code
stringlengths 1
13.8M
|
---|
summary.rmas <-
function (object, stage = NULL, harvest=FALSE, ...)
{
cosa <- object
if(length(names(cosa))>0){
if(harvest==FALSE) cosa<- cosa$vn else cosa <-cosa$harvest
}
nl <- length(cosa)
time <- dim(cosa[[1]])[2]
if (nl > 1) {
abundances <- sapply(cosa, function(x) apply(x, 2, sum))
if (!is.null(stage))
abundances <- sapply(cosa, function(x) x[stage, ])
summary <- apply(abundances, 1, function(x) c(min(x),
mean(x) - sd(x), mean(x), mean(x) + sd(x), max(x)))
summary <- t(summary)
summary <- data.frame(cbind(0:(time - 1), round(summary,
2)), row.names = 0:(time - 1))
names(summary) <- c("Time", "Minimum", "-1 S.D.", "Average",
"+1 S.D.", "Maximum")
}
if (nl == 1) {
abundances <- apply(cosa[[1]], 2, sum)
if (!is.null(stage))
abundances <- apply(cosa, function(x) x[stage, ])
summary <- cbind(0:(time - 1), abundances)
colnames(summary) <- c("Time", "Abundance")
}
summary <- data.frame(summary, row.names = NULL, check.names = FALSE)
class(summary) <- c("summary.rmas", class(summary))
warnold <- options("warn")
options(warn=-1)
plot(summary)
options(warn=warnold$warn)
return(summary)
} |
smartAlign2 = function(start, end, range, plot = FALSE) {
if(missing(end)) {
end = start[, 2]
start = start[, 1]
}
if(missing(range)) {
range = range(c(start, end))
}
if(0) {
qqcat("start <- c(@{toString(start)})\n")
qqcat("end <- c(@{toString(end)})\n")
}
if(sum(end - start) > range[2] - range[1]) {
mid = (start + end)/2
od = order(mid)
rk = rank(mid, ties.method = "random")
h = end[od] - start[od]
n = length(start)
mid_diff = numeric(n); mid_diff[1] = 0
mid_diff[2:n] = h[2:n]/2 + h[1:(n-1)]/2
mid_radius = sum(h) - h[n]/2 - h[1]/2
a_1 = range[1] + h[1]/2
a_n = range[2] - h[n]/2
a = a_1 + cumsum(mid_diff)/mid_radius * (a_n - a_1)
new_start = a - h/2
new_end = a + h/2
df = data.frame(start = new_start, end = new_end)
return(df[rk, , drop = FALSE])
}
ba = BoxArrange(start, end, range)
if(plot) ba$plot()
ba$box_pos()
}
box_overlap = function(x1, x2) {
start1 = x1$start
end1 = x1$end
start2 = x2$start
end2 = x2$end
if(end1 < start2) {
FALSE
} else if(end2 < start1) {
FALSE
} else {
TRUE
}
}
Box = setRefClass("Box",
fields = list(
start = "numeric",
end = "numeric",
new_start = "numeric",
new_end = "numeric",
height = "numeric",
mid = "numeric"
)
)
Box$methods(initialize = function(start, end) {
start <<- start
end <<- end
new_start <<- start
new_end <<- end
height <<- end - start
mid <<- (start + end)/2
})
BoxCluster = setRefClass("BoxCluster",
fields = list(
start = "numeric",
end = "numeric",
height = "numeric",
mid = "numeric",
boxes = "list"
)
)
BoxCluster$methods(add_box = function(box) {
if(inherits(box, "Box")) {
boxes <<- c(.self$boxes, list(box))
} else {
boxes <<- c(.self$boxes, box$boxes)
}
s = min(sapply(.self$boxes, function(b) b$start))
e = max(sapply(.self$boxes, function(b) b$end))
mid <<- (s + e)/2
height <<- e - s
start <<- s
end <<- e
invisible(NULL)
})
BoxCluster$methods(flatten = function(range) {
s = min(sapply(.self$boxes, function(b) b$start))
e = max(sapply(.self$boxes, function(b) b$end))
mid <<- (s + e)/2
height <<- sum(sapply(.self$boxes, function(b) b$height))
s2 = .self$mid - .self$height/2
e2 = .self$mid + .self$height/2
if(s2 < range[1]) {
s2 = range[1]
e2 = s2 + height
} else if(e2 > range[2]) {
e2 = range[2]
s2 = e2 - height
}
start <<- s2
end <<- e2
.self$update_box_new_pos()
})
BoxCluster$methods(update_box_new_pos = function() {
h = sapply(.self$boxes, function(b) b$height)
new_s = .self$start + cumsum(c(0, h[-length(h)]))
new_e = .self$start + cumsum(h)
bb = .self$boxes
for(i in seq_along(bb)) {
bb[[i]]$new_start = new_s[i]
bb[[i]]$new_end = new_e[i]
}
boxes <<- bb
})
BoxCluster$methods(move = function(x) {
start <<- .self$start + x
end <<- .self$end + x
mid <<- .self$mid + x
.self$update_box_new_pos()
invisible(NULL)
})
BoxCluster$methods(middle = function(original = TRUE) {
if(original) {
s = min(sapply(.self$boxes, function(b) b$start))
e = max(sapply(.self$boxes, function(b) b$end))
(s + e)/2
} else {
.self$mid
}
})
BoxCluster$methods(show = function(x) {
n = length(.self$boxes)
qqcat("@{n} box@{ifelse(n > 1, 'es', '')}\n")
qqcat("start: @{.self$start}\n")
qqcat("end: @{.self$end}\n")
qqcat("height: @{.self$height}\n")
})
BoxArrange = setRefClass("BoxArrange",
fields = list(
box_clusters = "list",
range = "numeric",
rank = "integer",
debug = "logical"
)
)
BoxArrange$methods(initialize = function(start, end, range = range(c(start, end)), debug = FALSE) {
if(sum(end - start) > range[2] - range[1]) {
stop()
}
boxes = list()
for(i in seq_along(start)) {
boxes[[i]] = Box(start = start[i], end = end[i])
}
mid = sapply(boxes, function(b) (b$start + b$end)/2)
boxes = boxes[order(mid)]
cl = list()
cl[[1]] = BoxCluster()
cl[[1]]$add_box(boxes[[1]])
i_cluster = 1
for(i in seq_along(boxes)[-1]) {
if(box_overlap(cl[[i_cluster]], boxes[[i]])) {
cl[[i_cluster]]$add_box(boxes[[i]])
} else {
i_cluster = i_cluster + 1
cl[[i_cluster]] = BoxCluster()
cl[[i_cluster]]$add_box(boxes[[i]])
}
}
for(i in seq_along(cl)) {
cl[[i]]$flatten(range)
}
box_clusters <<- cl
range <<- range
rank <<- rank(mid, ties.method = "random")
debug <<- debug
if(debug) {
.self$plot(main = "initialize")
}
.self$merge()
if(debug) {
.self$plot(main = "merge after initialization")
}
.self$adjust_to_range()
if(debug) {
.self$plot(main = "adjust to ranges")
}
.self$merge()
if(debug) {
.self$plot(main = "merge after adjusting to ranges")
}
})
BoxArrange$methods(merge = function() {
cl = .self$box_clusters
while(1) {
merged = FALSE
n_cluster = length(cl)
for(i in seq_len(n_cluster)[-1]) {
if(box_overlap(cl[[i]], cl[[i-1]])) {
cl[[i-1]]$add_box(cl[[i]])
cl[[i]] = cl[[i-1]]
cl[[i-1]] = NA
merged = TRUE
if(.self$debug) qqcat("cluster @{i-1} and @{i} are merged\n")
}
}
if(!merged) {
break
}
cl = cl[!sapply(cl, identical, NA)]
for(i in seq_along(cl)) {
cl[[i]]$flatten(.self$range)
}
}
box_clusters <<- cl
invisible(NULL)
})
BoxArrange$methods(adjust_to_range = function() {
cl = .self$box_clusters
for(i in seq_along(cl)) {
if(cl[[i]]$start < range[1]) {
cl[[i]]$move(range[1] - cl[[i]]$start)
}
if(cl[[i]]$end > range[2]) {
cl[[i]]$move(range[2] - cl[[i]]$end)
}
}
box_clusters <<- cl
.self$merge()
invisible(NULL)
})
BoxArrange$methods(n_cluster = function() {
length(.self$box_clusters)
})
BoxArrange$methods(box_pos = function(new = TRUE) {
if(new) {
pos_lt = lapply(.self$box_clusters, function(x) {
do.call(rbind, lapply(x$boxes, function(b) {
c(b$new_start, b$new_end)
}))
})
} else {
pos_lt = lapply(.self$box_clusters, function(x) {
do.call(rbind, lapply(x$boxes, function(b) {
c(b$start, b$end)
}))
})
}
pos = do.call(rbind, pos_lt)
pos[.self$rank, , drop = FALSE]
})
BoxArrange$methods(plot = function(main = "") {
pos1_lt = lapply(.self$box_clusters, function(x) {
do.call(rbind, lapply(x$boxes, function(b) {
c(b$start, b$end)
}))
})
pos2_lt = lapply(.self$box_clusters, function(x) {
do.call(rbind, lapply(x$boxes, function(b) {
c(b$new_start, b$new_end)
}))
})
n = length(pos1_lt)
oxpd = par("xpd")
par(xpd = NA)
graphics::plot(NULL, xlim = c(0, 4), ylim = range(c(.self$range, unlist(pos1_lt), unlist(pos2_lt))),
ann = FALSE, axes = FALSE)
for(i in seq_len(n)) {
pos1 = pos1_lt[[i]]
pos2 = pos2_lt[[i]]
col = add_transparency(i, 0.5)
rect(0.5, pos1[, 1], 1.5, pos1[, 2], col = col)
rect(2.5, pos2[, 1], 3.5, pos2[, 2], col = col)
segments(1.5, rowMeans(pos1), 2.5, rowMeans(pos2), col = i)
start = .self$box_clusters[[i]]$start
end = .self$box_clusters[[i]]$end
rect(2.5, start, 3.5, end, border = i, col = NA, lwd = 2)
}
text(1, -0.02, "original", adj = c(0.5, 1))
text(3, -0.02, "adjusted", adj = c(0.5, 1))
rect(0, .self$range[1], 4, .self$range[2], col = NA, border = "black")
title(qq("@{main}, @{n} clusters"))
par(xpd = oxpd)
readline(prompt = "enter to continue")
}) |
test_that("str_alphord_nums works", {
strings <- paste0("abc", 1:12)
expect_equal(
str_alphord_nums(strings),
str_c("abc", c(paste0(0, 1:9), 10:12))
)
expect_equal(
str_alphord_nums(c("01abc9def55", "5abc10def777", "99abc4def4")),
c("01abc09def055", "05abc10def777", "99abc04def004")
)
expect_equal(
str_alphord_nums(c("abc9def55", "abc10def7")),
c("abc09def55", "abc10def07")
)
expect_equal(
str_alphord_nums(c("abc9def55", "abc10def777", "abc4def4")),
c("abc09def055", "abc10def777", "abc04def004")
)
expect_error(
str_alphord_nums(c("abc9def55", "abc9def5", "abc10xyz7")),
paste(
"The non-number bits of every string must be the",
"same.\n * The first pair of strings with",
"different non-number bits are strings 1 and",
"3.\n * They are \"abc9def55\" and \"abc10xyz7\""
),
fixed = TRUE
)
expect_error(
str_alphord_nums(c("abc9def55", "9abc10def7")),
"The strings must all have the same number of numbers."
)
expect_error(
str_alphord_nums(c("0abc9def55g", "abc10def7g0")),
paste0(
"It should either be the case that all strings start\\s?",
"with.+numbers or that none of them do.+String number 1\\s?",
"\"0abc9def55g\" does\\s?",
"start with a number.+whereas string number 2\\s?",
"\"abc10def7g0\" does\\s?",
"not, start.+with a number."
)
)
expect_error(
str_alphord_nums("abc"),
"Some of the input strings have no numbers in them."
)
expect_equal(str_alphord_nums(1:10), c(paste0(0, 1:9), 10))
expect_equal(str_alphord_nums(character()), character())
}) |
context("Testing create_version_number()")
date <- Sys.Date()
datetime <- Sys.time()
date_1 <- "01/01/2020"
date_2 <- "01-01-2020"
date_3 <- "01012020"
date_4 <- "20200101"
date_5 <- "01.01.2020"
date_6 <- "2020.01.01"
version_1 <- "0.1.0"
version_2 <- "0.2.0"
version_3 <- "1.1.1"
version_4 <- "Inf"
version_5 <- "NaN"
version_6 <- "100000.100000.100000"
output <- "0.20200101.0"
output_1 <- "100000.20200101.100000"
test_that("Sys.Date and Sys.time produce correct results", {
testthat::expect_equal(create_version_number(date, "0.1.0"),
create_version_number(date, "0.1.0"))
testthat::expect_equal(create_version_number(datetime, "0.1.0"),
create_version_number(datetime, "0.1.0"))
testthat::expect_equal(create_version_number(datetime, "0.1.0"),
create_version_number(date, "0.1.0"))
})
test_that("create_version_number output is as expected", {
testthat::expect_equal(create_version_number(date_1, version_1),
create_version_number(date_2, version_1))
testthat::expect_equal(create_version_number(date_5, version_1),
create_version_number(date_6, version_1))
testthat::expect_warning(
testthat::expect_equal(create_version_number(date_3, version_1),
create_version_number(date_4, version_1)))
testthat::expect_equal(create_version_number(date_1, version_1), output)
testthat::expect_equal(create_version_number(date_2, version_1), output)
testthat::expect_equal(create_version_number(date_4, version_1), output)
testthat::expect_equal(create_version_number(date_5, version_1), output)
testthat::expect_equal(create_version_number(date_6, version_1), output)
testthat::expect_equal(create_version_number(), version_1)
testthat::expect_equal(create_version_number(date_4, "0"), output)
testthat::expect_equal(create_version_number(date_4, "0.0"), output)
testthat::expect_equal(create_version_number(date_4, major = "0",
minor = "0"), output)
})
test_that("create_version_number validation works as expected", {
testthat::expect_error(create_version_number("01-01-20", version_1))
testthat::expect_error(create_version_number("20-01-01", version_1))
testthat::expect_error(create_version_number(date, version_4))
testthat::expect_error(create_version_number(date, version_5))
testthat::expect_error(create_version_number("200101", version_1))
testthat::expect_error(create_version_number("18150101", version_1))
testthat::expect_warning(create_version_number("01022020", version_1))
}) |
KernSec <- function(
x,
xgridsize=100,
xbandwidth,
range.x
)
{
deadspace <- 1.5
flag.type.II <- 0
flag.range <- 0
if(missing(xbandwidth))
{
xbandwidths <- bandwidthselect(as.vector(na.omit(x)), bandwidths=FALSE)
if(missing(range.x))
{
xords <- rangeselect(x, rnge=FALSE, as.integer(xgridsize), xbandwidths, deadspace)
if(any(is.na(x)) == TRUE){warning("NAs in x - removing: "); x <- as.vector(na.omit(x))}
flag.range <- 1
}
if((! flag.range) && (! missing(range.x)) && (length(range.x) == 2))
{
xords <- rangeselect(x, rnge=range.x, as.integer(xgridsize), xbandwidths, deadspace)
if(any(is.na(x)) == TRUE){warning("NAs in x - removing: "); x <- as.vector(na.omit(x))}
flag.range <- 1
}
if((! flag.range) && (! missing(range.x)) && (length(range.x) > 5))
{
xords <- range.x
if(any(is.na(xords)) == TRUE){warning("NAs in range.x - removing: "); x <- as.vector(na.omit(xords))}
if(any(is.na(x)) == TRUE){warning("NAs in x - removing: "); x <- as.vector(na.omit(x))}
flag.range <- 1
}
}
if((! missing(xbandwidth)) && (length(xbandwidth) == 1))
{
xbandwidths <- bandwidthselect(as.vector(na.omit(x)), bandwidths=xbandwidth)
if(missing(range.x))
{
xords <- rangeselect(x, rnge=FALSE, as.integer(xgridsize), xbandwidths, deadspace)
if(any(is.na(x)) == TRUE){warning("NAs in x - removing: "); x <- as.vector(na.omit(x))}
flag.range <- 1
}
if((! flag.range) && (! missing(range.x)) && (length(range.x) == 2))
{
xords <- rangeselect(x, rnge=range.x, as.integer(xgridsize), xbandwidths, deadspace)
if(any(is.na(x)) == TRUE){warning("NAs in x - removing: "); x <- as.vector(na.omit(x))}
flag.range <- 1
}
if((! flag.range) && (! missing(range.x)) && (length(range.x) > 5))
{
xords <- range.x
if(any(is.na(xords)) == TRUE){warning("NAs in range.x - removing: "); x <- as.vector(na.omit(xords))}
if(any(is.na(x)) == TRUE){warning("NAs in x - removing: "); x <- as.vector(na.omit(x))}
flag.range <- 1
}
}
if((! missing(xbandwidth)) && (length(xbandwidth) == length(x)))
{
xbandwidths <- xbandwidth
z <- data.frame(x, xbandwidth)
if(any(is.na(z)) == TRUE){warning("NAs in bandwidths or/and data - removing: "); z <- na.omit(z)}
x <- z$x; xbandwidths <- z$xbandwidth
if(missing(range.x))
{
xords <- rangeselect(x, rnge=FALSE, as.integer(xgridsize), xbandwidths, deadspace)
flag.range <- 1
}
if((! flag.range) && (! missing(range.x)) && (length(range.x) == 2))
{
xords <- rangeselect(x, rnge=range.x, as.integer(xgridsize), xbandwidths, deadspace)
flag.range <- 1
}
if((! flag.range) && (! missing(range.x)) && (length(range.x) > 5))
{
xords <- range.x
if(any(is.na(xords)) == TRUE){warning("NAs in range.x - removing: "); x <- as.vector(na.omit(xords))}
flag.range <- 1
}
}
if((! missing(xbandwidth)) && (! missing(range.x)) && (length(xbandwidth) == length(range.x)))
{
flag.type.II <- 1
z <- data.frame(range.x, xbandwidth)
if(any(is.na(z)) == TRUE){warning("NAs in bandwidths or/and ordinates - removing: "); z <- na.omit(z)}
xords <- z$range.x; xbandwidths <- z$xbandwidth
if(any(is.na(x)) == TRUE){warning("NAs in x - removing: "); x <- as.vector(na.omit(x))}
flag.range <- 1
}
if((! missing(xbandwidth)) && (length(xbandwidth) == xgridsize))
{
flag.type.II <- 1
if(any(is.na(x)) == TRUE){warning("NAs in x - removing: "); x <- as.vector(na.omit(x))}
xbandwidths <- xbandwidth
if(any(is.na(xbandwidths)) == TRUE){warning("NAs in bandwidths - removing: "); xbandwidths <- as.vector(na.omit(xbandwidth))}
if(missing(range.x))
{
xords <- rangeselect(x, rnge=FALSE, as.integer(xgridsize), xbandwidths, deadspace)
flag.range <- 1
}
if((! flag.range) && (! missing(range.x)) && (length(range.x) == 2))
{
xords <- rangeselect(x, rnge=range.x, as.integer(xgridsize), xbandwidths, deadspace)
flag.range <- 1
}
}
if((! missing(xbandwidth)) && (! missing(range.x)))
{if((length(x) == length(range.x)) && (length(x) == length(xbandwidth))){stop("too many inputs of same length")}}
if(! flag.range){stop("undefined problem with input")}
xordslen <- length(xords)
est <- rep(0, xordslen)
out <- .C(
"GenKernSec",
as.double(x),
as.integer(length(x)),
as.double(xords),
as.double(xbandwidths),
as.double(est),
as.integer(xordslen),
as.integer(flag.type.II),
PACKAGE="GenKern"
)
yden <- out[[5]]
op <- list(xords, yden); names(op) <- c("xords", "yden")
return(op)
} |
reord <-
function(...)
corReorder(...) |
possible_observed_comparisons <- function(drug_names, obs_comp) {
if (length(drug_names) < 3) {
stop("This function is *not* relevant for a pairwise meta-analysis",
call. = FALSE)
}
nt <- length(drug_names)
poss_pair_comp <- data.frame(t(combn(1:nt, 2))[, 2], t(combn(1:nt, 2))[, 1])
poss_pair_comp$comp <- paste0(poss_pair_comp[, 1], "vs", poss_pair_comp[, 2])
colnames(poss_pair_comp) <- c("treat1", "treat2", "comp")
observed_comp <- poss_pair_comp[is.element(poss_pair_comp$comp, obs_comp), ]
for (i in sort(unique(unlist(poss_pair_comp[, 1])))) {
poss_pair_comp[poss_pair_comp$treat1 == i, 1] <- drug_names[i]
}
for (i in sort(unique(unlist(poss_pair_comp[, 2])))) {
poss_pair_comp[poss_pair_comp$treat2 == i, 2] <- drug_names[i]
}
poss_pair_comp$comp_name <-
paste(poss_pair_comp[, 1], "vs", poss_pair_comp[, 2])
for (i in sort(unique(unlist(observed_comp[, 1])))) {
observed_comp[observed_comp$treat1 == i, 1] <- drug_names[i]
}
for (i in sort(unique(unlist(observed_comp[, 2])))) {
observed_comp[observed_comp$treat2 == i, 2] <- drug_names[i]
}
observed_comp$comp_name <- paste(observed_comp[, 1], "vs", observed_comp[, 2])
return(list(poss_comp = data.frame(ID = seq_len(length(poss_pair_comp$comp)),
poss_pair_comp),
obs_comp = observed_comp))
} |
lrMix = function(profiles, Freqs){
N = length(profiles)
nLoci = length(Freqs$loci)
results = matrix(0, nrow = N, ncol = nLoci)
for(i in 1:N){
results[i,] = .LRmix(profiles[[i]][[1]],
profiles[[i]][[2]],
Freqs$freqs)
}
colnames(results) = Freqs$loci
return(results)
} |
library(survival)
fit <- survfit(Surv(futime, fustat) ~rx, data=ovarian)
temp1 <- summary(fit)
temp2 <- summary(fit, scale=365.25)
all.equal(temp1$time/365.25, temp2$time)
all.equal(temp1$rmean.endtime/365.25, temp2$rmean.endtime)
all.equal(temp1$table[,5:6]/365.25, temp2$table[,5:6])
temp <- names(fit)
temp <- temp[!temp %in% c("time", "table", "rmean.endtime")]
all.equal(temp1[temp], temp2[temp])
temp1 <- summary(fit, rmean=300)
temp2 <- summary(fit, rmean=300, scale=365.25)
all.equal(temp1$time/365.25, temp2$time)
all.equal(temp1$rmean.endtime/365.25, temp2$rmean.endtime)
all.equal(temp1$table[,5:6]/365.25, temp2$table[,5:6])
all.equal(temp1[temp], temp2[temp])
etime <- with(mgus2, ifelse(pstat==0, futime, ptime))
event <- with(mgus2, ifelse(pstat==0, 2*death, 1))
event <- factor(event, 0:2, labels=c("censor", "pcm", "death"))
mfit <- survfit(Surv(etime, event) ~ sex, mgus2)
temp1 <- summary(mfit)
temp2 <- summary(mfit, scale=12)
all.equal(temp1$time/12, temp2$time)
all.equal(temp1$rmean.endtime/12, temp2$rmean.endtime)
all.equal(temp1$table[,3]/12, temp2$table[,3])
temp <- names(temp1)
temp <- temp[!temp %in% c("time", "table", "rmean.endtime")]
all.equal(temp1[temp], temp2[temp])
temp1 <- summary(mfit, rmean=240)
temp2 <- summary(mfit, rmean=240, scale=12)
all.equal(temp1$time/12, temp2$time)
all.equal(temp1$rmean.endtime/12, temp2$rmean.endtime)
all.equal(temp1$table[,3]/12, temp2$table[,3])
all.equal(temp1[temp], temp2[temp])
m1 <- mfit[1,]
m2 <- mfit[2,]
s1 <- summary(m1, times=c(0,100, 200, 300))
s2 <- summary(m2, times=c(0,100, 200, 300))
s3 <- summary(mfit, times=c(0,100, 200, 300))
tfun <- function(what) {
if (is.matrix(s3[[what]]))
all.equal(rbind(s1[[what]], s2[[what]]), s3[[what]])
else all.equal(c(s1[[what]], s2[[what]]), s3[[what]])
}
tfun('n')
tfun("time")
tfun("n.risk")
tfun("n.event")
tfun("n.censor")
tfun("pstate")
all.equal(rbind(s1$p0, s2$p0), s3$p0, check.attributes=FALSE)
tfun("std.err")
tfun("lower")
tfun("upper")
temp <- rbind(0, 0,
colSums(m1$n.event[m1$time <= 100,]),
colSums(m1$n.event[m1$time <= 200, ]),
colSums(m1$n.event[m1$time <= 300, ]))
all.equal(s1$n.event, apply(temp,2, diff))
temp <- rbind(0, 0,
colSums(m2$n.event[m2$time <= 100,]),
colSums(m2$n.event[m2$time <= 200, ]),
colSums(m2$n.event[m2$time <= 300, ]))
all.equal(s2$n.event, apply(temp,2, diff))
temp <- c(0, 0,sum(m1$n.censor[m1$time <= 100]),
sum(m1$n.censor[m1$time <= 200]),
sum(m1$n.censor[m1$time <= 300]))
all.equal(s1$n.censor, diff(temp))
s1 <- summary(fit[1], times=c(0, 200, 400, 600))
s2 <- summary(fit[2], times=c(0, 200, 400, 600))
s3 <- summary(fit, times=c(0, 200, 400, 600))
tfun('n')
tfun("time")
tfun("n.risk")
tfun("n.event")
tfun("n.censor")
tfun("surv")
tfun("std.err")
tfun("lower")
tfun("upper")
f2 <- fit[2]
temp <- c(0, 0, sum(f2$n.event[f2$time <= 200]),
sum(f2$n.event[f2$time <= 400]),
sum(f2$n.event[f2$time <= 600]))
all.equal(s2$n.event, diff(temp))
f1 <- fit[1]
temp <- c(0, 0,sum(f1$n.censor[f1$time <= 200]),
sum(f1$n.censor[f1$time <= 400]),
sum(f1$n.censor[f1$time <= 600]))
all.equal(s1$n.censor, diff(temp))
s1 <- summary(fit[1])
s2 <- summary(fit[2])
s3 <- summary(fit)
tfun('n')
tfun("time")
tfun("n.risk")
tfun("n.event")
tfun("n.censor")
tfun("surv")
tfun("std.err")
tfun("lower")
tfun("upper")
s1 <- summary(mfit[1,])
s2 <- summary(mfit[2,])
s3 <- summary(mfit)
tfun('n')
tfun("time")
tfun("n.risk")
tfun("n.event")
tfun("n.censor")
tfun("surv")
tfun("std.err")
tfun("lower")
tfun("upper") |
get_type <- function(x, strict = FALSE) {
if (!is.phone(x)) stop("`x` must be a vector of class `phone`.", call. = FALSE)
phone_util <- .get_phoneNumberUtil()
out <- phone_apply(x, function(pn) {
.jstrVal(.jcall(phone_util,
"Lcom/google/i18n/phonenumbers/PhoneNumberUtil$PhoneNumberType;",
"getNumberType",
pn))
}, character(1))
if (strict) out[!is_valid(x)] <- NA_character_
out
}
get_supported_types <- function() {
.get_phoneNumberType()
}
get_types_for_region <- function(x) {
validate_phone_region(x)
lapply(x, .getSupportedTypesForRegion)
} |
volume_calculation <- function(point_counts_raw, point_density, quantile, verbose=TRUE)
{
if (verbose==TRUE) {cat('Beginning volume calculation... ')}
tabulated_counts <- cbind((1:max(point_counts_raw)), (tabulate(point_counts_raw)))
if (verbose==TRUE) {cat('done. \n')}
weighted_count = tabulated_counts[,2] / tabulated_counts[,1]
cumulatesum = cumsum(weighted_count)/sum(weighted_count)
qindex = head(which(cumulatesum >= quantile),n=1)
qval = c(0,cumulatesum)[qindex]
final_volume = sum(weighted_count[qindex:length(weighted_count)]) / point_density
return(list(final_volume = final_volume, index_out = qindex, quantile_obtained = qval))
} |
utils::globalVariables(c("k","jaccard","min.agreement","community_coexist","community_membership","community_membership_boot",
"boost.community","scheme2.module","agreement","scheme2.exp","network.stability"))
threshold.select <- function(data.input,threshold.seq, B=20,
cor.method,large.size,
no_cores=8,PermuNo = 10,
scheme_2 = FALSE){
myFuncCmp <- cmpfun(network.stability)
result<-c()
for (i in 1:length(threshold.seq)) {
k=threshold.seq[i]
result[[i]]<-myFuncCmp(data.input=data.input,threshold=k, B=B,
PermuNo = PermuNo,
cor.method=cor.method,large.size=large.size,
scheme_2 = scheme_2)
}
if(length(result)==0)print('Something wrong')
gc()
clst.ref<-list()
obs_wise<-list()
overall<-c()
mscore<-list()
mscore.exp<-list()
minvalue<-c()
obsvalue<-list()
expvalue<-c()
ref<-c()
data<-list()
graph<-list()
adjacency<-list()
if(scheme_2==TRUE){
data2<-list()
graph2<-list()
adjacency2<-list()
}
for(i in 1:length(result)){
clst.ref[[i]]<-result[[i]]$stabilityresult$membership
obs_wise[[i]]<-result[[i]]$stabilityresult$obs_wise
overall[i]<-result[[i]]$stabilityresult$overall
ref[i]<-result[[i]]$stabilityresult$ref
mscore[[i]]<-result[[i]]$modularityresult$mscore
mscore.exp[[i]]<-result[[i]]$modularityresult$mscore.exp
minvalue[i]<-result[[i]]$jaccardresult$min
obsvalue[[i]]<-result[[i]]$jaccardresult$obsvalue
expvalue[i]<-result[[i]]$jaccardresult$expvalue
data[[i]]<-result[[i]]$originalinformation$data
graph[[i]]<-result[[i]]$originalinformation$graph
adjacency[[i]]<-result[[i]]$originalinformation$adjacency
if(scheme_2==TRUE){
data2[[i]]<-result[[i]]$originalinformation$data2
graph2[[i]]<-result[[i]]$originalinformation$graph2
adjacency2[[i]]<-result[[i]]$originalinformation$adjacency2
}
}
stabilityresult<-list()
stabilityresult$membership <- clst.ref
stabilityresult$obs_wise <- obs_wise
stabilityresult$overall <- overall
stabilityresult$ref<- ref
modularityresult<-list()
modularityresult$mscore=mscore
modularityresult$mscore.exp=mscore.exp
jaccardresult<-list()
jaccardresult$min=minvalue
jaccardresult$obsvalue=obsvalue
jaccardresult$expvalue=expvalue
originalinformation<-list()
originalinformation$data=data
originalinformation$graph=graph
originalinformation$adjacency=adjacency
if(scheme_2==TRUE){
originalinformation$data2=data2
originalinformation$graph2=graph2
originalinformation$adjacency2=adjacency2
}
result<-list(jaccardresult=jaccardresult,
stabilityresult=stabilityresult,
modularityresult=modularityresult,
originalinformation=originalinformation,
threshold=threshold.seq)
return(result)
} |
svgviewr.circles <- function(x, file=NULL, y=NULL, col=NULL, col.fill="black",
col.stroke="black", z.index=0, layer="", label="", r=1, lwd=2, opacity.stroke=1,
opacity.fill=1, append=TRUE, tag.name="point"){
return_val <- svgviewr.points(x, file, y, type='p', col, col.fill,
col.stroke, z.index, layer, label, cex=r, lwd, opacity.stroke,
opacity.fill, append, tag.name="circle")
return_val
} |
NULL
if(getRversion() >= "2.15.1") {
utils::globalVariables(c("id", "subject_impute_futility",
"subject_impute_success", "treatment"))
} |
PTaxes <-
function( strike,dip,rake)
{
Vnorm <-function(X){ return( sqrt(sum(X^2)) ) }
N = length(strike)
n.1 =matrix(ncol=3, nrow=N)
u.1 =matrix(ncol=3, nrow=N)
P.osa=matrix(ncol=3, nrow=N)
T.osa=matrix(ncol=3, nrow=N)
P.azimuth= rep(NA, N)
T.azimuth= rep(NA, N)
T.theta= rep(NA, N)
P.theta= rep(NA, N)
P.x= rep(NA, N)
P.y= rep(NA, N)
T.x= rep(NA, N)
T.y= rep(NA, N)
n.1[,1] = -sin(dip*pi/180)*sin(strike*pi/180)
n.1[,2] = sin(dip*pi/180)*cos(strike*pi/180)
n.1[,3] = -cos(dip*pi/180)
u.1[,1] = cos(rake*pi/180)*cos(strike*pi/180) +
cos(dip*pi/180)*sin(rake*pi/180)*sin(strike*pi/180)
u.1[,2] = cos(rake*pi/180)*sin(strike*pi/180) -
cos(dip*pi/180)*sin(rake*pi/180)*cos(strike*pi/180)
u.1[,3] = -sin(rake*pi/180)*sin(dip*pi/180)
projekce = -1
for ( i in 1 : N )
{
P.osa[i,] = (n.1[i,]-u.1[i,])/Vnorm(n.1[i,]-u.1[i,])
T.osa[i,] = (n.1[i,]+u.1[i,])/Vnorm(n.1[i,]+u.1[i,])
if (P.osa[i,3]>0) { P.osa[i,1]=-P.osa[i,1];
P.osa[i,2]=-P.osa[i,2];
P.osa[i,3]=-P.osa[i,3] }
if (T.osa[i,3]>0) { T.osa[i,1]=-T.osa[i,1];
T.osa[i,2]=-T.osa[i,2];
T.osa[i,3]=-T.osa[i,3] }
fi = atan(abs(P.osa[i,1]/P.osa[i,2]))*180/pi
if (P.osa[i,1]>0 & P.osa[i,2]>0) { P.azimuth[i] = fi }
if (P.osa[i,1]>0 & P.osa[i,2]<0) { P.azimuth[i] = 180-fi }
if (P.osa[i,1]<0 & P.osa[i,2]<0) { P.azimuth[i] = fi+180 }
if (P.osa[i,1]<0 & P.osa[i,2]>0) { P.azimuth[i] = 360-fi }
P.theta[i] = acos(abs(P.osa[i,3]))*180/pi
fi = atan(abs(T.osa[i,1]/T.osa[i,2]))*180/pi
if (T.osa[i,1]>0 & T.osa[i,2]>0){ T.azimuth[i] = fi }
if (T.osa[i,1]>0 & T.osa[i,2]<0){ T.azimuth[i] = 180-fi }
if (T.osa[i,1]<0 & T.osa[i,2]<0){ T.azimuth[i] = fi+180 }
if (T.osa[i,1]<0 & T.osa[i,2]>0){ T.azimuth[i] = 360-fi }
T.theta[i] = acos(abs(T.osa[i,3]))*180/pi
P.x[i] = sqrt(2.)*projekce*sin(P.theta[i]*pi/360)*sin(P.azimuth[i]*pi/180)
P.y[i] = sqrt(2.)*projekce*sin(P.theta[i]*pi/360)*cos(P.azimuth[i]*pi/180)
T.x[i] = sqrt(2.)*projekce*sin(T.theta[i]*pi/360)*sin(T.azimuth[i]*pi/180)
T.y[i] = sqrt(2.)*projekce*sin(T.theta[i]*pi/360)*cos(T.azimuth[i]*pi/180)
}
points(P.y,P.x,col='green')
text(P.y,P.x,labels='P', pos=3)
points(T.y,T.x,col='green', pch=3)
text(T.y,T.x,labels='T', pos=4)
return(NULL)
} |
corr_dist <- function(method) {
function(x) as.dist(1 - cor(t(x), method = method))
}
pearson <- corr_dist("pearson")
spearman <- corr_dist("spearman")
kendall <- corr_dist("kendall") |
blockSim = function(N, Freqs, rel = "UN", ibsthresh = NULL, kithresh = NULL,
code = 1, falseNeg = TRUE, BlockSize = N/10, showProgress = FALSE){
rel = toupper(rel)
if(!grepl("(UN|FS|PC)", rel)){
stop("rel must be one of 'UN', 'FS' or 'PC'")
}
nBlocks = N / BlockSize
if(is.null(ibsthresh) & is.null(kithresh))
stop("You must specify one or both of ibsthresh or kithresh")
nResults = 0
if(is.null(ibsthresh) & !is.null(kithresh)){
nResults = length(kithresh)
ibsthresh = rep(0, nResults)
}else if(is.null(kithresh) & !is.null(ibsthresh)){
nResults = length(ibsthresh)
kithresh = rep(0, nResults)
}else{
if(length(ibsthresh) != length(kithresh)){
stop("ibsthresh and kithresh must be the same length")
}else{
nResults = length(ibsthresh)
}
}
if(nResults == 0)
stop("Nothing to count")
nTotal = rep(0, nResults)
if(showProgress){
pb = txtProgressBar(min = 0, max = nBlocks, style = 3)
}
if(rel == "UN"){
for(block in 1:nBlocks){
Prof1 = randomProfiles(Freqs$freqs, BlockSize)
Prof2 = randomProfiles(Freqs$freqs, BlockSize)
count = blockStatCounts(Prof1, Prof2, BlockSize, Freqs$freqs,
code, falseNeg, ibsthresh, kithresh, nResults)
nTotal = nTotal + count
if(showProgress){
setTxtProgressBar(pb, block)
}
}
}else if(rel == "FS"){
for(block in 1:nBlocks){
Prof1 = randomProfiles(Freqs$freqs, BlockSize)
Prof2 = randomSibs(Prof1, Freqs$freqs, BlockSize)
count = blockStatCounts(Prof1, Prof2, BlockSize, Freqs$freqs,
code, falseNeg, ibsthresh, kithresh, nResults)
nTotal = nTotal + count
if(showProgress){
setTxtProgressBar(pb, block)
}
}
}else if(rel == "PC"){
for(block in 1:nBlocks){
Prof1 = randomProfiles(Freqs$freqs, BlockSize)
Prof2 = randomChildren(Prof1, Freqs$freqs, BlockSize)
count = blockStatCounts(Prof1, Prof2, BlockSize, Freqs$freqs,
code, falseNeg, ibsthresh, kithresh, nResults)
nTotal = nTotal + count
if(showProgress){
setTxtProgressBar(pb, block)
}
}
}
if(showProgress){
close(pb)
}
return(list(nTotal = nTotal, N = N, p = nTotal / N))
} |
rand_forest <-
function(mode = "unknown", engine = "ranger", mtry = NULL, trees = NULL, min_n = NULL) {
args <- list(
mtry = enquo(mtry),
trees = enquo(trees),
min_n = enquo(min_n)
)
new_model_spec(
"rand_forest",
args = args,
eng_args = NULL,
mode = mode,
method = NULL,
engine = engine
)
}
print.rand_forest <- function(x, ...) {
cat("Random Forest Model Specification (", x$mode, ")\n\n", sep = "")
model_printer(x, ...)
if(!is.null(x$method$fit$args)) {
cat("Model fit template:\n")
print(show_call(x))
}
invisible(x)
}
update.rand_forest <-
function(object,
parameters = NULL,
mtry = NULL, trees = NULL, min_n = NULL,
fresh = FALSE, ...) {
eng_args <- update_engine_parameters(object$eng_args, ...)
if (!is.null(parameters)) {
parameters <- check_final_param(parameters)
}
args <- list(
mtry = enquo(mtry),
trees = enquo(trees),
min_n = enquo(min_n)
)
args <- update_main_parameters(args, parameters)
if (fresh) {
object$args <- args
object$eng_args <- eng_args
} else {
null_args <- map_lgl(args, null_value)
if (any(null_args))
args <- args[!null_args]
if (length(args) > 0)
object$args[names(args)] <- args
if (length(eng_args) > 0)
object$eng_args[names(eng_args)] <- eng_args
}
new_model_spec(
"rand_forest",
args = object$args,
eng_args = object$eng_args,
mode = object$mode,
method = NULL,
engine = object$engine
)
}
translate.rand_forest <- function(x, engine = x$engine, ...) {
if (is.null(engine)) {
message("Used `engine = 'ranger'` for translation.")
engine <- "ranger"
}
x <- translate.default(x, engine, ...)
arg_vals <- x$method$fit$args
if (x$engine == "spark") {
if (x$mode == "unknown") {
rlang::abort(
glue::glue("For spark random forests models, the mode cannot ",
"be 'unknown' if the specification is to be translated.")
)
} else {
arg_vals$type <- x$mode
}
if (any(names(arg_vals) == "feature_subset_strategy") &&
isTRUE(is.numeric(quo_get_expr(arg_vals$feature_subset_strategy)))) {
arg_vals$feature_subset_strategy <-
paste(quo_get_expr(arg_vals$feature_subset_strategy))
}
}
if (engine == "ranger") {
if (any(names(arg_vals) == "importance")) {
if (isTRUE(is.logical(quo_get_expr(arg_vals$importance)))) {
rlang::abort("`importance` should be a character value. See ?ranger::ranger.")
