum(diag(X)))
.is.square <- function(X)
NROW(X) == NCOL(X)
.is.intercept <- function(x, eps=1e-08)
return(all(abs(x - 1) < eps))
.is.dummy <- function(x, eps=1e-08)
return(all(abs(x) < eps | abs(x - 1) < eps))
.is.vector <- function(x)
is.atomic(x) && !is.matrix(x) && !is.null(x)
.pval <- function(p, digits=4, showeq=FALSE, sep="", add0=FALSE) {
digits <- max(digits, 1)
cutoff <- paste(c(".", rep(0,digits-1),1), collapse="")
ncutoff <- as.numeric(cutoff)
ifelse(is.na(p), paste0(ifelse(showeq, "=", ""), sep, NA),
ifelse(p >= ncutoff, paste0(ifelse(showeq, "=", ""), sep, formatC(p, digits=digits, format="f")),
paste0("<", sep, ifelse(add0, "0", ""), cutoff)))
}
.fcf <- function(x, digits) {
if (all(is.na(x))) {
x
} else {
trimws(formatC(x, format="f", digits=digits))
}
}
.level <- function(level, allow.vector=FALSE) {
if (!allow.vector && length(level) != 1L) {
mstyle <- .get.mstyle("crayon" %in% .packages())
stop(mstyle$stop("Argument 'level' must specify a single value."))
}
ifelse(level == 0, 1, ifelse(level >= 1, (100-level)/100, ifelse(level > .5, 1-level, level)))
}
.print.vector <- function(x) {
if (is.null(names(x)))
names(x) <- seq_along(x)
len.n <- nchar(names(x))
len.x <- nchar(x, keepNA=FALSE)
len.max <- pmax(len.n, len.x)
format <- sapply(len.max, function(x) paste("%", x, "s", sep=""))
row.n <- paste(mapply(formatC, names(x), width=len.max), collapse=" ")
row.x <- paste(mapply(formatC, x, width=len.max), collapse=" ")
cat(row.n, "\n", row.x, "\n", sep="")
}
.space <- function(x=TRUE) {
no.rmspace <- !exists(".rmspace")
if (no.rmspace && x)
cat("\n")
}
.get.footsym <- function() {
if (exists(".footsym")) {
fs <- get(".footsym")
} else {
fs <- c("\u00b9", "1)", "\u00b2", "2)", "\u00b3", "3)")
}
return(fs)
}
.print.time <- function(x) {
mstyle <- .get.mstyle("crayon" %in% .packages())
hours <- floor(x/60/60)
minutes <- floor(x/60) - hours*60
seconds <- round(x - minutes*60 - hours*60*60, ifelse(x > 60, 0, 2))
cat("\n")
cat(mstyle$message(paste("Processing time:", hours, ifelse(hours == 0 || hours > 1, "hours,", "hour,"), minutes, ifelse(minutes == 0 || minutes > 1, "minutes,", "minute,"), seconds, ifelse(x < 60 || seconds == 0 || seconds > 1, "seconds", "second"))))
cat("\n")
}
.make.unique <- function(x) {
if (is.null(x))
return(NULL)
x <- as.character(x)
ux <- unique(x)
for (i in seq_along(ux)) {
xiTF <- x == ux[i]
xi <- x[xiTF]
if (length(xi) == 1L)
next
x[xiTF] <- paste(xi, seq_along(xi), sep=".")
}
return(x)
}
.chkdots <- function(ddd, okargs) {
mstyle <- .get.mstyle("crayon" %in% .packages())
for (i in seq_along(okargs))
ddd[okargs[i]] <- NULL
if (length(ddd) > 0L)
warning(mstyle$warning(paste0("Extra argument", ifelse(length(ddd) > 1L, "s ", " "), "(", paste0("'", names(ddd), "'", collapse=", "), ") disregarded.")), call.=FALSE)
}
.getx <- function(x, mf, data, enclos=sys.frame(sys.parent(n=2))) {
mstyle <- .get.mstyle("crayon" %in% .packages())
mf.x <- mf[[match(x, names(mf))]]
out <- try(eval(mf.x, data, enclos), silent=TRUE)
spec <- x %in% names(mf)
if (inherits(out, "try-error") || is.function(out))
stop(mstyle$stop(paste0("Cannot find the object/variable ('", deparse(mf.x), "') specified for the '", x, "' argument.")), call.=FALSE)
if (spec && is.null(out)) {
mf.txt <- deparse(mf.x)
if (mf.txt == "NULL") {
mf.txt <- " "
} else {
mf.txt <- paste0(" ('", mf.txt, "') ")
}
stop(mstyle$stop(paste0(deparse(mf)[1], ":\n The object/variable", mf.txt, "specified for the '", x, "' argument is NULL.")), call.=FALSE)
}
return(out)
}
.getfromenv <- function(what, element, envir=.metafor, default=NULL) {
x <- try(get(what, envir=envir, inherits=FALSE), silent=TRUE)
if (inherits(x, "try-error")) {
return(default)
} else {
if (missing(element)) {
return(x)
} else {
x <- x[[element]]
if (is.null(x)) {
return(default)
} else {
return(x)
}
}
}
}
.do.call <- function(fun, ...) {
if (is.list(..1) && ...length() == 1L) {
args <- c(...)
} else {
args <- list(...)
}
args <- args[!sapply(args, is.null)]
do.call(fun, args)
}
.chkclass <- function(class, must, notap, notav, type="Method") {
mstyle <- .get.mstyle("crayon" %in% .packages())
obj <- as.character(match.call()[2])
obj <- substr(obj, 7, nchar(obj)-1)
if (!missing(must) && !is.element(must, class))
stop(mstyle$stop(paste0("Argument '", obj, "' must be an object of class \"", must, "\".")), call.=FALSE)
if (!missing(notap) && any(is.element(notap, class)))
stop(mstyle$stop(paste0(type, " not applicable to objects of class \"", class[1], "\".")), call.=FALSE)
if (!missing(notav) && any(is.element(notav, class)))
stop(mstyle$stop(paste0(type, " not available for objects of class \"", class[1], "\".")), call.=FALSE)
}
.equal.length <- function(...) {
ddd <- list(...)
ddd <- ddd[sapply(ddd, function(x) length(x) > 0)]
if (length(ddd) == 0L) {
return(TRUE)
} else {
ks <- lengths(ddd)
return(length(unique(ks)) == 1L)
}
}
.all.specified <- function(...) {
ddd <- list(...)
not0 <- lengths(ddd) != 0L
all(not0)
}
.setlab <- function(measure, transf.char, atransf.char, gentype, short=FALSE) {
if (gentype == 1)
lab <- "Observed Outcome"
if (gentype == 2)
lab <- "Overall Estimate"
if (gentype == 3)
lab <- "Estimate"
if (!is.null(measure)) {
if (is.element(measure, c("RR","MPRR"))) {
if (identical(transf.char, "FALSE") && identical(atransf.char, "FALSE")) {
lab <- ifelse(short, "Log[RR]", "Log Risk Ratio")
} else {
lab <- ifelse(short, lab, "Transformed Log Risk Ratio")
funlist <- lapply(list(exp, transf.exp.int), deparse)
if (any(sapply(funlist, identical, atransf.char)))
lab <- ifelse(short, "Risk Ratio", "Risk Ratio (log scale)")
if (any(sapply(funlist, identical, transf.char)))
lab <- ifelse(short, "Risk Ratio", "Risk Ratio")
}
}
if (is.element(measure, c("OR","PETO","D2OR","D2ORN","D2ORL","MPOR","MPORC","MPPETO","MPORM"))) {
if (identical(transf.char, "FALSE") && identical(atransf.char, "FALSE")) {
lab <- ifelse(short, "Log[OR]", "Log Odds Ratio")
} else {
lab <- ifelse(short, lab, "Transformed Log Odds Ratio")
funlist <- lapply(list(exp, transf.exp.int), deparse)
if (any(sapply(funlist, identical, atransf.char)))
lab <- ifelse(short, "Odds Ratio", "Odds Ratio (log scale)")
if (any(sapply(funlist, identical, transf.char)))
lab <- ifelse(short, "Odds Ratio", "Odds Ratio")
}
}
if (is.element(measure, c("RD","MPRD"))) {
if (identical(transf.char, "FALSE") && identical(atransf.char, "FALSE")) {
lab <- ifelse(short, "Risk Difference", "Risk Difference")
} else {
lab <- ifelse(short, lab, "Transformed Risk Difference")
}
}
if (measure == "AS") {
if (identical(transf.char, "FALSE") && identical(atransf.char, "FALSE")) {
lab <- ifelse(short, "Arcsine RD", "Arcsine Transformed Risk Difference")
} else {
lab <- ifelse(short, lab, "Transformed Arcsine Transformed Risk Difference")
}
}
if (measure == "PHI") {
if (identical(transf.char, "FALSE") && identical(atransf.char, "FALSE")) {
lab <- ifelse(short, "Phi", "Phi Coefficient")
} else {
lab <- ifelse(short, lab, "Transformed Phi Coefficient")
}
}
if (measure == "YUQ") {
if (identical(transf.char, "FALSE") && identical(atransf.char, "FALSE")) {
lab <- ifelse(short, "Yule's Q", "Yule's Q")
} else {
lab <- ifelse(short, lab, "Transformed Yule's Q")
}
}
if (measure == "YUY") {
if (identical(transf.char, "FALSE") && identical(atransf.char, "FALSE")) {
lab <- ifelse(short, "Yule's Y", "Yule's Y")
} else {
lab <- ifelse(short, lab, "Transformed Yule's Y")
}
}
if (measure == "IRR") {
if (identical(transf.char, "FALSE") && identical(atransf.char, "FALSE")) {
lab <- ifelse(short, "Log[IRR]", "Log Incidence Rate Ratio")
} else {
lab <- ifelse(short, lab, "Transformed Log Incidence Rate Ratio")
funlist <- lapply(list(exp, transf.exp.int), deparse)
if (any(sapply(funlist, identical, atransf.char)))
lab <- ifelse(short, "Rate Ratio", "Incidence Rate Ratio (log scale)")
if (any(sapply(funlist, identical, transf.char)))
lab <- ifelse(short, "Rate Ratio", "Incidence Rate Ratio")
}
}
if (measure == "IRD") {
if (identical(transf.char, "FALSE") && identical(atransf.char, "FALSE")) {
lab <- ifelse(short, "IRD", "Incidence Rate Difference")
} else {
lab <- ifelse(short, lab, "Transformed Incidence Rate Difference")
}
}
if (measure == "IRSD") {
if (identical(transf.char, "FALSE") && identical(atransf.char, "FALSE")) {
lab <- ifelse(short, "IRSD", "Square Root Transformed Incidence Rate Difference")
} else {
lab <- ifelse(short, lab, "Transformed Square Root Transformed Incidence Rate Difference")
}
}
if (measure == "MD") {
if (identical(transf.char, "FALSE") && identical(atransf.char, "FALSE")) {
lab <- ifelse(short, "MD", "Mean Difference")
} else {
lab <- ifelse(short, lab, "Transformed Mean Difference")
}
}
if (is.element(measure, c("SMD","SMDH","PBIT","OR2D","OR2DN","OR2DL","SMD1"))) {
if (identical(transf.char, "FALSE") && identical(atransf.char, "FALSE")) {
lab <- ifelse(short, "SMD", "Standardized Mean Difference")
} else {
lab <- ifelse(short, lab, "Transformed Standardized Mean Difference")
}
}
if (measure == "ROM") {
if (identical(transf.char, "FALSE") && identical(atransf.char, "FALSE")) {
lab <- ifelse(short, "Log[RoM]", "Log Ratio of Means")
} else {
lab <- ifelse(short, lab, "Transformed Log Ratio of Means")
funlist <- lapply(list(exp, transf.exp.int), deparse)
if (any(sapply(funlist, identical, atransf.char)))
lab <- ifelse(short, "Ratio of Means", "Ratio of Means (log scale)")
if (any(sapply(funlist, identical, transf.char)))
lab <- ifelse(short, "Ratio of Means", "Ratio of Means")
}
}
if (measure == "RPB") {
if (identical(transf.char, "FALSE") && identical(atransf.char, "FALSE")) {
lab <- ifelse(short, "Correlation", "Point-Biserial Correlation")
} else {
lab <- ifelse(short, lab, "Transformed Point-Biserial Correlation")
}
}
if (measure == "CVR") {
if (identical(transf.char, "FALSE") && identical(atransf.char, "FALSE")) {
lab <- ifelse(short, "Log[CVR]", "Log Coefficient of Variation Ratio")
} else {
lab <- ifelse(short, lab, "Transformed Log Coefficient of Variation Ratio")
funlist <- lapply(list(exp, transf.exp.int), deparse)
if (any(sapply(funlist, identical, atransf.char)))
lab <- ifelse(short, "CVR", "Coefficient of Variation Ratio (log scale)")
if (any(sapply(funlist, identical, transf.char)))
lab <- ifelse(short, "CVR", "Coefficient of Variation Ratio")
}
}
if (measure == "VR") {
if (identical(transf.char, "FALSE") && identical(atransf.char, "FALSE")) {
lab <- ifelse(short, "Log[VR]", "Log Variability Ratio")
} else {
lab <- ifelse(short, lab, "Transformed Log Variability Ratio")
funlist <- lapply(list(exp, transf.exp.int), deparse)
if (any(sapply(funlist, identical, atransf.char)))
lab <- ifelse(short, "VR", "Variability Ratio (log scale)")
if (any(sapply(funlist, identical, transf.char)))
lab <- ifelse(short, "VR", "Variability Ratio")
}
}
if (is.element(measure, c("COR","UCOR","RTET","RBIS"))) {
if (identical(transf.char, "FALSE") && identical(atransf.char, "FALSE")) {
lab <- ifelse(short, "Correlation", "Correlation Coefficient")
} else {
lab <- ifelse(short, lab, "Transformed Correlation Coefficient")
}
}
if (measure == "ZCOR") {
if (identical(transf.char, "FALSE") && identical(atransf.char, "FALSE")) {
lab <- ifelse(short, expression('Fisher\'s ' * z[r]), "Fisher's z Transformed Correlation Coefficient")
} else {
lab <- ifelse(short, lab, "Transformed Fisher's z Transformed Correlation Coefficient")
funlist <- lapply(list(transf.ztor, transf.ztor.int, tanh), deparse)
if (any(sapply(funlist, identical, atransf.char)))
lab <- ifelse(short, "Correlation", "Correlation Coefficient")
if (any(sapply(funlist, identical, transf.char)))
lab <- ifelse(short, "Correlation", "Correlation Coefficient")
}
}
if (measure == "PCOR") {
if (identical(transf.char, "FALSE") && identical(atransf.char, "FALSE")) {
lab <- ifelse(short, "Correlation", "Partial Correlation Coefficient")
} else {
lab <- ifelse(short, lab, "Transformed Partial Correlation Coefficient")
}
}
if (measure == "ZPCOR") {
if (identical(transf.char, "FALSE") && identical(atransf.char, "FALSE")) {
lab <- ifelse(short, expression('Fisher\'s ' * z[r]), "Fisher's z Transformed Partial Correlation Coefficient")
} else {
lab <- ifelse(short, lab, "Transformed Fisher's z Transformed Partial Correlation Coefficient")
funlist <- lapply(list(transf.ztor, transf.ztor.int, tanh), deparse)
if (any(sapply(funlist, identical, atransf.char)))
lab <- ifelse(short, "Correlation", "Partial Correlation Coefficient")
if (any(sapply(funlist, identical, transf.char)))
lab <- ifelse(short, "Correlation", "Partial Correlation Coefficient")
}
}
if (measure == "SPCOR") {
if (identical(transf.char, "FALSE") && identical(atransf.char, "FALSE")) {
lab <- ifelse(short, "Correlation", "Semi-Partial Correlation Coefficient")
} else {
lab <- ifelse(short, lab, "Transformed Semi-Partial Correlation Coefficient")
}
}
if (measure == "PR") {
if (identical(transf.char, "FALSE") && identical(atransf.char, "FALSE")) {
lab <- ifelse(short, "Proportion", "Proportion")
} else {
lab <- ifelse(short, lab, "Transformed Proportion")
}
}
if (measure == "PLN") {
if (identical(transf.char, "FALSE") && identical(atransf.char, "FALSE")) {
lab <- ifelse(short, "Log[Pr]", "Log Proportion")
} else {
lab <- ifelse(short, lab, "Transformed Log Proportion")
funlist <- lapply(list(exp, transf.exp.int), deparse)
if (any(sapply(funlist, identical, atransf.char)))
lab <- ifelse(short, "Proportion", "Proportion (log scale)")
if (any(sapply(funlist, identical, transf.char)))
lab <- ifelse(short, "Proportion", "Proportion")
}
}
if (measure == "PLO") {
if (identical(transf.char, "FALSE") && identical(atransf.char, "FALSE")) {
lab <- ifelse(short, "Log[Odds]", "Log Odds")
} else {
lab <- ifelse(short, lab, "Transformed Log Odds")
funlist <- lapply(list(transf.ilogit, transf.ilogit.int, plogis), deparse)
if (any(sapply(funlist, identical, atransf.char)))
lab <- ifelse(short, "Proportion", "Proportion (logit scale)")
if (any(sapply(funlist, identical, transf.char)))
lab <- ifelse(short, "Proportion", "Proportion")
funlist <- lapply(list(exp, transf.exp.int), deparse)
if (any(sapply(funlist, identical, atransf.char)))
lab <- ifelse(short, "Odds", "Odds (log scale)")
if (any(sapply(funlist, identical, transf.char)))
lab <- ifelse(short, "Odds", "Odds")
}
}
if (measure == "PAS") {
if (identical(transf.char, "FALSE") && identical(atransf.char, "FALSE")) {
lab <- ifelse(short, expression(arcsin(sqrt(p))), "Arcsine Transformed Proportion")
} else {
lab <- ifelse(short, lab, "Transformed Arcsine Transformed Proportion")
funlist <- lapply(list(transf.iarcsin), deparse)
if (any(sapply(funlist, identical, atransf.char)))
lab <- ifelse(short, "Proportion", "Proportion (arcsine scale)")
if (any(sapply(funlist, identical, transf.char)))
lab <- ifelse(short, "Proportion", "Proportion")
}
}
if (measure == "PFT") {
if (identical(transf.char, "FALSE") && identical(atransf.char, "FALSE")) {
lab <- ifelse(short, "PFT", "Double Arcsine Transformed Proportion")
} else {
lab <- ifelse(short, lab, "Transformed Double Arcsine Transformed Proportion")
funlist <- lapply(list(transf.ipft.hm), deparse)
if (any(sapply(funlist, identical, atransf.char)))
lab <- ifelse(short, "Proportion", "Proportion")
if (any(sapply(funlist, identical, transf.char)))
lab <- ifelse(short, "Proportion", "Proportion")
}
}
if (measure == "IR") {
if (identical(transf.char, "FALSE") && identical(atransf.char, "FALSE")) {
lab <- ifelse(short, "Rate", "Incidence Rate")
} else {
lab <- ifelse(short, lab, "Transformed Incidence Rate")
}
}
if (measure == "IRLN") {
if (identical(transf.char, "FALSE") && identical(atransf.char, "FALSE")) {
lab <- ifelse(short, "Log[IR]", "Log Incidence Rate")
} else {
lab <- ifelse(short, lab, "Transformed Log Incidence Rate")
funlist <- lapply(list(exp, transf.exp.int), deparse)
if (any(sapply(funlist, identical, atransf.char)))
lab <- ifelse(short, "Rate", "Incidence Rate (log scale)")
if (any(sapply(funlist, identical, transf.char)))
lab <- ifelse(short, "Rate", "Incidence Rate")
}
}
if (measure == "IRS") {
if (identical(transf.char, "FALSE") && identical(atransf.char, "FALSE")) {
lab <- ifelse(short, "Sqrt[IR]", "Square Root Transformed Incidence Rate")
} else {
lab <- ifelse(short, lab, "Transformed Square Root Transformed Incidence Rate")
funlist <- lapply(list(transf.isqrt, atransf.char), deparse)
if (any(sapply(funlist, identical, atransf.char)))
lab <- ifelse(short, "Rate", "Incidence Rate (square root scale)")
if (any(sapply(funlist, identical, transf.char)))
lab <- ifelse(short, "Rate", "Incidence Rate")
}
}
if (measure == "IRFT") {
if (identical(transf.char, "FALSE") && identical(atransf.char, "FALSE")) {
lab <- ifelse(short, "IRFT", "Freeman-Tukey Transformed Incidence Rate")
} else {
lab <- ifelse(short, lab, "Transformed Freeman-Tukey Transformed Incidence Rate")
}
}
if (measure == "MN") {
if (identical(transf.char, "FALSE") && identical(atransf.char, "FALSE")) {
lab <- ifelse(short, "Mean", "Mean")
} else {
lab <- ifelse(short, lab, "Transformed Mean")
}
}
if (measure == "MNLN") {
if (identical(transf.char, "FALSE") && identical(atransf.char, "FALSE")) {
lab <- ifelse(short, "Log[Mean]", "Log Mean")
} else {
lab <- ifelse(short, lab, "Transformed Log Mean")
funlist <- lapply(list(exp, transf.exp.int), deparse)
if (any(sapply(funlist, identical, atransf.char)))
lab <- ifelse(short, "Mean", "Mean (log scale)")
if (any(sapply(funlist, identical, transf.char)))
lab <- ifelse(short, "Mean", "Mean")
}
}
if (measure == "CVLN") {
if (identical(transf.char, "FALSE") && identical(atransf.char, "FALSE")) {
lab <- ifelse(short, "Log[CV]", "Log Coefficient of Variation")
} else {
lab <- ifelse(short, lab, "Transformed Log Coefficient of Variation")
funlist <- lapply(list(exp, transf.exp.int), deparse)
if (any(sapply(funlist, identical, atransf.char)))
lab <- ifelse(short, "CV", "Coefficient of Variation (log scale)")
if (any(sapply(funlist, identical, transf.char)))
lab <- ifelse(short, "CV", "Coefficient of Variation")
}
}
if (measure == "SDLN") {
if (identical(transf.char, "FALSE") && identical(atransf.char, "FALSE")) {
lab <- ifelse(short, "Log[SD]", "Log Standard Deviation")
} else {
lab <- ifelse(short, lab, "Transformed Log Standard Deviation")
funlist <- lapply(list(exp, transf.exp.int), deparse)
if (any(sapply(funlist, identical, atransf.char)))
lab <- ifelse(short, "SD", "Standard Deviation (log scale)")
if (any(sapply(funlist, identical, transf.char)))
lab <- ifelse(short, "SD", "Standard Deviation")
}
}
if (measure == "MC") {
if (identical(transf.char, "FALSE") && identical(atransf.char, "FALSE")) {
lab <- ifelse(short, "Mean Change", "Mean Change")
} else {
lab <- ifelse(short, lab, "Transformed Mean Change")
}
}
if (is.element(measure, c("SMCC","SMCR","SMCRH"))) {
if (identical(transf.char, "FALSE") && identical(atransf.char, "FALSE")) {
lab <- ifelse(short, "SMC", "Standardized Mean Change")
} else {
lab <- ifelse(short, lab, "Transformed Standardized Mean Change")
}
}
if (measure == "ROMC") {
if (identical(transf.char, "FALSE") && identical(atransf.char, "FALSE")) {
lab <- ifelse(short, "Log[RoM]", "Log Ratio of Means")
} else {
lab <- ifelse(short, lab, "Transformed Log Ratio of Means")
funlist <- lapply(list(exp, transf.exp.int), deparse)
if (any(sapply(funlist, identical, atransf.char)))
lab <- ifelse(short, "Ratio of Means", "Ratio of Means (log scale)")
if (any(sapply(funlist, identical, transf.char)))
lab <- ifelse(short, "Ratio of Means", "Ratio of Means")
}
}
if (measure == "CVRC") {
if (identical(transf.char, "FALSE") && identical(atransf.char, "FALSE")) {
lab <- ifelse(short, "Log[CVR]", "Log Coefficient of Variation Ratio")
} else {
lab <- ifelse(short, lab, "Transformed Log Coefficient of Variation Ratio")
funlist <- lapply(list(exp, transf.exp.int), deparse)
if (any(sapply(funlist, identical, atransf.char)))
lab <- ifelse(short, "CVR", "Coefficient of Variation Ratio (log scale)")
if (any(sapply(funlist, identical, transf.char)))
lab <- ifelse(short, "CVR", "Coefficient of Variation Ratio")
}
}
if (measure == "VRC") {
if (identical(transf.char, "FALSE") && identical(atransf.char, "FALSE")) {
lab <- ifelse(short, "Log[VR]", "Log Variability Ratio")
} else {
lab <- ifelse(short, lab, "Transformed Log Variability Ratio")
funlist <- lapply(list(exp, transf.exp.int), deparse)
if (any(sapply(funlist, identical, atransf.char)))
lab <- ifelse(short, "VR", "Variability Ratio (log scale)")
if (any(sapply(funlist, identical, transf.char)))
lab <- ifelse(short, "VR", "Variability Ratio")
}
}
if (measure == "ARAW") {
if (identical(transf.char, "FALSE") && identical(atransf.char, "FALSE")) {
lab <- ifelse(short, "Alpha", "Cronbach's alpha")
} else {
lab <- ifelse(short, lab, "Transformed Cronbach's alpha")
}
}
if (measure == "AHW") {
if (identical(transf.char, "FALSE") && identical(atransf.char, "FALSE")) {
lab <- ifelse(short, expression('Alpha'[HW]), "Transformed Cronbach's alpha")
} else {
lab <- ifelse(short, lab, "Transformed Cronbach's alpha")
funlist <- lapply(list(transf.iahw), deparse)
if (any(sapply(funlist, identical, atransf.char)))
lab <- ifelse(short, "Alpha", "Cronbach's alpha")
if (any(sapply(funlist, identical, transf.char)))
lab <- ifelse(short, "Alpha", "Cronbach's alpha")
}
}
if (measure == "ABT") {
if (identical(transf.char, "FALSE") && identical(atransf.char, "FALSE")) {
lab <- ifelse(short, expression('Alpha'[B]), "Transformed Cronbach's alpha")
} else {
lab <- ifelse(short, lab, "Transformed Cronbach's alpha")
funlist <- lapply(list(transf.iabt), deparse)
if (any(sapply(funlist, identical, atransf.char)))
lab <- ifelse(short, "Alpha", "Cronbach's alpha")
if (any(sapply(funlist, identical, transf.char)))
lab <- ifelse(short, "Alpha", "Cronbach's alpha")
}
}
}
return(lab)
}
.get.mstyle <- function(withcrayon) {
if (withcrayon) {
if (exists(".mstyle")) {
.mstyle <- get(".mstyle")
if (!is.list(.mstyle))
.mstyle <- list(.mstyle)
} else {
.mstyle <- list()
}
if (is.null(.mstyle$section)) {
section <- crayon::bold
} else {
section <- .mstyle$section
}
if (is.null(.mstyle$header)) {
header <- crayon::underline
} else {
header <- .mstyle$header
}
if (is.null(.mstyle$body1)) {
body1 <- crayon::reset
} else {
body1 <- .mstyle$body1
}
if (is.null(.mstyle$body2)) {
body2 <- crayon::reset
} else {
body2 <- .mstyle$body2
}
if (is.null(.mstyle$na)) {
na <- crayon::reset
} else {
na <- .mstyle$na
}
if (is.null(.mstyle$text)) {
text <- crayon::reset
} else {
text <- .mstyle$text
}
if (is.null(.mstyle$result)) {
result <- crayon::reset
} else {
result <- .mstyle$result
}
if (is.null(.mstyle$stop)) {
stop <- crayon::combine_styles(crayon::red, crayon::bold)
} else {
stop <- .mstyle$stop
}
if (is.null(.mstyle$warning)) {
warning <- crayon::yellow
} else {
warning <- .mstyle$warning
}
if (is.null(.mstyle$message)) {
message <- crayon::green
} else {
message <- .mstyle$message
}
if (is.null(.mstyle$verbose)) {
verbose <- crayon::cyan
} else {
verbose <- .mstyle$verbose
}
if (is.null(.mstyle$legend)) {
legend <- crayon::silver
} else {
legend <- .mstyle$legend
}
} else {
tmp <- function(...) paste0(...)
section <- tmp
header <- tmp
body1 <- tmp
body2 <- tmp
na <- tmp
text <- tmp
result <- tmp
stop <- tmp
warning <- tmp
message <- tmp
verbose <- tmp
legend <- tmp
}
return(list(section=section, header=header, body1=body1, body2=body2, na=na, text=text, result=result, stop=stop, warning=warning, message=message, verbose=verbose, legend=legend))
}
.print.output <- function(x, mstyle) {
if (missing(mstyle)) {
for (i in seq_along(x)) {
cat(x[i], "\n")
}
} else {
for (i in seq_along(x)) {
cat(mstyle(x[i]), "\n")
}
}
}
.is.even <- function(x) x %% 2 == 0
.print.table <- function(x, mstyle) {
is.header <- !grepl(" [-0-9]", x)
has.header <- any(is.header)
for (i in seq_along(x)) {
if (is.header[i]) {
x[i] <- trimws(x[i], which="right")
x[i] <- mstyle$header(x[i])
} else {
x[i] <- gsub("NA", mstyle$na("NA"), x[i], fixed=TRUE)
if (.is.even(i-has.header)) {
x[i] <- mstyle$body2(x[i])
} else {
x[i] <- mstyle$body1(x[i])
}
}
cat(x[i], "\n")
}
}
.set.digits <- function(digits, dmiss) {
res <- c(est=4, se=4, test=4, pval=4, ci=4, var=4, sevar=4, fit=4, het=4)
if (exists(".digits")) {
.digits <- get(".digits")
if (is.null(names(.digits)) && length(.digits) == 1L) {
res <- c(est=.digits, se=.digits, test=.digits, pval=.digits, ci=.digits, var=.digits, sevar=.digits, fit=.digits, het=.digits)
} else if (any(names(.digits) != "") && any(names(.digits) == "")) {
pos <- pmatch(names(.digits), names(res))
res[c(na.omit(pos))] <- .digits[!is.na(pos)]
otherval <- .digits[names(.digits) == ""][1]
res[(1:9)[-c(na.omit(pos))]] <- otherval
} else {
pos <- pmatch(names(.digits), names(res))
res[c(na.omit(pos))] <- .digits[!is.na(pos)]
}
}
if (!dmiss) {
if (is.null(names(digits))) {
res <- c(est=digits[[1]], se=digits[[1]], test=digits[[1]], pval=digits[[1]], ci=digits[[1]], var=digits[[1]], sevar=digits[[1]], fit=digits[[1]], het=digits[[1]])
} else {
pos <- pmatch(names(digits), names(res))
res[c(na.omit(pos))] <- digits[!is.na(pos)]
}
}
if (res["pval"] <= 1)
res["pval"] <- 2
res
}
.get.digits <- function(digits, xdigits, dmiss) {
res <- xdigits
if (exists(".digits")) {
.digits <- get(".digits")
pos <- pmatch(names(.digits), names(res))
res[c(na.omit(pos))] <- .digits[!is.na(pos)]
}
if (!dmiss) {
if (is.null(names(digits))) {
res <- c(est=digits[[1]], se=digits[[1]], test=digits[[1]], pval=digits[[1]], ci=digits[[1]], var=digits[[1]], sevar=digits[[1]], fit=digits[[1]], het=digits[[1]])
} else {
pos <- pmatch(names(digits), names(res))
res[c(na.omit(pos))] <- digits[!is.na(pos)]
}
}
if (length(res) == 1L && is.null(names(res)))
res <- c(est=res[[1]], se=res[[1]], test=res[[1]], pval=res[[1]], ci=res[[1]], var=res[[1]], sevar=res[[1]], fit=res[[1]], het=res[[1]])
if (!is.null(res["pval"]) && res["pval"] <= 1)
res["pval"] <- 2
res
}
.isTRUE <- function(x)
!is.null(x) && is.logical(x) && !is.na(x) && x
.isFALSE <- function(x)
!is.null(x) && is.logical(x) && !is.na(x) && !x
.glmulti <- str2expression("
if (!(\"glmulti\" %in% .packages()))
stop(\"Must load the 'glmulti' package first to use this code.\")
setOldClass(\"rma.uni\")
setMethod(\"getfit\", \"rma.uni\", function(object, ...) {
if (object$test==\"z\") {
cbind(estimate=coef(object), se=sqrt(diag(vcov(object))), df=Inf)
} else {
cbind(estimate=coef(object), se=sqrt(diag(vcov(object))), df=object$k-object$p)
}
})
setOldClass(\"rma.mv\")
setMethod(\"getfit\", \"rma.mv\", function(object, ...) {
if (object$test==\"z\") {
cbind(estimate=coef(object), se=sqrt(diag(vcov(object))), df=Inf)
} else {
cbind(estimate=coef(object), se=sqrt(diag(vcov(object))), df=object$k-object$p)
}
})
setOldClass(\"rma.glmm\")
setMethod(\"getfit\", \"rma.glmm\", function(object, ...) {
if (object$test==\"z\") {
cbind(estimate=coef(object), se=sqrt(diag(vcov(object))), df=Inf)
} else {
cbind(estimate=coef(object), se=sqrt(diag(vcov(object))), df=object$k-object$p)
}
})
")
.MuMIn <- str2expression("
makeArgs.rma <- function (obj, termNames, comb, opt, ...) {
ret <- MuMIn:::makeArgs.default(obj, termNames, comb, opt)
names(ret)[1L] <- \"mods\"
ret
}
coefTable.rma <- function (model, ...) {
MuMIn:::.makeCoefTable(model$b, model$se, coefNames = rownames(model$b))
}
")
.mice <- str2expression("
glance.rma <- function (x, ...)
