code
stringlengths
1
13.8M
simAllopoly <- function(ploidy=c(2,2), n.alleles=c(4,4), n.homoplasy=0, n.null.alleles=rep(0, length(ploidy)), alleles=NULL, freq=NULL, meiotic.error.rate=0, nSam=100, locname="L1"){ nGenomes <- length(ploidy) if(nGenomes==1 && meiotic.error.rate != 0) stop("No meiotic error possible if there is only one subgenome.") if(is.null(alleles)){ if(length(n.alleles)!=nGenomes) stop("'n.alleles' must be a vector of the same length as 'ploidy'.") if(nGenomes>6) stop("More than six subgenomes not supported at this time.") GenomeNames <- c('A','B','C','D','E','F')[1:nGenomes] alleles <- list() length(alleles) <- nGenomes for(i in 1:nGenomes){ alleles[[i]] <- paste(GenomeNames[i], 1:n.alleles[i], sep="-") } if(length(n.homoplasy)!=1) stop("Only one value allowed for n.homoplasy.") if(n.homoplasy>0){ HAlleles <- paste('H', 1:n.homoplasy, sep="-") for(i in 1:nGenomes){ alleles[[i]][(n.alleles[i]-n.homoplasy+1):n.alleles[i]] <- HAlleles } } if(length(n.null.alleles)!=nGenomes) stop("'n.null.alleles' must be a vector the same length as 'ploidy'.") if(!all(n.null.alleles<=n.alleles)) stop("'n.null.alleles' values must be smaller than 'n.alleles' values.") for(i in 1:nGenomes){ if(n.null.alleles[i]>0){ alleles[[i]][1:n.null.alleles[i]] <- "N" } } } else { n.alleles <- sapply(alleles, length) } if(is.null(freq)){ freq <- list() length(freq) <- nGenomes for(i in 1:nGenomes){ temp <- sample(100, n.alleles[i], replace=TRUE) freq[[i]] <- temp/sum(temp) } } if(!is.list(alleles) || !is.list(freq)) stop("alleles and freq must each be a list of vectors") if(!identical(sapply(freq, length), sapply(alleles, length))) stop("Need same number of values for alleles and frequencies.") if(nGenomes != length(alleles) || nGenomes != length(freq)) stop("Number of genomes nees to match between ploidy, alleles, and freq") if(length(meiotic.error.rate)!=1 || meiotic.error.rate<0 || meiotic.error.rate>0.5) stop("meiotic.error.rate should be a single value between 0 and 0.5.") if(meiotic.error.rate>0 && !all(ploidy %% 2 == 0)) stop("Even (not odd) ploidy is required if simulating meiotic error.") gen <- new("genambig", samples=1:nSam, loci=locname) resample <- function(x, ...) x[sample.int(length(x), ...)] for(s in 1:nSam){ gameteploidy <- ploidy/2 if(sample(c(TRUE,FALSE),size=1, prob=c(meiotic.error.rate, 1-meiotic.error.rate))){ isolocusLost <- sample(nGenomes,1) isolocusGained <- resample((1:nGenomes)[-isolocusLost],1) gamete1ploidy <- gameteploidy gamete1ploidy[isolocusLost] <- gamete1ploidy[isolocusLost]-1 gamete1ploidy[isolocusGained] <- gamete1ploidy[isolocusGained]+1 } else { gamete1ploidy <- gameteploidy } if(sample(c(TRUE,FALSE),size=1, prob=c(meiotic.error.rate, 1-meiotic.error.rate))){ isolocusLost <- sample(nGenomes,1) isolocusGained <- resample((1:nGenomes)[-isolocusLost],1) gamete2ploidy <- gameteploidy gamete2ploidy[isolocusLost] <- gamete2ploidy[isolocusLost]-1 gamete2ploidy[isolocusGained] <- gamete2ploidy[isolocusGained]+1 } else { gamete2ploidy <- gameteploidy } tempploidy <- gamete1ploidy + gamete2ploidy thisgen <- unique(unlist(mapply(resample, alleles, replace= TRUE, size = tempploidy, prob = freq, SIMPLIFY=FALSE))) thisgen <- thisgen[thisgen!=0 & thisgen!="N"] if(length(thisgen)==0){ Genotype(gen,s,1) <- Missing(gen) } else { Genotype(gen,s,1) <- thisgen } } return(gen) } alleleCorrelations <- function(object, samples=Samples(object), locus=1, alpha=0.05, n.subgen=2, n.start=50){ object <- object[samples,] mymissing <- isMissing(object, loci=locus) if(all(mymissing)) stop("All data at locus are missing.") if(length(locus) > 1) stop("More than one locus") object <- object[!mymissing,locus] if(is(object, "genambig")) object <- genambig.to.genbinary(object) if(!is(object, "genbinary")) stop("genambig or genbinary object needed.") Absent(object) <- as.integer(0) Present(object) <- as.integer(1) gentable <- Genotypes(object) gentable <- gentable[,apply(gentable, 2, function(x) !all(x==Absent(object))), drop = FALSE] gentable.out <- gentable nonvar <- apply(gentable, 2, function(x) all(x==Present(object))) mingen <- sum(nonvar) if(mingen > n.subgen){ stop(paste("Locus",locus,": too many non-variable alleles")) } nAl <- dim(gentable)[2] mysplit <- strsplit(dimnames(gentable)[[2]], split=".", fixed=TRUE) alleles <- sapply(mysplit, function(x) x[2]) clustmat1 <- matrix(0, nrow=n.subgen, ncol=nAl, dimnames=list(NULL,alleles)) if(sum(nonvar) > 0){ for(i in 1:sum(nonvar)){ clustmat1[i,alleles[nonvar][i]] <- 1 } sigmatNeg <- sigmatPos <- oddsRatio <- NULL pValuesNeg <- pValuesPos <- mydist <- NULL mytotss <- mybss <- NA clustmethod <- "fixed alleles" gentable <- gentable[,!nonvar] nAl <- nAl - sum(nonvar) alleles <- alleles[!nonvar] if(sum(nonvar)==n.subgen){ clustmat1[,alleles] <- 1 } } if(sum(rowSums(clustmat1)==0)==1 || sum(colSums(clustmat1) == 0) < sum(rowSums(clustmat1) == 0) ){ clustmat1[rowSums(clustmat1)==0,colSums(clustmat1)==0] <- 1 sigmatNeg <- sigmatPos <- oddsRatio <- NULL pValuesNeg <- pValuesPos <- mydist <- NULL mytotss <- mybss <- NA clustmethod <- "fixed alleles" } if(sum(colSums(clustmat1) == 0) == sum(rowSums(clustmat1) == 0)){ blankAlleles <- which(colSums(clustmat1) == 0) blankIsoloci <- which(rowSums(clustmat1) == 0) for(i in 1:length(blankAlleles)){ clustmat1[blankIsoloci[i], blankAlleles[i]] <- 1 } sigmatNeg <- sigmatPos <- oddsRatio <- NULL pValuesNeg <- pValuesPos <- mydist <- NULL mytotss <- mybss <- NA clustmethod <- "fixed alleles" } if(all(colSums(clustmat1) > 0) && any(rowSums(clustmat1) == 0)){ clustmat1[rowSums(clustmat1)==0,] <- 1 sigmatNeg <- sigmatPos <- oddsRatio <- NULL pValuesNeg <- pValuesPos <- mydist <- NULL mytotss <- mybss <- NA clustmethod <- "fixed alleles" } clustmat2 <- clustmat1 if(sum(rowSums(clustmat1)==0)>1){ clustmethod <- "K-means and UPGMA" pValuesNeg <- matrix(NA, nrow=nAl, ncol=nAl) pValuesPos <- matrix(NA, nrow=nAl, ncol=nAl) oddsRatio <- matrix(NA, nrow=nAl, ncol=nAl) for(a in 1:(nAl-1)){ for(b in (a+1):nAl){ X <- fisher.test(gentable[,a], gentable[,b], alternative="less", conf.int=FALSE) pValuesNeg[a,b] <- X$p.value; pValuesNeg[b,a] <- X$p.value Y <- fisher.test(gentable[,a], gentable[,b], alternative="greater", conf.int=FALSE) pValuesPos[a,b] <- Y$p.value; pValuesPos[b,a] <- Y$p.value oddsRatio[a,b] <- oddsRatio[b,a] <- X$estimate } } pVect <- sort(pValuesNeg[lower.tri(pValuesNeg)]) m <- length(pVect) kTest <- pVect > alpha/(m + 1 - (1:m)) if(all(!kTest)){ sigmatNeg <- matrix(TRUE, nrow=nAl, ncol=nAl) } else { k <- min((1:m)[kTest]) maxP <- pVect[k-1] if(k > 1){ sigmatNeg <- pValuesNeg <= maxP } else { sigmatNeg <- matrix(FALSE, nrow=nAl, ncol=nAl) } } pVect <- sort(pValuesPos[lower.tri(pValuesPos)]) kTest <- pVect > alpha/(m + 1 - (1:m)) if(all(!kTest)){ sigmatPos <- matrix(TRUE, nrow=nAl, ncol=nAl) } else { k <- min((1:m)[kTest]) maxP <- pVect[k-1] if(k > 1){ sigmatPos <- pValuesPos <= maxP } else { sigmatPos <- matrix(FALSE, nrow=nAl, ncol=nAl) } } if(!all(!sigmatPos)){ cat(paste("Warning: Significant positive correlations between alleles at locus", Loci(object), "; population structure or scoring error may bias results."), sep="\n") } dimnames(sigmatNeg) <- list(alleles,alleles) dimnames(sigmatPos) <- list(alleles,alleles) dimnames(pValuesNeg) <- list(alleles, alleles) dimnames(pValuesPos) <- list(alleles, alleles) dimnames(oddsRatio) <- list(alleles, alleles) mydist <- pValuesNeg mydist[is.na(mydist)] <- 0 n.subgen.adj = n.subgen - sum(rowSums(clustmat1)>0) kres <- kmeans(mydist, centers=n.subgen.adj, nstart=n.start) myclust1 <- kres$cluster mytotss <- kres$totss mybss <- kres$betweenss myclust2 <- cutree(hclust(as.dist(mydist), method="average"), k = n.subgen.adj) for(i in (n.subgen - n.subgen.adj + 1):n.subgen){ clustmat1[i,alleles[myclust1==(i - n.subgen + n.subgen.adj)]] <- 1 clustmat2[i,alleles[myclust2==(i - n.subgen + n.subgen.adj)]] <- 1 } } return(list(locus=Loci(object), clustering.method=clustmethod, significant.neg=sigmatNeg, significant.pos=sigmatPos, p.values.neg=pValuesNeg, p.values.pos=pValuesPos, odds.ratio=oddsRatio, Kmeans.groups=clustmat1, UPGMA.groups=clustmat2, heatmap.dist=mydist, totss=mytotss, betweenss=mybss, gentable=gentable.out)) } testAlGroups <- function(object, fisherResults, SGploidy=2, samples=Samples(object), null.weight=0.5, tolerance=0.05, swap = TRUE, R = 100, rho = 0.95, T0 = 1, maxreps = 100){ if(!is(object, "genambig") && !is(object, "genbinary")) stop("genambig or genbinary object needed.") object <- object[samples,] L <- fisherResults$locus mymissing <- isMissing(object, loci=L) nind <- sum(!mymissing) genobject <- object[!mymissing,L] if(is(genobject, "genbinary")) genobject <- genbinary.to.genambig(genobject) alleles <- dimnames(fisherResults$Kmeans.groups)[[2]] numAlTotal <- length(alleles) n.subgen <- dim(fisherResults$Kmeans.groups)[1] numAl <- sapply(Genotypes(genobject), length) if(!all(numAl <= n.subgen*SGploidy)) stop(paste("One or more genotypes have more than", n.subgen*SGploidy, "alleles.")) if(!all(as.character(.unal1loc(genobject, samples=Samples(genobject), locus=L)) %in% alleles)) stop("Alleles found in genobject that aren't in fisherResults.") tallyInconsistentGen <- function(G, samples=1:nind, currentInconsistent = rep(FALSE, nind)){ tot <- 0 for(s in samples){ gen <- as.character(Genotype(genobject, s, L)) subg <- G[, gen, drop = FALSE] if(any(rowSums(subg) == 0) || any(rowSums(subg[,colSums(subg) == 1, drop = FALSE]) > SGploidy)){ currentInconsistent[s] = TRUE } else { currentInconsistent[s] = FALSE } } return(currentInconsistent) } Kmat <- fisherResults$Kmeans.groups Umat <- fisherResults$UPGMA.groups KsortV <- UsortV <- integer(length(alleles)) Uswap <- Kswap <- integer(n.subgen) for(i in 1:n.subgen){ KfirstLeft <- match(0, KsortV) UfirstLeft <- match(0, UsortV) Kswap[i] <- match(1, Kmat[,KfirstLeft]) Uswap[i] <- match(1, Umat[,UfirstLeft]) KsortV[Kmat[Kswap[i],] == 1] <- i UsortV[Umat[Uswap[i],] == 1] <- i } if(identical(KsortV, UsortV)){ G <- Kmat } else { Kok <- nind - sum(tallyInconsistentGen(Kmat)) Uok <- nind - sum(tallyInconsistentGen(Umat)) if(Uok > Kok){ G <- Umat } else { G <- Kmat } } randomNewG <- function(G){ alToSwap <- alleles[sample(numAlTotal, 1)] thisSubgen <- which(G[,alToSwap] == 1) if(n.subgen == 2){ newSubgen <- (1:2)[-thisSubgen] } else { newSubgen <- sample((1:n.subgen)[-thisSubgen], 1) } Gnew <- G Gnew[thisSubgen,alToSwap] <- 0 Gnew[newSubgen, alToSwap] <- 1 return(list(alToSwap, Gnew)) } nGpossible <- n.subgen ^ numAlTotal indexG <- function(G){ baseSetup <- n.subgen ^ (1:numAlTotal - 1) digits <- apply(G, 2, function(x) which(x == 1) - 1) if(is.list(digits)){ index <- NA } else { index <- sum(baseSetup * digits) + 1 } return(index) } iiList <- list() length(iiList) <- nGpossible inconsInd <- tallyInconsistentGen(G) J <- mean(inconsInd) iG <- indexG(G) if(!is.na(iG)){ iiList[[iG]] <- inconsInd } if(swap && J > 0){ alleleIndex <- list() length(alleleIndex) <- numAlTotal names(alleleIndex) <- alleles for(a in alleles){ alleleIndex[[a]] <- which(fisherResults$gentable[,paste(L, a, sep = ".")] == 1) } Ti <- T0 for(rep in 1:maxreps){ done <- TRUE for(r in 1:R){ temp <- randomNewG(G) Gnew <- temp[[2]] a <- temp[[1]] iGnew <- indexG(Gnew) if(is.na(iGnew) || is.null(iiList[[iGnew]])){ inconsIndNew <- tallyInconsistentGen(Gnew, alleleIndex[[a]], inconsInd) if(!is.na(iGnew)){ iiList[[iGnew]] <- inconsIndNew } } else { inconsIndNew <- iiList[[iGnew]] } Jnew <- mean(inconsIndNew) if(Jnew <= J){ G <- Gnew J <- Jnew inconsInd <- inconsIndNew done <- FALSE if(J == 0){ done <- TRUE break } } else { D <- Jnew - J if(sample(10000,1) <= 10000 * exp(-D/Ti)){ G <- Gnew J <- Jnew inconsInd <- inconsIndNew done <- FALSE } } } Ti <- Ti * rho if(done) break } } AlOcc <- colSums(fisherResults$gentable)/dim(fisherResults$gentable)[1] makeA <- function(){ A <- matrix(0, nrow=n.subgen, ncol=length(alleles), dimnames=list(NULL,alleles)) num.error <- 0 for(s in Samples(genobject)){ gen <- as.character(Genotype(genobject, s, L)) subG <- G[,gen, drop=FALSE] if(!all(rowSums(subG[,colSums(subG) == 1, drop=FALSE]) <= SGploidy)){ donor <- (1:n.subgen)[rowSums(subG[,colSums(subG) == 1, drop=FALSE]) > SGploidy] recipient <- (1:n.subgen)[rowSums(subG) < SGploidy] if(length(recipient)==0){ recipient <- (1:n.subgen)[rowSums(subG[,colSums(subG) == 1, drop=FALSE]) < SGploidy] } gendonor <- gen[colSums(subG[recipient,,drop=FALSE]==0)>0 & colSums(subG[donor,,drop=FALSE]==1)>0] A[recipient,gendonor] <- A[recipient,gendonor] + 1 num.error <- num.error + 1 } else { if(!all(rowSums(subG) > 0) && null.weight > 0){ recipient <- (1:n.subgen)[rowSums(subG)==0] A[recipient,gen] <- A[recipient,gen] + null.weight num.error <- num.error + 1 } } } prop.error <- num.error/nind A[G==1] <- 0 return(list(A, prop.error)) } temp <- makeA() A <- temp[[1]] prop.error <- temp[[2]] numloops <- 0 while(prop.error > tolerance && numloops < 1000){ numloops <- numloops + 1 if(!all(A[,AlOcc != 1] == 0)){ A <- A[,AlOcc != 1, drop = FALSE] } tocopy <- which(A == max(A), arr.ind=TRUE) if(dim(tocopy)[1]==1){ thisallele <- dimnames(A)[[2]][tocopy[,"col"]] thissubgen <- tocopy[,"row"] } else { if(!is.null(fisherResults$p.values.neg)){ meanp <- numeric(dim(tocopy)[1]) for(i in 1:dim(tocopy)[1]){ thisgenal <- alleles[G[tocopy[i,"row"],] == 1] thisgenal <- thisgenal[!thisgenal %in% alleles[AlOcc == 1]] thisal <- dimnames(A)[[2]][tocopy[i,"col"]] meanp <- mean(fisherResults$p.values.neg[thisgenal,thisal]) } bestp <- which(meanp == min(meanp)) if(length(bestp) > 1){ bestp <- sample(bestp, size=1) } thisallele <- dimnames(A)[[2]][tocopy[bestp,"col"]] thissubgen <- tocopy[bestp,"row"] } else { myrand <- sample(dim(tocopy)[1], size=1) thisallele <- dimnames(A)[[2]][tocopy[myrand,"col"]] thissubgen <- tocopy[myrand,"row"] } } G[thissubgen, thisallele] <- 1 temp <- makeA() A <- temp[[1]] prop.error <- temp[[2]] } return(list(locus=L, SGploidy=SGploidy, assignments=G, proportion.inconsistent.genotypes = prop.error)) } catalanAlleles <- function(object, samples=Samples(object), locus=1, n.subgen=2, SGploidy=2, verbose=FALSE){ object <- object[samples,] mymissing <- isMissing(object, loci=locus) if(all(mymissing)) stop("All data at locus are missing.") if(length(locus) > 1) stop("More than one locus") object <- object[!mymissing,locus] if(is(object, "genbinary")) object <- genbinary.to.genambig(object) if(!is(object, "genambig")) stop("genambig or genbinary object needed.") if(n.subgen<2) stop("Need at least two subgenomes.") numAl <- sapply(Genotypes(object), length) if(!all(numAl <= n.subgen*SGploidy)) stop(paste("One or more genotypes have more than", n.subgen*SGploidy, "alleles.")) if(!all(numAl >= n.subgen)){ result <- list(locus=Loci(object), SGploidy=SGploidy, assignments="Homoplasy or null alleles: some genotypes have too few alleles") } else { alleles <- .unal1loc(object, Samples(object), locus) G <- matrix(0, nrow=n.subgen, ncol=length(alleles), dimnames=list(NULL, as.character(alleles))) X <- Genotypes(object)[numAl==n.subgen,] if(length(X)==0){ result <- list(locus=Loci(object), SGploidy=SGploidy, assignments="Unresolvable: no genotypes with n.subgen alleles.") } else { X <- unique(X) AlFreqInX <- sapply(alleles, function(a) sum(sapply(X, function(x) a %in% x))) names(AlFreqInX) <- as.character(alleles) Xrank <- sapply(X, function(x) sum(AlFreqInX[as.character(x)])) X <- X[order(Xrank, decreasing=TRUE)] gen <- as.character(X[[1]]) for(i in 1:n.subgen){ G[i,gen[i]] <- 1 } ToAssign <- alleles[colSums(G)==0] Xa <- X[sapply(X, function(x) sum(ToAssign %in% x)==1)] while(length(Xa)>0){ gen <- as.character(Xa[[1]]) g <- G[,gen] thissubgen <- rowSums(g)==0 thisallele <- gen[colSums(g)==0] G[thissubgen,thisallele] <- 1 ToAssign <- alleles[colSums(G)==0] Xa <- X[sapply(X, function(x) sum(ToAssign %in% x)==1)] } if(!all(colSums(G)!