}
}
if (x$mode == "classification" && !any(names(arg_vals) == "probability")) {
arg_vals$probability <- TRUE
}
}
if (any(names(arg_vals) == "mtry") & engine != "cforest") {
arg_vals$mtry <- rlang::call2("min_cols", arg_vals$mtry, expr(x))
}
if (any(names(arg_vals) == "mtry") & engine == "cforest") {
arg_vals$mtry <- rlang::call2("min_cols", arg_vals$mtry, expr(data))
}
if (any(names(arg_vals) == "min.node.size")) {
arg_vals$min.node.size <-
rlang::call2("min_rows", arg_vals$min.node.size, expr(x))
}
if (any(names(arg_vals) == "minsplit" & engine == "cforest")) {
arg_vals$minsplit <-
rlang::call2("min_rows", arg_vals$minsplit, expr(data))
}
if (any(names(arg_vals) == "nodesize")) {
arg_vals$nodesize <-
rlang::call2("min_rows", arg_vals$nodesize, expr(x))
}
if (any(names(arg_vals) == "min_instances_per_node")) {
arg_vals$min_instances_per_node <-
rlang::call2("min_rows", arg_vals$min_instances_per_node, expr(x))
}
x$method$fit$args <- arg_vals
x
}
check_args.rand_forest <- function(object) {
invisible(object)
} |
card_pieces <- function(title, text, image, link, footer, header,
layout, border, corners) {
title <- make_title(title, text)
text <- make_text(text, title)
image <- make_image(image, layout, corners, border)
footer <- make_footer(footer, corners, border)
header <- make_header(header, corners, border)
if(!is_na(link)) {
title <- htmltools::a(title, href = link)
image <- htmltools::a(image, href = link, style = image_link_style())
}
return(list(title = title, text = text, image = image,
footer = footer, header = header))
}
make_title <- function(title, text) {
if(is_na(title)) return(NULL)
return(htmltools::h5(
title,
class = title_class(!is_na(text))
))
}
make_text <- function(text, title) {
if(is_na(text)) return(NULL)
return(htmltools::p(
text,
class = text_class(!is_na(title))
))
}
make_image <- function(image, layout, corners, border) {
if(is_na(image)) return(NULL)
return(htmltools::img(
src = image,
class = image_class(layout),
style = image_style(corners, border, layout)
))
}
make_footer <- function(footer, corners, border) {
if(is_na(footer)) return(NULL)
return(htmltools::div(
footer,
class = footer_class(),
style = footer_style(corners, border)
))
}
make_header <- function(header, corners, border) {
if(is_na(header)) return(NULL)
return(htmltools::div(
header,
class = header_class(),
style = header_style(corners, border)
))
} |
`colwheel` <-
function(v=1, BACK="black")
{
if(missing(v)) { v=1 }
if(missing(BACK)) { BACK="white" }
opar = par(no.readonly=TRUE)
require(RPMG)
labs = c("DONE", "REFRESH", "SHOW", "CLEAR", "BACK.BW", "BACK", "CHANGEV")
changev<-function(g, TE="Click in Bar for change of v")
{
pct1 = .25
pct2 = .35
u = par("usr")
x = c(u[1] , u[2])
y = c(u[3] , u[4])
curx =
x = c(x[1]+pct1*diff(x), x[2]-pct1*diff(x))
y = c(y[1]+pct2*diff(y), y[2]-pct2*diff(y))
rect(x[1], y[1], x[2], y[2], col=rgb(1,.7, .7), border="blue", lwd=2)
text(x[1], mean(y), labels=0, pos=4)
text(x[2], mean(y), labels=1, pos=2)
curx = x[1] + diff(x)*g$v
text(mean(x), mean(y), TE)
segments(curx, y[1] , curx, y[2] , col='red', lwd=2)
L = locator(1, type="p" )
new = (L$x-x[1])/diff(x)
if(new>1) new = 1
if(new<0) new = 0
invisible(new)
}
NLABS = length(labs)
NOLAB = NLABS +1000
pchlabs = c(rep(1,length(labs)))
if(identical(BACK, "black"))
{
cmain = rgb(.7,.7,.7)
par(bg=rgb(0.1,0.1,0.1), fg=rgb(1,1,1), col.axis=rgb(1,1,1), col.lab=rgb(1,1,1), col.main=cmain , col.sub=rgb(1,1,1) )
colabs = c(rep('white',length(labs)))
}
else
{
cmain = rgb(1-.7, 1-.7, 1-.7)
par(bg=rgb(1,1,1), fg=rgb(0,0,0),col.axis=rgb(0,0,0),col.lab=rgb(0,0,0), col.main=cmain ,col.sub=rgb(0,0,0) )
colabs = c(rep('black',length(labs)))
}
BIGMESH = VVwheel( v=v)
RY = BIGMESH$RY
rye = range(c(BIGMESH$RX , BIGMESH$RX+diff(BIGMESH$RY)))
littley = .2*abs(diff(BIGMESH$RY))
gv = list(BIGMESH=BIGMESH, RY=RY ,v=v, labs=labs, colabs=colabs, pchlabs=pchlabs)
CWreplot<-function(gv)
{
VVwheel(BIGMESH=gv$BIGMESH, v=gv$v)
buttons = rowBUTTONS(gv$labs, col=gv$colabs, pch=gv$pchlabs)
return(buttons)
}
buttons = CWreplot(gv)
zloc = list(x=NULL, y=NULL)
sloc = zloc
DF = NULL
MAINdev = dev.cur()
PALdev = NULL
while(TRUE)
{
iloc = locator(1,type='p')
zloc = list(x=c(zloc$x,iloc$x), y=c(zloc$y, iloc$y))
Nclick = length(iloc$x)
if(is.null(iloc$x)) { par(opar); return(zloc) }
K = whichbutt(iloc ,buttons)
if(iloc$x>=BIGMESH$RX[1] & iloc$x<=BIGMESH$RX[2] & iloc$y>=rye[1] & iloc$y<=rye[2])
{
Wcols = wheelrgb(iloc, gv$v, gv$RY)
rect(BIGMESH$RX[1],rye[1]-littley/2, BIGMESH$RX[1]+littley, rye[1]-littley, col=Wcols, border=NA, xpd=TRUE)
}
if(K[Nclick] == match("DONE", labs, nomatch = NOLAB))
{
nloc=length(zloc$x)-1
zloc = list(x=zloc$x[1:nloc], y=zloc$y[1:nloc])
thecols = wheelrgb(zloc, gv$v, gv$RY)
cprint(thecols)
DF = thecols
zloc = list(x=NULL, y=NULL)
break;
}
if(K[Nclick] == match("REFRESH", labs, nomatch = NOLAB))
{
buttons =CWreplot(gv)
next
}
if(K[Nclick] == match("CHANGEV", labs, nomatch = NOLAB))
{
newv = changev(gv, TE="Click in Bar for change of v")
gv$v = newv
BIGMESH = VVwheel( v=v)
RY = BIGMESH$RY
rye = range(c(BIGMESH$RX , BIGMESH$RX+diff(BIGMESH$RY)))
littley = .2*abs(diff(BIGMESH$RY))
gv$BIGMESH=BIGMESH
gv$RY=RY
buttons =CWreplot(gv)
next
}
if(K[Nclick] == match("BACK.BW", labs, nomatch = NOLAB))
{
if( identical(BACK, "black") ) { BACK="white" } else{ BACK="black" }
if(identical(BACK, "black"))
{
cmain = rgb(.7,.7,.7)
par(bg=rgb(0.1,0.1,0.1), fg=rgb(1,1,1),col.axis=rgb(1,1,1),col.lab=rgb(1,1,1),col.main=cmain ,col.sub=rgb(1,1,1) )
gv$colabs = c(rep('white',length(labs)))
gv$pchlabs = c(rep(1,length(labs)))
}
else
{
cmain = rgb(1-.7, 1-.7, 1-.7)
par(bg=rgb(1,1,1), fg=rgb(0,0,0),col.axis=rgb(0,0,0),col.lab=rgb(0,0,0),col.main=cmain ,col.sub=rgb(0,0,0) )
gv$colabs = c(rep('black',length(labs)))
gv$pchlabs = c(rep(1,length(labs)))
}
buttons = CWreplot(gv)
next
}
if(K[Nclick] == match("BACK", labs, nomatch = NOLAB))
{
nloc=length(zloc$x)-1
if(nloc<1) next
zloc = list(x=zloc$x[nloc], y=zloc$y[nloc])
thecols = wheelrgb(zloc, gv$v, gv$RY)
aa = col2rgb(thecols)
print(paste(sep=" ", thecols, paste(aa, collapse=" ") ))
aa = col2rgb(thecols)
bb = c(255-aa[1], 255-aa[2], 255-aa[3])
aacomp = rgb(bb[1], bb[2], bb[3], maxColorValue=255)
print(paste(sep=" ", aacomp, paste( bb, collapse=" ")))
cmain = rgb(.7,.7,.7)
BACK = thecols
par(bg=thecols, fg=aacomp ,col.axis=rgb(1,1,1),col.lab=rgb(1,1,1),col.main=cmain ,col.sub=rgb(1,1,1) )
gv$colabs = c(rep(aacomp,length(labs)))
gv$pchlabs = c(rep(1,length(labs)))
buttons = CWreplot(gv)
zloc = list(x=NULL, y=NULL)
next
}
if(K[Nclick]==match("SHOW", labs, nomatch = NOLAB) )
{
nloc=length(zloc$x)-1
zloc = list(x=zloc$x[1:nloc], y=zloc$y[1:nloc])
thecols = wheelrgb(zloc, gv$v, gv$RY)
print(thecols)
cprint(thecols)
DF = thecols
print(PALdev)
if( is.null(PALdev) )
{ dev.new();
PALdev=dev.cur();
print(PALdev) }
else
{
dev.set(PALdev)
}
SHOWPAL(thecols, BACK=BACK, NAME=TRUE)
dev.set( MAINdev)
next
}
if(K[Nclick]==match("CLEAR", labs, nomatch = NOLAB) )
{
DF = NULL
buttons = CWreplot(gv)
zloc = list(x=NULL, y=NULL)
next
}
}
par(opar)
if(!is.null(DF)) invisible(DF)
} |
NULL
nse_preopen_nifty <- function(clean_names = TRUE) {
url <- "https://www1.nseindia.com/live_market/dynaContent/live_analysis/pre_open/nifty.json"
nse_preopen_base(url, clean_names)
}
nse_preopen_nifty_bank <- function(clean_names = TRUE) {
url <- "https://www1.nseindia.com/live_market/dynaContent/live_analysis/pre_open/niftybank.json"
nse_preopen_base(url, clean_names)
} |
remote_sha <- function(...){
getFromNamespace('remote_sha', 'remotes')(...)
}
github_remote <- function(...){
getFromNamespace('github_remote', 'remotes')(...)
}
parse_git_repo <- function(...){
getFromNamespace('parse_git_repo', 'remotes')(...)
}
github_pat <- function(...){
getFromNamespace('github_pat', 'remotes')(...)
} |
NULL
na_lgl <- NA
na_int <- NA_integer_
na_dbl <- NA_real_
na_chr <- NA_character_
na_cpl <- NA_complex_
are_na <- function(x) {
if (!is_atomic(x)) {
stop_input_type(x, "an atomic vector")
}
is.na(x)
}
is_na <- function(x) {
is_scalar_vector(x) && is.na(x)
}
detect_na <- are_na
is_lgl_na <- function(x) {
identical(x, na_lgl)
}
is_int_na <- function(x) {
identical(x, na_int)
}
is_dbl_na <- function(x) {
identical(x, na_dbl)
}
is_chr_na <- function(x) {
identical(x, na_chr)
}
is_cpl_na <- function(x) {
identical(x, na_cpl)
} |
pole <- function(sys) {
if (class(sys) == 'tf') {
res <- pracma::roots(c(sys[[2]]))
return(as.matrix(res))
}
if (class(sys) == 'ss') {
res <- eigen(sys[[1]])$values
return(as.matrix(res))
}
if (class(sys) == 'zpk') {
res <- sys[[2]]
return(as.matrix(res))
}
if(is.vector(sys)){
res <- pracma::roots(sys)
return(as.matrix(res))
}
} |
unique_by <- function(text.var, grouping.var) {
if (is.list(grouping.var)) {
m <- unlist(as.character(substitute(grouping.var))[-1])
m <- sapply(strsplit(m, "$", fixed=TRUE), function(x) {
x[length(x)]
}
)
G <- paste(m, collapse="&")
} else {
G <- as.character(substitute(grouping.var))
G <- G[length(G)]
}
if (is.list(grouping.var) & length(grouping.var)>1) {
grouping <- paste2(grouping.var)
} else {
grouping <- unlist(grouping.var)
}
DF <- stats::na.omit(data.frame(grouping, text.var, check.names = FALSE,
stringsAsFactors = FALSE))
DF[, "grouping"] <- factor(DF[, "grouping"])
LIST <- split(DF[, "text.var"], DF[, "grouping"])
LIST <- lapply(LIST, function(x) unique(bag_o_words(x)))
stats::setNames(lapply(seq_along(LIST), function(i) {
inds <- seq_along(LIST)[!seq_along(LIST) %in% i]
sort(LIST[[i]][!LIST[[i]] %in% unique(unlist(LIST[inds]))])
}), names(LIST))
} |
coef.lm.beta <- function(object, standardized=TRUE, ...) {
if(standardized) {
res <- object$standardized.coefficients
} else {
res <- object$coefficients
}
res
} |
PCsaveWPX<-function(twpx, destdir="." )
{
if( identical(legitWPX(twpx),0) )
{
cat("No legitimate picks", sep="\n")
}
else
{
RDATES = Qrangedatetime(twpx)
if(RDATES$max$yr == 0 & RDATES$min$yr == 0)
{
return()
}
fout1 = PCfiledatetime(RDATES$min, 0)
fout2 = paste(fout1,"RDATA", sep="." )
if( !identical(destdir, ".") )
{
fout3 = paste(destdir, fout2, sep="/")
}
else
{
fout3 = fout2
}
save(file=fout3, twpx)
invisible(fout2)
}
invisible(NULL)
} |
test_that("backticks are converted to \\code & \\verb", {
out1 <- roc_proc_text(rd_roclet(), "
foo <- function() {}")[[1]]
out2 <- roc_proc_text(rd_roclet(), "
foo <- function() {}")[[1]]
expect_equivalent_rd(out1, out2)
})
test_that("code blocks work", {
out1 <- roc_proc_text(rd_roclet(), "
foo <- function() {}")[[1]]
out2 <- roc_proc_text(rd_roclet(), "
foo <- function() {}")[[1]]
expect_equivalent_rd(out1, out2)
})
test_that("code block with language creates HTML tag", {
out1 <- roc_proc_text(rd_roclet(), "
foo <- function() {}")[[1]]
out2 <- roc_proc_text(rd_roclet(), "
foo <- function() {}")[[1]]
expect_equivalent_rd(out1, out2)
})
test_that("inline code escapes %", {
expect_equal(markdown("`5%`"), "\\verb{5\\%}")
expect_equal(markdown("`'5%'`"), "\\code{'5\\%'}")
expect_equal(markdown("`%*%`"), "\\code{\\%*\\%}")
})
test_that("inline verbatim escapes Rd special chars", {
expect_equal(markdown("`{`"), "\\verb{\\{}")
expect_equal(markdown("`}`"), "\\verb{\\}}")
expect_equal(markdown("`\\`"), "\\verb{\\\\}")
})
test_that("special operators get \\code{}, not \\verb{}", {
expect_equal(markdown("`if`"), "\\code{if}")
})
test_that("code blocks escape %", {
expect_equal(
markdown("```\n1:10 %>% mean()\n```"),
"\\preformatted{1:10 \\%>\\% mean()\n}"
)
})
test_that("inline code works with < and >", {
out <- roc_proc_text(rd_roclet(), "
f <- function() 1
")[[1]]
expect_equal(out$get_value("title"), "\\verb{SELECT <name> FROM <table>}")
})
test_that("itemized lists work", {
out1 <- roc_proc_text(rd_roclet(), "
foo <- function() {}")[[1]]
out2 <- roc_proc_text(rd_roclet(), "
foo <- function() {}")[[1]]
expect_equivalent_rd(out1, out2)
})
test_that("numbered lists work", {
out1 <- roc_proc_text(rd_roclet(), "
foo <- function() {}")[[1]]
out2 <- roc_proc_text(rd_roclet(), "
foo <- function() {}")[[1]]
expect_equivalent_rd(out1, out2)
})
test_that("nested lists are OK", {
out1 <- roc_proc_text(rd_roclet(), "
foo <- function() {}")[[1]]
out2 <- roc_proc_text(rd_roclet(), "
foo <- function() {}")[[1]]
expect_equivalent_rd(out1, out2)
})
test_that("can convert table to Rd", {
txt <- "
| x | y |
| --- | --- |
| 1 | 2 |
| x | y |
| :-: | --: |
| 1 | 2 |
| x | y |
| ----- | --------- |
| 1 _2_ | 3 *4* `5` |
"
txt <- gsub("\n ", "\n", txt)
tables <- strsplit(txt, "\n\n")[[1]]
verify_output(
test_path("test-markdown-table.txt"), {
for (table in tables) {
cat_line(table)
cat_line(markdown(table))
cat_line()
}
}
)
})
test_that("emphasis works", {
out1 <- roc_proc_text(rd_roclet(), "
foo <- function() {}")[[1]]
out2 <- roc_proc_text(rd_roclet(), "
foo <- function() {}")[[1]]
expect_equivalent_rd(out1, out2)
})
test_that("strong (bold) text works", {
out1 <- roc_proc_text(rd_roclet(), "
foo <- function() {}")[[1]]
out2 <- roc_proc_text(rd_roclet(), "
foo <- function() {}")[[1]]
expect_equivalent_rd(out1, out2)
})
test_that("markdown links are converted", {
out1 <- roc_proc_text(rd_roclet(), "
foo <- function() {}")[[1]]
out2 <- roc_proc_text(rd_roclet(), "
foo <- function() {}")[[1]]
expect_equivalent_rd(out1, out2)
})
test_that("images are recognized", {
out1 <- roc_proc_text(rd_roclet(), "
foo <- function() {}")[[1]]
out2 <- roc_proc_text(rd_roclet(), "
foo <- function() {}")[[1]]
expect_equivalent_rd(out1, out2)
})
test_that("markdown is parsed in all fields where it is supported", {
out1 <- roc_proc_text(rd_roclet(), "
foo <- function() {}")[[1]]
out2 <- roc_proc_text(rd_roclet(), "
foo <- function() {}")[[1]]
expect_equivalent_rd(out1, out2)
})
test_that("markdown emphasis is ok", {
out1 <- roc_proc_text(rd_roclet(), "
foo <- function() {}")[[1]]
desc1 <- "Description with some \\emph{keywords} included.
So far so good. \\preformatted{ *these are not
emphasised*. Or are they?
}"
expect_equal(out1$get_section("description")[[2]], desc1)
})
test_that("% is automatically escaped", {
expect_equal(markdown("5%"), "5\\%")
})
test_that("Escaping is kept", {
out1 <- roc_proc_text(rd_roclet(), "
foo <- function() {}")[[1]]
out2 <- roc_proc_text(rd_roclet(), "
foo <- function() {}")[[1]]
expect_equivalent_rd(out1, out2)
})
test_that("Do not pick up `` in arguments \\item
out1 <- roc_proc_text(rd_roclet(), "
foo <- function(`_arg1`, `_arg2`) {}")[[1]]
out2 <- roc_proc_text(rd_roclet(), "
foo <- function(`_arg1`, `_arg2`) {}")[[1]]
expect_equivalent_rd(out1, out2)
})
test_that("unhandled markdown generates warning", {
text <- "
NULL
"
expect_warning(roc_proc_text(rd_roclet(), text), "block quotes")
})
test_that("level 1 heading in markdown generates warning in some tags", {
text <- "
NULL
"
expect_warning(
roc_proc_text(rd_roclet(), text),
"level 1 markdown headings"
)
})
test_that("level >2 markdown headings work in @description", {
text <- "
NULL
"
out <- roc_proc_text(rd_roclet(), text)[[1]]
expect_equal_strings(
out$get_value("description"),
"\\subsection{This is good}{\n\nyes\n}"
)
})
test_that("level >2 markdown headings work in @details", {
text <- "
NULL
"
out <- roc_proc_text(rd_roclet(), text)[[1]]
expect_equal_strings(
out$get_value("details"),
"\\subsection{Heading 2}{\n\\subsection{Heading 3}{\n\nText.\n}\n\n}"
)
})
test_that("level >2 markdown headings work in @return", {
text <- "
NULL
"
out <- roc_proc_text(rd_roclet(), text)[[1]]
expect_equal_strings(
out$get_value("value"),
"Even this\n\\subsection{Can have a subsection.}{\n\nYes.\n}"
)
})
test_that("level 1 heading in @details", {
text1 <- "
NULL
"
out1 <- roc_proc_text(rd_roclet(), text1)[[1]]
text2 <- "
NULL
"
out2 <- roc_proc_text(rd_roclet(), text2)[[1]]
expect_equal(sort(names(out1$sections)), sort(names(out2$sections)))
out2$sections <- out2$sections[names(out1$sections)]
expect_equivalent_rd(out1, out2)
})
test_that("headings and empty sections", {
text1 <- "
NULL
"
out1 <- roc_proc_text(rd_roclet(), text1)[[1]]
expect_false("details" %in% names(out1$fields))
})
test_that("markdown() on empty input", {
expect_identical(markdown(""), "")
expect_identical(markdown(" "), "")
expect_identical(markdown("\n"), "")
})
test_that("markup in headings", {
text1 <- "
NULL
"
out1 <- roc_proc_text(rd_roclet(), text1)[[1]]
expect_equal(
out1$get_value("section"),
list(
title = "Section with \\code{code}",
content = paste(
sep = "\n",
"\\subsection{Subsection with \\strong{strong}}{",
"",
"Yes.",
"}"
)
)
)
}) |
npFit0 <- function(DF, typeTem = ".") {
df0 <- DF[DF$event == 0,]
df1 <- DF[DF$event > 0,]
rownames(df0) <- rownames(df1) <- NULL
m <- aggregate(event > 0~ id, data = DF, sum)[, 2]
yi <- df0$time2
ti <- df1$time2
zi <- wi <- rep(1, length(ti))
di <- df0$terminal
xi <- as.matrix(df0[,-c(1:6)])
p <- ncol(xi)
yi2 <- sort(unique(yi))
rate <- c(reRate(ti, rep(yi, m), wi, yi))
Lam <- exp(-rate)
keep <- !duplicated(yi)
Lam0 <- approxfun(yi[keep], Lam[keep],
yleft = min(Lam), yright = max(Lam))
zi <- (m + 0.01) / (Lam + 0.01)
if (typeTem != ".") {
Haz <- c(temHaz(rep(0, p), rep(0, p), xi, yi, zi, di, wi, yi2))
Haz0 <- approxfun(yi2, Haz, yleft = min(Haz), yright = max(Haz))
return(list(Lam0 = Lam0, Haz0 = Haz0, log.muZ = log(mean(zi))))
} else {
return(list(Lam0 = Lam0, log.muZ = log(mean(zi))))
}
}
npFit <- function(DF, B = 0, typeTem = ".") {
out <- npFit0(DF)
df0 <- DF[DF$event == 0,]
mt <- aggregate(event > 0 ~ id, data = DF, sum)$event
clsz <- mt + 1
t0 <- sort(unique(DF$time2))
LamB <- HazB <- matrix(NA, length(t0), B)
if (B > 0) {
for (i in 1:B) {
sampled.id <- sample(df0$id, nrow(df0), TRUE)
ind <- unlist(sapply(sampled.id, function(x) which(DF$id == x)))
DF2 <- DF[ind,]
DF2$id <- rep(1:nrow(df0), clsz[sampled.id])
tmp <- npFit0(DF2)
LamB[,i] <- tmp$Lam0(t0) * exp(tmp$log.muZ)
if (typeTem != ".") HazB[,i] <- tmp$Haz0(t0) * exp(tmp$log.muZ)
}
Lam.sd <- apply(LamB, 1, sd)
if (typeTem != ".") Haz.sd <- apply(HazB, 1, sd)
LamB.lower <- out$Lam0(t0) * exp(out$log.muZ) - 1.96 * Lam.sd
LamB.upper <- out$Lam0(t0) * exp(out$log.muZ) + 1.96 * Lam.sd
if (typeTem != ".") HazB.lower <- out$Haz0(t0) * exp(out$log.muZ) - 1.96 * Haz.sd
if (typeTem != ".") HazB.upper <- out$Haz0(t0) * exp(out$log.muZ) + 1.96 * Haz.sd
out$Lam0.lower <- approxfun(t0, LamB.lower, yleft = min(LamB.lower), yright = max(LamB.lower))
out$Lam0.upper <- approxfun(t0, LamB.upper, yleft = min(LamB.upper), yright = max(LamB.upper))
if (typeTem != ".")
out$Haz0.lower <-
approxfun(t0, HazB.lower, yleft = min(HazB.lower), yright = max(HazB.lower))
if (typeTem != ".")
out$Haz0.upper <-
approxfun(t0, HazB.upper, yleft = min(HazB.upper), yright = max(HazB.upper))
}
out$Lam0 <- approxfun(t0, out$Lam0(t0) * exp(out$log.muZ),
yleft = min(out$Lam0(t0) * exp(out$log.muZ)),
yright = max(out$Lam0(t0) * exp(out$log.muZ)))
if (typeTem != ".")
out$Haz0 <- approxfun(t0, out$Haz0(t0) * exp(out$log.muZ),
yleft = min(out$Haz0(t0) * exp(out$log.muZ)),
yright = max(out$Haz0(t0) * exp(out$log.muZ)))
return(out)
} |
"simulated_dist" |
context("descritive stats")
test_that("no errors with normal settings", {
expect_error(prec_mean(mu = 5, sd = 2.5, n = 20),
regexp = NA)
expect_error(prec_mean(mu = 5, sd = 2.5, conf.width = 2.34),
regexp = NA)
expect_warning(prec_rate(2.5, x = 20))
expect_warning(prec_rate(2.5, conf.width = 2.243))
expect_error(prec_rate(2.5, x = 20, method = "score"),
regexp = NA)
expect_error(prec_rate(2.5, conf.width = 2.243, method = "score"),
regexp = NA)
expect_error(prec_rate(2.5, x = 20, method = "vs"),
regexp = NA)
expect_error(prec_rate(2.5, conf.width = 2.243, method = "vs"),
regexp = NA)
expect_error(prec_rate(2.5, x = 20, method = "exact"),
regexp = NA)
expect_error(prec_rate(2.5, conf.width = 2.243, method = "exact"),
regexp = NA)
expect_error(prec_rate(2.5, x = 20, method = "wald"),
regexp = NA)
expect_error(prec_rate(2.5, conf.width = 2.243, method = "wald"),
regexp = NA)
expect_warning(prec_prop(p = 1:9 / 10, n = 100))
expect_warning(prec_prop(p = 1:9 / 10, conf.width = .192))
expect_error(prec_prop(p = 1:9 / 10, n = 100,
method = "wilson"),
regexp = NA)
expect_error(prec_prop(p = 1:9 / 10, conf.width = .192,
method = "wilson"),
regexp = NA)
expect_error(prec_prop(p = 1:9 / 10, n = 100,
method = "ac"),
regexp = NA)
expect_error(prec_prop(p = 1:9 / 10, conf.width = .192,
method = "ac"),
regexp = NA)
expect_error(prec_prop(p = 1:9 / 10, n = 100,
method = "agresti-coull"),
regexp = NA)
expect_error(prec_prop(p = 1:9 / 10, conf.width = .192,
method = "agresti-coull"),
regexp = NA)
expect_error(prec_prop(p = 1:9 / 10, n = 100,
method = "wald"),
regexp = NA)
expect_error(prec_prop(p = 1:9 / 10, conf.width = .192,
method = "wald"),
regexp = NA)
expect_error(prec_prop(p = 1:9 / 10, n = 100,
method = "exact"),
regexp = NA)
expect_error(prec_prop(p = 1:9 / 10, conf.width = .192,
method = "exact"),
regexp = NA)
})
test_that("errors issued", {
expect_error(prec_mean("foo", 1))
expect_error(prec_mean(1, "foo"))
expect_error(prec_mean(mu = 2, sd = 1, n = 10, conf.width = .5))
expect_error(prec_rate(2, 1, 1))
expect_error(prec_prop(.1, conf.width = 2, method = "wilson"), "too wide")
expect_error(prec_prop(.1, conf.width = .2, method = "wilson"), NA)
})
test_that("warnings issued", {
expect_warning(prec_rate(2,1))
expect_warning(prec_rate(0,1, method = "vs"))
expect_warning(prec_prop(.01, 20, method = "ac"))
expect_warning(prec_prop(.01, 20, method = "wilson"), regexp = NA)
expect_warning(prec_prop(.99, 20, method = "ac"))
expect_warning(prec_prop(.99, 20, method = "wilson"), regexp = NA)
})
test_that("mean = stata", {
ex <- prec_mean(1, 1, conf.width = .2)
expect_equal(ex$n, 386, tolerance = 1, scale = 1)
ex <- prec_mean(1, 1, n = 386)
expect_equal(ex$conf.width, .2, tolerance = .001, scale = 1)
})
test_that("mean conf int = stata", {
ex <- prec_mean(mu = 10 , sd = 2, n = 100, conf.level = 0.95)
expect_equal(c(ex$lwr, ex$upr) , c(9.603157, 10.39684) , tolerance = .0001, scale = 1)
ex <- prec_mean(mu = 10 , sd = 2, conf.width = 10.39684-9.603157, conf.level = 0.95)
expect_equal(ex$n , 100 , tolerance = 1, scale = 1)
})
test_that("proportions conf int wilson = stata", {
ex <- prec_prop(p = 0.5, n = 100, conf.level = 0.95, method = 'wilson')
expect_equal(c(ex$lwr, ex$upr) , c(.4038315, .5961685) , tolerance = .0000001, scale = 1)
ex <- prec_prop(p = 0.5, conf.width = .5961685-.4038315, conf.level = 0.95, method = 'wilson')
expect_equal(ex$n , 100, tolerance = 1, scale = 1)
})
test_that("proportions conf int agresti = stata", {
ex <- prec_prop(p = 0.5, n = 100, conf.level = 0.95, method = 'agresti-coull')
expect_equal(c(ex$lwr, ex$upr) , c(.4038315, .5961685) , tolerance = .0000001, scale = 1)
ex <- prec_prop(p = 0.5, conf.width = .5961685-.4038315, conf.level = 0.95, method = 'agresti-coull')
expect_equal(ex$n , 100 , tolerance = 1, scale = 1)
})
test_that("proportions conf int exact = stata", {
ex <- prec_prop(p = 0.5, n = 100, conf.level = 0.95, method = 'exact')
expect_equal(c(ex$lwr, ex$upr) , c(.3983211, .6016789) , tolerance = .0000001, scale = 1)
ex <- prec_prop(p = 0.5, conf.width = .6016789-.3983211, conf.level = 0.95, method = 'exact')
expect_equal(ex$n, 100 , tolerance = 1, scale = 1)
})
test_that("proportions conf int wald = stata", {
ex <- prec_prop(p = 0.5, n = 100, conf.level = 0.95, method = 'wald')
expect_equal(c(ex$lwr, ex$upr) , c(.4020018, .5979982) , tolerance = .0000001, scale = 1)
ex <- prec_prop(p = 0.5, conf.width = .5979982-.4020018, conf.level = 0.95, method = 'wald')
expect_equal(ex$n , 100 , tolerance = 1, scale = 1)
})
test_that("rate conf int exact = stata", {
ex <- prec_rate(r = 0.2, x = 10, conf.level = 0.95, method = 'exact')
expect_equal(c(ex$lwr, ex$upr) , c(.0959078, .3678071) , tolerance = .0000001, scale = 1)
ex <- prec_rate(r = 0.2, conf.width = .3678071-.0959078, conf.level = 0.95, method = 'exact')
expect_equal(ex$x , 10 , tolerance = 1, scale = 1)
}) |
convergence.test.Rcpp_Trace <- function(object, samples = 10, frac1 = 0.1,
frac2 = 0.5, thin = 1, plot = FALSE, what = "Mutation", mixture = 1)
{
current.trace <- 0
if(what[1] == "Mutation" || what[1] == "Selection")
{
names.aa <- aminoAcids()
numCodons <- 0
for(aa in names.aa)
{
if (aa == "M" || aa == "W" || aa == "X") next
codons <- AAToCodon(aa, T)
numCodons <- numCodons + length(codons)
}
index <- 1
cur.trace <- vector("list", numCodons)
for(aa in names.aa)
{
if (aa == "M" || aa == "W" || aa == "X") next
codons <- AAToCodon(aa, T)
for(i in 1:length(codons))
{
if(what[1] == "Mutation"){
cur.trace[[index]]<- object$getCodonSpecificParameterTraceByMixtureElementForCodon(mixture, codons[i], 0, T)
}else{
cur.trace[[index]] <- object$getCodonSpecificParameterTraceByMixtureElementForCodon(mixture, codons[i], 1, T)
}
index <- index + 1
}
}
current.trace <- do.call("rbind", cur.trace)
current.trace <- t(current.trace)
}
if(what[1] == "Alpha" || what[1] == "Lambda" || what[1] == "NSERate" || what[1] == "LambdaPrime")
{
codon.list <- codons()
codon.list <- codon.list[1:(length(codon.list)-3)]
cur.trace <- vector("list",length(codon.list))
for (i in 1:length(codon.list))
{
if (what[1]=="Alpha")
{
cur.trace[[i]]<- object$getCodonSpecificParameterTraceByMixtureElementForCodon(mixture, codon.list[i], 0, F)
} else if (what[1]=="Lambda" || what[1]=="LambdaPrime"){
cur.trace[[i]]<- object$getCodonSpecificParameterTraceByMixtureElementForCodon(mixture, codon.list[i], 1, F)
} else if (what[1]=="NSERate"){
cur.trace[[i]]<- object$getCodonSpecificParameterTraceByMixtureElementForCodon(mixture, codon.list[i], 2, F)
}
}
current.trace <- do.call("rbind", cur.trace)
current.trace <- t(current.trace)
}
if(what[1] == "MixtureProbability")
{
numMixtures <- object$getNumberOfMixtures()
cur.trace <- vector("list", numMixtures)
for(i in 1:numMixtures)
{
cur.trace[[i]] <- object$getMixtureProbabilitiesTraceForMixture(i)
}
current.trace <- do.call("rbind", cur.trace)
current.trace <- t(current.trace)
}
if(what[1] == "Sphi")
{
sphi <- object$getStdDevSynthesisRateTraces()
current.trace <- do.call("rbind", sphi)
current.trace <- t(current.trace)
}
if(what[1] == "Mphi")
{
sphi <- object$getStdDevSynthesisRateTraces()
sphi <- do.call("rbind", sphi)
mphi <- -(sphi * sphi) / 2;
current.trace <- t(mphi)
}
if(what[1] == "Aphi")
{
}
if(what[1] == "Sepsilon")
{
}
if(what[1] == "ExpectedPhi")
{
current.trace <- object$getExpectedSynthesisRateTrace()
}
if(what[1] == "InitiationCost")
{
current.trace <- object$getInitiationCostTrace()
}
if(what[1] == "Expression")
{
}
if(what[1] == "AcceptanceCSP")
{
names.aa <- aminoAcids()
index <- 1
cur.trace <- vector("list", length(names.aa) - length(c("M","W","X")))
for(aa in names.aa)
{
if (aa == "M" || aa == "W" || aa == "X") next
cur.trace[[index]] <- object$getCodonSpecificAcceptanceRateTraceForAA(aa)
index <- index + 1
}
current.trace <- do.call("rbind", cur.trace)
current.trace <- t(current.trace)
}
trace.length <- length(current.trace)
start <- max(0, trace.length - samples)
mcmcobj <- coda::mcmc(data=current.trace, start=start, thin=thin)
if(plot){
coda::geweke.plot(mcmcobj, frac1=frac1, frac2=frac2)
} else{
diag <- coda::geweke.diag(mcmcobj, frac1=frac1, frac2=frac2)
return(diag)
}
} |
writeANY = function(x, path, drivers)
{
dir <- dirname(path)
if (!dir.exists(dir)) dir.create(dir, recursive = TRUE)
if (class(x)[1] %in% names(drivers))
driver <- drivers[[class(x)[1]]]
else if (inherits(x, "LAS"))
driver <- drivers$LAS
else if (inherits(x, "Raster"))
driver <- drivers$Raster
else if (inherits(x, "SpatialPoints") | inherits(x, "SpatialPolygons") | inherits(x, "SpatialLines"))
driver <- drivers$Spatial
else if (inherits(x, "sf"))
driver <- drivers$SimpleFeature
else if (inherits(x, "data.frame"))
driver <- drivers$DataFrame
else if (is(x, "lidr_internal_skip_write"))
return(x)
else
stop(glue::glue("Trying to write an object of class {class(x)} but this type is not supported."))
path <- paste0(path, driver$extension)
driver$param[[driver$object]] <- x
driver$param[[driver$path]] <- path
do.call(driver$write, driver$param)
return(path)
}
writeSpatial = function(x, filename, overwrite = FALSE, ...)
{
filename <- normalizePath(filename, winslash = "/", mustWork = FALSE)
x <- sf::st_as_sf(x)
if (isTRUE(overwrite))
append = FALSE
else
append = NA
sf::st_write(x, filename, append = append, quiet = TRUE)
} |
InputChecks_equal.length3 <- function(x, y, z){
X <- as.matrix(x)
Y <- as.matrix(y)
Z <- as.matrix(z)
if(!(nrow(X) == nrow(Y) & nrow(X) == nrow(Z) & nrow(Z) == nrow(Y))){
stop(paste0(deparse(substitute(x)), ", ",
deparse(substitute(y)), ", ",
deparse(substitute(z)),
" need to have an equal number of observations"), call. = FALSE)
}
}
InputChecks_equal.length2 <- function(x, y){
X <- as.matrix(x)
Y <- as.matrix(y)
if(!(nrow(X) == nrow(Y))){
stop(paste0(deparse(substitute(x)), ", ",
deparse(substitute(y)),
" need to have an equal number of observations"), call. = FALSE)
}
}
InputChecks_D <- function(D){
if(any(is.na(D))) stop("D contains missing values", call. = FALSE)
if(!(is.numeric(D) & is.vector(D))) stop("D must be a numeric vector", call. = FALSE)
if((!all(c(0, 1) %in% unique(D))) | (length(unique(D)) != 2)) stop("Treatment assignment D is not binary", call. = FALSE)
}
InputChecks_Y <- function(Y){
if(any(is.na(Y))) stop("Y contains missing values", call. = FALSE)
if(!(is.numeric(Y) & is.vector(Y))) stop("Y must be a numeric vector", call. = FALSE)
}
InputChecks_Z <- function(Z){
if(any(is.na(Z))) stop("Z contains missing values", call. = FALSE)
if(!(is.numeric(Z) & is.matrix(Z))) stop("Z must be a numeric matrix. Did you supply a data frame?", call. = FALSE)
}
InputChecks_Z_CLAN <- function(Z_CLAN){
if(!is.null(Z_CLAN)){
if(any(is.na(Z_CLAN))) stop("Z_CLAN contains missing values", call. = FALSE)
if(!(is.numeric(Z_CLAN) & is.matrix(Z_CLAN))) stop("Z_CLAN must be a numeric matrix or NULL. Did you supply a data frame?", call. = FALSE)
}
}
InputChecks_X1 <- function(X1_control, num.obs){
if(class(X1_control) != "setup_X1"){
stop(paste0(deparse(substitute(X1_control))),
" must be an instance of setup_X1()", call. = FALSE)
}
if(!is.null(X1_control$covariates)){
if(nrow(X1_control$covariates) != num.obs){
stop(paste0(deparse(substitute(X1_control)),
"$covariates must have the same number of rows as Z"),
call. = FALSE)
}
}
if(!is.null(X1_control$fixed_effects)){
if(length(X1_control$fixed_effects) != num.obs){
stop(paste0(deparse(substitute(X1_control)),
"$fixed_effects must have the same length as Y"),
call. = FALSE)
}
}
}
InputChecks_vcov.control <- function(vcov_control){
if(class(vcov_control) != "setup_vcov"){
stop(paste0(deparse(substitute(vcov_control))),
" must be an instance of setup_vcov()", call. = FALSE)
}
}
InputChecks_diff <- function(diff, K){
if(class(diff) != "setup_diff"){
stop(paste0(deparse(substitute(diff))),
" must be an instance of setup_diff()", call. = FALSE)
}
if(any(diff$subtracted < 1) | any(diff$subtracted > K)){
stop(paste0("The numeric vector ", deparse(substitute(diff)), "$subtracted",
" must be a subset of {1,2,...,K}, where K = ", K, " is the number of groups that were supplied (controlled through the argument 'quantile_cutoffs'). K is equal to the cardinality of 'quantile_cutoffs' plus one."), call. = FALSE)
}
if(diff$subtract_from == "most" & K %in% diff$subtracted){
stop("The most affected group cannot be subtracted from itself")
}
if(diff$subtract_from == "least" & 1 %in% diff$subtracted){
stop("The least affected group cannot be subtracted from itself")
}
}
InputChecks_group.membership <- function(group.membership){
if(is.null(attr(group.membership, which = "type"))) stop(paste0("The object ",
deparse(substitute(group.membership)),
" must be returned by quantile_group()"))
if(attr(group.membership, which = "type") != "quantile_group") stop(paste0("The object ",
deparse(substitute(group.membership)),
" must be returned by quantile_group()"))
}
InputChecks_proxy.estimators <- function(proxy.estimators, baseline = TRUE){
if(baseline){
if(!inherits(proxy.estimators, what = "proxy_BCA")){
stop(paste0("The object ",
deparse(substitute(proxy.estimators)),
" needs to be an instance of proxy_BCA()"))
}
} else{
if(!inherits(proxy.estimators, what = "proxy_CATE")){
stop(paste0("The object ",
deparse(substitute(proxy.estimators)),
" needs to be an instance of proxy_CATE()"))
}
}
}
InputChecks_num_splits <- function(num_splits){
stopifnot(length(num_splits) == 1)
stopifnot(num_splits %% 1 == 0)
if(num_splits < 2){
stop(paste0("num_splits must be equal to at least 2. If you want to run GenericML() for ",
"a single split, please use the function GenericML_single()."), call. = FALSE)
}
}
get.learner_regr <- function(learner){
if(is.environment(learner)){
learner <- learner
} else if(learner == "lasso"){
learner <- mlr3::lrn("regr.cv_glmnet", s = "lambda.min", alpha = 1)
} else if(learner == "random_forest"){
learner <- mlr3::lrn("regr.ranger", num.trees = 500)
} else if(learner == "tree"){
learner <- mlr3::lrn("regr.rpart")
} else{
stop("Invalid argument for 'learner'. Needs to be either 'lasso', 'random_forest', 'tree', or an mlr3 object")
}
return(learner)
}
InputChecks_propensity_scores <- function(propensity_scores){
if(any(propensity_scores > 0.65 | propensity_scores < 0.35)){
warning(paste0("Some propensity scores are outside the ",
"interval [0.35, 0.65]. In a randomized experiment, we would ",
"expect all propensity scores to be equal to roughly 0.5. ",
"The theory of the paper ",
"is only valid for randomized experiments. Are ",
"you sure your data is from a randomomized experiment ",
"and the estimator of the scores has been chosen appropriately?"),
call. = FALSE)
}
if(any(propensity_scores > 0.95)){
stop(paste0("Some estimated propensity scores are higher than 0.95, ",
" which is not sufficiently bounded away from one.",
" Are you sure your data is from a randomomized experiment ",
"and the estimator of the scores has been chosen appropriately?"))