data.frame(df.residual=df.residual(x))
tidy.rma <- function (x, ...) {
ret <- coef(summary(x))
colnames(ret)[2] <- \"std.error\"
ret$term <- rownames(ret)
return(ret)
}
")
.shorten <- function(x, minlen) {
y <- x
x <- c(na.omit(x))
n <- length(unique(x))
maxlen <- max(nchar(unique(x)))
for (l in seq_len(maxlen)) {
tab <- table(x, substr(x, 1, l))
if (nrow(tab) == n && ncol(tab) == n && sum(tab[upper.tri(tab)]) == 0 && sum(tab[lower.tri(tab)]) == 0)
break
}
if (!missing(minlen) && l < minlen) {
if (minlen > maxlen)
minlen <- maxlen
l <- minlen
}
return(substr(y, 1, l))
}
.mvrnorm <- function(n, mu, Sigma) {
p <- nrow(Sigma)
eS <- eigen(Sigma, symmetric = TRUE)
eval <- eS$values
evec <- eS$vectors
Y <- matrix(rnorm(p * n), nrow = n, byrow = TRUE) %*% t(evec %*% (t(evec) * sqrt(pmax(eval, 0))))
Y <- sweep(Y, 2, mu, "+")
return(Y)
}
.setnafalse <- function(x, arg="subset", k, stoponk0=TRUE) {
mstyle <- .get.mstyle("crayon" %in% .packages())
if (is.logical(x)) {
x <- x[seq_len(k)]
if (anyNA(x))
x[is.na(x)] <- FALSE
}
if (is.numeric(x)) {
if (anyNA(x))
x <- x[!is.na(x)]
x <- as.integer(round(x))
x <- x[x != 0L]
if (any(x > 0L) && any(x < 0L))
stop(mstyle$stop(paste0("Cannot mix positive and negative values for subsetting.")), call.=FALSE)
if (all(x > 0L))
x <- is.element(seq_len(k), x)
if (all(x < 0L))
x <- !is.element(seq_len(k), abs(x))
}
if (stoponk0 && !any(x))
stop(mstyle$stop(paste0("Stopped because k = 0 after subsetting.")), call.=FALSE)
return(x)
}
.wmean <- function (x, w, na.rm=FALSE) {
if (na.rm) {
i <- !(is.na(x) | is.na(w))
x <- x[i]
w <- w[i]
}
sum(x*w) / sum(w)
}
.tes.intfun <- function(x, theta, tau, sei, H0, alternative, crit) {
if (alternative == "two.sided")
pow <- (pnorm(crit, mean=(x-H0)/sei, sd=1, lower.tail=FALSE) + pnorm(-crit, mean=(x-H0)/sei, sd=1, lower.tail=TRUE))
if (alternative == "greater")
pow <- pnorm(crit, mean=(x-H0)/sei, sd=1, lower.tail=FALSE)
if (alternative == "less")
pow <- pnorm(crit, mean=(x-H0)/sei, sd=1, lower.tail=TRUE)
res <- pow * dnorm(x, theta, tau)
return(res)
}
.tes.lim <- function(theta, yi, vi, H0, alternative, alpha, tau2, test, tes.alternative, progbar, tes.alpha, correct, rel.tol, subdivisions, tau2.lb) {
pval <- tes(x=yi, vi=vi, H0=H0, alternative=alternative, alpha=alpha, theta=theta, tau2=tau2, test=test, tes.alternative=tes.alternative, progbar=progbar,
tes.alpha=tes.alpha, correct=correct, rel.tol=rel.tol, subdivisions=subdivisions, tau2.lb=tau2.lb, find.lim=FALSE)$pval
return(pval - tes.alpha)
}
.fsn.fisher <- function(fsnum, pi, alpha) {
k <- length(pi)
X2 <- -2*sum(log(c(pi, rep(0.5, fsnum))))
return(pchisq(X2, df=2*(k+fsnum), lower.tail=FALSE) - alpha)
}
.fsn.fitre <- function(yi, vi) {
k <- length(yi)
wi <- 1/vi
sumwi <- sum(wi)
est <- sum(wi*yi)/sumwi
Q <- sum(wi * (yi - est)^2)
tau2 <- max(0, (Q - (k-1)) / (sumwi - sum(wi^2)/sumwi))
wi <- 1 / (vi + tau2)
sumwi <- sum(wi)
est <- sum(wi*yi)/sumwi
se <- sqrt(1 / sumwi)
zval <- est / se
pval <- 2*pnorm(abs(zval), lower.tail=FALSE)
return(list(est=est, se=se, zval=zval, pval=pval, tau2=tau2))
}
.fsn.fitnew <- function(new, yi, vi, vnew, tau2, alpha, iters) {
new <- ceiling(new)
mus <- rep(NA_real_, iters)
pvals <- rep(NA_real_, iters)
for (j in seq_len(iters)) {
yinew <- c(yi, rnorm(new, 0, sqrt(vnew+tau2)))
vinew <- c(vi, rep(vnew, new))
tmp <- .fsn.fitre(yinew, vinew)
mus[j] <- tmp$est
pvals[j] <- tmp$pval
}
return(list(mean = mean(mus), rejrate = mean(pvals <= alpha)))
}
.fsn.re <- function(fsnum, yi, vi, vnew, tau2, target, alpha, iters, verbose=FALSE) {
fsnum <- ceiling(fsnum)
tmp <- .fsn.fitnew(fsnum, yi, vi, vnew, tau2, alpha, iters)
est <- tmp$mean
diff <- est - target
if (verbose)
cat("fsnum =", formatC(fsnum, width=4, format="d"), " est =", .fcf(est, 4), " target =", .fcf(target, 4), " diff =", formatC(diff, format="f", digits=4, flag=" "), "\n")
return(diff)
} |
admedian<- function(b,nf,thresh)
{
bgmodel<- base::array(0,dim=c(dim(b)[1],dim(b)[2],nf))
for(i in 1:nf)
{
bgmodel[,,i]=b[,,i]
}
for(i in 2:dim(b)[3])
{
if(i<=(nf+1))
{
b[,,i-1]=base::floor(base::abs(b[,,i]-base::apply(bgmodel[,,1:i-1],c(1,2),FUN="median",na.rm=FALSE)))
}
else
{
j= (i-1)%%nf
if(j!=0)
{
bgmodel[,,j]=b[,,i-1]
}
else
{
bgmodel[,,nf]=b[,,i-1]
}
b[,,i-1]=base::floor(base::abs(b[,,i] - base::apply(bgmodel,c(1,2),FUN="median",na.rm=FALSE)))
}
b[,,i-1]<- imager::threshold(b[,,i-1],thr=thresh,approx=TRUE)
graphics::plot(imager::as.cimg(b[,,i-1]),main=i)
}
return (b)
} |
find_q2 <- function(site_no){
peaks <- suppressWarnings(dataRetrieval::readNWISpeak(siteNumbers = site_no, convertType = FALSE))
flood <- peaks %>%
dplyr::mutate_(peak_dt = ~ suppressWarnings(lubridate::ymd(peak_dt)),
peak_va = ~ as.numeric(peak_va)) %>%
dplyr::filter_(~ !is.na(peak_dt)) %>%
dplyr::group_by_(~ site_no) %>%
dplyr::mutate_(n = ~ length(site_no)) %>%
dplyr::filter_(~ n > 2) %>%
dplyr::summarize_(flood_val = ~ construct_prob_plot(peak_va),
years = ~ sum(!is.na(peak_va))) %>%
dplyr::filter_(~ years >= 20)
return(flood)
}
construct_prob_plot <- function(vals){
vals <- vals[!is.na(vals)]
n <- length(vals)
if (n < 2) {
Q2 <- NA
} else {
rank <- rank(-vals)
prob <- rank / (n + 1)
Q2 <- stats::approx(x = prob, y = vals, xout = 0.5)
Q2 <- Q2$y
}
return(Q2)
}
find_nws <- function(site_no, type = "flood") {
if(!is.character(site_no)) stop("Input site_no must be a character")
type <- tolower(type)
if(type != "action" & type != "flood" & type != "moderate" &
type != "major") stop("type must be one of 'action', 'flood', 'moderate', or 'major'")
type <- R.utils::capitalize(tolower(type))
type <- paste0(type, "_Q")
flood_val <- NWS_flood_discharge %>%
dplyr::select_(~ USGS, ~ Action_Q, ~ Flood_Q, ~ Moderate_Q, ~ Major_Q) %>%
dplyr::filter_(~ USGS %in% site_no) %>%
tidyr::gather_(key_col = "key", value_col = "flood_val",
gather_cols = c("Action_Q", "Flood_Q",
"Moderate_Q", "Major_Q")) %>%
dplyr::filter_(~ key == type & !is.na(flood_val)) %>%
dplyr::select_(.dots = list("-key")) %>%
dplyr::rename_(.dots = list(site_no = "USGS"))
return(flood_val)
} |
RequestIgnorer <- R6::R6Class(
"RequestIgnorer",
public = list(
LOCALHOST_ALIASES = c('localhost', '127.0.0.1', '0.0.0.0'),
ignored_hosts = list(),
initialize = function() {
private$ignored_hosts_init()
self$ignore_request()
},
ignore_request = function() {
fun <- function(x) {
if (is.null(self$ignored_hosts$bucket)) return(FALSE)
host <- parseurl(x$uri)$domain %||% NULL
if (is.null(host)) return(FALSE)
if (!is.null(vcr_c$ignore_hosts)) self$ignore_hosts(vcr_c$ignore_hosts)
if (vcr_c$ignore_localhost) self$ignore_localhost()
self$ignored_hosts$includes(host)
}
VCRHooks$define_hook(hook_type = "ignore_request", fun = fun)
},
ignore_localhost = function() {
self$ignored_hosts$merge(self$LOCALHOST_ALIASES)
},
ignore_localhost_value = function(value) {
self$ignore_hosts(value)
},
ignore_hosts = function(hosts) {
self$ignored_hosts$merge(hosts)
},
should_be_ignored = function(request) {
if (missing(request)) stop("'request' can not be missing")
VCRHooks$invoke_hook(hook_type = "ignore_request", args = request)
}
),
private = list(
ignored_hosts_init = function() {
self$ignored_hosts <- EnvHash$new()
}
)
)
EnvHash <- R6::R6Class(
"EnvHash",
public = list(
bucket = c(),
print = function(...) {
bucks <- self$bucket
if (length(bucks) == 0) "" else bucks
cat("<ignored hosts>", sep = "\n")
cat(paste0(" ", paste0(bucks, collapse = ", ")), sep = "\n")
invisible(self)
},
merge = function(vals) {
self$bucket <- unique(c(self$bucket, vals))
},
includes = function(name) {
name %in% self$bucket
},
reject = function(fun) {
self$bucket <- Filter(Negate(fun), self$bucket)
}
)
) |
context("Testing bats and tbats tidiers")
test_that("sw_*.bats test returns tibble with correct rows and columns.", {
fit_bats <- WWWusage %>%
forecast::bats()
test <- sw_tidy(fit_bats)
expect_is(test, "tbl")
expect_equal(nrow(test), 7)
expect_equal(ncol(test), 2)
test <- sw_glance(fit_bats)
expect_is(test, "tbl")
expect_equal(nrow(test), 1)
expect_equal(ncol(test), 12)
test <- sw_augment(fit_bats, rename_index = "date")
expect_is(test, "tbl")
expect_equal(nrow(test), 100)
expect_equal(ncol(test), 4)
expect_equal(colnames(test)[[1]], "date")
test <- sw_tidy_decomp(fit_bats)
expect_is(test, "tbl")
expect_equal(nrow(test), 100)
expect_equal(ncol(test), 3)
fit_tbats <- USAccDeaths %>%
forecast::tbats()
test <- sw_tidy(fit_tbats)
expect_is(test, "tbl")
expect_equal(nrow(test), 8)
expect_equal(ncol(test), 2)
test <- sw_glance(fit_tbats)
expect_is(test, "tbl")
expect_equal(nrow(test), 1)
expect_equal(ncol(test), 12)
test <- sw_augment(fit_tbats, rename_index = "date")
expect_is(test, "tbl")
expect_equal(nrow(test), 72)
expect_equal(ncol(test), 4)
expect_equal(colnames(test)[[1]], "date")
test <- sw_tidy_decomp(fit_tbats)
expect_is(test, "tbl")
expect_equal(nrow(test), 72)
expect_equal(ncol(test), 5)
expect_warning(
WWWusage %>%
bats() %>%
sw_augment(timetk_idx = T)
)
monthly_bike_sales <- bike_sales %>%
mutate(month.date = as_date(as.yearmon(order.date))) %>%
group_by(month.date) %>%
summarize(total.daily.sales = sum(price.ext))
monthly_bike_sales_ts <- tk_ts(monthly_bike_sales, start = 2011, freq = 12, silent = TRUE)
fit <- bats(monthly_bike_sales_ts)
test <- fit %>% sw_augment()
expect_equal(class(test$index), "yearmon")
test <- fit %>% sw_augment(timetk_idx = T)
expect_equal(class(test$index), "Date")
test <- fit %>% sw_tidy_decomp()
expect_equal(class(test$index), "yearmon")
test <- fit %>% sw_tidy_decomp(timetk_idx = T)
expect_equal(class(test$index), "Date")
data_ts <- USAccDeaths %>%
tk_tbl() %>%
mutate(index = as_date(index)) %>%
tk_ts(start = 1973, freq = 12, silent = TRUE)
fit <- tbats(data_ts)
test <- fit %>% sw_augment()
expect_equal(class(test$index), "yearmon")
test <- fit %>% sw_augment(timetk_idx = T)
expect_equal(class(test$index), "Date")
test <- fit %>% sw_tidy_decomp()
expect_equal(class(test$index), "yearmon")
test <- fit %>% sw_tidy_decomp(timetk_idx = T)
expect_equal(class(test$index), "Date")
}) |
as_xml_document <- function(x, ...) {
UseMethod("as_xml_document")
}
as_xml_document.character <- read_xml.character
as_xml_document.raw <- read_xml.raw
as_xml_document.connection <- read_xml.connection
as_xml_document.response <- read_xml.response
as_xml_document.list <- function(x, ...) {
if (length(x) > 1) {
stop("Root nodes must be of length 1", call. = FALSE)
}
add_node <- function(x, parent, tag = NULL) {
if (is.atomic(x)) {
return(.Call(node_new_text, parent$node, as.character(x)))
}
if (!is.null(tag)) {
parent <- xml_add_child(parent, tag)
attr <- r_attrs_to_xml(attributes(x))
for (i in seq_along(attr)) {
xml_set_attr(parent, names(attr)[[i]], attr[[i]])
}
}
for (i in seq_along(x)) {
add_node(x[[i]], parent, names(x)[[i]])
}
}
doc <- xml_new_document()
add_node(x, doc)
xml_root(doc)
}
as_xml_document.xml_node <- function(x, ...) {
xml_new_root(.value = x, ..., .copy = TRUE)
}
as_xml_document.xml_nodeset <- function(x, root, ...) {
doc <- xml_new_root(.value = root, ..., .copy = TRUE)
for (i in seq_along(x)) {
xml_add_child(doc, x[[i]], .copy = TRUE)
}
doc
}
as_xml_document.xml_document <- function(x, ...) {
x
} |
setGeneric(name = "backtest",
def = function(object, horizon="6m", data.width="24m", keep.history=F,
optim.param=NULL,
optim.param.min=1, optim.param.max=10,
optim.param.scale=.1,
from=NULL, until=NULL, which=NULL, rf=0, printSteps=F) {
standardGeneric("backtest")
}
)
setMethod(f = "backtest",
signature = "Strategy",
definition = function(object, horizon, data.width, keep.history,
optim.param,
optim.param.min, optim.param.max,
optim.param.scale,
from, until, which, rf, printSteps) {
if (!is.null(optim.param)) {
if (!is.character(optim.param)) stop("Please provide parameter name to be optimized as character!")
if (!(is.null(optim.param.min) || is.null(optim.param.max)
|| is.numeric(optim.param.min) || is.numeric(optim.param.max))
|| length(optim.param.min) != length(optim.param) || length(optim.param.max) != length(optim.param)
|| any(optim.param.min>optim.param.max)
) stop("Please provide optimization parameter minimum and maximum as increasing or equal numerics with correct scaling for each parameter!")
if (!all((optim.param.max-optim.param.min)/optim.param.scale >= 1))
warning(paste0("The following parameters will be fixed: ", paste(optim.param[which((optim.param.max-optim.param.min)/optim.param.scale < 1)], collapse=", ")))
} else {
warning("No parameters to optimize given in optim.params, values of strategy object taken. Performance will be the same as in strategy execution without backtesting.")
parameters <- getParameters(object)
parameters.numeric <- list()
m <- 1
for (i in 1:length(parameters)) {
if (is.numeric(parameters[[i]])) {
parameters.numeric[m] <- parameters[i]
names(parameters.numeric)[m] <- names(parameters[i])
m <- m+1
}
}
if (length(parameters.numeric) > 0) {
optim.param <- names(parameters.numeric)
optim.param.min <- optim.param.max <- (1:length(optim.param)) * NA
optim.param.scale <- rep(1, length(optim.param))
for (i in 1:length(optim.param)) {
optim.param.min[i] <- optim.param.max[i] <- parameters.numeric[[i]]
}
} else {
optim.param <- "pseudo"
optim.param.min <- optim.param.max <- optim.param.scale <- 1
}
}
if (!is.numeric(rf) || length(rf) != 1)
stop("Please provide risk free return as numeric (single) value!")
prices <- getPrices(object, from=from, until=until, which=which)
weights <- getWeights(object, from=from, until=until, which=which, use.backtest=FALSE)
strategy <- getStratName(object)
indicators <- getIndicators(object)
object.name <- deparse(substitute(object))
object.env <- parent.frame()
setup <- matrix(ncol=length(optim.param), nrow=3)
colnames(setup) <- optim.param
rownames(setup) <- c("Minimum", "Maximum", "Scaling")
setup[1,] <- optim.param.min
setup[2,] <- optim.param.max
setup[3,] <- optim.param.scale
stratFUN <- getStratFUN(object)
rolling.dates <- xts.rollingWindows(prices, data.width, horizon, keep.history)
rolling.from <- rolling.dates$start
rolling.to <- rolling.dates$end
nbPeriods <- length(rolling.to)
param.calib_mat <- matrix(nrow=nbPeriods, ncol=length(optim.param))
rownames(param.calib_mat) <- rolling.to
colnames(param.calib_mat) <- optim.param
param.calib <- as.list(rep(NA, ncol(prices)))
names(param.calib) <- colnames(prices)
for (i in 1:length(param.calib))
param.calib[[i]] <- as.xts(param.calib_mat)
signals <- list()
optim.list <- list()
for (i in 1:length(optim.param)) {
optim.list[[i]] <- seq(optim.param.min[i], optim.param.max[i], optim.param.scale[i])
}
names(optim.list) <- optim.param
params.grid <- expand.grid(optim.list)
sharpeFUN <- function(x, rf, calib.data) {
params <- as.list(x)
if (printSteps==T)
print(paste("Params: ", paste(names(params), params, sep="=")))
stratvals <- stratFUN(prices=calib.data, weights=weights[index(calib.data)], indicators=indicators, parameters=params)
signals <- stratvals$signals
logReturns <- stratvals$logReturns[paste0(index(signals))]
returns <- exp(logReturns * signals) - 1
vola <- vapply(returns-rf, sd, 0)
vola[vola==0] <- 1
sharpe.ratios <- colMeans(returns-rf)/vola
if (printSteps==T)
print(paste("Sharpe Ratios: ", paste(paste(names(sharpe.ratios), sharpe.ratios, sep="="), sep=", ")))
return(sharpe.ratios)
}
if (printSteps == T) {
print("Period Windows:")
print(t(t(apply(cbind(rolling.from, rolling.to), 1, paste, collapse=" until "))))
print("Parameter Combinations:")
print(params.grid)
}
for(tn in 1:nbPeriods) {
print(paste0("Period ", tn, " of ", nbPeriods, " started."))
calibration.data <- prices[paste0(rolling.from[tn], "::", rolling.to[tn])]
calibration.data <- calibration.data[-nrow(calibration.data),]
sharpe.calib <- as.matrix(t(apply(params.grid, 1, sharpeFUN, rf=rf, calib.data=calibration.data)))
sharpe.calib.max <- apply(sharpe.calib, 2, max, na.rm=T)
names(sharpe.calib.max) <- colnames(prices)
param.max <- matrix(nrow=ncol(params.grid), ncol=ncol(prices))
rownames(param.max) <- colnames(params.grid)
colnames(param.max) <- colnames(prices)
sharpe.calib.which.max <- sharpe.calib*NA
for (i in 1:ncol(prices)) {
sharpe.calib.which.max[,i] <- sharpe.calib.max[colnames(prices[,i])] == sharpe.calib[,i]
param.max[,i] <- as.numeric(params.grid[min(which(sharpe.calib.which.max[,i]==1)),])
}
if (tn < nbPeriods) {
performance.data <- prices[paste0(rolling.to[tn], "::", rolling.to[tn+1])]
performance.data <- performance.data[-nrow(performance.data),]
} else {
performance.data <- prices[paste0(rolling.to[tn], "::")]
}
strat.signals <- list()
for ( i in 1:ncol(performance.data)) {
params.perf <- as.list(param.max[,i])
names(params.perf) <- optim.param
if (printSteps==T) {
print(paste("Params for out-of-sample for ", colnames(performance.data[,i]), " ", paste(names(params.perf), params.perf, sep="=", collapse=",")))
}
perf.data <- rbind(calibration.data[,i], performance.data[,i])
stratvals <- stratFUN(perf.data, weights=weights[index(perf.data)], indicators=indicators, parameters=params.perf)
signals_o <- stratvals$signals[paste0(index(performance.data))]
strat.signals[[i]] <- signals_o
}
names(strat.signals) <- colnames(performance.data)
signals[[tn]] <- as.xts(do.call(cbind, strat.signals))
for (j in 1:length(param.calib))
param.calib[[j]][tn,] <- param.max[,j]
}
signals.xts <- Reduce(rbind, signals)
[email protected] <- signals.xts
[email protected] <- param.calib
[email protected] <- setup
assign(object.name, object, envir=object.env)
}
) |
l_layer_heatImage <-function (widget,
x = seq(0, 1, length.out = nrow(z)),
y = seq(0, 1, length.out = ncol(z)),
z,
zlim = range(z[is.finite(z)]),
xlim = range(x),
ylim = range(y),
col = grDevices::heat.colors(12),
breaks,
oldstyle = FALSE,
useRaster,
index="end",
parent="root",
...) {
l_throwErrorIfNotLoonWidget(widget)
if (missing(z)) {
if (!missing(x)) {
if (is.list(x)) {
z <- x$z; y <- x$y; x <- x$x
} else {
if(is.null(dim(x)))
stop("argument must be matrix-like")
z <- x
x <- seq.int(0, 1, length.out = nrow(z))
}
} else stop("no 'z' matrix specified")
} else if (is.list(x)) {
y <- x$y
x <- x$x
}
if (any(!is.finite(x)) || any(!is.finite(y)))
stop("'x' and 'y' values must be finite and non-missing")
if (any(diff(x) <= 0) || any(diff(y) <= 0))
stop("increasing 'x' and 'y' values expected")
if (!is.matrix(z))
stop("'z' must be a matrix")
if (!typeof(z) %in% c("logical", "integer", "double"))
stop("'z' must be numeric or logical")
if (length(x) > 1 && length(x) == nrow(z)) {
dx <- 0.5*diff(x)
x <- c(x[1L] - dx[1L], x[-length(x)] + dx,
x[length(x)] + dx[length(x)-1])
}
if (length(y) > 1 && length(y) == ncol(z)) {
dy <- 0.5*diff(y)
y <- c(y[1L] - dy[1L], y[-length(y)] + dy,
y[length(y)] + dy[length(y)-1L])
}
if (missing(breaks)) {
nc <- length(col)
if (!missing(zlim) && (any(!is.finite(zlim)) || diff(zlim) < 0))
stop("invalid z limits")
if (diff(zlim) == 0)
zlim <- if (zlim[1L] == 0) {
c(-1, 1)
} else {
zlim[1L] + c(-.4, .4)*abs(zlim[1L])
}
z <- (z - zlim[1L])/diff(zlim)
zi <- if (oldstyle) {
floor((nc - 1) * z + 0.5)
} else {
floor((nc - 1e-5) * z + 1e-7)
}
zi[zi < 0 | zi >= nc] <- NA
} else {
if (length(breaks) != length(col) + 1)
stop("must have one more break than colour")
if (any(!is.finite(breaks)))
stop("'breaks' must all be finite")
if (is.unsorted(breaks)) {
warning("unsorted 'breaks' will be sorted before use")
breaks <- sort(breaks)
}
zi <- .bincode(z, breaks, TRUE, TRUE) - 1L
}
if (length(x) <= 1) x <- graphics::par("usr")[1L:2]
if (length(y) <= 1) y <- graphics::par("usr")[3:4]
if (length(x) != nrow(z)+1 || length(y) != ncol(z)+1)
stop("dimensions of z are not length(x)(-1) times length(y)(-1)")
check_irregular <- function(x, y)
{
dx <- diff(x)
dy <- diff(y)
(length(dx) && !isTRUE(all.equal(dx, rep(dx[1], length(dx))))) ||
(length(dy) && !isTRUE(all.equal(dy, rep(dy[1], length(dy)))))
}
if (missing(useRaster)) {
useRaster <- getOption("preferRaster", FALSE)
if (useRaster && check_irregular(x, y)) useRaster <- FALSE
if (useRaster) {
useRaster <- FALSE
ras <- grDevices::dev.capabilities("rasterImage")$rasterImage
if(identical(ras, "yes")) useRaster <- TRUE
if(identical(ras, "non-missing")) useRaster <- all(!is.na(zi))
}
}
if (useRaster) {
if(check_irregular(x,y))
stop(gettextf("%s can only be used with a regular grid",
sQuote("useRaster = TRUE")),
domain = NA)
if (!is.character(col)) {
col <- as.integer(col)
stop("integer colors must be non-negative")
col[col < 1L] <- NA_integer_
p <- grDevices::palette()
col <- p[((col - 1L) %% length(p)) + 1L]
}
zc <- col[zi + 1L]
dim(zc) <- dim(z)
zc <- t(zc)[ncol(zc):1L,, drop = FALSE]
id <- l_layer_rasterImage(widget, grDevices::as.raster(zc), min(x), min(y), max(x), max(y))
} else {
nx <- length(x)
x0 <- x[-nx]
x1 <- x[-1]
ny <- length(y)
y0 <- y[-ny]
y1 <- y[-1]
xcoords <- Map(function(xl, xu){c(xl, xu)}, rep(x0, ny-1), rep(x1, ny-1))
ycoords <- Map(function(yl, yu){c(yl, yu)}, rep(y0, each=nx-1), rep(y1, each=nx-1))
color <- substr(col[as.vector(zi)+1],1,7)
id <- l_layer_rectangles(widget, x=xcoords, y=ycoords, color=color, linecolor="",
parent = parent, index=index, ...)
}
return(id)
} |
context("getRequiredParamNames")
test_that("getRequiredParamNames", {
ps = makeParamSet(
makeIntegerParam("a", default = 1L),
makeIntegerParam("b", default = 1L, requires = quote(a == 1)),
makeIntegerParam("c", default = 1L, requires = quote(a == 2 && b == 1))
)
expect_equal(getRequiredParamNames(ps), c("a", "b"))
ps2 = filterParams(ps, ids = c("b", "c"))
expect_equal(getRequiredParamNames(ps2), c("a", "b"))
ps2 = filterParams(ps, ids = c("c"))
expect_equal(getRequiredParamNames(ps2), c("a", "b"))
ps2 = filterParams(ps, ids = character(0))
expect_equal(getRequiredParamNames(ps2), character(0))
}) |
vault_client_kv2 <- R6::R6Class(
"vault_client_kv2",
inherit = vault_client_object,
cloneable = FALSE,
private = list(
api_client = NULL,
mount = NULL,
validate_path = function(path, mount, zero_length_ok = FALSE) {
path <- sub("^/", "", path)
mount <- mount %||% private$mount
if (!string_starts_with(path, mount)) {
stop(sprintf(
"Invalid mount given for this path - expected '%s'", mount))
}
relative <- substr(path, nchar(mount) + 2, nchar(path))
if (!zero_length_ok && !nzchar(relative)) {
stop("Invalid path")
}
list(mount = mount,
relative = relative,
data = sprintf("/%s/data/%s", mount, relative),
metadata = sprintf("/%s/metadata/%s", mount, relative),
delete = sprintf("/%s/delete/%s", mount, relative),
undelete = sprintf("/%s/undelete/%s", mount, relative),
destroy = sprintf("/%s/destroy/%s", mount, relative))
},
validate_version = function(version, multiple_allowed = FALSE) {
if (is.null(version)) {
NULL
} else {
if (multiple_allowed) {
assert_integer(version)
list(versions = I(version))
} else {
assert_scalar_integer(version)
list(version = version)
}
}
}
),
public = list(
initialize = function(api_client, mount) {
super$initialize("Interact with vault's key/value store (version 2)")
assert_scalar_character(mount)
private$mount <- sub("^/", "", mount)
private$api_client <- api_client
},
config = function(mount = NULL) {
path <- sprintf("%s/config", mount %||% private$mount)
private$api_client$GET(path)$data
},
custom_mount = function(mount) {
vault_client_kv2$new(private$api_client, mount)
},
delete = function(path, version = NULL, mount = NULL) {
path <- private$validate_path(path, mount)
if (is.null(version)) {
private$api_client$DELETE(path$data)
} else {
body <- private$validate_version(version, TRUE)
private$api_client$POST(path$delete, body = body)
}
invisible(NULL)
},
destroy = function(path, version, mount = NULL) {
path <- private$validate_path(path, mount)
body <- private$validate_version(version, TRUE)
private$api_client$POST(path$destroy, body = body)
invisible(NULL)
},
get = function(path, version = NULL, field = NULL,
metadata = FALSE, mount = NULL) {
path <- private$validate_path(path, mount)
query <- private$validate_version(version)
assert_scalar_logical(metadata)
assert_scalar_character_or_null(field)
res <- tryCatch(
private$api_client$GET(path$data, query = query),
vault_invalid_path = function(e) NULL)
if (is.null(res)) {
return(NULL)
}
ret <- res$data$data
if (!is.null(field)) {
ret <- ret[[field]]
} else if (metadata) {
attr(ret, "metadata") <- res$data$metadata
}
ret
},
list = function(path, full_names = FALSE, mount = NULL) {
path <- private$validate_path(path, mount, TRUE)
res <- tryCatch(
private$api_client$LIST(path$metadata),
vault_invalid_path = function(e) NULL)
ret <- list_to_character(res$data$keys)
if (full_names) {
ret <- paste(sub("/+$", "", path$mount), ret, sep = "/")
}
ret
},
metadata_get = function(path, mount = NULL) {
path <- private$validate_path(path, mount)
res <- tryCatch(
private$api_client$GET(path$metadata),
vault_invalid_path = function(e) NULL)
if (is.null(res)) {
return(NULL)
}
res$data
},
metadata_put = function(path, cas_required = NULL, max_versions = NULL,
mount = NULL) {
path <- private$validate_path(path, mount)
body <- drop_null(list(
cas_required = cas_required, max_versions = max_versions))
private$api_client$POST(path$metadata, body = body)
invisible(NULL)
},
metadata_delete = function(path, mount = NULL) {
path <- private$validate_path(path, mount)
private$api_client$DELETE(path$metadata)
invisible(NULL)
},
put = function(path, data, cas = NULL, mount = NULL) {
assert_named(data)
body <- list(data = data)
if (!is.null(cas)) {
assert_scalar_integer(cas)
body$options <- list(cas = cas)
}
path <- private$validate_path(path, mount)
ret <- private$api_client$POST(path$data, body = body)
invisible(ret$data)
},
undelete = function(path, version, mount = NULL) {
path <- private$validate_path(path, mount)
body <- private$validate_version(version, TRUE)
private$api_client$POST(path$undelete, body = body)
invisible(NULL)
}
)) |
theme_hc <- function(base_size = 12,
base_family = "sans",
style = c("default", "darkunica"),
bgcolor = NULL) {
if (!is.null(bgcolor)) {
warning("`bgcolor` is deprecated. Use `style` instead.")
style <- bgcolor
}
style <- match.arg(style)
bgcolor <- switch(style,
default = "
"darkunica" = "
ret <- theme(rect = element_rect(fill = bgcolor, linetype = 0, colour = NA),
text = element_text(size = base_size, family = base_family),
title = element_text(hjust = 0.5),
axis.title.x = element_text(hjust = 0.5),
axis.title.y = element_text(hjust = 0.5),
panel.grid.major.y = element_line(colour = "
panel.grid.minor.y = element_blank(),
panel.grid.major.x = element_blank(),
panel.grid.minor.x = element_blank(),
panel.border = element_blank(),
panel.background = element_blank(),
legend.position = "bottom",
legend.key = element_rect(fill = "
if (style == "darkunica") {
ret <- (ret + theme(rect = element_rect(fill = bgcolor),
text = element_text(colour = "
title = element_text(colour = "
axis.title.x = element_text(colour = "
axis.title.y = element_text(colour = "
panel.grid.major.y = element_line(colour = "
legend.title = element_text(colour = "
}
ret
}
hc_pal <- function(palette = "default") {
if (palette %in% names(ggthemes::ggthemes_data$hc)) {
manual_pal(unname(ggthemes::ggthemes_data$hc[[palette]]))
} else {
stop("Palette `", palette, "` not valid. Must be one of ",
stringr::str_c("`", names(ggthemes::ggthemes_data$hc),
"`", collapse = ", "),
call. = FALSE)
}
}
scale_colour_hc <- function(palette = "default", ...) {
discrete_scale("colour", "hc", hc_pal(palette), ...)
}
scale_color_hc <- scale_colour_hc
scale_fill_hc <- function(palette = "default", ...) {
discrete_scale("fill", "hc", hc_pal(palette), ...)
} |
get.oc.comb.kb <- function(target, p.true, ncohort, cohortsize,
n.earlystop = 100, marginL = 0.05, marginR = 0.05,
startdose = c(1, 1), cutoff.eli = 0.95,
extrasafe = FALSE, offset = 0.05, ntrial = 1000) {
JJ = nrow(p.true)
KK = ncol(p.true)
if (JJ > KK) {
stop("p.true should be arranged in a way such that the number of rows",
" is less than or equal to the number of columns (i.e. rotated).")
}
if (target < 0.05) {
stop("The target is too low.")
}
if (target > 0.6) {
stop("The target is too high.")
}
if (offset >= 0.5) {
stop("The offset is too large.")
}
if (n.earlystop <= 6) {
stop("The value of n.earlystop is too low to ensure good operating ",
"characteristics.\n ",
"n.earlystop = 9 to 18 is recommended.")
}
set.seed(6)
ndose = length(p.true)
npts = ncohort * cohortsize
Y <- array(matrix(rep(0, length(p.true) * ntrial),
dim(p.true)[1]), dim = c(dim(p.true), ntrial))
N <- array(matrix(rep(0, length(p.true) * ntrial),
dim(p.true)[1]), dim = c(dim(p.true), ntrial))
dselect = matrix(rep(0, 2 * ntrial), ncol = 2)
total.incoherent.dlt = rep(0,ntrial)
total.incoherent.no.dlt = rep(0,ntrial)
total.incoherent = rep(0,ntrial)
total.long.incoherent.dlt = rep(0,ntrial)
total.long.incoherent.no.dlt = rep(0,ntrial)
total.long.incoherent = rep(0,ntrial)
temp = get.boundary.comb.kb(target, ncohort, cohortsize, cutoff.eli=0.95)$boundary
b.e = temp[2, ]
b.d = temp[3, ]
b.elim = temp[4, ]
for (trial in 1:ntrial) {
y <- matrix(rep(0, ndose), dim(p.true)[1], dim(p.true)[2])
n <- matrix(rep(0, ndose), dim(p.true)[1], dim(p.true)[2])
incoherent.dlt = incoherent.no.dlt = 0
long.incoherent.dlt = long.incoherent.no.dlt = 0
earlystop = 0
d = startdose
elimi = matrix(rep(0, ndose), dim(p.true)[1], dim(p.true)[2])
for (pp in 1:ncohort) {
y.current <- y[d[1], d[2]]
y[d[1], d[2]] = y[d[1], d[2]] + sum(runif(cohortsize) < p.true[d[1], d[2]])
n[d[1], d[2]] = n[d[1], d[2]] + cohortsize
if (n[d[1], d[2]] >= n.earlystop) {
break
}
nc = n[d[1], d[2]]
if (!is.na(b.elim[nc])) {
if (y[d[1], d[2]] >= b.elim[nc]) {
for (i in min(d[1], dim(p.true)[1]):dim(p.true)[1]) {
for (j in min(d[2], dim(p.true)[2]):dim(p.true)[2]) {
elimi[i, j] = 1
}
}
if (d[1] == 1 && d[2] == 1) {
d = c(99, 99)
earlystop = 1
break
}
}
if (extrasafe) {
if (d[1] == 1 && d[2] == 1 && n[1, 1] >= 3) {
if (1 - pbeta(target, y[1, 1] + 1, n[1, 1] - y[1, 1] + 1) >
cutoff.eli - offset) {
d = c(99, 99)
earlystop = 1
break
}
}
}
}
if (y[d[1], d[2]] <= b.e[nc]) {
elevel = matrix(c(1, 0, 0, 1), 2)
pr_H0 = rep(0, length(elevel) / 2)
nn = pr_H0
for (i in seq(1, length(elevel) / 2, by = 1)) {
if (d[1] + elevel[1, i] <= dim(p.true)[1] &&
d[2] + elevel[2, i] <= dim(p.true)[2]) {
if (elimi[d[1] + elevel[1, i], d[2] + elevel[2, i]] == 0) {
yn = y[d[1] + elevel[1, i], d[2] + elevel[2, i]]
nn[i] = n[d[1] + elevel[1, i], d[2] + elevel[2, i]]
pr_H0[i] <- pbeta(target+marginR, yn + 0.5, nn[i] - yn + 0.5) -
pbeta(target-marginL, yn + 0.5, nn[i] - yn + 0.5)
}
}
}
pr_H0 = pr_H0 + nn * 5e-04
if (max(pr_H0) == 0) {
d = d
}
else {
if ((y[d[1], d[2]] - y.current) > 0) {
incoherent.dlt <- incoherent.dlt + 1
}
if (y[d[1], d[2]] / n[d[1], d[2]] > target + marginR) {
long.incoherent.dlt <- long.incoherent.dlt+1
}
k = which(pr_H0 == max(pr_H0))[as.integer(runif(1) * length(which(pr_H0 == max(pr_H0))) + 1)]
d = d + c(elevel[1, k], elevel[2, k])
}
}
else if (y[d[1], d[2]] >= b.d[nc]) {
delevel = matrix(c(-1, 0, 0, -1), 2)
pr_H0 = rep(0, length(delevel) / 2)
nn = pr_H0
for (i in seq(1, length(delevel) / 2, by = 1)) {
if (d[1] + delevel[1, i] > 0 && d[2] + delevel[2, i] > 0) {
yn = y[d[1] + delevel[1, i], d[2] + delevel[2, i]]
nn[i] = n[d[1] + delevel[1, i], d[2] + delevel[2, i]]
pr_H0[i] = pbeta(target + marginR, yn + 0.5, nn[i] - yn + 0.5) -
pbeta(target - marginL, yn + 0.5, nn[i] - yn + 0.5)
}
}
pr_H0 = pr_H0 + nn * 5e-04
if (max(pr_H0) == 0) {
d = d
}
else {
if ((y[d[1], d[2]] - y.current) == 0) {
incoherent.no.dlt <- incoherent.no.dlt + 1
}
if (y[d[1], d[2]] / n[d[1], d[2]] < target - marginL) {
long.incoherent.no.dlt <- long.incoherent.no.dlt + 1
}
k = which(pr_H0 == max(pr_H0))[as.integer(runif(1) * length(which(pr_H0 == max(pr_H0))) + 1)]
d = d + c(delevel[1, k], delevel[2, k])
}
}
else {
d = d
}
}
Y[, , trial] = y
N[, , trial] = n
total.incoherent.dlt[trial] = incoherent.dlt
total.incoherent.no.dlt[trial] = incoherent.no.dlt
total.incoherent[trial] = incoherent.dlt + incoherent.no.dlt
total.long.incoherent.dlt[trial] = long.incoherent.dlt
total.long.incoherent.no.dlt[trial] = long.incoherent.no.dlt
total.long.incoherent[trial] = long.incoherent.dlt + long.incoherent.no.dlt
if (earlystop == 1) {
dselect[trial, ] = c(99, 99)
}
else {
select.mtd.comb <- function (target, npts, ntox, cutoff.eli = 0.95, extrasafe = FALSE, offset = 0.05, mtd.contour = FALSE) {
y = ntox
n = npts
if (nrow(n) > ncol(n) | nrow(y) > ncol(y)) {
stop("npts and ntox should be arranged in a way (i.e., rotated) such that for each of them, the number of rows is less than or equal to the number of columns.")
}
elimi = matrix(0, dim(n)[1], dim(n)[2])
if (extrasafe) {
if (n[1, 1] >= 3) {
if (1 - pbeta(target, y[1, 1] + 1, n[1, 1] - y[1,
1] + 1) > cutoff.eli - offset) {
elimi[, ] = 1
}
}
}
for (i in 1:dim(n)[1]) {
for (j in 1:dim(n)[2]) {
if (n[i, j] >= 3) {
if (1 - pbeta(target, y[i, j] + 1, n[i, j] -
y[i, j] + 1) > cutoff.eli) {
elimi[i:dim(n)[1], j] = 1
elimi[i, j:dim(n)[2]] = 1
break
}
}
}
}
if (elimi[1] == 1) {
selectdose = c(99, 99)
selectdoses = matrix(selectdose, nrow = 1)
}
else {
phat = (y + 0.05)/(n + 0.1)
phat = Iso::biviso(phat, n + 0.1, warn = TRUE)[, ]
phat.out = phat
phat.out[n == 0] = NA
phat[elimi == 1] = 1.1
phat = phat * (n != 0) + (1e-05) * (matrix(rep(1:dim(n)[1],
each = dim(n)[2], len = length(n)), dim(n)[1], byrow = T) +
matrix(rep(1:dim(n)[2], each = dim(n)[1], len = length(n)),
dim(n)[1]))
phat[n == 0] = 10
selectdose = which(abs(phat - target) == min(abs(phat -
target)), arr.ind = TRUE)
if (length(selectdose) > 2)
selectdose = selectdose[1, ]
aa = function(x) as.numeric(as.character(x))
if (mtd.contour == TRUE) {
selectdoses = cbind(row = 1:dim(n)[1], col = rep(99,
dim(n)[1]))
for (k in dim(n)[1]:1) {
kn = n[k, ]
ky = y[k, ]
kelimi = elimi[k, ]
kphat = phat[k, ]
if (kelimi[1] == 1 || sum(n[kelimi == 0]) ==
0) {
kseldose = 99
}
else {
adm.set = (kn != 0) & (kelimi == 0)
adm.index = which(adm.set == T)
y.adm = ky[adm.set]
n.adm = kn[adm.set]
selectd = sort(abs(kphat[adm.set] - target),
index.return = T)$ix[1]
kseldose = adm.index[selectd]
}
selectdoses[k, 2] = ifelse(is.na(kseldose), 99,
kseldose)
if (k < dim(n)[1])
if (selectdoses[k + 1, 2] == dim(n)[2])
selectdoses[k, 2] = dim(n)[2]
if (k < dim(n)[1])
if (aa(selectdoses[k + 1, 2]) == dim(n)[2] &
aa(selectdoses[k + 1, 2]) == aa(selectdoses[k,
2]))
selectdoses[k, 2] = 99
}
}
else {
selectdoses = matrix(99, nrow = 1, ncol = 2)
selectdoses[1, ] = matrix(selectdose, nrow = 1)
}
selectdoses = matrix(selectdoses[selectdoses[, 2] !=
99, ], ncol = 2)
colnames(selectdoses) = c("DoseA", "DoseB")
}
if (mtd.contour == FALSE) {
if (selectdoses[1, 1] == 99 && selectdoses[1, 2] == 99) {
message("All tested doses are overly toxic. No MTD is selected! \n")
out = list(target = target, MTD = 99, p_est = matrix(NA,
nrow = dim(npts)[1], ncol = dim(npts)[2]))
}
else {
out = list(target = target, MTD = selectdoses, p_est = round(phat.out,
2))
}
return(out)
}
else {
if (length(selectdoses) == 0) {
message("All tested doses are overly toxic. No MTD is selected! \n")
out = list(target = target, MTD = 99, p_est = matrix(NA,
nrow = dim(npts)[1], ncol = dim(npts)[2]))
}
else {
out = list(target = target, MTD = selectdoses, p_est = round(phat.out,
2))
}
return(out)
}
}
selcomb = select.mtd.comb(target, n, y, cutoff.eli, extrasafe, offset)
dselect[trial, 1] = selcomb$MTD[1]
dselect[trial, 2] = selcomb$MTD[2]
}
}
selpercent = matrix(rep(0, ndose), dim(p.true)[1], dim(p.true)[2])
nptsdose = apply(N, c(1, 2), mean, digits = 2, format = "f")
ntoxdose = apply(Y, c(1, 2), mean, digits = 2, format = "f")
for (i in 1:dim(p.true)[1]) {
for (j in 1:dim(p.true)[2]) {
selpercent[i, j] = sum(dselect[, 1] == i & dselect[, 2] == j) / ntrial * 100
}
}
if (JJ <= KK) {
over_dosing_60_num <- NULL
for(i in 1:ntrial){
over_dosing_60_num[i] <- sum(N[,,i][p.true > target + marginR])
}
over_dosing_60 = mean(over_dosing_60_num > 0.6 * npts) * 100
over_dosing_80_num <- NULL
for(i in 1:ntrial){
over_dosing_80_num[i] <- sum(N[,,i][p.true > target + marginR])
}
over_dosing_80 = mean(over_dosing_80_num > 0.8 * npts) * 100
under_dosing_60_num <- NULL
for(i in 1:ntrial){
under_dosing_60_num[i] <- sum(N[,,i][p.true < target - marginR])
}
under_dosing_60 = mean(under_dosing_60_num > 0.6 * npts) * 100
under_dosing_80_num <- NULL
for(i in 1:ntrial) {
under_dosing_80_num[i] <- sum(N[,,i][p.true < target - marginR])
}
under_dosing_80 = mean(under_dosing_80_num > 0.8 * npts) * 100
}
else {
over_dosing_60_num <- NULL
for(i in 1:ntrial) {
over_dosing_60_num[i] <- sum(N[,,i][p.true > target + marginR])
}
over_dosing_60 = mean(over_dosing_60_num > 0.6 * npts) * 100
over_dosing_80_num <- NULL
for(i in 1:ntrial){
over_dosing_80_num[i] <- sum(N[,,i][p.true > target + marginR])
}
over_dosing_80 = mean(over_dosing_80_num > 0.8 * npts) * 100
under_dosing_60_num <- NULL
for(i in 1:ntrial){
under_dosing_60_num[i] <- sum(N[,,i][p.true < target - marginR])
}
under_dosing_60 = mean(under_dosing_60_num > 0.6 * npts) * 100
under_dosing_80_num <- NULL
for(i in 1:ntrial){
under_dosing_80_num[i] <- sum(N[,,i][p.true < target - marginR])
}
under_dosing_80 = mean(under_dosing_80_num > 0.8 * npts) * 100
}
out = list(name = "get.oc.comb.kb",
target = target,
p.true = p.true,
ncohort = ncohort,
cohortsize = cohortsize,
ntotal = ncohort * cohortsize,
ntrial = ntrial,
selpercent = selpercent,
pcs = sum(selpercent[which(p.true <= target + marginR & p.true >= target - marginR, arr.ind = TRUE)]),
nmtd = sum(nptsdose[p.true <= target + marginR & p.true >= target - marginR]) / sum(nptsdose) * 100,
nmtd.over = sum(nptsdose[p.true > target + marginR]) / sum(nptsdose) * 100,
nmtd.over.sd = sd( nptsdose[p.true > target + marginR] / sum(nptsdose)),
nptsdose = nptsdose,
ntoxdose = ntoxdose,
totaltox = round(sum(Y) / ntrial, 1),
totaln = round(sum(N) / ntrial, 1),
npercent = paste(round(sum(nptsdose[which(abs(p.true - target) == min(abs(p.true - target)), arr.ind = TRUE)])
/ sum(nptsdose) * 100, 1), '%', sep = ""),
low_dose = sum(nptsdose[p.true < target - marginR]) / sum(nptsdose) * 100,
high_tox = sum(nptsdose[p.true > target + marginR]) / sum(nptsdose) * 100,
over_dosing_60 = over_dosing_60,
over_dosing_80 = over_dosing_80,
under_dosing_60 = under_dosing_60,
under_dosing_80 = under_dosing_80,
pctearlystop = sum(dselect == 99) / ntrial * 100,
over.sel.pcs = sum(selpercent[which(p.true >= target + marginR, arr.ind = TRUE)]),
percent.under.MTD.sel.20 = sum(selpercent[which(p.true < target - marginR, arr.ind = TRUE)]),
total.incoherent.dlt = sum(total.incoherent.dlt) / (ncohort * ntrial) * 100,
total.incoherent.no.dlt = sum(total.incoherent.no.dlt) / (ncohort * ntrial) * 100,
total.incoherent = sum(total.incoherent) / (ncohort * ntrial) * 100,
total.long.incoherent.dlt = sum(long.incoherent.dlt) / (ncohort * ntrial) * 100,
total.long.incoherent.no.dlt = sum(long.incoherent.no.dlt) / (ncohort * ntrial) * 100,
total.long.incoherent = sum(total.long.incoherent) * 100
)
return(out)
} |
printMixture=function(fit,digits=3,file=NULL){
est=fit
names.var=est$covariates$names
is.truncation=est$is.truncation
is.interval=est$is.interval
n.beta=length(est$covariates$beta)
n.gamma=length(est$covariates$gamma)
n.alpha=length(est$covariates$alpha)
n.q=length(est$covariates$q)
if(is.null(file)){
cat("\n")
cat("Call: "); print(est$call)
cat("\n")
if(length(est$par$beta)==0){
cat("The AFT Location-Scale Mixture Regression Model for ")
}else{
cat("The Logistic-AFT Location-Scale Mixture Regression Model for ")
}
if(is.truncation){
if(is.interval){
cat("Left-Truncated and Interval-Censored Data \n")
}else{
cat("Left-Truncated and Right-Censored Data \n")
}
}else{
if(is.interval){
cat("Interval-Censored Data \n")
}else{
cat("Right-Censored Data \n")
}
}
cat("\n")
empty=" "
colnames.outTable=c("EST","STD","95% LCL","95% UCL","P-Value","Exp(EST)","Gradient")
rownames.outTable=NULL
if(n.beta>0){
rownames.outTable=c(rownames.outTable,"Event Probability Sub-model ")
loc=est$covariates$beta
for (i in 1:length(loc)){
rownames.outTable=c(rownames.outTable,paste(empty,names.var[loc[i]],sep=""))
}
}
rownames.outTable=c(rownames.outTable,"AFT Location-Scale Sub-model")
rownames.outTable=c(rownames.outTable," Location Part")
loc=est$covariates$gamma
for (i in 1:length(loc)){
rownames.outTable=c(rownames.outTable,paste(empty,names.var[loc[i]],sep=""))
}
rownames.outTable=c(rownames.outTable," Scale Part")
loc=est$covariates$alpha
for (i in 1:length(loc)){
rownames.outTable=c(rownames.outTable,paste(empty,names.var[loc[i]],sep=""))
}
if(is.null(est$fix.par$q)){
if(n.q==1){
rownames.outTable=c(rownames.outTable," Shape Parameter")
}else{
rownames.outTable=c(rownames.outTable," Shape Part")
loc=est$covariates$q
for (i in 1:length(loc)){
rownames.outTable=c(rownames.outTable,paste(empty,names.var[loc[i]],sep=""))
}
}
}else{
if(est$fix.par$q=="logistic"){
rownames.outTable=c(rownames.outTable," Log-Logistic Distribution")
}else{
rownames.outTable=c(rownames.outTable," Shape Parameter")
}
}
outTable=as.data.frame(matrix(NA,length(rownames.outTable),length(colnames.outTable)))
outTable=matrix(NA,length(rownames.outTable),length(colnames.outTable))
colnames(outTable)=colnames.outTable
row.names(outTable)=rownames.outTable
k=0
j=0
if(n.beta>0){
j=j+1
loc=est$covariates$beta
for (i in 1:length(loc)){
j=j+1
k=k+1
parest=round(est$parest[k],digits)
std=round(est$std[k],digits)
LCL=round(parest-qnorm(1-0.025)*std,digits)
UCL=round(parest+qnorm(1-0.025)*std,digits)
pvalue=round(est$pvalue[k],digits)
if(i==1) exp.est=NA else exp.est=round(exp(est$parest[k]),digits)
grad=est$gradient[k]
outTable[j,]=c(parest,std,LCL,UCL,pvalue,exp.est,grad)
}
}
j=j+2
loc=est$covariates$gamma
for (i in 1:length(loc)){
j=j+1
k=k+1
parest=round(est$parest[k],digits)
std=round(est$std[k],digits)
LCL=round(parest-qnorm(1-0.025)*std,digits)
UCL=round(parest+qnorm(1-0.025)*std,digits)
pvalue=round(est$pvalue[k],digits)
exp.est=NA
grad=est$gradient[k]
outTable[j,]=c(parest,std,LCL,UCL,pvalue,exp.est,grad)
}
j=j+1
loc=est$covariates$alpha
for (i in 1:length(loc)){
j=j+1
k=k+1
parest=round(est$parest[k],digits)
std=round(est$std[k],digits)
LCL=round(parest-qnorm(1-0.025)*std,digits)
UCL=round(parest+qnorm(1-0.025)*std,digits)
pvalue=round(est$pvalue[k],digits)
exp.est=NA
grad=est$gradient[k]
outTable[j,]=c(parest,std,LCL,UCL,pvalue,exp.est,grad)
}
if(is.null(est$fix.par$q) & n.q!=1) j=j+1
loc=est$covariates$q
for (i in 1:length(loc)){
j=j+1
k=k+1
if(!is.null(est$fix.par$q)){
if(est$par$q=="logistic"){
parest=est$par$q
}else{
parest=round(est$par$q,digits)
}
outTable[j,1]=parest
}else{
parest=round(est$parest[k],digits)
std=round(est$std[k],digits)
LCL=round(parest-qnorm(1-0.025)*std,digits)
UCL=round(parest+qnorm(1-0.025)*std,digits)
pvalue=round(est$pvalue[k],digits)
exp.est=NA
grad=est$gradient[k]
outTable[j,]=c(parest,std,LCL,UCL,pvalue,exp.est,grad)
}
}
print(outTable[,-6],na.print="",quote=F)
cat("\n")
cat(paste("Log-Likelihood = ",round(est$LLF,digits),"\n",sep=""))
cat(paste("AIC = ",round(est$AIC,digits),"\n",sep=""))
if(is.null(est$COV)){
cat("warning: Hessian Matrix is Singular !! \n")
}else if(est$convergence!=0){
cat(paste("warning: No Convergence !! \n",sep=","))
}
cat("\n")
}else{
write("",file=file,append=F)
if(length(est$par$beta)==0){
write(paste("","","The AFT Location-Scale Mixture Regression Model",sep=","),file=file,append=T)
}else{
write(paste("","","The Logistic-AFT Location-Scale Mixture Regression Model",sep=","),file=file,append=T)
}
if(is.truncation){
if(is.interval){
write(paste("",""," for Left-Truncated and Interval-Censored Data",sep=","),file=file,append=T)
}else{
write(paste("",""," for Left-Truncated and Right-Censored Data",sep=","),file=file,append=T)
}
}else{
if(is.interval){
write(paste("",""," for Interval-Censored Data",sep=","),file=file,append=T)
}else{
write(paste("",""," for Right-Censored Data",sep=","),file=file,append=T)
}
}
write("",file=file,append=T)
write(paste("","","","EST","STD","95% LCL","95% UCL","P-Value","Gradient",sep=","),file=file,append=T)
k=0
if(n.beta>0){
write(paste("","Event Probability Sub-model",sep=","),file=file,append=T)
loc=est$covariates$beta
for (i in 1:length(loc)){
k=k+1
parest=round(est$parest[k],digits)
std=round(est$std[k],digits)
LCL=round(parest-qnorm(1-0.025)*std,digits)
UCL=round(parest+qnorm(1-0.025)*std,digits)
pvalue=ifelse(round(est$pvalue[k],digits)==0," <0.001",round(est$pvalue[k],digits))
grad=ifelse(round(est$gradient[k],digits=10)==0,"<1.0E-10",round(est$gradient[k],digits=10))
if (i==1){
write(paste("","",names.var[loc[i]],parest,std,LCL,UCL,pvalue,grad,sep=","),file=file,append=T)
}else{
write(paste("","",names.var[loc[i]],parest,std,LCL,UCL,pvalue,grad,sep=","),file=file,append=T)
}
}
}
write(paste("","AFT Location-Scale Sub-model",sep=","),file=file,append=T)
write(paste(""," Location Part",sep=","),file=file,append=T)
loc=est$covariates$gamma
for (i in 1:length(loc)){
k=k+1
parest=round(est$parest[k],digits)
std=round(est$std[k],digits)
LCL=round(parest-qnorm(1-0.025)*std,digits)
UCL=round(parest+qnorm(1-0.025)*std,digits)
pvalue=ifelse(round(est$pvalue[k],digits)==0, " <0.001",round(est$pvalue[k],digits))
grad=ifelse(round(est$gradient[k],digits=10)==0,"<1.0E-10",round(est$gradient[k],digits=10))
if (i==1) write(paste("","",names.var[loc[i]],parest,std,LCL,UCL,pvalue,grad,sep=","),file=file,append=T)
else write(paste("","",names.var[loc[i]],parest,std,LCL,UCL,pvalue,grad,sep=","),file=file,append=T)
}
write(paste(""," Scale Part",sep=","),file=file,append=T)
loc=est$covariates$alpha
for (i in 1:length(loc)){
k=k+1
parest=round(est$parest[k],digits)
std=round(est$std[k],digits)
LCL=round(parest-qnorm(1-0.025)*std,digits)
UCL=round(parest+qnorm(1-0.025)*std,digits)
pvalue=ifelse(round(est$pvalue[k],digits)==0," <0.001",round(est$pvalue[k],digits))
grad=ifelse(round(est$gradient[k],digits=10)==0,"<1.0E-10",round(est$gradient[k],digits=10))
if (i==1) write(paste("","",names.var[loc[i]],parest,std,LCL,UCL,pvalue,grad,sep=","),file=file,append=T)
else write(paste("","",names.var[loc[i]],parest,std,LCL,UCL,pvalue,grad,sep=","),file=file,append=T)
}
if(is.null(est$fix.par$q)){
if(n.q==1){
write(paste(""," Shape Parameter",sep=","),file=file,append=T)
}else{
write(paste(""," Shape Part",sep=","),file=file,append=T)
}
}else{
if(est$fix.par$q=="logistic"){
write(paste(""," Log-Logistic Distribution",sep=","),file=file,append=T)
}else{
write(paste("","Shape Parameter",sep=","),file=file,append=T)
}
}
loc=est$covariates$q
for (i in 1:length(loc)){
if(is.null(est$fix.par$q)){
k=k+1
parest=round(est$parest[k],digits)
std=round(est$std[k],digits)
LCL=round(parest-qnorm(1-0.025)*std,digits)
UCL=round(parest+qnorm(1-0.025)*std,digits)
pvalue=ifelse(round(est$pvalue[k],digits)==0," <0.001",round(est$pvalue[k],digits))
grad=ifelse(round(est$gradient[k],digits=10)==0,"<1.0E-10",round(est$gradient[k],digits=10))
if (i==1 & length(loc)==1){
write(paste("","","",parest,std,LCL,UCL,pvalue,"",grad,sep=","),file=file,append=T)
}else if (i==1){
write(paste("","",names.var[loc[i]],parest,std,LCL,UCL,pvalue,grad,sep=","),file=file,append=T)
}
else write(paste("","",names.var[loc[i]],parest,std,LCL,UCL,pvalue,grad,sep=","),file=file,append=T)
}else{
if(length(loc)==1){
if(est$par$q[i]!="logistic"){
write(paste("","","",round(est$par$q[i],digits),sep=","),file=file,append=T)
}
}else{
write(paste("","",names.var[loc[i]],"",sep=","),file=file,append=T)
}
}
}
write("",file=file,append=T)
write(paste(",Log-Likelihood = ",round(est$LLF,digits),sep=""),file=file,append=T)
write(paste(",AIC = ",round(est$AIC,digits),sep=""),file=file,append=T)
if(is.null(est$COV)){
write("warning: Hessian Matrix is Singular !!",file=file,append=T)
}else if(est$convergence!=0){
write(paste("","warning: No Convergence !!",sep=","),file=file,append=T)
}
}
} |
cbs_get_datasets <- function( catalog = "CBS"
, convert_dates = TRUE
, select = NULL
, verbose = FALSE
, cache = TRUE
, base_url = getOption("cbsodataR.base_url", BASE_URL)
, ...
){
toc <- .cache$cbs_get_datasets
if (is.null(toc)){
toc <- cbs_get_toc( ...
, convert_dates = convert_dates
, select = select
, verbose = verbose
, cache = cache
, base_url = base_url
, include_ID = FALSE
)
try({
toc2 <- cbs_get_toc(...
, convert_dates = convert_dates
, select = select
, verbose = verbose
, cache = cache
, base_url = "https://dataderden.cbs.nl"
, include_ID = FALSE
)
toc <- rbind(toc, toc2)
}, silent = TRUE)
.cache$cbs_get_datasets <- toc
}
if (!is.null(catalog)){
cats <- unique(toc$Catalog)
if (!(catalog %in% cats)){
stop("Invalid value for `catalog`, should be one of: "
, paste0('"', cats ,'"', collapse = ", ")
, 'or `NULL`'
, call. = FALSE
)
}
toc <- toc[toc$Catalog == catalog, ]
}
toc
} |
prosim <- function(C, fam, tht, dm, no){
kop3 = kopula(fam, tht, dm)
u3 = rCopula(no, kop3)
C3 = pCopula(u3, kop3)
S3 = pCopula(1 - u3, kop3)
S = C
p = numeric(length(C))
for (i in 1:length(C)){
m = C3 >= C[i] & S3 >= S[i]
p[i] = sum(m)/no
}
return(p)
} |
Brain2 <- R6::R6Class(
classname = 'rave-brain',
portable = FALSE,
cloneable = TRUE,
private = list(
.subject_code = ''
),
public = list(
meta = NULL,
surfaces = NULL,
volumes = NULL,
atlases = NULL,
electrodes = NULL,
misc = NULL,
xfm = diag(rep(1, 4)),
Norig = diag(rep(1, 4)),
Torig = diag(rep(1, 4)),
initialize = function(subject_code, xfm, Norig, Torig){
stopifnot2( length(xfm) == 16 && length(dim(xfm)) == 2 && sum(dim(xfm)) == 8,
msg = 'xfm must be 4x4 matrix')
stopifnot2( length(Norig) == 16 && length(dim(Norig)) == 2 && sum(dim(Norig)) == 8,
msg = 'Norig must be 4x4 matrix')
stopifnot2( length(Torig) == 16 && length(dim(Torig)) == 2 && sum(dim(Torig)) == 8,
msg = 'Torig must be 4x4 matrix')
private$.subject_code <- subject_code
self$xfm <- xfm
self$Norig <- Norig
self$Torig <- Torig
self$volumes <- list()
self$surfaces <- list()
self$electrodes <- BrainElectrodes$new(subject_code = subject_code)
self$meta <- list()
self$misc <- BlankGeom$new(
group = GeomGroup$new(name = sprintf('_internal_group_data_%s', subject_code)),
name = sprintf('_misc_%s', subject_code)
)
},
add_surface = function(surface){
stopifnot2( R6::is.R6( surface ) && 'brain-surface' %in% class( surface ),
msg = 'surface must be a brain-surface object')
stopifnot2( surface$has_hemispheres, msg = 'surface miss mesh objects')
if( surface$mesh_type == 'std.141' ){
surface$set_group_position( self$scanner_center )
offset_x <- switch (
surface$surface_type,
'inflated' = { offset_x <- 50 },
'sphere' = { offset_x <- 128 },
{ 0 }
)
surface$left_hemisphere$position <- c(-offset_x, 0, 0)
surface$right_hemisphere$position <- c(offset_x, 0, 0)
}else if( surface$mesh_type == 'fs' ){
surface$set_group_position( 0, 0, 0 )
}
surface$set_subject_code( self$subject_code )
self$surfaces[[ surface$surface_type ]] <- surface
},
remove_surface = function(surface_types){
if(missing(surface_types)){
surface_types <- self$surface_types
}
for( s in surface_types){
self$surfaces[[ s ]] <- NULL
}
},
remove_volume = function(volume_types){
if(missing(volume_types)){
volume_types <- self$volume_types
}
for( s in volume_types){
self$volumes[[ s ]] <- NULL
}
},
add_volume = function(volume){
stopifnot2( R6::is.R6( volume ) && 'brain-volume' %in% class( volume ),
msg = 'volume must be a brain-volume object')
stopifnot2( volume$has_volume, msg = 'volume miss datacube objects')
volume$set_subject_code( self$subject_code )
self$volumes[[ volume$volume_type ]] <- volume
},
remove_atlas = function(atlas_types){
if(missing(atlas_types)){
atlas_types <- self$atlas_types
}
for( s in atlas_types){
self$atlases[[ s ]] <- NULL
}
},
add_atlas = function(atlas){
stopifnot2( R6::is.R6( atlas ) && 'brain-atlas' %in% class( atlas ),
msg = 'atlas must be a brain-atlas object')
stopifnot2( atlas$has_atlas, msg = 'atlas miss datacube2 objects')
atlas$set_subject_code( self$subject_code )
self$atlases[[ atlas$atlas_type ]] <- atlas
},
add_vertex_color = function(name, path, lazy = TRUE){
path <- normalizePath(path)
self$misc$group$set_group_data(
name = name,
value = list(
path = path,
absolute_path = path,
file_name = filename(path),
is_new_cache = FALSE,
is_cache = TRUE,
lazy = lazy
),
is_cached = TRUE
)
},
set_electrodes = function(electrodes){
if( R6::is.R6(electrodes) && 'brain-electrodes' %in% class(electrodes)){
self$electrodes <- electrodes
self$electrodes$set_subject_code( self$subject_code )
}else{
self$electrodes$set_electrodes( electrodes )
}
},
set_electrode_values = function(table_or_path){
self$electrodes$set_values(table_or_path = table_or_path)
},
calculate_template_coordinates = function(save_to = 'auto', hemisphere = TRUE){
table <- self$electrodes$raw_table
if( !is.data.frame(table) || !nrow(table) ){
return(invisible())
}
n <- nrow(table)
surface_types <- self$surface_types
tempenv <- new.env(parent = emptyenv())
tempenv$has_change <- FALSE
rows <- lapply(seq_len(n), function(ii){
row <- table[ii, ]
fs_position <- c(row$Coord_x, row$Coord_y, row$Coord_z)
if( all(fs_position == 0) ){
return(row)
}
is_surface_electrode <- row$SurfaceElectrode
surf_t <- row$SurfaceType
if( isTRUE(is_surface_electrode) ){
if( is.na(surf_t) || surf_t == 'NA' ){
surf_t <- 'pial'
}
mapped <- electrode_mapped_141(position = fs_position, is_surface = TRUE,
vertex_number = row$VertexNumber, surf_type = surf_t,
hemisphere = row$Hemisphere)
if( !mapped && surf_t %in% surface_types ){
lh_vert <- self$surfaces[[ surf_t ]]$group$get_data(sprintf('free_vertices_Standard 141 Left Hemisphere - %s (%s)', surf_t, self$subject_code))
rh_vert <- self$surfaces[[ surf_t ]]$group$get_data(sprintf('free_vertices_Standard 141 Right Hemisphere - %s (%s)', surf_t, self$subject_code))
mesh_center <- self$surfaces[[ surf_t ]]$group$position
lh_dist <- colSums((t(lh_vert) - (fs_position - mesh_center))^2)
rh_dist <- colSums((t(rh_vert) - (fs_position - mesh_center))^2)
lh_node <- which.min(lh_dist)
lh_dist <- lh_dist[ lh_node ]
rh_node <- which.min(rh_dist)
rh_dist <- rh_dist[ rh_node ]
if(hemisphere || !isTRUE(row$Hemisphere %in% c('left', 'right'))){
node <- rh_node - 1
hemisphere <- 'right'
if( lh_dist < rh_dist ){
node <- lh_node - 1
hemisphere <- 'left'
}
} else {
hemisphere <- row$Hemisphere
if(hemisphere == 'right'){
node <- rh_node - 1
} else {
node <- lh_node - 1
}
}
row$Hemisphere <- hemisphere
row$VertexNumber <- node
tempenv$has_change <- TRUE
}
}
mni_position <- c(row$MNI305_x, row$MNI305_y, row$MNI305_z)
if( all(mni_position == 0) ){
mni_position <- self$vox2vox_MNI305 %*% c(fs_position, 1)
row$MNI305_x <- mni_position[1]
row$MNI305_y <- mni_position[2]
row$MNI305_z <- mni_position[3]
tempenv$has_change <- TRUE
}
row
})
rows <- do.call(rbind, rows)
nms <- unique(c("Electrode","Coord_x","Coord_y","Coord_z","Label","MNI305_x","MNI305_y","MNI305_z",
"SurfaceElectrode","SurfaceType","Radius","VertexNumber","Hemisphere", names(rows)))
rows <- rows[, nms]
raw_path <- self$electrodes$raw_table_path
if( isTRUE( save_to == 'auto' ) ){
save_to <- raw_path
}
if(tempenv$has_change && length(save_to) == 1 && is.character(save_to)){
safe_write_csv(rows, save_to)
self$electrodes$set_electrodes(save_to)
return(invisible(rows))
}
self$electrodes$set_electrodes(rows)
self$electrodes$raw_table_path <- raw_path
invisible(rows)
},
get_geometries = function(volumes = TRUE, surfaces = TRUE, electrodes = TRUE, atlases = TRUE){
geoms <- list(self$misc)
if( is.logical(volumes) ){
if(isTRUE(volumes)){ volumes <- self$volume_types }else{ volumes <- NULL }
}else{
volumes <- volumes[ volumes %in% self$volume_types ]
}
for( v in volumes ){ geoms <- c( geoms , self$volumes[[ v ]]$object ) }
if( is.logical(atlases) ){
if(isTRUE(atlases)){ atlases <- self$atlas_types }else{ atlases <- NULL }
}else{
atlases <- atlases[ atlases %in% self$atlas_types ]
}
for( a in atlases ){ geoms <- c( geoms , self$atlases[[ a ]]$object ) }
if( is.logical(surfaces) ){
if(isTRUE(surfaces)){ surfaces <- self$surface_types }else{ surfaces <- NULL }
}else{
surfaces <- surfaces[ surfaces %in% self$surface_types ]
}
for( s in surfaces ){
geoms <- c( geoms , self$surfaces[[ s ]]$left_hemisphere, self$surfaces[[ s ]]$right_hemisphere )
}
if( isTRUE(electrodes) && !is.null(self$electrodes) ){
geoms <- c(geoms, self$electrodes$objects)
}
return( unlist( geoms ) )
},
print = function( ... ){
cat('Subject -', self$subject_code, end = '\n')
cat('Transforms:\n\n- FreeSurfer TalXFM [from scanner to MNI305]:\n')
base::print( self$xfm )
cat('\n- Torig [Voxel CRS to FreeSurfer origin, vox2ras-tkr]\n')
base::print( self$Torig )
cat('\n- Norig [Voxel CRS to Scanner center, vox2ras]\n')
base::print( self$Norig )
cat('\n- Scanner center relative to FreeSurfer origin\n')
base::print( self$scanner_center )
cat('\n- FreeSurfer RAS to MNI305, vox2vox-MNI305\n')
base::print( self$vox2vox_MNI305 )
cat(sprintf('Surface information (total count %d)\n', length( self$surfaces )))
lapply( self$surfaces, function( surface ){
s <- sprintf( ' %s [ %s ]', surface$surface_type, surface$mesh_type)
v <- 'invalid'
level <- 'WARNING'
if( surface$has_hemispheres ){
v <- ''
level <- 'INFO'
}
cat2(s, v , level = level)
invisible()
})
cat(sprintf('Volume information (total count %d)\n', length( self$volumes )))
lapply( self$volumes, function( volume ){
s <- sprintf( ' %s', volume$volume_type)
v <- 'invalid'
level <- 'WARNING'
if( volume$has_volume ){
v <- ''
level <- 'INFO'
}
cat2(s, v , level = level)
invisible()
})
return(invisible(self))
},
localize = function(
coregistered_ct,
col = c("white", "green", 'darkgreen'),
controllers = list(),
control_presets = NULL,
voxel_colormap = NULL,
...
){
control_presets <- c('localization', control_presets)
controllers[["Highlight Box"]] <- FALSE
if(!missing( coregistered_ct )){
ct <- read_nii2( normalizePath(coregistered_ct, mustWork = TRUE) )
ct_shift <- ct$get_center_matrix()
ct_qform <- ct$get_qform()
matrix_world <- brain$Torig %*% solve(brain$Norig) %*% ct_qform %*% ct_shift
add_voxel_cube(self, "CT", ct$get_data(), size = ct$get_size(),
matrix_world = matrix_world)
key <- seq(0, max(ct$get_range()))
cmap <- create_colormap(
gtype = 'volume', dtype = 'continuous',
key = key, value = key,
color = col
)
controllers[["Left Opacity"]] <- 0.4
controllers[["Right Opacity"]] <- 0.4
controllers[["Voxel Type"]] <- "CT"
controllers[["Voxel Min"]] <- 3000
controllers[["Edit Mode"]] <- "CT/volume"
self$plot(
control_presets = control_presets,
voxel_colormap = cmap,
controllers = controllers,
custom_javascript = "canvas.controls.noPan=true;",
...
)
} else {
controllers[["Edit Mode"]] <- "MRI slice"
controllers[["Overlay Coronal"]] <- TRUE
controllers[["Overlay Axial"]] <- TRUE
controllers[["Overlay Sagittal"]] <- TRUE
controllers[["Left Opacity"]] <- 0.1
controllers[["Right Opacity"]] <- 0.1
self$plot(
control_presets = control_presets,
controllers = controllers,
custom_javascript = "canvas.controls.noPan=true;",
...
)
}
},
plot = function(
volumes = TRUE, surfaces = TRUE, atlases = TRUE, start_zoom = 1, cex = 1,
background = '
side_canvas = TRUE, side_width = 250, side_shift = c(0, 0), side_display = TRUE,
control_panel = TRUE, control_display = TRUE, default_colormap = NULL,
palettes = NULL,
control_presets = NULL,
time_range = NULL, val_ranges = NULL, value_alias = NULL,
value_ranges = val_ranges, controllers = list(),
width = NULL, height = NULL, debug = FALSE, token = NULL, browser_external = TRUE, ... ){
geoms <- self$get_geometries( volumes = volumes, surfaces = surfaces, electrodes = TRUE, atlases = atlases )
is_r6 <- vapply(geoms, function(x){ 'AbstractGeom' %in% class(x) }, FALSE)
geoms <- geoms[is_r6]
names(geoms) <- NULL
global_data <- self$global_data
control_presets <- unique(
c( 'subject2', 'surface_type2', 'hemisphere_material', 'surface_color',
'map_template', 'electrodes', 'voxel', control_presets, 'animation',
'display_highlights')
)
if( !length(self$volumes) ){
side_display <- FALSE
}
threejs_brain(
.list = geoms,
palettes = palettes, controllers = controllers, value_alias = value_alias,
side_canvas = side_canvas, side_width = side_width, side_shift = side_shift,
control_panel = control_panel, control_presets = control_presets,
control_display = control_display, value_ranges = value_ranges,
default_colormap = default_colormap, side_display = side_display,
width = width, height = height, debug = debug, token = token,
browser_external = browser_external, global_data = global_data,
start_zoom = start_zoom, cex = cex, background = background, ...)
}
),
active = list(
subject_code = function(v){
if(!missing(v)){
stop('Cannot set subject code. This attribute cannot be changed once you initialize Brain2 object.')
}
private$.subject_code
},
vox2vox_MNI305 = function(){
self$xfm %*% self$Norig %*% solve(self$Torig)
},
scanner_center = function(){
-(self$Norig %*% solve( self$Torig ) %*% c(0,0,0,1))[1:3]
},
surface_types = function(){
names(self$surfaces)
},
surface_mesh_types = function(){
sapply(self$surface_types, function(st){ self$surfaces[[st]]$mesh_type }, simplify = FALSE, USE.NAMES = TRUE)
},
volume_types = function(){
names(self$volumes)
},
atlas_types = function(){
names(self$atlases)
},
global_data = function(){
re <- structure(list(list(
Norig = self$Norig,
Torig = self$Torig,
xfm = self$xfm,
vox2vox_MNI305 = self$vox2vox_MNI305,
scanner_center = self$scanner_center,
atlas_types = self$atlas_types,
volume_types = self$volume_types
)), names = self$subject_code)
re$.subject_codes <- self$subject_code
re
}
)
) |
ukppd_avail_items <- function() {
query <- build_sparql_file_query(
"ppi", "transaction", "0A73B494-6838-4604-961B-0453DF4CC0BB", "current")
proc <- process_request(query)
proc %||% return(invisible(NULL))
all_items <- gsub(".*/ppi/(.+)", "\\1", proc$type[-1])
already_included <- c("transactionDate", "pricePaid", "transactionCategory")
setdiff(all_items, already_included)
}
ukppd_avail_optional_items <- function() {
query <- build_sparql_file_query(
"ppi", "address", "e738e64c33d83e5492f9a1bb0e3e4c24ed4ce684")
proc <- process_request(query)
proc %||% return(invisible(NULL))
all_items <- gsub(".*/common/(.+)", "\\1", proc$type[-1])
already_included <- c("postcode")
setdiff(all_items, already_included)
}
ukppd_avail_postcodes <- function() {
pc$NUTS3 <- gsub("[0-9]", "", pc$NUTS3)
pc[!pc$NUTS3 %in% c("UKM", "UKN"), ]$CODE
} |
library(testthat)
library(RSocrata)
test_check("RSocrata") |
xyplot.EmpiricalSemivariogramSSN <- function(object, ...)
{
plot(c(1,1),type = "n")
t.background <- trellis.par.get("background")
t.background$col <- "white"
trellis.par.set("background", t.background)
xyplot(gamma ~ distance | azimuth, data=object, pch = 19, col = "black",
as.table = TRUE, ...)
} |
context("Run models for all data sets and call the appropriate summaries / plots")
test_that("cipriani-efficacy", {
test.regress(depression, likelihood="binom", link="logit", t1="escitalopram", t2="sertraline")
})
test_that("luades-smoking", {
expect_that(mtc.nodesplit.comparisons(smoking), equals(
data.frame(t1=c("A", "A", "A", "B", "B", "C"), t2=c("B", "C", "D", "C", "D", "D"), stringsAsFactors=FALSE)))
test.regress(smoking, likelihood="binom", link="logit", t1="B", t2="D")
})
test_that("luades-thrombolytic", {
expect_that(mtc.nodesplit.comparisons(thrombolytic), equals(
data.frame(t1=c("ASPAC", "ASPAC", "ASPAC", "AtPA", "AtPA", "AtPA", "AtPA", "Ret", "SK", "SK", "tPA"),
t2=c("AtPA", "SK", "tPA", "Ret", "SK", "SKtPA", "UK", "SK", "tPA", "UK", "UK"), stringsAsFactors=FALSE)))
test.regress(thrombolytic, likelihood="binom", link="logit", t1="SK", t2="UK")
})
test_that("tsd2-1 (event data, pair-wise)", {
expect_that(nrow(mtc.nodesplit.comparisons(blocker)), equals(0))
test.regress(blocker, likelihood="binom", link="logit")
})
test_that("tsd2-2 (fat survival, rate data)", {
expect_that(nrow(mtc.nodesplit.comparisons(dietfat)), equals(0))
test.regress(dietfat, likelihood="poisson", link="log")
})
test_that("tsd2-3 (diabetes, rate data)", {
data.ab <- dget("../data/studyrow/tsd2-3.out.txt")
network <- mtc.network(data.ab=data.ab)
comparisons <- mtc.comparisons(network)
comparisons$t1 <- as.character(comparisons$t1)
comparisons$t2 <- as.character(comparisons$t2)
expect_that(mtc.nodesplit.comparisons(network), equals(comparisons))
test.regress(network, likelihood="binom", link="cloglog", t1="ARB", t2="BetaB")
})
test_that("parkinson example", {
expect_that(mtc.nodesplit.comparisons(parkinson), equals(
data.frame(t1=c("A", "A", "B", "C"),
t2=c("C", "D", "D", "D"), stringsAsFactors=FALSE)))
test.regress(parkinson, likelihood="normal", link="identity", t1="B", t2="D")
})
test_that("tsd2-5 (parkinson AB data)", {
data.ab <- dget("../data/studyrow/tsd2-5.out.txt")
network <- mtc.network(data.ab=data.ab)
expect_that(mtc.nodesplit.comparisons(network), equals(
data.frame(t1=c("1", "1", "2", "3"),
t2=c("3", "4", "4", "4"), stringsAsFactors=FALSE)))
test.regress(network, likelihood="normal", link="identity", t1="3", t2="4")
})
test_that("tsd2-7 (parkinson RE data)", {
expect_that(mtc.nodesplit.comparisons(parkinson_diff), equals(
data.frame(t1=c("A", "A", "B", "C"),
t2=c("C", "D", "D", "D"), stringsAsFactors=FALSE)))
test.regress(parkinson_diff, likelihood="normal", link="identity", t1="D", t2="A")
})
test_that("tsd2-8 (parkinson mixed data)", {
expect_that(mtc.nodesplit.comparisons(parkinson_shared), equals(
data.frame(t1=c("A", "A", "B", "C"),
t2=c("C", "D", "D", "D"), stringsAsFactors=FALSE)))
test.regress(parkinson_shared, likelihood="normal", link="identity", t1="B", t2="D")
})
test_that("ns-complex (numbered studies)", {
data.re <- read.table("../data/ns-complex.csv", header=TRUE, sep=",")
data.re$Study <- NULL
network <- mtc.network(data.re=data.re)
test.regress(network, likelihood="normal", link="identity", t1="B", t2="D")
})
test_that("ns-complex (named studies)", {
data.re <- read.table("../data/ns-complex.csv", header=TRUE, sep=",")
data.re$study <- data.re$Study
data.re$Study <- NULL
network <- mtc.network(data.re=data.re)
test.regress(network, likelihood="normal", link="identity", t1="H", t2="D")
})
test_that("certolizumab regression (binomial data, continuous covariate)", {
model <- mtc.model(certolizumab, type="regression", linearModel="fixed",
regressor=list(control="Placebo", coefficient="unrelated", variable="diseaseDuration"))
capture.output(result <- mtc.run(model, n.adapt=100, n.iter=500))
model <- mtc.model(certolizumab, type="regression", linearModel="fixed",
regressor=list(control="Placebo", coefficient="shared", variable="diseaseDuration"))
capture.output(result <- mtc.run(model, n.adapt=100, n.iter=500))
model <- mtc.model(certolizumab, type="regression", linearModel="fixed",
regressor=list(control="Placebo", coefficient="exchangeable", variable="diseaseDuration"))
capture.output(result <- mtc.run(model, n.adapt=100, n.iter=500))
model <- mtc.model(certolizumab, type="regression", linearModel="random",
regressor=list(control="Placebo", coefficient="unrelated", variable="diseaseDuration"))
capture.output(result <- mtc.run(model, n.adapt=100, n.iter=500))
model <- mtc.model(certolizumab, type="regression", linearModel="random",
regressor=list(control="Placebo", coefficient="shared", variable="diseaseDuration"))
capture.output(result <- mtc.run(model, n.adapt=100, n.iter=500))
model <- mtc.model(certolizumab, type="regression", linearModel="random",
regressor=list(control="Placebo", coefficient="exchangeable", variable="diseaseDuration"))
capture.output(result <- mtc.run(model, n.adapt=100, n.iter=500))
expect_true(TRUE)
})
test_that("atrial fibrillation regression (classes, binomial data, continuous covariate)", {
classes <- list("control"=c('01'),
"anti-coagulant"=c('02','03','04','09'),
"anti-platelet"=c('05','06','07','08','10','11','12','16','17'),
"mixed"=c('13','14','15'))
model <- mtc.model(atrialFibrillation, type="regression", linearModel="fixed",
regressor=list(classes=classes, coefficient="shared", variable="stroke"))
capture.output(result <- mtc.run(model, n.adapt=100, n.iter=500))
model <- mtc.model(atrialFibrillation, type="regression", linearModel="random",
regressor=list(classes=classes, coefficient="shared", variable="stroke"))
capture.output(result <- mtc.run(model, n.adapt=100, n.iter=500))
expect_true(TRUE)
})
test_that("heart failure prevention (binomial data, binary covariate)", {
model <- mtc.model(hfPrevention, type="regression", linearModel="fixed",
regressor=list(control="control", coefficient="unrelated", variable="secondary"))
capture.output(result <- mtc.run(model, n.adapt=100, n.iter=500))
model <- mtc.model(hfPrevention, type="regression", linearModel="fixed",
regressor=list(control="control", coefficient="shared", variable="secondary"))
capture.output(result <- mtc.run(model, n.adapt=100, n.iter=500))
model <- mtc.model(hfPrevention, type="regression", linearModel="fixed",
regressor=list(control="control", coefficient="exchangeable", variable="secondary"))
capture.output(result <- mtc.run(model, n.adapt=100, n.iter=500))
model <- mtc.model(hfPrevention, type="regression", linearModel="random",
regressor=list(control="control", coefficient="unrelated", variable="secondary"))
capture.output(result <- mtc.run(model, n.adapt=100, n.iter=500))
model <- mtc.model(hfPrevention, type="regression", linearModel="random",
regressor=list(control="control", coefficient="shared", variable="secondary"))
capture.output(result <- mtc.run(model, n.adapt=100, n.iter=500))
model <- mtc.model(hfPrevention, type="regression", linearModel="random",
regressor=list(control="control", coefficient="exchangeable", variable="secondary"))
capture.output(result <- mtc.run(model, n.adapt=100, n.iter=500))
expect_true(TRUE)
})
test_that("node-splitting with down-weighting", {
studies <- unique(smoking$data.ab$study)
weight <- (0:(length(studies)-1))/length(studies)
network <- mtc.network(smoking$data.ab, studies=data.frame(study=studies, weight=weight, stringsAsFactors=FALSE))
model <- mtc.model(network, type="nodesplit", t1="A", t2="B", powerAdjust="weight")
capture.output(result <- mtc.run(model, n.adapt=100, n.iter=500))
expect_true(TRUE)
}) |
context("BFS")
test_that("BFS", {
G <- graph(list(
"a" = "b",
"b" = character(),
"c" = "d",
"d" = character(),
"e" = "f",
"f" = character()
))
expect_equal(sort(bfs(G, "a")), c("a", "b"))
expect_equal(sort(bfs(G, "c")), c("c", "d"))
expect_equal(sort(bfs(G, c("a", "c"))), c("a", "b", "c", "d"))
G <- graph(list(
"7" = c("11", "8"),
"5" = "11",
"3" = c("8", "10"),
"11" = c("2", "9", "10"),
"8" = "9",
"2" = character(),
"9" = character(),
"10" = character()
))
expect_equal(bfs(G, character()), character())
expect_equal(bfs(G, "10"), "10")
expect_equal(bfs(G, "7"), c("7", "11", "8", "2", "9", "10"))
expect_equal(
sort(bfs(G, c("7", "5"))),
c("10", "11", "2", "5", "7", "8", "9")
)
})
test_that("BFS bug fixed", {
bridges <- graph(list(
"Altstadt-Loebenicht" = c(
"Kneiphof",
"Kneiphof",
"Lomse"
),
"Kneiphof" = c(
"Altstadt-Loebenicht",
"Altstadt-Loebenicht",
"Vorstadt-Haberberg",
"Vorstadt-Haberberg",
"Lomse"
),
"Vorstadt-Haberberg" = c(
"Kneiphof",
"Kneiphof",
"Lomse"
),
"Lomse" = c(
"Altstadt-Loebenicht",
"Kneiphof",
"Vorstadt-Haberberg"
)
))
expect_equal(
bfs(bridges),
c("Altstadt-Loebenicht", "Kneiphof", "Lomse", "Vorstadt-Haberberg")
)
}) |
check_decoding = function(decoding,data,controls){
if(check_saving(name = "states",filetype = "txt",controls = controls)){
sink(file=paste0(controls[["path"]],"/models/",controls[["id"]],"/states.txt"))
writeLines("Frequency of decoded states\n")
if(controls[["model"]]=="hmm"){
out = table((decoding))
names(out) = paste("state",names(out))
print(out)
cat("\n")
}
if(controls[["model"]]=="hhmm"){
out_cs = table(factor(decoding[,1],levels = seq_len(controls[["states"]][1])))
names(out_cs) = paste("CS state",names(out_cs))
print(out_cs)
cat("\n")
for(state in seq_len(controls[["states"]][1])){
writeLines(paste0("Conditional on CS state ",state,":"))
out_fs = table(factor(decoding[decoding[,1]==state,-1],levels = seq_len(controls[["states"]][2])))
names(out_fs) = paste("FS state",names(out_fs))
print(out_fs)
cat("\n")
}
}
if(controls[["sim"]]){
compare_true_predicted_states = function(no_states,decoded_states,true_states,label=NULL){
c_table = matrix(0,no_states,no_states)
rownames(c_table) = paste0("true ",label,"state ",seq_len(no_states))
colnames(c_table) = paste0("decoded ",label,"state ",seq_len(no_states))
for(i in seq_len(no_states)) for(j in seq_len(no_states)){
value = sum(decoded_states==i & true_states==j, na.rm = TRUE) / sum(decoded_states==i, na.rm = TRUE) * 100
c_table[i,j] = if(is.nan(value)) "NA" else sprintf("%.0f%%",value)
}
print(c_table,quote=FALSE,right=TRUE)
}
writeLines("Comparison between true and decoded states\n")
if(controls[["model"]]=="hmm"){
compare_true_predicted_states(controls[["states"]][1],decoding,data[["states0"]])
}
if(controls[["model"]]=="hhmm"){
compare_true_predicted_states(controls[["states"]][1],decoding[,1],data[["states0"]][,1],label="CS ")
writeLines("")
for(cs_state in seq_len(controls[["states"]][1])){
writeLines(paste0("Conditional on true CS state ",cs_state,":"))
compare_true_predicted_states(controls[["states"]][2],decoding[data[["states0"]][,1]==cs_state,-1],data[["states0"]][data[["states0"]][,1]==cs_state,-1],label="FS ")
writeLines("")
}
}
}
sink()
}
check_saving(object = decoding, filetype = "rds", controls = controls)
message("Hidden states decoded.")