}
if(any(propensity_scores < 0.05)){
stop(paste0("Some estimated propensity scores are lower than 0.05, ",
" which is not sufficiently bounded away from zero.",
" Are you sure your data is from a randomomized experiment ",
"and the estimator of the scores has been chosen appropriately?"))
}
}
InputChecks_index_set <- function(set, num_obs){
stopifnot(is.numeric(set) & is.vector(set))
if(any(set %% 1 != 0)){
stop("The indices in the index set must be index-valued")
}
if(min(set) < 0){
stop("The indices in the index set must be strictly positive")
}
if(max(set) > num_obs){
stop("The largest index in the index set cannot be larger than the number of observations")
}
if(any(duplicated(set))){
stop("All indices in the index set must be unique")
}
}
TrueIfUnix <- function(){
.Platform$OS.type == "unix"
} |
test.writeNamedRegionToFile <- function() {
file.xls <- "testWriteNamedRegionToFileWorkbook.xls"
file.xlsx <- "testWriteNamedRegionToFileWorkbook.xlsx"
if(file.exists(file.xls)) {
file.remove(file.xls)
}
if(file.exists(file.xlsx)) {
file.remove(file.xlsx)
}
testDataFrame <- function(file, df) {
worksheet <- deparse(substitute(df))
print(paste("Writing dataset ", worksheet, "to file", file))
name <- paste(worksheet, "Region", sep="")
writeNamedRegionToFile(file, df, name, formula=paste(worksheet, "A1", sep="!"))
res <- readNamedRegionFromFile(file, name)
checkEquals(normalizeDataframe(df), res, check.attributes = FALSE, check.names = TRUE)
}
if(getOption("FULL.TEST.SUITE")) {
testDataFrame(file.xls, mtcars)
testDataFrame(file.xlsx, mtcars)
testDataFrame(file.xls, airquality)
testDataFrame(file.xlsx, airquality)
testDataFrame(file.xls, attenu)
testDataFrame(file.xlsx, attenu)
testDataFrame(file.xls, ChickWeight)
testDataFrame(file.xlsx, ChickWeight)
CO = CO2
testDataFrame(file.xls, CO)
testDataFrame(file.xlsx, CO)
testDataFrame(file.xls, iris)
testDataFrame(file.xlsx, iris)
testDataFrame(file.xls, longley)
testDataFrame(file.xlsx, longley)
testDataFrame(file.xls, morley)
testDataFrame(file.xlsx, morley)
testDataFrame(file.xls, swiss)
testDataFrame(file.xlsx, swiss)
}
cdf <- data.frame(
"Column.A" = c(1, 2, 3, NA, 5, 6, 7, 8, NA, 10),
"Column.B" = c(-4, -3, NA, -1, 0, NA, NA, 3, 4, 5),
"Column.C" = c("Anna", "???", NA, "", NA, "$!?&%", "(?2@?~?'^*
"Column.D" = c(pi, -pi, NA, sqrt(2), sqrt(0.3), -sqrt(pi), exp(1), log(2), sin(2), -tan(2)),
"Column.E" = c(TRUE, TRUE, NA, NA, FALSE, FALSE, TRUE, NA, FALSE, TRUE),
"Column.F" = c("High", "Medium", "Low", "Low", "Low", NA, NA, "Medium", "High", "High"),
"Column.G" = c("High", "Medium", NA, "Low", "Low", "Medium", NA, "Medium", "High", "High"),
"Column.H" = rep(c(Sys.Date(), Sys.Date() + 236, NA), length = 10),
"Column.I" = rep(c(as.POSIXlt(Sys.time()), as.POSIXlt(Sys.time()) + 3523523, NA, as.POSIXlt(Sys.time()) + 838239), length = 10),
"Column.J" = rep(c(as.POSIXct(Sys.time()), as.POSIXct(Sys.time()) + 436322, NA, as.POSIXct(Sys.time()) - 1295022), length = 10),
stringsAsFactors = F
)
cdf[["Column.F"]] <- factor(cdf[["Column.F"]])
cdf[["Column.F"]] <- ordered(cdf[["Column.F"]], levels = c("Low", "Medium", "High"))
testDataFrame(file.xls, cdf)
testDataFrame(file.xlsx, cdf)
checkNoException(writeNamedRegionToFile("wnrtf1.xls", data = mtcars, name = "mtcars",
formula = "'My Cars'!$A$1", header = TRUE))
checkTrue(file.exists("wnrtf1.xls"))
checkNoException(writeNamedRegionToFile("wnrtf1.xlsx", data = mtcars, name = "mtcars",
formula = "'My Cars'!$A$1", header = TRUE))
checkTrue(file.exists("wnrtf1.xlsx"))
testClearNamedRegions <- function(file, df) {
df.short <- df[1,]
writeNamedRegionToFile(file, data=df.short, name="cdfRegion")
checkEquals(nrow(readNamedRegionFromFile(file, name="cdfRegion")), 1)
checkEquals(nrow(readWorksheetFromFile(file, sheet="cdf")), nrow(df))
writeNamedRegionToFile(file, data=df, name="cdfRegion")
writeNamedRegionToFile(file, data=df.short, name="cdfRegion", clearNamedRegions=TRUE)
}
testClearNamedRegions(file.xls, cdf)
testClearNamedRegions(file.xlsx, cdf)
} |
test_that("ask prompts are returned", {
if(!maxima.env$maxima$isInstalled())
skip("Maxima not installed")
expect_match(maxima.get("integrate(x^n,x)"), "Is n equal to -1?")
to <- maxima.get("y;")
expect_s3_class(to, "maxima")
expect_type(to, "list")
expect_match(attr(to, "input.label"), "^%\\i[[:digit::]]*$")
expect_match(attr(to, "output.label"), "^\\%o[[:digit::]]*$")
expect_equal(attr(to, "command"), "y;")
expect_true(!attr(to, "suppressed"))
expect_length(to$wtl$linear, 1L)
expect_length(to$wtl$ascii, 1L)
expect_length(to$wtl$latex, 1L)
expect_length(to$wtl$mathml, 3L)
expect_length(to$wol$linear, 1L)
expect_length(to$wol$ascii, 1L)
expect_length(to$wol$latex, 1L)
expect_length(to$wol$mathml, 2L)
}) |
context("memoize")
test_that("can memoize", {
called <- 0L
f <- function(x) called <<- called + 1L
f <- memoize_first(f)
f("a")
f("a")
f("a")
expect_equal(called, 1L)
f("b")
f("b")
f("a")
expect_equal(called, 2L)
})
test_that("non-string argument", {
called <- 0L
f <- function(x) called <<- called + 1L
f <- memoize_first(f)
f(NULL)
f(123)
f(letters)
expect_equal(called, 3L)
f("a")
f("a")
f("a")
expect_equal(called, 4L)
f(NULL)
f(123)
f(letters)
expect_equal(called, 7L)
}) |
mlm.variance.distribution.bw = function(x){
m = x
if (!(class(m)[1] %in% c("rma.mv", "rma"))){
stop("x must be of class 'rma.mv'.")
}
if (m$sigma2s != 2){
stop("The model you provided does not seem to be a three-level model. This function can only be used for three-level models.")
}
if (sum(grepl("/", as.character(m$random[[1]]))) < 1){
stop("Model must contain nested random effects. Did you use the '~ 1 | cluster/effect-within-cluster' notation in 'random'? See ?metafor::rma.mv for more details.")
}
n = m$k.eff
vector.inv.var = 1/(diag(m$V))
sum.inv.var = sum(vector.inv.var)
sum.sq.inv.var = (sum.inv.var)^2
vector.inv.var.sq = 1/(diag(m$V)^2)
sum.inv.var.sq = sum(vector.inv.var.sq)
num = (n-1)*sum.inv.var
den = sum.sq.inv.var - sum.inv.var.sq
est.samp.var = num/den
level1=((est.samp.var)/(m$sigma2[1]+m$sigma2[2]+est.samp.var)*100)
level2=((m$sigma2[2])/(m$sigma2[1]+m$sigma2[2]+est.samp.var)*100)
level3=((m$sigma2[1])/(m$sigma2[1]+m$sigma2[2]+est.samp.var)*100)
Level=c("Level 1", "Level 2", "Level 3")
Variance=c(level1, level2, level3)
df.res=data.frame(Variance)
colnames(df.res) = c("% of total variance")
rownames(df.res) = Level
I2 = c("---", round(Variance[2:3], 2))
df.res = as.data.frame(cbind(df.res, I2))
totalI2 = Variance[2] + Variance[3]
df1 = data.frame("Level" = c("Sampling Error", "Total Heterogeneity"),
"Variance" = c(df.res[1,1], df.res[2,1]+df.res[3,1]),
"Type" = rep(1,2))
df2 = data.frame("Level" = rownames(df.res),
"Variance" = df.res[,1],
"Type" = rep(2,3))
df = as.data.frame(rbind(df1, df2))
g = ggplot(df, aes(fill=Level, y=Variance, x=as.factor(Type))) +
coord_cartesian(ylim = c(0,1), clip = "off") +
geom_bar(stat="identity", position="fill", width = 1, color="black") +
scale_y_continuous(labels = scales::percent)+
theme(axis.title.x=element_blank(),
axis.text.y = element_text(color="black"),
axis.line.y = element_blank(),
axis.title.y=element_blank(),
axis.line.x = element_blank(),
axis.ticks.x = element_blank(),
axis.text.x = element_blank(),
axis.ticks.y = element_line(lineend = "round"),
legend.position = "none",
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.background = element_blank(),
legend.background = element_rect(linetype="solid",
colour ="black"),
legend.title = element_blank(),
legend.key.size = unit(0.75,"cm"),
axis.ticks.length=unit(.25, "cm"),
plot.margin = unit(c(1,3,1,1), "lines")) +
scale_fill_manual(values = c("gray85", "gray90", "white", "gray85", "gray95")) +
annotate("text", x = 1.5, y = 1.05,
label = paste("Total Variance:",
round(m$sigma2[1]+m$sigma2[2]+est.samp.var, 3))) +
annotate("text", x = 1, y = (df[1,2]/2+df[2,2])/100,
label = paste("Sampling Error Variance: \n", round(est.samp.var, 3)), size = 3) +
annotate("text", x = 1, y = ((df[2,2])/100)/2-0.02,
label = bquote("Total"~italic(I)^2*":"~.(round(df[2,2],2))*"%"), size = 3) +
annotate("text", x = 1, y = ((df[2,2])/100)/2+0.05,
label = paste("Variance not attributable \n to sampling error: \n", round(m$sigma2[1]+m$sigma2[2],3)), size = 3) +
annotate("text", x = 2, y = (df[1,2]/2+df[2,2])/100, label = paste("Level 1: \n",
round(df$Variance[3],2), "%", sep=""), size = 3) +
annotate("text", x = 2, y = (df[5,2]+(df[4,2]/2))/100,
label = bquote(italic(I)[Level2]^2*":"~.(round(df[4,2],2))*"%"), size = 3) +
annotate("text", x = 2, y = (df[5,2]/2)/100,
label = bquote(italic(I)[Level3]^2*":"~.(round(df[5,2],2))*"%"), size = 3)
print(df.res)
cat("Total I2: ", round(totalI2, 2), "% \n", sep="")
suppressWarnings(print(g))
invisible(df.res)
} |
WhichModels <- function(max.p, max.q, max.P, max.Q, maxK) {
total.models <- (max.p + 1) * (max.q + 1) * (max.P + 1) * (max.Q + 1) * length(0:maxK)
x <- numeric(total.models)
i <- 1
for (x1 in 0:max.p) for (x2 in 0:max.q) {
for (x3 in 0:max.P) for (x4 in 0:max.Q) {
for (K in 0:maxK)
{
x[i] <- paste(x1, "f", x2, "f", x3, "f", x4, "f", K, sep = "")
i <- i + 1
}
}
}
return(x)
}
UndoWhichModels <- function(n) {
as.numeric(unlist(strsplit(n, split = "f")))
} |
annotate.WithFeature<-function(){
.Defunct("genomation::annotateWithFeature")
message("Use functions in genomation package from Bioconductor\n",
"See vignette for examples.")}
annotate.WithFeature.Flank<-function(){
.Defunct("genomation::annotateWithFeatureFlank")
message("Use functions in genomation package from Bioconductor\n",
"See vignette for examples.")
}
annotate.WithGenicParts<-function(){
.Defunct("genomation::annotateWithGeneParts")
message("Use functions in genomation package from Bioconductor")
}
read.bed<-function(){
.Defunct("genomation::readBed")
message("Use functions in genomation package from Bioconductor\n",
"See vignette for examples.")}
read.feature.flank<-function(){
.Defunct("genomation::readFeatureFlank")
message("Use functions in genomation package from Bioconductor\n",
"See vignette for examples.")}
read.transcript.features<-function(){
.Defunct("genomation::readTranscriptFeatures")
message("Use functions in genomation package from Bioconductor\n",
"See vignette for examples.")}
getFeatsWithTargetsStats<-function(){
.Defunct("genomation::getFeatsWithTargetsStats")
message("Use functions in genomation package from Bioconductor\n",
"See vignette for examples.")}
getFlanks<-function(){
.Defunct("genomation::getFlanks")
message("Use functions in genomation package from Bioconductor\n",
"See vignette for examples.")}
getMembers<-function(){
.Defunct("genomation::getMembers")
message("Use functions in genomation package from Bioconductor\n",
"See vignette for examples.")}
getTargetAnnotationStats<-function(){
.Defunct("genomation::getTargetAnnotationStats")
message("Use functions in genomation package from Bioconductor\n",
"See vignette for examples.")}
plotTargetAnnotation<-function(){
.Defunct("genomation::plotTargetAnnotation")
message("Use functions in genomation package from Bioconductor\n",
"See vignette for examples.")}
read <- function()
{
.Defunct("methRead")
}
read.bismark <- function()
{
.Defunct("processBismarkAln")
}
adjust.methylC<-function(){
.Defunct("adjustMethylC")
}
get.methylDiff<-function(){
.Defunct("getMethylDiff")
} |
simple_clm <-
function(formula, data, weights, start, subset, offset,
doFit = TRUE, na.action, contrasts, model = TRUE,
control = list(),
link = c("logit", "probit", "cloglog", "loglog"),
threshold = c("flexible", "symmetric", "symmetric2", "equidistant"), ...)
{
mc <- match.call(expand.dots = FALSE)
link <- match.arg(link)
threshold <- match.arg(threshold)
if(missing(formula)) stop("Model needs a formula")
if(missing(contrasts)) contrasts <- NULL
control <- do.call(clm.control, c(control, list(...)))
if (missing(data))
data <- environment(formula)
mf <- match.call(expand.dots = FALSE)
m <- match(c("formula", "data", "subset", "weights", "na.action",
"offset"), names(mf), 0L)
mf <- mf[c(1L, m)]
mf$drop.unused.levels <- TRUE
mf[[1L]] <- as.name("model.frame")
mf <- eval(mf, parent.frame())
if(control$method == "model.frame") return(mf)
y <- model.response(mf, "any")
if(!is.factor(y)) stop("response needs to be a factor", call.=FALSE)
mt <- attr(mf, "terms")
X <- if (!is.empty.model(mt))
model.matrix(mt, mf, contrasts)
else cbind("(Intercept)" = rep(1, NROW(y)))
Xint <- match("(Intercept)", colnames(X), nomatch = 0)
if(Xint <= 0) {
X <- cbind("(Intercept)" = rep(1, NROW(y)), X)
warning("an intercept is needed and assumed in 'formula'",
call.=FALSE)
}
wts <- getWeights(mf)
off <- getOffsetStd(mf)
ylevels <- levels(droplevels(y[wts > 0]))
frames <- list(y=y, ylevels=ylevels, X=X)
frames <- c(frames, makeThresholds(ylevels, threshold))
frames <- drop.cols(frames, silent=TRUE)
rho <- clm.newRho(parent.frame(), y=frames$y, X=frames$X,
NOM=NULL, S=NULL,
weights=wts, offset=off, S.offset=NULL,
tJac=frames$tJac, control=control)
start <- set.start(rho, start=start, get.start=missing(start),
threshold=threshold, link=link, frames=frames)
rho$par <- as.vector(start)
setLinks(rho, link)
if(!doFit) return(rho)
if(control$method == "Newton")
fit <- clm.fit.NR(rho, control)
else
fit <- clm.fit.optim(rho, control$method, control$ctrl)
res <- clm.finalize(fit, weights=wts,
coef.names=frames$coef.names,
aliased=frames$aliased)
res$control <- control
res$link <- link
res$start <- start
if(control$method == "Newton" &&
!is.null(start.iter <- attr(start, "start.iter")))
res$niter <- res$niter + start.iter
res$threshold <- threshold
res$call <- match.call()
res$contrasts <- attr(frames$X, "contrasts")
res$na.action <- attr(mf, "na.action")
res$terms <- mt
res$xlevels <- .getXlevels(mt, mf)
res$tJac <- frames$tJac
res$y.levels <- frames$ylevels
conv <- conv.check(res, Theta.ok=TRUE, tol=control$tol)
print.conv.check(conv, action=control$convergence)
res$vcov <- conv$vcov
res$cond.H <- conv$cond.H
res$convergence <- conv[!names(conv) %in% c("vcov", "cond.H")]
res$info <- with(res, {
data.frame("link" = link,
"threshold" = threshold,
"nobs" = nobs,
"logLik" = formatC(logLik, digits=2, format="f"),
"AIC" = formatC(-2*logLik + 2*edf, digits=2,
format="f"),
"niter" = paste(niter[1], "(", niter[2], ")", sep=""),
"max.grad" = formatC(maxGradient, digits=2,
format="e")
)
})
class(res) <- "clm"
if(model) res$model <- mf
return(res)
} |
PlotReplicateQuality <- function(ExpressionSet,
nrep,
FUN = function(x) log(stats::var(x)),
legend.pos = "topleft",
stage.names = NULL, ...){
if (!all(sapply(nrep,function(x) x > 1, simplify = TRUE)))
stop("Please insert at least 2 replicates per stage.", call. = FALSE)
ncols <- ncol(ExpressionSet)
if (length(nrep) == 1){
if ((ncols - 2) %% nrep != 0)
stop("The number of stages and the number of replicates do not match.", call. = FALSE)
nStages <- (ncols - 2) / nrep
}
else if (length(nrep) > 1){
if (!((ncols - 2) == sum(nrep)))
stop("The number of stages and the number of replicates do not match.", call. = FALSE)
nStages <- length(nrep)
}
stage.cols <- re.colors(nStages)
custom.FUN <- match.fun(FUN)
CollapsedExpressionSet <- CollapseReplicates(ExpressionSet = ExpressionSet,
nrep = nrep,
FUN = custom.FUN)
col.index <- 1
graphics::plot(stats::density(CollapsedExpressionSet[ , 3]), col = stage.cols[1],main = "Distributions of replicate log variances", ...)
apply(CollapsedExpressionSet[ , 4:(3 + nStages - 1)], 2 ,function(x) {
col.index <<- col.index + 1
graphics::lines(stats::density(x),col = stage.cols[col.index], ...)
})
if (is.null(stage.names))
graphics::legend(legend.pos, bty = "n", legend = paste0("S",1:nStages), fill = stage.cols, ncol = ifelse(nStages <= 4, 1, floor(nStages/2)))
if (!is.null(stage.names))
graphics::legend(legend.pos, bty = "n", legend = stage.names, fill = stage.cols, ncol = ifelse(nStages <= 4, 1, floor(nStages/2)))
} |
spIntPGOcc <- function(occ.formula, det.formula, data, inits, priors,
tuning, cov.model = "exponential", NNGP = TRUE,
n.neighbors = 15, search.type = "cb",
n.batch, batch.length, accept.rate = 0.43,
n.omp.threads = 1, verbose = TRUE,
n.report = 100,
n.burn = round(.10 * n.batch * batch.length),
n.thin = 1, n.chains = 1, k.fold, k.fold.threads = 1,
k.fold.seed = 100, k.fold.data, ...){
ptm <- proc.time()
logit <- function(theta, a = 0, b = 1) {log((theta-a)/(b-theta))}
logit.inv <- function(z, a = 0, b = 1) {b-(b-a)/(1+exp(z))}
rigamma <- function(n, a, b){
1/rgamma(n = n, shape = a, rate = b)
}
if (verbose) {
cat("----------------------------------------\n");
cat("\tPreparing the data\n");
cat("----------------------------------------\n");
}
formal.args <- names(formals(sys.function(sys.parent())))
elip.args <- names(list(...))
for(i in elip.args){
if(! i %in% formal.args)
warning("'",i, "' is not an argument")
}
cl <- match.call()
if (missing(data)) {
stop("error: data must be specified")
}
if (!is.list(data)) {
stop("error: data must be a list")
}
names(data) <- tolower(names(data))
if (missing(occ.formula)) {
stop("error: occ.formula must be specified")
}
if (missing(det.formula)) {
stop("error: det.formula must be specified")
}
if (!'y' %in% names(data)) {
stop("error: detection-nondetection data y must be specified in data")
}
if (!is.list(data$y)) {
stop("error: y must be a list of detection-nondetection data sets")
}
y <- data$y
n.data <- length(y)
for (q in 1:n.data) {
if (is.null(dim(y[[q]]))) {
message(paste("Data source ", q, " is provided as a one-dimensional vector.\nAssuming this is a nonreplicated detection-nondetection data source.\n", sep = ''))
}
y[[q]] <- as.matrix(y[[q]])
}
if (!'sites' %in% names(data)) {
stop("error: site ids must be specified in data")
}
sites <- data$sites
J <- length(unique(unlist(sites)))
J.long <- sapply(y, function(a) dim(a)[[1]])
if (!'occ.covs' %in% names(data)) {
if (occ.formula == ~ 1) {
if (verbose) {
message("occupancy covariates (occ.covs) not specified in data.\nAssuming intercept only occupancy model.\n")
}
data$occ.covs <- matrix(1, J, 1)
} else {
stop("error: occ.covs must be specified in data for an occupancy model with covariates")
}
}
if (!'det.covs' %in% names(data)) {
data$det.covs <- list()
for (i in 1:n.data) {
if (verbose) {
message("detection covariates (det.covs) not specified in data.\nAssuming interept only detection model for each data source.\n")
}
det.formula.curr <- det.formula[[i]]
if (det.formula.curr == ~ 1) {
for (i in 1:n.data) {
data$det.covs[[i]] <- list(int = matrix(1, dim(y[[i]])[1], dim(y[[i]])[2]))
}
} else {
stop("error: det.covs must be specified in data for a detection model with covariates")
}
}
}
if (!'coords' %in% names(data)) {
stop("error: coords must be specified in data for a spatial occupancy model.")
}
coords <- as.matrix(data$coords)
if (!missing(k.fold)) {
if (!is.numeric(k.fold) | length(k.fold) != 1 | k.fold < 2) {
stop("error: k.fold must be a single integer value >= 2")
}
}
for (q in 1:n.data) {
y.na.test <- apply(y[[q]], 1, function(a) sum(!is.na(a)))
if (sum(y.na.test == 0) > 0) {
stop(paste("error: some sites in data source ", q, " in y have all missing detection histories.\n Remove these sites from y and all objects in the 'data' argument if the site is not surveyed by another data source\n, then use 'predict' to obtain predictions at these locations if desired.", sep = ''))
}
}
if (NNGP) {
u.search.type <- 2
ord <- order(coords[,1])
coords <- coords[ord, ]
data$occ.covs <- data$occ.covs[ord, , drop = FALSE]
rownames(data$occ.covs) <- 1:nrow(data$occ.covs)
sites.orig <- sites
for (i in 1:n.data) {
for (j in 1:length(sites[[i]])) {
sites[[i]][j] <- which(ord == sites[[i]][j])
}
}
}
for (i in 1:n.data) {
data$det.covs[[i]] <- data.frame(lapply(data$det.covs[[i]], function(a) unlist(c(a))))
if (nrow(data$det.covs[[i]]) == nrow(y[[i]])) {
data$det.covs[[i]] <- data.frame(sapply(data$det.covs[[i]], rep, times = dim(y[[i]])[2]))
}
}
data$occ.covs <- as.data.frame(data$occ.covs)
if (class(occ.formula) == 'formula') {
tmp <- parseFormula(occ.formula, data$occ.covs)
X <- as.matrix(tmp[[1]])
x.names <- tmp[[2]]
} else {
stop("error: occ.formula is misspecified")
}
if (!is.list(det.formula)) {
stop(paste("error: det.formula must be a list of ", n.data, " formulas", sep = ''))
}
X.p <- list()
x.p.names <- list()
for (i in 1:n.data) {
if (class(det.formula[[i]]) == 'formula') {
tmp <- parseFormula(det.formula[[i]], data$det.covs[[i]])
X.p[[i]] <- as.matrix(tmp[[1]])
x.p.names[[i]] <- tmp[[2]]
} else {
stop(paste("error: det.formula for data source ", i, " is misspecified", sep = ''))
}
}
x.p.names <- unlist(x.p.names)
J.all <- nrow(X)
if (length(X.p) != n.data | length(y) != n.data) {
stop(paste("error: y and X.p must be lists of length ", n.data, ".", sep = ''))
}
p.occ <- ncol(X)
p.det.long <- sapply(X.p, function(a) dim(a)[[2]])
p.det <- sum(p.det.long)
n.rep <- lapply(y, function(a1) apply(a1, 1, function(a2) sum(!is.na(a2))))
K.long.max <- sapply(n.rep, max)
K <- unlist(n.rep)
n.samples <- n.batch * batch.length
if (missing(n.samples)) {
stop("error: must specify number of MCMC samples")
}
if (n.burn > n.samples) {
stop("error: n.burn must be less than n.samples")
}
if (n.thin > n.samples) {
stop("error: n.thin must be less than n.samples")
}
if (!missing(k.fold)) {
if (!is.numeric(k.fold) | length(k.fold) != 1 | k.fold < 2) {
stop("error: k.fold must be a single integer value >= 2")
}
}
X.p.orig <- X.p
y.big <- y
names.long <- list()
for (i in 1:n.data) {
if (nrow(X.p[[i]]) == length(y[[i]])) {
X.p[[i]] <- X.p[[i]][!is.na(y[[i]]), , drop = FALSE]
}
names.long[[i]] <- which(!is.na(y[[i]]))
}
n.obs.long <- sapply(X.p, nrow)
n.obs <- sum(n.obs.long)
z.long.indx.r <- list()
for (i in 1:n.data) {
z.long.indx.r[[i]] <- rep(sites[[i]], K.long.max[i])
z.long.indx.r[[i]] <- z.long.indx.r[[i]][!is.na(c(y[[i]]))]
}
z.long.indx.r <- unlist(z.long.indx.r)
z.long.indx.c <- z.long.indx.r - 1
y <- unlist(y)
y <- y[!is.na(y)]
data.indx.r <- rep(NA, n.obs)
indx <- 1
for (i in 1:n.data) {
data.indx.r[indx:(indx + n.obs.long[i] - 1)] <- rep(i, n.obs.long[i])
indx <- indx + n.obs.long[i]
}
data.indx.c <- data.indx.r - 1
X.p.all <- matrix(NA, n.obs, max(p.det.long))
indx <- 1
for (i in 1:n.data) {
X.p.all[indx:(indx + nrow(X.p[[i]]) - 1), 1:p.det.long[i]] <- X.p[[i]]
indx <- indx + nrow(X.p[[i]])
}
if (missing(priors)) {
priors <- list()
}
names(priors) <- tolower(names(priors))
if ("beta.normal" %in% names(priors)) {
if (!is.list(priors$beta.normal) | length(priors$beta.normal) != 2) {
stop("error: beta.normal must be a list of length 2")
}
mu.beta <- priors$beta.normal[[1]]
sigma.beta <- priors$beta.normal[[2]]
if (length(mu.beta) != p.occ & length(mu.beta) != 1) {
if (p.occ == 1) {
stop(paste("error: beta.normal[[1]] must be a vector of length ",
p.occ, " with elements corresponding to betas' mean", sep = ""))
} else {
stop(paste("error: beta.normal[[1]] must be a vector of length ",
p.occ, " or 1 with elements corresponding to betas' mean", sep = ""))
}
}
if (length(sigma.beta) != p.occ & length(sigma.beta) != 1) {
if (p.occ == 1) {
stop(paste("error: beta.normal[[2]] must be a vector of length ",
p.occ, " with elements corresponding to betas' variance", sep = ""))
} else {
stop(paste("error: beta.normal[[2]] must be a vector of length ",
p.occ, " or 1 with elements corresponding to betas' variance", sep = ""))
}
}
if (length(sigma.beta) != p.occ) {
sigma.beta <- rep(sigma.beta, p.occ)
}
if (length(mu.beta) != p.occ) {
mu.beta <- rep(mu.beta, p.occ)
}
Sigma.beta <- sigma.beta * diag(p.occ)
} else {
if (verbose) {
message("No prior specified for beta.normal.\nSetting prior mean to 0 and prior variance to 2.72\n")
}
mu.beta <- rep(0, p.occ)
sigma.beta <- rep(2.72, p.occ)
Sigma.beta <- diag(p.occ) * 2.72
}
if ("alpha.normal" %in% names(priors)) {
if (!is.list(priors$alpha.normal) | length(priors$alpha.normal) != 2) {
stop("error: alpha.normal must be a list of length 2")
}
mu.alpha <- priors$alpha.normal[[1]]
sigma.alpha <- priors$alpha.normal[[2]]
if (length(mu.alpha) != n.data | !is.list(mu.alpha)) {
stop(paste("error: alpha.normal[[1]] must be a list of length ",
n.data, " with elements corresponding to alphas' mean for each data set", sep = ""))
}
for (q in 1:n.data) {
if (length(mu.alpha[[q]]) != p.det.long[q] & length(mu.alpha[[q]]) != 1) {
if (p.det.long[q] == 1) {
stop(paste("error: prior means for alpha.normal[[1]][[", q, "]] must be a vector of length ",
p.det.long[q], sep = ""))
} else {
stop(paste("error: prior means for alpha.normal[[1]][[", q, "]] must be a vector of length ",
p.det.long[q], "or 1", sep = ""))
}
}
if (length(mu.alpha[[q]]) != p.det.long[q]) {
mu.alpha[[q]] <- rep(mu.alpha[[q]], p.det.long[q])
}
}
mu.alpha <- unlist(mu.alpha)
if (length(sigma.alpha) != n.data | !is.list(sigma.alpha)) {
stop(paste("error: alpha.normal[[2]] must be a list of length ",
n.data, " with elements corresponding to alphas' variance for each data set", sep = ""))
}
for (q in 1:n.data) {
if (length(sigma.alpha[[q]]) != p.det.long[q] & length(sigma.alpha[[q]]) != 1) {
if (p.det.long[q] == 1) {
stop(paste("error: prior variances for alpha.normal[[2]][[", q, "]] must be a vector of length ",
p.det.long[q], sep = ""))
} else {
stop(paste("error: prior variances for alpha.normal[[2]][[", q, "]] must be a vector of length ",
p.det.long[q], " or 1", sep = ""))
}
}
if (length(sigma.alpha[[q]]) != p.det.long[q]) {
sigma.alpha[[q]] <- rep(sigma.alpha[[q]], p.det.long[q])
}
}
sigma.alpha <- unlist(sigma.alpha)
} else {
if (verbose) {
message("No prior specified for alpha.normal.\nSetting prior mean to 0 and prior variance to 2.72\n")
}
mu.alpha <- rep(0, p.det)
sigma.alpha <- rep(2.72, p.det)
}
coords.D <- iDist(coords)
lower.unif <- 3 / max(coords.D)
upper.unif <- 3 / sort(unique(c(coords.D)))[2]
if ("phi.unif" %in% names(priors)) {
if (!is.vector(priors$phi.unif) | !is.atomic(priors$phi.unif) | length(priors$phi.unif) != 2) {
stop("error: phi.unif must be a vector of length 2 with elements corresponding to phi's lower and upper bounds")
}
phi.a <- priors$phi.unif[1]
phi.b <- priors$phi.unif[2]
} else {
if (verbose) {
message("No prior specified for phi.unif.\nSetting uniform bounds based on the range of observed spatial coordinates.\n")
}
phi.a <- 3 / max(coords.D)
phi.b <- 3 / sort(unique(c(coords.D)))[2]
}
if ("sigma.sq.ig" %in% names(priors)) {
if (!is.vector(priors$sigma.sq.ig) | !is.atomic(priors$sigma.sq.ig) | length(priors$sigma.sq.ig) != 2) {
stop("error: sigma.sq.ig must be a vector of length 2 with elements corresponding to sigma.sq's shape and scale parameters")
}
sigma.sq.a <- priors$sigma.sq.ig[1]
sigma.sq.b <- priors$sigma.sq.ig[2]
} else {
if (verbose) {
message("No prior specified for sigma.sq.ig.\nSetting the shape and scale parameters to 2.\n")
}
sigma.sq.a <- 2
sigma.sq.b <- 2
}
if (cov.model == 'matern') {
if (!"nu.unif" %in% names(priors)) {
stop("error: nu.unif must be specified in priors value list")
}
if (!is.vector(priors$nu.unif) | !is.atomic(priors$nu.unif) | length(priors$nu.unif) != 2) {
stop("error: nu.unif must be a vector of length 2 with elements corresponding to nu's lower and upper bounds")
}
nu.a <- priors$nu.unif[1]
nu.b <- priors$nu.unif[2]
} else {
nu.a <- 0
nu.b <- 0
}
if (missing(inits)) {
inits <- list()
}
names(inits) <- tolower(names(inits))
if ("z" %in% names(inits)) {
z.inits <- inits$z
if (!is.vector(z.inits)) {
stop(paste("error: initial values for z must be a vector of length ",
J, sep = ""))
}
if (length(z.inits) != J) {
stop(paste("error: initial values for z must be a vector of length ",
J, sep = ""))
}
z.test <- tapply(y, z.long.indx.r, max, na.rm = TRUE)
init.test <- sum(z.inits < z.test)
if (init.test > 0) {
stop("error: initial values for latent occurrence (z) are invalid. Please re-specify inits$z so initial values are 1 if the species is observed at that site.")
}
} else {
z.inits <- tapply(y, z.long.indx.r, max, na.rm = TRUE)
if (verbose) {
message("z is not specified in initial values.\nSetting initial values based on observed data\n")
}
}
if ("beta" %in% names(inits)) {
beta.inits <- inits[["beta"]]
if (length(beta.inits) != p.occ & length(beta.inits) != 1) {
if (p.occ == 1) {
stop(paste("error: initial values for beta must be of length ", p.occ,
sep = ""))
} else {
stop(paste("error: initial values for beta must be of length ", p.occ, " or 1",
sep = ""))
}
}
if (length(beta.inits) != p.occ) {
beta.inits <- rep(beta.inits, p.occ)
}
} else {
beta.inits <- rnorm(p.occ, mu.beta, sqrt(sigma.beta))
if (verbose) {
message('beta is not specified in initial values.\nSetting initial values to random values from the prior distribution\n')
}
}
if ("alpha" %in% names(inits)) {
alpha.inits <- inits[["alpha"]]
if (length(alpha.inits) != n.data | !is.list(alpha.inits)) {
stop(paste("error: initial values for alpha must be a list of length ", n.data,
sep = ""))
}
for (q in 1:n.data) {
if (length(alpha.inits[[q]]) != p.det.long[q] & length(alpha.inits[[q]]) != 1) {
if (p.det.long[q] == 1) {
stop(paste("error: initial values for alpha[[", q, "]] must be a vector of length ",
p.det.long[q], sep = ""))
} else {
stop(paste("error: initial values for alpha[[", q, "]] must be a vector of length ",
p.det.long[q], " or 1", sep = ""))
}
}
if (length(alpha.inits[[q]]) != p.det.long[q]) {
alpha.inits[[q]] <- rep(alpha.inits, p.det.long[q])
}
}
alpha.inits <- unlist(alpha.inits)
} else {
if (verbose) {
message("alpha is not specified in initial values.\nSetting initial values to random values from the prior distribution\n")
}
alpha.inits <- rnorm(p.det, mu.alpha, sqrt(sigma.alpha))
}
alpha.indx.r <- unlist(sapply(1:n.data, function(a) rep(a, p.det.long[a])))
alpha.indx.c <- alpha.indx.r - 1
if ("phi" %in% names(inits)) {
phi.inits <- inits[["phi"]]
if (length(phi.inits) != 1) {
stop("error: initial values for phi must be of length 1")
}
} else {
phi.inits <- runif(1, lower.unif, upper.unif)
if (verbose) {
message("phi is not specified in initial values.\nSetting initial value to random value from the prior distribution\n")
}
}
if ("sigma.sq" %in% names(inits)) {
sigma.sq.inits <- inits[["sigma.sq"]]
if (length(sigma.sq.inits) != 1) {
stop("error: initial values for sigma.sq must be of length 1")
}
} else {
sigma.sq.inits <- rigamma(1, sigma.sq.a, sigma.sq.b)
if (verbose) {
message("sigma.sq is not specified in initial values.\nSetting initial value to random value from the prior distribution\n")
}
}
if ("w" %in% names(inits)) {
w.inits <- inits[["w"]]
if (!is.vector(w.inits)) {
stop(paste("error: initial values for w must be a vector of length ",
J, sep = ""))
}
if (length(w.inits) != J) {
stop(paste("error: initial values for w must be a vector of length ",
J, sep = ""))
}
} else {
w.inits <- rep(0, J)
if (verbose) {
message("w is not specified in initial values.\nSetting initial value to 0\n")
}
}
if ("nu" %in% names(inits)) {
nu.inits <- inits[["nu"]]
if (length(nu.inits) != 1) {
stop("error: initial values for nu must be of length 1")
}
} else {
if (cov.model == 'matern') {
if (verbose) {
message("nu is not specified in initial values.\nSetting initial value to random value from the prior distribution\n")
}
nu.inits <- runif(1, nu.a, nu.b)
} else {
nu.inits <- 0
}
}
cov.model.names <- c("exponential", "spherical", "matern", "gaussian")
if(! cov.model %in% cov.model.names){
stop("error: specified cov.model '",cov.model,"' is not a valid option; choose from ",
paste(cov.model.names, collapse=", ", sep="") ,".")}
cov.model.indx <- which(cov.model == cov.model.names) - 1
sigma.sq.tuning <- 0
phi.tuning <- 0
nu.tuning <- 0
if (missing(tuning)) {
phi.tuning <- 1
if (cov.model == 'matern') {
nu.tuning <- 1
}
} else {
names(tuning) <- tolower(names(tuning))
if(!"phi" %in% names(tuning)) {
stop("error: phi must be specified in tuning value list")
}
phi.tuning <- tuning$phi
if (length(phi.tuning) != 1) {
stop("error: phi tuning must be a single value")
}
if (cov.model == 'matern') {
if(!"nu" %in% names(tuning)) {
stop("error: nu must be specified in tuning value list")
}
nu.tuning <- tuning$nu
if (length(nu.tuning) != 1) {
stop("error: nu tuning must be a single value")
}
}
}
tuning.c <- log(c(sigma.sq.tuning, phi.tuning, nu.tuning))
model.deviance <- NA
curr.chain <- 1
if (!NNGP) {
storage.mode(y) <- "double"
storage.mode(z.inits) <- "double"
storage.mode(X.p.all) <- "double"
storage.mode(X) <- "double"
storage.mode(coords.D) <- "double"
storage.mode(p.det) <- "integer"
storage.mode(p.det.long) <- "integer"
storage.mode(p.occ) <- "integer"
storage.mode(n.obs) <- "integer"
storage.mode(n.obs.long) <- "integer"
storage.mode(J) <- "integer"
storage.mode(J.long) <- "integer"
storage.mode(K) <- "integer"
storage.mode(n.data) <- "integer"
storage.mode(beta.inits) <- "double"
storage.mode(alpha.inits) <- "double"
storage.mode(phi.inits) <- "double"
storage.mode(nu.inits) <- "double"
storage.mode(w.inits) <- "double"
storage.mode(sigma.sq.inits) <- "double"
storage.mode(z.long.indx.c) <- "integer"
storage.mode(data.indx.c) <- "integer"
storage.mode(alpha.indx.c) <- "integer"
storage.mode(mu.beta) <- "double"
storage.mode(Sigma.beta) <- "double"
storage.mode(mu.alpha) <- "double"
storage.mode(sigma.alpha) <- "double"
storage.mode(phi.a) <- "double"
storage.mode(phi.b) <- "double"
storage.mode(sigma.sq.a) <- "double"
storage.mode(sigma.sq.b) <- "double"
storage.mode(nu.a) <- "double"
storage.mode(nu.b) <- "double"
storage.mode(tuning.c) <- "double"
storage.mode(cov.model.indx) <- "integer"
storage.mode(n.batch) <- "integer"
storage.mode(batch.length) <- "integer"
storage.mode(accept.rate) <- "double"
storage.mode(n.omp.threads) <- "integer"
storage.mode(verbose) <- "integer"
storage.mode(n.report) <- "integer"
storage.mode(n.burn) <- "integer"
storage.mode(n.thin) <- "integer"
storage.mode(curr.chain) <- "integer"
storage.mode(n.chains) <- "integer"
n.post.samples <- length(seq(from = n.burn + 1,
to = n.samples,
by = as.integer(n.thin)))
storage.mode(n.post.samples) <- "integer"
out.tmp <- list()
for (i in 1:n.chains) {
if (i > 1) {
beta.inits <- rnorm(p.occ, mu.beta, sqrt(sigma.beta))
alpha.inits <- rnorm(p.det, mu.alpha, sqrt(sigma.alpha))
sigma.sq.inits <- rigamma(1, sigma.sq.a, sigma.sq.b)
phi.inits <- runif(1, phi.a, phi.b)
if (cov.model == 'matern') {
nu.inits <- runif(1, nu.a, nu.b)
}
}
storage.mode(curr.chain) <- "integer"
out.tmp[[i]] <- .Call("spIntPGOcc", y, X, X.p.all, coords.D, p.occ, p.det, p.det.long,
J, J.long, K, n.obs, n.obs.long, n.data,
beta.inits, alpha.inits, z.inits, w.inits,
phi.inits, sigma.sq.inits, nu.inits,
z.long.indx.c, data.indx.c, alpha.indx.c, mu.beta, mu.alpha,
Sigma.beta, sigma.alpha, phi.a, phi.b, sigma.sq.a, sigma.sq.b,
nu.a, nu.b, tuning.c, cov.model.indx,
n.batch, batch.length, accept.rate,
n.omp.threads, verbose, n.report, n.burn, n.thin, n.post.samples,
curr.chain, n.chains)
curr.chain <- curr.chain + 1
}
out <- list()
out$rhat <- list()
if (n.chains > 1) {
out$rhat$beta <- gelman.diag(mcmc.list(lapply(out.tmp, function(a)
mcmc(t(a$beta.samples)))),
autoburnin = FALSE)$psrf[, 2]
out$rhat$alpha <- gelman.diag(mcmc.list(lapply(out.tmp, function(a)
mcmc(t(a$alpha.samples)))),
autoburnin = FALSE)$psrf[, 2]
out$rhat$theta <- gelman.diag(mcmc.list(lapply(out.tmp, function(a)
mcmc(t(a$theta.samples)))),
autoburnin = FALSE)$psrf[, 2]
} else {
out$rhat$beta <- rep(NA, p.occ)
out$rhat$alpha <- rep(NA, p.det)
out$rhat$theta <- rep(NA, ifelse(cov.model == 'matern', 3, 2))
}
out$beta.samples <- mcmc(do.call(rbind, lapply(out.tmp, function(a) t(a$beta.samples))))
colnames(out$beta.samples) <- x.names
out$alpha.samples <- mcmc(do.call(rbind,
lapply(out.tmp, function(a) t(a$alpha.samples))))
colnames(out$alpha.samples) <- x.p.names
out$theta.samples <- mcmc(do.call(rbind, lapply(out.tmp, function(a) t(a$theta.samples))))
if (cov.model != 'matern') {
colnames(out$theta.samples) <- c('sigma.sq', 'phi')
} else {
colnames(out$theta.samples) <- c('sigma.sq', 'phi', 'nu')
}
out$z.samples <- mcmc(do.call(rbind, lapply(out.tmp, function(a) t(a$z.samples))))
out$psi.samples <- mcmc(do.call(rbind, lapply(out.tmp, function(a) t(a$psi.samples))))
out$w.samples <- mcmc(do.call(rbind, lapply(out.tmp, function(a) t(a$w.samples))))
out$y.rep.samples <- do.call(rbind, lapply(out.tmp, function(a) a$y.rep.samples))
tmp <- list()
indx <- 1
for (q in 1:n.data) {
tmp[[q]] <- array(NA, dim = c(J.long[q] * K.long.max[q], n.post.samples * n.chains))
tmp[[q]][names.long[[q]], ] <- out$y.rep.samples[indx:(indx + n.obs.long[q] - 1), ]
tmp[[q]] <- array(tmp[[q]], dim = c(J.long[q], K.long.max[q], n.post.samples * n.chains))
tmp[[q]] <- aperm(tmp[[q]], c(3, 1, 2))
indx <- indx + n.obs.long[q]
}
out$y.rep.samples <- tmp
out$ESS <- list()
out$ESS$beta <- effectiveSize(out$beta.samples)
out$ESS$alpha <- effectiveSize(out$alpha.samples)
out$ESS$theta <- effectiveSize(out$theta.samples)
out$X <- X
out$X.p <- X.p.orig
out$y <- y.big
out$call <- cl
out$n.samples <- n.samples
out$sites <- sites
out$cov.model.indx <- cov.model.indx
out$type <- "GP"
out$coords <- coords
out$n.post <- n.post.samples
out$n.thin <- n.thin
out$n.burn <- n.burn
out$n.chains <- n.chains
if (!missing(k.fold)) {
if (verbose) {
cat("----------------------------------------\n");
cat("\tCross-validation\n");
cat("----------------------------------------\n");
message(paste("Performing ", k.fold, "-fold cross-validation using ", k.fold.threads,
" thread(s).", sep = ''))
}
set.seed(k.fold.seed)
if (missing(k.fold.data)) {
k.fold.data <- NULL
}
if (!is.null(k.fold.data)) {
if (!is.numeric(k.fold.data) | length(k.fold.data) != 1) {
stop("error: if specified, k.fold.data must be a single numeric value")
}
if (verbose) {
message(paste("Only holding out data from data source ", k.fold.data, ".", sep = ''))
}
sites.random <- sample(sites[[k.fold.data]])
} else {
sites.random <- sample(1:J)
}
sites.k.fold <- split(sites.random, rep(1:k.fold, length.out = length(sites.random)))
registerDoParallel(k.fold.threads)
model.deviance <- foreach (i = 1:k.fold, .combine = "+") %dopar% {
curr.set <- sort(sites.k.fold[[i]])
curr.set.pred <- curr.set
curr.set.fit <- (1:J)[-curr.set]
if (!is.null(k.fold.data)) {
curr.set.fit <- sort(unique(c(curr.set.fit, unlist(sites[-k.fold.data]))))
}
y.indx <- !((z.long.indx.r) %in% curr.set)
if (!is.null(k.fold.data)) {
y.indx <- ifelse(data.indx.r == k.fold.data, y.indx, TRUE)
}
y.fit <- y[y.indx]
y.0 <- y[!y.indx]
z.inits.fit <- z.inits[curr.set.fit]
w.inits.fit <- w.inits[curr.set.fit]
coords.fit <- coords[curr.set.fit, , drop = FALSE]
coords.0 <- coords[curr.set.pred, , drop = FALSE]
coords.D.fit <- coords.D[curr.set.fit, curr.set.fit, drop = FALSE]
coords.D.0 <- coords.D[curr.set.pred, curr.set.pred, drop = FALSE]
X.p.fit <- X.p.all[y.indx, , drop = FALSE]
X.p.0 <- X.p.all[!y.indx, , drop = FALSE]
X.fit <- X[curr.set.fit, , drop = FALSE]
X.0 <- X[curr.set.pred, , drop = FALSE]
J.fit <- nrow(X.fit)
sites.fit <- sapply(sites,
function(a) which(as.numeric(row.names(X.fit)) %in% a[a %in% curr.set.fit]))
tmp <- sapply(sites, function(a) a %in% curr.set.fit)
if (!is.null(k.fold.data)) {
sites.fit[[k.fold.data]] <- which(as.numeric(row.names(X.fit)) %in% sites[[k.fold.data]][sites[[k.fold.data]] %in% (1:J)[-curr.set]])
tmp[[k.fold.data]] <- sites[[k.fold.data]] %in% (1:J)[-curr.set]
}
K.fit <- K[unlist(tmp)]
z.long.indx.fit <- list()
tmp.indx <- 1
for (q in 1:n.data) {
z.long.indx.fit[[q]] <- matrix(NA, length(sites.fit[[q]]), K.long.max[q])
for (j in 1:length(sites.fit[[q]])) {
z.long.indx.fit[[q]][j, 1:K.fit[tmp.indx]] <- sites.fit[[q]][j]
tmp.indx <- tmp.indx + 1
}
z.long.indx.fit[[q]] <- c(z.long.indx.fit[[q]])
z.long.indx.fit[[q]] <- z.long.indx.fit[[q]][!is.na(z.long.indx.fit[[q]])] - 1
}
z.long.indx.fit <- unlist(z.long.indx.fit)
sites.0 <- sapply(sites,
function(a) which(as.numeric(row.names(X.0)) %in% a[a %in% curr.set.pred]))
tmp <- sapply(sites, function(a) a %in% curr.set.pred)
if (!is.null(k.fold.data)) {
sites.0[-k.fold.data] <- NA
for (q in 1:n.data) {
if (q != k.fold.data) {
tmp[[q]] <- rep(FALSE, J.long[q])
}
}
}
K.0 <- K[unlist(tmp)]
z.long.indx.0 <- list()
tmp.indx <- 1
for (q in 1:n.data) {
if (!is.na(sites.0[[q]][1])) {
z.long.indx.0[[q]] <- matrix(NA, length(sites.0[[q]]), K.long.max[q])
for (j in 1:length(sites.0[[q]])) {
z.long.indx.0[[q]][j, 1:K.0[tmp.indx]] <- sites.0[[q]][j]
tmp.indx <- tmp.indx + 1
}
z.long.indx.0[[q]] <- c(z.long.indx.0[[q]])
z.long.indx.0[[q]] <- z.long.indx.0[[q]][!is.na(z.long.indx.0[[q]])] - 1
}
}
z.long.indx.0 <- unlist(z.long.indx.0)
verbose.fit <- FALSE
n.omp.threads.fit <- 1
n.obs.fit <- length(y.fit)
n.obs.0 <- length(y.0)
data.indx.c.fit <- data.indx.c[y.indx]
data.indx.0 <- data.indx.c[!y.indx] + 1
n.obs.long.fit <- as.vector(table(data.indx.c.fit))
n.obs.long.0 <- n.obs.long - n.obs.long.fit
J.long.fit <- as.vector(tapply(z.long.indx.fit, factor(data.indx.c.fit),
FUN = function(a) length(unique(a))))
storage.mode(y.fit) <- "double"
storage.mode(z.inits.fit) <- "double"
storage.mode(X.p.fit) <- "double"
storage.mode(X.fit) <- "double"
storage.mode(coords.D.fit) <- "double"
storage.mode(p.det) <- "integer"
storage.mode(p.det.long) <- "integer"
storage.mode(p.occ) <- "integer"
storage.mode(n.obs.fit) <- "integer"
storage.mode(n.obs.long.fit) <- "integer"
storage.mode(J.fit) <- "integer"
storage.mode(J.long.fit) <- "integer"
storage.mode(K.fit) <- "integer"
storage.mode(n.data) <- "integer"
storage.mode(beta.inits) <- "double"
storage.mode(alpha.inits) <- "double"
storage.mode(phi.inits) <- "double"
storage.mode(nu.inits) <- "double"
storage.mode(w.inits.fit) <- "double"
storage.mode(sigma.sq.inits) <- "double"
storage.mode(z.long.indx.fit) <- "integer"
storage.mode(data.indx.c.fit) <- "integer"
storage.mode(alpha.indx.c) <- "integer"
storage.mode(mu.beta) <- "double"
storage.mode(Sigma.beta) <- "double"
storage.mode(mu.alpha) <- "double"
storage.mode(sigma.alpha) <- "double"
storage.mode(phi.a) <- "double"
storage.mode(phi.b) <- "double"
storage.mode(sigma.sq.a) <- "double"
storage.mode(sigma.sq.b) <- "double"
storage.mode(nu.a) <- "double"
storage.mode(nu.b) <- "double"
storage.mode(tuning.c) <- "double"
storage.mode(cov.model.indx) <- "integer"
storage.mode(n.batch) <- "integer"
storage.mode(batch.length) <- "integer"
storage.mode(accept.rate) <- "double"
storage.mode(n.omp.threads.fit) <- "integer"
storage.mode(verbose.fit) <- "integer"
storage.mode(n.report) <- "integer"
storage.mode(n.burn) <- "integer"
storage.mode(n.thin) <- "integer"
curr.chain <- 1
storage.mode(curr.chain) <- "integer"
out.fit <- .Call("spIntPGOcc", y.fit, X.fit, X.p.fit, coords.D.fit, p.occ, p.det, p.det.long,
J.fit, J.long.fit, K.fit, n.obs.fit, n.obs.long.fit, n.data,
beta.inits, alpha.inits, z.inits.fit, w.inits.fit,
phi.inits, sigma.sq.inits, nu.inits,
z.long.indx.fit, data.indx.c.fit, alpha.indx.c, mu.beta, mu.alpha,
Sigma.beta, sigma.alpha, phi.a, phi.b, sigma.sq.a, sigma.sq.b,
nu.a, nu.b, tuning.c, cov.model.indx,
n.batch, batch.length, accept.rate,
n.omp.threads.fit, verbose.fit, n.report, n.burn, n.thin, n.post.samples,
curr.chain, n.chains)
out.fit$beta.samples <- mcmc(t(out.fit$beta.samples))
colnames(out.fit$beta.samples) <- x.names
out.fit$theta.samples <- mcmc(t(out.fit$theta.samples))
if (cov.model != 'matern') {
colnames(out.fit$theta.samples) <- c('sigma.sq', 'phi')
} else {
colnames(out.fit$theta.samples) <- c('sigma.sq', 'phi', 'nu')
}
out.fit$w.samples <- mcmc(t(out.fit$w.samples))
out.fit$z.samples <- mcmc(t(out.fit$z.samples))
out.fit$psi.samples <- mcmc(t(out.fit$psi.samples))
out.fit$X <- X.fit
out.fit$X.p <- X.p.fit
out.fit$call <- cl
out.fit$n.samples <- batch.length * n.batch
out.fit$cov.model.indx <- cov.model.indx
out.fit$type <- "GP"
out.fit$coords <- coords.fit
out.fit$n.post <- n.post.samples
out.fit$n.thin <- n.thin
out.fit$n.burn <- n.burn
out.fit$n.chains <- 1
class(out.fit) <- "spPGOcc"
out.pred <- predict.spPGOcc(out.fit, X.0, coords.0, verbose = FALSE)
p.0.samples <- matrix(NA, n.post.samples, nrow(X.p.0))
like.samples <- rep(NA, nrow(X.p.0))
for (j in 1:nrow(X.p.0)) {
p.0.samples[, j] <- logit.inv(X.p.0[j, 1:sum(alpha.indx.r == data.indx.0[j])] %*% out.fit$alpha.samples[which(alpha.indx.r == data.indx.0[j]), ])
like.samples[j] <- mean(dbinom(y.0[j], 1, p.0.samples[, j] * out.pred$z.0.samples[, z.long.indx.0[j] + 1]))
}
as.vector(tapply(like.samples, data.indx.0, function(a) sum(log(a))))
}
model.deviance <- -2 * model.deviance
out$k.fold.deviance <- model.deviance
stopImplicitCluster()
}
class(out) <- "spIntPGOcc"
out
} else {
if(verbose){
cat("----------------------------------------\n");
cat("\tBuilding the neighbor list\n");
cat("----------------------------------------\n");
}
search.type.names <- c("brute", "cb")
if(!search.type %in% search.type.names){
stop("error: specified search.type '",search.type,
"' is not a valid option; choose from ",
paste(search.type.names, collapse=", ", sep="") ,".")
}
if(search.type == "brute"){
indx <- mkNNIndx(coords, n.neighbors, n.omp.threads)
} else{
indx <- mkNNIndxCB(coords, n.neighbors, n.omp.threads)
}
nn.indx <- indx$nnIndx
nn.indx.lu <- indx$nnIndxLU
nn.indx.run.time <- indx$run.time
if(verbose){
cat("----------------------------------------\n");
cat("Building the neighbors of neighbors list\n");
cat("----------------------------------------\n");
}
indx <- mkUIndx(J, n.neighbors, nn.indx, nn.indx.lu, u.search.type)
u.indx <- indx$u.indx
u.indx.lu <- indx$u.indx.lu
ui.indx <- indx$ui.indx
u.indx.run.time <- indx$run.time
storage.mode(y) <- "double"
storage.mode(z.inits) <- "double"
storage.mode(X.p.all) <- "double"
storage.mode(X) <- "double"
storage.mode(coords) <- "double"
storage.mode(p.det) <- "integer"
storage.mode(p.det.long) <- "integer"
storage.mode(p.occ) <- "integer"
storage.mode(n.obs) <- "integer"
storage.mode(n.obs.long) <- "integer"
storage.mode(J) <- "integer"
storage.mode(J.long) <- "integer"
storage.mode(K) <- "integer"
storage.mode(n.data) <- "integer"
storage.mode(beta.inits) <- "double"
storage.mode(alpha.inits) <- "double"
storage.mode(phi.inits) <- "double"
storage.mode(sigma.sq.inits) <- "double"
storage.mode(nu.inits) <- "double"
storage.mode(w.inits) <- "double"
storage.mode(z.long.indx.c) <- "integer"
storage.mode(data.indx.c) <- "integer"
storage.mode(alpha.indx.c) <- "integer"
storage.mode(mu.beta) <- "double"
storage.mode(Sigma.beta) <- "double"
storage.mode(mu.alpha) <- "double"
storage.mode(sigma.alpha) <- "double"
storage.mode(phi.a) <- "double"
storage.mode(phi.b) <- "double"
storage.mode(nu.a) <- "double"
storage.mode(nu.b) <- "double"
storage.mode(sigma.sq.a) <- "double"
storage.mode(sigma.sq.b) <- "double"
storage.mode(tuning.c) <- "double"
storage.mode(n.batch) <- "integer"
storage.mode(batch.length) <- "integer"
storage.mode(accept.rate) <- "double"
storage.mode(n.omp.threads) <- "integer"
storage.mode(verbose) <- "integer"
storage.mode(n.report) <- "integer"
storage.mode(cov.model.indx) <- "integer"
storage.mode(n.report) <- "integer"
storage.mode(nn.indx) <- "integer"
storage.mode(nn.indx.lu) <- "integer"
storage.mode(u.indx) <- "integer"
storage.mode(u.indx.lu) <- "integer"
storage.mode(ui.indx) <- "integer"
storage.mode(n.neighbors) <- "integer"
storage.mode(n.burn) <- "integer"
storage.mode(n.thin) <- "integer"
storage.mode(curr.chain) <- "integer"
storage.mode(n.chains) <- "integer"
n.post.samples <- length(seq(from = n.burn + 1,
to = n.samples,
by = as.integer(n.thin)))
storage.mode(n.post.samples) <- "integer"
out.tmp <- list()
for (i in 1:n.chains) {
if (i > 1) {
beta.inits <- rnorm(p.occ, mu.beta, sqrt(sigma.beta))
alpha.inits <- rnorm(p.det, mu.alpha, sqrt(sigma.alpha))
sigma.sq.inits <- rigamma(1, sigma.sq.a, sigma.sq.b)
phi.inits <- runif(1, phi.a, phi.b)
if (cov.model == 'matern') {
nu.inits <- runif(1, nu.a, nu.b)
}
}
storage.mode(curr.chain) <- "integer"
out.tmp[[i]] <- .Call("spIntPGOccNNGP", y, X, X.p.all, coords, p.occ, p.det, p.det.long,
J, J.long, K, n.obs, n.obs.long, n.data,
n.neighbors, nn.indx, nn.indx.lu, u.indx, u.indx.lu, ui.indx,
beta.inits, alpha.inits, z.inits, w.inits,
phi.inits, sigma.sq.inits, nu.inits,
z.long.indx.c, data.indx.c, alpha.indx.c, mu.beta, mu.alpha,
Sigma.beta, sigma.alpha, phi.a, phi.b, sigma.sq.a, sigma.sq.b,
nu.a, nu.b, tuning.c, cov.model.indx,
n.batch, batch.length, accept.rate,
n.omp.threads, verbose, n.report, n.burn, n.thin, n.post.samples,
curr.chain, n.chains)
curr.chain <- curr.chain + 1
}
out <- list()
out$rhat <- list()
if (n.chains > 1) {
out$rhat$beta <- gelman.diag(mcmc.list(lapply(out.tmp, function(a)
mcmc(t(a$beta.samples)))),
autoburnin = FALSE)$psrf[, 2]
out$rhat$alpha <- gelman.diag(mcmc.list(lapply(out.tmp, function(a)
mcmc(t(a$alpha.samples)))),
autoburnin = FALSE)$psrf[, 2]
out$rhat$theta <- gelman.diag(mcmc.list(lapply(out.tmp, function(a)
mcmc(t(a$theta.samples)))),
autoburnin = FALSE)$psrf[, 2]
} else {
out$rhat$beta <- rep(NA, p.occ)
out$rhat$alpha <- rep(NA, p.det)
out$rhat$theta <- rep(NA, ifelse(cov.model == 'matern', 3, 2))
}
out$coords <- coords[order(ord), ]
out$z.samples <- mcmc(do.call(rbind, lapply(out.tmp, function(a) t(a$z.samples))))
out$z.samples <- mcmc(out$z.samples[, order(ord), drop = FALSE])
out$X <- X[order(ord), , drop = FALSE]
out$w.samples <- mcmc(do.call(rbind, lapply(out.tmp, function(a) t(a$w.samples))))
out$w.samples <- mcmc(out$w.samples[, order(ord), drop = FALSE])
out$psi.samples <- mcmc(do.call(rbind, lapply(out.tmp, function(a) t(a$psi.samples))))
out$psi.samples <- mcmc(out$psi.samples[, order(ord), drop = FALSE])
out$beta.samples <- mcmc(do.call(rbind, lapply(out.tmp, function(a) t(a$beta.samples))))
colnames(out$beta.samples) <- x.names
out$alpha.samples <- mcmc(do.call(rbind,
lapply(out.tmp, function(a) t(a$alpha.samples))))
colnames(out$alpha.samples) <- x.p.names
out$theta.samples <- mcmc(do.call(rbind, lapply(out.tmp, function(a) t(a$theta.samples))))
if (cov.model != 'matern') {
colnames(out$theta.samples) <- c('sigma.sq', 'phi')
} else {
colnames(out$theta.samples) <- c('sigma.sq', 'phi', 'nu')
}
out$y.rep.samples <- do.call(rbind, lapply(out.tmp, function(a) a$y.rep.samples))
tmp <- list()
indx <- 1
for (q in 1:n.data) {
tmp[[q]] <- array(NA, dim = c(J.long[q] * K.long.max[q], n.post.samples * n.chains))
tmp[[q]][names.long[[q]], ] <- out$y.rep.samples[indx:(indx + n.obs.long[q] - 1), ]
tmp[[q]] <- array(tmp[[q]], dim = c(J.long[q], K.long.max[q], n.post.samples * n.chains))
tmp[[q]] <- aperm(tmp[[q]], c(3, 1, 2))
indx <- indx + n.obs.long[q]
}
out$y.rep.samples <- tmp
out$ESS <- list()
out$ESS$beta <- effectiveSize(out$beta.samples)
out$ESS$alpha <- effectiveSize(out$alpha.samples)
out$ESS$theta <- effectiveSize(out$theta.samples)
out$X.p <- X.p.orig
out$y <- y.big
out$call <- cl
out$n.samples <- batch.length * n.batch
out$sites <- sites.orig
out$n.neighbors <- n.neighbors
out$cov.model.indx <- cov.model.indx
out$type <- "NNGP"
out$n.post <- n.post.samples
out$n.thin <- n.thin
out$n.burn <- n.burn
out$n.chains <- n.chains
if (!missing(k.fold)) {
if (verbose) {
cat("----------------------------------------\n");
cat("\tCross-validation\n");
cat("----------------------------------------\n");
message(paste("Performing ", k.fold, "-fold cross-validation using ", k.fold.threads,
" thread(s).", sep = ''))
}
set.seed(k.fold.seed)
if (missing(k.fold.data)) {
k.fold.data <- NULL
}
if (!is.null(k.fold.data)) {
if (!is.numeric(k.fold.data) | length(k.fold.data) != 1) {
stop("error: if specified, k.fold.data must be a single numeric value")
}
if (verbose) {
message(paste("Only holding out data from data source ", k.fold.data, ".", sep = ''))
}
sites.random <- sample(sites[[k.fold.data]])
} else {
sites.random <- sample(1:J)
}
sites.k.fold <- split(sites.random, rep(1:k.fold, length.out = length(sites.random)))
registerDoParallel(k.fold.threads)
model.deviance <- foreach (i = 1:k.fold, .combine = "+") %dopar% {
curr.set <- sort(sites.k.fold[[i]])
curr.set.pred <- curr.set
curr.set.fit <- (1:J)[-curr.set]
if (!is.null(k.fold.data)) {
curr.set.fit <- sort(unique(c(curr.set.fit, unlist(sites[-k.fold.data]))))
}
y.indx <- !((z.long.indx.r) %in% curr.set)
if (!is.null(k.fold.data)) {
y.indx <- ifelse(data.indx.r == k.fold.data, y.indx, TRUE)
}
y.fit <- y[y.indx]
y.0 <- y[!y.indx]
z.inits.fit <- z.inits[curr.set.fit]
w.inits.fit <- w.inits[curr.set.fit]
coords.fit <- coords[curr.set.fit, , drop = FALSE]
coords.0 <- coords[curr.set.pred, , drop = FALSE]
X.p.fit <- X.p.all[y.indx, , drop = FALSE]
X.p.0 <- X.p.all[!y.indx, , drop = FALSE]
X.fit <- X[curr.set.fit, , drop = FALSE]
X.0 <- X[curr.set.pred, , drop = FALSE]
J.fit <- nrow(X.fit)
sites.fit <- sapply(sites,
function(a) which(as.numeric(row.names(X.fit)) %in% a[a %in% curr.set.fit]))
tmp <- sapply(sites, function(a) a %in% curr.set.fit)
if (!is.null(k.fold.data)) {
sites.fit[[k.fold.data]] <- which(as.numeric(row.names(X.fit)) %in% sites[[k.fold.data]][sites[[k.fold.data]] %in% (1:J)[-curr.set]])
tmp[[k.fold.data]] <- sites[[k.fold.data]] %in% (1:J)[-curr.set]
}
K.fit <- K[unlist(tmp)]
z.long.indx.fit <- list()
tmp.indx <- 1
for (q in 1:n.data) {
z.long.indx.fit[[q]] <- matrix(NA, length(sites.fit[[q]]), K.long.max[q])
for (j in 1:length(sites.fit[[q]])) {
z.long.indx.fit[[q]][j, 1:K.fit[tmp.indx]] <- sites.fit[[q]][j]
tmp.indx <- tmp.indx + 1
}
z.long.indx.fit[[q]] <- c(z.long.indx.fit[[q]])
z.long.indx.fit[[q]] <- z.long.indx.fit[[q]][!is.na(z.long.indx.fit[[q]])] - 1
}
z.long.indx.fit <- unlist(z.long.indx.fit)
sites.0 <- sapply(sites,
function(a) which(as.numeric(row.names(X.0)) %in% a[a %in% curr.set.pred]))
tmp <- sapply(sites, function(a) a %in% curr.set.pred)
if (!is.null(k.fold.data)) {
sites.0[-k.fold.data] <- NA
for (q in 1:n.data) {
if (q != k.fold.data) {
tmp[[q]] <- rep(FALSE, J.long[q])
}
}
}
K.0 <- K[unlist(tmp)]
z.long.indx.0 <- list()
tmp.indx <- 1
for (q in 1:n.data) {
if (!is.na(sites.0[[q]][1])) {
z.long.indx.0[[q]] <- matrix(NA, length(sites.0[[q]]), K.long.max[q])
for (j in 1:length(sites.0[[q]])) {
z.long.indx.0[[q]][j, 1:K.0[tmp.indx]] <- sites.0[[q]][j]
tmp.indx <- tmp.indx + 1
}
z.long.indx.0[[q]] <- c(z.long.indx.0[[q]])
z.long.indx.0[[q]] <- z.long.indx.0[[q]][!is.na(z.long.indx.0[[q]])] - 1
}
}
z.long.indx.0 <- unlist(z.long.indx.0)
verbose.fit <- FALSE
n.omp.threads.fit <- 1
n.obs.fit <- length(y.fit)
n.obs.0 <- length(y.0)
data.indx.c.fit <- data.indx.c[y.indx]
data.indx.0 <- data.indx.c[!y.indx] + 1
n.obs.long.fit <- as.vector(table(data.indx.c.fit))
n.obs.long.0 <- n.obs.long - n.obs.long.fit
J.long.fit <- as.vector(tapply(z.long.indx.fit, factor(data.indx.c.fit),
FUN = function(a) length(unique(a))))
if(search.type == "brute"){
indx <- mkNNIndx(coords.fit, n.neighbors, n.omp.threads.fit)
} else{
indx <- mkNNIndxCB(coords.fit, n.neighbors, n.omp.threads.fit)
}
nn.indx.fit <- indx$nnIndx
nn.indx.lu.fit <- indx$nnIndxLU
indx <- mkUIndx(J.fit, n.neighbors, nn.indx.fit,
nn.indx.lu.fit, u.search.type)
u.indx.fit <- indx$u.indx
u.indx.lu.fit <- indx$u.indx.lu
ui.indx.fit <- indx$ui.indx
storage.mode(y.fit) <- "double"
storage.mode(z.inits.fit) <- "double"
storage.mode(X.p.fit) <- "double"
storage.mode(X.fit) <- "double"
storage.mode(coords.fit) <- "double"
storage.mode(p.det) <- "integer"
storage.mode(p.det.long) <- "integer"
storage.mode(p.occ) <- "integer"
storage.mode(n.obs.fit) <- "integer"
storage.mode(n.obs.long.fit) <- "integer"
storage.mode(J.fit) <- "integer"
storage.mode(J.long.fit) <- "integer"
storage.mode(K.fit) <- "integer"
storage.mode(n.data) <- "integer"
storage.mode(beta.inits) <- "double"
storage.mode(alpha.inits) <- "double"
storage.mode(phi.inits) <- "double"
storage.mode(sigma.sq.inits) <- "double"
storage.mode(nu.inits) <- "double"
storage.mode(w.inits.fit) <- "double"
storage.mode(z.long.indx.fit) <- "integer"
storage.mode(data.indx.c.fit) <- "integer"
storage.mode(alpha.indx.c) <- "integer"
storage.mode(mu.beta) <- "double"
storage.mode(Sigma.beta) <- "double"
storage.mode(mu.alpha) <- "double"
storage.mode(sigma.alpha) <- "double"
storage.mode(phi.a) <- "double"
storage.mode(phi.b) <- "double"
storage.mode(nu.a) <- "double"
storage.mode(nu.b) <- "double"
storage.mode(sigma.sq.a) <- "double"
storage.mode(sigma.sq.b) <- "double"
storage.mode(tuning.c) <- "double"
storage.mode(n.batch) <- "integer"
storage.mode(batch.length) <- "integer"
storage.mode(accept.rate) <- "double"
storage.mode(n.omp.threads.fit) <- "integer"
storage.mode(verbose.fit) <- "integer"
storage.mode(n.report) <- "integer"
storage.mode(cov.model.indx) <- "integer"
storage.mode(n.report) <- "integer"
storage.mode(nn.indx.fit) <- "integer"
storage.mode(nn.indx.lu.fit) <- "integer"
storage.mode(u.indx.fit) <- "integer"
storage.mode(u.indx.lu.fit) <- "integer"
storage.mode(ui.indx.fit) <- "integer"
storage.mode(n.neighbors) <- "integer"
storage.mode(n.burn) <- "integer"
storage.mode(n.thin) <- "integer"
curr.chain <- 1
storage.mode(curr.chain) <- "integer"
out.fit <- .Call("spIntPGOccNNGP", y.fit, X.fit, X.p.fit, coords.fit, p.occ, p.det, p.det.long,
J.fit, J.long.fit, K.fit, n.obs.fit, n.obs.long.fit, n.data,
n.neighbors, nn.indx.fit, nn.indx.lu.fit,
u.indx.fit, u.indx.lu.fit, ui.indx.fit,
beta.inits, alpha.inits, z.inits.fit, w.inits.fit,
phi.inits, sigma.sq.inits, nu.inits,
z.long.indx.fit, data.indx.c.fit, alpha.indx.c, mu.beta, mu.alpha,
Sigma.beta, sigma.alpha, phi.a, phi.b, sigma.sq.a, sigma.sq.b,
nu.a, nu.b, tuning.c, cov.model.indx,
n.batch, batch.length, accept.rate,
n.omp.threads.fit, verbose.fit, n.report, n.burn, n.thin, n.post.samples,
curr.chain, n.chains)
out.fit$beta.samples <- mcmc(t(out.fit$beta.samples))
colnames(out.fit$beta.samples) <- x.names
out.fit$theta.samples <- mcmc(t(out.fit$theta.samples))
if (cov.model != 'matern') {
colnames(out.fit$theta.samples) <- c('sigma.sq', 'phi')
} else {
colnames(out.fit$theta.samples) <- c('sigma.sq', 'phi', 'nu')
}
out.fit$z.samples <- mcmc(t(out.fit$z.samples))
out.fit$psi.samples <- mcmc(t(out.fit$psi.samples))
out.fit$w.samples <- mcmc(t(out.fit$w.samples))
out.fit$X <- X.fit
out.fit$X.p <- X.p.fit
out.fit$call <- cl
out.fit$n.samples <- batch.length * n.batch
out.fit$cov.model.indx <- cov.model.indx
out.fit$type <- "NNGP"
out.fit$n.neighbors <- n.neighbors
out.fit$coords <- coords.fit
out.fit$n.post <- n.post.samples
out.fit$n.thin <- n.thin
out.fit$n.burn <- n.burn
out.fit$n.chains <- 1
class(out.fit) <- "spPGOcc"
out.pred <- predict.spPGOcc(out.fit, X.0, coords.0, verbose = FALSE)
p.0.samples <- matrix(NA, n.post.samples, nrow(X.p.0))
like.samples <- rep(NA, nrow(X.p.0))
for (j in 1:nrow(X.p.0)) {
p.0.samples[, j] <- logit.inv(X.p.0[j, 1:sum(alpha.indx.r == data.indx.0[j])] %*% out.fit$alpha.samples[which(alpha.indx.r == data.indx.0[j]), ])
like.samples[j] <- mean(dbinom(y.0[j], 1, p.0.samples[, j] * out.pred$z.0.samples[, z.long.indx.0[j] + 1]))
}
as.vector(tapply(like.samples, data.indx.0, function(a) sum(log(a))))
}
model.deviance <- -2 * model.deviance
out$k.fold.deviance <- model.deviance
stopImplicitCluster()
}
class(out) <- "spIntPGOcc"
out$run.time <- proc.time() - ptm
out
}
} |
tags = htmltools::tags
txt_input = function(..., width = '100%') shiny::textInput(..., width = width)
sel_input = function(...) shiny::selectizeInput(
..., width = '98%', multiple = TRUE, options = list(create = TRUE)
)
meta = blogdown:::collect_yaml()
lang = blogdown:::get_lang()
adir = blogdown:::theme_dir()
adir = if (length(adir)) file.path(adir, 'archetypes')
adir = c('archetypes', adir)
adir = dir(adir, full.names = TRUE)
adir = paste0(basename(adir), ifelse(utils::file_test('-d', adir), '/', ''))
shiny::runGadget(
miniUI::miniPage(miniUI::miniContentPanel(
txt_input('title', 'Title', placeholder = 'Post Title'),
shiny::fillRow(
txt_input('author', 'Author', blogdown:::get_author(), width = '98%'),
shiny::dateInput('date', 'Date', Sys.Date(), width = '98%'),
shiny::selectizeInput(
'subdir', 'Subdirectory', blogdown:::get_subdirs(),
selected = getOption('blogdown.subdir', 'post'),
width = '98%', multiple = FALSE,
options = list(create = TRUE, placeholder = '(optional)')
),
height = '70px'
),
shiny::fillRow(
sel_input('cat', 'Categories', meta$categories),
sel_input('tag', 'Tags', meta$tags),
shiny::selectInput(
'kind', 'Archetype', width = '98%',
choices = unique(c('', adir))
),
height = '70px'
),
shiny::fillRow(
txt_input('file', 'Filename', '', 'automatically generated (edit if you want)'),
height = '70px'
),
if (is.null(lang)) {
shiny::fillRow(txt_input('slug', 'Slug', '', '(optional)'), height = '70px')
} else {
shiny::fillRow(
txt_input('slug', 'Slug', '', '(optional)', width = '98%'),
txt_input('lang', 'Language', lang, width = '98%'),
height = '70px'
)
},
shiny::fillRow(
shiny::radioButtons(
'format', 'Format', inline = TRUE,
c('Markdown' = '.md', 'R Markdown (.Rmd)' = '.Rmd', 'R Markdown (.Rmarkdown)' = '.Rmarkdown'),
selected = getOption('blogdown.ext', '.md')
),
height = '70px'
),
miniUI::gadgetTitleBar(NULL)
)),
server = function(input, output, session) {
empty_title = shiny::reactive(grepl('^\\s*$', input$title))
shiny::observe({
shiny::updateTextInput(
session, 'slug',
placeholder = if (empty_title()) '(optional)' else blogdown:::dash_filename(input$title)
)
})
if (is.function(subdir_fun <- getOption('blogdown.subdir_fun'))) shiny::observe({
sub2 = subdir_fun(input$title)
shiny::updateSelectizeInput(session, 'subdir', selected = sub2, choices = unique(c(
sub2, blogdown:::get_subdirs()
)))
})
shiny::observe({
if (grepl('^\\s*$', slug <- input$slug)) slug = blogdown:::dash_filename(input$title)
shiny::updateTextInput(
session, 'file', value = blogdown:::post_filename(
slug, input$subdir, shiny::isolate(input$format), input$date, input$lang
)
)
})
shiny::observeEvent(input$format, {
f = input$file
if (f != '') shiny::updateTextInput(
session, 'file', value = xfun::with_ext(f, input$format)
)
}, ignoreInit = TRUE)
shiny::observeEvent(input$done, {
if (grepl('^\\s*$', input$file)) return(
warning('The filename is empty!', call. = FALSE)
)
options(blogdown.author = input$author)
blogdown::new_post(
input$title, author = input$author, ext = input$format,
categories = input$cat, tags = input$tag,
file = gsub('[-[:space:]]+', '-', input$file),
slug = if (input$slug != '') input$slug, subdir = input$subdir,
date = input$date, kind = xfun::sans_ext(input$kind)
)
shiny::stopApp()
})
shiny::observeEvent(input$cancel, {
shiny::stopApp()
})
},
stopOnCancel = FALSE, viewer = shiny::dialogViewer('New Post', height = 500)
) |
setGeneric("distsuml2min",
function (o, x = 0, y = 0, max.iter = 100, eps = 1.e-3, verbose = FALSE, algorithm = "Weiszfeld", ...) standardGeneric("distsuml2min")
)
setMethod("distsuml2min", "loca.p",
function (o, x = 0, y = 0, max.iter = 100, eps = 1.e-3, verbose = FALSE, algorithm = "Weiszfeld", control = list(maxit = max.iter), ...) {
algorithm <- match.arg(algorithm, c('Weiszfeld', 'gradient', 'ucminf', 'Nelder-Mead', 'BFGS', 'CG', 'L-BFGS-B', 'SANN'))
if (algorithm == "gradient") distsuml2mingradient.loca.p(o, x, y, max.iter, eps, verbose)
else if (algorithm == "Weiszfeld") distsuml2minWeiszfeld.loca.p(o, x, y, max.iter, eps, verbose, ...)