} |
.onAttach <-
function(libname, pkgname){
if (!interactive()) return()
Rcmdr <- options()$Rcmdr
plugins <- Rcmdr$plugins
if ((!pkgname %in% plugins) && !getRcmdr("autoRestart")) {
Rcmdr$plugins <- c(plugins, pkgname)
options(Rcmdr=Rcmdr)
closeCommander(ask=FALSE, ask.save=TRUE)
Commander()
}
}
.packageName <-
"RcmdrPlugin.FactoMineR" |
GFS_GP_R <- function(train, test, numLabels=3, numRules=8, popSize=30, numisland=2, steady=1, numIter=100, tourSize=4, mutProb=0.01, aplMut=0.1, probMigra=0.001, probOptimLocal=0.00, numOptimLocal=0, idOptimLocal=0, nichinggap=0, maxindniche=8, probintraniche=0.75, probcrossga=0.5, probmutaga=0.5, lenchaingap=10, maxtreeheight=8, seed=-1){
alg <- RKEEL::R6_GFS_GP_R$new()
alg$setParameters(train, test, numLabels, numRules, popSize, numisland, steady, numIter, tourSize, mutProb, aplMut, probMigra, probOptimLocal, numOptimLocal, idOptimLocal, nichinggap, maxindniche, probintraniche, probcrossga, probmutaga, lenchaingap, maxtreeheight, seed)
return (alg)
}
R6_GFS_GP_R <- R6::R6Class("R6_GFS_GP_R",
inherit = RegressionAlgorithm,
public = list(
numLabels = 3,
numRules = 8,
popSize = 30,
numisland = 2,
steady = 1,
numIter = 100,
tourSize = 4,
mutProb = 0.01,
aplMut = 0.1,
probMigra = 0.001,
probOptimLocal = 0.00,
numOptimLocal = 0,
idOptimLocal = 0,
nichinggap = 0,
maxindniche = 8,
probintraniche = 0.75,
probcrossga = 0.5,
probmutaga = 0.5,
lenchaingap = 10,
maxtreeheight = 8,
seed = -1,
setParameters = function(train, test, numLabels=3, numRules=8, popSize=30,
numisland=2, steady=1, numIter=100, tourSize=4,
mutProb=0.01, aplMut=0.1, probMigra=0.001,
probOptimLocal=0.00, numOptimLocal=0, idOptimLocal=0,
nichinggap=0, maxindniche=8, probintraniche=0.75,
probcrossga=0.5, probmutaga=0.5, lenchaingap=10,
maxtreeheight=8, seed=-1){
super$setParameters(train, test)
self$numLabels <- numLabels
self$numRules <- numRules
self$popSize <- popSize
self$numisland <- numisland
self$steady <- steady
self$numIter <- numIter
self$tourSize <- tourSize
self$mutProb <- mutProb
self$aplMut <- aplMut
self$probMigra <- probMigra
self$probOptimLocal <- probOptimLocal
self$numOptimLocal <- numOptimLocal
self$idOptimLocal <- idOptimLocal
self$nichinggap <- nichinggap
self$maxindniche <- maxindniche
self$probintraniche <- probintraniche
self$probcrossga <- probcrossga
self$probmutaga <- probmutaga
self$lenchaingap <- lenchaingap
self$maxtreeheight <- maxtreeheight
if(seed == -1) {
self$seed <- sample(1:1000000, 1)
}
else {
self$seed <- seed
}
}
),
private = list(
jarName = "crispSymRegGAP.jar",
algorithmName = "GFS-GP-R",
algorithmString = "Fuzzy Rule Learning, Grammar-based GAP Algorithm",
getParametersText = function(){
text <- ""
text <- paste0(text, "seed = ", self$seed, "\n")
text <- paste0(text, "subAlgorithm = ModelFuzzyGAP", "\n")
text <- paste0(text, "dataformat = keel", "\n")
text <- paste0(text, "numlabels = ", self$numLabels, "\n")
text <- paste0(text, "numrules = ", self$numRules, "\n")
text <- paste0(text, "outlabel = MFGAP", "\n")
text <- paste0(text, "popsize = ", self$popSize, "\n")
text <- paste0(text, "numisland = ", self$numisland, "\n")
text <- paste0(text, "steady = ", self$steady, "\n")
text <- paste0(text, "numitera = ", self$numIter, "\n")
text <- paste0(text, "toursize = ", self$tourSize, "\n")
text <- paste0(text, "probmuta = ", self$mutProb, "\n")
text <- paste0(text, "amplmuta = ", self$aplMut, "\n")
text <- paste0(text, "probmigra = ", self$probMigra, "\n")
text <- paste0(text, "proboptimlocal = ", self$probOptimLocal, "\n")
text <- paste0(text, "numoptimlocal = ", self$numOptimLocal, "\n")
text <- paste0(text, "idoptimlocal = ", self$idOptimLocal, "\n")
text <- paste0(text, "nichinggap = ", self$nichinggap, "\n")
text <- paste0(text, "maxindniche = ", self$maxindniche, "\n")
text <- paste0(text, "probintraniche = ", self$probintraniche, "\n")
text <- paste0(text, "probcrossga = ", self$probcrossga, "\n")
text <- paste0(text, "probmutaga = ", self$probmutaga, "\n")
text <- paste0(text, "lenchaingap = ", self$lenchaingap, "\n")
text <- paste0(text, "maxtreeheight = ", self$maxtreeheight, "\n")
return(text)
}
)
) |
example.memoise = function() {
li = memoise.fun.li(rtutor.default.memoise.funs(), libs="rio")
}
memoise.fun.li = function(funs, libs=NULL) {
restore.point("memoise.fun.li")
libs = unique(c("base","utils", libs))
fun.li = lapply(funs, function(str) {
restore.point("inner.memoise.fun.li")
if (has.substr(str,":::")) {
fun.name = str.right.of(str,":::")
pkg = str.left.of(str,":::")
} else if (has.substr(str,"::")) {
fun.name = str.right.of(str,"::")
pkg = str.left.of(str,"::")
} else {
fun.name = str
fun = get(fun.name)
pkg = getPackageName(environment(fun))
}
if (!pkg %in% libs) return(NULL)
call = substitute(memoise(pkg::fun.name), list(pkg=as.name(pkg), fun.name=as.name(fun.name)))
li = list(eval(call))
names(li) = fun.name
li
})
fun.li = do.call(c, fun.li)
fun.li
}
rtutor.default.memoise.funs = function() {
c("read.csv","read.table","readRDS","foreign::read.dta","readstata13::read.dta13","rio::import", "readr::read_csv")
} |
chebyshev.c.weight <- function( x )
{
n <- length( x )
y <- rep( 0, n )
for ( i in 1:n ) {
if ( ( x[i] > -2 ) && ( x[i] < 2 ) )
y[i] <- 1 / ( sqrt( 1 - 0.25 * x[i] * x[i] ) )
}
return( y )
} |
FstBoot <-
function(popdata, fst.method="EBFST", bsrep=100, log.bs=F, locus=F){
calcFst <- eval(parse(text=fst.method))
gpdata0 <- popdata
numpop <- gpdata0$npops
numloci <- gpdata0$nloci
if(fst.method=="EBFST"){
fst0 <- calcFst(gpdata0, locus=locus)
fst0.l <- fst0$pairwise$fst.locus
fst0 <- fst0$pairwise$fst
}else{
fst0 <- calcFst(gpdata0)
}
gp_locind_resample <- function(popdata, crep){
gpdat <- popdata$pop_list
indnames <- popdata$ind_names
gpout <- c("bs", popdata$loci_names)
select_pop <- sample(1:numpop, numpop, replace=T)
for(cpop in 1:numpop){
cbspop <- select_pop[cpop]
cgp <- gpdat[[cbspop]]
cnind <- nrow(cgp)
select_ind <- sample(1:cnind, cnind, replace=T)
cgp <- cbind(indnames[[cbspop]][select_ind], ",", cgp[select_ind,])
cgp <- apply(cgp, 1, paste, collapse=" ")
gpout <- c(gpout, "POP", cgp)
}
cat(gpout, file="finepopbs.tmp", sep="\n")
gpdat <- read.genepop("finepopbs.tmp")
if(log.bs){file.rename("finepopbs.tmp", paste0("gtdata_bs",crep,".txt"))
}else{file.remove("finepopbs.tmp")}
return(list(gp=gpdat, pop=select_pop))
}
bs.poplist <- list()
bs.fstlist <- list()
bs.fstlist.l <- list()
crep <- 1
trial.success <- ""
while(crep <= bsrep){
message("Bootstrapping ", crep, "/", bsrep, " ", trial.success)
gc()
bs.gpdata <- gp_locind_resample(gpdata0, crep)
cgp <- bs.gpdata$gp
cpop <- bs.gpdata$pop
cfst <- cfst.l <- NULL
try({
if(fst.method=="EBFST"){
cfst <- calcFst(cgp, locus=locus)
cfst.l <- cfst$pairwise$fst.locus
cfst <- cfst$pairwise$fst
}else{
cfst <- calcFst(cgp)
}
})
if(sum(!is.finite(cfst))==0 & !is.null(cfst)){
bs.poplist[[crep]] <- cpop
bs.fstlist[[crep]] <- cfst
bs.fstlist.l[[crep]] <- cfst.l
crep <- crep+1
trial.success <- ""
}else{
trial.success <- "retry"
}
}
result <- list(
bs.pop.list=bs.poplist,
bs.fst.list=bs.fstlist,
org.fst=fst0
)
if(fst.method=="EBFST"&locus==T){
result$bs.fst.list.locus <- bs.fstlist.l
result$org.fst.locus <- fst0.l
}
return(result)
} |
plot.haptable <- function(x, separate.plots = F, filename, filetype = "png", use.dd, verbose = T, ...)
{
.coef <- coef.haptable(x)
.markernames <- na.omit(x$marker)
.info <- attr(.coef, "info")
.haplos <- attr(.coef, "haplos")
.n.sel.haplo <- length(.haplos)
.maternal <- .info$model$maternal
.poo <- .info$model$poo
.comb.sex <- .info$model$comb.sex
.ref.cat <- .info$haplos$ref.cat
.reference.method <- .info$haplos$reference.method
if(missing(use.dd)){
.use.dd <- 1:.n.sel.haplo
}else{
.use.dd <- use.dd
}
if(identical(.comb.sex, "males")) .use.dd <- F
.use.dd.mat <- .use.dd
.use.single.mat <- 1:.n.sel.haplo
.prod.file <- !missing(filename)
.params <- list(coeff = .coef, ref.cat = .ref.cat, reference.method = .reference.method, haplos = .haplos, markernames = .markernames, maternal = .maternal, poo = .poo, use.dd = .use.dd, verbose = verbose, ...)
.params.mat <- .params
.params.mat$use.dd <- .use.dd.mat
.params.mat$use.single <- .use.single.mat
if(!.prod.file){
.oldpar <- par(no.readonly = T)
on.exit(par(.oldpar))
if(!.maternal){
.params$type <- 1
invisible(do.call("f.plot.effects", .params))
}
if(.maternal & !separate.plots){
par(mfrow = c(2,1), oma = c(2,0,0,0))
.par <- par(no.readonly = T)
.params$type <- 3
invisible(do.call("f.plot.effects", .params))
par(mar = .par$mar)
.params.mat$type <- 4
invisible(do.call("f.plot.effects", .params.mat))
}
if(.maternal & separate.plots){
.params$type <- 1
invisible(do.call("f.plot.effects", .params))
.params.mat$type <- 2
invisible(do.call("f.plot.effects", .params.mat))
}
}
if(.prod.file){
.jpeg.size <- c(440, 460)
if(.n.sel.haplo > 4) .jpeg.size <- .jpeg.size + (.n.sel.haplo - 4) * c(30,0)
if(!.maternal){
if(filetype == "png"){
png(filename = filename, width = .jpeg.size[1], height = .jpeg.size[2], pointsize = 9)
}
if(filetype == "jpeg"){
jpeg(filename = filename, width = .jpeg.size[1], height = .jpeg.size[2], pointsize = 9, quality = 100)
}
.params$type <- 1
invisible(do.call("f.plot.effects", .params))
dev.off()
}
if(.maternal & !separate.plots){
if(filetype == "png"){
png(filename = filename, width = .jpeg.size[1], height = .jpeg.size[2], pointsize = 9)
}
if(filetype == "jpeg"){
jpeg(filename = filename, width = .jpeg.size[1], height = .jpeg.size[2], pointsize = 9, quality = 100)
}
par(mfrow = c(2,1), oma = c(2,0,0,0))
.par <- par(no.readonly = T)
.params$type <- 3
invisible(do.call("f.plot.effects", .params))
par(mar = .par$mar)
.params.mat$type <- 4
invisible(do.call("f.plot.effects", .params.mat))
dev.off()
}
if(.maternal & separate.plots){
if(filetype == "png"){
png(filename = paste("1", filename, sep = ""), width = .jpeg.size[1], height = .jpeg.size[2], pointsize = 9)
}
if(filetype == "jpeg"){
jpeg(filename = paste("1", filename, sep = ""), width = .jpeg.size[1], height = .jpeg.size[2], pointsize = 9, quality = 100)
}
.params$type <- 1
invisible(do.call("f.plot.effects", .params))
dev.off()
if(filetype == "png"){
png(filename = paste("2", filename, sep = ""), width = .jpeg.size[1], height = .jpeg.size[2], pointsize = 9)
}
if(filetype == "jpeg"){
jpeg(filename = paste("2", filename, sep = ""), width = .jpeg.size[1], height = .jpeg.size[2], pointsize = 9, quality = 100)
}
.params.mat$type <- 2
invisible(do.call("f.plot.effects", .params.mat))
dev.off()
}
}
} |
library (testthat)
context ("Retreieving a primary input vector")
siot <- iotable_get ( source = "germany_1990",
geo = 'DE', year = 1990,
unit = "MIO_EUR",
labelling = "short")
test_that("correct data is returned", {
expect_equal(primary_input_get(data_table = siot,
primary_input = "D1")[,3], 296464 )
}) |
config <- function(appId, instrumentationKey, connectionString, autoTrackPageVisitTime=TRUE, ...) {
if (!missing(instrumentationKey)) {
assertthat::assert_that(assertthat::is.string(instrumentationKey), is_instrumentation_key(instrumentationKey))
cfg <- list(instrumentationKey = instrumentationKey, ...)
} else if (!missing(connectionString)) {
assertthat::assert_that(
grepl('InstrumentationKey=', connectionString, ignore.case=TRUE),
grepl('IngestionEndpoint=', connectionString, ignore.case=TRUE)
)
cfg <- list(connectionString=connectionString, ...)
} else {
stop("An instrumentation key or connection string must be provided!")
}
assertthat::assert_that(rlang::is_string(appId))
cfg$appId = appId
assertthat::assert_that(rlang::is_logical(autoTrackPageVisitTime, n=1))
cfg$autoTrackPageVisitTime <- autoTrackPageVisitTime
cfg
} |
omxRAMtoML <- function(model) {
namespace <- imxGenerateNamespace(model)
job <- shareData(model)
return(RAMtoMLHelper(model, job, namespace))
}
RAMtoMLHelper <- function(model, job, namespace) {
model <- convertRAMtoMLModel(model, job, namespace)
if (length(model@submodels) > 0) {
model@submodels <- lapply(model@submodels, RAMtoMLHelper, job, namespace)
}
return(model)
}
createNewName <- function(model, namespace, suggestedName) {
if (availableName(model, namespace, suggestedName)) {
return(suggestedName)
} else {
return(paste(suggestedName, imxUntitledName(), sep = '_'))
}
}
convertRAMtoMLModel <- function(model, job, namespace) {
objective <- model$objective
if (is.null(objective)) {
return(model)
}
if (!is(objective, "MxRAMObjective")) {
return(model)
}
modelname <- model@name
aName <- imxConvertIdentifier(objective@A, modelname, namespace)
sName <- imxConvertIdentifier(objective@S, modelname, namespace)
fName <- imxConvertIdentifier(objective@F, modelname, namespace)
mName <- imxConvertIdentifier(objective@M, modelname, namespace)
iName <- createNewName(model, namespace, 'I')
model <- mxModel(model, mxMatrix(type="Iden",
nrow = nrow(job[[aName]]), name = iName))
zName <- createNewName(model, namespace, 'Z')
zFormula <- substitute(solve(I - A),
list(I = as.symbol(iName), A = as.symbol(aName)))
algebra <- eval(substitute(mxAlgebra(x, y), list(x = zFormula, y = zName)))
model <- mxModel(model, algebra)
covName <- createNewName(model, namespace, 'covariance')
covFormula <- substitute(F %*% Z %*% S %*% t(Z) %*% t(F),
list(F = as.symbol(fName), Z = as.symbol(zName),
S = as.symbol(sName)))
algebra <- eval(substitute(mxAlgebra(x, y),
list(x = covFormula, y = covName)))
model <- mxModel(model, algebra)
if(!single.na(mName)) {
meansFormula <- substitute(t(F %*% Z %*% t(M)),
list(F = as.symbol(fName), Z = as.symbol(zName),
M = as.symbol(mName)))
meansName <- createNewName(model, namespace, 'means')
algebra <- eval(substitute(mxAlgebra(x, y),
list(x = meansFormula, y = meansName)))
model <- mxModel(model, algebra)
}
translatedNames <- modelManifestNames(job[[fName]]@values, modelname)
dataset <- job[[modelname]]@data
if (dataset@type == 'raw') {
objectiveType <- as.symbol('mxFIMLObjective')
if (is.na(mName)) {
objective <- eval(substitute(obj(covariance = x,
thresholds = z, vector = w, dimnames = u),
list(x = covName, z = objective@thresholds,
w = objective@vector, u = translatedNames, obj = objectiveType)))
} else {
objective <- eval(substitute(obj(covariance = x,
means = y, thresholds = z, vector = w, dimnames = u),
list(x = covName, y = meansName, z = objective@thresholds,
w = objective@vector, u = translatedNames, obj = objectiveType)))
}
} else {
objectiveType <- as.symbol('mxMLObjective')
if (is.na(mName)) {
objective <- eval(substitute(obj(covariance = x,
thresholds = z, dimnames = u),
list(x = covName, z = objective@thresholds,
u = translatedNames, obj = objectiveType)))
} else {
objective <- eval(substitute(obj(covariance = x,
means = y, thresholds = z, dimnames = u),
list(x = covName, y = meansName, z = objective@thresholds,
u = translatedNames, obj = objectiveType)))
}
}
model@objective <- objective
class(model) <- 'MxModel'
return(model)
} |
correlation.systemfit <- function( results, eqni, eqnj ) {
nCoefEq <- NULL
for( i in 1:length( results$eq ) ) {
nCoefEq <- c( nCoefEq, length( coef( results$eq[[ i ]] ) ) )
}
cij <- vcov( results )[(1+sum(nCoefEq[1:eqni])-nCoefEq[eqni]):(sum(nCoefEq[1:eqni])),
(1+sum(nCoefEq[1:eqnj])-nCoefEq[eqnj]):(sum(nCoefEq[1:eqnj]))]
cii <- vcov( results )[(1+sum(nCoefEq[1:eqni])-nCoefEq[eqni]):(sum(nCoefEq[1:eqni])),
(1+sum(nCoefEq[1:eqni])-nCoefEq[eqni]):(sum(nCoefEq[1:eqni]))]
cjj <- vcov( results )[(1+sum(nCoefEq[1:eqnj])-nCoefEq[eqnj]):(sum(nCoefEq[1:eqnj])),
(1+sum(nCoefEq[1:eqnj])-nCoefEq[eqnj]):(sum(nCoefEq[1:eqnj]))]
rij <- NULL
for( i in 1:nrow( residuals( results ) ) ) {
xik <- model.matrix( results$eq[[eqni]] )[i,]
xjk <- model.matrix( results$eq[[eqnj]] )[i,]
top <- xik %*% cij %*% xjk
bottom <- sqrt( ( xik %*% cii %*% xik ) * ( xjk %*% cjj %*% xjk ) )
rijk <- top / bottom
rij <- rbind( rij, rijk )
}
rij
}
se.ratio.systemfit <- function( resultsi, resultsj, eqni ) {
ratio <- NULL
for( i in 1:nrow( residuals( resultsi ) ) ) {
xik <- model.matrix( resultsi$eq[[eqni]] )[i,]
top <- sqrt( xik %*% vcov( resultsi$eq[[eqni]] ) %*% xik )
bottom <- sqrt( xik %*% vcov( resultsj$eq[[eqni]] ) %*% xik )
rk <- top / bottom
ratio <- rbind( ratio, rk )
}
ratio
}
coef.systemfit <- function( object, modified.regMat = FALSE, ... ) {
if( modified.regMat ){
if( is.null( object$restrict.regMat ) ){
stop( "coefficients of the modified regressor matrix are not available,",
" because argument 'restrict.regMat' has not been used in this estimation." )
} else {
return( drop( solve( crossprod( object$restrict.regMat ),
t( object$restrict.regMat ) %*% coef( object ) ) ) )
}
} else {
return( object$coefficients )
}
}
coef.summary.systemfit <- function( object, modified.regMat = FALSE, ... ) {
if( modified.regMat ){
if( is.null( object$coefModReg ) ){
stop( "coefficients of the modified regressor matrix are not available,",
" because argument 'restrict.regMat' has not been used in this estimation." )
} else {
return( object$coefModReg )
}
} else {
return( object$coefficients )
}
}
coef.systemfit.equation <- function( object, ... ) {
object$coefficients
}
coef.summary.systemfit.equation <- function( object, ... ) {
object$coefficients
}
residuals.systemfit <- function( object, ... ) {
result <- data.frame( obsNo = c( 1:length( residuals( object$eq[[1]] ) ) ) )
for( i in 1:length( object$eq ) ) {
result[[ object$eq[[i]]$eqnLabel ]] <- residuals( object$eq[[i]] )
}
result$obsNo <- NULL
rownames( result ) <- names( residuals( object$eq[[ 1 ]] ) )
return( result )
}
residuals.systemfit.equation <- function( object, na.rm = FALSE, ... ) {
if( na.rm ) {
return( object$residuals[ !is.na( object$residuals ) ] )
} else {
return( object$residuals )
}
}
vcov.systemfit <- function( object, modified.regMat = FALSE, ... ) {
if( modified.regMat ){
if( is.null( object$restrict.regMat ) ){
stop( "coefficients of the modified regressor matrix",
" and their covariance matrix are not available,",
" because argument 'restrict.regMat' has not been used in this estimation." )
} else {
txtxInv <- solve( crossprod( object$restrict.regMat ) )
result <- txtxInv %*% t( object$restrict.regMat ) %*% vcov( object ) %*%
object$restrict.regMat %*% txtxInv
return( result )
}
} else {
return( object$coefCov )
}
}
vcov.systemfit.equation <- function( object, ... ) {
object$coefCov
}
fitted.systemfit <- function( object, ... ) {
nEq <- length( object$eq )
fitted.values <- matrix( NA, length( object$eq[[1]]$fitted.values ), nEq )
colnames( fitted.values ) <- as.character( 1:ncol( fitted.values ) )
for(i in 1:nEq ) {
fitted.values[ , i ] <- object$eq[[ i ]]$fitted.values
colnames( fitted.values )[ i ] <- object$eq[[ i ]]$eqnLabel
}
rownames( fitted.values ) <- names( fitted( object$eq[[ 1 ]] ) )
return( as.data.frame( fitted.values ) )
}
fitted.systemfit.equation <- function( object, na.rm = FALSE, ... ) {
if( na.rm ) {
return( object$fitted.values[ !is.na( object$fitted.values ) ] )
} else {
return( object$fitted.values )
}
}
model.frame.systemfit <- function( formula, ... ){
mfColNames <- NULL
for( i in 1:length( formula$eq ) ) {
mfi <- model.frame( formula$eq[[ i ]] )
if( i == 1 ) {
result <- mfi
} else {
for( j in 1:ncol( mfi ) ) {
if( ! names( mfi )[ j ] %in% names( result ) ) {
result[[ names( mfi )[ j ] ]] <- mfi[ , j ]
}
}
}
}
return( result )
}
model.frame.systemfit.equation <- function( formula, ... ){
if( !is.null( formula$model ) ) {
result <- formula$model
} else {
stop( "returning model frame not possible. Please re-estimate",
" the system with control variable 'model'",
" set to TRUE" )
}
return( result )
} |
context("network: HTTP response handling; Parsing response data to R workable variables")
bad_http_response <- 'HTTP/1.1 400 OK\r\nContent-Type: application/json; charset=utf-8\r\nVary: Accept-Encoding,User-Agent\r\n\r\nTHE BODY'
good_http_response <- 'HTTP/1.1 200 OK\r\nContent-Type: application/json; charset=utf-8\r\nVary: Accept-Encoding,User-Agent\r\n\r\nTHE BODY'
test_that("Error on non 200 status response", {
expect_error(.extract_response_body(bad_http_response))
})
test_that("Body extraction on successful request", {
expect_equal(.extract_response_body(good_http_response), 'THE BODY')
})
api_json_response_sample <- "{\"records\": [{\"oid\":198254,\"typ\":\"occ\",\"cid\":20434,\"tna\":\"Alopex lagopus\",\"rnk\":3,\"tid\":43911,\"eag\":1.80000,\"lag\":0.30000,\"rid\":[2048],\"cc2\":\"Canada\",\"sta\":\"Yukon\",\"cxi\":33,\"ein\":740,\"lin\":923},{\"oid\":198265,\"typ\":\"occ\",\"cid\":20436,\"tna\":\"Alopex lagopus\",\"rnk\":3,\"tid\":43911,\"eag\":1.80000,\"lag\":0.30000,\"rid\":[2048],\"cc2\":\"Canada\",\"sta\":\"Yukon\",\"cxi\":33,\"ein\":740,\"lin\":923},{\"oid\":199751,\"typ\":\"occ\",\"cid\":20626,\"tna\":\"Alopex lagopus\",\"rnk\":3,\"tid\":43911,\"eag\":0.12600,\"lag\":0.01170,\"rid\":[1784],\"cc2\":\"Canada\",\"sta\":\"Yukon\",\"cxi\":922,\"ein\":922,\"lin\":922},{\"oid\":199941,\"typ\":\"occ\",\"cid\":20643,\"tna\":\"Alopex lagopus\",\"rnk\":3,\"tid\":43911,\"eag\":0.12600,\"lag\":0.01170,\"rid\":[2872],\"cc2\":\"United States\",\"sta\":\"Alaska\",\"cny\":\"North Slope\",\"cxi\":922,\"ein\":922,\"lin\":922},{\"oid\":373590,\"typ\":\"occ\",\"cid\":35359,\"tna\":\"Alopex\",\"rnk\":5,\"tid\":41193,\"eag\":5.33300,\"lag\":0.01170,\"rid\":[9534],\"cc2\":\"Hungary\",\"sta\":\"Barany\",\"cxi\":1,\"ein\":34,\"lin\":33},{\"oid\":485281,\"typ\":\"occ\",\"cid\":48587,\"tna\":\"Alopex lagopus\",\"rnk\":3,\"tid\":43911,\"eag\":0.12600,\"lag\":0.01170,\"rid\":[12964],\"cc2\":\"Russian Federation\",\"sta\":\"Respublika Saha (Jakutija)\",\"cxi\":922,\"ein\":922,\"lin\":922},{\"oid\":766675,\"typ\":\"occ\",\"cid\":81830,\"tna\":\"Alopex lagopus\",\"rnk\":3,\"tid\":43911,\"eag\":0.12600,\"lag\":0.01170,\"rid\":[27585],\"cc2\":\"United States\",\"sta\":\"Alaska\",\"cxi\":922,\"ein\":922,\"lin\":922}]}"
api_json_response_sample_returns <- '{\n"records": [\n{"oid":1001,"typ":"occ","cid":160,"tna":"Wellerella","rnk":5,"tid":29018,"oei":"Missourian","eag":305.90000,"lag":303.40000,"rid":[12]}\n]\n}\n'
test_that(".parse_raw_data for a JSON string response is a data.frame", {
parsed <- .parse_raw_data(api_json_response_sample)
expect_is(parsed, 'data.frame')
})
test_that(".parse_raw_data for a JSON string that includes \n yields just one row in the dataframe", {
parsed <- .parse_raw_data(api_json_response_sample_returns)
expect_equal(dim(parsed)[1], 1)
})
test_that("A JSON string with different columns for some occurency resolves to a data.frame comprising all the columns", {
expected_names <- c("oid", "typ", "cid", "tna", "rnk", "tid", "eag", "lag", "rid", "cc2", "sta", "cxi", "ein", "lin", "cny")
resp_names <- names(.parse_raw_data(api_json_response_sample))
expect_identical(resp_names, expected_names)
}) |
rl_record_policy <- function(x, last_result, trading_system, path_terminal, fileName = "SystemControl"){
requireNamespace("stringr", quietly = TRUE)
requireNamespace("dplyr", quietly = TRUE)
is_T3 <- str_detect(path_terminal, "Terminal3")
is_T4 <- str_detect(path_terminal, "Terminal4")
if(is_T3 == TRUE) { addition <- 200 } else if(is_T4 == TRUE) { addition <- 300 } else { addition <- 200 }
y <- x %>% dplyr::filter(TradeState == last_result) %$% Policy
if(y == "ON"){
decision_DF <- data.frame(MagicNumber = trading_system + addition,
IsEnabled = 1)
composed_name <- paste0(fileName, as.character(decision_DF[1, 1]), ".csv")
f_name <- file.path(path_terminal, composed_name)
write.csv(decision_DF, file = f_name, quote = FALSE, row.names = FALSE)
} else {
decision_DF <- data.frame(MagicNumber = trading_system + addition,
IsEnabled = 0)
composed_name <- paste0(fileName, as.character(decision_DF[1, 1]), ".csv")
f_name <- file.path(path_terminal, composed_name)
write.csv(decision_DF, file = f_name, quote = FALSE, row.names = FALSE)
}
} |
dbgamma <-
function(x, prob, scale, shape)
{
if(length(prob)==1) prob <- rep(prob, length(x))
if(length(scale)==1) scale <- rep(scale, length(x))
if(length(shape)==1) shape <- rep(shape, length(x))
d <- 1-prob
d[x>0] <- prob[x>0]*dgamma(x[x>0], scale=scale[x>0], shape=shape[x>0])
d
} |
`goodness.cca` <-
function (object, choices, display = c("species", "sites"),
model = c("CCA", "CA"),
summarize = FALSE, addprevious = FALSE, ...)
{
display <- match.arg(display)
model <- match.arg(model)
if (!inherits(object, "cca"))
stop("can be used only with objects inheriting from 'cca'")
if (inherits(object, "capscale"))
stop("not implemented for 'capscale'")
if (inherits(object, c("capscale", "dbrda")) && display == "species")
stop(gettextf("cannot analyse species with '%s'", object$method))
v <- sqrt(weights(object, display="species")) * object[[model]]$v
if (is.null(v))
stop(gettextf("model = '%s' does not exist", model))
if (display == "sites")
u <- sqrt(weights(object, display="sites")) * object[[model]]$u
eig <- object[[model]]$eig
if (!inherits(object, "dbrda"))
eig <- eig[eig > 0]
if (inherits(object, "dbrda")) {
u <- cbind(u, object[[model]][["imaginary.u"]])
display <- "dbrda"
}
All <- ordiYbar(object, "initial")
if (is.null(All))
stop("old style result object: update() your model")
tot <- switch(display,
"species" = colSums(All^2),
"sites" = rowSums(All^2),
"dbrda" = diag(All))
if (!missing(choices)) {
choices <- choices[choices <= length(eig)]
if (display != "dbrda")
v <- v[, choices, drop = FALSE]
if (display %in% c("sites", "dbrda"))
u <- u[, choices, drop = FALSE]
eig <- eig[choices]
}
if (addprevious) {
if (!is.null(object$pCCA))
prev <- ordiYbar(object, "pCCA")
else
prev <- 0
if (model == "CA" && !is.null(object$CCA))
prev <- prev + ordiYbar(object, "CCA")
}
if (display == "species") {
if (length(eig) == 1)
out <- v^2 * eig
else
out <- t(apply(v^2 %*% diag(eig, nrow=length(eig)), 1, cumsum))
if (addprevious)
out <- out + colSums(prev^2)
dimnames(out) <- dimnames(v)
} else if (display == "sites") {
out <- matrix(0, nrow(u), ncol(u))
if (addprevious)
mat <- prev
else
mat <- 0
for (i in seq_len(ncol(u))) {
mat <- tcrossprod(u[,i], v[,i]) * sqrt(eig[i]) + mat
out[,i] <- rowSums(mat^2)
}
dimnames(out) <- dimnames(u)
} else {
out <- matrix(0, nrow(u), ncol(u))
mat <- 0
for (i in seq_len(ncol(u))) {
mat <- u[,i]^2 * eig[i] + mat
out[,i] <- mat
}
dimnames(out) <- dimnames(u)
}
out/tot
} |
.isSupportedFormat <- function(dname) {
res <- dname %in% c(.nativeDrivers(), 'ascii', 'CDF')
if (!res) {
res <- .isSupportedGDALFormat(dname)
}
return(res)
}
.gdalWriteFormats <- function() {
.requireRgdal()
gd <- rgdal::gdalDrivers()
gd <- as.matrix( gd[gd[,3] == T, ] )
i <- which(gd[,1] %in% c('VRT', 'MEM', 'MFF', 'MFF2'))
gd[-i,]
}
.isSupportedGDALFormat <- function(dname) {
.requireRgdal()
gd <- .gdalWriteFormats()
res <- dname %in% gd[,1]
if (!res) { stop(paste(dname, "is not a supported file format. See writeFormats()" ) ) }
return(res)
}
.getGdalDType <- function(dtype, format='') {
if (!(dtype %in% c('LOG1S', 'INT1S', 'INT2S', 'INT4S', 'INT1U', 'INT2U', 'INT4U', 'FLT4S', 'FLT8S'))) {
stop('not a valid data type')
}
if (dtype == 'INT1S') {
warning('data type "INT1S" is not available in GDAL. Changed to "INT2S" (you may prefer "INT1U" (Byte))')
dtype <- 'INT2S'
}
type <- .shortDataType(dtype)
size <- dataSize(dtype) * 8
if (format=='BMP' | format=='ADRG' | format=='IDA' | format=='SGI') {
return('Byte')
}
if (format=='PNM') {
if (size == 8) {
return('Byte')
} else {
return('UInt16')
}
}
if (format=='RMF') {
if (type == 'FLT') {
return('Float64')
}
}
if (type == 'LOG') {
warning('data type "LOG" is not available in GDAL. Changed to "INT1U"')
return('Byte')
}
if (type == 'INT') {
type <- 'Int'
if (size == 64) {
size <- 32
warning('8 byte integer values not supported by rgdal, changed to 4 byte integer values')
}
if (! dataSigned(dtype) ) {
if (size == 8) {
return('Byte')
} else {
type <- paste('U', type, sep='')
}
}
} else {
type <- 'Float'
}
return(paste(type, size, sep=''))
}
.getRasterDType <- function(dtype) {
if (!(dtype %in% c('Byte', 'UInt16', 'Int16', 'UInt32','Int32', 'Float32', 'Float64', 'CInt16', 'CInt32', 'CFloat32', 'CFloat64'))) {
return ('FLT4S')
} else if (dtype == 'Byte') {
return('INT1U')
} else if (dtype == 'UInt16') {
return('INT2U')
} else if (dtype == 'Int16' | dtype == 'CInt16') {
return('INT2S')
} else if (dtype == 'UInt32') {
return('INT4U')
} else if (dtype == 'Int32' | dtype == 'CInt32') {
return('INT4S')
} else if (dtype == 'Float32' | dtype == 'CFloat32' ) {
return('FLT4S')
} else if (dtype == 'Float64' | dtype == 'CFloat64' ) {
return('FLT8S')
} else {
return('FLT4S')
}
}
|
`alpha95` <-
function(az , iang)
{
DEG2RAD = pi/180
a = iang * DEG2RAD;
b = (90-az) * DEG2RAD;
x = sin(a) * cos(b);
y = sin(a) * sin(b);
z = cos(a);
v = cbind(x,y,z);
KapT = t(v) %*% v
B = length(x)*diag( 3) - KapT
E1 = eigen(B)
E = eigen( KapT )
Rn = sum(y )
Re = sum(x )
Rd = sum(z )
N = length(x);
Ir = 180*atan2( sqrt(Rn^2+Re^2), Rd )/pi;
Dr = 180*atan2(Re, Rn)/pi;
R = sqrt(Rn^2+Re^2+Rd^2)
K = (N-1)/(N-R);
S = 81/sqrt(K);
Kappa = log(E$values[1]/E$values[2])/ log(E$values[2]/E$values[3])
Alpha95 = 180*acos(1- ( (N-R)*((20^(1/(N-1)))-1)/R))/pi;
return(list(Ir=Ir, Dr=Dr, R=R, K=K, S=S, Alph95=Alpha95, Kappa =Kappa, E=E, MAT=v))
} |
plot.pd2bart = function(
x,
plquants =c(.05,.95), contour.color='white',
justmedian=TRUE,
...