else if (algorithm == "ucminf") distsuml2minucminf.loca.p(o, x, y, max.iter, eps, verbose)
else {
zdistsummin <- function(x) distsum(o, x[1], x[2])
par <- c(sum(o@x*o@w)/sum(o@w), sum(o@y*o@w)/sum(o@w))
optim(par, zdistsummin, method = algorithm, control = list(maxit = max.iter))$par
}
}
)
distsuml2minucminf.loca.p <- function (o, x = 0, y = 0, max.iter = 100, eps = 1.e-3, verbose = FALSE) {
zdistsum <- function(xx) distsum(o, xx[1], xx[2])
sol <- ucminf(par = c(x, y), fn = zdistsum, control = list(maxeval = max.iter, trace = verbose))
if (verbose) cat(gettext(sol$message))
return(sol$par)
}
distsuml2mingradient.loca.p <- function (o, x = 0, y = 0, max.iter = 100, eps = 1.e-3, verbose = FALSE) {
lambda <- 1;
eps2 <- eps^2
u<-c(x,y)
z <- distsum(o, u[1], u[2])
for (i in 0:max.iter) {
if (verbose) cat(paste(gettext("Iter", domain = "R-orloca"), ".", i, ": (", u[1], ",", u[2], ") ", z, "\n", sep = ""))
g<-distsumgra(o, u[1], u[2])
mg <- sum(g^2)
if (is.na(mg)) {
g<-distsumgra(o, u[1], u[2], partial = T)
mg <- sum(g^2)
ii <- which.min((o@x-u[1])^2+(o@y-u[2])^2)
if (mg < sum(o@w[ii]^2)) {
if(verbose) cat(gettext("Optimality condition reached at demand point.", domain = "R-orloca"));
break
}
} else if (mg < eps2) {
if(verbose) cat(gettext("Optimality condition reached.", domain = "R-orloca"));
break;
}
nu <- u - lambda*g
nz <- distsum(o, nu[1], nu[2])
if (nz < z) {
u<-nu
z<-nz
lambda <- lambda*2.2
} else {
lambda <- lambda/2
}
}
if (i == max.iter) warning.max.iter(max.iter)
u
}
distsuml2minWeiszfeld.loca.p <- function (o, x = 0, y = 0, max.iter = 100, eps = 1.e-3, verbose = FALSE, csmooth = .9) {
if (!identical(csmooth >= 0 && csmooth < 1, TRUE)) {
warning(paste(gettext("Value for smooth parameter non valid:", domain = "R-orloca"), smooth, gettext("Reseting to its default value.", domain = "R-orloca")))
csmooth <- .5
}
eps2 <- eps^2
u<-c(x,y)
.smooth = 0
i.i = 0
i.s = round(max.iter*.5)
for (j in 1:2) {
for (i in i.i:i.s) {
if (verbose) cat(paste(gettext("Iter", domain = "R-orloca"), ". ", i, ": (", u[1], ",", u[2], ") ", distsum(o, u[1], u[2]), "\n", sep = ""))
n <- sqrt((u[1]-o@x)^2+(u[2]-o@y)^2)
ii <- (n > eps)
n <- o@w/n;
g <- c(sum((u[1]-o@x[ii])*n[ii]), sum((u[2]-o@y[ii])*n[ii]))
mg <- sum(g^2)
if (!all(ii)) {
if (mg < sum(o@w[!ii]^2) || mg < eps2) {
if(verbose) cat(gettext("Optimality condition reached at demand point.", domain = "R-orloca"));
break
}
} else if (mg <eps2) {
if(verbose) cat(gettext("Optimality condition reached.", domain = "R-orloca"));
break
}
s <- sum(n[ii])
nx <- n*o@x
ny <- n*o@y
u <- .smooth * u + (1-.smooth) * c(sum(nx[ii]), sum(ny[ii]))/s
}
if (i != i.s) break
.smooth = csmooth
if (j == 1) warning(gettext("The algorithm seems converges very slowly. Trying now with the smooth version.", domain = "R-orloca"))
i.i = i.s
i.s = max.iter
}
if (i == max.iter) warning.max.iter(max.iter)
u
} |
assert_is_tbl <- function(x,
severity = getOption("assertive.severity", "stop"))
{
assert_engine(
is_tbl,
x,
.xname = get_name_in_parent(x),
severity = severity
)
}
assert_is_tbl_cube <- function(x,
severity = getOption("assertive.severity", "stop"))
{
assert_engine(
is_tbl_cube,
x,
.xname = get_name_in_parent(x),
severity = severity
)
}
assert_is_tbl_df <- function(x,
severity = getOption("assertive.severity", "stop"))
{
assert_engine(
is_tbl_df,
x,
.xname = get_name_in_parent(x),
severity = severity
)
}
assert_is_tbl_dt <- function(x,
severity = getOption("assertive.severity", "stop"))
{
assert_engine(
is_tbl_dt,
x,
.xname = get_name_in_parent(x),
severity = severity
)
} |
png("ctd-object.png", width=5, height=2.5, unit="in", res=150, pointsize=9)
textInBox <- function(x, y, text, xoff=0, yoff=0,
col="black", cex=1, font=1, lwd=1, pos=1)
{
w <- strwidth(text)
h <- strheight(text)
em <- strwidth("x")
ex <- strheight("x")
x <- x + xoff * em
y <- y + yoff * ex
text(x, y, text, col=col, cex=cex, font=font, pos=pos)
xl <- x - w/2 - ex/2
xr <- x + w/2 + ex/2
yb <- y - 2*h - ex/2
yt <- y
lines(c(xl, xl, xr, xr, xl), c(yb, yt, yt, yb, yb), col=col, lwd=lwd)
list(xl=xl, xr=xr, yb=yb, yt=yt, xm=0.5*(xl+xr), ym=0.5*(yb+yt))
}
par(mar=rep(0, 4))
plot(c(0,1.03), c(0,0.9), type="n", xaxs="i")
l <- 2.2 * strheight("x")
o <- 0.5 * l
xl <- 0.1
xm <- 0.5
xr <- 0.9
lcol <- "darkgray"
llwd <- 2
ctdObject <- textInBox(xm, 0.92, "ctd object")
data <- textInBox(xl, 0.9-2*l, " data ")
dataSalinity <- textInBox(xl+o, 0.9-4*l, "salinity", 2.5)
dataTemperature <- textInBox(xl++o, 0.9-6*l, "temperature", 4.9)
dataPressure <- textInBox(xl+o, 0.9-8*l, "pressure", 3.4)
dataDots <- textInBox(xl+o, 0.9-10*l, " ... ", 1.1)
metadata <- textInBox(xm, 0.9-2*l, " metadata ")
metadataUnits <- textInBox(xm+o, 0.9-4*l, "units", 1.5)
metadataFlags <- textInBox(xm+o, 0.9-6*l, "flags", 1.5)
metadataDots <- textInBox(xm+o, 0.9-8*l, " ... ", 0.7)
processingLog <- textInBox(xr, 0.9-2*l, "processingLog")
processingLogTime <- textInBox(xr+o, 0.9-4*l, "time", 1)
processingLogAction <- textInBox(xr+o, 0.9-6*l, "action", 2)
lines(rep(xm,2), c(ctdObject$yb, metadata$yt), col=lcol, lwd=llwd)
lines(rep(xm-0.04,2), c(ctdObject$yb, 0.5*(ctdObject$yb+metadata$yt)), col=lcol, lwd=llwd)
lines(c(data$xm, xm-0.04), rep(0.5*(ctdObject$yb+metadata$yt),2), col=lcol, lwd=llwd)
lines(c(processingLog$xm, xm+0.04), rep(0.5*(ctdObject$yb+metadata$yt),2), col=lcol, lwd=llwd)
lines(rep(xm+0.04,2), c(ctdObject$yb, 0.5*(ctdObject$yb+metadata$yt)), col=lcol, lwd=llwd)
ymid <- 0.5 * (ctdObject$yb + metadata$yt)
lines(rep(xl, 2), c(ymid, data$yt), col=lcol, lwd=llwd)
lines(rep(xr, 2), c(ymid, data$yt), col=lcol, lwd=llwd)
lines(rep(xl-0.05, 2), c(data$yb, with(dataDots, (yb+yt)/2)), col=lcol, lwd=llwd)
DX <- 0.05
lines(c(xl-DX, dataSalinity$xl), rep(with(dataSalinity, (yb+yt)/2), 2), col=lcol, lwd=llwd)
lines(c(xl-DX, dataSalinity$xl), rep(with(dataTemperature, (yb+yt)/2), 2), col=lcol, lwd=llwd)
lines(c(xl-DX, dataSalinity$xl), rep(with(dataPressure, (yb+yt)/2), 2), col=lcol, lwd=llwd)
lines(c(xl-DX, dataSalinity$xl), rep(with(dataDots, (yb+yt)/2), 2), col=lcol, lwd=llwd)
lines(rep(xm-DX, 2), c(metadata$yb, with(metadataDots, (yb+yt)/2)), col=lcol, lwd=llwd)
lines(c(xm-DX, metadataUnits$xl), rep(with(metadataUnits, (yb+yt)/2), 2), col=lcol, lwd=llwd)
lines(c(xm-DX, metadataUnits$xl), rep(with(metadataFlags, (yb+yt)/2), 2), col=lcol, lwd=llwd)
lines(c(xm-DX, metadataUnits$xl), rep(with(metadataDots, (yb+yt)/2), 2), col=lcol, lwd=llwd)
lines(rep(xr-DX, 2), c(processingLog$yb, processingLogAction$ym), col=lcol, lwd=llwd)
lines(c(xr-DX, processingLogTime$xl), rep(with(processingLogTime, (yb+yt)/2), 2), col=lcol, lwd=llwd)
lines(c(xr-DX, processingLogTime$xl), rep(with(processingLogAction, (yb+yt)/2), 2), col=lcol, lwd=llwd)
dev.off() |
setGeneric("crossTable", function(x, ...)
standardGeneric("crossTable"))
setMethod("crossTable", signature(x = "itemMatrix"),
function(x,
measure = c("count", "support", "probability", "lift"),
sort = FALSE) {
measure <- match.arg(measure)
m <- .Call(R_crosstab_ngCMatrix, x@data, NULL, TRUE)
if (is.null(dimnames(m)))
dimnames(m) <- list(itemLabels(x), itemLabels(x))
if (sort) {
o <- order(diag(m), decreasing = TRUE)
m <- m[o, o]
}
if (measure == "count")
return(m)
p <- m / nrow(x)
if (measure %in% c("support", "probability"))
return(p)
if (measure == "lift") {
p_items <- diag(p)
diag(p) <- NA
e <- outer(p_items, p_items, "*")
return(p / e)
}
stop("Unknown measure!")
}) |
setClass("tscm",
slots = list(
tscopula = "tscopula",
margin = "margin"
)
)
setMethod("show", "tscm", function(object) {
cat("object class: ", is(object)[[1]], "\n", sep = "")
cat("_______ \n")
cat("MARGIN: \n")
show(object@margin)
cat("_______\n")
cat("COPULA: \n")
show(object@tscopula)
if (is(object, "tscmfit")) {
ests <- object@fit$par
if ("skeleton" %in% names(attributes(ests))) {
attributes(ests)$skeleton <- NULL
}
if (is.element("hessian", names(object@fit))) {
ses <- safe_ses(object@fit$hessian)
ests <- rbind(ests, ses)
dimnames(ests)[[1]] <- c("par", "se")
}
cat("_________________________\n")
cat("summary of all estimates:\n")
print(ests)
cat("convergence status:", object@fit$convergence, ", log-likelihood:",
-object@fit$value, "\n",
sep = " "
)
}
})
setMethod("coef", "tscm", function(object) {
c(coef(object@tscopula), coef(object@margin))
})
tscm <- function(tscopula, margin = new("margin", name = "unif")) {
if (is(tscopula, "tscopulafit")) {
tscopula <- tscopula@tscopula
}
if (is(margin, "marginfit")) {
margin <- margin@margin
}
new("tscm",
tscopula = tscopula,
margin = margin
)
}
setMethod(
"sim",
c(object = "tscm"),
function(object, n = 1000) {
Utilde <- sim(object@tscopula, n)
qmarg(object@margin, Utilde)
}
)
setClass(
"tscmfit",
contains = "tscm",
slots = list(
tscopula = "tscopula",
margin = "margin",
data = "ANY",
fit = "list"
)
)
setMethod(
"fit", c(x = "tscm", y = "ANY"),
function(x,
y,
tsoptions = list(),
control = list(
warn.1d.NelderMead = FALSE,
trace = FALSE,
maxit = 5000
),
method = "IFM") {
defaults <- list(hessian = FALSE, method = "Nelder-Mead", changeatzero = FALSE)
tsoptions <- setoptions(tsoptions, defaults)
if (is(x, "tscmfit")) {
tscopula <- x@tscopula
margin <- x@margin
if (is(tscopula, "tscopulafit")) {
tscopula <- tscopula@tscopula
}
if (is(margin, "marginfit")) {
margin <- margin@margin
}
x <- new("tscm", tscopula = tscopula, margin = margin)
}
if ((method == "full") & is(x@tscopula, "tscopulaU")) {
method <- paste(method, "A", sep = "")
}
if ((method == "full") & is(x@tscopula, "vtscopula")) {
method <- paste(method, "B", sep = "")
}
switch(method,
empirical = fitEDF(x, y, tsoptions, control),
IFM = fitSTEPS(x, y, tsoptions, control),
fullA = fitFULLa(x, y, tsoptions, control),
fullB = fitFULLb(x, y, tsoptions, control),
stop("Not a known method")
)
}
)
fitEDF <- function(x, y, tsoptions, control) {
U <- strank(as.numeric(y))
if (is(x@tscopula, "vtscopula") & tsoptions$changeatzero){
if (length(y[y == 0]) > 0)
stop("Remove zeros in dataset")
x@tscopula@Vtransform@pars["delta"] <-
as.numeric((length(y[y < 0]) + 0.5)/(length(y) + 1))
}
copfit <- fit(x@tscopula, U, tsoptions, control)
new("tscmfit",
tscopula = copfit@tscopula,
margin = new("margin", name = "edf"),
data = y,
fit = copfit@fit
)
}
fitSTEPS <- function(x, y, tsoptions, control) {
margfit <- fit(x@margin, y, tsoptions = tsoptions, control = control)
U <- pmarg(margfit, y)
if (is(x@tscopula, "vtscopula") & tsoptions$changeatzero){
if (length(y[y == 0]) > 0)
stop("Remove zeros in dataset")
x@tscopula@Vtransform@pars["delta"] <- as.numeric(pmarg(margfit, 0))
}
copfit <- fit(x@tscopula, U, tsoptions = tsoptions, control = control)
combinedfit <- list()
names(margfit@fit$par) <- paste("margin.", names(margfit@fit$par), sep = "")
combinedfit$par <- c(copfit@fit$par, margfit@fit$par)
if ("hessian" %in% names(tsoptions)) {
if (tsoptions$hessian) {
combinedfit$hessian <- Matrix::bdiag(margfit@fit$hessian, copfit@fit$hessian)
}
}
combinedfit$convergence <- sum(copfit@fit$convergence, margfit@fit$convergence)
combinedfit$value <- sum(copfit@fit$value, margfit@fit$value)
new("tscmfit",
tscopula = copfit@tscopula,
margin = margfit@margin,
data = y,
fit = combinedfit
)
}
fitFULLa <- function(x, y, tsoptions, control) {
dens <- eval(parse(text = paste("d", x@margin@name, sep = "")))
cdf <- eval(parse(text = paste("p", x@margin@name, sep = "")))
parlist <- x@tscopula@pars
parlist$margin <- x@margin@pars
fit <- optim(
par = unlist(parlist),
fn = tsc_objectivea,
modelspec = x@tscopula@modelspec,
modeltype = is(x@tscopula)[[1]],
dens = dens,
cdf = cdf,
y = as.numeric(y),
method = tsoptions$method,
hessian = tsoptions$hessian,
control = control
)
newpars <- relist(fit$par, parlist)
x@margin@pars <- newpars$margin
x@tscopula@pars <- newpars[names(newpars) != "margin"]
new("tscmfit", tscopula = x@tscopula, margin = x@margin, data = y, fit = fit)
}
tsc_objectivea <-
function(theta, modelspec, modeltype, dens, cdf, y) {
margpars <- theta[substring(names(theta), 1, 6) == "margin"]
nonmargpars <- theta[substring(names(theta), 1, 6) != "margin"]
names(margpars) <- substring(names(margpars), 8)
dx <- do.call(dens, append(as.list(margpars), list(x = y, log = TRUE)))
termA <- -sum(dx)
if (is.na(termA)) {
return(NA)
}
U <- do.call(cdf, append(margpars, list(q = y)))
objective <- eval(parse(text = paste(modeltype, "_objective", sep = "")))
termBC <-
objective(nonmargpars, modelspec, U)
return(termA + termBC)
}
setMethod(
"coerce", c(from = "tscopula", to = "tscm"),
function(from, to = "tsc", strict = TRUE) {
new("tscm", tscopula = from, margin = new("margin", name = "unif"))
}
)
setMethod(
"coerce", c(from = "tscopulafit", to = "tscmfit"),
function(from, to = "tscmfit", strict = TRUE) {
new("tscmfit",
tscopula = from,
margin = new("margin", name = "unif"),
data = from@data,
fit = from@fit
)
}
)
setMethod("logLik", "tscmfit", function(object) {
ll <- -object@fit$value[length(object@fit$value)]
attr(ll, "nobs") <- length(object@data)
attr(ll, "df") <- length(object@fit$par)
class(ll) <- "logLik"
ll
})
setMethod("resid", "tscmfit",
function(object, trace = FALSE) {
object <- new("tscopulafit",
tscopula = object@tscopula,
data = pmarg(object@margin, object@data),
fit = object@fit)
resid(object, trace)
})
setMethod("plot", c(x = "tscmfit", y = "missing"),
function(x, plottype = "residual", bw = FALSE, lagmax = 30) {
if (x@margin@name == "edf")
stop("These plots require parametric margins")
if (plottype == "margin"){
marginmod <- new("marginfit", margin = x@margin, data = x@data, fit = x@fit)
plot(marginmod, bw = bw)
}
else if (plottype == "volproxy")
plot_volproxy(x, bw = bw)
else if (plottype == "volprofile")
plot_volprofile(x, bw = bw)
else if (plottype %in% c("residual", "kendall", "glag", "vtransform")){
copmod <- new("tscopulafit", tscopula = x@tscopula, data = pmarg(x@margin, x@data), fit = list(NULL))
plot(copmod, plottype = plottype, bw = bw, lagmax = lagmax)
}
else
stop("Not a valid plot type")
})
plot_volprofile <- function(x, bw) {
if (!(is(x@tscopula, "vtscopula")))
stop("tscopula must be vtscopula")
xvals <- seq(from = 0,
to = max(abs(x@data)),
length = 100)
vpars <- x@tscopula@Vtransform@pars
brk <- qmarg(x@margin, vpars["delta"])
u <- pmarg(x@margin, brk - xvals)
v <- vtrans(x@tscopula@Vtransform, u)
yvals <- qmarg(x@margin, u + v) - brk
plot(xvals, yvals, type = "l", ylab = expression(g[T](x)))
colchoice <- ifelse(bw, "gray50", "red")
abline(0, 1, col = colchoice, lty = 2)
}
plot_volproxy <- function(x, bw){
if (!(is(x@tscopula, "vtscopula")))
stop("tscopula must be vtscopula")
X <- as.numeric(x@data)
U <- pmarg(x@margin, X)
V <- vtrans(x@tscopula@Vtransform, U)
colchoice <- ifelse(bw, "gray50", "red")
plot(X, qnorm(strank(V)), xlab = "data", ylab = "std. vol proxy", col = colchoice)
lines(sort(X), qnorm(V[order(X)]))
} |
load_fontawesome <- function() {
suppressWarnings(
suppressMessages(
extrafont::font_import(
paths = system.file("fonts", package = "waffle"),
recursive = FALSE,
prompt = FALSE
)
)
)
} |
roxy_tag_parse.roxy_tag_examples <- function(x) {
tag_examples(x)
}
roxy_tag_parse.roxy_tag_examplesIf <- function(x) {
lines <- unlist(strsplit(x$raw, "\r?\n"))
condition <- lines[1]
tryCatch(
suppressWarnings(parse(text = condition)),
error = function(err) {
roxy_tag_warning(x, "failed to parse condition of @examplesIf")
}
)
dontshow <- paste0(
"\\dontshow{if (",
condition,
") (if (getRversion() >= \"3.4\") withAutoprint else force)(\\{
)
x$raw <- paste(
c(dontshow, lines[-1], "\\dontshow{\\})
collapse = "\n"
)
x <- tag_examples(x)
}
roxy_tag_parse.roxy_tag_example <- function(x) {
x <- tag_value(x)
nl <- str_count(x$val, "\n")
if (any(nl) > 0) {
roxy_tag_warning(x, "spans multiple lines. Do you want @examples?")
return()
}
x
}
roxy_tag_rd.roxy_tag_examples <- function(x, base_path, env) {
rd_section("examples", x$val)
}
roxy_tag_rd.roxy_tag_examplesIf <- function(x, base_path, env) {
rd_section("examples", x$val)
}
roxy_tag_rd.roxy_tag_example <- function(x, base_path, env) {
path <- file.path(base_path, x$val)
if (!file.exists(path)) {
roxy_tag_warning(x, "'", path, "' doesn't exist")
return()
}
code <- read_lines(path)
rd_section("examples", escape_examples(code))
}
format.rd_section_examples <- function(x, ...) {
value <- paste0(x$value, collapse = "\n")
rd_macro(x$type, value, space = TRUE)
}
escape_examples <- function(x) {
x <- paste0(x, collapse = "\n")
rd(escapeExamples(x))
} |
ComputeCmiPcaCmi <- function(v1,v2,vcs) {
cmiv <- 0
if(base::nargs() == 2) {
c1 <- stats::var(v1)
c2 <- stats::var(v2)
v <-base::cbind(v1,v2)
c3 <- base::det(stats::cov(v))
if (c3 != 0) {
cmiv <- 0.5*(base::log(c1*c2/c3))
}
} else if(base::nargs() == 3) {
v <-base::cbind(v1,vcs)
c1 <- base::det(stats::cov(v))
v <-base::cbind(v2,vcs)
c2 <- base::det(stats::cov(v))
if (base::ncol(vcs) > 1) {
c3 <- base::det(stats::cov(vcs))
} else {
c3 <- stats::var(vcs)
}
v <- base::cbind(v1,v2,vcs)
c4 <- base::det(stats::cov(v))
if ((c3*c4) != 0) {
cmiv <- 0.5 * base::log(base::abs((c1 * c2) / (c3 * c4)))
}
}
return (cmiv)
} |
getIsoscapes = function(isoType = "GlobalPrecipGS", timeout = 1200){
dpath.pre = "https://wateriso.utah.edu/waterisotopes/media/ArcGrids/"
if(!is.numeric(timeout)){
stop("timeout must be a number")
}
if(!(isoType %in% names(GIconfig))){
stop("isoType invalid")
}
giconfig = GIconfig[[match(isoType, names(GIconfig))]]
wd = getwd()
setwd(tempdir())
ot = getOption("timeout")
options(timeout = timeout)
on.exit({
options(timeout = ot)
setwd(wd)
})
dlf = function(fp, fn, ot, wd){
dfs = tryCatch({
download.file(fp, fn)
},
error = function(cond){
options(timeout = ot)
setwd(wd)
stop(cond)
})
return(dfs)
}
pdlf = function(dfs, wd, ot, isoType){
if(dfs != 0){
setwd(wd)
options(timeout = ot)
stop("Non-zero download exit status")
}
}
if(!file.exists(giconfig$dpath.post)){
dfs = dlf(paste0(dpath.pre, giconfig$dpath.post), giconfig$dpath.post, ot, wd)
pdlf(dfs, wd, ot, isoType)
}
procRest = function(fn, lnames, onames){
if(file.exists("zRec.txt")){
zRec = readLines("zRec.txt")
} else{
zRec = "none"
}
if((!all(lnames %in% list.files())) | (zRec != fn)){
uz = unzip(fn)
writeLines(fn, "zRec.txt")
}
rs = list()
for(i in 1:length(lnames)){
rs[[i]] = raster(lnames[i])
}
names(rs) = onames
return(rs)
}
rs = tryCatch({
procRest(giconfig$dpath.post, giconfig$lnames, giconfig$onames)
},
error = function(cond){
stop(cond)
},
finally = {
options(timeout = ot)
setwd(wd)
})
switch(giconfig$eType,
{
if(length(rs) > 1){
out = stack(rs)
} else{
out = rs
}
},
{
out = stack(rs)
})
message(paste0("Refer to ", tempdir(), "\\metadata.txt for
documentation and citation information"))
return(out)
} |
PrintROI <- function(path_img_ref,path_ROIs,which='all',col, file.type='.jpg') {
file<-list.files(path=path_img_ref,pattern = file.type)
img <- brick(paste(path_img_ref,file,sep=""))
rois <- paste(path_ROIs, 'roi.data.Rdata', sep='')
roi.data <- NULL
load(rois)
nrois <- length(roi.data)
roi.names <- names(roi.data)
plotRGB(img)
if (which=='all') {
if (missing(col)) col <- palette()[1:nrois]
for (a in 1:nrois) {
act.polygons <- roi.data[[a]]$polygon
raster::lines(act.polygons, col=col[a], lwd=2)
}
legend('top', col=col, lty=1, legend=roi.names)
} else {
pos.roi <- which(roi.names %in% which == TRUE)
raster::lines(roi.data[[pos.roi]]$polygon, lwd=2)
}
} |
context("Dirichlet Process Beta 2")
test_that("Create",{
testData <- rbeta(10, 2, 5)
dp <- DirichletProcessBeta2(testData, 1)
expect_is(dp, c("list", "dirichletprocess", "beta2", "nonconjugate"))
})
test_that("Fit", {
testData <- rbeta(10, 2, 5)
dp <- DirichletProcessBeta2(testData, 1)
dp <- Fit(dp, 10, FALSE, FALSE)
expect_is(dp, c("list", "dirichletprocess", "beta2", "nonconjugate"))
expect_is(dp$clusterParameters, "list")
expect_length(dp$clusterParameters, 2)
expect_length(dp$clusterParametersChain, 10)
expect_length(dp$alphaChain, 10)
expect_length(dp$weightsChain, 10)
}) |
node_dconnected <- function(.tdy_dag, from = NULL, to = NULL, controlling_for = NULL, as_factor = TRUE, ...) {
.tdy_dag <- if_not_tidy_daggity(.tdy_dag)
if (is.null(from)) from <- dagitty::exposures(.tdy_dag$dag)
if (is.null(to)) to <- dagitty::outcomes(.tdy_dag$dag)
if (is_empty_or_null(from) || is_empty_or_null(to)) stop("`from` and `to` must be set!")
if (!is.null(controlling_for)) {
.tdy_dag <- control_for(.tdy_dag, controlling_for)
} else {
.tdy_dag$data$collider_line <- FALSE
.tdy_dag$data$adjusted <- "unadjusted"
controlling_for <- c()
}
.dconnected <- dagitty::dconnected(.tdy_dag$dag, from, to, controlling_for)
.from <- from
.to <- to
.tdy_dag$data <- dplyr::mutate(.tdy_dag$data,
d_relationship = ifelse(name %in% c(.from, .to) & .dconnected, "d-connected",
ifelse(name %in% c(.from, .to) & !.dconnected, "d-separated",
NA)))
if (as_factor) .tdy_dag$data$d_relationship <- factor(.tdy_dag$data$d_relationship, levels = c("d-connected", "d-separated"), exclude = NA)
.tdy_dag
}
node_dseparated <- function(.tdy_dag, from = NULL, to = NULL, controlling_for = NULL, as_factor = TRUE) {
.tdy_dag <- if_not_tidy_daggity(.tdy_dag)
if (is.null(from)) from <- dagitty::exposures(.tdy_dag$dag)
if (is.null(to)) to <- dagitty::outcomes(.tdy_dag$dag)
if (is_empty_or_null(from) || is_empty_or_null(to)) stop("`from` and `to` must be set!")
if (!is.null(controlling_for)) {
.tdy_dag <- control_for(.tdy_dag, controlling_for)
} else {
.tdy_dag$data$collider_line <- FALSE
.tdy_dag$data$adjusted <- "unadjusted"
controlling_for <- c()
}
.dseparated <- dagitty::dseparated(.tdy_dag$dag, from, to, controlling_for)
.from <- from
.to <- to
.tdy_dag$data <- dplyr::mutate(.tdy_dag$data,
d_relationship = ifelse(name %in% c(.from, .to) & !.dseparated, "d-connected",
ifelse(name %in% c(.from, .to) & .dseparated, "d-separated",
NA)))
if (as_factor) .tdy_dag$data$d_relationship <- factor(.tdy_dag$data$d_relationship, levels = c("d-connected", "d-separated"), exclude = NA)
.tdy_dag
}
node_drelationship <- function(.tdy_dag, from = NULL, to = NULL, controlling_for = NULL, as_factor = TRUE) {
.tdy_dag <- if_not_tidy_daggity(.tdy_dag)
if (is.null(from)) from <- dagitty::exposures(.tdy_dag$dag)
if (is.null(to)) to <- dagitty::outcomes(.tdy_dag$dag)
if (is_empty_or_null(from) || is_empty_or_null(to)) stop("`from` and `to` must be set!")
if (!is.null(controlling_for)) {
.tdy_dag <- control_for(.tdy_dag, controlling_for)
} else {
.tdy_dag$data$collider_line <- FALSE
.tdy_dag$data$adjusted <- "unadjusted"
controlling_for <- c()
}
.dseparated <- dagitty::dseparated(.tdy_dag$dag, from, to, controlling_for)
.from <- from
.to <- to
.tdy_dag$data <- dplyr::mutate(.tdy_dag$data,
d_relationship = ifelse(name %in% c(.from, .to) & !.dseparated, "d-connected",
ifelse(name %in% c(.from, .to) & .dseparated, "d-separated",
NA)))
if (as_factor) .tdy_dag$data$d_relationship <- factor(.tdy_dag$data$d_relationship, levels = c("d-connected", "d-separated"), exclude = NA)
.tdy_dag
}
ggdag_drelationship <- function(.tdy_dag, from = NULL, to = NULL, controlling_for = NULL, ..., edge_type = "link_arc",
node_size = 16, text_size = 3.88, label_size = text_size,
text_col = "white", label_col = text_col,
node = TRUE, stylized = FALSE, text = TRUE, use_labels = NULL, collider_lines = TRUE) {
edge_function <- edge_type_switch(edge_type)
p <- if_not_tidy_daggity(.tdy_dag) %>%
node_drelationship(from = from, to = to, controlling_for = controlling_for, ...) %>%
ggplot2::ggplot(ggplot2::aes(x = x, y = y, xend = xend, yend = yend, shape = adjusted, col = d_relationship)) +
edge_function(start_cap = ggraph::circle(10, "mm"),
end_cap = ggraph::circle(10, "mm")) +
scale_adjusted() +
breaks(c("d-connected", "d-separated"), name = "d-relationship") +
expand_plot(expand_y = expansion(c(0.2, 0.2)))
if (collider_lines) p <- p + geom_dag_collider_edges()
if (node) {
if (stylized) {
p <- p + geom_dag_node(size = node_size)
} else {
p <- p + geom_dag_point(size = node_size)
}
}
if (text) p <- p + geom_dag_text(col = text_col, size = text_size)
if (!is.null(use_labels)) p <- p +
geom_dag_label_repel(ggplot2::aes_string(label = use_labels,
fill = "d_relationship"), size = text_size,
col = label_col, show.legend = FALSE)
p
}
ggdag_dseparated <- function(.tdy_dag, from = NULL, to = NULL, controlling_for = NULL, ..., edge_type = "link_arc",
node_size = 16, text_size = 3.88, label_size = text_size,
text_col = "white", label_col = text_col,
node = TRUE, stylized = FALSE, text = TRUE, use_labels = NULL, collider_lines = TRUE) {
ggdag_drelationship(.tdy_dag = .tdy_dag, from = from, to = to,
controlling_for = controlling_for, ..., edge_type = edge_type,
node_size = node_size, text_size = text_size, label_size = label_size,
text_col = text_col, label_col = label_col, node = node, stylized = stylized, text = text,
use_labels = use_labels, collider_lines = collider_lines)
}
ggdag_dconnected <- function(.tdy_dag, from = NULL, to = NULL, controlling_for = NULL, ..., edge_type = "link_arc",
node_size = 16, text_size = 3.88, label_size = text_size,
text_col = "white", label_col = text_col,
node = TRUE, stylized = FALSE, text = TRUE, use_labels = NULL, collider_lines = TRUE) {
ggdag_drelationship(.tdy_dag = .tdy_dag, from = from, to = to,
controlling_for = controlling_for, ..., edge_type = edge_type,
node_size = node_size, text_size = text_size, label_size = label_size,
text_col = text_col, label_col = label_col, node = node, stylized = stylized, text = text,
use_labels = use_labels, collider_lines = collider_lines)
} |
batchVideoFaceAnalysis = function(batchInfo, imageDir, sampleWindow, facesCollectionID=NA) {
for(m in 1:nrow(batchInfo)) {
mInfo = batchInfo[m, ]
message("Processing Meeting ",mInfo$batchMeetingId," ", "(",m," of ",nrow(batchInfo),")")
videoExists = file.exists(file.path(mInfo$dirRoot, paste0(mInfo$fileRoot,"_video.mp4")))
dirExists = dir.exists(file.path(imageDir, paste0(mInfo$fileRoot,"_video")))
if(dirExists) {
vidOut = videoFaceAnalysis(inputVideo=file.path(mInfo$dirRoot, paste0(mInfo$fileRoot,"_video.mp4")), recordingStartDateTime=mInfo$recordingStartDateTime, sampleWindow=sampleWindow, facesCollectionID=facesCollectionID, videoImageDirectory=imageDir)
vidOut$batchMeetingId = mInfo$batchMeetingId
if(!exists('resOut')) {
resOut = vidOut
} else {
resOut = rbind(resOut, vidOut)
}
} else {
message("There is no directory of pre-processed images for the video for this meeting. No analysis was conducted")
}
}
return(resOut)
} |
.allVars1 <- function(form){
vars <- all.vars(form)
vn <- all.names(form)
vn <- vn[vn%in%c(vars,"$","[[")]
if ("[["%in%vn) stop("can't handle [[ in formula")
ii <- which(vn%in%"$")
if (length(ii)) {
vn1 <- if (ii[1]>1) vn[1:(ii[1]-1)]
go <- TRUE
k <- 1
while (go) {
n <- 2;
while(k<length(ii) && ii[k]==ii[k+1]-1) { k <- k + 1;n <- n + 1 }
vn1 <- c(vn1,paste(vn[ii[k]+1:n],collapse="$"))
if (k==length(ii)) {
go <- FALSE
ind <- if (ii[k]+n<length(vn)) (ii[k]+n+1):length(vn) else rep(0,0)
} else {
k <- k + 1
ind <- if (ii[k-1]+n<ii[k]-1) (ii[k-1]+n+1):(ii[k]-1) else rep(0,0)
}
vn1 <- c(vn1,vn[ind])
}
} else vn1 <- vn
return( vn1 )
} |
binary_prob_success <- function(x, ...) {
UseMethod("binary_prob_success", x)
}
binary_prob_success.augbin_2t_1a_fit <- function(x,
y1_lower = -Inf,
y1_upper = Inf,
y2_lower = -Inf,
y2_upper = log(0.7),
conf.level = 0.95,
...) {
. <- NULL
as_tibble(x) %>%
mutate(success = (.data$d1 == 0) & (.data$d2 == 0) &
(.data$y1 < y1_upper) & (.data$y1 > y1_lower) &
(.data$y2 < y2_upper) & (.data$y2 > y2_lower)) %>%
summarise(num_success = sum(.data$success)) %>% .[[1]] -> num_success
binom.confint(x = num_success, n = x$num_patients,
conf.level = conf.level, ...) %>%
mutate(ci_width = .data$upper - .data$lower)
} |
get_playlist_items <- function (filter = NULL, part = "contentDetails",
max_results = 50, video_id = NULL,
page_token = NULL, simplify = TRUE, ...) {
if (max_results < 0) {
stop("max_results only takes a value between 0 and 50.")
}
if (!(names(filter) %in% c("item_id", "playlist_id"))) {
stop("filter can only take one of values: item_id, playlist_id.")
}
if ( length(filter) != 1) stop("filter must be a vector of length 1.")
translate_filter <- c(item_id = "id", playlist_id = "playlistId")
yt_filter_name <- as.vector(translate_filter[match(names(filter),
names(translate_filter))])
names(filter) <- yt_filter_name
querylist <- list(part = part,
maxResults = ifelse(max_results > 50, 50, max_results),
pageToken = page_token, videoId = video_id)
querylist <- c(querylist, filter)
res <- tuber_GET("playlistItems", querylist, ...)
if (max_results > 50) {
page_token <- res$nextPageToken
while ( is.character(page_token)) {
a_res <- tuber_GET("playlistItems", list(
part = part,
playlistId = unname(filter["playlistId"]),
maxResults = 50,
pageToken = page_token
)
)
res <- c(res, a_res)
page_token <- a_res$nextPageToken
}
}
if (simplify == TRUE) {
res <- do.call(rbind,lapply(
unlist(
res[which(names(res) == "items")],
recursive = FALSE),
as.data.frame, stringsAsFactors = FALSE)
)
}
res
} |
isnot_validcp <- function(grid16, loni, lati) {
if (!any(is.na(grid16))) {
xlim1 <- min(grid16[1, ])
xlim2 <- max(grid16[1, ])
ylim1 <- min(grid16[2, ])
ylim2 <- max(grid16[2, ])
lon.shif <- ifelse ( (loni > 180 & loni < 360), loni - 360, loni)
if (xlim2 > max(lon.shif) | xlim1 < min(lon.shif)
| ylim2 > max(lati) | ylim1 < min(lati)) {
return(TRUE)
} else {
return(FALSE)
}
}
return(TRUE)
} |
head(mtcars)
sort(mtcars$mpg)
sort(mtcars$mpg, decreasing = T)
mtcars[order(mtcars$mpg),][1:5]
mtcars[order(mtcars$cyl, mtcars$mpg), c('cyl','mpg','wt')]
mtcars[order(mtcars$cyl, -mtcars$mpg), c('cyl','mpg','wt')]
rank(mtcars$mpg, ties.method = 'min')
x=c(1,2,36,3)
rank(x)
rorder =cbind(mtcars$mpg, rank(mtcars$mpg, ties.method = 'min'))
rorder[order(rorder[,2]),1:2] |
icesRound <- function(x, percent = FALSE, sign = percent, na = "")
{
log10_x <- log10(abs(x))
sf <- as.integer(log10_x %% 1 < log10(2)) + 2
digits <- pmax(0, sf - 1 - floor(log10_x))
digits[x == 0] <- 2
sf[x == 0] <- 0
digits[is.na(x)] <- 0
fmt <- paste0(if (sign) "%+." else "%.",
digits,
if (percent) "f%%" else "f")
out <- sprintf(fmt, signif(x, sf))
out[is.na(x)] <- na
noquote(out)
} |
library(testthat)
library(bs4Dash)
test_check("bs4Dash") |
test_that("we can make a GridRange from a range_spec", {
sheets_df <- tibble::tibble(name = "abc", id = 123)
spec <- new_range_spec(sheet_name = "abc", sheets_df = sheets_df)
out <- as_GridRange(spec)
expect_equal(out$sheetId, 123)
spec <- new_range_spec(
sheet_name = "abc", cell_range = "A3:B4", sheets_df = sheets_df
)
out <- as_GridRange(spec)
expect_equal(out$sheetId, 123)
expect_equal(out$startRowIndex, 2)
expect_equal(out$endRowIndex, 4)
expect_equal(out$startColumnIndex, 0)
expect_equal(out$endColumnIndex, 2)
spec <- new_range_spec(
sheet_name = "abc", cell_range = "A5:B", sheets_df = sheets_df
)
out <- as_GridRange(spec)
expect_equal(out$sheetId, 123)
expect_equal(out$startRowIndex, 4)
expect_null(out$endRowIndex)
expect_equal(out$startColumnIndex, 0)
expect_equal(out$endColumnIndex, 2)
spec <- new_range_spec(
sheet_name = "abc", cell_range = "A:B", sheets_df = sheets_df
)
out <- as_GridRange(spec)
expect_equal(out$sheetId, 123)
expect_null(out$startRowIndex)
expect_null(out$endRowIndex)
expect_equal(out$startColumnIndex, 0)
expect_equal(out$endColumnIndex, 2)
spec <- new_range_spec(
sheet_name = "abc", cell_range = "A1:A1", sheets_df = sheets_df
)
out <- as_GridRange(spec)
expect_equal(out$sheetId, 123)
expect_equal(out$startRowIndex, 0)
expect_equal(out$endRowIndex, 1)
expect_equal(out$startColumnIndex, 0)
expect_equal(out$endColumnIndex, 1)
spec1 <- new_range_spec(
sheet_name = "abc", cell_range = "C3:C3", sheets_df = sheets_df
)
spec2 <- new_range_spec(
sheet_name = "abc", cell_range = "C3", sheets_df = sheets_df
)
expect_equal(as_GridRange(spec1), as_GridRange(spec2))
})
test_that("we refuse to make a GridRange from a named_range", {
spec <- new_range_spec(named_range = "thingy")
expect_error(as_GridRange(spec), "does not accept a named range")
}) |
url_dl <-
function(..., url = 61803503) {
if (!is.null(url) && !grepl("http|www\\.", url)) {
url <- utils::tail(unlist(strsplit(as.character(url), "/", fixed = TRUE)),
1)
url <- paste0("http://dl.dropboxusercontent.com/u/",
url, "/")
}
mf <- match.call(expand.dots = FALSE)
payload <- as.character(mf[[2]])
FUN <- function(x, url) {
bin <- getBinaryURL(file.path(url, x), ssl.verifypeer = FALSE)
con <- file(x, open = "wb")
writeBin(bin, con)
close(con)
message(noquote(paste(x, "read into", getwd())))
}
if (all(grepl("http|www\\.", payload))) {
File <- basename(payload)
Root <- dirname(payload)
for (i in seq_len(length(payload))) {
FUN(x = File[i], url = Root[i])
}
} else {
invisible(lapply(payload, function(z) FUN(x = z, url = url)))
}
} |
correctCoordGPS <- function(longlat = NULL, projCoord = NULL, coordRel, rangeX, rangeY,
maxDist = 15, drawPlot = FALSE, rmOutliers = TRUE) {
oldpar <- par(no.readonly = TRUE)
on.exit(par(oldpar))
if (is.null(longlat) && is.null(projCoord)) {
stop("Give at least one set of coordinates: longlat or projCoord")
}
if (!is.null(longlat) && !is.null(projCoord)) {
stop("Give only one set of coordinates: longlat or projCoord")
}
if (length(rangeX) != 2 || length(rangeY) != 2) {
stop("The rangeX and/or rangeY must be of length 2")
}
if (length(maxDist) != 1) {
stop("Your argument maxDist must be of length 1")
}
if (!all(between(coordRel[, 1], lower = rangeX[1], upper = rangeX[2]) &
between(coordRel[, 2], lower = rangeY[1], upper = rangeY[2]))) {
stop("coordRel must be inside the X and Y ranges")
}
if ((!is.null(longlat) && any(dim(longlat) != dim(coordRel))) || (!is.null(projCoord) && any(dim(projCoord) != dim(coordRel)))) {
stop("GPS and relative coordinates are not of the same dimension")
}
if (!is.null(longlat)) {
projCoord <- latlong2UTM(longlat)
codeUTM <- unique(projCoord[, "codeUTM"])
projCoord <- projCoord[, c("X", "Y")]
}
res <- procrust(projCoord, coordRel)
coordAbs <- as.matrix(coordRel) %*% res$rotation
coordAbs <- sweep(coordAbs, 2, res$translation, FUN = "+")
dist <- sqrt((coordAbs[, 1] - projCoord[, 1])^2 + (coordAbs[, 2] - projCoord[, 2])^2)
outliers <- which(dist > maxDist)
if (length(outliers)==nrow(projCoord)){
stop("All coordinates points are considered as outliers at the first stage.\n
This may be because some coordinates have very large error associated.\n
Try to remove these very large error or reconsider the maxDist parameter by increasing the distance")
}
if (rmOutliers & length(outliers)>0) {
refineCoord <- TRUE
while(refineCoord){
res <- procrust(projCoord[-outliers, ], coordRel[-outliers,])
coordAbs <- as.matrix(coordRel) %*% res$rotation
coordAbs <- sweep(coordAbs, 2, res$translation, FUN = "+")
newdist <- sqrt((coordAbs[, 1] - projCoord[, 1])^2 + (coordAbs[, 2] - projCoord[, 2])^2)
if(all(which(newdist > maxDist)==outliers)) refineCoord <- FALSE
outliers <- which(newdist > maxDist)
}
}
cornerCoord <- as.matrix(expand.grid(X = sort(rangeX), Y = sort(rangeY)))
cornerCoord <- cornerCoord[c(1, 2, 4, 3), ]
cornerCoord <- as.matrix(cornerCoord) %*% res$rotation
cornerCoord <- sweep(cornerCoord, 2, res$translation, FUN = "+")
p <- Polygon(rbind(cornerCoord, cornerCoord[1, ]))
ps <- Polygons(list(p), 1)
sps <- SpatialPolygons(list(ps))
if (drawPlot) {
par(xpd = TRUE, mar = par("mar") + c(0, 0, 0, 7.5))
plot(if(length(outliers)==0) projCoord else projCoord[-outliers, ],
col = "grey30", main = "Plot drawing",
xlim = range(projCoord[, 1], coordAbs[, 1]),
ylim = range(projCoord[, 2], coordAbs[, 2]),
asp = 1, xlab = "X", ylab = "Y", axes = FALSE, frame.plot = FALSE
)
usr <- par("usr")
grid <- sapply(par(c("xaxp", "yaxp")), function(x) {
seq(x[1], x[2], length.out = x[3] + 1)
}, simplify = FALSE)
segments(x0 = grid$xaxp, y0 = usr[3], y1 = usr[4], col = "grey80", lty = 1)
segments(y0 = grid$yaxp, x0 = usr[1], x1 = usr[2], col = "grey80", lty = 1)
axis(side = 1, lty = "blank", las = 1)
axis(side = 2, lty = "blank", las = 1)
plot(sps, add = TRUE, lwd = 3)
points(coordAbs, col = "black", pch = 15, cex = 1.3)
if(length(outliers)>0) points(projCoord[outliers, ], col = "red", pch = 4, cex = 1)
legend(
x = usr[2], y = grid$yaxp[length(grid$yaxp) - 1],
c("GPS measurements", ifelse(rmOutliers, "Outliers (discarded)", "Outliers"), "Corrected coord"),
col = c("grey30", "red", "black"),
pch = c(1, 4, 15, 49), bg = "grey90"
)
par(xpd = NA, mar = c(5, 4, 4, 2) + 0.1)
}
if (length(outliers) != 0 & !rmOutliers) {
warning(
"Be carefull, you may have GNSS measurement outliers. \n",
"Removing them may improve the georeferencing of your plot (see the rmOutliers argument)."