)
{
pdquants = apply(x$fd,2,quantile,probs=c(plquants[1],.5,plquants[2]))
qq <- vector('list',3)
for (i in 1:3)
qq[[i]] <- matrix(pdquants[i,],nrow=length(x$levs[[1]]))
if(justmedian) {
zlim = range(qq[[2]])
vind = c(2)
} else {
par(mfrow=c(1,3))
zlim = range(qq)
vind = 1:3
}
for (i in vind) {
image(x=x$levs[[1]],y=x$levs[[2]],qq[[i]],zlim=zlim,
xlab=x$xlbs[1],ylab=x$xlbs[2],...)
contour(x=x$levs[[1]],y=x$levs[[2]],qq[[i]],zlim=zlim,
,add=TRUE,method='edge',col=contour.color)
title(main=c('Lower quantile','Median','Upper quantile')[i])
}
} |
library(tidystats)
library(tidyverse)
library(BayesFactor)
data(puzzles)
data(attitude)
data(raceDolls)
t <- c(-.15, 2.39, 2.42, 2.43)
N <- c(100, 150, 97, 99)
set.seed(1)
generalTestBF <- generalTestBF(RT ~ shape*color + ID, data = puzzles,
whichRandom = "ID", neverExclude = "ID", progress = FALSE)
generalTestBF
temp <- tidy_stats(generalTestBF)
set.seed(1)
bfFull <- lmBF(RT ~ shape + color + shape:color + ID, data = puzzles,
whichRandom = "ID", )
bfFull
set.seed(1)
bfMain <- lmBF(RT ~ shape + color + ID, data = puzzles, whichRandom = "ID")
bfMain
set.seed(1)
bfMainFull <- bfMain / bfFull
bfMainFull
temp <- tidy_stats(bfFull)
temp <- tidy_stats(bfMain)
temp <- tidy_stats(bfMainFull)
attitudeBF <- regressionBF(rating ~ ., data = attitude, progress = FALSE)
head(attitudeBF)
attitudeBFBest <- attitudeBF / attitudeBF[63]
head(attitudeBFBest)
temp <- tidy_stats(attitudeBF)
temp <- tidy_stats(attitudeBFBest)
sleepTTestBF <- ttestBF(x = sleep$extra[sleep$group == 1],
y = sleep$extra[sleep$group == 2], paired = TRUE)
sleepTTestBF
temp <- tidy_stats(sleepTTestBF)
sleepAnovaBF <- anovaBF(extra ~ group + ID, data = sleep, whichRandom = "ID",
progress = FALSE)
sleepAnovaBF
puzzlesAnovaBF = anovaBF(RT ~ shape * color + ID, data = puzzles,
whichRandom = "ID", whichModels = 'top', progress = FALSE)
puzzlesAnovaBF
temp <- tidy_stats(sleepAnovaBF)
temp <- tidy_stats(puzzlesAnovaBF)
correlationBF = correlationBF(y = iris$Sepal.Length, x = iris$Sepal.Width)
correlationBF
temp <- tidy_stats(correlationBF)
contingencyTableBF = contingencyTableBF(raceDolls, sampleType = "indepMulti",
fixedMargin = "cols")
contingencyTableBF
temp <- tidy_stats(contingencyTableBF)
proportionBF = proportionBF(y = 15, N = 25, p = .5)
proportionBF
temp <- tidy_stats(proportionBF)
metaBF = meta.ttestBF(t, N, rscale = 1, nullInterval = c(0, Inf))
metaBF
temp <- tidy_stats(metaBF)
results <- list()
results <- results %>%
add_stats(generalTestBF) %>%
add_stats(bfFull) %>%
add_stats(bfMain) %>%
add_stats(bfMainFull) %>%
add_stats(attitudeBF) %>%
add_stats(attitudeBFBest) %>%
add_stats(sleepTTestBF) %>%
add_stats(sleepAnovaBF) %>%
add_stats(puzzlesAnovaBF) %>%
add_stats(correlationBF) %>%
add_stats(contingencyTableBF) %>%
add_stats(proportionBF) %>%
add_stats(metaBF)
write_stats(results, "inst/test_data/BayesFactor.json") |
uptakeFuncDefault = function(strainName, groupName, pathName, varName, keyResName,
subst, ess, boost, maxGrowthRate, growthLim, yield, nonBoostFrac, stoichiom,
parms) {
if (length(ess) > 0) {
ess.lim = prod(growthLim[ess], na.rm = TRUE)
}
if (length(boost) > 0) {
boost.lim = prod(growthLim[boost], na.rm = TRUE)
nbf = nonBoostFrac[boost]
}
if (varName %in% subst) {
if (length(ess) == 0 & length(boost) == 0) {
v = maxGrowthRate[varName] * growthLim[varName]/yield[varName]
} else if (length(ess) > 0 & length(boost) == 0) {
v = ess.lim * maxGrowthRate[varName] * growthLim[varName]/yield[varName]
} else if (length(ess) == 0 & length(boost) > 0) {
v = (nbf + (1 - nbf) * boost.lim) * maxGrowthRate[varName] * growthLim[varName]/yield[varName]
}
} else if (varName %in% ess) {
if (length(subst) == 0) {
if (varName == keyResName) {
v = maxGrowthRate[keyResName] * ess.lim/yield[keyResName]
} else {
v = (stoichiom[varName]/stoichiom[keyResName]) * maxGrowthRate[keyResName] *
ess.lim/yield[keyResName]
}
} else {
subst.uptake = ess.lim * sum(maxGrowthRate[subst] * growthLim[subst]/yield[subst])
v = (stoichiom[varName]/mean(stoichiom[subst])) * subst.uptake
}
} else if (varName %in% boost) {
subst.uptake = (1 - nbf) * boost.lim * sum(maxGrowthRate[subst] * growthLim[subst]/yield[subst])
v = subst.uptake * stoichiom[boost]/mean(stoichiom[subst])
} else {
v = 0
}
return(max(v, 0))
} |
print.POST <- function(x, ..., siglevel = 1.0) {
attr(x = x, which = "tree") <- NULL
x <- unclass(x = x)
if (siglevel < 1.0) {
if (ncol(x = x) == 3L) {
showi <- x[,1L] <= siglevel
if (any(showi)) {
cat("POST: p-values <= ", siglevel, "\n")
print(x = x[showi,c(1L:3L),drop=FALSE])
} else {
cat("POST: No p-values <= ", siglevel, "\n")
}
showi <- x[,2L] <= siglevel
if (any(showi)) {
cat("\nSingle OTU test: p-values <= ", siglevel, "\n")
print(x = x[showi,2L,drop=FALSE])
} else {
cat("\nSingle OTU test: No p-values <= ", siglevel, "\n")
}
} else {
showi <- x[,1L] <= siglevel
if (any(showi)) {
cat("Single OTU test: p-values <= ", siglevel, "\n")
print(x = x[showi,1L,drop=FALSE])
} else {
cat("Single OTU test: No p-values <= ", siglevel, "\n")
}
}
} else {
print(x = x)
}
} |
bd.sim <- function(n0, lambda, mu, tMax,
lShape = NULL, mShape = NULL,
envL = NULL, envM = NULL,
lShifts = NULL, mShifts = NULL,
nFinal = c(0, Inf), nExtant = c(0, Inf),
trueExt = FALSE) {
if ((is.numeric(lambda) & length(lambda) == 1) &
(is.numeric(mu) & length(mu) == 1) &
(is.null(c(lShape, mShape, envL, envM, lShifts, mShifts)))) {
l <- lambda
m <- mu
return(bd.sim.constant(n0, l, m, tMax, nFinal, nExtant, trueExt))
}
else {
l <- make.rate(lambda, tMax, envL, lShifts)
m <- make.rate(mu, tMax, envM, mShifts)
return(bd.sim.general(n0, l, m, tMax, lShape, mShape,
nFinal, nExtant, trueExt))
}
} |
test_that("format_string() works as expected", {
expect_identical(as.character(format_string("L", 7)), "110100101110110")
expect_identical(as.character(format_string("M", 0)), "101010000010010")
expect_identical(as.character(format_string("Q", 3)), "011101000000110")
expect_identical(as.character(format_string("H", 2)), "001110011100111")
}) |
preserve_attributes <- function(fn) {
function(.data, ...) {
out <- NextMethod()
if (any(miss_col <- !(.data %@% "key" %in% colnames(out)))) {
miss_nm <- colnames(.data)[miss_col]
warn(glue(
"This function lost the ",
glue_collapse(miss_nm, sep = ", ", last = " and "),
" columns! These values will be removed from the report."
))
out <- mutate(out, !!!set_names(rep(list(NA), sum(miss_col)), miss_nm))
}
out <- structure(out, class = union(class(.data), class(out)))
attr <- append(attributes(out), attributes(.data))
`attributes<-`(out, attr[!duplicated(names(attr))])
}
}
dplyr::`%>%`
dplyr::mutate
mutate.vitae_preserve <- preserve_attributes(dplyr::mutate)
dplyr::transmute
transmute.vitae_preserve <- preserve_attributes(dplyr::transmute)
dplyr::group_by
group_by.vitae_preserve <- preserve_attributes(dplyr::group_by)
dplyr::summarise
summarise.vitae_preserve <- preserve_attributes(dplyr::summarise)
dplyr::rename
rename.vitae_preserve <- preserve_attributes(dplyr::rename)
dplyr::arrange
arrange.vitae_preserve <- preserve_attributes(dplyr::arrange)
dplyr::select
select.vitae_preserve <- preserve_attributes(dplyr::select)
dplyr::filter
filter.vitae_preserve <- preserve_attributes(dplyr::filter)
dplyr::distinct
distinct.vitae_preserve <- preserve_attributes(dplyr::distinct)
dplyr::slice
slice.vitae_preserve <- preserve_attributes(dplyr::slice) |
unique.circular <- function (x, ...) {
z <- unique.default(x, ...)
circularp(z) <- circularp(x)
class(z) <- class(x)
return(z)
} |
vfpripo <- function(ck, pro){
if (is.finite(ck) & ck >= 0 & ck <= 1) {
npro = length(pro)
k = min(which(pro > 1)) - 1
b = NULL
b[k] = pro[k] - ck
for(i in (k + 1):npro)
{
b[i] = b[i - 1]/pro[i]
}
bb = 0
a = list()
for(j in npro:(k+1))
{
if (j == npro) a[[j]] = seq(b[j], b[j - 1], b[j]) else {
a[[j]] = seq(2*b[j], b[j-1], b[j] )
}
}
h = c(1e-14, 1e-09)
for(i in npro:(k+1))
{
h = c(h, as.numeric(a[[i]]))
}
return(c(ck + h, pro[(k-1):1]))
} else {return(NaN)}
} |
as_eml_document <- function(x, root = "eml", ns ="eml") {
doc <- xml2::xml_new_document()
add_node(x, doc, root)
xml2::xml_set_namespace(xml2::xml_root(doc), ns)
doc
}
add_node <- function(x, parent, tag) {
if (is.atomic(x)) {
return()
}
if(!is.na(suppressWarnings(as.integer(tag)))){
return(xml2::xml_set_text(parent, paste(x, collapse="")))
}
if(!is.null(names(x)) & length(x) > 0){
parent <- xml2::xml_add_child(parent, tag)
}
if(tag %in% c("para", "section")){
if(length(x) >= 1) {
for(i in seq_along(x)){
if(grepl("<\\w+>", x[[i]])){
n <- read_xml(paste0("<", tag, ">", x[[i]], "</", tag, ">"))
xml2::xml_add_child(parent, n, .copy = TRUE)
} else {
textType <- xml2::xml_add_child(parent, tag)
xml2::xml_set_text(textType, as.character(x[[i]]))
}
}
return()
}
}
x <- sort_properties(x, tag)
update_tag <- !is.null(names(x))
for(i in seq_along(x)){
if(is.atomic(x[[i]])){
serialize_atomics(x[[i]], parent, tag, names(x)[[i]])
}
next_tag <- tag
if(update_tag){
next_tag <- names(x)[[i]]
}
add_node(x[[i]], parent, next_tag)
}
}
serialize_atomics <- function(x, parent, tag, key){
if(is.null(key)){
textType <- xml2::xml_add_child(parent, tag)
return(xml2::xml_set_text(textType, as.character(x)))
}
if(key %in% c("para", "section")){
if(grepl("<\\w+>", x)){
n <- read_xml(paste0("<", key, ">", x, "</", key, ">"))
xml2::xml_add_child(parent, n, .copy = TRUE)
return()
}
}
if(grepl("^@*id$", key)){
if(grepl("^_:b\\d+", x)){
return()
}
if(!any(grepl("^@*id$", eml_db[[eml_version()]][[tag]]))){
return()
}
}
is_attr <- FALSE
order <- eml_db[[eml_version()]][[tag]]
if(length(order) > 0 & !is.na(key)){
is_attr <- any(grepl(paste0("^
}
key <- gsub("^schemaLocation$", "xsi:schemaLocation", key)
key <- gsub("^lang$", "xml:lang", key)
if(grepl("xmlns:\\w+", key)) is_attr <- TRUE
if(grepl("xml:\\w+", key)) is_attr <- TRUE
if(grepl("xsi:\\w+", key)) is_attr <- TRUE
if(length(key) > 0){
if(!is.na(suppressWarnings(as.integer(key)))){
return(xml2::xml_set_text(parent, paste(as.character(x), collapse="")))
}
if(!is_attr){
if(xml_name(parent) == key){
xml2::xml_set_text(parent, as.character(x))
} else {
textType <- xml2::xml_add_child(parent, key)
xml2::xml_set_text(textType, as.character(x))
}
} else {
xml2::xml_set_attr(parent, key, x)
}
}
}
sort_properties <- function(x, tag){
n <- names(x)
children <- eml_db[[eml_version()]][[tag]]
if(length(children) == 0 | length(n) == 0)
return(x)
is_attr <- grep("^(
possible_attrs <- unique(gsub("^(
c(children[is_attr], "id", "schemaLocation")))
attrs <- which(n %in% possible_attrs)
order <- unique(c(gsub("^(
nodes <- x
if(length(attrs) > 0 ){
n <- n[-attrs]
nodes <- x[-attrs]
}
if(!all(n %in% order))
return(x)
fixed <- names(sort(
vapply(n,function(i) which(i == order), integer(1))))
c(x[attrs],nodes[fixed])
} |
processDivRates <- function(speciation_time_log = "",
speciation_rate_log = "",
extinction_time_log = "",
extinction_rate_log = "",
fossilization_time_log = "",
fossilization_rate_log = "",
burnin = 0.25,
probs = c(0.025, 0.975),
summary = "mean") {
if (is.character(speciation_time_log) == FALSE)
stop("speciation_time_log must be a character string or vector of strings")
if (is.character(speciation_rate_log) == FALSE)
stop("speciation_rate_log must be a character string or vector of strings")
if (is.character(extinction_time_log) == FALSE)
stop("extinction_time_log must be a character string or vector of strings")
if (is.character(extinction_rate_log) == FALSE)
stop("extinction_rate_log must be a character string or vector of strings")
if (is.character(fossilization_time_log) == FALSE)
stop("fossilization_time_log must be a character string vector of strings")
if (is.character(fossilization_rate_log) == FALSE)
stop("fossilization_rate_log must be a character string vector of strings")
if (fossilization_time_log != "" &
fossilization_rate_log == "")
stop("both please provide both fossilization rates and times, or neither")
if (fossilization_time_log == "" &
fossilization_rate_log != "")
stop("both please provide both fossilization rates and times, or neither")
do_speciation_time_log_exist <- file.exists(speciation_time_log)
if (any(do_speciation_time_log_exist == FALSE) == TRUE) {
stop(
paste0(
"Some speciation_time_log files do not exist:",
paste0("\t", speciation_time_log[do_speciation_time_log_exist == FALSE]),
sep = "\n"
)
)
}
do_speciation_rate_log_exist <- file.exists(speciation_rate_log)
if (any(do_speciation_rate_log_exist == FALSE) == TRUE) {
stop(
paste0(
"Some speciation_rate_log files do not exist:",
paste0("\t", speciation_rate_log[do_speciation_rate_log_exist == FALSE]),
sep = "\n"
)
)
}
do_extinction_time_log_exist <- file.exists(extinction_time_log)
if (any(do_extinction_time_log_exist == FALSE) == TRUE) {
stop(
paste0(
"Some extinction_time_log files do not exist:",
paste0("\t", extinction_time_log[do_extinction_time_log_exist == FALSE]),
sep = "\n"
)
)
}
do_extinction_rate_log_exist <- file.exists(extinction_rate_log)
if (any(do_extinction_rate_log_exist == FALSE) == TRUE) {
stop(
paste0(
"Some extinction_rate_log files do not exist:",
paste0("\t", extinction_rate_log[do_extinction_rate_log_exist == FALSE]),
sep = "\n"
)
)
}
if (fossilization_time_log != "") {
do_fossilization_time_log_exist <-
file.exists(fossilization_time_log)
if (any(do_fossilization_time_log_exist == FALSE) == TRUE) {
stop(
paste0(
"Some fossilization_time_log files do not exist:",
paste0("\t",
fossilization_time_log[do_fossilization_time_log_exist ==
FALSE]),
sep = "\n"
)
)
}
}
if (fossilization_rate_log != "") {
do_fossilization_rate_log_exist <-
file.exists(fossilization_rate_log)
if (any(do_fossilization_rate_log_exist == FALSE) == TRUE) {
stop(
paste0(
"Some fossilization_rate_log files do not exist:",
paste0("\t",
fossilization_rate_log[do_fossilization_rate_log_exist ==
FALSE]),
sep = "\n"
)
)
}
}
speciation_time <- readTrace(paths = speciation_time_log,
burnin = burnin)
speciation_rate <- readTrace(paths = speciation_rate_log,
burnin = burnin)
extinction_time <- readTrace(paths = extinction_time_log,
burnin = burnin)
extinction_rate <- readTrace(paths = extinction_rate_log,
burnin = burnin)
if (fossilization_time_log != "") {
fossilization_time <- readTrace(paths = fossilization_time_log,
burnin = burnin)
fossilization_rate <- readTrace(paths = fossilization_rate_log,
burnin = burnin)
} else {
fossilization_time <- NULL
fossilization_rate <- NULL
}
if (is.null(fossilization_time)) {
trace_lengths_same <- identical(
length(speciation_time),
length(speciation_rate),
length(extinction_time),
length(extinction_rate)
)
} else {
trace_lengths_same <- identical(
length(speciation_time),
length(speciation_rate),
length(extinction_time),
length(extinction_rate),
length(fossilization_time),
length(fossilization_rate)
)
}
if (trace_lengths_same == FALSE) {
stop("You must provide the same number of log files
for each parameter type.")
}
else if (trace_lengths_same == TRUE) {
if (length(speciation_time) == 0) {
stop("You must provide at least one log file per parameter type.")
} else if (length(speciation_time) > 1) {
stop("Currently, only one log file per parameter type is supported.")
} else if (length(speciation_time) == 1) {
speciation_time <- speciation_time[[1]]
speciation_rate <- speciation_rate[[1]]
extinction_time <- extinction_time[[1]]
extinction_rate <- extinction_rate[[1]]
if (!is.null(fossilization_time)) {
fossilization_time <- fossilization_time[[1]]
fossilization_rate <- fossilization_rate[[1]]
}
speciation_time$`interval_times[0]` <-
rep(0, nrow(speciation_time))
extinction_time$`interval_times[0]` <-
rep(0, nrow(extinction_time))
if (!is.null(fossilization_time)) {
fossilization_time$`interval_times[0]` <-
rep(0, nrow(fossilization_time))
}
net_diversification_rate <-
as.matrix(speciation_rate[, grepl("speciation",
colnames(speciation_rate))]) -
as.matrix(extinction_rate[, grepl("extinction",
colnames(extinction_rate))])
colnames(net_diversification_rate) <-
paste(
rep("net_div", times = ncol(net_diversification_rate)),
rep("[", times = ncol(net_diversification_rate)),
seq_len(ncol(net_diversification_rate)),
rep("]", times = ncol(net_diversification_rate)),
sep = ""
)
relative_extinction_rate <-
as.matrix(extinction_rate[, grepl("extinction",
colnames(extinction_rate))]) /
as.matrix(speciation_rate[, grepl("speciation",
colnames(speciation_rate))])
colnames(relative_extinction_rate) <-
paste(
rep("rel_ext", times = ncol(relative_extinction_rate)),
rep("[", times = ncol(relative_extinction_rate)),
seq_len(ncol(relative_extinction_rate)),
rep("]", times = ncol(relative_extinction_rate)),
sep = ""
)
rates <- list(
"speciation rate" = speciation_rate,
"extinction rate" = extinction_rate,
"net-diversification rate" = net_diversification_rate,
"relative-extinction rate" = relative_extinction_rate,
"fossilization rate" = fossilization_rate,
"speciation time" = speciation_time,
"extinction time" = extinction_time,
"fossilization time" = fossilization_time
)
plotdata <-
.makePlotData(rates = rates,
probs = probs,
summary = summary)
return(plotdata)
}
}
} |
library(hamcrest)
expected <- c(0x1.f777e71439a25p+4 + 0x1.0efd4d78363dcp-3i, -0x1.099b82b08dcdep+5 + -0x1.1f60eb3e91a8p-3i,
0x1.4adc6cafd59bp+5 + 0x1.2f7bee7cb753p-3i, -0x1.367b7606366a5p+5 + -0x1.3f4a458e312ccp-3i,
0x1.627e95762bd98p+2 + 0x1.4ec7f22d6bc6ap-3i, -0x1.9d0df5bc1f5abp+4 + -0x1.5df10a75f9a6fp-3i,
0x1.797a3e022c469p+4 + 0x1.6cc1b9e1b31p-3i, -0x1.0f7fd60c7a499p+5 + -0x1.7b3642406dd32p-3i,
0x1.4c2d7f1bb0ebp+5 + 0x1.894afcaa11659p-3i, -0x1.867625825ca31p+5 + -0x1.96fc5a6ac941dp-3i,
0x1.3c27fd1e0933ap+5 + 0x1.a446e5e918fc6p-3i, -0x1.0ff7c93080fadp+5 + -0x1.b127438599bc3p-3i,
0x1.19e1f35719edfp+5 + 0x1.bd9a327427adep-3i, -0x1.eeb57e415035ep+4 + -0x1.c99c8d8e4759cp-3i,
0x1.d455c838826bap+4 + 0x1.d52b4c1e908f2p-3i, -0x1.398563f647b4ep+5 + -0x1.e04382a4e7efdp-3i,
0x1.e0527c24c1e2dp+5 + 0x1.eae2639358bep-3i, -0x1.fec95c0cc721fp+5 + -0x1.f50540035df2p-3i,
0x1.51ed325df1cbcp+5 + 0x1.fea988636b9aep-3i, -0x1.4313783cea8dap+5 + -0x1.03e6668e478aap-2i,
0x1.76f9592b716eep+4 + 0x1.08365f97fcf3ep-2i, -0x1.ca2cf6d606bcap+3 + -0x1.0c439866288ecp-2i,
0x1.100307418cdbcp+5 + 0x1.100d0aed4d9c4p-2i, -0x1.19deaf546e54cp+5 + -0x1.1391c24153e1ep-2i,
0x1.8e4c17969b4fap+4 + 0x1.16d0dad36891dp-2i, -0x1.299c5fa51131ap+5 + -0x1.19c982ab7b5cdp-2i,
0x1.6a35f816084fdp+5 + 0x1.1c7af99d4b064p-2i, -0x1.1b67b8d0f0d1dp+5 + -0x1.1ee49178f1dadp-2i,
0x1.1b9c7f041d515p+5 + 0x1.2105ae36e7d17p-2i, -0x1.61fd0b8438adfp+5 + -0x1.22ddc61f6de77p-2i,
0x1.3171b08060711p+5 + 0x1.246c61ed58c61p-2i, -0x1.23be178d4f4d7p+5 + -0x1.25b11cec3334ep-2i,
0x1.2293585544099p+5 + 0x1.26aba511aee97p-2i, -0x1.b1a3e70608a88p+5 + -0x1.275bbb125ecbep-2i,
0x1.a468e822288b4p+4 + 0x1.27c13271b49bdp-2i, -0x1.f4ec457fbc4d8p+4 + -0x1.27dbf18d3e1e8p-2i,
0x1.7f1bd98e661f1p+4 + 0x1.27abf1a31ee08p-2i, -0x1.3b05e1cd862p+4 + -0x1.27313ed3c578ep-2i,
0x1.16d0cd781ecd8p+5 + 0x1.266bf81edb3e2p-2i, -0x1.f295f21a954f8p+4 + -0x1.255c4f5b6f749p-2i,
0x1.35ee54932c2a2p+5 + 0x1.2402892b5f69ap-2i, -0x1.8937060b0635fp+4 + -0x1.225efce9fffb9p-2i,
0x1.a4917473434ccp+5 + 0x1.207214960bb94p-2i, -0x1.83c48991d9495p+5 + -0x1.1e3c4cb6db3c3p-2i,
0x1.b8c986f24fc3ap+5 + 0x1.1bbe343cefa12p-2i, -0x1.e5cbb5dcc68b7p+5 + -0x1.18f86c5dd50dep-2i,
0x1.3df8cb4c57f4bp+5 + 0x1.15eba86b68d9ap-2i, -0x1.35bd47daa2e13p+5 + -0x1.1298ada68bc36p-2i,
0x1.4d4d5b292177cp+5 + 0x1.0f00530d4c205p-2i, -0x1.c4ff4b68ebcc6p+4 + -0x1.0b238124955b6p-2i,
0x1.1390501c6bb9ep+4 + 0x1.070331bd7121cp-2i, -0x1.66218d81e22e2p+5 + -0x1.02a06fb5ea62ap-2i,
0x1.854d7a0b38318p+4 + 0x1.fbf8ad6b42d47p-3i, -0x1.20cfa9f995dbap+5 + -0x1.f23025cc44262p-3i,
0x1.e0e24343a982bp+5 + 0x1.e7e9c14e1d752p-3i, -0x1.fd67a451179fap+3 + -0x1.dd28187c64297p-3i,
0x1.23acf5b31f67p+4 + 0x1.d1ede3071a22ep-3i, -0x1.198dba702d9c2p+5 + -0x1.c63df712ebec8p-3i,
0x1.08c7f3cff0758p+5 + 0x1.ba1b4881bc3ep-3i, -0x1.7f2d389294a33p+4 + -0x1.ad88e833acc04p-3i,
0x1.3bd2267f4c864p+5 + 0x1.a08a0340d310fp-3i, -0x1.c209fd2670b7ap+4 + -0x1.9321e22bcc8ecp-3i,
0x1.8ea5d3aac26bdp+5 + 0x1.8553e80d664aap-3i, -0x1.cc8a7dd1cc378p+3 + -0x1.772391b98c3edp-3i,
0x1.f62bb555f99bep+4 + 0x1.689474ddb8846p-3i, -0x1.1cf4ae1b70219p+5 + -0x1.59aa3f191b896p-3i,
0x1.4eb2c150804bep+5 + 0x1.4a68b50eb76bcp-3i, -0x1.b7ee0b56f6a7fp+5 + -0x1.3ad3b171abc76p-3i,
0x1.4138ea58ae8aep+5 + 0x1.2aef240becbedp-3i, -0x1.7209b9eaeec43p+5 + -0x1.1abf10bfa80b9p-3i,
0x1.755cd9214371fp+5 + 0x1.0a478e8394f0ap-3i, -0x1.6414b0ba2c612p+5 + -0x1.f3198cb4e4d8p-4i,
0x1.95314c7d3e84ep+5 + 0x1.d125e48beed2ep-4i, -0x1.6af3dd07d7142p+5 + -0x1.aebcb86aebc54p-4i,
0x1.e1cbac30b75bp+4 + 0x1.8be6b9e0f24acp-4i, -0x1.652aa2b77e5efp+5 + -0x1.68acb5fb467f6p-4i,
0x1.4824d5f7c0402p+5 + 0x1.4517930c23b2cp-4i, -0x1.f405c9cebdb51p+5 + -0x1.21304e6b23ee8p-4i,
0x1.442d63d64f661p+5 + 0x1.f9fff45fa9f74p-5i, -0x1.dacbb5481a69fp+4 + -0x1.b11f75ce23dcdp-5i,
0x1.06a237e072101p+5 + 0x1.67d18a875f3a4p-5i, -0x1.996ea64579dbp+5 + -0x1.1e28b7962fefcp-5i,
0x1.a14f02f633cc8p+5 + 0x1.a86f31f9962f4p-6i, -0x1.192a3392d1759p+5 + -0x1.1421ba0261548p-6i,
0x1.77c725038532ep+5 + 0x1.fe39fba7d0a4p-8i, -0x1.44afeed378a72p+5 + 0x1.524f60c8b808p-10i,
0x1.c27915b7b67dep+3 + -0x1.53a626f37485p-7i, -0x1.9fff528a03b6cp+4 + 0x1.3e56494faf51p-6i,
0x1.a007844837a8bp+4 + -0x1.d28912576b9d8p-6i, -0x1.0e36d0a2260b7p+6 + 0x1.3322fed5c121ep-5i,
0x1.746258ba6ca0ap+5 + -0x1.7cb3dc16d30ap-5i, -0x1.ede2b21e93712p+4 + 0x1.c5e48afa5687ap-5i,
0x1.1f8d740cc0c66p+5 + -0x1.075146ec2a54cp-4i, -0x1.bbe2dc0a49197p+4 + 0x1.2b6dc200b0794p-4i,
0x1.545a438ed642ap+5 + -0x1.4f3e973197af1p-4i, -0x1.4b8f293549fbcp+5 + 0x1.72baba1259394p-4i,
0x1.3bcb13c78fdep+5 + -0x1.95d9339c46967p-4i, -0x1.e4528e4e43d24p+4 + 0x1.b891247259cdfp-4i,
0x1.63d1be78c0504p+4 + -0x1.dad9c71f0dc24p-4i, -0x1.7a85c679183efp+5 + 0x1.fcaa724ba86p-4i,
0x1.c2a50329e43b4p+4 + -0x1.0efd4d7836562p-3i, -0x1.9f6cdc5d6bd7p+4 + 0x1.1f60eb3e91b62p-3i,
0x1.4042301b8fb1ep+5 + -0x1.2f7bee7cb74d6p-3i, -0x1.1acd9fc75e2ebp+5 + 0x1.3f4a458e3171p-3i,
0x1.61c75a96455cdp+4 + -0x1.4ec7f22d6be4cp-3i, -0x1.e0c53a3b39e61p+4 + 0x1.5df10a75f9c72p-3i,
0x1.356dc8b1ab198p+5 + -0x1.6cc1b9e1b31eep-3i, -0x1.4935cc863670ap+5 + 0x1.7b3642406ddaep-3i,
0x1.2450039c61c1ap+4 + -0x1.894afcaa11a49p-3i, -0x1.5ab851a72c68cp+4 + 0x1.96fc5a6ac96f1p-3i,
0x1.6f287506b8e4bp+5 + -0x1.a446e5e919028p-3i, -0x1.3610f50565c1ep+5 + 0x1.b127438599d79p-3i,
0x1.6913f27c9765dp+5 + -0x1.bd9a327427c1ep-3i, -0x1.1e8c9d9ce3e4ep+5 + 0x1.c99c8d8e47bd2p-3i,
0x1.2f70bfd941b14p+5 + -0x1.d52b4c1e90c62p-3i, -0x1.b1a566a2b62afp+5 + 0x1.e04382a4e7f9cp-3i,
0x1.ca19d783a032bp+5 + -0x1.eae2639358dcap-3i, -0x1.215266e255c2cp+5 + 0x1.f50540035e0f7p-3i,
0x1.21a99f531adcfp+5 + -0x1.fea988636be3cp-3i, -0x1.cdd93b2896d9p+5 + 0x1.03e6668e47a6dp-2i,
0x1.8f0870c0fbea1p+5 + -0x1.08365f97fcfa4p-2i, -0x1.11efde8b53ddcp+5 + 0x1.0c4398662899cp-2i,
0x1.e40290d791da8p+4 + -0x1.100d0aed4daedp-2i, -0x1.3d47465da3ccbp+5 + 0x1.1391c241540bap-2i,
0x1.a01e31ad35e9bp+4 + -0x1.16d0dad368ad3p-2i, -0x1.8652d08928c45p+4 + 0x1.19c982ab7b706p-2i,
0x1.a33a629c57a02p+5 + -0x1.1c7af99d4b0a2p-2i, -0x1.6a1b10656c5a2p+5 + 0x1.1ee49178f1dddp-2i,
0x1.428f24fff2116p+5 + -0x1.2105ae36e7f3ep-2i, -0x1.212f7dd0f0894p+5 + 0x1.22ddc61f6dfb2p-2i,
0x1.9238d2cb14adap+5 + -0x1.246c61ed58d22p-2i, -0x1.efc9e3a179c2dp+5 + 0x1.25b11cec333c7p-2i,
0x1.945de61effe84p+4 + -0x1.26aba511aef5cp-2i, -0x1.ecff360dddfe1p+4 + 0x1.275bbb125ee72p-2i,
0x1.c2dfcaa11ae0cp+4 + -0x1.27c13271b4bdep-2i, -0x1.c7495911a6866p+5 + 0x1.27dbf18d3e27bp-2i,
0x1.04dbb72c2f8d6p+5 + -0x1.27abf1a31ee3bp-2i, -0x1.cf4f8a9303d06p+4 + 0x1.27313ed3c5894p-2i,
0x1.f4f17b5353a4ap+4 + -0x1.266bf81edb72fp-2i, -0x1.3423b759dc0f1p+5 + 0x1.255c4f5b6f856p-2i,
0x1.575960952e6c2p+5 + -0x1.2402892b5f76ep-2i, -0x1.530975024064ap+5 + 0x1.225efcea000b6p-2i,
0x1.ad957191b8968p+5 + -0x1.207214960bc71p-2i, -0x1.0926f3c6c5b19p+5 + 0x1.1e3c4cb6db62cp-2i,
0x1.3ad7fe37c56d1p+4 + -0x1.1bbe343cefb3cp-2i, -0x1.0e0d3849bf2f8p+5 + 0x1.18f86c5dd50fbp-2i,
0x1.6bc5205766c1p+5 + -0x1.15eba86b68e1dp-2i, -0x1.1d615b4644ee6p+5 + 0x1.1298ada68bd16p-2i,
0x1.bd41aa80c6cd6p+4 + -0x1.0f00530d4c454p-2i, -0x1.d319e0de78d58p+4 + 0x1.0b238124956c4p-2i,
0x1.ba9d0ed0c5c09p+5 + -0x1.070331bd7127ep-2i, -0x1.899434ed561e2p+5 + 0x1.02a06fb5ea61ap-2i,
0x1.230b87cd78373p+5 + -0x1.fbf8ad6b42d02p-3i, -0x1.70d1fd249c87ap+5 + 0x1.f23025cc44656p-3i,
0x1.c9d77d8c3f1bp+5 + -0x1.e7e9c14e1db8p-3i, -0x1.536da301e6061p+5 + 0x1.dd28187c643ap-3i,
0x1.a54707eb7925ap+4 + -0x1.d1ede3071a2fap-3i, -0x1.e0b61508aa797p+4 + 0x1.c63df712ebed3p-3i,
0x1.be185ca704f06p+4 + -0x1.ba1b4881bc794p-3i, -0x1.2ddead1a8e4c6p+5 + 0x1.ad88e833ad253p-3i,
0x1.a844aff512914p+5 + -0x1.a08a0340d3196p-3i, -0x1.61a753e55f788p+5 + 0x1.9321e22bcc97p-3i,
0x1.70a9c6fdd50cp+5 + -0x1.8553e80d665acp-3i, -0x1.2080250f0d9dbp+5 + 0x1.772391b98c909p-3i,
0x1.43a4c319b287ep+5 + -0x1.689474ddb8b28p-3i, -0x1.7469f7e3ffbedp+5 + 0x1.59aa3f191b953p-3i,
0x1.99ddbb6ef9b76p+4 + -0x1.4a68b50eb78cp-3i, -0x1.0cb283f26a6b1p+5 + 0x1.3ad3b171abd17p-3i,
0x1.f3232867601c8p+5 + -0x1.2aef240becf0ap-3i, -0x1.d11bb86c031c5p+3 + 0x1.1abf10bfa828ap-3i,
0x1.2ec007ba79a3ep+2 + -0x1.0a478e8394e64p-3i, -0x1.521e074a87d18p+4 + 0x1.f3198cb4e5074p-4i,
0x1.2ed19e606202bp+5 + -0x1.d125e48bef0c2p-4i, -0x1.8c7ba9b4be68p+4 + 0x1.aebcb86aec2c7p-4i,
0x1.e7e3b1188defcp+3 + -0x1.8be6b9e0f264fp-4i, -0x1.980c30e55e4bap+5 + 0x1.68acb5fb46982p-4i,
0x1.5fdbb43dca325p+5 + -0x1.4517930c23d87p-4i, -0x1.374a5890d2db2p+5 + 0x1.21304e6b2428bp-4i,
0x1.1a122791e446p+5 + -0x1.f9fff45fab052p-5i, -0x1.672a8bf2121c8p+5 + 0x1.b11f75ce246cep-5i,
0x1.76f0538651d48p+5 + -0x1.67d18a875f8bcp-5i, -0x1.42a8e165f9f46p+4 + 0x1.1e28b796303b4p-5i,
0x1.589d4a6743295p+5 + -0x1.a86f31f996f34p-6i, -0x1.deba16f3a01e4p+4 + 0x1.1421ba026342p-6i,
0x1.3a73a0e09c0ddp+5 + -0x1.fe39fba7d97p-8i, -0x1.1ac7fd90e4d6bp+5 + -0x1.524f60c8bedcp-10i,
0x1.6cdac3d0b7e01p+4 + 0x1.53a626f374508p-7i, -0x1.6ffe3fefa9bf6p+4 + -0x1.3e56494faeb7cp-6i,
0x1.35cbda1474122p+5 + 0x1.d289125768d82p-6i, -0x1.61aad79622fbep+4 + -0x1.3322fed5c00e5p-5i,
0x1.23146d411eecfp+5 + 0x1.7cb3dc16d2e1cp-5i, -0x1.9f9f722c6e87ap+5 + -0x1.c5e48afa56845p-5i,
0x1.d09ae32e6d36fp+4 + 0x1.075146ec2a674p-4i, -0x1.d6cf6ef5f3268p+4 + -0x1.2b6dc200afdcp-4i,
0x1.05b77ea8e1dap+5 + 0x1.4f3e97319762ep-4i, -0x1.dd73f4d17379ep+4 + -0x1.72baba1259314p-4i,
0x1.72d6021dc8e1ap+5 + 0x1.95d9339c4675cp-4i, -0x1.0a0e90ebc8e23p+5 + -0x1.b891247259d5p-4i,
0x1.58bbf0514c9d5p+5 + 0x1.dad9c71f0d36p-4i, -0x1.67572c4bcb041p+4 + -0x1.fcaa724ba8184p-4i
)
assertThat(stats:::fft(inverse=TRUE,z=c(0+0i, 0.387467656494932+0.087887055302609i, -0.272873251193193+0.348592754161238i,
0.004458949776547+0.629650782467665i, 0.341584576251984-0.324095747592006i,
-0.168430070639157+0.370058402820591i, -0.170428057808592+0.355656926196737i,
0.189403333913117-0.268102153555681i, -0.422393428437039+0.390356155279087i,
-0.087640681591324+0.550557720201075i, 0.658588238094553-0.373223641927201i,
0.496874726588664-0.484876739592876i, -0.31731700831643+0.608664501667523i,
0.394341624780511+0.254548322791397i, 0.41572635983388+1.24202430087578i,
0.154628074397381+0.314566308335485i, -0.0346516632643838+0.0028512332394526i,
0.21124567010677+0.259642705863708i, -0.752934806590152-0.299829330401428i,
0.801459675117551+0.398101492628935i, 0.687689177637489-0.370430914656473i,
-0.16579837040666+0.931976287573366i, 0.4349783189495+0.095497912734406i,
-0.498467368867177+0.147981243599366i, -0.545289926208066-0.082722529650794i,
0.074896052891279+0.828318552752319i, 0.373794651598343-0.347565624414014i,
-0.315250819254099-0.002607973396642i, -0.387194782168348+0.382417178295367i,
0.297245727562182-0.47985315800206i, 0.18661904602752-1.09565329821592i,
0.309489896357372-0.564353693815631i, -0.123480299994003+0.286414030578086i,
0.611672005716161+0.172522395665558i, 0.115882106548999-0.709349175206409i,
-0.273698566243724-0.242496361362738i, 0.195101021176864+0.689026217108972i,
0.548472086565796+0.550388738353233i, 0.847502438074939-0.201830644093705i,
-0.379464166532177+0.177328031483713i, -0.391275629246155-0.445767240777387i,
-0.302106709204265-0.026685237267354i, -0.79833731892196-1.35064045553977i,
-0.006270875287866+0.406619621766477i, 0.203178986634338+0.138669231219335i,
0.28577151725736+1.04048462196259i, -0.951091951990917+0.263125400955221i,
-1.55273704456497-0.4884052830452i, 1.03655094548686-0.82026863162249i,
-0.544479807501977-0.089937124268889i, -0.318237293080151-0.604638992947871i,
1.53081943790421+0.41508607639562i, -0.428407442656421+0.591155496756211i,
0.250536419409091+0.48974897289035i, -1.06495103443053-0.15231137996281i,
0.528470245209354-0.369094879343149i, -0.143586055741212-0.776165408742494i,
-0.142163961786417+0.811527486156436i, -0.242673181991965+0.462931841911418i,
-0.227060138460294-0.8996455386592i, 0.140618002041668+0.669357636192236i,
-1.15075510955329+0.60727129746021i, 0.210495011044416-0.076051105432621i,
0.025462294286431+0.939338286240659i, 0.678321489541989+0.216560603562504i,
-0.72301809819317-0.151884043937172i, 0.309750749369855+0.916000993505714i,
-0.869358145138734-0.387714269931044i, -0.923902644829032+0.310364265964412i,
0.137075984674729-0.537408545089108i, -0.247211147291535+0.491285965055452i,
-0.538436918775419+0.313993798842096i, -1.4240627600889+0.28536430467877i,
0.33518415776981+0.968809509539808i, 0.417064770976696-0.489011267648477i,
0.706824854495443+0.495913096111714i, 0.852058997401168+0.707333688273278i,
0.803715235744214+0.027629717482164i, 0.593150061762205-0.700205546303819i,
-0.20778265900559-0.700544411609522i, 0.27408688214629-0.00552167031428i,
-0.320552702241218-0.018874842257346i, -0.082433228830737-0.722239479989061i,
0.695578381955947-0.927220365278698i, -0.67171193555105+1.41693472431622i,
-0.348626905572753+0.944332406693984i, 0.396744586483308+0.284540666501424i,
-0.047212876898303-0.882681522880203i, 0.34969735463211-1.62058439231521i,
-0.20159867103638-0.4774838031943i, -0.128283457812938-0.547829299293464i,
0.783387993225221+0.679494259559114i, -0.080477953289285-0.67183603482321i,
-1.10277855376794+0.00821053408902i, -0.930405516723233+0.280853848995036i,
1.01744543253628-0.37551671023178i, -0.820595854020355+0.099654497324053i,
0.418907739583679+0.662854525394047i, -0.615106309065234+0.246834962926732i,
-1.13019829311483+0i, 36.95629+0i, -0.873350170339161+0.132319073897442i,
-0.615106309065235-0.246834962926732i, 0.418907739583679-0.662854525394047i,
-0.820595854020355-0.099654497324053i, 1.01744543253628+0.37551671023178i,
-0.930405516723233-0.280853848995036i, -1.10277855376794-0.00821053408902i,
-0.080477953289285+0.671836034823211i, 0.783387993225221-0.679494259559114i,
-0.128283457812938+0.547829299293463i, -0.20159867103638+0.4774838031943i,
0.34969735463211+1.62058439231521i, -0.047212876898303+0.882681522880203i,
0.396744586483308-0.284540666501424i, -0.348626905572753-0.944332406693984i,
-0.67171193555105-1.41693472431622i, 0.695578381955947+0.927220365278698i,
-0.082433228830737+0.722239479989061i, -0.320552702241218+0.018874842257346i,
0.27408688214629+0.00552167031428i, -0.20778265900559+0.700544411609522i,
0.593150061762205+0.700205546303819i, 0.803715235744214-0.027629717482164i,
0.852058997401169-0.707333688273278i, 0.706824854495443-0.495913096111714i,
0.417064770976696+0.489011267648477i, 0.33518415776981-0.968809509539809i,
-1.4240627600889-0.28536430467877i, -0.538436918775419-0.313993798842096i,
-0.247211147291535-0.491285965055452i, 0.137075984674729+0.537408545089108i,
-0.923902644829032-0.310364265964412i, -0.869358145138734+0.387714269931044i,
0.309750749369855-0.916000993505715i, -0.72301809819317+0.151884043937172i,
0.67832148954199-0.216560603562504i, 0.025462294286431-0.939338286240659i,
0.210495011044416+0.076051105432621i, -1.15075510955329-0.60727129746021i,
0.140618002041669-0.669357636192237i, -0.227060138460294+0.8996455386592i,
-0.242673181991965-0.462931841911418i, -0.142163961786417-0.811527486156435i,
-0.143586055741212+0.776165408742494i, 0.528470245209354+0.369094879343149i,
-1.06495103443053+0.15231137996281i, 0.250536419409091-0.48974897289035i,
-0.428407442656422-0.591155496756212i, 1.53081943790421-0.41508607639562i,
-0.318237293080151+0.604638992947871i, -0.544479807501976+0.089937124268889i,
1.03655094548686+0.82026863162249i, -1.55273704456497+0.4884052830452i,
-0.951091951990917-0.263125400955221i, 0.28577151725736-1.04048462196259i,
0.203178986634338-0.138669231219335i, -0.006270875287866-0.406619621766477i,
-0.79833731892196+1.35064045553977i, -0.302106709204265+0.026685237267354i,
-0.391275629246155+0.445767240777387i, -0.379464166532177-0.177328031483713i,
0.847502438074939+0.201830644093705i, 0.548472086565796-0.550388738353233i,
0.195101021176864-0.689026217108973i, -0.273698566243724+0.242496361362738i,
0.115882106548999+0.70934917520641i, 0.611672005716161-0.172522395665558i,
-0.123480299994003-0.286414030578086i, 0.309489896357372+0.564353693815631i,
0.18661904602752+1.09565329821592i, 0.297245727562182+0.47985315800206i,
-0.387194782168348-0.382417178295367i, -0.315250819254099+0.002607973396642i,
0.373794651598343+0.347565624414014i, 0.074896052891279-0.828318552752319i,
-0.545289926208067+0.082722529650794i, -0.498467368867177-0.147981243599366i,
0.4349783189495-0.095497912734406i, -0.16579837040666-0.931976287573366i,
0.687689177637486+0.370430914656471i, 0.801459675117551-0.398101492628935i,
-0.752934806590153+0.299829330401428i, 0.21124567010677-0.259642705863708i,
-0.0346516632643838-0.0028512332394526i, 0.154628074397381-0.314566308335485i,
0.41572635983388-1.24202430087578i, 0.394341624780511-0.254548322791398i,
-0.31731700831643-0.608664501667524i, 0.496874726588664+0.484876739592876i,
0.658588238094553+0.373223641927201i, -0.087640681591324-0.550557720201075i,
-0.422393428437039-0.390356155279087i, 0.189403333913117+0.268102153555681i,
-0.170428057808592-0.355656926196737i, -0.168430070639157-0.370058402820591i,
0.341584576251983+0.324095747592006i, 0.004458949776547-0.629650782467666i,
-0.272873251193193-0.348592754161238i, 0.387467656494932-0.087887055302609i
))
, identicalTo( expected, tol = 1e-6 ) ) |
operador_binario <- function(fun, a, b){
} |
library(compareGroups)
library(htmlwidgets)
library(webshot)
library(readr)
data(predimed)
tab <- descrTable(predimed,
method = c(p14=2, wht=2, toevent=2),
hide.no = 'no', hide = c(sex="Male"))
out <- export2md(tab,
header.label=c("all"="All","N"="available"),
strip = TRUE, first = TRUE, background = grey(0.95),
size = 14, position = "left")
webshot::webshot("./www/examples/example1.html", "./www/examples/example1.png")
file.remove("./www/examples/example1.html")
tab <- descrTable(group ~ ., predimed,
method = c(p14=2, wht=2, toevent=2),
hide.no = 'no', hide = c(sex="Male"))
out <- export2md(tab,
header.label=c("p.overall"="p-value","N"="available"),
strip = TRUE, first = TRUE, background = grey(0.95),
size=14, position = "left")
webshot::webshot("./www/examples/example2.html", "./www/examples/example2.png")
file.remove("./www/examples/example2.html")
tab <- descrTable(group ~ ., predimed,
method = c(p14=2, wht=2, toevent=2),
type = 1, sd.type=2,
hide.no = 'no', hide = c(sex="Male"))
out <- export2md(tab,
header.label=c("p.overall"="p-value","N"="available"),
strip = TRUE, first = TRUE, background = grey(0.95),
size=14, position = "left")
webshot::webshot("./www/examples/example3.html", "./www/examples/example3.png")
file.remove("./www/examples/example3.html")
predimed$tevent <- with(predimed, Surv(toevent, event=='Yes'))
tab <- descrTable(tevent ~ . - toevent - event, predimed,
method = c(p14=2, wht=2), show.ratio=TRUE, show.p.overall=FALSE,
hide.no = 'no', hide = c(sex="Male"))
out <- export2md(tab,
header.label=c("p.ratio"="p-value"),
strip = TRUE, first = TRUE, background = grey(0.95),
size = 14, position = "left")
webshot::webshot("./www/examples/example4.html", "./www/examples/example4.png")
file.remove("./www/examples/example4.html")
tab <- strataTable(tab, "group")[-1]
out <- export2md(tab,
header.label=c("p.ratio"="p-value"),
strip = TRUE, first = TRUE, background = grey(0.95),
header.color = "white",header.background = "blue",
size=10, position = "left")
webshot::webshot("./www/examples/example5.html", "./www/examples/example5.png")
file.remove("./www/examples/example5.html")
tab <- descrTable(predimed)
plot(tab['age'], file="./www/examples/var", type="png")
file.rename("./www/examples/varage.png","./www/examples/example6.png")
tab <- descrTable(group ~ ., predimed)
plot(tab['smoke'], bivar=TRUE, file="./www/examples/var", type="png")
file.rename("./www/examples/varsmoke.png","./www/examples/example7.png")
data(SNPs)
tab <- compareSNPs(~ . , SNPs[,6:20])
sink("./www/examples/example8.txt")
tab
sink() |
km = function(data, w=1) {
x = icendata(data, w)
if(any(x$o[,2] != Inf))
stop("Not all observations are exact or right-censored")
if(nrow(x$o) == 0) {
f = idf(x$t, x$t, x$wt)
ll = sum(x$wt * log(f$p))
return(list(f=f, ll=ll))
}
c = colSums(x$wo * outer(x$o[,1], x$t, "<"))
n = sum(x$wt, x$wo)
r = n - c - c(0,cumsum(x$wt))[1:length(x$t)]
S = cumprod(1 - x$wt/r)
p = rev(diff(rev(c(1,S,0))))
dc = x$wt + c
if(max(x$t) > max(x$o[,1])) {
f = idf(x$t, x$t, p[-length(p)])
ll = sum( x$wt * log(f$p) )
}
else {
f = idf(c(x$t,max(x$o[,1])), c(x$t,Inf), p)
ll = sum(c(x$wt, n - sum(x$wt)) * log(f$p))
}
list(f=f, ll=ll)
} |
mean2.1996BS <- function(X, Y){
check_nd(X)
check_nd(Y)
if (ncol(X)!=ncol(Y)){
stop("* mean2.1996BS : two samples X and Y should be of same dimension.")