)
}
output <- list(
cornerCoords = data.frame(X = cornerCoord[, 1], Y = cornerCoord[, 2]),
correctedCoord=data.frame(X = coordAbs[, 1], Y = coordAbs[, 2]),
polygon = sps, outliers = outliers
)
if (!is.null(longlat)) {
output$codeUTM <- codeUTM
}
return(output)
} |
characters <- get_characters()
locations <- get_locations()
episodes <- get_episodes()
test_that("tibbles are returned", {
expect_type(characters, "list")
expect_type(locations, "list")
expect_type(episodes, "list")
expect_true(tibble::is_tibble(characters))
expect_true(tibble::is_tibble(locations))
expect_true(tibble::is_tibble(episodes))
})
test_that("tibbles are not empty", {
expect_gt(nrow(characters), 0)
expect_gt(nrow(locations), 0)
expect_gt(nrow(episodes), 0)
expect_gt(ncol(characters), 0)
expect_gt(ncol(locations), 0)
expect_gt(ncol(episodes), 0)
}) |
fmpc_security_ratings <- function(symbols = c('AAPL'),
limit = 100) {
symbReq = hlp_symbolCheck(symbols)
ratingDF = hlp_bindURLs(paste0('historical-rating/',symbReq,'?limit=',limit,'&'))
hlp_respCheck(symbReq,ratingDF$symbol,'fmpc_security_ratings: ')
ratingDF
}
fmpc_security_mrktcap <- function(symbols = c('AAPL'),
limit = 100) {
symbReq = hlp_symbolCheck(symbols)
ratingDF = hlp_bindURLs(paste0('historical-market-capitalization/',symbReq,'?limit=',limit,'&'))
hlp_respCheck(symbReq,ratingDF$symbol,'fmpc_security_mrktcap: ')
ratingDF
}
fmpc_security_delisted <- function(limit = 100) {
Result <- fmpc_get_url(paste0('delisted-companies?limit=',limit,'&'))
Result <- hlp_chkResult(Result)
dplyr::as_tibble(Result)
}
fmpc_security_news <- function(symbols = NULL,
limit = 100) {
symbReq = hlp_symbolCheck(symbols)
if (length(symbReq)==0) {
symbURL = ''
} else {
symbURL = paste0('tickers=',symbReq,'&')
}
newsDF = hlp_bindURLs(paste0('stock_news?',symbURL,'limit=',limit,'&'))
hlp_respCheck(symbReq,newsDF$symbol,'fmpc_security_mrktcap: ')
newsDF
}
fmpc_analyst_outlook <- function(symbols = c('AAPL'),
outlook = c('surprise','grade','estimate','recommend','press'),
limit = 100) {
symbReq = hlp_symbolCheck(symbols)
analysisOp = c('surprise','grade','estimateAnnl','estimateQtr','recommend','press')
if (missing(outlook)) outlook = 'surprise'
if (!(outlook %in% analysisOp)) {
stop('Please enter a metric value of: ',paste0(analysisOp, collapse = ', '), call. = FALSE)
}
outURL = switch(outlook,'surprise' = 'earnings-surpises', 'grade' = 'grade',
'estimateAnnl' = 'analyst-estimates', 'estimateQtr' = 'analyst-estimates',
'press' = 'press-releases', 'recommend' = 'analyst-stock-recommendations')
qtrAdd = ifelse(outlook == 'estimateQtr','period=quarter&','')
outlookDF = hlp_bindURLs(paste0(outURL,'/',symbReq,'?limit=',limit,'&',qtrAdd))
hlp_respCheck(symbReq,outlookDF$symbol,'fmpc_security_mrktcap: ')
outlookDF
}
fmpc_earning_call_transcript <- function(symbols = c('AAPL'),
quarter = 2,
year = 2020) {
symbReq = hlp_symbolCheck(symbols)
callURL = paste0('earning_call_transcript/',symbReq,'?quarter=',quarter,'&year=',year,'&')
callDF = hlp_bindURLs(callURL)
hlp_respCheck(symbReq,callDF$symbol,'fmpc_earning_call_transcript: ')
callDF
} |
NULL
setMethod("showTransforms", "CrunchCube", function(x) {
if (all(vapply(transforms(x), is.null, logical(1)))) {
print(cubeToArray(x))
return(invisible(x))
} else {
appliedTrans <- applyTransforms(x)
keep_cats <- evalUseNA(as.array(x), dimensions(x), useNA = x@useNA)
if (getDimTypes(x)[1] %in% c("categorical", "ca_categories")) {
try({
row_cats <- Categories(data = index(variables(x))[[1]]$categories)
row_cats <- row_cats[which(keep_cats[[1]])]
row_styles <- transformStyles(transforms(x)[[1]], row_cats)
}, silent = TRUE)
}
if (!exists("row_styles")) {
row_styles <- NULL
}
cat_dims <- c("categorical", "ca_categories")
if (length(dim(x)) > 1 && getDimTypes(x)[2] %in% cat_dims) {
try({
col_cats <- Categories(data = index(variables(x))[[2]]$categories)
col_cats <- col_cats[which(keep_cats[[2]])]
col_styles <- transformStyles(transforms(x)[[2]], col_cats)
}, silent = TRUE)
}
if (!exists("col_styles")) {
col_styles <- NULL
}
if (length(dim(appliedTrans)) > 0 & length(dim(appliedTrans)) <= 2) {
tryCatch({
out <- prettyPrint2d(
appliedTrans,
row_styles = row_styles,
col_styles = col_styles
)
cat(unlist(out), sep = "\n")
}, error = function(e) {
print(appliedTrans)
})
} else {
print(appliedTrans)
}
return(invisible(appliedTrans))
}
})
setMethod("subtotalArray", "CrunchCube", function(x, headings = FALSE) {
includes <- c("subtotals")
if (headings) {
includes <- c(includes, "headings")
}
applyTransforms(x, include = includes)
})
applyTransforms <- function(x,
array = cubeToArray(x),
transforms_list = transforms(x),
dims_list = dimensions(x),
useNA = x@useNA,
...) {
trans_indices <- which(vapply(transforms_list, Negate(is.null), logical(1)))
if (!missing(x)) {
trans_indices <- trans_indices[getDimTypes(x)[trans_indices] != "ca_items"]
}
keep_cats <- evalUseNA(array, dims_list, useNA = useNA)
errors <- list()
na_mask <- data.frame()
for (d in trans_indices) {
tryCatch({
if (
endsWith(getDimTypes(dims_list)[[d]], "_items") |
endsWith(getDimTypes(dims_list)[[d]], "_selections")
) {
next
}
var_cats <- Categories(data = variables(dims_list)[[d]]$categories)
insert_funcs <- makeInsertionFunctions(
var_cats[keep_cats[[d]]],
transforms_list[[d]],
cats_in_array = dimnames(array)[[d]],
...
)
array <- maskAndApplyInserts(array, na_mask, d, insert_funcs)
na_mask <- calculate_na_mask(array, na_mask, d, insert_funcs)
},
error = function(e) {
assign("errors", append(errors, d), envir = parent.env(environment()))
}
)
}
if (length(errors) > 0) {
warning(
"Transforms for dimensions ", serialPaste(errors),
" were malformed and have been ignored.",
call. = FALSE
)
}
array <- subsetTransformedCube(array, dims_list, useNA)
return(array)
}
maskAndApplyInserts <- function(array, na_mask, d, insert_funcs) {
var_coord_cols <- startsWith(colnames(na_mask), "Var")
array[as.matrix(na_mask[, var_coord_cols])] <- NA
array <- applyAgainst(
X = array,
MARGIN = d,
FUN = calcTransforms,
insert_funcs = insert_funcs,
dim_names = names(insert_funcs)
)
insert_types <- attributes(insert_funcs)$types
if (length(na_mask) > 0) {
id_map <- which(insert_types == "Category")
names(id_map) <- seq_along(id_map)
na_mask[, d] <- id_map[na_mask[, d]]
var_coord_cols <- startsWith(colnames(na_mask), "Var")
if (!(all(is.na(array[as.matrix(na_mask[, var_coord_cols])])))) {
halt("Trying to overwrite uncensored values something is wrong")
}
array[as.matrix(na_mask[, var_coord_cols])] <- na_mask$values
}
return(array)
}
calculate_na_mask <- function(array, na_mask, d, insert_funcs) {
ind_to_mask <- which(attributes(insert_funcs)$types == "SummaryStat")
coords <- lapply(dim(array), function(to) seq_len(to))
coords[[d]] <- ind_to_mask
na_mask_new <- expand.grid(coords)
na_mask_new$values <- array[as.matrix(na_mask_new)]
na_mask <- rbind(na_mask, na_mask_new)
return(na_mask)
}
makeInsertionFunctions <- function(var_cats, transforms, cats_in_array = NULL, ...) {
dots <- list(...)
if ("include" %in% names(dots)) {
includes <- dots$include
} else {
includes <- c("subtotals", "headings", "cube_cells", "other_insertions")
}
cat_insert_map <- mapInsertions(
transforms$insertions,
var_cats,
include = includes
)
transforms_funcs <- makeTransFuncs(cat_insert_map, cats_in_array, var_cats)
names(transforms_funcs) <- names(cat_insert_map)
types <- getInsertionTypes(cat_insert_map, cats_in_array)
attributes(transforms_funcs)$types <- types
transforms_funcs <- Filter(Negate(is.null), transforms_funcs)
attributes(transforms_funcs)$types <- types[!is.na(types)]
return(transforms_funcs)
}
makeTransFuncs <- function(cat_insert_map, cats_in_array, var_cats) {
return(base::lapply(cat_insert_map, function(element) {
if (is.category(element)) {
if (!is.null(cats_in_array) && !name(element) %in% cats_in_array) {
return(NULL)
}
id <- which(ids(var_cats) %in% id(element))
which.cat <- names(var_cats[id])
return(function(vec) vec[[which.cat]])
}
if (is.Heading(element)) {
return(function(vec) NA)
}
if (is.Subtotal(element)) {
positive <- unlist(arguments(element, var_cats))
positive_ids <- which(ids(var_cats) %in% positive)
which.positive <- names(var_cats[positive_ids])
negative <- unlist(subtotalTerms(element, var_cats)$negative)
negative_ids <- which(ids(var_cats) %in% negative)
which.negative <- names(var_cats[negative_ids])
return(function(vec) {
sum(vec[which.positive]) - sum(vec[which.negative])
})
}
if (is.SummaryStat(element)) {
statFunc <- summaryStatInsertions[[func(element)]](element, var_cats)
return(function(vec) statFunc(vec))
}
known_inserts <- c("subtotal", names(summaryStatInsertions))
unknown_funcs <- !(element[["function"]] %in% known_inserts)
if (unknown_funcs) {
warning(
"Transform functions other than subtotal are not supported.",
" Applying only subtotals and ignoring ", element[["function"]]
)
}
return(function(vec) NA)
}))
}
getInsertionTypes <- function(cat_insert_map, cats_in_array) {
return(vapply(cat_insert_map, function(element) {
if (is.category(element)) {
if (!is.null(cats_in_array) && !name(element) %in% cats_in_array) {
return(NA_character_)
}
return("Category")
}
if (is.Heading(element)) {
return("Heading")
}
if (is.Subtotal(element)) {
return("Subtotal")
}
if (is.SummaryStat(element)) {
return("SummaryStat")
}
known_inserts <- c("subtotal", names(summaryStatInsertions))
unknown_funcs <- !(element[["function"]] %in% known_inserts)
if (unknown_funcs) {
return("Unknown")
}
}, character(1)))
}
applyAgainst <- function(X, MARGIN, FUN, ...) {
names_of_dims <- names(dimnames(X))
ndims <- length(dim(X))
if (ndims < 2) {
return(as.array(FUN(X, ...)))
}
off_margins <- seq_along(dim(X))[-MARGIN]
X <- apply(X, off_margins, FUN, ...)
X <- aperm(X, append(2:ndims, 1, after = MARGIN - 1))
names(dimnames(X)) <- names_of_dims
return(X)
}
subsetTransformedCube <- function(array, dimensions, useNA) {
dims <- dim(array)
if (is.null(dims)) {
return(array)
}
keep_all <- lapply(
seq_along(dims),
function(i) {
out <- rep(TRUE, dims[i])
names(out) <- dimnames(array)[[i]]
return(out)
}
)
names(keep_all) <- names(dimensions)[seq_along(keep_all)]
keep_these_cube_dims <- evalUseNA(array, dimensions[seq_along(keep_all)], useNA)
keep_these <- mapply(function(x, y) {
not_ys <- y[!y]
x[names(not_ys)] <- not_ys
return(x)
}, keep_all,
keep_these_cube_dims,
SIMPLIFY = FALSE,
USE.NAMES = TRUE
)
array_dimnames <- dimnames(array)
for (i in seq_along(array_dimnames)) {
to_keep <- names(keep_these[[i]]) %in% array_dimnames[[i]]
keep_these[[i]] <- keep_these[[i]][to_keep]
}
array <- subsetCubeArray(array, keep_these)
return(array)
}
setMethod("transforms", "CrunchCube", function(x) {
transforms(variables(x))
})
setMethod("transforms", "VariableCatalog", function(x) {
transes <- lapply(x, function(i) {
i$view$transform
})
transes_out <- lapply(transes, function(i) {
if (is.null(i$insertions) || length(i$insertions) == 0) {
return(NULL)
}
inserts <- Insertions(data = i$insertions)
inserts <- subtypeInsertions(inserts)
return(Transforms(
insertions = inserts,
categories = NULL,
elements = NULL
))
})
names(transes_out) <- aliases(x)
return(TransformsList(data = transes_out))
})
setMethod("transforms<-", c("CrunchCube", "ANY"), function(x, value) {
if (!is.null(names(value))) {
validateNamesInDims(names(value), x, what = "transforms")
transforms_list <- TransformsList(data = value)
transforms(x)[names(value)] <- transforms_list
} else {
transforms(x) <- TransformsList(data = value)
}
return(invisible(x))
})
setMethod("[[<-", c("TransformsList", "ANY", "missing", "NULL"), function(x,
i,
j,
value) {
x[[i]] <- Transforms(insertions = NULL, elements = NULL, categories = NULL)
return(x)
})
setMethod("transforms<-", c("CrunchCube", "TransformsList"), function(x, value) {
dims <- dimensions(x)
dimnames <- names(dims)
stopifnot(length(value) == length(dims))
validateNamesInDims(names(value), x, what = "transforms")
vars <- variables(x)
dims <- CubeDims(mapply(function(dim, val, var) {
if (!is.MR(var)) {
var_items <- categories(var)
} else {
var_items <- subvariables(var)
}
val$insertions <- Insertions(
data = lapply(val$insertions, makeInsertion, var_items = var_items, alias = alias(var))
)
dim$references$view$transform <- jsonprep(val)
return(dim)
}, dim = dims, val = value, var = vars, SIMPLIFY = FALSE))
names(dims) <- dimnames
dimensions(x) <- dims
return(invisible(x))
})
validateNamesInDims <- function(names, cube, what = "transforms") {
dimnames <- names(dimensions(cube))
if (any(!(names %in% dimnames))) {
halt(
"The names of the ", what, " supplied (",
serialPaste(dQuote(names)), ") do not match the dimensions of the cube (",
serialPaste(dQuote(dimnames)), ")."
)
}
}
setMethod("transforms<-", c("CrunchCube", "NULL"), function(x, value) {
dims <- dimensions(x)
dimnames <- names(dims)
dims <- CubeDims(lapply(dims, function(x) {
if (!is.null(x$references$view$transform)) {
x$references$view$transform <- value
}
return(x)
}))
names(dims) <- dimnames
dimensions(x) <- dims
return(invisible(x))
})
noTransforms <- function(cube) {
transforms(cube) <- NULL
return(cube)
} |
summary.cureph <- function(object, combine = T, ...)
{
aliased <- sapply(coef(object), is.na)
p <- sum(!unlist(aliased))
if (p > 0) {
p.logistic=length(coef(object)[[1]])
coef.p <- unlist(object$coefficients)
exp.coef=exp(coef.p)
exp.negcoef=exp(-coef.p)
covmat.unscaled <- object$var
dimnames(covmat.unscaled) <- list(names(coef.p), names(coef.p))
var.cf <- diag(covmat.unscaled)
s.err <- sqrt(var.cf)
tvalue <- coef.p/s.err
lower.95 = exp(coef.p-qnorm(.975)*s.err)
upper.95 = exp(coef.p+qnorm(.975)*s.err)
dn <- c("coef", 'exp(coef)', "se(coef)")
pvalue <- 2 * pnorm(-abs(tvalue))
coef.table <- cbind(coef.p, exp.coef, s.err, tvalue, pvalue)
dimnames(coef.table) <- list(names(coef.p), c(dn,
"z", "Pr(>|z|)"))
conf.int = cbind(exp.coef, exp.negcoef, lower.95, upper.95)
dimnames(conf.int) = list(names(coef.p),
c('exp(coef)', 'exp(-coef)', 'lower .95', 'upper .95'))
coef.table= list(logistic=coef.table[1:p.logistic, ,drop=F],
cox=coef.table[-(1:p.logistic), ,drop=F ])
rownames(coef.table$logistic)=names(coef(object)$logistic)
rownames(coef.table$cox)=names(coef(object)$cox)
conf.int =list(logistic=conf.int[1:p.logistic,,drop=F ],
cox=conf.int[-(1:p.logistic),,drop=F ])
rownames(conf.int$logistic)=names(coef(object)$logistic)
rownames(conf.int$cox)=names(coef(object)$cox)
if(length(object$var.levels)==0)
{
combine = F
}
if(combine & length(object$var.levels)>0)
if((length(coef(object)$logistic) - 1 != length(coef(object)$cox)) ||
any(names(coef(object)$logistic)[-1] != names(coef(object)$cox)))
{
warning("Combined Wald-test not applicable, as the sets of covariates are different. ")
combine = F
}else{
df.wald=object$var.levels*2
var.pos=cumsum(object$var.levels)
var.range.logistic=mapply(':',2+c(0,var.pos[-length(var.pos)]),1+var.pos)
var.range.cox=sapply(var.range.logistic,'+',var.pos[length(var.pos)])
var.range = mapply('c',var.range.logistic,var.range.cox)
chi.wald = unlist(sapply(var.range,function(var.range,var,b)
{if(any(is.na(b[var.range])))
NA
else survival::coxph.wtest(var[var.range,var.range],b[var.range])$test}, covmat.unscaled, coef.p))
p.wald = 1-pchisq(chi.wald, df.wald)
comb.table = cbind(chi.wald, df.wald ,p.wald)
dimnames(comb.table)=list(names(object$var.levels),
c('Wald-chi.square', 'df', 'p-value'))
}
}
else {
combine = F
coef.table <- matrix( 0 , 0L, 5L)
dimnames(coef.table) <- list(NULL, c("coef", 'exp(coef)', "se(coef)",
"z", "Pr(>|z|)"))
covmat.unscaled <- covmat <- matrix( 0 , 0L, 0L)
}
keep <- match(c("call", "terms.logistic","terms.cox", 'n','nevent','df',
"contrasts.logistic","contrasts.cox", "wald.test",
"iter", "na.action"), names(object), 0L)
ans <- c(object[keep], list(coefficients = coef.table,combine=combine,
conf.int=conf.int, aliased = aliased,
cov = covmat.unscaled))
if(combine)
ans$comb.wald=comb.table
class(ans) <- "summary.cureph"
ans
}
print.summary.cureph=function(x, digits = max(3, getOption("digits") - 3),
signif.stars = getOption("show.signif.stars"),
...)
{
coef.logistic=x$coefficients$logistic
coef.cox=x$coefficients$cox
sig.logistic=rep(' ',nrow(coef.logistic))
sig.logistic[coef.logistic[,5]<=0.1] = '.'
sig.logistic[coef.logistic[,5]<=0.05] = '*'
sig.logistic[coef.logistic[,5]<=0.01] = '**'
sig.logistic[coef.logistic[,5]<=0.001] = '***'
coef.logistic[,1:3]=round(coef.logistic[,1:3],digits=digits)
coef.logistic[,4]=round(coef.logistic[,4],digits=digits-1)
coef.logistic[sig.logistic!='***',5]=round(coef.logistic[sig.logistic!='***',5],digits=digits-1)
coef.logistic[sig.logistic=='***',5]=signif(coef.logistic[sig.logistic=='***',5],digits=digits-3)
if(signif.stars)
{
coef.logistic=cbind(coef.logistic,sig.logistic)
colnames(coef.logistic)[6]=''
}
sig.cox=rep(' ',nrow(coef.cox))
sig.cox[coef.cox[,5]<=0.1] = '.'
sig.cox[coef.cox[,5]<=0.05] = '*'
sig.cox[coef.cox[,5]<=0.01] = '**'
sig.cox[coef.cox[,5]<=0.001] = '***'
coef.cox[,1:3]=round(coef.cox[,1:3],digits=digits)
coef.cox[,4]=round(coef.cox[,4],digits=digits-1)
coef.cox[sig.cox!='***',5]=round(coef.cox[sig.cox!='***',5],digits=digits-1)
coef.cox[sig.cox=='***',5]=signif(coef.cox[sig.cox=='***',5],digits=digits-3)
if(signif.stars)
{
coef.cox=cbind(coef.cox,sig.cox)
colnames(coef.cox)[6]=''
}
cat('Call:\n')
print(x$call)
cat('\n')
cat('Logistic Model: \n')
print(formula(x$terms.logistic))
cat('Cox Model: \n')
print(formula(x$terms.cox))
cat('\n')
cat(paste(' n= ',x$n, ', number of events= ',x$nevent, sep='' ))
cat('\n \n')
cat('Logistic:\n')
print(coef.logistic,quote = FALSE)
cat('\n')
if(nrow(coef.cox)>0)
{
cat('Cox:\n')
print(coef.cox,quote = FALSE)
}
if(x$combine)
{
comb.wald = x$comb.wald
sig.comb=rep(' ',nrow(comb.wald))
sig.comb[comb.wald[,3]<=0.1] = '.'
sig.comb[comb.wald[,3]<=0.05] = '*'
sig.comb[comb.wald[,3]<=0.01] = '**'
sig.comb[comb.wald[,3]<=0.001] = '***'
comb.wald[,1]=round(comb.wald[,1],digits=digits-1)
comb.wald[sig.comb!='***',3]=round(comb.wald[sig.comb!='***',3],digits=digits-1)
comb.wald[sig.comb=='***',3]=signif(comb.wald[sig.comb=='***',3],digits=digits-3)
if(signif.stars)
{
comb.wald=cbind(comb.wald,sig.comb)
colnames(comb.wald)[4]=''
}
cat('\n')
cat('Combined Wald tests: \n')
print(comb.wald,quote=F)
}
cat('--- \n')
cat(paste('Signif. codes: 0', sQuote('***'), "0.001", sQuote('**'), '0.01', sQuote('*'), '0.05', sQuote('.'), '0.1', sQuote(' '), '1\n'))
cat('\n')
cat('Logistic:\n')
print(x$conf.int$logistic,digits=digits)
cat('\n')
if(nrow(coef.cox)>0)
{
cat('Cox:\n')
print(x$conf.int$cox,digits=digits)
cat('\n')
}
cat(paste('Wald test =', signif(x$wald.test,digits=digits), 'on', x$df, 'df, p =',
signif(1-pchisq(x$wald.test,x$df),digits=digits)))
} |
test_that("geos_geometry class works", {
expect_s3_class(new_geos_geometry(list(), crs = NULL), "geos_geometry")
expect_s3_class(new_geos_geometry(list(NULL), crs = NULL), "geos_geometry")
expect_error(new_geos_geometry(NULL, crs = NULL), "must be a bare list")
expect_true(is.na(new_geos_geometry(list(NULL), crs = NULL)))
})
test_that("geos_geometry can be created from well-known text", {
expect_s3_class(as_geos_geometry("POINT (30 10)"), "geos_geometry")
expect_s3_class(as_geos_geometry(wk::wkt("POINT (30 10)")), "geos_geometry")
expect_length(as_geos_geometry("POINT (30 10)"), 1)
expect_length(as_geos_geometry(c(NA, "POINT (30 10)")), 2)
})
test_that("geos_geometry can be created from well-known binary", {
expect_s3_class(as_geos_geometry(structure(wk::as_wkb("POINT (30 10)"), class = "blob")), "geos_geometry")
expect_s3_class(as_geos_geometry(structure(wk::as_wkb("POINT (30 10)"), class = "WKB")), "geos_geometry")
})
test_that("geos_geometry validation works", {
expect_identical(
validate_geos_geometry(new_geos_geometry(list(), crs = NULL)),
new_geos_geometry(list(), crs = NULL)
)
expect_identical(
validate_geos_geometry(new_geos_geometry(list(NULL), crs = NULL)),
new_geos_geometry(list(NULL), crs = NULL)
)
expect_error(validate_geos_geometry(list("wrong type")), "must be externalptr")
})
test_that("geos_geometry subsetting and concatenation work", {
geometry <- new_geos_geometry(list(NULL, NULL), crs = NULL)
expect_identical(geometry[1], new_geos_geometry(list(NULL), crs = NULL))
expect_identical(geometry[[1]], geometry[1])
expect_identical(
c(geometry, geometry),
new_geos_geometry(list(NULL, NULL, NULL, NULL), crs = NULL)
)
expect_identical(
rep(geometry, 2),
new_geos_geometry(list(NULL, NULL, NULL, NULL), crs = NULL)
)
expect_identical(
rep_len(geometry, 4),
new_geos_geometry(list(NULL, NULL, NULL, NULL), crs = NULL)
)
expect_error(
c(new_geos_geometry(list(NULL, NULL), crs = NULL), 1:5),
"must inherit from"
)
})
test_that("subset-assignment works", {
x <- as_geos_geometry(c("POINT EMPTY", "LINESTRING EMPTY", "POLYGON EMPTY"))
expect_identical(geos_write_wkt(x[3]), "POLYGON EMPTY")
x[3] <- "POINT (1 2)"
expect_identical(geos_write_wkt(x[3]), "POINT (1 2)")
x[3] <- as_geos_geometry("POINT (3 4)", crs = wk::wk_crs_inherit())
expect_identical(geos_write_wkt(x[3]), "POINT (3 4)")
x[[3]] <- "POINT (1 2)"
expect_identical(geos_write_wkt(x[3]), "POINT (1 2)")
expect_error(x[3] <- as_geos_geometry("POINT (1 2)", crs = 123), "are not equal")
})
test_that("geos_geometry can be put into a data.frame", {
expect_identical(
data.frame(geom = new_geos_geometry(list(NULL), crs = NULL)),
new_data_frame(list(geom = new_geos_geometry(list(NULL), crs = NULL)))
)
expect_error(as.data.frame(new_geos_geometry(list(NULL), crs = NULL)), "cannot coerce class")
})
test_that("geos_geometry default format/print/str methods work", {
expect_identical(
format(as_geos_geometry("POINT (10 10)")),
as.character(as_geos_geometry("POINT (10 10)"))
)
expect_match(format(geos_make_linestring(1:6, 1)), "<LINESTRING \\[")
expect_match(format(geos_make_linestring(1:5, 1)), "<LINESTRING \\(")
expect_output(print(new_geos_geometry(crs = NULL)), "geos_geometry")
expect_output(print(new_geos_geometry(list(NULL), crs = NULL)), "geos_geometry")
expect_output(print(new_geos_geometry(crs = 1234)), "CRS=1234")
expect_match(format(as_geos_geometry(c("POINT (0 1)", NA)))[2], "<NA>")
expect_output(str(as_geos_geometry(character())), "geos_geometry\\[0\\]")
expect_output(str(as_geos_geometry("POINT (10 10)")), "<POINT \\(10 10\\)>")
}) |
`IdfMltSV.default` <- function(MultiData,LgLim,SVSize){
MultiDt <- (subset(MultiData$MultiSvLg2,abs(MultiData$MultiSvLg2$PopLg2)>=LgLim))
MultiDt <- (subset(MultiDt,abs(MultiDt$PopLg2)!="Inf"))
MultiDt$MidPos <- round((MultiDt$end+MultiDt$start)/2)
MultiDt$MultiSV <- 0
MultiDt$MultiSVSize <- NA
MultiDt$MultiSVlog2 <- NA
MultiDt$MultiSVPval <- NA
ComBin = 1
PrevRegion = 0
MltSv <- 1
StepSize = mean((MultiDt$end-MultiDt$start))+1
Brdg = StepSize*3
Lengths <- abs(MultiDt[2:nrow(MultiDt),'MidPos']-MultiDt[1:(nrow(MultiDt)-1),'MidPos'])
MultiEnd <- c(which(Lengths>Brdg),nrow(MultiDt))
for(MSV in MultiEnd){
if(MSV-MltSv+1>=ComBin){
PrevRegion <- PrevRegion+1
MultiDt[MltSv:MSV,'MultiSV'] <- PrevRegion
}
MltSv <- MSV+1
}
MltSV = 0
for(MltSV in seq(1,max(MultiDt$MultiSV))){
MltSvSbSt <- subset(MultiDt, MultiDt$MultiSV==MltSV)
Strt <- min(MltSvSbSt$MidPos)-StepSize
End <- max(MltSvSbSt$MidPos)+StepSize
Size <- (End - Strt)
Chr <- as.character(unique(MltSvSbSt$chr))
if(length(MltSvSbSt$PopLg2) > 1){
if(mean(MltSvSbSt$PopLg2) > 0){
Lg2 <- max(MltSvSbSt$PopLg2)
}else if(mean(MltSvSbSt$PopLg2) < 0){
Lg2 <- min(MltSvSbSt$PopLg2)
}
}else if( length(MltSvSbSt$PopLg2) == 1){
Lg2 <- unique(MltSvSbSt$PopLg2)
}else if(length(MltSvSbSt$PopLg2) == 0){
Lg2 <- 0
}
RwNms <- which(MultiDt$MultiSV==MltSV)
MultiDt[RwNms,'MultiSVlog2'] <- Lg2
MultiDt[RwNms,'MultiSVSize'] <- Size
MultiDt[RwNms,'MultiSVPval'] <- CmptMltPvl((subset(MultiData$MultiSvScl, MultiData$MultiSvScl$chr==Chr &
MultiData$MultiSvScl$start>=Strt &
MultiData$MultiSvScl$end<=End)),MultiData$Conf)
}
MultiSVData <- as.data.frame(matrix(nrow = max(MultiDt$MultiSV), ncol = 6))
colnames(MultiSVData) <- c("Chr","Start","End","Size","log2","Pval")
MltSV = 0
for(MltSV in seq(max(min(MultiDt$MultiSV),1), max(MultiDt$MultiSV))){
MltSvSbSt <- subset(MultiDt, MultiDt$MultiSV==MltSV)
if (unique(MltSvSbSt$MultiSVlog2) != "NaN"){
MultiSVData[MltSV,1] <- as.character((unique(MltSvSbSt$chr))[1])
MultiSVData[MltSV,2] <- min(MltSvSbSt$MidPos)-StepSize+1
MultiSVData[MltSV,3] <- max(MltSvSbSt$MidPos)+StepSize
MultiSVData[MltSV,4] <- unique(MltSvSbSt$MultiSVSize)
MultiSVData[MltSV,5] <- unique(MltSvSbSt$MultiSVlog2)
MultiSVData[MltSV,6] <- unique(MltSvSbSt$MultiSVPval)
} else {
MultiSVData[MltSV,4] <- NA
MultiSVData[MltSV,5] <- NA
MultiSVData[MltSV,6] <- NA
}
}
subset(MultiSVData,MultiSVData$Pval<=0.05&MultiSVData$Size>SVSize)
} |
library(checkargs)
context("isNegativeIntegerOrNaOrInfScalar")
test_that("isNegativeIntegerOrNaOrInfScalar works for all arguments", {
expect_identical(isNegativeIntegerOrNaOrInfScalar(NULL, stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isNegativeIntegerOrNaOrInfScalar(TRUE, stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isNegativeIntegerOrNaOrInfScalar(FALSE, stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isNegativeIntegerOrNaOrInfScalar(NA, stopIfNot = FALSE, message = NULL, argumentName = NULL), TRUE)
expect_identical(isNegativeIntegerOrNaOrInfScalar(0, stopIfNot = FALSE, message = NULL, argumentName = NULL), TRUE)
expect_identical(isNegativeIntegerOrNaOrInfScalar(-1, stopIfNot = FALSE, message = NULL, argumentName = NULL), TRUE)
expect_identical(isNegativeIntegerOrNaOrInfScalar(-0.1, stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isNegativeIntegerOrNaOrInfScalar(0.1, stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isNegativeIntegerOrNaOrInfScalar(1, stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isNegativeIntegerOrNaOrInfScalar(NaN, stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isNegativeIntegerOrNaOrInfScalar(-Inf, stopIfNot = FALSE, message = NULL, argumentName = NULL), TRUE)
expect_identical(isNegativeIntegerOrNaOrInfScalar(Inf, stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isNegativeIntegerOrNaOrInfScalar("", stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isNegativeIntegerOrNaOrInfScalar("X", stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isNegativeIntegerOrNaOrInfScalar(c(TRUE, FALSE), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isNegativeIntegerOrNaOrInfScalar(c(FALSE, TRUE), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isNegativeIntegerOrNaOrInfScalar(c(NA, NA), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isNegativeIntegerOrNaOrInfScalar(c(0, 0), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isNegativeIntegerOrNaOrInfScalar(c(-1, -2), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isNegativeIntegerOrNaOrInfScalar(c(-0.1, -0.2), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isNegativeIntegerOrNaOrInfScalar(c(0.1, 0.2), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isNegativeIntegerOrNaOrInfScalar(c(1, 2), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isNegativeIntegerOrNaOrInfScalar(c(NaN, NaN), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isNegativeIntegerOrNaOrInfScalar(c(-Inf, -Inf), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isNegativeIntegerOrNaOrInfScalar(c(Inf, Inf), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isNegativeIntegerOrNaOrInfScalar(c("", "X"), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isNegativeIntegerOrNaOrInfScalar(c("X", "Y"), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_error(isNegativeIntegerOrNaOrInfScalar(NULL, stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_error(isNegativeIntegerOrNaOrInfScalar(TRUE, stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_error(isNegativeIntegerOrNaOrInfScalar(FALSE, stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_identical(isNegativeIntegerOrNaOrInfScalar(NA, stopIfNot = TRUE, message = NULL, argumentName = NULL), TRUE)
expect_identical(isNegativeIntegerOrNaOrInfScalar(0, stopIfNot = TRUE, message = NULL, argumentName = NULL), TRUE)
expect_identical(isNegativeIntegerOrNaOrInfScalar(-1, stopIfNot = TRUE, message = NULL, argumentName = NULL), TRUE)
expect_error(isNegativeIntegerOrNaOrInfScalar(-0.1, stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_error(isNegativeIntegerOrNaOrInfScalar(0.1, stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_error(isNegativeIntegerOrNaOrInfScalar(1, stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_error(isNegativeIntegerOrNaOrInfScalar(NaN, stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_identical(isNegativeIntegerOrNaOrInfScalar(-Inf, stopIfNot = TRUE, message = NULL, argumentName = NULL), TRUE)
expect_error(isNegativeIntegerOrNaOrInfScalar(Inf, stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_error(isNegativeIntegerOrNaOrInfScalar("", stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_error(isNegativeIntegerOrNaOrInfScalar("X", stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_error(isNegativeIntegerOrNaOrInfScalar(c(TRUE, FALSE), stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_error(isNegativeIntegerOrNaOrInfScalar(c(FALSE, TRUE), stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_error(isNegativeIntegerOrNaOrInfScalar(c(NA, NA), stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_error(isNegativeIntegerOrNaOrInfScalar(c(0, 0), stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_error(isNegativeIntegerOrNaOrInfScalar(c(-1, -2), stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_error(isNegativeIntegerOrNaOrInfScalar(c(-0.1, -0.2), stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_error(isNegativeIntegerOrNaOrInfScalar(c(0.1, 0.2), stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_error(isNegativeIntegerOrNaOrInfScalar(c(1, 2), stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_error(isNegativeIntegerOrNaOrInfScalar(c(NaN, NaN), stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_error(isNegativeIntegerOrNaOrInfScalar(c(-Inf, -Inf), stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_error(isNegativeIntegerOrNaOrInfScalar(c(Inf, Inf), stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_error(isNegativeIntegerOrNaOrInfScalar(c("", "X"), stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_error(isNegativeIntegerOrNaOrInfScalar(c("X", "Y"), stopIfNot = TRUE, message = NULL, argumentName = NULL))
}) |
MLModel <- function(
name = "MLModel", label = name, packages = character(),
response_types = character(), weights = FALSE,
predictor_encoding = c(NA, "model.frame", "model.matrix"), params = list(),
gridinfo = tibble::tibble(
param = character(), get_values = list(), default = logical()
),
fit = function(formula, data, weights, ...) stop("No fit function."),
predict = function(object, newdata, times, ...) stop("No predict function."),
varimp = function(object, ...) NULL, ...
) {
stopifnot(!any(duplicated(response_types)))
stopifnot(response_types %in% settings("response_types"))
stopifnot(length(weights) %in% c(1, length(response_types)))
stopifnot(is_tibble(gridinfo))
gridinfo <- new_gridinfo(
param = gridinfo[["param"]],
get_values = gridinfo[["get_values"]],
default = gridinfo[["default"]]
)
new("MLModel",
name = name,
label = label,
packages = packages,
response_types = response_types,
weights = weights,
predictor_encoding = match.arg(predictor_encoding),
params = params,
gridinfo = gridinfo,
fit = fit,
predict = predict,
varimp = varimp,
...
)
}
update.MLModel <- function(
object, params = list(), quote = TRUE, new_id = FALSE, ...
) {
new_params <- as(object, "list")
new_params[names(params)] <- params
res <- do.call(object@name, new_params, quote = quote)
if (!new_id) res@id <- object@id
res
}
MLModelFit <- function(object, Class, model, input) {
model@input <- prep(input)
if (is(object, Class)) {
object <- unMLModelFit(object)
} else if (is(object, "MLModelFit")) {
throw(Error("Cannot change MLModelFit class."))
}
if (!is(model, "MLModel")) throw(TypeError(model, "MLModel", "'model'"))
if (isS4(object)) {
object <- new(Class, object, mlmodel = model)
} else if (is.list(object)) {
object$mlmodel <- model
class(object) <- c(Class, "MLModelFit", class(object))
} else {
throw(TypeError(object, c("S4 class", "list"), "'object'"))
}
object
}
unMLModelFit <- function(object) {
if (is(object, "MLModelFit")) {
if (isS4(object)) {
classes <- extends(class(object))
pos <- match("MLModelFit", classes)
as(object, classes[pos + 1])
} else {
object$mlmodel <- NULL
classes <- class(object)
pos <- match("MLModelFit", classes)
structure(object, class = classes[-seq_len(pos)])
}
} else object
} |
list_plot_methods <- function() {
m <- methods(class = "bcea")
m[grep(pattern = "plot", m)]
} |
query <- "persian cat"
CatImg <- GoogleImage2array(query)
str(CatImg) |
log_W <- function(z, branch = 0, W.z = W(z, branch = branch)) {
log.W.z <- log(z) - W.z
if (any(is.infinite(z))) {
log.W.z[is.infinite(z)] <- Inf
}
return(log.W.z)
} |
datasummary_correlation <- function(data,
output = 'default',
method = "pearson",
fmt = 2,
align = NULL,
add_rows = NULL,
add_columns = NULL,
title = NULL,
notes = NULL,
escape = TRUE,
...) {
settings_init(settings = list(
"function_called" = "datasummary_correlation"
))
sanitize_output(output)
sanitize_escape(escape)
sanity_add_columns(add_columns)
any_numeric <- any(sapply(data, is.numeric) == TRUE)
if (any_numeric == FALSE) {
stop("`datasummary_correlation` can only summarize numeric data columns.")
}
checkmate::assert(
checkmate::check_choice(
method,
c("pearson", "kendall", "spearman", "pearspear")),
checkmate::check_function(method))
if (is.function(method)) {
fn <- method
} else if (method == "pearspear") {
fn <- correlation_pearspear
} else {
fn <- function(x) stats::cor(
x,
use = "pairwise.complete.obs",
method = method)
}
out <- data[, sapply(data, is.numeric), drop = FALSE]
out <- fn(out)
if ((!is.matrix(out) && !inherits(out, "data.frame")) ||
is.null(row.names(out)) ||
is.null(colnames(out)) ||
nrow(out) != ncol(out)) {
stop("The function supplied to the `method` argument did not return a square matrix or data.frame with row.names and colnames.")
}
if (is.character(method)) {
if (method == "pearspear") {
out <- datasummary_correlation_format(
out,
fmt = fmt,
diagonal = "1")
} else {
out <- datasummary_correlation_format(
out,
fmt = fmt,
diagonal = "1",
upper_triangle = ".")
}
} else {
out <- datasummary_correlation_format(
out,
fmt = fmt)
}
col_names <- colnames(out)
out <- cbind(rowname = row.names(out), out)
colnames(out) <- c(' ', col_names)
if (is.null(align)) {
ncols <- ncol(out)
if (!is.null(add_columns)) {
ncols <- ncols + ncol(add_columns)
}
align <- paste0('l', strrep('r', ncols - 1))
}
if (settings_equal("escape", TRUE)) {
out[, 1] <- escape_string(out[, 1])
colnames(out) <- escape_string(colnames(out))
}
out <- factory(out,
align = align,
hrule = NULL,
output = output,
add_rows = add_rows,
add_columns = add_columns,
notes = notes,
title = title,
...)
if (!is.null(settings_get("output_file")) ||
output == "jupyter" ||
(output == "default" && settings_equal("output_default", "jupyter"))) {
settings_rm()
return(invisible(out))
} else {
settings_rm()
return(out)
}
}
correlation_pearspear <- function(x) {
pea <- stats::cor(
x,
use = "pairwise.complete.obs",
method = "pearson"
)
spe <- stats::cor(
x,
use = "pairwise.complete.obs",
method = "spearman"
)
pea[lower.tri(pea)] <- spe[lower.tri(spe)]
return(pea)
}
datasummary_correlation_format <- function(
x,
fmt,
leading_zero = FALSE,
diagonal = NULL,
upper_triangle = NULL) {
checkmate::assert_character(diagonal, len = 1, null.ok = TRUE)
checkmate::assert_character(upper_triangle, len = 1, null.ok = TRUE)
checkmate::assert_flag(leading_zero)
out <- data.frame(x, check.names = FALSE)
for (i in seq_along(out)) {
out[[i]] <- rounding(out[[i]], fmt)
if (leading_zero == FALSE) {
out[[i]] <- gsub('0\\.', '\\.', out[[i]])
}
}
for (i in 1:nrow(out)) {
for (j in 1:ncol(out)) {
if (!is.null(upper_triangle)) {
out[i, j] <- ifelse(i < j, upper_triangle, out[i, j])
}
if (!is.null(diagonal)) {
out[i, j] <- ifelse(i == j, diagonal, out[i, j])
}
}
}
return(out)
} |
library(knitr)
knitr::opts_chunk$set(
fig.align = "center",
fig.height = 5.5,
fig.width = 6,
warning = FALSE,
collapse = TRUE,
dev.args = list(pointsize = 10),
out.width = "90%",
par = TRUE
)
knit_hooks$set(par = function(before, options, envir)
{ if (before && options$fig.show != "none")
par(family = "sans", mar = c(4.1,4.1,1.1,1.1), mgp = c(3,1,0), tcl = -0.5)
})
library(samurais)
data("multivtoydataset")
K <- 5
p <- 3
variance_type <- "heteroskedastic"
n_tries <- 1
max_iter <- 1500
threshold <- 1e-6
verbose <- TRUE
mhmmr <- emMHMMR(multivtoydataset$x, multivtoydataset[,c("y1", "y2", "y3")],
K, p, variance_type, n_tries, max_iter, threshold, verbose)
mhmmr$summary()
mhmmr$plot(what = "predicted")
mhmmr$plot(what = "filtered")
mhmmr$plot(what = "regressors")
mhmmr$plot(what = "smoothed")
mhmmr$plot(what = "loglikelihood") |
compute.threshold.FPF.cROC.kernel <-
function(object, newdata, FPF = 0.5, ci.level = 0.95, parallel = c("no", "multicore", "snow"), ncpus = 1, cl = NULL) {
if(class(object)[1] != "cROC.kernel") {
stop(paste0("This function cannot be used for this object class: ", class(object)[1]))
}
names.cov <- object$covariate
if(!missing(newdata) && !inherits(newdata, "data.frame"))
stop("Newdata must be a data frame")
if(!missing(newdata) && length(names.cov) != 0 && sum(is.na(match(names.cov, names(newdata)))))
stop("Not all needed variables are supplied in newdata")
if(missing(newdata)) {
newdata <- cROCData(object$data, names.cov, object$group)
} else {
newdata <- as.data.frame(newdata)
newdata <- na.omit(newdata[,names.cov,drop = FALSE])
}
xp <- newdata[,names.cov]
res.aux <- compute.threshold.FPF.kernel(object = object$fit$h, newdata = xp, FPF = FPF)
thresholds <- vector("list", length(FPF))
names(thresholds) <- FPF
for(i in 1:length(FPF)){
thresholds[[i]] <- matrix(res.aux$thresholds[i,], ncol = 1)
colnames(thresholds[[i]]) <- "est"
}
res <- list()
res$thresholds <- thresholds
res$FPF <- FPF
fit.mean.new <- npreg(object$fit$d$bw.mean, exdat = xp, residuals = TRUE)
fit.var.new <- npreg(object$fit$d$bw.var, exdat = xp, residuals = TRUE)
d.residuals <- object$fit$d$fit.mean$resid/sqrt(object$fit$d$fit.var$mean)
aux <- t(t(res.aux$thresholds) - fit.mean.new$mean)
aux <- t(t(aux)/sqrt(fit.var.new$mean))
TPF.aux <- matrix(1 - ecdf(d.residuals)(aux), nrow = length(FPF))
TPF <- vector("list", length(FPF))
names(TPF) <- FPF
for(i in 1:length(FPF)){
TPF[[i]] <- matrix(TPF.aux[i,], ncol = 1)
colnames(TPF[[i]]) <- "est"
}
res$TPF <- TPF
res$newdata <- newdata
res
} |
divider_height = function(cinfo) 1L
setGeneric("nlines",
function(x, colwidths) standardGeneric("nlines"))
setMethod("nlines", "TableRow",
function(x, colwidths) {
fns <- sum(unlist(lapply(row_footnotes(x), nlines))) + sum(unlist(lapply(cell_footnotes(x), nlines)))
fcells <- get_formatted_cells(x)
rowext <- max(vapply(strsplit(c(obj_label(x), fcells), "\n", fixed = TRUE),
length,
1L))
rowext + fns
})
setMethod("nlines", "LabelRow",
function(x, colwidths) {
if(labelrow_visible(x))
length(strsplit(obj_label(x), "\n", fixed = TRUE)[[1]]) + sum(unlist(lapply(row_footnotes(x), nlines)))
else
0L
})
setMethod("nlines", "RefFootnote",
function(x, colwidths) {
1L
})
setMethod("nlines", "VTableTree",
function(x, colwidths) {
length(collect_leaves(x, TRUE, TRUE))
})
setMethod("nlines", "InstantiatedColumnInfo",
function(x, colwidths) {
lfs = collect_leaves(coltree(x))
depths = sapply(lfs, function(l) length(pos_splits(l)))
max(depths, length(top_left(x))) + divider_height(x)
})
setMethod("nlines", "list",
function(x, colwidths) {
if(length(x) == 0)
0L
else
sum(unlist(vapply(x, nlines, NA_integer_, colwidths = colwidths)))
})
setMethod("nlines", "NULL", function(x, colwidths) 0L)
setMethod("nlines", "character", function(x, colwidths) max(vapply(strsplit(x, "\n", fixed = TRUE), length, 1L)))
pagdfrow = function(row,
nm = obj_name(row),
lab = obj_label(row),
rnum,
pth ,
sibpos = NA_integer_,
nsibs = NA_integer_,
extent = nlines(row, colwidths),
colwidths = NULL,
repext = 0L,
repind = integer(),
indent = 0L,
rclass = class(row),
nrowrefs = 0L,
ncellrefs = 0L,
nreflines = 0L
) {
data.frame(label = lab,
name = nm,
abs_rownumber = rnum,
path = I(list(pth)),
pos_in_siblings = sibpos,
n_siblings = nsibs,
self_extent = extent,
par_extent = repext,
reprint_inds = I(list(unlist(repind))),
node_class = rclass,
indent = max(0L, indent),
nrowrefs = nrowrefs,
ncellrefs = ncellrefs,
nreflines = nreflines,
stringsAsFactors = FALSE)
}
col_dfrow = function(col,
nm = obj_name(col),
lab = obj_label(col),
cnum,
pth = NULL,
sibpos = NA_integer_,
nsibs = NA_integer_,
leaf_indices = cnum,
span = length(leaf_indices),
col_fnotes = list()
) {
if(is.null(pth))
pth <- pos_to_path(tree_pos(col))
data.frame(stringsAsFactors = FALSE,
name = nm,
label = lab,
abs_pos = cnum,
path = I(list(pth)),
pos_in_siblings = sibpos,
n_siblings = nsibs,
leaf_indices = I(list(leaf_indices)),
total_span = span,
col_fnotes = I(list(col_fnotes)),
n_col_fnotes = length(col_fnotes))
}
pos_to_path <- function(pos) {
spls <- pos_splits(pos)
vals <- pos_splvals(pos)
path <- character()
for(i in seq_along(spls)) {
path <- c(path,
obj_name(spls[[i]]),
value_names(vals[[i]]))
}
path
}
setGeneric("make_row_df", function(tt, colwidths = NULL, visible_only = TRUE,
rownum = 0,
indent = 0L,
path = character(),
incontent = FALSE,
repr_ext = 0L,
repr_inds = integer(),
sibpos = NA_integer_,
nsibs = NA_integer_,
nrowrefs = 0L,
ncellrefs = 0L,
nreflines = 0L) standardGeneric("make_row_df"))
setMethod("make_row_df", "VTableTree",
function(tt, colwidths = NULL, visible_only = TRUE,
rownum = 0,
indent = 0L,
path = character(),
incontent = FALSE,
repr_ext = 0L,
repr_inds = integer(),
sibpos = NA_integer_,
nsibs = NA_integer_) {
indent <- indent + indent_mod(tt)
orig_rownum <- rownum
if(incontent)
path <- c(path, "@content")
else if (length(path) > 0 || nzchar(obj_name(tt)))
path <- c(path, obj_name(tt))
ret <- list()
if(!visible_only) {
ret <- c(ret,
list(pagdfrow(rnum = NA,
nm = obj_name(tt),
lab = "",
pth = path,
colwidths = colwidths,
repext = repr_ext,
repind = list(repr_inds),
extent = 0,
indent = indent,
rclass = class(tt), sibpos = sibpos,
nsibs = nsibs,
nrowrefs = 0L,
ncellrefs = 0L,
nreflines = 0L)))
}
if(labelrow_visible(tt)) {
lr = tt_labelrow(tt)
newdf <- make_row_df(lr,
colwidths= colwidths,
visible_only = visible_only,
rownum = rownum,
indent = indent,
path = path,
incontent = TRUE,
repr_ext = repr_ext,
repr_inds = repr_inds)
rownum <- max(newdf$abs_rownumber,na.rm = TRUE)
ret = c(ret,
list(newdf))
repr_ext = repr_ext + 1L
repr_inds = c(repr_inds, rownum)
indent <- indent + 1L
}
if(NROW(content_table(tt)) > 0) {
cind <- indent + indent_mod(content_table(tt))
contdf <- make_row_df(content_table(tt),
colwidths= colwidths,
visible_only = visible_only,
rownum = rownum,
indent = cind,
path = path,
incontent = TRUE,
repr_ext = repr_ext,
repr_inds = repr_inds)
crnums <- contdf$abs_rownumber
crnums <- crnums[!is.na(crnums)]
newrownum <- max(crnums, na.rm = TRUE)
if(is.finite(newrownum)) {
rownum <- newrownum
repr_ext <- repr_ext + length(crnums)
repr_inds <- c(repr_inds, crnums)
}
ret <- c(ret, list(contdf))
indent <- cind + 1
}
allkids <- tree_children(tt)
newnsibs <- length(allkids)
for(i in seq_along(allkids)) {
kid <- allkids[[i]]
kiddfs <- make_row_df(kid,
colwidths= colwidths,
visible_only = visible_only,
rownum = force(rownum),
indent = indent,
path = path,
incontent = incontent,
repr_ext = repr_ext,
repr_inds = repr_inds,
nsibs = newnsibs,
sibpos = i)
rownum <- max(rownum + 1L, kiddfs$abs_rownumber, na.rm = TRUE)
ret <- c(ret, list(kiddfs))
}
do.call(rbind, ret)
})
setMethod("make_row_df", "TableRow",
function(tt, colwidths = NULL, visible_only = TRUE,
rownum = 0,
indent = 0L,
path = "root",
incontent = FALSE,
repr_ext = 0L,
repr_inds = integer(),
sibpos = NA_integer_,
nsibs = NA_integer_) {
indent <- indent + indent_mod(tt)
rownum <- rownum + 1
rrefs <- row_footnotes(tt)
crefs <- cell_footnotes(tt)
reflines <- sum(sapply(c(rrefs, crefs), nlines))
ret <- pagdfrow(tt, rnum = rownum,
colwidths = colwidths,
sibpos = sibpos,
nsibs = nsibs,
pth = c(path, obj_name(tt)),
repext = repr_ext,
repind = repr_inds,
indent = indent,
nrowrefs = length(rrefs) ,
ncellrefs = length(unlist(crefs)),
nreflines = reflines
)
ret
})
setMethod("make_row_df", "LabelRow",
function(tt, colwidths = NULL, visible_only = TRUE,
rownum = 0,
indent = 0L,
path = "root",
incontent = FALSE,
repr_ext = 0L,
repr_inds = integer(),
sibpos = NA_integer_,
nsibs = NA_integer_) {
rownum <- rownum + 1
indent <- indent + indent_mod(tt)
ret <- pagdfrow(tt, rnum = rownum,
colwidths = colwidths,
sibpos = sibpos,
nsibs = nsibs,
pth = path,
repext = repr_ext,
repind = repr_inds,
indent = indent,
nrowrefs = length(row_footnotes(tt)),
ncellrefs = 0L,
nreflines = sum(vapply(row_footnotes(tt), nlines, NA_integer_)))
if(!labelrow_visible(tt))
ret <- ret[0,]
ret
})
setGeneric("inner_col_df", function(ct, colwidths = NULL, visible_only = TRUE,
colnum = 0L,
sibpos = NA_integer_,
nsibs = NA_integer_,
ncolref = 0L) standardGeneric("inner_col_df"))
make_col_df <- function(tt,
visible_only = TRUE) {
ctree <- coltree(tt)
rows <- inner_col_df(ctree,
colwidths = propose_column_widths(tt),
visible_only = visible_only,
colnum = 1L,
sibpos = 1L,
nsibs = 1L)
do.call(rbind, rows)
}
setMethod("inner_col_df", "LayoutColLeaf",
function(ct, colwidths, visible_only,
colnum,
sibpos,
nsibs) {
list(col_dfrow(col = ct,
cnum = colnum,
sibpos = sibpos,
nsibs = nsibs,
leaf_indices = colnum,
col_fnotes = col_fnotes_here(ct)))
})
setMethod("inner_col_df", "LayoutColTree",
function(ct, colwidths, visible_only,
colnum,
sibpos,
nsibs) {
kids <- tree_children(ct)
ret <- vector("list", length(kids))
for(i in seq_along(kids)) {
k <- kids[[i]]
nleaves <- length(collect_leaves(k))
newrows <- do.call(rbind,
inner_col_df(k,
colnum = colnum,
sibpos = i,
nsibs = length(kids),
visible_only = visible_only))
colnum <- max(newrows$abs_pos, colnum, na.rm = TRUE) + 1
ret[[i]] = newrows
}
if(!visible_only) {
allindices <- unlist(lapply(ret, function(df) df$abs_pos[!is.na(df$abs_pos)]))
thispth <- pos_to_path(tree_pos(ct))
if(any(nzchar(thispth))) {
thisone <- list(col_dfrow(col = ct,
cnum = NA_integer_,
leaf_indices = allindices,
sibpos = sibpos,
nsibs = nsibs,
pth = thispth,
col_fnotes = col_fnotes_here(ct)))
ret <- c(thisone, ret)
}
}
ret
})
valid_pag = function(pagdf,
guess,
start,
rlpp,
min_sibs,
nosplit = NULL,
verbose = FALSE) {
rw <- pagdf[guess,]
if(verbose)
message("Checking pagination after row ", guess)
reflines <- sum(pagdf[start:guess, "nreflines"])
if(reflines > 0) reflines <- reflines + 2
lines <- guess - start + 1 + reflines
if(lines > rlpp) {
if(verbose)
message("\t....................... FAIL: Referential footnotes take up too much space (", reflines, " lines)")
return(FALSE)
}
if(rw[["node_class"]] %in% c("LabelRow", "ContentRow")) {
if(verbose)
message("\t....................... FAIL: last row is a label or content row")
return(FALSE)
}
sibpos <- rw[["pos_in_siblings"]]
nsib <- rw[["n_siblings"]]
okpos <- min(min_sibs + 1, rw[["n_siblings"]])
if( sibpos != nsib){
retfalse <- FALSE
if(sibpos < min_sibs + 1) {
retfalse <- TRUE
if(verbose)
message("\t....................... FAIL: last row had only ", sibpos - 1, " preceeding siblings, needed ", min_sibs)
} else if (nsib - sibpos < min_sibs + 1) {
retfalse <- TRUE
if(verbose)
message("\t....................... FAIL: last row had only ", nsib - sibpos - 1, " following siblings, needed ", min_sibs)
}
if(retfalse)
return(FALSE)
}
if(guess < nrow(pagdf)) {
curpth <- unlist(rw$path)
nxtpth <- unlist(pagdf$path[[guess+1]])
inplay <- nosplit[(nosplit %in% intersect(curpth, nxtpth))]
if(length(inplay) > 0) {
curvals <- curpth[match(inplay, curpth) + 1]
nxtvals <- nxtpth[match(inplay, nxtpth) + 1]
if(identical(curvals, nxtvals)) {
if(verbose)
message("\t....................... FAIL: values of unsplitable vars before [", curvals, "] and after [", nxtvals, "] match")
return(FALSE)
}
}
}
if(verbose)
message("\t....................... OK")
TRUE
}
find_pag = function(pagdf,
start,
guess,
rlpp,
min_siblings,
nosplitin = character(),
verbose = FALSE) {
origuess = guess
while(guess >= start && !valid_pag(pagdf, guess, start = start, rlpp = rlpp, min_sibs = min_siblings, nosplit = nosplitin, verbose)) {
guess = guess - 1
}
if(guess < start)
stop("Unable to find any valid pagination between ", start, " and ", origuess)
guess
}
pag_tt_indices = function(tt, lpp = 15,
min_siblings = 2,
nosplitin = character(),
colwidths = NULL,
verbose = FALSE) {
dheight <- divider_height(tt)
cinfo_lines <- nlines(col_info(tt))
if(any(nzchar(all_titles(tt)))) {
tlines <- length(all_titles(tt)) + dheight + 1L
} else {
tlines <- 0
}
flines <- length(all_footers(tt))
if(flines > 0)
flines <- flines + dheight + 1L
rlpp = lpp - cinfo_lines - tlines - flines
pagdf = make_row_df(tt, colwidths)
start = 1
nr = nrow(pagdf)
ret = list()
while(start <= nr) {
adjrlpp = rlpp - pagdf$par_extent[start]
stopifnot(adjrlpp > 0)
guess = min(nr, start + adjrlpp - 1)
end = find_pag(pagdf, start, guess,
rlpp = adjrlpp,
min_siblings = min_siblings,
nosplitin = nosplitin,
verbose = verbose)
ret = c(ret, list(c(pagdf$reprint_inds[[start]],
start:end)))
start = end + 1
}
ret
}
paginate_table = function(tt, lpp = 15,
min_siblings = 2,
nosplitin = character(),
colwidths = NULL,
verbose = FALSE) {
inds = pag_tt_indices(tt, lpp = lpp,
min_siblings = min_siblings,
nosplitin = nosplitin,
colwidths = colwidths,
verbose = verbose)
lapply(inds, function(x) tt[x,,keep_topleft = TRUE,
keep_titles = TRUE,
reindex_refs = FALSE])
} |
SSgetMCMC <-
function(dir=NULL,
verbose=TRUE,
writecsv=FALSE,
postname="posteriors.sso",
derpostname="derived_posteriors.sso",
csv1="keyposteriors.csv",
csv2="nuisanceposteriors.csv",
keystrings=c(
"NatM",
"R0",
"steep",
"RecrDev_2008",
"Q_extraSD"),
nuisancestrings=c(
"Objective_function",
"SSB_",
"InitAge",
"RecrDev"),
burnin = 0,
thin = 1
)
{
if(verbose){
message("reading MCMC output in\n", dir)
}
post <- read.table(file.path(dir, postname),
header = TRUE, check.names = FALSE)
derpost <- read.table(file.path(dir, derpostname),
header = TRUE, check.names = FALSE)
derpost <- derpost[, !(names(derpost) %in% c("Iter", "Objective_function"))]
allpost <- cbind(post, derpost)
allpost <- allpost[seq((burnin+1), nrow(allpost), thin), ]
keylabels <- NULL
nuisancelabels <- NULL
for(istring in 1:length(keystrings)){
keylabels <- c(keylabels,
names(allpost)[grep(keystrings[istring], names(allpost))])
}
for(istring in 1:length(nuisancestrings)){
nuisancelabels <- c(nuisancelabels,
names(allpost)[grep(nuisancestrings[istring], names(allpost))])
}
keypost <- allpost[, names(allpost) %in% keylabels]
nuisancepost <- allpost[, names(allpost) %in% nuisancelabels]
if(writecsv){
file1 <- file.path(dir, csv1)
file2 <- file.path(dir, csv2)
if(verbose){
message("writing subset of posteriors to files:\n ",
file1, "\n ", file2)
}
write.csv(keypost, file1, row.names=FALSE)
write.csv(nuisancepost, file2, row.names=FALSE)
}
return(invisible(allpost))
} |
context("wilcoxonLM")
set.seed(410)
T <- 100
d <- 0
x <- fracdiff::fracdiff.sim(n=T, d=d)$series
expect_error(wilcoxonLM(c(x,NA), d=d))
expect_error(wilcoxonLM(x, d=d,tau=2))
expect_warning(wilcoxonLM(x, d=d, tau=0.1))
x=stats::ts(x)
expect_error(wilcoxonLM(x, d=d))
T = 100
d_grid = c(0.1,0.2)
for(b in 1:length(d_grid))
{
d = d_grid[b]
q = 0
for(i in 1:15)
{
x = fracdiff::fracdiff.sim(n=T, d=d)$series
mod = wilcoxonLM(x, d=d)
q = q+sum(mod[4]>mod[3])
}
expect_lt(q,11)
}
T = 100
d_grid = c(0.1,0.2)
for(b in 1:length(d_grid))
{
d = d_grid[b]
q = 0
for(i in 1:15)
{
x = fracdiff::fracdiff.sim(n=T, d=d)$series
changep = c(rep(0,T/2), rep(1,T/2))
x = x+changep
mod = wilcoxonLM(x, d=d)
q = q+sum(mod[4]>mod[1])
}
expect_gt(q,2)
} |
context('qi_builder')
test_that('qi_builder output validity', {
set.seed(100)
data('Prestige', package = 'car')
m1 <- lm(prestige ~ education + type, data = Prestige)
m1_sims <- b_sim(m1)
fitted_df <- expand.grid(education = c(7, 6, 8:16), typewc = 1)
linear_qi <- qi_builder(b_sims = m1_sims, newdata = fitted_df)
linear_qi_c1 <- qi_builder(m1, newdata = fitted_df, ci = 1)
linear_qi_slim1 <- qi_builder(m1, newdata = fitted_df, slim = TRUE)
linear_qi_slim2 <- qi_builder(m1, newdata = fitted_df,
original_order = TRUE, slim = TRUE)
linear_qi_auto_newdata <- qi_builder(m1)
coefs <- coef(m1)
vcov_matrix <- vcov(m1)
linear_qi_custom_mu_Sigma <- qi_builder(mu = coefs, Sigma = vcov_matrix,
newdata = fitted_df)
data(Admission)
Admission$rank <- as.factor(Admission$rank)
m2 <- glm(admit ~ gre + gpa + rank, data = Admission, family = 'binomial')
m2_sims <- b_sim(m2)
m2_fitted <- expand.grid(gre = seq(220, 800, by = 10), gpa = c(2, 4),
rank4 = 1)
pr_function <- function(x) 1 / (1 + exp(-x))
logistic_qi <- qi_builder(m2, m2_fitted, FUN = pr_function)
expect_is(linear_qi$qi_, 'numeric')
expect_is(logistic_qi$qi_, 'numeric')
expect_equal(nrow(linear_qi_c1), 11000)
expect_equal(nrow(linear_qi_slim1), 11)
expect_equal(names(linear_qi_slim1), c('education', 'typewc', 'qi_min',
'qi_median', 'qi_max'))
expect_equal(nrow(linear_qi_auto_newdata), 88350)
expect_false(all(linear_qi_slim1$education == linear_qi_slim2$education))
expect_equal(nrow(linear_qi_custom_mu_Sigma), nrow(linear_qi))
expect_error(qi_builder(m1, nsim = 20000))
expect_error(qi_builder(m2, m2_fitted, FUN = pr_function, ci = 950))
expect_error(qi_builder(m2, m2_fitted, FUN = function(x, y){x + y}))
expect_error(qi_builder(m2, m2_fitted, FUN = function(x){x <- 'a'}))
expect_error(qi_builder(m2, m2_fitted, FUN = function(x){x <- data.frame()}))
expect_error(qi_builder(m2, m2_fitted, FUN = 'test_fail'))
library(survival)
test1 <- list(time = c(4,3,1,1,2,2,3),
status = c(1,1,1,0,1,1,0),
x = c(0,2,1,1,1,0,0),
sex = c(0,0,0,0,1,1,1))
m_coxph <- coxph(Surv(time, status) ~ x + strata(sex), test1)
expect_error(qi_builder(m_coxph))
}) |
ipois <- function(u = runif(1), lambda,
minPlotQuantile = 0.00,
maxPlotQuantile = 0.95,
plot = TRUE,
showCDF = TRUE,
showPMF = TRUE,
showECDF = TRUE,
show = NULL,
maxInvPlotted = 50,
plotDelay = 0,
sampleColor = "red3",
populationColor = "grey",
showTitle = TRUE,
respectLayout = FALSE, ...)
{
if(is.null(dev.list())) dev.new(width=5, height=6)
warnVal <- options("warn")
oldpar <- par(no.readonly = TRUE)
options(warn = -1)
if (!is.null(u) && (min(u) <= 0 || max(u) >= 1)) stop("must have 0 < u < 1")
if (length(u) == 0) u <- NULL
checkVal(lambda, minex = 0)
checkQuants(minPlotQuantile, maxPlotQuantile, min = 0, maxex = 1)
options(warn = 1)
for (arg in names(list(...))) {
if (arg == "maxPlotTime")
warning("'maxPlotTime' has been deprecated as of simEd v2.0.0")
else stop(paste("Unknown argument '", arg, "'", sep = ""))
}
getDensity <- function(d) dpois(d, lambda)
getDistro <- function(d) ppois(d, lambda)
getQuantile <- function(d) qpois(d, lambda)
titleStr <- paste("Poisson (", sym$lambda, " = ", round(lambda, 3),
")", sep = "")
out <- PlotDiscrete(
u = u,
minPlotQuantile = minPlotQuantile,
maxPlotQuantile = maxPlotQuantile,
plot = plot,
showCDF = showCDF,
showPMF = showPMF,
showECDF = showECDF,
show = show,
maxInvPlotted = maxInvPlotted,
plotDelay = plotDelay,
sampleColor = sampleColor,
populationColor = populationColor,
showTitle = showTitle,
respectLayout = respectLayout,
getDensity = getDensity,
getDistro = getDistro,
getQuantile = getQuantile,
hasCDF = !missing(showCDF),
hasPMF = !missing(showPMF),
hasECDF = !missing(showECDF),
titleStr = titleStr
)
options(warn = warnVal$warn)
if (!all(oldpar$mfrow == par()$mfrow)) {
par(mfrow = oldpar$mfrow)
}
if (!is.null(out)) return(out)
} |
.genMenulist <- function(what, action)
list(`About gitR`=gaction("About gitR", tooltip = "About gitR",
icon = "about",
handler = function(...) menu("About", ...), action = action),
Add=gaction("Add", tooltip = "Add to staging area",
icon = "add",
handler = function(...) menu("Add", ...), action = action),
`Add submodule`=gaction("Add submodule", tooltip = "Add a submodule",
icon = "jump-to",
handler = function(...) menu("AddSubmodule", ...), action = action),
Clean=gaction("Clean", tooltip = "Remove untracked files",
icon = "clear",
handler = function(...) menu("Clean", ...), action = action),
Commit=gaction("Commit", tooltip = "Commit (recursively)",
icon = "apply",
handler = function(...) menu("Commit", ...), action = action),
Delete=gaction("Delete", tooltip = "Delete in work tree",
icon = "delete",
handler = function(...) menu("Delete", ...), action = action),
`General help`=gaction("General Help", tooltip = "General help about gitR",
icon = "help",
handler = function(...) menu("Help", ...), action = action),
Ignore=gaction("Ignore", tooltip = "Add to .gitignore",
icon = "stop",
handler = function(...) menu("Ignore", ...), action = action),
Info=gaction("Info", tooltip = "Display info",
icon = "info",
handler = function(...) menu("Info", ...), action=action),
`Last git output`=gaction("Last git output", tooltip = "Output of last git command",
handler = function(...) menu("LastGitOutput", ...), action=action),
Log=gaction("Log", tooltip = "Display commit log",
icon = "justify-left",
handler = function(...) menu("Log", ...), action = action),
LongCMD = gaction("Long Command", tooltip="test systemWithSleep",
handler = function(...) menu("LongTest", ...), action = action),
Move=gaction("Move", tooltip = "Rename",
handler = function(...) menu("Move", ...), action = action),
Open=gaction("Open", tooltip = "Open using external program",
icon = "open",
handler = function(...) menu("Open", ...), action = action),
`Open another repository`=gaction("Open another repository", icon = "open",
handler = function(...) menu("OpenRepo", ...), action = action),
Quit = gaction("Quit", tooltip = "Quit git manager",
icon = "quit",
handler = function(...) menu("Quit", ...), action = action),
Rdiff = gaction("Rdiff", tooltip = "Show recursive diff",
icon = "find",
handler = function(...) menu("Rdiff", ...), action = action),
Refresh = gaction("Refresh", tooltip = "Refresh view",
icon = "refresh",
handler = function(...) menu("Refresh", ...), action = action),
Reset=gaction("Reset", tooltip = "Reset to version in index",
icon = "revert-to-saved",
handler = function(...) menu("Reset", ...), action = action),
Rcheckout=gaction("Rcheckout",
tooltip = "Checkout another branch/tag",
handler=function(...) menu("Rcheckout", ...), action = action),
Rfetch=gaction("Rfetch", tooltip = "Fetch updates from server",
icon = "goto-bottom",
handler = function(...) menu("Rfetch", ...), action=action),
Rpull=gaction("Rpull", tooltip = "Pull updates from server, recursively",
icon = "go-down",
handler = function(...) menu("Rpull", ...), action = action),
Rpush=gaction("Rpush", tooltip = "Push commits to server, recursively",
icon = "go-up",
handler = function(...) menu("Rpush", ...), action = action),
Separator=list(separator=TRUE),
Unadd=gaction("Unadd", tooltip = "Remove from stagin area",
icon = "remove",
handler = function(...) menu("Unadd", ...), action = action)
)[what]
.genGitManMenu <- function(obj) {
all <- .genMenulist(action=list())
gitMan <- list(Add="git-add",
`Add submodule`="git-submodule",
Clean="git-clean",
Commit="git-commit",
Delete="git-rm",
Log="git-log",
Move="git-mv",
Rdiff="git-rdiff",
Reset="git-reset",
Rcheckout="git-rcheckout",
Rfetch="git-rfetch",
Rpull="git-rpull",
Rpush="git-rpush",
Unadd="git-reset")
ret <- lapply(names(gitMan), function(x)
gaction(x, handler=function(...) menu("Man", ...),
action = list(obj=obj, man=gitMan[[x]])))
names(ret) <- names(gitMan)
ret
}
genMenulist <- function(obj) {
action <- list(obj=obj)
list(File=.genMenulist(c("Open another repository", "Refresh", "Quit"), action),
Preferences=genPrefMenu(obj),
Help=c(.genMenulist("General help", action),
list(`Git Help`=.genGitManMenu(obj)),
.genMenulist(c("Last git output", "About gitR"), action)))
}
genToolbar <- function(obj) {
action <- list(obj=obj)
.genMenulist(c("Rpull", "Commit", "Rpush", "Separator",
"Rfetch", "Rdiff",
"Separator", "Refresh", "Quit"), action)
}
doubleClickHandler <- function(h, ...) {
obj <- h$action$actualobj
tr <- obj$tr
action <- list(obj=obj,
path=paste(tr[], collapse=.Platform$file.sep))
menu("Open", list(action=action))
}
genContextMenulist <- function(obj) {
tr <- obj$tr
path <- paste(tr[], collapse=.Platform$file.sep)
filename <- svalue(tr)
sel <- tr$getSelection()$getSelected()
mode <- sel$model$getValue(sel$iter, 2)$value
staged <- sel$model$getValue(sel$iter, 3)$value
modified <- sel$model$getValue(sel$iter, 4)$value
status <- sel$model$getValue(sel$iter, 7)$value
action <- list(obj=obj, path=path, filename=filename,
mode=mode, staged=staged, modified=modified,
status = status)
menulist <- "Open"
if (is.na(mode) && status == gitStatus2Str("??")) {
menulist <- c(menulist, "Add", "Ignore")
}
if (!is.na(mode) && mode != 0) {
if (modified) {
menulist <- c(menulist, "Add")
}
if (staged) {
menulist <- c(menulist, "Unadd")
}
}
if (!is.na(mode) && mode %in% c(0, 160000)) {
if (modified) {
menulist <- c(menulist, "Commit")
}
menulist <- c(menulist, "Rpull", "Rpush", "Rcheckout", "Clean")
}
if (!is.na(mode) && mode != 0) {
if (modified) {
menulist <- c(menulist, "Reset")
}
}
if (!grepl(paste("(", gitStatus2Str(c("D ", " D")), ")", collapse="|", sep=""),
status)) {
menulist <- c(menulist, "Move", "Delete")
} else {
menulist <- unique(c(menulist, "Reset"))
}
if (!is.na(mode) && (mode %in% c(0, 160000, 40000)))
menulist <- c(menulist, "Add submodule")
if (!is.na(mode) && mode %in% c(0, 160000)) {
menulist <- c(menulist, "Log", "Info")
}
menulist <- .genMenulist(menulist, action)
if (!is.na(mode) && (mode %in% c(0, 160000, 40000))) {
candidates <- paste(obj$path, path, c("Makefile", "makefile"), sep=.Platform$file.sep)
makefile <- candidates[file.exists(candidates)][1]
} else if (casefold(filename) == "makefile") {
makefile <- paste(obj$path, path, sep=.Platform$file.sep)
} else makefile <- NA
if (!is.na(makefile)) {
targets <- makeGetTargets(makefile)
menulist$Make <- list()
for (target in targets) {
menulist$Make[[target]] <-
gaction(target,
icon = switch(target,
view=menulist$Make[[target]]$icon <- "open",
clean=menulist$Make[[target]]$icon <- "clear",
all=menulist$Make[[target]]$icon <- "execute",
edit=menulist$Make[[target]]$icon <- "edit", NULL),
handler = function(...) menu("Make", ...),
action = c(action, list(target=target)))
}
}
menulist
}
menu <- function(type, h, ...) {
obj <- h$action$obj
rpath <- if (is.null(h$action$path)) obj$repo else h$action$path
path <- obj$absPath(rpath)
dir <- sub("[^/]*$", "", path)
force <- FALSE
status <- "Aborted"
val <- switch(type,
About = showAbout(obj),
Add = {
if (grepl(gitStatus2Str(" D"), h$action$status))
gitRm(h$action$file, dir, statusOnly=TRUE, stopOnError=TRUE)
else
gitAdd(h$action$file, dir)
},
AddSubmodule = showAddSubmodule(obj, rpath, path),
Clean = {
msg <- gitSystem("clean -n -d", path)
if (length(msg) > 0) {
gconfirm(paste(c("Git clean...\n", msg), collapse="\n"))
} else {
status <- "Nothing to clean"
FALSE
}
},
Delete = if (!is.na(h$action$mode) && h$action$mode == 40000) {
gconfirm(sprintf("Really delete '%s' and all contained files?", rpath))
} else if (!is.na(h$action$mode) &&
grepl(paste("(", gitStatus2Str(c("M ", " M", "A ")), ")",
collapse="|", sep=""),
h$action$status)) {
force <- TRUE
gconfirm(sprintf("Really delete '%s'?\n Local modifications will be lost!",
rpath))
} else {
gconfirm(sprintf("Really delete '%s'?", rpath))
},
Help = showHelp("gitR-package"),
Ignore = obj$status(sprintf("Adding '%s' to .gitignore...", rpath)),
Info = showInfo(h$action),
LastGitOutput = showGitOutput(obj),
Log = showGitLog(path, obj),
LongTest = obj$status("Calling systemWithSleep..."),
Make = {
obj$status("Running make", h$action$target,
"in the background (hit refresh to see the result).")
ldir <- getwd()
setwd(if (file.info(path)$isdir) path else dir)
system2("make", args=h$action$target, wait=FALSE)
setwd(ldir)
},
Man = showMan(h$action$man),
Move = ginput("Please enter new name", text=h$action$filename,
title="Move", icon="question", parent=obj$w),
Prefs = togglePref(h$action),
Open = system2("xdg-open", path, wait=FALSE),
OpenRepo = {
dir <- gfile("Select repository to open.", type="selectdir",
parent=obj$w)
if (!is.na(dir))
createGUI(dir)
},
Rdiff = showRdiff(obj),
Refresh = obj$status("Refreshing..."),
Reset = {
if (!is.na(h$action$mode) && h$action$mode %in% c(160000, 0)) {
showGitReset(obj, rpath)
} else {
obj$status("Resetting", rpath, "...")