}
n1 = nrow(X)
n2 = nrow(Y)
n = (n1+n2-2)
x1 = colMeans(X)
x2 = colMeans(Y)
S = (((n1-1)*cov(X) + (n2-1)*cov(Y))/n)
trS = aux_trace(S)
xdiff = as.vector(x1-x2)
term1 = ((n1*n2)/(n1+n2))*sum(xdiff*xdiff) - trS
term2 = sqrt((2*n*(n+1)/((n-1)*(n+2)))*(aux_trace(S%*%S) - (trS^2)/n))
thestat = (term1/term2)
pvalue = pnorm(thestat,lower.tail=FALSE)
hname = "Two-sample Test for High-Dimensional Means by Bai and Saranadasa (1996)."
Ha = "true means are different."
DNAME = paste(deparse(substitute(X))," and ",deparse(substitute(Y)),sep="")
names(thestat) = "statistic"
res = list(statistic=thestat, p.value=pvalue, alternative = Ha, method=hname, data.name = DNAME)
class(res) = "htest"
return(res)
} |
hyper.like=function(parm,X,covarray,weights=1,errorscale=1,k.vec=FALSE,output='sum'){
N=dim(X)[1]
dims=dim(X)[2]
coord.orth=parm[1:dims]
scat.orth=parm[dims+1]
eTce=projcovarray(covarray,coord.orth)
eTe=sum(coord.orth^2)
orthvariance=scat.orth^2+(eTce/eTe)*(errorscale^2)
if(length(k.vec)> 1){
scat.vec=scat.orth/(coord.orth/sqrt(eTe))
X=t(t(X)-k.vec*scat.vec^2)
}
originoffset=(X %*% coord.orth)/sqrt(eTe)-sqrt(eTe)
if(output=='sum' | output=='val'){
loglike=
-0.5*(
log(orthvariance)+
(originoffset^2)/orthvariance
)
}
if(output=='sig'){
sigma=sqrt((originoffset^2)/orthvariance)
}
if(output=='sum'){out=sum(weights*loglike)}
if(output=='val'){out=as.numeric(loglike)}
if(output=='sig'){out=as.numeric(sigma)}
return=out
} |
`summary.elrm` <-
function(object,...)
{
inferences = as.data.frame(cbind(round(as.numeric(object$coeffs),5),round(as.numeric(object$p.values),5),round(as.numeric(object$p.values.se),5),object$mc.size));
results = data.frame(row.names=names(object$coeffs), inferences);
names(results) = c("estimate","p-value","p-value_se","mc_size");
message("\nCall:\n");
message(object$call.history);
message('\n');
message("Results:\n");
message(paste0(capture.output(results), collapse = "\n"));
message('\n');
message(object$ci.level,"% Confidence Intervals for Parameters\n",sep="");
message(paste0(capture.output(object$coeffs.ci), collapse = "\n"));
} |
test_that("rstar returns reasonable values", {
skip_if_not_installed("caret")
x <- example_draws()
val <- rstar(x)
expect_true(val > 0.8 & val < 10)
})
test_that("rstar works with 1d example", {
skip_if_not_installed("caret")
x <- example_draws()
x <- as_draws_df(x)
x <- x[, c(variables(x)[1], ".chain", ".iteration", ".draw")]
val <- rstar(x)
expect_true(val > 0.5 & val < 10)
})
test_that("rstar works with draws_df example", {
skip_if_not_installed("caret")
x <- example_draws()
x <- as_draws_df(x)
val <- rstar(x)
expect_true(val > 0.5 & val < 10)
})
test_that("rstar with uncertainty returns vectors of correct length", {
skip_if_not_installed("caret")
x <- example_draws()
val <- rstar(x, method = "gbm", uncertainty = T, verbose = F)
expect_equal(length(val), 1000)
val <- rstar(x, method = "knn", uncertainty = T, nsimulations = 10)
expect_equal(length(val), 10)
})
test_that("incorrect nsimulations values throws error", {
skip_if_not_installed("caret")
x <- example_draws()
expect_error(rstar(x, method = "knn", nsimulations = 0),
"'nsimulations' must be greater than or equal to 1.")
})
test_that("rstar with uncertainty returns reasonable values", {
skip_if_not_installed("caret")
x <- example_draws()
val <- rstar(x, method = "gbm", uncertainty = T, verbose = F)
expect_true(max(val) > 0.3 & min(val) < 10)
})
test_that("rstar accepts different classifiers", {
skip_if_not_installed("caret")
x <- example_draws()
val <- rstar(x, method = "gbm", verbose=F)
expect_true(is.numeric(val))
val <- rstar(x, method = "knn")
expect_true(is.numeric(val))
})
test_that("rstar accepts different hyperparameters", {
skip_if_not_installed("caret")
x <- example_draws()
caret_grid <- data.frame(interaction.depth=c(3),
n.trees = 1,
shrinkage=c(0.1),
n.minobsinnode=10)
start <- Sys.time()
val <- rstar(x, method = "gbm", verbose=F,
hyperparameters = caret_grid)
end <- Sys.time()
dif1 <- end - start
caret_grid <- data.frame(interaction.depth=c(3),
n.trees = 1000,
shrinkage=c(0.1),
n.minobsinnode=10)
start <- Sys.time()
val <- rstar(x, method = "gbm", verbose=F,
hyperparameters = caret_grid)
end <- Sys.time()
dif2 <- end - start
expect_true(dif1 < dif2)
})
test_that("rstar accepts different training proportion", {
skip_if_not_installed("caret")
x <- example_draws()
val1 <- rstar(x, method = "knn")
val2 <- rstar(x, method = "knn", training_proportion = 0.1)
expect_true(val1 > val2)
})
test_that("rstar throws error when passed invalid training_proportion", {
skip_if_not_installed("caret")
x <- example_draws()
expect_error(rstar(x, method = "knn", training_proportion = 0),
"'training_proportion' must be greater than 0 and less than 1")
expect_error(rstar(x, method = "knn", training_proportion = 1),
"'training_proportion' must be greater than 0 and less than 1")
})
test_that("split-chain R* returns generally higher values", {
skip_if_not_installed("caret")
skip_on_cran()
x <- example_draws()
n <- 10
vals_split <- vector(length = n)
vals_unsplit <- vector(length = n)
for(i in 1:n) {
vals_split[i] <- rstar(x, method = "knn")
vals_unsplit[i] <- rstar(x, method = "knn", split = FALSE)
}
expect_true(median(vals_split) > median(vals_unsplit))
}) |
context("errcheck_times")
test_that("",{
expect_error(errcheck_times("nonnumeric","notrealfunc"),
"Error in errcheck_times called by notrealfunc: times must be numeric")
expect_error(errcheck_times(1,"notrealfunc"),
"Error in errcheck_times called by notrealfunc: times must be a vector")
expect_error(errcheck_times(c(1,2,3,NA),"notrealfunc"),
"Error in errcheck_times called by notrealfunc: times must not contain NAs, NaNs, Infs")
expect_error(errcheck_times(c(1,3,4,5),"notrealfunc"),
"Error in errcheck_times called by notrealfunc: times must be unit spaced; output timescales in units of cycles per sampling interval")
}) |
stdzDose <- function(x) {
cdose <- tolower(x)
udose <- unique(cdose)
useUnq <- length(udose) != length(cdose)
if(useUnq) {
mix <- match(cdose, udose)
cdose <- udose
}
cdose <- sub('[ ]*(cap|capsule|tablet|tab|pill)[s]?', '', cdose)
cdose <- sub('(and )?one half', 0.5, cdose)
cdose <- sub('one', 1, cdose)
cdose <- sub('two', 2, cdose)
cdose <- sub('three', 3, cdose)
cdose <- sub('four', 4, cdose)
cdose <- sub('five', 5, cdose)
cdose <- sub('six', '6', cdose)
cdose <- sub('seven', '7', cdose)
cdose <- sub('eight', '8', cdose)
cdose <- sub('nine', '9', cdose)
cdose <- sub('ten', '10', cdose)
cdose <- sub('half', 0.5, cdose, fixed = TRUE)
cdose <- sub('1-2', 1.5, cdose, fixed = TRUE)
cdose <- sub('1-1/2', 1.5, cdose, fixed = TRUE)
cdose <- sub('1/2', 0.5, cdose, fixed = TRUE)
ix <- grep("[0-9]+[ ]0.5", cdose)
if(length(ix)) {
cdose[ix] <- as.numeric(sub("([0-9]+)[ ]0.5", "\\1", cdose[ix])) + 0.5
}
ix <- grep("[0-9][ ]?(to|-)[ ]?[0-9]", cdose)
if(length(ix)) {
cda <- sub("([0-9.]+)[ ]?(to|-)[ ]?([0-9.]+)", "\\1", cdose[ix])
cdb <- sub("([0-9.]+)[ ]?(to|-)[ ]?([0-9.]+)", "\\3", cdose[ix])
cdose[ix] <- sprintf("%.2f", (as.numeric(cda) + as.numeric(cdb)) / 2)
}
cdose <- nowarnnum(cdose)
if(useUnq) {
cdose <- cdose[mix]
}
cdose
} |
distances <- function (X, Y) {
onerow <- function (xy) {
d <- function(xy2) {
sqrt(sum((xy2 - xy)^2))
}
apply(Y, 1, d)
}
t(apply(X, 1, onerow))
}
telemetry.LT <- function(CH, detectfn, realparval, PIA,
nmix = 1, knownclass = 1, uppersigma = 20) {
normalize <- function (parm) {
par3 <- ndetectpar(detectfn) == 3
sigma <- parm['sigma']
z <- if (par3) parm[parnames(detectfn)[3]] else 1
if (detectfn %in% c(14,16))
lambda0 <- 10000 / (sigma^2 * 2 * pi)
else {
rdfn <- function (r, pars) r * dfn(r, pars, 0)
lambda0 <- 10000/integrate (rdfn, 0, sigma * uppersigma, pars=c(1, sigma, z))$value
}
out <- c(lambda0=lambda0, sigma=sigma)
if (par3) out <- c(out,z=z)
out
}
Lx <- function(x) {
pind <- as.numeric(PIA[cbind(df$i, df$s, df$k, rep(x,n))])
param <- Nrealparval[pind,, drop = FALSE]
sapply(1:n, function(i) dfn(df$d[i], param[i,], 0))
}
px <- function(x) {
indexmatrix <- cbind(df$i, df$s, df$k, rep(x,n))
pind <- as.numeric(PIA[indexmatrix])
realparval[pind,'pmix', drop = FALSE]
}
detectfn <- valid.detectfn(detectfn, 14:19)
dfn <- getdfn (detectfn)
Nrealparval <- t(apply(realparval, 1, normalize))
df <- data.frame(xy(CH),
i = animalID(CH, names = FALSE, sortorder = 'snk'),
s = occasion(CH, sortorder = 'snk'),
k = trap(CH, names = FALSE, sortorder = 'snk')
)
df <- df[order(df$i, df$s, df$k),]
ni <- table(df$i)
df$cx <- rep(tapply(df$x, df$i, mean),ni)
df$cy <- rep(tapply(df$y, df$i, mean),ni)
df$d <- sqrt((df$x-df$cx)^2 + (df$y-df$cy)^2)
n <- nrow(df)
df$knownclass <- if (length(knownclass) == 1)
rep(knownclass, n) else rep(knownclass, ni)
L <- sapply(1:nmix, Lx)
if (nmix>1) {
pmix <- sapply(1:nmix, px)
pmix[df$knownclass > 1,] <- 0
pmix[cbind(1:n,df$knownclass-1)] <- 1
L <- apply(L * pmix, 1, sum)
}
if (any (knownclass != 1)) {
pmix <- realparval[,'pmix']
obsmix <- tabulate(knownclass)[2:(length(pmix)+1)]
Lknown <- sum(obsmix * log(pmix))
}
else Lknown <- 0
if (any(L<=0))
list(value = -1e10, resultcode = 9)
else
list(value = sum(log(L)) + Lknown, resultcode = 0)
}
telemetry.LC <- function(CH, detectfn, detectpar, mask, bvn = TRUE) {
if (! all(detector(traps(CH)) %in% c('proximity')))
stop ("requires proximity CH")
n <- dim(CH)[1]
J <- dim(CH)[2]
traps <- traps(CH)
K <- ndetector(traps)
detectfn <- valid.detectfn(detectfn, 14:19)
detectpar <- detectpar[c('lambda0','sigma','z')]
g <- getdfn (detectfn)
xylist <- telemetryxy(CH)
centrexy <- t(sapply(xylist, apply, 2, mean))
dfn <- function (xy) {
centres <- matrix(apply(xy, 2, mean), ncol = 2)
if (bvn) {
vcv <- var(xy)/nrow(xy)
detS <- det(vcv)^0.5
tempmask <- sweep (mask, MARGIN = 2, STATS = centres, FUN = '-')
close <- apply(tempmask,1, function(x) sum(x^2)) < (detS*30)
if (sum(close)<1) {
close <- nearesttrap(matrix(0, ncol = 2, nrow = 1), tempmask)
}
tempmask <- tempmask[close,, drop = FALSE]
invS <- solve(vcv)
mymvn <- function(XY) exp(-(XY %*% invS %*% XY)/2) / 2/pi/det(vcv)
dbvn <- apply(tempmask,1,mymvn)
dbvn <- dbvn / sum(dbvn)
list(dbvn=dbvn, mask = mask[close,, drop=FALSE])
}
else {
list(dbvn = 1.0, mask = centres)
}
}
pmask <- lapply(xylist, dfn)
loglik <- 0
for (id in names(xylist)) {
m <- nrow(pmask[[id]]$mask)
dtrap <- edist (traps, pmask[[id]]$mask)
if (m==1) dtrap <- t(dtrap)
gkm <- g(dtrap, unlist(detectpar), 0)
prw <- matrix(1, nrow = K, ncol = m)
for (j in 1:J) {
wij <- CH[id,j,]
prw <- prw *
(sweep(gkm, STATS=wij, MARGIN=1, FUN = '*') +
sweep(1-gkm, STATS=1-wij, MARGIN=1, FUN = '*'))
}
prwm <- apply(prw,2,prod)
prwm <- prwm * pmask[[id]]$dbvn
loglik <- loglik + log(sum(prwm))
}
loglik
}
telemetry.LCmask <- function(CH, mask, bvn = TRUE) {
dfn <- function (xy) {
f <- numeric(mm)
if (nrow(xy) == 0)
f[] <- 1/mm
else {
centres <- matrix(apply(xy, 2, mean), ncol = 2)
if (bvn) {
vcv <- var(xy)/nrow(xy)
detS <- det(vcv)^0.5
tempmask <- sweep (mask, MARGIN = 2, STATS = centres, FUN = '-')
close <- apply(tempmask,1, function(x) sum(x^2)) < (detS*30)
if (sum(close)<1) {
close <- nearesttrap(matrix(0, ncol = 2, nrow = 1), tempmask)
}
tempmask <- tempmask[close,, drop = FALSE]
invS <- solve(vcv)
mymvn <- function(XY) exp(-(XY %*% invS %*% XY)/2) / 2/pi/det(vcv)
dbvn <- apply(tempmask,1,mymvn)
dbvn <- dbvn / sum(dbvn)
f[close] <- dbvn
}
else {
cell <- nearesttrap(centres, mask)
f[cell] <- 1
}
}
f
}
mm <- nrow(mask)
xylist <- telemetryxy(CH)
nullxy <- rep(list(matrix(nrow=0, ncol=2)), nrow(CH))
names(nullxy) <- rownames(CH)
xylist <- c(xylist, nullxy[!(rownames(CH) %in% names(xylist))])
sapply(xylist, dfn)[,rownames(CH)]
} |
Pfr_P_ratio <- function(w.length, s.irrad=rep(1.0,length(w.length)), unit.in="energy",
check.spectrum=TRUE, use.cached.mult=FALSE){
if (check.spectrum && !check_spectrum(w.length, s.irrad)) {
return(NA)
}
if (unit.in == "energy") {
s.q.irrad <- as_quantum_mol(w.length,s.irrad)
}
else if (unit.in == "photon" || unit.in == "quantum") {
s.q.irrad <- s.irrad
} else {
warning("'unit.in' value not supported.")
return(NA)
}
Pr.wave.raw <- s.q.irrad * Phy_Sigma_R(w.length, use.cached.mult)
Pfr.wave.raw <- s.q.irrad * Phy_Sigma_FR(w.length, use.cached.mult)
if (length(w.length) == 1){
return(Pr.wave.raw / (Pr.wave.raw + Pfr.wave.raw))
}
Pr.selector <- !is.na(Pr.wave.raw)
Pfr.selector <- !is.na(Pfr.wave.raw)
selector <- Pr.selector & Pfr.selector
if (any(!selector)) {
warning("NAs removed. Possibly spectral data extends beyond 300...770 nm.")
}
Pr.wave <- Pr.wave.raw[selector]
Pfr.wave <- Pfr.wave.raw[selector]
w.length <- w.length[selector]
Pr.int <- integrate_xy(w.length, Pr.wave)
Pfr.int <- integrate_xy(w.length, Pfr.wave)
return(Pr.int / (Pr.int + Pfr.int))
} |
cor.prob <- function(df) {
dfr <- nrow(df) - 2
R <- cor(df, use = "pairwise.complete.obs")
above <- row(R) < col(R)
r2 <- R[above]^2
Fstat <- r2 * dfr / (1 - r2)
R[above] <- 1 - pf(Fstat, 1, dfr)
cor.mat <- t(R)
cor.mat[upper.tri(cor.mat)] <- NA
diag(cor.mat) <- NA
cor.mat %>%
as.data.frame() %>%
tibble::rownames_to_column(var = "h_var") %>%
gather(key = "v_var", value = "p.value", -.data$h_var)
}
pwcorr <- function(df, vars = NULL, method = "pearson", var_label_df = NULL) {
if (!method %in% c("pearson", "kendall", "spearman"))
stop("Invalid correlation method specified")
if (is.null(vars)) vars <- names(df)
if (!is.null(var_label_df)) {
if (!names(var_label_df) %in% c("variable", "label"))
stop("var_label_df must contains columns `variable` and `label`")
labels <- var_label_df$label[var_label_df$variable %in% vars]
} else {
labels <- vars
}
df <- select(df, one_of(vars))
cor.matrix <- cor(df, method = method, use = "pairwise.complete.obs")
cor.matrix[upper.tri(cor.matrix)] <- NA
display <- cor.matrix %>%
as.data.frame() %>%
tibble::rownames_to_column(var = "h_var") %>%
mutate_if(is.numeric, round, 3)
if(method == "pearson") {
display <- display %>%
gather(key = "v_var", value = "corr", -.data$h_var) %>%
left_join(cor.prob(df), by = c("h_var", "v_var")) %>%
mutate(p.disp = case_when(.data$p.value < 0.01 ~ "<0.01",
is.na(.data$p.value) ~ NA_character_,
TRUE ~ paste(round(.data$p.value, 2))),
display = case_when(!is.na(.data$corr) & !is.na(.data$p.disp) ~
paste0(round(.data$corr, 2), "\n(", .data$p.disp, ")"),
.data$corr == 1 & is.na(.data$p.disp) ~ "1",
is.na(.data$corr) & is.na(.data$p.disp) ~ " ",
TRUE ~ NA_character_)) %>%
select(.data$h_var, .data$v_var, .data$display) %>%
mutate(h_var = factor(.data$h_var, levels = vars, labels = labels),
v_var = factor(.data$v_var, levels = vars, labels = labels)) %>%
arrange(.data$h_var, .data$v_var) %>%
spread(key = "v_var", value = "display") %>%
rename(" " = .data$h_var)
}
return(display)
} |
findBlockAndFilter <-
function (x, base.position = 1:length(x), size = sum(blocks[,
"size"], na.rm = TRUE)/100, num = sum(blocks[, "num"], na.rm = TRUE)/100,
extendNA = TRUE, fillSmallNA = FALSE)
{
x <- as.numeric(x)
t <- length(x)
block.num <- 1
block_start <- base.position[1]
block_end <- base.position[t]
blockNumItem <- t
blockType <- x[1]
x.val <- x
x.val[is.na(x)] <- max(x, na.rm = TRUE) + 1
x.diff <- sort(unique(c(1, which(x.val[-1] != x.val[-t]) +
1)))
x.diff <- x.diff[x.diff <= t]
block.num <- length(x.diff)
if (block.num <= 1)
return(blocks <- cbind(start = block_start, end = block_end,
size = block_end - block_start + 1, num = blockNumItem,
type = blockType))
block_start <- base.position[x.diff]
block_end <- base.position[c(x.diff[-1] - 1, t)]
blockNumItem <- c(diff(x.diff), t - x.diff[block.num] + 1)
blockType <- x[x.diff]
blocks <- cbind(start = block_start, end = block_end, size = block_end -
block_start + 1, num = blockNumItem, type = blockType)
if (extendNA) {
block.ids <- which(is.na(blocks[, "type"]) & blocks[,
"size"] > -1)
block.ids.next <- block.ids[block.ids < nrow(blocks)]
block.ids.pre <- block.ids[block.ids > 1]
if (length(block.ids.next) > 0)
blocks[block.ids.next, "end"] <- blocks[block.ids.next +
1, "start"] - 1
if (length(block.ids.pre) > 0)
blocks[block.ids.pre, "start"] <- blocks[block.ids.pre -
1, "end"] + 1
blocks[, "size"] <- blocks[, "end"] - blocks[, "start"] +
1
}
blocks.margin <- block_start[-1] - block_end[-length(block_end)] -
1
blocks.extentSize <- as.numeric(blocks[, "size"]) + c(blocks.margin,
0) + c(0, blocks.margin)
filter.block <- (blocks.extentSize < size & as.numeric(blocks[,
"num"]) < num)
if (sum(filter.block, na.rm = T) > 0) {
blocks[filter.block, "type"] <- NA
}
blocks <- mergeBlocks(blocks)
if (nrow(blocks) == 1)
return(blocks)
if (fillSmallNA) {
blocks.margin <- blocks[-1, "start"] - blocks[-nrow(blocks),
"end"] - 1
blocks.extentSize <- as.numeric(blocks[, "size"]) + c(blocks.margin,
0) + c(0, blocks.margin)
filter.block <- blocks.extentSize < size
block.na.ids <- which(is.na(blocks[, "type"]) & filter.block)
block.na.num <- length(block.na.ids)
if (block.na.num > 0) {
blocks[block.na.ids, "type"] <- sapply(block.na.ids,
function(i) {
if (i == 1)
return(blocks[2, "type"])
if (i == nrow(blocks))
return(blocks[nrow(blocks) - 1, "type"])
if (blocks[i - 1, "type"] == blocks[i + 1,
"type"])
return(blocks[i - 1, "type"])
blocks[i, "type"]
})
}
}
blocks <- mergeBlocks(blocks)
if (nrow(blocks) == 1)
return(blocks)
block.ids <- which(is.na(blocks[, "type"]))
block.ids.next <- block.ids[block.ids < nrow(blocks)]
block.ids.pre <- block.ids[block.ids > 1]
if (length(block.ids.next) > 0)
blocks[block.ids.next, "end"] <- blocks[block.ids.next +
1, "start"] - 1
if (length(block.ids.pre) > 0)
blocks[block.ids.pre, "start"] <- blocks[block.ids.pre -
1, "end"] + 1
tmp.blocks <- blocks
for (i in 2:nrow(blocks)) if (blocks[i, 1] - blocks[i - 1,
2] > 1)
tmp.blocks <- rbind(tmp.blocks, c(blocks[i - 1, "end"] +
1, blocks[i, "start"] - 1, blocks[i, "start"] - blocks[i -
1, "end"] - 1, 0, NA))
blocks <- tmp.blocks[order(tmp.blocks[, "end"]), ]
mergeBlocks(blocks)
} |
panel.compareZcases <- function (x=x, y=y, z=NULL, ..., loa.settings = FALSE)
{
if (loa.settings)
return(list(group.args = c("pch"), zcase.args = c(""),
ignore=c("col"),
default.settings = list(key = FALSE, grid = TRUE,
reset.xylims = c("refit.xylims", "zlim.in.ylim"))))
extra.args <- list(...)
if ("groups" %in% names(extra.args)) {
if ("group.args" %in% names(extra.args) && length(extra.args$group.args) >
0) {
temp <- as.numeric(factor(extra.args$groups, levels = extra.args$group.ids))
for (i in extra.args$group.args) {
extra.args[[i]] <- extra.args[[i]][temp]
}
}
extra.args$groups <- NULL
}
if ("zcases" %in% names(extra.args)) {
if ("zcase.args" %in% names(extra.args) && length(extra.args$zcase.args) >
0) {
temp <- as.numeric(factor(extra.args$zcases, levels = extra.args$zcase.ids))
for (i in extra.args$zcase.args) {
extra.args[[i]] <- extra.args[[i]][temp]
}
}
}
if (isGood4LOA(extra.args$grid))
panel.loaGrid(panel.scales = extra.args$panel.scales,
grid = extra.args$grid)
extra.args$grid <- NULL
if(!is.null(z)){
if(!"zcases" %in% names(extra.args))
extra.args$zcases <- rep("default", length(z))
if(!"zcase.ids" %in% names(extra.args))
extra.args$zcase.ids <- "default"
}
temp <- length(extra.args$zcase.ids) + 1
if("zcase.ids" %in% names(extra.args))
extra.args$zcase.ids <- rev(extra.args$zcase.ids)
extra.args$col <-if("col" %in% names(extra.args))
rep(extra.args$col, length.out=3) else
rev(do.call(colHandler, listUpdate(extra.args, list(z=1:(temp+1), ref=1:(temp+1), zlim=NULL)))[-1])
if("line.col" %in% names(extra.args))
extra.args$col[1] <- extra.args$line.col
if(temp>1){
x <- x[extra.args$zcases == extra.args$zcase.ids[1]]
y <- y[extra.args$zcases == extra.args$zcase.ids[1]]
x1 <- c(x, rev(x))
for(i in (temp-1):1){
y1 <- z[extra.args$zcases == extra.args$zcase.ids[i]]
y1 <- if(i>1)
c(y1, rev(z[extra.args$zcases == extra.args$zcase.ids[i-1]]))
else c(y1, rev(y))
do.call(panel.polygon, listUpdate(extra.args, list(x=x1, y=y1, col=extra.args$col[i+1], alpha=0.1, border=FALSE)))
}
for(i in (temp-1):1){
y1 <- z[extra.args$zcases == extra.args$zcase.ids[i]]
do.call(panel.lines, listUpdate(extra.args, list(x=x, y=y1, col=extra.args$col[i+1])))
}
}
do.call(panel.lines, listUpdate(extra.args, list(x=x, y=y, col=extra.args$col[1])))
} |
LaplacesDemon.hpc <- function(Model, Data, Initial.Values, Covar=NULL,
Iterations=10000, Status=100, Thinning=10, Algorithm="MWG",
Specs=list(B=NULL), Debug=list(DB.chol=FALSE, DB.eigen=FALSE,
DB.MCSE=FALSE, DB.Model=TRUE), LogFile="", Chains=2, CPUs=2,
Type="PSOCK", Packages=NULL, Dyn.libs=NULL)
{
detectedCores <- max(detectCores(), as.integer(Sys.getenv("NSLOTS")),
na.rm=TRUE)
cat("\n\nCPUs Detected:", detectedCores, "\n", file=LogFile,
append=TRUE)
if(CPUs > detectedCores) {
cat("\nOnly", detectedCores, "will be used.\n", file=LogFile,
append=TRUE)
CPUs <- detectedCores}
if(is.vector(Initial.Values)) {
Initial.Values <- matrix(Initial.Values, Chains,
length(Initial.Values), byrow=TRUE)
cat("\nWarning: initial values were a vector, and are now a",
file=LogFile, append=TRUE)
cat("\n", Chains, "x", length(Initial.Values), "matrix.\n",
file=LogFile, append=TRUE)}
if(Algorithm == "INCA" && Chains != CPUs) {
Chains <- CPUs
cat("\nINCA:", Chains, "chains will be used\n")}
cat("\nLaplace's Demon is preparing environments for CPUs...",
file=LogFile, append=TRUE)
cat("\n
file=LogFile, append=TRUE)
cl <- makeCluster(CPUs, Type)
cat("\n
file=LogFile, append=TRUE)
on.exit({stopCluster(cl); cat("\n\nLaplace's Demon has finished.\n", file=LogFile, append=TRUE)})
Packages <- c(Packages, "LaplacesDemon")
varlist <- unique(c(ls(), ls(envir=.GlobalEnv),
ls(envir=parent.env(environment()))))
clusterExport(cl, varlist=varlist, envir=environment())
clusterSetRNGStream(cl)
wd <- getwd()
clusterExport(cl, varlist=c("Packages", "Dyn.libs", "wd"),
envir=environment())
demon.wrapper <- function(x, ...)