}
},
Rfetch = obj$status("Running 'git rfetch' in", rpath, "..."),
Rpull = obj$status("Running 'git rpull' in", rpath, "..."),
Rpush = obj$status("Running 'git rpush' in", rpath, "..."),
Rcheckout = {
obj$status("Select branch or tag to checkout...")
selectBranchTag(path, obj, rpath)
},
Commit = showGitCommit(obj, rpath),
Quit = obj$quit(),
Unadd = gitUnadd(h$action$file, dir),
stop("Unknown action type: ", type))
if (type %in% c("About", "Help", "Quit", "LastGitOutput", "Rdiff",
"Log", "Info", "Open", "OpenRepo", "Make", "Man")) return()
if (!is.null(val) && ((is.logical(val) && !val) || is.na(val))) {
obj$status(status)
return()
}
obj$hide()
on.exit({ obj$refresh(); obj$show() })
while(gtkEventsPending()) gtkMainIteration()
ret <- switch(type,
Add = {
if (val == 0) obj$status("Added file", h$action$file, "sucessfully in", dir)
else obj$status("Error adding file", h$action$file, "in", dir)
},
AddSubmodule = {
obj$status("Adding submodule", val["path"], "in", rpath, "...")
gitSubmoduleAdd(val["url"], path, val["path"])
},
Clean = {
obj$status("Running git clean...")
gitSystemLong("clean -d -f -f", path)
},
Commit = {
obj$status("Running git rcommit...")
gitCommit(val$message, path, all=val$all, recursive=val$recursive)
},
Delete = {
obj$status("Removing", rpath, "...")
switch(as.character(h$action$mode),
`40000`= {
if (grepl(gitStatus2Str("??"), h$action$status))
try(unlink(path, recursive=TRUE))
else gitRm(h$action$filename, dir, recursive=TRUE, force=force,
stopOnError=FALSE)
},
`NA`= try(unlink(path)),
`160000`= {
gitSubmoduleRm(h$action$filename, dir)
},
gitRm(h$action$filename, dir, force=force, stopOnError=FALSE)
)
},
Ignore = gitIgnore(path),
LongTest = systemWithSleep("sleep", "10"),
Move = {
if (val == h$action$file) {
obj$status("Aborted")
return()
} else if (file.exists(paste(dir, val, sep="/"))) {
try(stop("Error, file '", val, "' exists already"))
} else {
obj$status(sprintf("Moving '%s' to '%s'...", h$action$filename, val))
switch(as.character(h$action$mode),
`40000`= {
if (grepl(gitStatus2Str("??"), h$action$status))
try(file.rename(path,paste(dir, val, sep="/")))
else gitMv(h$action$filename, val, dir)
},
`NA` = try(file.rename(path,paste(dir, val, sep="/"))),
`160000`= {
gitSubmoduleMv(h$action$filename, val, dir)
},
gitMv(h$action$filename, val, dir))
}
},
Reset = {
if (!is.na(h$action$mode) && h$action$mode %in% c(160000, 0)) {
obj$status("Resetting", rpath, "to", val["commit"], "...")
gitReset(val["commit"], val["mode"], path)
} else {
gitSystem(c("reset HEAD", shQuote(h$action$file)), dir, statusOnly=TRUE)
gitSystemLong(c("checkout", shQuote(h$action$file)), dir)
}
},
Rfetch = gitSystemLong("rfetch", path),
Rpull = gitSystemLong("rpull", path),
Rpush = gitSystemLong("rpush", path),
Rcheckout = {
obj$status("Checking out", val, "...")
gitSystemLong(paste("rcheckout", val), path)
},
Unadd = {
if (val == 0) obj$status("Reset file", h$action$file, "successfully in", dir)
else obj$status("Error resetting file", h$action$file, "in", dir)
})
if (!is.null(ret) && is.character(ret)) obj$lastout <- ret[]
if (!is.null(attr(ret, "exitcode")) && attr(ret, "exitcode") != 0) {
err <- attr(ret, "stderr")
if (is.null(err)) err <- ret
showMessage("<b>Git Error</b>\n", escape(err), type="error", obj=obj)
obj$status("Error")
return()
} else if (is(ret, "try-error")) {
showMessage("<b>Error</b>\n",
escape(ret), type="error",
obj=obj)
obj$status("Error")
return()
}
switch(type,
AddSubmodule = obj$status("Submodule", val["path"], "successfully added."),
Clean = obj$status("Cleaned repository successfully."),
Delete = obj$status("Removed", rpath, "successfully."),
Commit = obj$status("Commit successful."),
Ignore = obj$status("Added", rpath, "to .gitignore"),
LongTest = obj$status("Test successful."),
Move = obj$status(sprintf("Moved '%s' to '%s' successfully.", h$action$filename, val)),
Refresh = obj$status("Refreshed."),
Reset = obj$status("Reset successful."),
Rfetch = obj$status("Rfetch in", rpath, "successfully finished."),
Rpull = obj$status("Rpull in", rpath, "successfully finished."),
Rpush = obj$status("Rpush in", rpath, "successfully finished."),
Rcheckout = obj$status("Rcheckout successful."))
return()
} |
so <- function(sprep, slat) {
assert_hms(sprep, lower = hms::hms(0))
assert_duration(slat, lower = lubridate::duration(0))
assert_identical(sprep, slat, type = "length")
vct_sum_time(sprep, slat, cycle = lubridate::ddays()) %>%
as.numeric() %>%
hms::hms()
} |
PLOT_INPUT_fun <-
function(rr,which,input,choice_opt,param_opt){
Xr<-NULL
inp=input[[which]]
Xr=SAMP_PROBA2LEVELS(inp,rr[which],input[inp$param],rr[inp$param],choice_opt,param_opt)
return(Xr)
} |
TfIdf = R6::R6Class(
classname = c("TfIdf"),
inherit = mlapi::mlapiTransformation,
public = list(
initialize = function(smooth_idf = TRUE,
norm = c("l1", "l2", "none"),
sublinear_tf = FALSE) {
super$set_internal_matrix_formats(sparse = "CsparseMatrix")
private$sublinear_tf = sublinear_tf
private$smooth_idf = smooth_idf
private$norm = match.arg(norm)
},
fit_transform = function(x, ...) {
private$idf = private$get_idf(private$prepare_x(x))
private$fitted = TRUE
self$transform(x, ...)
},
transform = function(x, ...) {
if (private$fitted)
private$prepare_x(x) %*% private$idf
else
stop("Fit the model first!")
}
),
private = list(
idf = NULL,
norm = NULL,
sublinear_tf = FALSE,
smooth_idf = TRUE,
fitted = FALSE,
prepare_x = function(x) {
x_internal = super$check_convert_input(x)
if(private$sublinear_tf)
x_internal@x = 1 + log(x_internal@x)
normalize(x_internal, private$norm)
},
get_idf = function(x) {
cs = colSums( abs(sign(x) ) )
idf_ratio = nrow(x) / (cs)
if (private$smooth_idf)
idf = log1p(idf_ratio)
else
idf = log(idf_ratio)
Diagonal(x = idf)
}
)
) |
suspectacumprec<-function(datos,limit=2000,tolerance=10){
bisco<-NULL
datos$year<-as.numeric(substring(datos[,1],1,4))
datos$month<-as.numeric(substring(datos[,1],5,6))
datos$day<-as.numeric(substring(datos[,1],7,8))
datos<-datos[,c(3,4,5,2)]
ni<-tolerance+1
y<-datos
x<-datos
fy<-min(x[,1],na.rm=TRUE)
ly<-max(x[,1],na.rm=TRUE)
p<-computecal(fy,ly)
x<-x[,1:4]
px<-merge(p,x,by.x=c(1,2,3),by.y=c(1,2,3),all.x=TRUE,all.y=TRUE)
x<-px[,4]
target<-which(x>=limit)
ne<-length(target)
chungo<-0
if(ne!=0){
for(i in 1:ne){
if(target[i]>tolerance){
nyu<-target[i]-tolerance
nyi<-target[i]-1
k<-sum(x[nyu:nyi],na.rm=TRUE)
if(k==0){chungo<-c(chungo,nyu:target[i])}
}
}
}
if(length(chungo)>1){
chungo<-chungo[-1]
}
for(jj in 1:length(chungo)){
busco<-which(y[,1] == px[chungo[jj],1] & y[,2] == px[chungo[jj],2] & y[,3] == px[chungo[jj],3])
if(jj==1){bisco<-busco}else{bisco<-c(bisco,busco)}
}
return(bisco)
} |
setMethod("initialize", signature("ViSibook"),
function(.Object,vars,label,typeA,showorder,deb,
fin,GZDeb,GZFin,Repetition,BZBeforeDeb,
BZBeforeFin,BZAfterDeb,BZAfterFin,BZLong,BZLtype,NAMES){
if (any( rep( length( vars ) , 5 ) != c( length( label ) , length( typeA ), length( showorder ), length( deb ) , length( fin ) ) ) ) {
stop( " initialize ( ViSibook ) : length of vars,label,showorder,deb,fin are not equals \n" )
}
if (any(c( is.na( vars ),is.null( vars ) ) ) ) { stop( " initialize ( ViSibook ) : vars can not be NA or NULL \n" ) }else{
}
if (any(c( is.na( label ) , is.null( label ) ) ) ) {
label[ which( is.na(label) ) ] <- vars[ which( is.na( label ) ) ]
warning( " initialize ( ViSibook ) : NA or NULL in label remplaced by vars values \n" )
}
if (c( any( is.na( typeA ) ) ) ) { stop( " initialize ( ViSibook ) : typeA can not be NA or NULL \n " ) }else{
if (any(((typeA == "p" | typeA == "l" ) | is.na( typeA ) ) == FALSE ) ) {
stop( " initialize ( ViSibook ) : Error typeA should be \"p\" or \"l\" \n ")
}
}
if (is.integer( showorder ) == FALSE ) {
showorder <- as.integer(showorder)
}
if (length( unique( showorder[ which( is.na( showorder ) == FALSE ) ] ) ) != length( showorder[ which( is.na( showorder ) == FALSE ) ] ) ) {
stop( " initialize ( ViSibook ) : Error in showorder has one or more duplicates \n " )
}
if (any( is.na( deb[ which( typeA == "l" ) ] ) ) ) { stop( " initialize ( ViSibook ) : Not all deb are defined for type action long \n " ) }else{deb <- deb }
temp <- vars[ which( typeA == "l" ) ][ which( unlist( lapply( deb[ which( typeA == "l" ) ] , function(x )(is.na( match( x, vars[ which( typeA == "p" ) ] ) ) ) ) ) == TRUE ) ]
if (length( temp ) > 0 ) {stop( paste( " initialize ( ViSibook ) : Error ", " in deb type long action(s) ", temp ," do not match with any punctual name action in vars" ) ) }
if (any( is.na( fin[ which( typeA == "l" ) ] ) ) ) { stop( " initialize ( ViSibook ) : Not all fin are defined for type action long \n " ) }else{fin <- fin }
temp <- vars[ which( typeA == "l" ) ][ which( unlist( lapply( fin[ which( typeA == "l" ) ] , function(x )(is.na( match( x, vars[ which( typeA == "p" ) ] ) ) ) ) ) == TRUE ) ]
if (length( temp ) > 0 ) {stop( paste( " initialize ( ViSibook ) : Error ", " in fin type long action(s) ", temp ," do not match with any punctual name action in vars" ) ) }
methods::slot( .Object , "vars" ) <- vars
methods::slot( .Object , "label" ) <- label
methods::slot( .Object , "typeA" ) <- typeA
methods::slot( .Object , "showorder" ) <- as.numeric( showorder )
methods::slot( .Object , "deb" ) <- deb
methods::slot( .Object , "fin" ) <- fin
methods::slot( .Object , "NAMES" ) <- c("vars","label","typeA","showorder","deb","fin")
if (any( is.na( c( GZDeb , GZFin ) ) == FALSE ) ) {
if (any( rep( length( vars ) , 2 ) != c( length( GZDeb ) , length( GZFin ) ) ) ) {
Repetition <- rep( NA , length( vars ) )
warning( " initialize ( ViSibook ) : Length of GZDeb and/or GZFin are not equals to the length of vars \n " )
}else{
if (any( (as.numeric(GZDeb) >= as.numeric(GZFin) ) , na.rm = TRUE ) ) {
GZDeb[ which( (as.numeric(GZDeb) < as.numeric(GZFin) ) ) ] <- rep( NA , sum( (as.numeric(GZDeb) < as.numeric(GZFin) ), na.rm = TRUE ) )
GZFin[ which( (as.numeric(GZDeb) < as.numeric(GZFin) ) ) ] <- rep( NA , sum( (as.numeric(GZDeb) < as.numeric(GZFin) ), na.rm = TRUE ) )
warning( " initialize ( ViSibook ) : when as.numeric(GZDeb) >= as.numeric(GZFin) values replaced by NA \n " )
}
if (any( is.na( GZDeb ) != is.na( GZFin ) ) ) {
GZDeb[ which( is.na( GZDeb ) != is.na( GZFin ) ) ] <- rep( NA,sum( is.na( GZDeb ) != is.na( GZFin ) ))
GZDeb[ which( is.na( GZDeb ) != is.na( GZFin ) ) ] <- rep( NA,sum( is.na( GZDeb ) != is.na( GZFin ) ))
warning( "initialize ( ViSibook ) : For action(s) ", vars[which( is.na( GZDeb ) != is.na( GZFin ) ) ] ," when only one of GZDeb and GZFin defined value(s) remplaced by NA \n " )
}
if (any( is.na( c( GZDeb , GZFin ) ) == FALSE ) ) {
methods::slot( .Object , "GZDeb" ) <- GZDeb
methods::slot( .Object , "GZFin" ) <- GZFin
methods::slot( .Object , "NAMES" ) <- c( methods::slot( .Object , "NAMES" ) , "GZDeb" )
methods::slot( .Object , "NAMES" ) <- c( methods::slot( .Object , "NAMES" ) , "GZFin" )
}
if (any( is.na( Repetition ) == FALSE ) ) {
slot( .Object , "Repetition" ) <- Repetition
methods::slot( .Object , "NAMES" ) <- c( methods::slot( .Object , "NAMES" ) , "Repetition" )
}
}
}else{
Repetition <- rep( NA , length( vars ) )
}
if (any( is.na( c( BZBeforeDeb , BZBeforeFin ) ) == FALSE ) ) {
if (any( rep( length( vars ) , 2 ) != c( length( BZBeforeDeb ) , length( BZBeforeFin ) ) ) ) {
BZBeforeDeb <- rep( NA , length( vars ) )
BZBeforeFin <- rep( NA , length( vars ) )
warning( "initialize ( ViSibook ) Length of BZBeforeDeb and BZBeforeFin are not equal to the length of vars \n " )
}else{
if (any( is.na( Repetition[ which( is.na( BZBeforeDeb ) == FALSE ) ] ) == FALSE ) ) {
BZBeforeDeb[ which( is.na( Repetition ) == FALSE ) ] <- rep( NA , sum( is.na( Repetition ) == FALSE ) )
}
if (any( is.na( Repetition[ which( is.na( BZBeforeFin) == FALSE ) ] ) == FALSE ) ) {
BZBeforeFin[ which( is.na( Repetition ) == FALSE ) ] <- rep( NA , sum( is.na( Repetition ) == FALSE ) )
}
if (any( is.na( BZBeforeDeb ) != is.na( BZBeforeFin ) ) ) {
BZBeforeDeb[which( is.na( BZBeforeDeb ) != is.na( BZBeforeFin ) )] <- rep( NA,sum( is.na( BZBeforeDeb ) != is.na( BZBeforeFin ) ))
BZBeforeFin[which( is.na( BZBeforeDeb ) != is.na( BZBeforeFin ) )] <- rep( NA,sum( is.na( BZBeforeDeb ) != is.na( BZBeforeFin ) ))
warning( " initialize ( ViSibook ) : For action, ", vars[which( is.na( BZBeforeDeb ) != is.na( BZBeforeFin ) )] ," only BZBeforeDeb or BZBeforeFin, value is remplaced by NA \n " )
}
if (any( (as.numeric(BZBeforeDeb) >= as.numeric(BZBeforeFin) ) , na.rm = TRUE ) ) {
BZBeforeDeb[ which( (as.numeric(BZBeforeDeb) < as.numeric(BZBeforeFin) ) ) ] <- rep( NA , sum( (as.numeric(BZBeforeDeb) < as.numeric(BZBeforeFin) ), na.rm = TRUE ) )
BZBeforeFin[ which( (as.numeric(BZBeforeDeb) < as.numeric(BZBeforeFin) ) ) ] <- rep( NA , sum( (as.numeric(BZBeforeDeb) < as.numeric(BZBeforeFin) ), na.rm = TRUE ) )
warning( " initialize ( ViSibook ) : when as.numeric(BZBeforeDeb) >= as.numeric(BZBeforeFin) replaced by NA \n " )
}
if (any( is.na( c( BZBeforeDeb , BZBeforeFin ) ) == FALSE ) ) {
methods::slot( .Object , "BZBeforeDeb" ) <- BZBeforeDeb
methods::slot( .Object , "BZBeforeFin" ) <- BZBeforeFin
methods::slot( .Object , "NAMES" ) <- c( methods::slot( .Object , "NAMES" ) , "BZBeforeDeb" )
methods::slot( .Object , "NAMES" ) <- c( methods::slot( .Object , "NAMES" ) , "BZBeforeFin" )
}
}
}
if (any( is.na( c( BZAfterDeb , BZAfterFin ) ) == FALSE ) ) {
if (any( rep( length( vars ) , 2 ) != c( length( BZAfterDeb ) , length( BZAfterFin ) ) ) ) {
BZAfterDeb <- rep( NA , length( vars ) )
BZAfterFin <- rep( NA , length( vars ) )
warning( "initialize ( ViSibook ) Length of BZAfterDeb and BZAfterFin are not equal to the length of vars \n " )
}else{
if (any( is.na( Repetition[ which( is.na( BZAfterDeb ) == FALSE ) ] ) == FALSE ) ) {
BZAfterDeb[ which( is.na( Repetition ) == FALSE ) ] <- rep( NA , sum( is.na( Repetition ) == FALSE ) )
}
if (any( is.na( Repetition[ which( is.na( BZAfterFin) == FALSE ) ] ) == FALSE ) ) {
BZAfterFin[ which( is.na( Repetition ) == FALSE ) ] <- rep( NA , sum( is.na( Repetition ) == FALSE ) )
}
if (any( is.na( BZAfterDeb ) != is.na( BZAfterFin ) ) ) {
BZAfterDeb[which( is.na( BZAfterDeb ) != is.na( BZAfterFin ) )] <- rep( NA,sum( is.na( BZAfterDeb ) != is.na( BZAfterFin ) ))
BZAfterFin[which( is.na( BZAfterDeb ) != is.na( BZAfterFin ) )] <- rep( NA,sum( is.na( BZAfterDeb ) != is.na( BZAfterFin ) ))
warning( " initialize ( ViSibook ) : For action, ", vars[which( is.na( BZAfterDeb ) != is.na( BZAfterFin ) )] ," only BZAfterDeb or BZAfterFin, value is remplaced by NA \n " )
}
if (any( (as.numeric(BZAfterDeb) >= as.numeric(BZAfterFin) ) , na.rm = TRUE ) ) {
BZAfterDeb[ which( (as.numeric(BZAfterDeb) < as.numeric(BZAfterFin) ) ) ] <- rep( NA , sum( (as.numeric(BZAfterDeb) < as.numeric(BZAfterFin) ), na.rm = TRUE ) )
BZAfterFin[ which( (as.numeric(BZAfterDeb) < as.numeric(BZAfterFin) ) ) ] <- rep( NA , sum( (as.numeric(BZAfterDeb) < as.numeric(BZAfterFin) ), na.rm = TRUE ) )
warning( " initialize ( ViSibook ) : when as.numeric(BZAfterDeb) >= as.numeric(BZAfterFin) replaced by NA \n " )
}
if (any( is.na( c( BZAfterDeb , BZAfterFin ) ) == FALSE ) ) {
methods::slot( .Object , "BZAfterDeb" ) <- BZAfterDeb
methods::slot( .Object , "BZAfterFin" ) <- BZAfterFin
methods::slot( .Object , "NAMES" ) <- c( methods::slot( .Object , "NAMES" ) , "BZAfterDeb" )
methods::slot( .Object , "NAMES" ) <- c( methods::slot( .Object , "NAMES" ) , "BZAfterFin" )
}
}
}
if (any( is.na( BZLong ) == FALSE ) ) {
if (length( vars ) != length( BZLong ) ) {
BZLong <- rep( NA , length( vars ) )
warning( "initialize ( ViSibook ) Length of BZLong is not equal to the length of vars \n " )
}else{
if (any( (BZLtype == "span" | BZLtype == "time" | is.na( BZLtype ) ) == FALSE ) ) {
BZLtype[ which( (BZLtype == "span" | BZLtype == "time" | is.na( BZLtype ) ) == FALSE ) ] <- rep( NA , sum( (BZLtype == "span" | BZLtype == "time" | is.na( BZLtype ) ) == FALSE , na.rm = TRUE ) )
warning( " initialize ( ViSibook ) : BZLtype should be \"span\" or \"time\", unrecognized values replaces by NA \n ")
}
if (any( is.na( BZLtype[ which( is.na( BZLong ) == FALSE ) ] ) ) ) {
BZLtype[ which( is.na( BZLong) == FALSE ) ][ which( is.na( BZLtype[ which( is.na( BZLong ) == FALSE ) ] ) )] <- rep( "time" , sum( is.na( BZLtype[ which( is.na( BZLong ) == FALSE ) ] ) ))
warning( " initialize ( ViSibook ) : when BZLong not NA and BZLtype NA, BZLtype is set to \"time\" \n " )
}
if (any( is.na( BZLong ) == FALSE ) ) {
methods::slot( .Object , "BZLong" ) <- BZLong
methods::slot( .Object , "NAMES" ) <- c( slot( .Object , "NAMES" ) , "BZLong" )
methods::slot( .Object , "BZLtype" ) <- BZLtype
methods::slot( .Object , "NAMES" ) <- c( slot( .Object , "NAMES" ) , "BZLtype" )
}
}
}
return( .Object )
}
) |
Test.Paired <-
function(group.data, numPerms=1000, parallel=FALSE, cores=3){
if(missing(group.data))
stop("group.data is missing.")
if(length(group.data) != 2)
stop("group.data must have exactly 2 data sets.")
if(numPerms <= 0)
stop("The number of permutations must be an integer greater than 0.")
if(ncol(group.data[[1]]) != ncol(group.data[[2]])){
warning("Group columns do not match, running formatDataSets.")
group.data <- formatDataSets(group.data)
}
numSub <- nrow(group.data[[1]])
if(numSub != nrow(group.data[[2]]))
stop("Groups must have the same number of subjects.")
rNames1 <- rownames(group.data[[1]])
rNames2 <- rownames(group.data[[2]])
if(!all(rNames1 == rNames2)){
if(all(rNames1 %in% rNames2)){
group.data[[1]] <- group.data[[1]][order(rNames1),]
group.data[[2]] <- group.data[[2]][order(rNames2),]
}else{
warning("Subject names do not match, assuming data is ordered correctly.")
}
}
group.data[[1]] <- group.data[[1]]/rowSums(group.data[[1]])
group.data[[2]] <- group.data[[2]]/rowSums(group.data[[2]])
dataComb <- rbind(group.data[[1]], group.data[[2]])
dataDiff <- group.data[[1]] - group.data[[2]]
meanDiff <- apply(dataDiff, 2, mean)
obsDiff <- sum(meanDiff^2)
if(parallel){
cl <- parallel::makeCluster(cores)
doParallel::registerDoParallel(cl)
tryCatch({
permDiffs <- foreach::foreach(i=1:numPerms, .combine=c, .inorder=FALSE, .multicombine=TRUE) %dopar%{
swaps <- sample(c(1, -1), numSub, replace=TRUE)
dataDiffTemp <- dataDiff * swaps
meanDiffTemp <- apply(dataDiffTemp, 2, mean)
obsDiffTemp <- sum(meanDiffTemp^2)
return(obsDiffTemp)
}
}, finally = {
parallel::stopCluster(cl)
}
)
}else{
permDiffs <- rep(0, numPerms)
for(i in 1:numPerms){
swaps <- sample(c(1, -1), numSub, replace=TRUE)
dataDiffTemp <- dataDiff * swaps
meanDiffTemp <- apply(dataDiffTemp, 2, mean)
permDiffs[i] <- sum(meanDiffTemp^2)
}
}
pval <- (sum(permDiffs >= obsDiff) + 1)/(numPerms + 1)
return(pval)
} |
import::from(knitr, normal_print)
import::from(module_recursive_inner.R, to_title)
print_title_text = function(text){
normal_print(to_title(text))
} |
affyToR <- function(x){
output <- paste("affy.", x, sep="")
return(output)
} |
tESPlot2DHP <- function(...){
if (nargs() < 4) {
stop("Too few arguments")
}
if (nargs() > 5) {
stop("Too many arguments")
}
args <- list(...)
if (nargs() == 5) {
mu <- args$mu
df <- args$df
cl <- args$cl
sigma <- args$sigma
hp <- args$hp
}
if (nargs() == 4) {
mu <- mean(args$returns)
df <- args$df
cl <- args$cl
sigma <- sd(args$returns)
hp <- args$hp
}
mu <- as.matrix(mu)
mu.row <- dim(mu)[1]
mu.col <- dim(mu)[2]
if (max(mu.row, mu.col) > 1) {
stop("Mean must be a scalar")
}
sigma <- as.matrix(sigma)
sigma.row <- dim(sigma)[1]
sigma.col <- dim(sigma)[2]
if (max(sigma.row, sigma.col) > 1) {
stop("Standard deviation must be a scalar")
}
cl <- as.matrix(cl)
cl.row <- dim(cl)[1]
cl.col <- dim(cl)[2]
if (max(cl.row, cl.col) > 1) {
stop("Confidence level must be a scalar")
}
hp <- as.matrix(hp)
hp.row <- dim(hp)[1]
hp.col <- dim(hp)[2]
if (min(hp.row, hp.col) > 1) {
stop("Holding period must be a vector")
}
df <- as.matrix(df)
df.row <- dim(df)[1]
df.col <- dim(df)[2]
if (max(df.row, df.col) > 1) {
stop("Number of degrees of freedom must be a scalar")
}
if (hp.row > hp.col) {
hp <- t(hp)
}
if (sigma < 0) {
stop("Standard deviation must be non-negative")
}
if (df < 3) {
stop("Number of degrees of freedom must be at least 3 for first two moments of distribution to be defined")
}
if (max(cl) >= 1){
stop("Confidence level(s) must be less than 1")
}
if (min(cl) <= 0){
stop("Confidence level(s) must be greater than 0")
}
if (min(hp) <= 0){
stop("Holding period(s) must be greater than 0")
}
VaR <- (-sigma[1,1] * sqrt(t(hp)) %*% sqrt((df - 2) / df) %*% qt(1 - cl, df)) + (- mu[1,1] * t(hp))
n <- 1000
cl0 <- cl
delta.cl <- (1 - cl) / n
v <- VaR
for (i in 1:(n-1)) {
cl <- cl0 + i * delta.cl
v <- v + (-sigma[1,1] * sqrt(t(hp)) %*% sqrt((df - 2) / df) %*% qt(1 - cl, df)) + (- mu[1,1] * t(hp) %*% matrix(1, cl.row, cl.col))
}
v <- v/n
plot(hp, v, type = "l", xlab = "Holding Period", ylab = "ES")
title("t ES against holding period")
xmin <-min(hp)+.25*(max(hp)-min(hp))
cl.label <- cl0 * 100
text(xmin,max(v)-.5*(max(v)-min(v)),
'Input parameters', cex=.75, font = 2)
text(xmin,max(v)-.55*(max(v)-min(v)),
paste('Daily mean L/P data = ', round(mu[1,1], 3)),cex=.75)
text(xmin,max(v)-.6*(max(v)-min(v)),
paste('Stdev. of daily L/P data = ',round(sigma[1,1],3)),cex=.75)
text(xmin,max(v)-.65*(max(v)-min(v)),
paste('Degrees of freedom = ',df),cex=.75)
text(xmin,max(v)-.7*(max(v)-min(v)),
paste('Confidence level = ',cl.label,'%'),cex=.75)
} |
fastCox = function(head, formula, par=list(), data=NULL){
begin = Sys.time()
if(any(head[,'start']>=head[,'stop'])){
print(head[head[,'start']>=head[,'stop'],])
stop('Error: start time larger than or equal to stop time!!!')
}
event_ix = head[,'event']>0
if("strata" %in% colnames(head)) {
ord = order(head[,'strata'], head[,'event'], head[,'stop'], head[,'start'], decreasing=T)
nEvents = length(unique(paste(head[event_ix,'strata'], head[event_ix,'stop'])))
}else{
ord = order(head[,'event'], head[,'stop'], head[,'start'], decreasing=T)
nEvents = length(unique(head[event_ix, 'stop']))
}
head = head[ord,]
if(!is.null(par$sender)) par$sender=par$sender[ord]
if(!is.null(par$receiver)) par$receiver=par$receiver[ord]
if(!is.null(par$egroups)) {
if(any(is.na(par$egroups))) stop("There should be no NAs in par$egroups!")
par$egroups = par$egroups[ord]
egroups = factor(par$egroups)
lvls = levels(egroups)
ix = 1:length(lvls)
names(ix) = lvls
par$egroups = ix[egroups] - 1
}
if(!is.null(par$fgroups)) {
par$fgroups = as.matrix(par$fgroups)
if(any(is.na(par$fgroups))) stop("There should be no NAs in par$fgroups!")
if(ncol(par$fgroups)<1) stop("Number of frailty groups should be >=1!")
par$fgroups = par$fgroups[ord,]
par$fgroups = as.matrix(par$fgroups)
par$fglen = rep(0, ncol(par$fgroups))
fgroups = matrix(0,nrow(par$fgroups),ncol(par$fgroups))
lvls = list()
accIx = 0
for(i in 1:ncol(par$fgroups)){
grp = as.character(par$fgroups[,i])
if(!is.null(par$fgroupThd)){
grpCnt = table(grp)
rareGrp = names(grpCnt)[which(grpCnt<par$fgroupThd)]
grp[grp %in% rareGrp] = "_rareGroup_"
writeLines(paste("Level of group",i,"reduced by",length(rareGrp)-1,"from",length(grpCnt),", total rare group obs",sum(grpCnt[rareGrp])))
}
grp = factor(grp)
lvls[[i]] = levels(grp)
ix = 1:length(lvls[[i]])
names(ix) = lvls[[i]]
fgroups[,i] = ix[grp] - 1 + accIx
par$fglen[i] = length(lvls[[i]])
accIx = accIx + par$fglen[i]
}
par$fgroups = fgroups
par$nf = sum(par$fglen)
frailNames = paste("Group", 1:par$nf, sep=":")
if(is.null(par$nFixedGroups) || par$nFixedGroups==0) {
par$nFixedGroups=0
par$isFixedEffect = -1
}else if(par$nFixedGroups>=length(par$fglen)){
par$nFixedGroups=length(par$fglen)
par$isFixedEffect = 1
} else par$isFixedEffect = 0
par$thetagroups = NULL
par$randStarts = ifelse(par$nFixedGroups>0,sum(par$fglen[1:par$nFixedGroups]), 0)
k = 0
par$validFrailty = rep(1, par$nf)
for(i in 1:length(par$fglen)){
tmp = rep(k, par$fglen[i])
if(!is.null(par$specialFrailty) && length(par$specialFrailty)>=i && length(par$specialFrailty[[i]])>=1) {
spf = unique(par$specialFrailty[[i]])
for(j in 1:length(spf)) tmp[lvls[[i]]==spf[j]] = k+j
}
par$thetagroups = c(par$thetagroups, tmp)
k = max(par$thetagroups) + 1
if(i<=par$nFixedGroups) par$validFrailty[sum(par$fglen[1:i])] = 0
}
}
if(!is.null(par$offset)) par$offset = par$offset[ord]
if(!is.null(par$delta)) par$delta = par$delta[ord]
if(!is.null(par$beta_last) && !is.null(par$delta)) print("Delta will not be used when beta_last is specified")
if("strata" %in% colnames(head)){
s = factor(head[,'strata'])
nStrata = length(unique(s))
strats = sort(unique(s), decreasing=T)
counts = table(s)
offset = 0;
strataBounds = matrix(rep(0, 2*nStrata), ncol=2)
for(i in 1:nStrata){
strataBounds[i,]=c(offset,offset+counts[strats[i]]-1)
offset = offset + counts[strats[i]]
}
par$strataBounds = strataBounds
}
if(is.null(data)) {
X = model.matrix(formula)
}else X = model.matrix(formula, data)
if(nrow(X) != length(ord)) stop("nrow(X)!=length(ord), there might be missing values in the regressors")
X = X[ord,]
X = X[, -1, drop=F]
fnames = colnames(X)
realnames = fnames
if(!is.null(par$dropCols)){
par$dropFlag = as.integer(fnames %in% c(par$dropCols, par$fixedCol))
realnames = fnames[!fnames %in% c(par$dropCols, par$fixedCol)]
}
if(!is.null(par$fgroups)) realnames = c(realnames, frailNames)
ix = 1:ncol(X)
names(ix) = fnames
if(!is.null(par$fixedCol)) par$fixedCoefIndex = ix[par$fixedCol] - 1
if(!is.null(par$timeVarCols) && length(intersect(par$timeVarCols,fnames))>0){
par$timeVarCols = intersect(par$timeVarCols,fnames)
par$timeVarIndex = ix[par$timeVarCols] -1
if("age" %in% par$timeVarCols) par$ageIndex=which(par$timeVarCols=="age")-1
if("logDiggNum" %in% par$timeVarCols) par$diggNumIndex=which(par$timeVarCols=="logDiggNum")-1
subnames = strsplit(fnames, split=":")
nInteractions = 0
for(i in 1:ncol(X)){
snames = unlist(subnames[i])
if(length(snames)>1 && any(snames %in% par$timeVarCols)){
nInteractions = nInteractions+1
}
}
interMap = matrix(rep(-1, 3*nInteractions), ncol=3)
j = 1
for(i in 1:ncol(X)){
snames = unlist(subnames[i])
if(length(snames)>1 && any(snames %in% par$timeVarCols)){
interMap[j,] = c(i, ix[snames]) - 1
j = j+1
}
}
par$interMap = interMap
}
if(is.null(par$verbose)) par$verbose = 1
if(nrow(X)>100000) par$verbose = max(2, par$verbose)
stoptime = head[,'stop'][head[,'event']>0]
time_diff = abs(diff(stoptime))
isDistinguishable = time_diff < 1e-9 * pmin(stoptime[1:(length(stoptime)-1)], stoptime[2:length(stoptime)])
if(!is.null(par$showties) && any(isDistinguishable)) {
print(paste('Warning: The difference between ', sum(isDistinguishable), ' stop times are not distinguishable!!!'))
false_ix = which(isDistinguishable)
row1 = stoptime[false_ix]
row2 = stoptime[1+false_ix]
print(cbind(false_ix, row1, row2, abs(row2-row1)/pmin(row1,row2)))
}
if(is.null(par$method)) par$method = 1
mod=Rcpp::Module("cox_module", PACKAGE='CoxPlus')
X = t(X)
if(!is.null(par$isRandBeta) && par$isRandBeta) {
writeLines("Random initial values are provided for beta")
par$beta=par$randScale*rnorm(nrow(X) + ifelse(!is.null(par$nf), par$nf, 0))
if(!is.null(par$isNBetaOnly) && par$isNBetaOnly && !is.null(par$nf))
par$beta[(nrow(X)+1):length(par$beta)] = 0
print(head(par$beta))
print(tail(par$beta))
}
head = as.matrix(head[,c("start","stop","event","weight")])
if(is.null(par$recursive)){
if(!is.null(par$savePath)) save(head,X,par,file=par$savePath)
inst = new(mod$CoxReg,head,X,par)
fit = inst$estimate()
} else if (par$recursive %in% c("Twostage","TwostageMin","TwostageMax")){
if(!is.null(par$delta) || !is.null(par$deltaType) ) writeLines("No need to specifiy delta and deltaType for two stage model.")
if(par$method!=3) writeLines("Forcing to use method 3 for two stage model")
par$delta = NULL
par$deltaType=ifelse(par$recursive=="TwostageMin",-1,1)
par$method=3
if(!is.null(par$savePath)) save(head,X,par,file=par$savePath)
inst = new(mod$CoxReg,head,X,par)
fit = inst$estimate()
fit = inst$estimate()
print("Done with two-stage estimation!")
}else if (par$recursive=="Multistage"){
if(!is.null(par$delta) || !is.null(par$deltaType) ) writeLines("No need to specifiy delta and deltaType for multi-stage model.")
if(par$method!=3) writeLines("Forcing to use method 3 for multi-stage model")
par$delta = NULL
par$method=3
if(!is.null(par$savePath)) save(head,X,par,file=par$savePath)
inst = new(mod$CoxReg,head,X,par)
if(is.null(par$stages)) par$stages = 5
if(is.null(par$lik_tol)) par$lik_tol = 1e-6
if(is.null(par$beta_tol)) par$beta_tol = 1e-3
beta_last = 0
Ln = -Inf
for(iter in 1:par$stages) {
print(paste("Working on the",iter,"/",par$stages,"iteration..."))
if(is.null(par$isEnableSpeedup)) par$isEnableSpeedup=0
if(par$isEnableSpeedup==1){ inst$deltaType = ifelse(iter==2,1,0) }
else{ inst$deltaType = 0 }
fit = inst$estimate()
Lc = fit$likelihood
if(iter>=2+par$isEnableSpeedup*2 && ( all( abs(fit$beta-beta_last)<abs(fit$beta)*par$beta_tol )||(Lc-Ln)<abs(Ln)*par$lik_tol ) ){
print(paste("Early stop at iteration",iter,", L=",Lc,", Ln=",Ln,sep=""))
break
}
if(iter==par$stages) writeLines(paste("---@@@ The EM algorithm has not fully converged yet, relative changes in L=",-(Lc-Ln)/Ln,"\nRelative changes in beta:",paste(format((fit$beta-beta_last)/beta_last,digit=3),collapse=" "),sep=""))
beta_last = fit$beta
Ln = Lc
}
}
beta = fit$beta
se = fit$se
rse = fit$rse
if(!is.null(par$fgroups) || length(rse)==0) {
print(paste("length beta=",length(beta),", length se=",length(se)))
if(length(se)==0) se = NA
z = beta/se
res = cbind(beta, se, exp(beta), 1 - pchisq(z^2, 1))
colnames(res) = c("coef", "se(coef)", "exp(beta)", "Pr(>|z|)")
}else{
if(length(rse)==0) rse = NA
z = beta/rse
res = cbind(beta, se, rse, 1 - pchisq(z^2, 1))
colnames(res) = c("coef", "se(coef)", "robust se", "Pr(>|z|)")
}
rownames(res) = realnames
out = list()
out$par = par
out$formula = formula
out$result = res
out$likelihood = fit$likelihood
out$converged = fit$converged
out$tests = cbind(LR=fit$LR, wald=fit$wald, score=fit$score)
if(!is.null(par$detail) && par$detail==T){
out$R = fit$R
out$U = fit$U
out$meta = fit$meta
}
if(!is.null(par$fgroups)) out$theta_se = fit$theta_se
out$I = fit$I
out$V = fit$V
out$df = fit$p
if(!is.null(par$fgroups)){
out$df = out$df + ncol(par$fgroups) - par$nFixedGroups
if(length(par$specialFrailty)>par$nFixedGroups)
out$df = out$df + length(unlist(par$specialFrailty[(par$nFixedGroups+1):length(par$specialFrailty)]))
if(par$nFixedGroups>=1) out$df = out$df + sum(par$fglen[1:par$nFixedGroups]-1)
}
out$AIC = 2 * out$df - 2 * out$likelihood
if(!is.null(par$nEvents) && par$nEvents!=nEvents){
print('Provide nEvents and calculated nEvents do not match, will use provided')
nEvents = par$nEvents
}
out$BIC = log(nEvents) * out$df - 2 * out$likelihood
out$nEvents = nEvents
if(!is.null(fit$Vr)) out$Vr = fit$Vr
if(!is.null(fit$theta)) out$theta = fit$theta
print(Sys.time() - begin)
rm(X, head, par, fit, inst, mod)
out
} |
getlogPHI <- function(logitpsiX) {
logpsiX <- plogis(logitpsiX, log.p=TRUE)
log1mpsiX <- plogis( -logitpsiX, log.p=TRUE)
cbind(logpsiX[, 1] + logpsiX[, 3],
logpsiX[, 1] + log1mpsiX[, 3],
log1mpsiX[, 1] + logpsiX[, 2],
log1mpsiX[, 1] + log1mpsiX[, 2])
}
getlogP <- function(DHA, DHB, logitpX) {
logpX <- plogis(logitpX, log.p = TRUE)
log1mpX <- plogis( -logitpX, log.p = TRUE)
if(nrow(logitpX) == 1) {
logpX <- matrix(logpX, nrow(DHA), 5, byrow=TRUE)
log1mpX <- matrix(log1mpX, nrow(DHA), 5, byrow=TRUE)
}
logP <- matrix(NA, nrow(DHA), 4)
for(i in 1:nrow(logP)) {
dhA <- DHA[i, ]
dhB <- DHB[i, ]
logprobCapB <- dhA * logpX[i, 5] + (1 - dhA) * logpX[i, 4]
log1mprobCapB <- dhA * log1mpX[i, 5] + (1 - dhA) * log1mpX[i, 4]
logP[i, ] <- c(
sum(dhA * logpX[i, 3] + (1 - dhA) * log1mpX[i, 3],
dhB * logprobCapB + (1 - dhB) * log1mprobCapB, na.rm=TRUE),
if(sum(dhB, na.rm=TRUE) > 0) { -Inf } else {
sum(dhA * logpX[i, 1] + (1 - dhA) * log1mpX[i, 1], na.rm=TRUE)
},
if(sum(dhA, na.rm=TRUE) > 0) { -Inf } else {
sum(dhB * logpX[i, 2] + (1 - dhB) * log1mpX[i, 2], na.rm=TRUE)
},
if(sum(dhA, dhB, na.rm=TRUE) > 0) { -Inf } else { 0 } )
}
return(logP)
} |
woparam.lm <- function(object, trafo, custom_trafo = NULL, ...) {
check_woparam(trafo = trafo, custom_trafo = custom_trafo)
model_frame <- object$model
if (is.null(y <- model.response(model_frame)))
stop("Dependent variable y must not be empty")
if (is.null(x <- model.matrix(attr(model_frame, "terms"), data = model_frame)))
stop("Matrix of covariates X must not be empty")
ans <- list()
if (trafo == "log") {
ans$yt <- Log(y = y)
ans$zt <- Log_std(y = y)
ans$family <- "Log"
} else if (trafo == "logshift") {
ans$yt <- Log_shift(y = y)$y
ans$zt <- Log_shift_std(y = y)
ans$family <- "Log shift"
} else if (trafo == "reciprocal") {
ans$yt <- Reciprocal(y = y)
ans$zt <- Reciprocal_std(y = y)
ans$family <- "Reciprocal"
} else if (trafo == "neglog") {
ans$yt <- neg_log(y = y)
ans$zt <- neg_log_std(y = y)
ans$family <- "Neglog"
} else if (trafo == "glog") {
ans$yt <- g_log(y = y)
ans$zt <- g_log_std(y = y)
ans$family <- "Glog"
} else if (trafo == "custom") {
custom_func <- custom_trafo[[1]]
custom_func_std <- custom_trafo[[1]]
ans$yt <- custom_func(y = y)
ans$zt <- custom_func_std(y = y)
ans$family <- names(custom_trafo)
}
ans$lambdavector <- NULL
ans$measvector <- NULL
ans$method <- NULL
ans$lambdahat <- NULL
ans$measoptim <- NULL
ans$method <- NULL
ans$lambdahat <- NULL
ans$measoptim <- NULL
ans$object <- object
class(ans) <- c("trafo", "woparam")
ans
} |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.