{
if(!is.null(Packages)) {
sapply(Packages,
function(x) library(x, character.only=TRUE,
quietly=TRUE))}
if(!is.null(Dyn.libs)) {
sapply(Dyn.libs,
function(x) dyn.load(paste(wd, x, sep = "/")))
on.exit(sapply(Dyn.libs,
function(x) dyn.unload(paste(wd, x, sep = "/"))))}
LaplacesDemon(Model, Data, Initial.Values[x,],
Covar, Iterations, Status, Thinning,
Algorithm, Specs, Debug,
LogFile=paste(LogFile, ".", x, sep=""))
}
cat("\nStatus messages are not displayed for parallel processing.",
file=LogFile, append=TRUE)
cat("\nLaplace's Demon is beginning parallelization...\n",
file=LogFile, append=TRUE)
if(Algorithm == "INCA") {
system(paste("Rscript -e 'library(parallel);library(LaplacesDemon);server_Listening(n=",CPUs,")'", sep=""), wait=FALSE)
cat("Start hpc server...\n", file=LogFile, append=TRUE)
clusterExport(cl, varlist="Chains", envir=environment())
clusterEvalQ(cl, con <- NULL)
doCon <- function(i) {
Sys.sleep(i/2)
con <<- socketConnection("localhost", 19009, blocking=TRUE,
open="r+")}
clusterExport(cl, varlist="doCon", envir=environment())
expr <- NULL
for (i in 1:CPUs) {
tmp <- parse(text=paste("doCon(", i,")", sep=""))
expr <- c(expr, tmp)}
clusterApply(cl, expr, eval, env=.GlobalEnv)
cat("\nOpen connections to hpc server...", file=LogFile,
append=TRUE)}
LaplacesDemon.out <- clusterApply(cl, 1:Chains, demon.wrapper,
Model, Data, Initial.Values, Covar, Iterations, Status,
Thinning, Algorithm, Specs, Debug)
class(LaplacesDemon.out) <- "demonoid.hpc"
if(Algorithm == "INCA") {
clusterEvalQ(cl, {close(con)})
cat("\nClose connections to hpc server...", file=LogFile,
append=TRUE)
}
return(LaplacesDemon.out)
} |
targets::tar_test("tar_jags_df() with dic", {
skip_if_not_installed("rjags")
skip_if_not_installed("R2jags")
tmp <- tempfile()
expect_false(file.exists(tmp))
tar_jags_example_file(path = tmp)
expect_true(file.exists(tmp))
data <- tar_jags_example_data(n = 10)
data$.join_data <- NULL
dir <- tempfile()
dir.create(dir)
msg <- capture.output(
out <- R2jags::jags(
data = data,
parameters.to.save = "beta",
model.file = tmp,
n.chains = 3,
n.iter = 200L,
n.burn = 100L,
progress.bar = "none",
working.directory = dir,
DIC = TRUE
)
)
out
draws <- tar_jags_df(out, data = data, "draws")
cols <- c("beta", "deviance", ".chain", ".iteration", ".draw")
expect_true(all(cols %in% colnames(draws)))
expect_equal(nrow(draws), 300L)
summary <- tar_jags_df(out, data = data, "summary")
expect_true(
all(c("variable", "mean", "sd", "q5", ".join_data") %in% colnames(summary))
)
expect_true("beta" %in% summary$variable)
expect_true("deviance" %in% summary$variable)
expect_true(nrow(summary) < 10L)
expect_equal(summary$.join_data, rep(NA_real_, 2))
data$.join_data$beta <- 1
summary <- tar_jags_df(
out,
data = data,
output = "summary",
variables = c("beta", "deviance")
)
expect_equal(summary$.join_data[summary$variable == "beta"], 1)
expect_equal(summary$.join_data[summary$variable == "deviance"], NA_real_)
summaries <- as.list(
quote(
list(
custom = ~posterior::quantile2(.x, probs = c(0.025, 0.5, 0.975)),
custom2 = function(x, my_arg) my_arg
)
)
)
summaries <- summaries[-1]
summary <- tar_jags_df(
out,
data = data,
output = "summary",
summaries = summaries,
summary_args = list(my_arg = 3L)
)
expect_true(
all(c("variable", "q97.5", "q2.5", "custom2") %in% colnames(summary))
)
expect_true("beta" %in% summary$variable)
expect_true("deviance" %in% summary$variable)
expect_true(all(summary$custom2 == 3L))
expect_true(nrow(summary) < 10L)
dic <- tar_jags_df(out, data = data, "dic")
expect_equal(nrow(dic), 1)
expect_equal(sort(colnames(dic)), sort(c("dic", "pD")))
expect_error(tar_jags_df(out, "nope"))
}) |
convert.input <-
function(input.id,
outfolder,
formatname,
mimetype,
site.id,
start_date,
end_date,
pkg,
fcn,
con = con,
host,
browndog,
write = TRUE,
format.vars,
overwrite = FALSE,
exact.dates = FALSE,
allow.conflicting.dates = TRUE,
insert.new.file = FALSE,
pattern = NULL,
forecast = FALSE,
ensemble = FALSE,
ensemble_name = NULL,
dbparms=NULL,
...
) {
input.args <- list(...)
PEcAn.logger::logger.debug(paste("Convert.Inputs", fcn, input.id, host$name, outfolder, formatname,
mimetype, site.id, start_date, end_date))
Rbinary <- ifelse(!exists("settings") || is.null(settings$host$Rbinary),"R",settings$host$Rbinary)
n <- nchar(outfolder)
if (substr(outfolder, n, n) != "/") {
outfolder <- paste0(outfolder, "/")
}
outname <- utils::tail(unlist(strsplit(outfolder, "/")), n = 1)
PEcAn.logger::logger.info(paste("start CHECK Convert.Inputs", fcn, input.id, host$name, outfolder,
formatname, mimetype, site.id, start_date, end_date, forecast, ensemble))
if (forecast) {
if (!is.integer(ensemble)) {ensemble = as.integer(1) }
start_date <- lubridate::force_tz(lubridate::as_datetime(start_date), "UTC")
end_date <- lubridate::force_tz(lubridate::as_datetime(end_date), "UTC")
existing.dbfile <- list()
existing.input <- list()
existing_records <- list(input.id = NULL, dbfile.id = NULL)
files.to.delete <- list()
for (i in seq_len(ensemble)) {
filename_pattern = paste0(pattern, "\\.([^.]*\\.)?")
if (!is.null(ensemble_name)) {
filename_pattern = paste0(filename_pattern, ensemble_name, "($|\\.)")
} else if (ensemble > 1) {
filename_pattern = paste0(filename_pattern, i, "($|\\.)")
}
existing.dbfile[[i]] <- PEcAn.DB::dbfile.input.check(siteid = site.id,
mimetype = mimetype,
formatname = formatname,
parentid = input.id,
startdate = start_date,
enddate = end_date,
con = con,
hostname = host$name,
exact.dates = TRUE,
pattern = filename_pattern)
if(nrow(existing.dbfile[[i]]) > 0) {
existing.input[[i]] <- PEcAn.DB::db.query(paste0("SELECT * FROM inputs WHERE id=", existing.dbfile[[i]]$container_id),con)
existing.input[[i]]$start_date <- lubridate::force_tz(lubridate::as_datetime(existing.input[[i]]$start_date), "UTC")
existing.input[[i]]$end_date <- lubridate::force_tz(lubridate::as_datetime(existing.input[[i]]$end_date), "UTC")
existing.machine <- PEcAn.DB::db.query(paste0("SELECT * from machines where id = '",
existing.dbfile[[i]]$machine_id, "'"), con)
machine.host <- ifelse(host$name == "localhost", PEcAn.remote::fqdn(), host$name)
machine <- PEcAn.DB::db.query(paste0("SELECT * from machines where hostname = '",
machine.host, "'"), con)
if (existing.machine$id == machine$id) {
if (overwrite) {
files.to.delete <- c(files.to.delete, as.list(PEcAn.remote::remote.execute.R( paste0("list.files('",
existing.dbfile[[i]]$file_path,
"', full.names=TRUE)"),
host, user = NA, verbose = TRUE,R = Rbinary, scratchdir = outfolder)))
} else {
existing_records$input.id = c(existing_records$input.id, existing.input[[i]]$id)
existing_records$dbfile.id = c(existing_records$dbfile.id, existing.dbfile[[i]]$id)
}
} else {
insert.new.file <- TRUE
}
} else {
existing.input[[i]] <- data.frame()
}
}
if (length(files.to.delete) > 0) {
file.deletion.commands <- .get.file.deletion.commands(unlist(files.to.delete))
PEcAn.remote::remote.execute.R( file.deletion.commands$move.to.tmp,
host, user = NA,
verbose = TRUE,R = Rbinary, scratchdir = outfolder)
successful <- FALSE
on.exit(
if (exists("successful") && successful) {
PEcAn.logger::logger.info(
"Conversion successful, with overwrite=TRUE. Deleting old files.")
PEcAn.remote::remote.execute.R(
file.deletion.commands$delete.tmp,
host, user = NA,
verbose = TRUE, R = Rbinary, scratchdir = outfolder)
} else {
PEcAn.logger::logger.info("Conversion failed. Replacing old files.")
PEcAn.remote::remote.execute.R(
file.deletion.commands$replace.from.tmp,
host, user = NA,
verbose = TRUE, R = Rbinary, scratchdir = outfolder)
},
add = TRUE
)
}
if (length(existing_records$input.id) == ensemble) {
if (ensemble == 1) {
PEcAn.logger::logger.info("File with forecast data in the given range already exists on this machine.")
} else {
PEcAn.logger::logger.info("Files for all ensemble members for this forecast already exist on this machine.")
}
return(existing_records)
}
} else if (exact.dates) {
if(!is.null(input.args$dbfile.id)){
existing.dbfile <- PEcAn.DB::dbfile.input.check(siteid = site.id,
mimetype = mimetype,
formatname = formatname,
parentid = input.id,
startdate = start_date,
enddate = end_date,
con = con,
hostname = host$name,
exact.dates = TRUE,
pattern = pattern
)
if ("id" %in% colnames(existing.dbfile)) {
existing.dbfile <- existing.dbfile %>%
dplyr::filter(.data$id==input.args$dbfile.id)
}
}else{
existing.dbfile <- PEcAn.DB::dbfile.input.check(siteid = site.id,
mimetype = mimetype,
formatname = formatname,
parentid = input.id,
startdate = start_date,
enddate = end_date,
con = con,
hostname = host$name,
exact.dates = TRUE,
pattern = pattern
)
}
PEcAn.logger::logger.debug("File id =", existing.dbfile$id,
" File name =", existing.dbfile$file_name,
" File path =", existing.dbfile$file_path,
" Input id =", existing.dbfile$container_id,
digits = 10)
PEcAn.logger::logger.info("end CHECK for existing input record")
if (nrow(existing.dbfile) > 0) {
existing.input <- PEcAn.DB::db.query(paste0("SELECT * FROM inputs WHERE id=", existing.dbfile[["container_id"]]),con)
start_date <- lubridate::force_tz(lubridate::as_date(start_date), "UTC")
end_date <- lubridate::force_tz(lubridate::as_date(end_date), "UTC")
existing.input$start_date <- lubridate::force_tz(lubridate::as_date(existing.input$start_date), "UTC")
existing.input$end_date <- lubridate::force_tz(lubridate::as_date(existing.input$end_date), "UTC")
if(overwrite){
files.to.delete <- PEcAn.remote::remote.execute.R( paste0("list.files('",
existing.dbfile[["file_path"]],
"', full.names=TRUE)"),
host, user = NA, verbose = TRUE,R = Rbinary, scratchdir = outfolder)
file.deletion.commands <- .get.file.deletion.commands(files.to.delete)
PEcAn.remote::remote.execute.R( file.deletion.commands$move.to.tmp,
host, user = NA,
verbose = TRUE,R = Rbinary, scratchdir = outfolder)
successful <- FALSE
on.exit(
if (exists("successful") && successful) {
PEcAn.logger::logger.info("Conversion successful, with overwrite=TRUE. Deleting old files.")
PEcAn.remote::remote.execute.R(
file.deletion.commands$delete.tmp,
host, user = NA,
verbose = TRUE, R = Rbinary, scratchdir = outfolder)
} else {
PEcAn.logger::logger.info("Conversion failed. Replacing old files.")
PEcAn.remote::remote.execute.R(
file.deletion.commands$replace.from.tmp,
host, user = NA,
verbose = TRUE, R = Rbinary, scratchdir = outfolder)
},
add = TRUE
)
}
existing.machine <- PEcAn.DB::db.query(paste0("SELECT * from machines where id = '",
existing.dbfile$machine_id, "'"), con)
machine.host <- ifelse(host$name == "localhost", PEcAn.remote::fqdn(), host$name)
machine <- PEcAn.DB::db.query(paste0("SELECT * from machines where hostname = '",
machine.host, "'"), con)
if (existing.machine$id != machine$id) {
PEcAn.logger::logger.info("Valid Input record found that spans desired dates, but valid files do not exist on this machine.")
PEcAn.logger::logger.info("Downloading all years of Valid input to ensure consistency")
insert.new.file <- TRUE
start_date <- existing.input$start_date
end_date <- existing.input$end_date
} else {
PEcAn.logger::logger.info("Skipping this input conversion because files are already available.")
return(list(input.id = existing.input$id, dbfile.id = existing.dbfile$id))
}
} else {
}
} else {
if (!is.null(ensemble) && ensemble) {
return.all <-TRUE
}else{
return.all <- FALSE
}
existing.dbfile <- PEcAn.DB::dbfile.input.check(siteid = site.id,
mimetype = mimetype,
formatname = formatname,
parentid = input.id,
startdate = start_date,
enddate = end_date,
con = con,
hostname = host$name,
pattern = pattern,
return.all = return.all
)
PEcAn.logger::logger.debug("File id =", existing.dbfile$id,
" File name =", existing.dbfile$file_name,
" File path =", existing.dbfile$file_path,
" Input id =", existing.dbfile$container_id,
digits = 10)
PEcAn.logger::logger.info("end CHECK for existing input record.")
if (nrow(existing.dbfile) > 0) {
if (!is.null(ensemble) && ensemble) {
existing.input <- existing.dbfile[["container_id"]] %>%
unique() %>%
purrr::map_dfr(function(one.cont.id) {
PEcAn.DB::db.query(paste0("SELECT * FROM inputs WHERE id=", one.cont.id), con)
})
} else{
existing.input <-
PEcAn.DB::db.query(paste0("SELECT * FROM inputs WHERE id=", existing.dbfile[["container_id"]]), con)
}
start_date <- lubridate::force_tz(lubridate::as_date(start_date), "UTC")
end_date <- lubridate::force_tz(lubridate::as_date(end_date), "UTC")
existing.input$start_date <- lubridate::force_tz(lubridate::as_date(existing.input$start_date), "UTC")
existing.input$end_date <- lubridate::force_tz(lubridate::as_date(existing.input$end_date), "UTC")
if (overwrite) {
files.to.delete <- PEcAn.remote::remote.execute.R( paste0("list.files('",
existing.dbfile[["file_path"]],
"', full.names=TRUE)"),
host, user = NA, verbose = TRUE,R = Rbinary, scratchdir = outfolder)
file.deletion.commands <- .get.file.deletion.commands(files.to.delete)
PEcAn.remote::remote.execute.R( file.deletion.commands$move.to.tmp,
host, user = NA,
verbose = TRUE,R = Rbinary, scratchdir = outfolder)
successful <- FALSE
on.exit(
if (exists("successful") && successful) {
PEcAn.logger::logger.info(
"Conversion successful, with overwrite=TRUE. Deleting old files.")
PEcAn.remote::remote.execute.R(
file.deletion.commands$delete.tmp,
host, user = NA,
verbose = TRUE, R = Rbinary, scratchdir = outfolder)
} else {
PEcAn.logger::logger.info(
"Conversion failed. Replacing old files.")
PEcAn.remote::remote.execute.R(
file.deletion.commands$replace.from.tmp,
host, user = NA,
verbose = TRUE, R = Rbinary, scratchdir = outfolder)
},
add = TRUE
)
} else if ((start_date >= existing.input$start_date) &&
(end_date <= existing.input$end_date)) {
existing.machine <- PEcAn.DB::db.query(paste0("SELECT * from machines where id = '",
existing.dbfile$machine_id, "'"), con)
machine.host <- ifelse(host$name == "localhost", PEcAn.remote::fqdn(), host$name)
machine <- PEcAn.DB::db.query(paste0("SELECT * from machines where hostname = '",
machine.host, "'"), con)
if(existing.machine$id != machine$id){
PEcAn.logger::logger.info("Valid Input record found that spans desired dates, but valid files do not exist on this machine.")
PEcAn.logger::logger.info("Downloading all years of Valid input to ensure consistency")
insert.new.file <- TRUE
start_date <- existing.input$start_date
end_date <- existing.input$end_date
} else {
PEcAn.logger::logger.info("Skipping this input conversion because files are already available.")
return(list(input.id = existing.input$id, dbfile.id = existing.dbfile$id))
}
} else {
start_date <- min(start_date, existing.input$start_date)
end_date <- max(end_date, existing.input$end_date)
PEcAn.logger::logger.info(
paste0(
"Changed start/end dates to '",
start_date,
"'/'",
end_date,
"' ",
" so that existing input can be updated while maintaining continuous time span."
)
)
}
} else {
}
}
machine.host <- ifelse(host$name == "localhost", PEcAn.remote::fqdn(), host$name)
machine <- PEcAn.DB::db.query(paste0("SELECT * from machines where hostname = '",
machine.host, "'"), con)
if (nrow(machine) == 0) {
PEcAn.logger::logger.error("machine not found", host$name)
return(NULL)
}
if (missing(input.id) || is.na(input.id) || is.null(input.id)) {
input <- dbfile <- NULL
} else {
input <- PEcAn.DB::db.query(paste("SELECT * from inputs where id =", input.id), con)
if (nrow(input) == 0) {
PEcAn.logger::logger.error("input not found", input.id)
return(NULL)
}
if(!is.null(input.args$dbfile.id)){
dbfile <-
PEcAn.DB::db.query(
paste(
"SELECT * from dbfiles where id=",input.args$dbfile.id," and container_id =",
input.id,
" and container_type = 'Input' and machine_id =",
machine$id
),
con
)
}else{
dbfile <-
PEcAn.DB::db.query(
paste(
"SELECT * from dbfiles where container_id =",
input.id,
" and container_type = 'Input' and machine_id =",
machine$id
),
con
)
}
if (nrow(dbfile) == 0) {
PEcAn.logger::logger.error("dbfile not found", input.id)
return(NULL)
}
if (nrow(dbfile) > 1) {
PEcAn.logger::logger.warn("multiple dbfile records, using last", dbfile)
dbfile <- dbfile[nrow(dbfile), ]
}
}
conversion <- "local.remote"
if (!is.null(browndog) && host$name == "localhost") {
if (mimetype == "application/x-netcdf") {
outputtype <- "pecan.zip"
} else {
if (formatname == "ed.met_driver_header_files_format" || formatname ==
"ed.met_driver_header files format") {
outputtype <- "ed.zip"
} else if (formatname == "Sipnet.climna") {
outputtype <- "clim"
} else if (formatname == "DALEC meteorology") {
outputtype <- "dalec.dat"
} else if (formatname == "LINKAGES met") {
outputtype <- "linkages.dat"
} else {
PEcAn.logger::logger.severe(paste("Unknown formatname", formatname))
}
}
if (!is.null(browndog$username) && !is.null(browndog$password)) {
userpwd <- paste(browndog$username, browndog$password, sep = ":")
curloptions <- list(userpwd = userpwd, httpauth = 1L)
}
curloptions <- c(curloptions, followlocation = TRUE)
out.html <- RCurl::getURL(paste0("http://dap-dev.ncsa.illinois.edu:8184/inputs/",
browndog$inputtype), .opts = curloptions)
if (outputtype %in% unlist(strsplit(out.html, "\n"))) {
PEcAn.logger::logger.info(paste("Conversion from", browndog$inputtype, "to", outputtype,
"through Brown Dog"))
conversion <- "browndog"
}
}
if (conversion == "browndog") {
url <- file.path(browndog$url, outputtype)
files <- list.files(dbfile$file_path, pattern = dbfile$file_name)
files <- grep(dbfile$file_name, files, value = TRUE)
zipfile <- paste0(dbfile$file_name, ".", browndog$inputtype)
system(paste("cd", dbfile$file_path, "; zip", zipfile, paste(files, collapse = " ")))
zipfile <- file.path(dbfile$file_path, zipfile)
if (!file.exists(outfolder)) {
dir.create(outfolder, showWarnings = FALSE, recursive = TRUE)
}
html <- RCurl::postForm(url, fileData = RCurl::fileUpload(zipfile), .opts = curloptions)
link <- XML::getHTMLLinks(html)
file.remove(zipfile)
outfile <- file.path(outfolder, unlist(strsplit(basename(link), "_"))[2])
download.url(url = link, file = outfile, timeout = 600, .opts = curloptions, retry404 = TRUE)
if (file.exists(outfile)) {
if (utils::tail(unlist(strsplit(outfile, "[.]")), 1) == "zip") {
fname <- utils::unzip(outfile, list = TRUE)$Name
utils::unzip(outfile, files = fname, exdir = outfolder, overwrite = TRUE)
file.remove(outfile)
} else {
fname <- list.files(outfolder)
}
}
result <- data.frame(
file = file.path(outfolder, fname),
host = PEcAn.remote::fqdn(),
mimetype = mimetype,
formatname = formatname,
startdate = paste(input$start_date, "00:00:00"),
enddate = paste(input$end_date, "23:59:59"),
stringsAsFactors = FALSE)
} else if (conversion == "local.remote") {
fcn.args <- input.args
fcn.args$overwrite <- overwrite
fcn.args$in.path <- dbfile$file_path
fcn.args$in.prefix <- dbfile$file_name
fcn.args$outfolder <- outfolder
fcn.args$start_date <- start_date
fcn.args$end_date <- end_date
fcn.args$dbparms <- dbparms
if (forecast && !is.null(input.id) && !is.na(input.id)) {
fcn.args$year.fragment = TRUE
}
arg.string <- listToArgString(fcn.args)
if (!missing(format.vars)) {
arg.string <- paste0(arg.string, ", format=", paste0(list(format.vars)))
}
cmdFcn <- paste0(pkg, "::", fcn, "(", arg.string, ")")
PEcAn.logger::logger.debug(paste0("convert.input executing the following function:\n", cmdFcn))
result <-
PEcAn.remote::remote.execute.R(
script = cmdFcn,
host,
user = NA,
verbose = TRUE,
R = Rbinary,
scratchdir = outfolder
)
if (is.data.frame(result)) {
result <- list(result)
}
}
PEcAn.logger::logger.info("RESULTS: Convert.Input")
PEcAn.logger::logger.info(result)
if (length(result[[1]]) <= 1){
PEcAn.logger::logger.debug(paste0("Processing data failed, please check validity of args:", arg.string))
PEcAn.logger::logger.severe(paste0("Unable to process data using this function:",fcn))
}
result_sizes <- purrr::map_dfr(
result,
~ dplyr::mutate(
.,
file_size = purrr::map_dbl(file, file.size),
missing = is.na(file_size),
empty = file_size == 0
)
)
if (any(result_sizes$missing) || any(result_sizes$empty)){
log_format_df = function(df){
df %>%
format() %>%
rbind(colnames(.), .) %>%
purrr::reduce( paste, sep=" ") %>%
paste(collapse="\n")
}
PEcAn.logger::logger.severe(
"Requested Processing produced empty files or Nonexistant files :\n",
log_format_df(result_sizes[,c(1,8,9,10)]),
"\n Table of results printed above.",
wrap = FALSE)
}
outlist <- unlist(strsplit(outname, "_"))
if (exists("existing.input") && is.data.frame(existing.input)) {
existing.input <- list(existing.input)
}
if (exists("existing.dbfile") && is.data.frame(existing.dbfile)) {
existing.dbfile <- list(existing.dbfile)
}
if (write) {
newinput = list(input.id = NULL, dbfile.id = NULL)
for(i in 1:length(result)) {
id_not_added <- TRUE
if (exists("existing.input") && nrow(existing.input[[i]]) > 0 &&
(existing.input[[i]]$start_date != start_date || existing.input[[i]]$end_date != end_date)) {
PEcAn.DB::db.query(paste0("UPDATE inputs SET start_date='", start_date, "', end_date='",
end_date, "' WHERE id=", existing.input[[i]]$id),
con)
id_not_added = FALSE
newinput$input.id = c(newinput$input.id, existing.input[[i]]$id)
newinput$dbfile.id = c(newinput$dbfile.id, existing.dbfile[[i]]$id)
}
if (overwrite) {
if (exists("existing.input") && nrow(existing.input[[i]]) > 0) {
PEcAn.DB::db.query(paste0("UPDATE inputs SET name='", basename(dirname(result[[i]]$file[1])),
"' WHERE id=", existing.input[[i]]$id), con)
}
if (exists("existing.dbfile") && nrow(existing.dbfile[[i]]) > 0) {
PEcAn.DB::db.query(paste0("UPDATE dbfiles SET file_path='", dirname(result[[i]]$file[1]),
"', ", "file_name='", result[[i]]$dbfile.name[1],
"' WHERE id=", existing.dbfile[[i]]$id), con)
}
}
if (is.numeric(ensemble)){
parent.id <- ifelse(is.null(input[i]), NA, input[1]$id)
}else{
parent.id <- ifelse(is.null(input[i]), NA, input[i]$id)
}
if ("newsite" %in% names(input.args) && !is.null(input.args[["newsite"]])) {
site.id <- input.args$newsite
}
if (insert.new.file && id_not_added) {
dbfile.id <- PEcAn.DB::dbfile.insert(in.path = dirname(result[[i]]$file[1]),
in.prefix = result[[i]]$dbfile.name[1],
'Input', existing.input[[i]]$id,
con, reuse=TRUE, hostname = machine$hostname)
newinput$input.id <- c(newinput$input.id, existing.input[[i]]$id)
newinput$dbfile.id <- c(newinput$dbfile.id, dbfile.id)
} else if (id_not_added) {
if (!is.null(ensemble) | is.null(ensemble_name)){
ens.flag <- TRUE
}else{
ens.flag <- FALSE
}
new_entry <- PEcAn.DB::dbfile.input.insert(in.path = dirname(result[[i]]$file[1]),
in.prefix = result[[i]]$dbfile.name[1],
siteid = site.id,
startdate = start_date,
enddate = end_date,
mimetype,
formatname,
parentid = parent.id,
con = con,
hostname = machine$hostname,
allow.conflicting.dates = allow.conflicting.dates,
ens=ens.flag
)
newinput$input.id <- c(newinput$input.id, new_entry$input.id)
newinput$dbfile.id <- c(newinput$dbfile.id, new_entry$dbfile.id)
}
}
successful <- TRUE
return(newinput)
} else {
PEcAn.logger::logger.warn("Input was not added to the database")
successful <- TRUE
return(NULL)
}
}
.get.file.deletion.commands <- function(files.to.delete) {
if(length(files.to.delete) > 0) {
tmp.dirs <- file.path(unique(dirname(files.to.delete)), 'tmp')
tmp.paths <- file.path(dirname(files.to.delete), 'tmp', basename(files.to.delete))
tmp.dirs.string <- paste0("c(", paste(paste0("'", tmp.dirs, "'"), collapse=', '), ")")
tmp.path.string <- paste0("c(", paste(paste0("'", tmp.paths, "'"), collapse=', '), ")")
original.path.string <- paste0("c(", paste(paste0("'", files.to.delete, "'"), collapse=', '), ")")
move.to.tmp <- paste0(
"dir.create(", tmp.dirs.string, ", recursive=TRUE, showWarnings=FALSE); ",
"file.rename(from=", original.path.string, ", to=", tmp.path.string, ")"
)
replace.from.tmp <- paste0(
"file.rename(from=", tmp.path.string, ", to=", original.path.string, ");",
"unlink(", tmp.dirs.string, ", recursive=TRUE)"
)
delete.tmp <- paste0(
"unlink(", tmp.dirs.string, ", recursive=TRUE)"
)
return(list(move.to.tmp=move.to.tmp, replace.from.tmp=replace.from.tmp, delete.tmp=delete.tmp))
} else {
return(NULL)
}
} |
specdens <- function(object, main, plot = TRUE, ...){
if (!inherits(object, c("bvpot", "mcpot")))
stop("Use only with 'bvpot'/'mcpot' objects")
model <- object$model
alpha <- object$param["alpha"]
if (model == "log"){
h <- function(q){
res <- rep(NaN, length(q))
q01 <- q[q > 0 & q <= 1]
res[q > 0 & q <= 1] <- (1/alpha - 1) * (q01 * (1-q01))^(-(1+1/alpha)) *
(q01^(-1/alpha) + (1-q01)^(-1/alpha))^(alpha-2)
res
}
}
if (model == "alog"){
asCoef1 <- object$param["asCoef1"]
asCoef2 <- object$param["asCoef2"]
h <- function(q){
res <- rep(NaN, length(q))
q01 <- q[q > 0 & q <= 1]
res[q > 0 & q <= 1] <- (1/alpha - 1) * (asCoef1 * asCoef2)^(1/alpha) *
(q01 * (1-q01))^(-(1+1/alpha)) *
((asCoef1/q01)^(1/alpha) +
(asCoef2/(1-q01))^(1/alpha))^(alpha-2)
res
}
}
if (model == "nlog"){
h <- function(q){
res <- rep(NaN, length(q))
q01 <- q[q > 0 & q <= 1]
res[q > 0 & q <= 1] <- (1 + alpha) * (q01 * (1-q01))^(alpha-1) *
(q01^alpha + (1-q01)^alpha)^(-1/alpha-2)
res
}
}
if (model == "anlog"){
asCoef1 <- object$param["asCoef1"]
asCoef2 <- object$param["asCoef2"]
h <- function(q){
res <- rep(NaN, length(q))
q01 <- q[q > 0 & q <= 1]
res[q > 0 & q <= 1] <- (1 + alpha) * (asCoef1 * asCoef2)^(-alpha) *
(q01 * (1-q01))^(alpha-1) *
((q01/asCoef1)^alpha +
((1-q01)/asCoef2)^alpha)^(-1/alpha-2)
res
}
}
if (model == "mix"){
h <- function(q){
res <- rep(NaN, length(q))
res[q > 0 & q <= 1] <- 2 * alpha
res
}
}
if (model == "amix"){
asCoef <- object$param["asCoef"]
h <- function(q){
res <- rep(NaN, length(q))
q01 <- q[q > 0 & q <= 1]
res[q > 0 & q <= 1] <- 2 * alpha + 6 * asCoef * (1-q01)
res
}
}
if (plot){
eps <- .Machine$double.eps^0.5
if (model == "log")
eps <- 0.01
if (missing(main))
main <- "Spectral Density"
plot(h, from = eps, to = 1 - eps, main = main, ...)
}
attributes(h) <- list(model = model)
invisible(h)
} |
pairwiseMedianTest =
function(formula=NULL, data=NULL,
x=NULL, g=NULL,
digits = 4, method = "fdr", ...)
{
if(!is.null(formula)){
x = eval(parse(text=paste0("data","$",all.vars(formula[[2]])[1])))
g = eval(parse(text=paste0("data","$",all.vars(formula[[3]])[1])))
}
if(!is.factor(g)){g=factor(g)}
n = length(levels(g))
N = n*(n-1)/2
d = data.frame(x = x, g = g)
Z = data.frame(Comparison=rep("A", N),
p.value=rep(NA, N),
p.adjust=rep(NA, N),
stringsAsFactors=FALSE)
k=0
for(i in 1:(n-1)){
for(j in (i+1):n){
k=k+1
Namea = as.character(levels(g)[i])
Nameb = as.character(levels(g)[j])
Datax = subset(d, g==levels(g)[i])
Datay = subset(d, g==levels(g)[j])
Dataz = rbind(Datax, Datay)
Dataz$g2 = factor(Dataz$g)
z = median_test(x ~ g2, data=Dataz, ...)
P = signif(pvalue(z)[1], digits=digits)
P.adjust = NA
Z[k,] =c( paste0(Namea, " - ", Nameb, " = 0"),
P, P.adjust)
}
}
Z$p.adjust = signif(p.adjust(Z$p.value, method = method), digits=4)
return(Z)
} |
CF=function(data,group){
n=tapply(data, group, length)
k=length(tapply(data, group, length))
xbar=tapply(data, group, mean)
var=tapply(data, group, var)
w=n/var;
h=w/sum(w);
C=sum(w*(xbar-sum(h*xbar))^2);
pvalue=1-pchisq(C,k-1);
result=matrix(c(round(C,digits=4),round(k-1),round(pvalue,digits=4)))
rownames(result)=c("Test Statistic","df","p-value")
colnames(result)=c("Cochran F")
return(t(result))
} |
expected <- eval(parse(text="c(\"ddenseMatrix\", \"dMatrix\", \"denseMatrix\", \"Matrix\", \"mMatrix\")"));
test(id=0, code={
argv <- eval(parse(text="list(\"ddenseMatrix\", c(\"ddenseMatrix\", \"dMatrix\", \"denseMatrix\", \"Matrix\", \"mMatrix\"))"));
do.call(`.cache_class`, argv);
}, o=expected); |
autowin <- function(reference, xvar, cdate, bdate, baseline, range, stat, func, type, refday,
cmissing = FALSE, cinterval = "day", upper = NA,
lower = NA, binary = FALSE, centre = list(NULL, "both"),
cohort = NULL, spatial = NULL, cutoff.day = NULL, cutoff.month = NULL,
furthest = NULL, closest = NULL, thresh = NULL){
if(all(is.na(as.Date(cdate, format = "%d/%m/%Y")))){
stop("cdate is not in the correct format. Please provide date data in dd/mm/yyyy.")
}
if(all(is.na(as.Date(bdate, format = "%d/%m/%Y")))){
stop("bdate is not in the correct format. Please provide date data in dd/mm/yyyy.")
}
thresholdQ <- "N"
if((!is.na(upper) || !is.na(lower)) && (cinterval == "week" || cinterval == "month")){
thresholdQ <- readline("You specified a climate threshold using upper and/or lower and are working at a weekly or monthly scale.
Do you want to apply this threshold before calculating weekly/monthly means (i.e. calculate thresholds for each day)? Y/N")
thresholdQ <- toupper(thresholdQ)
if(thresholdQ != "Y" & thresholdQ != "N"){
thresholdQ <- readline("Please specify yes (Y) or no (N)")
}
}
if(is.null(cohort) == TRUE){
cohort = lubridate::year(as.Date(bdate, format = "%d/%m/%Y"))
}
WindowOpen <- reference$Dataset$WindowOpen[1]
WindowClose <- reference$Dataset$WindowClose[1]
reference <- reference$BestModelData$climate
if(is.null(thresh) == FALSE){
stop("Parameter 'thresh' is now redundant. Please use parameter 'binary' instead.")
}
if(type == "variable" || type == "fixed"){
stop("Parameter 'type' now uses levels 'relative' and 'absolute' rather than 'variable' and 'fixed'.")
}
if(is.null(cutoff.day) == FALSE & is.null(cutoff.month) == FALSE){
stop("cutoff.day and cutoff.month are now redundant. Please use parameter 'refday' instead.")
}
if(is.null(furthest) == FALSE & is.null(closest) == FALSE){
stop("furthest and closest are now redundant. Please use parameter 'range' instead.")
}
xvar = xvar[[1]]
message("Initialising, please wait...")
if (stat == "slope" & func == "log" || stat == "slope" & func == "inv"){
stop("stat = slope cannot be used with func = log or inv as negative values may be present.")
}
if (cinterval == "day"){
if ((min(as.Date(bdate, format = "%d/%m/%Y")) - range[1]) < min(as.Date(cdate, format = "%d/%m/%Y"))){
stop("You do not have enough climate data to search that far back. Please adjust the value of range or add additional climate data.")
}
}
if (cinterval == "week"){
if ((min(as.Date(bdate, format = "%d/%m/%Y")) - lubridate::weeks(range[1])) < min(as.Date(cdate, format = "%d/%m/%Y"))){
stop("You do not have enough climate data to search that far back. Please adjust the value of range or add additional climate data.")
}
}
if (cinterval == "month"){
if ((min(as.Date(bdate, format = "%d/%m/%Y")) - months(range[1])) < min(as.Date(cdate, format = "%d/%m/%Y"))){
stop("You do not have enough climate data to search that far back. Please adjust the value of range or add additional climate data.")
}
}
duration <- (range[1] - range[2]) + 1
maxmodno <- (duration * (duration + 1)) / 2
cont <- convertdate(bdate = bdate, cdate = cdate, xvar = xvar,
cinterval = cinterval, type = type,
refday = refday, cohort = cohort, spatial = spatial,
thresholdQ = thresholdQ)
modno <- 1
modlist <- list()
cmatrix <- matrix(ncol = (duration), nrow = length(bdate))
climate1 <- matrix(ncol = 1, nrow = length(bdate), 1)
if(cinterval == "day" || (!is.na(thresholdQ) && thresholdQ == "N")){
if(is.null(spatial) == FALSE){
if (is.na(upper) == FALSE && is.na(lower) == TRUE){
if (binary == TRUE){
cont$xvar$Clim <- ifelse (cont$xvar$Clim > upper, 1, 0)
} else {
cont$xvar$Clim <- ifelse (cont$xvar$Clim > upper, cont$xvar$Clim, 0)
}
}
if (is.na(lower) == FALSE && is.na(upper) == TRUE){
if (binary == TRUE){
cont$xvar$Clim <- ifelse (cont$xvar$Clim < lower, 1, 0)
} else {
cont$xvar$Clim <- ifelse (cont$xvar$Clim < lower, cont$xvar$Clim, 0)
}
}
if (is.na(lower) == FALSE && is.na(upper) == FALSE){
if (binary == TRUE){
cont$xvar$Clim <- ifelse (cont$xvar$Clim > lower && cont$xvar$Clim < upper, 1, 0)
} else {
cont$xvar$Clim <- ifelse (cont$xvar$Clim > lower && cont$xvar$Clim < upper, cont$xvar$Clim - lower, 0)
}
}
} else {
if (is.na(upper) == FALSE && is.na(lower) == TRUE){
if (binary == TRUE){
cont$xvar <- ifelse (cont$xvar > upper, 1, 0)
} else {
cont$xvar <- ifelse (cont$xvar > upper, cont$xvar, 0)
}
}
if (is.na(lower) == FALSE && is.na(upper) == TRUE){
if (binary == TRUE){
cont$xvar <- ifelse (cont$xvar < lower, 1, 0)
} else {
cont$xvar <- ifelse (cont$xvar < lower, cont$xvar, 0)
}
}
if (is.na(lower) == FALSE && is.na(upper) == FALSE){
if (binary == TRUE){
cont$xvar <- ifelse (cont$xvar > lower & cont$xvar < upper, 1, 0)
} else {
cont$xvar <- ifelse (cont$xvar > lower & cont$xvar < upper, cont$xvar - lower, 0)
}
}
}
}
if(is.null(spatial) == FALSE){
for (i in 1:length(bdate)){
cmatrix[i, ] <- cont$xvar[which(cont$cintno$spatial %in% cont$bintno$spatial[i] & cont$cintno$Date %in% (cont$bintno$Date[i] - c(range[2]:range[1]))), 1]
}
} else {
for (i in 1:length(bdate)){
cmatrix[i, ] <- cont$xvar[which(cont$cintno %in% (cont$bintno[i] - c(range[2]:range[1])))]
}
}
cmatrix <- as.matrix(cmatrix[, c(ncol(cmatrix):1)])
if (cmissing == FALSE && length(which(is.na(cmatrix))) > 0){
if(is.null(spatial) == FALSE){
if (cinterval == "day"){
.GlobalEnv$missing <- as.Date(cont$cintno$Date[is.na(cont$xvar$Clim)], origin = min(as.Date(cdate, format = "%d/%m/%Y")) - 1)
}
if (cinterval == "month"){
.GlobalEnv$missing <- c(paste("Month:", month(as.Date(cont$cintno$Date[is.na(cont$xvar$Clim)], origin = min(as.Date(cdate, format = "%d/%m/%Y")) - 1)),
"Year:", year(as.Date(cont$cintno$Date[is.na(cont$xvar$Clim)], origin = min(as.Date(cdate, format = "%d/%m/%Y")) - 1))))
}
if (cinterval == "week"){
.GlobalEnv$missing <- c(paste("Week:", month(as.Date(cont$cintno$Date[is.na(cont$xvar$Clim)], origin = min(as.Date(cdate, format = "%d/%m/%Y")) - 1)),
"Year:", year(as.Date(cont$cintno$Date[is.na(cont$xvar$Clim)], origin = min(as.Date(cdate, format = "%d/%m/%Y")) - 1))))
}
stop(c("Climate data should not contain NA values: ", length(.GlobalEnv$missing),
" NA value(s) found. Please add missing climate data or set cmissing=TRUE.
See object missing for all missing climate data"))
} else {
if (cinterval == "day"){
.GlobalEnv$missing <- as.Date(cont$cintno[is.na(cont$xvar)], origin = min(as.Date(cdate, format = "%d/%m/%Y")) - 1)
}
if (cinterval == "month"){
.GlobalEnv$missing <- c(paste("Month:", month(as.Date(cont$cintno[is.na(cont$xvar)], origin = min(as.Date(cdate, format = "%d/%m/%Y")) - 1)),
"Year:", year(as.Date(cont$cintno[is.na(cont$xvar)], origin = min(as.Date(cdate, format = "%d/%m/%Y")) - 1))))
}
if (cinterval == "week"){
.GlobalEnv$missing <- c(paste("Week:", month(as.Date(cont$cintno[is.na(cont$xvar)], origin = min(as.Date(cdate, format = "%d/%m/%Y")) - 1)),
"Year:", year(as.Date(cont$cintno[is.na(cont$xvar)], origin = min(as.Date(cdate, format = "%d/%m/%Y")) - 1))))
}
stop(c("Climate data should not contain NA values: ", length(.GlobalEnv$missing),
" NA value(s) found. Please add missing climate data or set cmissing=TRUE.
See object missing for all missing climate data"))
}
}
if (cmissing != FALSE && any(is.na(cmatrix))){
message("Missing climate data detected. Please wait while NAs are replaced.")
for(i in which(is.na(cmatrix))){
if(i %% nrow(cmatrix) == 0){
col <- i/nrow(cmatrix)
row <- nrow(cmatrix)
} else {
col <- i%/%nrow(cmatrix) + 1
row <- i %% nrow(cmatrix)
}
if(cmissing == "method1"){
if(cinterval == "day"){
cdate_new <- data.frame(Date = as.Date(cdate, format = "%d/%m/%Y"))
bioldate <- as.Date(bdate[row], format = "%d/%m/%Y")
missingdate <- bioldate - (col + range[2] - 1)
if(is.null(spatial) == FALSE){
cdate_new$spatial <- spatial[[2]]
siteID <- spatial[[1]][row]
cmatrix[row, col] <- mean(xvar[which(cdate_new$Date %in% c(missingdate - (1:2), missingdate + (1:2)) & cdate_new$spatial %in% siteID)], na.rm = T)
} else {
cmatrix[row, col] <- mean(xvar[which(cdate_new$Date %in% c(missingdate - (1:2), missingdate + (1:2)))], na.rm = T)
}
} else if(cinterval == "week" || cinterval == "month"){
if(is.null(spatial) == FALSE){
cdate_new <- data.frame(Date = cont$cintno$Date,
spatial = cont$cintno$spatial)
bioldate <- cont$bintno$Date[row]
missingdate <- bioldate - (col + range[2] - 1)
siteID <- spatial[[1]][row]
cmatrix[row, col] <- mean(cont$xvar$Clim[which(cdate_new$Date %in% c(missingdate - (1:2), missingdate + (1:2)) & cdate_new$spatial %in% siteID)], na.rm = T)
} else {
cdate_new <- data.frame(Date = cont$cintno)
bioldate <- cont$bintno[row]
missingdate <- bioldate - (col + range[2] - 1)
cmatrix[row, col] <- mean(cont$xvar[which(cdate_new$Date %in% c(missingdate - (1:2), missingdate + (1:2)))], na.rm = T)
}
}
if(is.na(cmatrix[row, col])){
stop("Too many consecutive NAs present in the data. Consider using method2 or manually replacing NAs.")
}
} else if(cmissing == "method2"){
if(cinterval == "day"){
cdate_new <- data.frame(Date = as.Date(cdate, format = "%d/%m/%Y"),
Month = lubridate::month(as.Date(cdate, format = "%d/%m/%Y")),
Day = lubridate::day(as.Date(cdate, format = "%d/%m/%Y")))
bioldate <- as.Date(bdate[row], format = "%d/%m/%Y")
missingdate <- bioldate - (col + range[2] - 1)
missingdate <- data.frame(Date = missingdate,
Month = lubridate::month(missingdate),
Day = lubridate::day(missingdate))
if(is.null(spatial) == FALSE){
cdate_new$spatial <- spatial[[2]]
siteID <- spatial[[1]][row]
cmatrix[row, col] <- mean(xvar[which(cdate_new$Month %in% missingdate$Month & cdate_new$Day %in% missingdate$Day & cdate_new$spatial %in% siteID)], na.rm = T)
} else {
cmatrix[row, col] <- mean(xvar[which(cdate_new$Month %in% missingdate$Month & cdate_new$Day %in% missingdate$Day)], na.rm = T)
}
} else if(cinterval == "week" || cinterval == "month"){
if(is.null(spatial) == FALSE){
cdate_new <- data.frame(Date = cont$cintno$Date,
spatial = cont$cintno$spatial)
bioldate <- cont$bintno$Date[row]
missingdate <- bioldate - (col + range[2] - 1)
if(cinterval == "week"){
cdate_new$Date <- cdate_new$Date - (floor(cdate_new$Date/52) * 52)
cdate_new$Date <- ifelse(cdate_new$Date == 0, 52, cdate_new$Date)
missingdate <- missingdate - (floor(missingdate/52) * 52)
missingdate <- ifelse(missingdate == 0, 52, missingdate)
} else {
cdate_new$Date <- cdate_new$Date - (floor(cdate_new$Date/12) * 12)
cdate_new$Date <- ifelse(cdate_new$Date == 0, 12, cdate_new$Date)
missingdate <- missingdate - (floor(missingdate/12) * 12)
missingdate <- ifelse(missingdate == 0, 12, missingdate)
}
siteID <- spatial[[1]][row]
cmatrix[row, col] <- mean(cont$xvar$Clim[which(cdate_new$Date %in% missingdate & cdate_new$spatial %in% siteID)], na.rm = T)
} else {
cdate_new <- data.frame(Date = cont$cintno)
bioldate <- cont$bintno[row]
missingdate <- bioldate - (col + range[2] - 1)
if(cinterval == "week"){
cdate_new$Date <- cdate_new$Date - (floor(cdate_new$Date/52) * 52)
cdate_new$Date <- ifelse(cdate_new$Date == 0, 52, cdate_new$Date)
missingdate <- missingdate - (floor(missingdate/52) * 52)
missingdate <- ifelse(missingdate == 0, 52, missingdate)
} else {
cdate_new$Date <- cdate_new$Date - (floor(cdate_new$Date/12) * 12)
cdate_new$Date <- ifelse(cdate_new$Date == 0, 12, cdate_new$Date)
missingdate <- missingdate - (floor(missingdate/12) * 12)
missingdate <- ifelse(missingdate == 0, 12, missingdate)
}
cmatrix[row, col] <- mean(cont$xvar[which(cdate_new$Date %in% missingdate)], na.rm = T)
}
}
if(is.na(cmatrix[row, col])){
stop("There is not enough data to replace missing values using method2. Consider dealing with NA values manually")
}
} else {
stop("cmissing should be method1, method2 or FALSE")
}
}
}
modeldat <- model.frame(baseline)
modeldat$yvar <- modeldat[, 1]
modeldat$climate <- seq(1, nrow(modeldat), 1)
if (is.null(weights(baseline)) == FALSE){
if (class(baseline)[1] == "glm" & sum(weights(baseline)) == nrow(model.frame(baseline)) || attr(class(baseline), "package") == "lme4" & sum(weights(baseline)) == nrow(model.frame(baseline))){
} else {
modeldat$modweights <- weights(baseline)
baseline <- update(baseline, .~., weights = modeldat$modweights, data = modeldat)
}
}
if(!is.null(attr(class(baseline), "package")) && attr(class(baseline), "package") == "lme4" && class(baseline)[1] == "lmerMod" && baseline@resp$REML == 1){
message("Linear mixed effects models are run in climwin using maximum likelihood. Baseline model has been changed to use maximum likelihood.")
baseline <- update(baseline, yvar ~., data = modeldat, REML = F)
}
if(attr(baseline, "class")[1] == "lme" && baseline$method == "REML"){
message("Linear mixed effects models are run in climwin using maximum likelihood. Baseline model has been changed to use maximum likelihood.")
baseline <- update(baseline, yvar ~., data = modeldat, method = "ML")
}
if (func == "lin"){
modeloutput <- update(baseline, .~. + climate, data = modeldat)
} else if (func == "quad") {
modeloutput <- update(baseline, .~. + climate + I(climate ^ 2), data = modeldat)
} else if (func == "cub") {
modeloutput <- update(baseline, .~. + climate + I(climate ^ 2) + I(climate ^ 3), data = modeldat)
} else if (func == "log") {
modeloutput <- update(baseline, .~. + log(climate), data = modeldat)
} else if (func == "inv") {
modeloutput <- update (baseline, .~. + I(climate ^ -1), data = modeldat)
} else {
stop("Define func")
}
pb <- txtProgressBar(min = 0, max = maxmodno, style = 3, char = "|")
for (m in range[2]:range[1]){
for (n in 1:duration){
if ( (m - n) >= (range[2] - 1)){
if (stat != "slope" || n > 1){
windowopen <- m - range[2] + 1
windowclose <- windowopen-n + 1
if (stat == "slope"){
time <- seq(1, n, 1)
climate1 <- apply(cmatrix[, windowclose:windowopen], 1, FUN = function(x) coef(lm(x ~ time))[2])
} else {
if (n == 1){
climate1 <- cmatrix[, windowclose:windowopen]
} else {
climate1 <- apply(cmatrix[, windowclose:windowopen], 1, FUN = stat)
}
}
modeloutput <- cor(climate1, reference)
modlist$cor[modno] <- modeloutput
modlist$WindowOpen[modno] <- m
modlist$WindowClose[modno] <- m - n + 1
modno <- modno + 1
}
}
}
setTxtProgressBar(pb, modno - 1)
}
modlist$Furthest <- range[1]
modlist$Closest <- range[2]
modlist$Statistics <- stat
modlist$Functions <- type
modlist$BestWindowOpen <- WindowOpen
modlist$BestWindowClose <- WindowClose
if (type == TRUE){
modlist$Reference.day <- refday[1]
modlist$Reference.month <- refday[2]
}
local <- as.data.frame(modlist)
return(local)
} |
embedding.rect.cat.epsNEW <-
function(cat,cycle=FALSE,eps=1/nrow(cat))embedding.rect.eps(cat$xcat.work,cat$ycat.work,cycle=cycle,eps=eps) |
library(kernlab)
data(iris)
teardown({
detach("package:kernlab", unload = TRUE)
})
test_that("pmml.ksvm error when a specified kernel is not supported", {
expect_error(
pmml(ksvm(Sepal.Length ~ ., data = iris, kernel = "laplacedot"), dataset = iris),
"laplacedot kernel is not supported. Supported ksvm kernels: rbfdot, polydot, vanilladot, tanhdot."
)
invisible(capture.output(mod2 <- ksvm(Sepal.Length ~ ., data = iris, kernel = "besseldot")))
expect_error(
pmml(mod2, dataset = iris),
"besseldot kernel is not supported. Supported ksvm kernels: rbfdot, polydot, vanilladot, tanhdot."
)
invisible(capture.output(mod3 <- ksvm(Sepal.Length ~ ., data = iris, kernel = "anovadot")))
expect_error(
pmml(mod3, dataset = iris),
"anovadot kernel is not supported. Supported ksvm kernels: rbfdot, polydot, vanilladot, tanhdot."
)
invisible(capture.output(mod4 <- ksvm(Sepal.Length ~ ., data = iris, kernel = "splinedot")))
expect_error(
pmml(mod4, dataset = iris),
"splinedot kernel is not supported. Supported ksvm kernels: rbfdot, polydot, vanilladot, tanhdot."
)
}) |
plot.bivrp <-
function(x, kernel, superpose.points, chp, add.dplots,
theta.sort, add.polygon, reduce.polygon, one.dim,
pch=16, cex=.8, conf, xlab, ylab, main,
point.col, point.pch, transparent.colors,
density.bw="SJ", ...) {
obj <- x
rm(x)
if(missing(kernel)) kernel <- FALSE
if(missing(chp)) chp <- FALSE
if(missing(superpose.points)) superpose.points <- FALSE
if(missing(conf)) conf <- obj$conf
if(missing(one.dim)) one.dim <- FALSE
if(missing(add.dplots)) add.dplots <- TRUE
if(missing(theta.sort)) theta.sort <- TRUE
if(missing(reduce.polygon)) reduce.polygon <- "proportional"
if(one.dim) {
if(missing(xlab)) xlab <- "Residuals"
if(missing(ylab)) ylab <- "Density"
if(missing(main)) main <- ""
} else {
if(missing(xlab)) xlab <- "Residuals 1"
if(missing(ylab)) ylab <- "Residuals 2"
if(missing(main)) main <- ""
}
if(missing(add.polygon)) add.polygon <- FALSE
if(missing(transparent.colors)) transparent.colors <- TRUE
reslist.ord <- obj$reslist.ord
res.original.ord <- obj$res.original.ord
res.simlist <- list()
for(i in 1:nrow(res.original.ord)) {
res.simlist[[i]] <- matrix(unlist(
lapply(reslist.ord, function(x) x[i,])),
byrow=T, ncol=2)
}
rxs <- range(res1 <- unlist(lapply(reslist.ord, function(a) a$x)))
rys <- range(res2 <- unlist(lapply(reslist.ord, function(a) a$y)))
rxo <- range(res.original1 <- res.original.ord[,1])
ryo <- range(res.original2 <- res.original.ord[,2])
if(add.dplots) {
preps <- add_dplots_prep(res1=res1, res2=res2,
res.original1=res.original1, res.original2=res.original2,
density.bw = density.bw)
d1 <- preps$d1
d2 <- preps$d2
cc1 <- preps$cc1
c2 <- preps$c2
startd1 <- preps$startd1
startd2 <- preps$startd2
d1.or <- preps$d1.or
d2.or <- preps$d2.or
range.x <- c(min(rxs, rxo), max(rxs, rxo)*1.7)
range.y <- c(min(rys, ryo), max(rys, ryo)*1.7)
axes. <- F
bty. <- "n"
xlab. <- xlab
ylab. <- ylab
xlab <- ""
ylab <- ""
} else {
range.x <- c(min(rxs, rxo), max(rxs, rxo))
range.y <- c(min(rys, ryo), max(rys, ryo))
axes. <- T
bty. <- "o"
}
if(theta.sort) {
plot(0, 0, xlim=range.x, ylim=range.y, type="n", xaxt="n", yaxt="n",
xlab=xlab, ylab=ylab, main=main, bty=bty., ...)
x.seq <- seq(min(rxs, rxo), max(rxs, rxo), length = 5)
axis(1, x.seq, round(x.seq, 2))
y.seq <- seq(min(rys, ryo), max(rys, ryo), length = 5)
axis(2, y.seq, round(y.seq, 2))
pol.centre <- matrix(0, ncol=2, nrow=nrow(res.original.ord))
pol.inside <- NULL
if(add.polygon) ppoly <- T else ppoly <- F
for(i in 1:nrow(res.original.ord)) {
chpoly <- chp_perpoint(df.point=res.simlist[[i]],
res.original=res.original.ord[i,], reduce.polygon=reduce.polygon,
pch=pch, cex=cex, conf=conf, ppoly=ppoly, ...)
pol.centre[i,] <- chpoly$pol.centre
pol.inside[i] <- chpoly$pol.inside
}
if(missing(point.col)) point.col <- c(1,2)
if(missing(point.pch)) point.pch <- c(16,16)
point.colours <- ifelse(pol.inside, point.col[1], point.col[2])
point.pchs <- ifelse(pol.inside, point.pch[1], point.pch[2])
points(res.original.ord, pch=point.pchs, cex=cex, col=point.colours, ...)
points(pol.centre, pch=1, cex=cex, col=point.colours, ...)
arrows(pol.centre[,1], pol.centre[,2],
as.numeric(res.original.ord[,1]), as.numeric(res.original.ord[,2]),
code=3, length=0, lty=2, col=point.colours)
tot.points <- nrow(res.original.ord)
n.out <- sum(!pol.inside)
cat(n.out, " out of ", tot.points, " points out of polygons (", round(n.out/tot.points*100, 2), "%).", "\n", sep="")
if(add.dplots) {
add_dplots_plot(range.x, range.y, xlab., ylab.,
d1, d2, cc1, c2, startd1, startd2,
res1, res2, res.original1, res.original2, d1.or, d2.or,
transparent.colors)
}
} else {
res1 <- obj$res1
res2 <- obj$res2
res.original1 <- obj$res.original1
res.original2 <- obj$res.original2
if(one.dim) {
par(mfrow=c(1,2))
dres1 <- density(res1, bw = "SJ")
dres1.or <- density(res.original1, bw = "SJ")
plot(res1, rep(0, length(res1)), xlim=range(res1, res.original1), pch=16, col="lightgray", ylim=c(0, max(dres1$y, dres1.or$y)), type="n", xlab=xlab, ylab=ylab, main=main)
polygon(dres1, col="lightgray", border="lightgray")
polygon(dres1.or, col="
points(res1, rep(0, length(res1)), pch=21, col="white", bg="lightgray")
points(res.original1, rep(0, length(res.original1)), pch=16, col=1)
dres2 <- density(res2, bw = "SJ")
dres2.or <- density(res.original2, bw = "SJ")
plot(res2, rep(0, length(res2)), xlim=range(res2, res.original2), pch=16, col="lightgray", ylim=c(0, max(dres2$y, dres2.or$y)), type="n", xlab=xlab, ylab=ylab, main=main)
polygon(dres2, col="lightgray", border="lightgray")
polygon(dres2.or, col="
points(res2, rep(0, length(res2)), pch=21, col="white", bg="lightgray")
points(res.original2, rep(0, length(res.original2)), pch=16, col=1)
return(invisible())
}
if(chp) {
chp.xy <- chull(res1, res2)
dxy <- data.frame(res1, res2)
pol <- dxy[chp.xy,]
pol.area <- polygon_area(pol)$area
if(reduce.polygon == "peel") {
dif <- 1
while(dif > conf) {
dxy <- dxy[-chp.xy,]
chp.xy <- with(dxy, chull(res1, res2))
pol <- dxy[chp.xy,]
pol.area2 <- polygon_area(pol)$area
dif <- pol.area2/pol.area
}
} else {
pol <- get_newpolygon(conf, pol, method = reduce.polygon)
}
plot(res1, res2, xlim=range.x, ylim=range.y, type="n",
xlab=xlab, ylab=ylab, main=main, axes=axes., bty=bty., ...)
col.polygon <- "lightgray"
if(superpose.points) {
points(res1, res2, col="lightgray", pch=16)
col.polygon <- NA
}
polygon(pol, col=col.polygon, lty=2)
points(res.original1, res.original2, pch=pch, cex=cex, ...)
if(add.dplots) {
add_dplots_plot(range.x, range.y, xlab., ylab.,
d1, d2, cc1, c2, startd1, startd2,
res1, res2, res.original1, res.original2, d1.or, d2.or,
transparent.colors)
}
return(invisible())
}
if(kernel) {
plot(res1, res2, xlim=range.x, ylim=range.y, type="n",
xlab=xlab, ylab=ylab, main=main, axes=axes., bty=bty., ...)
post1 <- kde2d(res1, res2, n=100,
h = c(width.SJ(res1), width.SJ(res2)),
lims=c(range(res1)*1.2, range(res2)*1.2))
dx <- diff(post1$x[1:2])
dy <- diff(post1$y[1:2])
sz <- sort(post1$z)
c1 <- cumsum(sz)*dx*dy
level <- approx(c1, sz, xout=1-conf)$y
ckern <- contourLines(post1$x, post1$y, post1$z, levels=level)
col.polygon <- "lightgray"
if(superpose.points) {
points(res1, res2, col="lightgray", pch=16)
col.polygon <- NA
}
for(i in 1:length(ckern)) polygon(ckern[[i]]$x, ckern[[i]]$y, col=col.polygon, lty=2)
points(res.original1, res.original2, pch=pch, cex=cex, ...)
if(add.dplots) {
add_dplots_plot(range.x, range.y, xlab., ylab.,
d1, d2, cc1, c2, startd1, startd2,
res1, res2, res.original1, res.original2, d1.or, d2.or,
transparent.colors)
}
}
}
} |
pool_propdiff_nw <- function(object,
conf.level=0.95)
{
if(all(class(object)!="mistats"))
stop("object must be of class 'mistats'")
if(!is.list(object$statistics))
stop("object must be a list")
obj1 <-
lapply(object$statistics,
function(x) x[, c("prop1", "se1", "n1")])
obj0 <-
lapply(object$statistics,
function(x) x[, c("prop0", "se0", "n0")])
obj1 <-
list(statistics=obj1)
obj0 <-
list(statistics=obj0)
class(obj0) <- class(obj1) <- 'mistats'
p0_pool <-
pool_prop_wilson(obj0, conf.level=conf.level)
p1_pool <-
pool_prop_wilson(obj1, conf.level=conf.level)
w0 <-
p0_pool[-1]
w1 <-
p1_pool[-1]
l0 <-
w0[1]
u0 <-
w0[2]
l1 <-
w1[1]
u1 <-
w1[2]
phat0 <-
p0_pool[1]
phat1 <-
p1_pool[1]
prop_diff <-
phat1 - phat0
lower <-
prop_diff - sqrt((phat1-l1)^2 + (u0-phat0)^2)
upper <-
prop_diff + sqrt((phat0-l0)^2 + (u1-phat1)^2)
output <-
round(matrix(c(prop_diff, lower, upper), 1, 3), 4)
colnames(output) <-
c("Prop diff", "CI L NW", "CI U NW")
class(output) <-
"mipool"
return(output)
} |
get_importance_local <- function(model){
model$importance$local
} |
verbose=TRUE
require(haplo.stats)
source("dump.varx.s")
if(verbose) cat("setting up data...\n")
if(verbose) cat("test matrix (441x441) that causes error in LINPACK, but not LAPACK svd\n")
ginv.varx <- Ginv(varx)
ginv.varx.eps <- Ginv(varx, eps=1e-4)
if(verbose) cat("the zero matrix should give ginv=0, rank=0\n")
zeroMat <- matrix(0)
epsMat <- matrix(1e-7)
zeroGinv <- Ginv(zeroMat)
epsGinv <- Ginv(epsMat)
print(ginv.varx$Ginv[1:5,1:5])
ginv.varx$rank
print(ginv.varx.eps$Ginv[1:5,1:5])
ginv.varx.eps$rank
print(zeroGinv)
print(epsGinv)
|
NULL
anova.spsur <- function(object, ..., lrtest = TRUE) {
object <- list(object, ...)
ancall <- sys.call()
nmodels <- length(object)
vtypes <- character(length = nmodels)
vLL <- vdf <- vector(mode = "numeric", length=nmodels)
vAIC <- vBIC <- vector(mode = "numeric", length=nmodels)
if (lrtest) {
vlrtest <- vpval <- vector(mode = "numeric", length=nmodels)
vlrtest[1] <- vpval[1] <- NA
}
for (i in 1:nmodels) {
obj_i <- object[[i]]
if (!inherits(obj_i, "spsur"))
stop("object not a fitted spsur model")
if (is.null(obj_i$LL))
stop("object not fitted by maximum likelihood")
LL <- logLik(obj_i)
vAIC[i] <- stats::AIC(LL)
vBIC[i] <- stats::BIC(LL)
vLL[i] <- LL
vdf[i] <- attr(LL, "df")
vtypes[i] <- paste("model ",i,": ",obj_i$type, sep="")
if (lrtest) {
if(i>1) {
vlrtest[i] <- 2*(vLL[i] - vLL[i-1])
vpval[i] <- pchisq(vlrtest[i],
df = vdf[i] - vdf[i-1],
lower.tail = FALSE)
}
}
}
if (lrtest) {
res <- data.frame(logLik = vLL,
df = vdf,
AIC = vAIC,
BIC = vBIC,
LRtest = vlrtest,
`p-val` = vpval,
row.names = vtypes)
} else {
res <- data.frame(`logLik` = vLL,
df = vdf,
AIC = vAIC,
BIC = vBIC,
row.names = vtypes)
}
class(res) <- c("anova", "data.frame")
return(res)
}
coef.spsur <- function(object, ...)
{
ret <- NULL
if (!(object$type == "sim" || object$type == "slx"))
ret <- c(ret, object$deltas)
ret <- c(ret, object$coefficients)
ret
}
fitted.spsur <- function(object, ...)
{
if (is.null(object$na.action))
fits <- object$fitted.values
else fits <- napredict(object$na.action, object$fitted.values)
G <- object$G
if (!(length(fits) %% G == 0))
stop("Length of fitted values incompatible with number of equations")
N <- length(fits) %/% G
res <- vector("list", G)
indx <- 1
for (i in 1:G) {
res[[i]] <- fits[indx:(indx + N - 1)]
indx <- indx + N
}
names(res) <- paste0("fitted_values_eq",1:G)
res
}
logLik.spsur <- function(object, ...)
{
LL <- c(object$LL)
class(LL) <- "logLik"
N <- length(residuals(object))
attr(LL, "nall") <- N
attr(LL, "nobs") <- N
attr(LL, "df") <- object$parameters
LL
}
residuals.spsur <- function(object, ...)
{
if (is.null(object$na.action))
resids <- object$residuals
else resids <- napredict(object$na.action, object$residuals)
G <- object$G
if (!(length(resids) %% G == 0))
stop("Length of residuals incompatible with number of equations")
N <- length(resids) %/% G
res <- vector("list", G)
indx <- 1
for (i in 1:G) {
res[[i]] <- resids[indx:(indx + N - 1)]
indx <- indx + N
}
names(res) <- paste0("residuals_eq",1:G)
res
}
vcov.spsur <- function(object, ...)
{
res <- object$resvar
idxsigma <- grepl("sigma", rownames(res))
res <- res[!idxsigma, !idxsigma]
res
}
print.spsur <- function(x, digits = max(3L, getOption("digits") - 3L),
...) {
if (!inherits(x, "spsur")) stop("Argument must be a spsur object")
summx <- summary(x)
fulltable <- summx$coef_table
G <- length(fulltable)
fullrownames <- NULL
for (i in 1:G) {
rownames_i <- rownames(fulltable[[i]])
rownames_i <- gsub(paste("_",i,sep=""), "",
rownames_i)
newrownames <- which (!(rownames_i %in% fullrownames))
rownames_i <- rownames_i[newrownames]
fullrownames <- c(fullrownames, rownames_i)
}
mtable <- matrix(NA, nrow = length(fullrownames),
ncol = 2*G)
rownames(mtable) <- fullrownames
colnames(mtable) <- paste(rep(c("coeff_","pval_"), G),
rep(1:G, each = 2), sep="")
idxcol <- 1
for (i in 1:G) {
table_i <- fulltable[[i]][,c("Estimate", "Pr(>|t|)")]
table_i[, 2] <- round(table_i[, 2],
digits = min(digits, 3))
rownames(table_i) <- gsub(paste("_",i,sep=""), "",
rownames(table_i))
mtable[rownames(table_i), c(idxcol,idxcol+1)] <- table_i
idxcol <- idxcol + 2
}
if (any(grepl("rho",rownames(mtable)))) {
idxrowrho <- which(grepl("rho",
rownames(mtable)))
rowrho <- matrix(mtable[idxrowrho, ], nrow=1)
rownames(rowrho) <- c("rho")
mtable <- mtable[-idxrowrho, ]
mtable <- rbind(mtable, rowrho)
}
if (any(grepl("lambda",rownames(mtable)))) {
idxrowlambda <- which(grepl("lambda",
rownames(mtable)))
rowlambda <- matrix(mtable[idxrowlambda, ], nrow=1)
rownames(rowlambda) <- c("lambda")
mtable <- mtable[-idxrowlambda, ]
mtable <- rbind(mtable, rowlambda)
}
print(round(mtable, digits = digits))
invisible(x)
}
plot.spsur <- function(x, ci = 0.95, viewplot = TRUE, ...) {
if (!inherits(x, "spsur")) stop("Argument must be a spsur object")
critval <- qnorm((1-ci)/2, lower.tail = FALSE)
G <- x$G
p <- x$p
eq <- NULL
for (i in 1:G) {
eq <- c(eq, rep(i,p[i]))
}
eq <- as.factor(eq)
dfx <- data.frame(eq = eq,
nbetas = names(x$coefficients),
betas = x$coefficients,
sebetas = x$rest.se,
lwbetas = x$coefficients - critval*x$rest.se,
upbetas = x$coefficients + critval*x$rest.se,
row.names = NULL)
lplbetas <- vector("list", G)
for (i in 1:G) {
plbetasi <- ggplot2::ggplot(dfx[dfx$eq==i, ],
ggplot2::aes(.data$nbetas,
.data$betas,
colour = i)) +
ggplot2::geom_pointrange(ggplot2::aes(ymin = .data$lwbetas,
ymax = .data$upbetas),
show.legend = FALSE) +
ggplot2::labs(title = paste("Equation ",i),
x = "", y = "betas")
lplbetas[[i]] <- plbetasi
if (viewplot) {
gridExtra::grid.arrange(lplbetas[[i]], newpage = TRUE)
readline(prompt="Press [enter] to continue")
}
}
if(!is.null(x$deltas)) {
eq <- rep(0, length(x$deltas))
for (i in 1:G) {
ni <- i*as.integer(grepl(paste("_", i, sep=""), names(x$deltas)))
eq <- eq + ni
}
eq <- as.factor(eq)
dfxsp <- data.frame(eq = eq,
ndeltas = names(x$deltas),
deltas = x$deltas,
sedeltas = x$deltas.se,
lwdeltas = x$deltas - critval*x$deltas.se,
updeltas = x$deltas + critval*x$deltas.se,
row.names = NULL)
pldeltas <- ggplot2::ggplot(dfxsp, ggplot2::aes(.data$ndeltas,
.data$deltas,
colour = eq)) +
ggplot2::geom_pointrange(ggplot2::aes(ymin = .data$lwdeltas,
ymax = .data$updeltas),
show.legend = FALSE) +
ggplot2::labs(title = "", x = "",
y = "Spatial Coefficients")
if (viewplot) gridExtra::grid.arrange(pldeltas, nrow = 1)
} else pldeltas <- NULL
plots <- list(lplbetas = lplbetas,
pldeltas = pldeltas)
} |
require("fftwtools")
require("pracma")
require("data.table")
require("gstat")
require(sp)
require("stringr")
require(gridExtra)
require(moments)
require(ggplot2)
require(png)
require(grid)
if(getRversion() >= "3.1.0") utils::suppressForeignCheck(c("h", "..density.."))
AFMImageAnalyser<-setClass("AFMImageAnalyser",
slots = c(
versions="data.table",
AFMImage="AFMImage",
variogramAnalysis="AFMImageVariogramAnalysis",
psdAnalysis="AFMImagePSDAnalysis",
fdAnalysis="AFMImageFractalDimensionsAnalysis",
gaussianMixAnalysis="AFMImageGaussianMixAnalysis",
networksAnalysis="AFMImageNetworksAnalysis",
threeDimensionAnalysis="AFMImage3DModelAnalysis",
mean="numeric",
variance="numeric",
TotalRrms="numeric",
Ra="numeric",
fullfilename="character",
updateProgress="function"))
setMethod("initialize", "AFMImageAnalyser", function(.Object,
AFMImage,
variogramAnalysis,
psdAnalysis,
fdAnalysis,
gaussianMixAnalysis,
networksAnalysis,
threeDimensionAnalysis,
mean,
variance,
TotalRrms,
Ra,
fullfilename)
{
if (!missing(AFMImage)) .Object@AFMImage<-AFMImage
if (!missing(variogramAnalysis)) .Object@variogramAnalysis<-variogramAnalysis
if (!missing(psdAnalysis)) .Object@psdAnalysis<-psdAnalysis
if (!missing(fdAnalysis)) .Object@fdAnalysis<-fdAnalysis
if (!missing(gaussianMixAnalysis)) .Object@gaussianMixAnalysis<-gaussianMixAnalysis
if (!missing(networksAnalysis)) .Object@networksAnalysis<-networksAnalysis
if (!missing(threeDimensionAnalysis)) .Object@threeDimensionAnalysis<-threeDimensionAnalysis
if (!missing(mean)) .Object@mean<-mean
if (!missing(variance)) .Object@variance<-variance
if (!missing(TotalRrms)) .Object@TotalRrms<- TotalRrms
if (!missing(Ra)) .Object@Ra<-Ra
.Object@fullfilename<-fullfilename
.Object@versions<-getLibrariesVersions()
validObject(.Object)
return(.Object)
})
AFMImageAnalyser <- function(AFMImage) {
return(new("AFMImageAnalyser", AFMImage= AFMImage, fullfilename= AFMImage@fullfilename))
}
analyse<-function(AFMImageAnalyser) {
AFMImage<-AFMImageAnalyser@AFMImage
sampleFitPercentage<-3.43/100
variogramAnalysis<-AFMImageVariogramAnalysis(sampleFitPercentage)
variogramAnalysis@omnidirectionalVariogram<- calculateOmnidirectionalVariogram(AFMImageVariogramAnalysis= variogramAnalysis, AFMImage=AFMImage)
variogramAnalysis@directionalVariograms<- calculateDirectionalVariograms(AFMImageVariogramAnalysis= variogramAnalysis, AFMImage=AFMImage)
AFMImageVariogram<-variogramAnalysis@omnidirectionalVariogram
class(AFMImageVariogram)=c("gstatVariogram","data.frame")
variogramAnalysis<-evaluateVariogramModels(variogramAnalysis, AFMImage)
psdAnalysis<-AFMImagePSDAnalysis()
roughnessAgainstLengthscale(psdAnalysis)<-RoughnessByLengthScale(AFMImage, psdAnalysis)
AFMImageAnalyser@psdAnalysis<-psdAnalysis
tryCatch({
intersection <- getAutoIntersectionForRoughnessAgainstLengthscale(AFMImageAnalyser, second_slope= FALSE)
intersections<-c(intersection)
intersection <- getAutoIntersectionForRoughnessAgainstLengthscale(AFMImageAnalyser, second_slope= TRUE)
AFMImagePSDSlopesAnalysis<-intersection
intersections<-c(intersections,intersection)
intersections(psdAnalysis)<-intersections
psdAnalysis@AFMImagePSDSlopesAnalysis<-AFMImagePSDSlopesAnalysis
}, error = function(e) {print(paste("Impossible to find PSD intersections automaticaly",e))})
fdAnalysis<-AFMImageFractalDimensionsAnalysis()
fractalDimensionMethods(fdAnalysis)<-getFractalDimensions(AFMImage, fdAnalysis)
AFMImageAnalyser@mean=mean(AFMImage@data$h)
AFMImageAnalyser@variance=var(AFMImage@data$h)
AFMImageAnalyser@TotalRrms=sqrt(var(AFMImage@data$h))
AFMImageAnalyser@Ra=mean(abs(AFMImage@data$h))
AFMImageAnalyser@variogramAnalysis<-variogramAnalysis
AFMImageAnalyser@psdAnalysis<-psdAnalysis
AFMImageAnalyser@fdAnalysis<-fdAnalysis
return(AFMImageAnalyser)
}
setGeneric(name= "putAnalysisOnDisk",
def= function(AFMImageAnalyser, AFMImage) {
return(standardGeneric("putAnalysisOnDisk"))
})
setMethod(f="putAnalysisOnDisk", "AFMImageAnalyser",
definition= function(AFMImageAnalyser, AFMImage) {
filename<-basename(AFMImage@fullfilename)
exportDirectory<-paste(dirname(AFMImage@fullfilename), "outputs", sep="/")
saveAFMImageAnalyser(AFMImageAnalyser, AFMImage, exportDirectory)
saveOnDisk(AFMImage, exportDirectory)
})
setGeneric(name= "saveAFMImageAnalyser",
def= function(AFMImageAnalyser, AFMImage, exportDirectory) {
return(standardGeneric("saveAFMImageAnalyser"))
})
setMethod(f="saveAFMImageAnalyser", "AFMImageAnalyser",
definition= function(AFMImageAnalyser, AFMImage, exportDirectory) {
filename<-basename(AFMImage@fullfilename)
exportCsvFilename<-paste(filename,"AFMImageAnalyser.rda", sep="-")
exportCsvFullFilename<-paste(exportDirectory, exportCsvFilename, sep="/")
print(paste("saving", basename(exportCsvFullFilename)))
tryCatch({
newVariableName=paste(filename,"AFMImageAnalyser.rda", sep="-")
assign(newVariableName, AFMImageAnalyser)
save(list=c(newVariableName), file=exportCsvFullFilename)
}, error = function(e) {print("error",e)})
})
totalRMSRoughness<-function(AFMImage) {
sqrt(var(AFMImage@data$h))
}
setGeneric(name= "getRoughnessParameters",
def= function(AFMImage) {
return(standardGeneric("getRoughnessParameters"))
})
setMethod(f="getRoughnessParameters", "AFMImage",
definition= function(AFMImage) {
area=AFMImage@hscansize*AFMImage@vscansize
surfaceArea<- surfaceArea(matrix(AFMImage@data$h,nrow = AFMImage@lines,ncol = AFMImage@samplesperline),
cellx = AFMImage@hscansize/AFMImage@samplesperline, celly = AFMImage@vscansize/AFMImage@lines,
byCell = FALSE)
totalRMSRoughness_TotalRrms = sqrt(var(AFMImage@data$h))
MeanRoughness_Ra = mean(abs(AFMImage@data$h))
return(data.table(totalRMSRoughness_TotalRrms, MeanRoughness_Ra, area, surfaceArea))
})
checkIsotropy<-function(AFMImage, AFMImageAnalyser) {
print("checking isotropy...")
sampleFitPercentage<-3.43/100
variogramAnalysis<-AFMImageVariogramAnalysis(sampleFitPercentage)
if(!is.null(AFMImageAnalyser@updateProgress)) variogramAnalysis@updateProgress<-AFMImageAnalyser@updateProgress
variogramAnalysis@directionalVariograms<- calculateDirectionalVariograms(AFMImage=AFMImage, AFMImageVariogramAnalysis=variogramAnalysis)
AFMImageAnalyser@variogramAnalysis<-variogramAnalysis
print("done.")
return(AFMImageAnalyser)
}
checkNormality<- function(..., AFMImage) {
force(AFMImage)
fullfilename<-AFMImage@fullfilename
args<-names(list(...))
toPng<-c(match('pngfullfilename',args)!=-1)
toPdf<-c(match('pdffullfilename',args)!=-1)
qq <- checkNormalityQQ(AFMImage)
m <- checkNormalityDensity(AFMImage)
toFile<-FALSE
if (!is.na(toPng)) {
reportName<-paste(fullfilename, "-normality-checks",".png",sep="")
print(paste("saving", basename(reportName)))
png(reportName, width=1280, height=800, res=200)
toFile<-TRUE
}
if (!is.na(toPdf)) {
reportName<-paste(fullfilename, "-normality-checks",".pdf",sep="")
print(paste("saving", basename(reportName)))
pdf(reportName, width=11.69, height=8.27)
toFile<-TRUE
}
if (toFile) {
title<- paste("Normality tests for ",basename(fullfilename))
}else{
title<-"Normality tests"
}
grid.newpage()
pushViewport(viewport(layout = grid.layout(3, 2, heights = unit(c(0.5, 5, 0.5), "null"))))
print(qq, vp = viewport(layout.pos.row = 2, layout.pos.col = 1))
print(m, vp = viewport(layout.pos.row = 2, layout.pos.col = 2))
grid.text(title, vp = viewport(layout.pos.row = 1, layout.pos.col = 1:2))
other<-paste("mean=", mean(AFMImage@data$h), "- skewness=", moments::skewness(AFMImage@data$h))
grid.text(other, vp = viewport(layout.pos.row = 3, layout.pos.col = 1:2))
if (toFile) {
dev.off()
}
}
checkNormalityQQ<- function(AFMImage) {
h<-NULL
ggplot(data=AFMImage@data, mapping=aes(sample=h)) +
stat_qq() +
geom_abline(intercept = mean(AFMImage@data$h), slope = sd(AFMImage@data$h))
}
checkNormalityDensity<- function(AFMImage) {
h<-..density..<-NULL
ggplot(AFMImage@data, aes(x=h)) +
geom_histogram( aes(y=..density..), colour="black", fill="white") +
stat_function(fun = dnorm, args = list(mean = mean(AFMImage@data$h), sd = sd(AFMImage@data$h)))
}
getLibrariesVersions<-function() {
v<-data.table(installed.packages())
Package<-NULL
AFMPackage<-v[Package=="AFM",]
gstatPackage<-v[Package=="gstat",]
fractaldimPackage<-v[Package=="fractaldim",]
fftwtoolsPackage<-v[Package=="fftwtools",]
versions=data.table(lib=c("AFM",
"gstat",
"fractaldim",
"fftwtools"),
version=c(AFMPackage[1,]$Version,
gstatPackage[1,]$Version,
fractaldimPackage[1,]$Version,
fftwtoolsPackage[1,]$Version)
)
return(versions)
} |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.