=0)){ X <- Genotypes(object)[,1] X <- unique(X) Xa <- X[sapply(X, function(x) (sum(ToAssign %in% x)==1 && sum(rowSums(G[,as.character(x)])==0)==1) || (sum(ToAssign %in% x) > 0 && sum(rowSums(G[,as.character(x)])==SGploidy)==n.subgen-1))] while(length(Xa)>0){ g <- G[,as.character(Xa[[1]])] thissubgen <- rowSums(g) == min(rowSums(g)) thisallele <- dimnames(g)[[2]][colSums(g)==0] G[thissubgen,thisallele] <- 1 ToAssign <- alleles[colSums(G)==0] Xa <- X[sapply(X, function(x) (sum(ToAssign %in% x)==1 && sum(rowSums(G[,as.character(x)])==0)==1) || (sum(ToAssign %in% x) > 0 && sum(rowSums(G[,as.character(x)])==SGploidy)==n.subgen-1))] } } if(!all(colSums(G)!=0)){ result <- list(locus=Loci(object), SGploidy=SGploidy, assignments="Unresolvable") if(verbose) print(G) } else { badgen <- list() bgIndex <- 1 for(s in Samples(object)){ g <- G[,as.character(Genotype(object, s, locus))] gr <- rowSums(g) if(!all(gr > 0 & gr <= SGploidy)){ badgen[[bgIndex]] <- Genotype(object,s,locus) bgIndex <- bgIndex+1 } } if(length(badgen)==0){ result <- list(locus=Loci(object), SGploidy=SGploidy, assignments=G) } else { if(verbose){ cat("Allele assignments:", sep="\n") print(G) cat("Inconsistent genotypes:", sep="\n") print(badgen) } result <- list(locus=Loci(object), SGploidy=SGploidy, assignments="Homoplasy or null alleles") } } } } if(verbose) print(result) return(result) } mergeAlleleAssignments <- function(x){ loci <- sapply(x, function(z) z$locus) SGp <- sapply(x, function(z) z$SGploidy) lociU <- unique(loci) if(is.list(loci) || is.list(SGp) || !all(!is.na(lociU)) || !all(!is.na(SGp))) stop("Locus and SGploidy value required for each list element.") results <- list() length(results) <- length(lociU) onezero <- function(y,z){ res <- y+z res[res==2] <- 1 return(res) } for(L in 1:length(lociU)){ locus <- lociU[L] thisSGp <- unique(SGp[loci==locus]) if(length(thisSGp)>1) stop("More than one SGploidy value per locus.") A <- lapply(x[loci==locus], function(z) z$assignments) A <- A[sapply(A, function(z) is.matrix(z))] if(length(A)==0){ G <- "No assignment" } else { A <- A[order(-sapply(A, function(x) dim(x)[2]),1:length(A))] alleles <- unique(unlist(lapply(A, function(z) dimnames(z)[[2]]))) G <- matrix(0, nrow=dim(A[[1]])[1], ncol=length(alleles), dimnames=list(NULL, alleles)) G[,dimnames(A[[1]])[[2]]] <- A[[1]] A <- A[-1] stuckcount <- 0 while(length(A)>0){ if(stuckcount==length(A)){ G <- "No assignment" break } stuckcount <- 0 toremove <- integer(0) for(i in 1:length(A)){ a <- A[[i]] assigned <- alleles[colSums(G)>0] overlap <- assigned[assigned %in% dimnames(a)[[2]][colSums(a)>0]] if(length(overlap)==0 || all(G[,overlap] == 1) || all(a[,overlap] == 1)){ stuckcount <- stuckcount+1 next } groups <- kmeans(rbind(G[,overlap,drop = FALSE],a[,overlap,drop = FALSE]),dim(G)[1]) if(!all(1:dim(G)[1] %in% groups$cluster[1:dim(G)[1]]) || groups$betweenss/groups$totss <= 0.5){ stuckcount <- stuckcount + 1 next } G[groups$cluster[1:dim(G)[1]],dimnames(a)[[2]]] <- onezero(G[groups$cluster[1:dim(G)[1]],dimnames(a)[[2]]], a[groups$cluster[-(1:dim(G)[1])],]) toremove <- c(toremove,i) } if(length(toremove)>0) A <- A[-toremove] } } results[[L]] <- list(locus=locus, SGploidy=thisSGp, assignments=G) } return(results) } plotSSAllo <- function(AlCorrArray){ loci <- dimnames(AlCorrArray)[[1]] pops <- dimnames(AlCorrArray)[[2]] n.subgen <- dim(AlCorrArray[[1,1]]$Kmeans.groups)[1] SSarray <- array(sapply(AlCorrArray, FUN = function(x) x$betweenss/x$totss), dim = dim(AlCorrArray), dimnames = list(loci, pops)) SSarray[is.na(SSarray)] <- 0 Earray <- array(sapply(AlCorrArray, FUN = function(x){ propAl <- rowMeans(x$Kmeans.groups) return(1 - sum(propAl^2)) }), dim = dim(AlCorrArray), dimnames = list(loci, pops)) posCor <- sapply(AlCorrArray, FUN = function(x) any(x$significant.pos, na.rm = TRUE)) posCor <- array(posCor, dim = dim(AlCorrArray), dimnames = list(loci, pops)) if(length(pops) == 1){ popCol = "black" bgCol = "white" } else { bgCol = "lightgrey" if(length(pops) == 2){ popCol = c("red", "blue") } else { popCol = rainbow(length(pops)) } } oldBg = par()$bg par(bg = bgCol) maxE <- 1 - n.subgen * 1/n.subgen^2 maxNalleles <- max(sapply(AlCorrArray, FUN = function(x) dim(x$Kmeans.groups)[2])) minE <- 1 - (n.subgen - 1) * 1/maxNalleles^2 - ((maxNalleles - n.subgen + 1)/maxNalleles)^2 minSS <- 0 maxSS <- 1 if(length(pops) == 1){ Xlim <- c(minSS, maxSS) } else { Xlim <- c(minSS, maxSS + (maxSS - minSS)/4) } Ylim <- c(minE, maxE) plot(as.vector(SSarray), as.vector(Earray), col = bgCol, main = "K-means results", xlab = "Sums of squares between isoloci/total sums of squares", ylab = "Evenness of number of alleles among isoloci", xlim = Xlim, ylim = Ylim) text(minSS, minE, labels = "Low quality allele clustering", adj = 0) text(maxSS, maxE, labels = "High quality allele clustering", adj = 1) for(p in 1:length(pops)){ text(SSarray[,p], Earray[,p], labels = loci, col = popCol[p], font = ifelse(posCor[,p], 3, 1)) } if(length(pops) > 1){ legend(maxSS, 0.75 * (Ylim[2] - Ylim[1]) + Ylim[1], legend = pops, text.col = popCol, title = "Populations", title.col = "black") } par(bg = oldBg) return(invisible(list(ssratio = SSarray, evenness = Earray, max.evenness = maxE, min.evenness = minE, posCor = posCor))) } plotParamHeatmap <- function(propMat, popname = "AllInd", col = grey.colors(12)[12:1], main = ""){ if(length(dim(propMat)) == 3){ propMat <- propMat[,popname,] } if(length(dim(propMat)) != 2){ stop("propMat must have two dimensions.") } nloc <- dim(propMat)[1] nparam <- dim(propMat)[2] image(1:nparam, 1:nloc, t(propMat), xlab = "Parameter sets", ylab = "Loci", main = paste(main,popname), axes = FALSE, col = col, zlim = c(0,1)) axis(1, at = 1:nparam) axis(2, at = 1:nloc, labels = dimnames(propMat)[[1]]) for(i in 1:nloc){ text(which.min(propMat[i,]),i, "best") } } processDatasetAllo <- function(object, samples = Samples(object), loci = Loci(object), n.subgen = 2, SGploidy = 2, n.start = 50, alpha = 0.05, parameters = data.frame(tolerance = c(0.05, 0.05, 0.05, 0.05), swap = c(TRUE, FALSE, TRUE, FALSE), null.weight = c(0.5, 0.5, 0, 0)), plotsfile = "alleleAssignmentPlots.pdf", usePops = FALSE, ...){ if(!all(samples %in% Samples(object))){ stop("Sample names in samples and object do not match.") } if(!all(loci %in% Loci(object))){ stop("Locus names in loci and object do not match.") } if(!all(c("tolerance", "swap", "null.weight") %in% names(parameters))){ stop("Parameters data frame needs column headers tolerance, swap, and null.weight.") } object <- object[samples,] nparam <- dim(parameters)[1] if(usePops){ popinfo <- PopInfo(object) if(any(is.na(popinfo))){ stop("PopInfo needed in object if usePops = TRUE.") } popnamesTemp <- PopNames(object)[popinfo] allpops <- unique(popnamesTemp) popinfo <- match(popnamesTemp, allpops) npops <- length(allpops) } else { popinfo <- rep(1, length(samples)) allpops <- "AllInd" npops <- 1 } CorrResults <- array(list(), dim = c(length(loci), npops), dimnames = list(loci, allpops)) TAGresults <- array(list(), dim = c(length(loci), npops, nparam), dimnames = list(loci, allpops, NULL)) for(p in 1:npops){ thesesamples <- samples[popinfo == p] for(L in loci){ CorrResults[[L, p]] <- alleleCorrelations(object, samples = thesesamples, locus = L, alpha = alpha, n.subgen = n.subgen, n.start = n.start) for(pm in 1:nparam){ TAGresults [[L, p, pm]] <- testAlGroups(object, CorrResults[[L, p]], SGploidy = SGploidy, samples = thesesamples, null.weight = parameters$null.weight[pm], tolerance = parameters$tolerance[pm], swap = parameters$swap[pm], ...) } } } propHomoplasious <- sapply(TAGresults, FUN = function(x){mean(colSums(x$assignments) > 1)}) propHomoplasious <- array(propHomoplasious, dim = dim(TAGresults), dimnames = dimnames(TAGresults)) if(usePops){ mergedAssignments <- array(list(), dim = c(length(loci), nparam), dimnames = list(loci, NULL)) for(L in loci){ theseSamples <- samples[!isMissing(object, samples, L)] for(pm in 1:nparam){ mergedAssignments[L,pm] <- mergeAlleleAssignments(TAGresults[L,,pm]) totInconsistent <- 0 if(is.matrix(mergedAssignments[[L,pm]]$assignments)){ for(s in theseSamples){ gen <- as.character(Genotype(object, s, L)) subg <- mergedAssignments[[L,pm]]$assignments[, gen, drop = FALSE] if(any(rowSums(subg) == 0) || any(rowSums(subg[,colSums(subg) == 1, drop = FALSE]) > SGploidy)){ totInconsistent <- totInconsistent + 1 } } } else { totInconsistent <- length(theseSamples) } mergedAssignments[[L,pm]]$proportion.inconsistent.genotypes <- totInconsistent/length(theseSamples) } } propHomoplMerged <- sapply(mergedAssignments, FUN = function(x){ if(is.matrix(x$assignments)){ return(mean(colSums(x$assignments) > 1)) } else { return(1) } }) propHomoplMerged <- array(propHomoplMerged, dim = dim(mergedAssignments), dimnames = dimnames(mergedAssignments)) } else { mergedAssignments <- TAGresults[,1,] propHomoplMerged <- propHomoplasious[,1,] } bestpm <- integer(length(loci)) names(bestpm) <- loci missRate <- matrix(1, nrow = length(loci), ncol = nparam, dimnames = list(loci, NULL)) for(L in loci){ theseAssign <- list() theseAssignIndex <- integer(nparam) for(pm in 1:nparam){ if(!is.matrix(mergedAssignments[[L,pm]]$assignments)) next thisAssign <- data.frame(mergedAssignments[[L,pm]]$assignments) thisAssign <- thisAssign[do.call(order, thisAssign),] row.names(thisAssign) <- 1:dim(thisAssign)[1] matchUn <- sapply(theseAssign, function(x) identical(x, thisAssign)) if(length(theseAssign) == 0 || all(!matchUn)){ theseAssign[[length(theseAssign) + 1]] <- thisAssign theseAssignIndex[pm] <- length(theseAssign) } else { theseAssignIndex[pm] <- which(matchUn) } } if(all(theseAssignIndex == 0)) next for(a in 1:length(theseAssign)){ amat <- as.matrix(theseAssign[[a]]) dimnames(amat)[[2]] <- gsub("X", "", dimnames(amat)[[2]]) r <- recodeAllopoly(object, list(list(locus = L, SGploidy = SGploidy, assignments = amat)), allowAneuploidy = FALSE, loci = L) oldMissing <- sum(isMissing(object, loci = L)) miss <- (sum(isMissing(r))/n.subgen - oldMissing)/(length(samples) - oldMissing) missRate[L, which(theseAssignIndex == a)] <- miss } bestMiss <- which(missRate[L,] == min(missRate[L,], na.rm = TRUE)) bestpm[L] <- bestMiss[which.min(propHomoplMerged[L, bestMiss])] } bestpm[bestpm == 0] <- 1 bestAssign <- list() for(l in 1:length(loci)){ bestAssign[[l]] <- mergedAssignments[[l, bestpm[l]]] } pdf(plotsfile) plotSS <- plotSSAllo(CorrResults) for(L in loci){ for(p in allpops){ if(!is.null(CorrResults[[L,p]]$heatmap.dist)){ heatmap(CorrResults[[L,p]]$heatmap.dist, main = paste(L, p, sep = ", ")) } else { plot(NA, xlim = c(0,10), ylim = c(0,10), main = paste(L, p, sep = ", ")) text(5,5, "Fisher's exact tests not performed.\nOne or more alleles are present in all individuals.") } } } for(p in allpops){ plotParamHeatmap(propHomoplasious[,p,], popname = p, main = "Proportion homoplasious loci:") } if(usePops){ plotParamHeatmap(propHomoplMerged, popname = "Merged across populations", main = "Proportion homoplasious loci:") } plotParamHeatmap(missRate, popname = "All Individuals", main = "Missing data after recoding:") dev.off() return(list(AlCorrArray = CorrResults, TAGarray = TAGresults, plotSS = plotSS, propHomoplasious = propHomoplasious, mergedAssignments = mergedAssignments, propHomoplMerged = propHomoplMerged, missRate = missRate, bestAssign = bestAssign)) } recodeAllopoly <- function(object, x, allowAneuploidy=TRUE, samples=Samples(object), loci=Loci(object)){ if(is(object, "genbinary")) object <- genbinary.to.genambig(object) if(!is(object, "genambig")) stop("'genbinary' or 'genambig' object required.") object <- object[samples, loci] lociA <- sapply(x, function(z) z$locus) SGp <- sapply(x, function(z) z$SGploidy) if(is.list(lociA) || is.list(SGp) || !all(!is.na(lociA)) || !all(!is.na(SGp))) stop("Locus and SGploidy value required for each list element in x.") if(!all(lociA %in% loci)){ warning(paste("Loci", paste(lociA[!lociA %in% loci], collapse=" "), "found in 'x' but not 'loci'.")) x <- x[lociA %in% loci] if(length(x)==0) stop("No recoding possible because locus names do not match") lociA <- sapply(x, function(z) z$locus) SGp <- sapply(x, function(z) z$SGploidy) } if(!all(table(lociA)==1)){ x <- mergeAlleleAssignments(x) lociA <- sapply(x, function(z) z$locus) SGp <- sapply(x, function(z) z$SGploidy) } names(SGp) <- lociA nSG <- sapply(x, function(z) ifelse(is.matrix(z$assignments), dim(z$assignments)[1], NA)) names(nSG) <- lociA A <- lapply(x, function(z) z$assignments) names(A) <- lociA lociA <- lociA[!is.na(nSG)] SGp <- SGp[lociA] nSG <- nSG[lociA] A <- A[lociA] newloci <- paste(rep(lociA, times=nSG),unlist(lapply(nSG, function(y) 1:y)), sep="_") extraloci <- loci[!loci %in% lociA] newloci <- c(newloci, extraloci) result <- new("genambig", samples, newloci) PopNames(result) <- PopNames(object) PopInfo(result) <- PopInfo(object)[samples] Description(result) <- Description(object) Missing(result) <- Missing(object) newploidies <- matrix(rep(SGp, times=nSG), nrow=length(samples), ncol=sum(!newloci %in% extraloci), byrow=TRUE) if(length(extraloci) > 0){ if(is(object@Ploidies, "ploidymatrix")){ newploidies <- cbind(newploidies, Ploidies(object, samples=samples, loci=extraloci)) } if(is(object@Ploidies, "ploidylocus")){ newploidies <- cbind(newploidies, matrix(Ploidies(object, loci=extraloci), nrow=length(samples), ncol=length(extraloci), byrow=TRUE)) } if(is(object@Ploidies, "ploidysample") || is(object@Ploidies, "ploidyone")){ newploidies <- cbind(newploidies, matrix(Ploidies(object, loci=extraloci), nrow=length(samples), ncol=length(extraloci), byrow=FALSE)) } } Ploidies(result) <- newploidies if(!allowAneuploidy && plCollapse(result@Ploidies, na.rm=FALSE, returnvalue=FALSE)){ result <- reformatPloidies(result, output="collapse") } for(L in loci){ Lindex <- which(sapply(strsplit(newloci, "_"), function(y) y[1]) == L) Usatnts(result)[Lindex] <- Usatnts(object)[L] if(length(Lindex)==1){ Genotypes(result, loci=Lindex) <- Genotypes(object, loci=L) Ploidies(result)[,Lindex] <- Ploidies(object, Samples(object), L) } else { xsamples <- samples[!isMissing(object, samples, L)] LisInt <- all(sapply(Genotypes(object, xsamples, L), is.integer, USE.NAMES=FALSE)) LisNum <- all(sapply(Genotypes(object, xsamples, L), is.numeric, USE.NAMES=FALSE)) AL <- A[[L]] allelesL <- as.character(.unal1loc(object, xsamples, L)) allelesUA <- allelesL[!allelesL %in% dimnames(AL)[[2]]] if(length(allelesUA)>0){ toadd <- matrix(1, nrow=length(Lindex), ncol=length(allelesUA), dimnames=list(NULL, allelesUA)) AL <- cbind(AL, toadd) } for(s in xsamples){ thisgen <- as.character(Genotype(object, s, L)) thisA <- AL[,thisgen, drop=FALSE] if(length(thisgen) > nSG[L]*SGp[L]){ next } SGcomplete <- rep(FALSE, nSG[L]) alBySG <- rep(list(character(0)), nSG[L]) stumped <- FALSE while(sum(!SGcomplete)>0 & !stumped){ stumped <- TRUE SGtoassign <- (1:nSG[L])[!SGcomplete] for(sg in SGtoassign){ sgAl <- thisgen[thisA[sg,]==1 & colSums(thisA)==1] if(length(sgAl)>=SGp[L]){ alBySG[[sg]] <- sgAl SGcomplete[sg] <- TRUE stumped <- FALSE thisA[sg,-match(sgAl, thisgen)] <- 0 } else { sgAl <- thisgen[thisA[sg,]==1] if(length(sgAl)==1 || all(colSums(thisA[,sgAl])==1)){ alBySG[[sg]] <- sgAl SGcomplete[sg] <- TRUE stumped <- FALSE } } }} nAl <- sapply(alBySG, length) if(!all(nAl <= SGp[L])){ if(allowAneuploidy){ newploidies <- nAl while(sum(newploidies) < nSG[L]*SGp[L]){ newploidies[newploidies==min(newploidies[newploidies!=0])] <- newploidies[newploidies==min(newploidies[newploidies!=0])] + 1 } Ploidies(result)[s,Lindex] <- newploidies } else { next } } if(LisInt){ alBySG <- lapply(alBySG, as.integer) } else { if(LisNum){ alBySG <- lapply(alBySG, as.numeric) } } alBySG[nAl==0] <- Missing(result) Genotypes(result, samples=s,loci=Lindex) <- alBySG } } } return(result) }
map.mod <- function(object, dim = c(1, 2), point.shape = "variable", point.alpha = 0.8, point.fill = "whitesmoke", point.color = "black", point.size = "freq", label = TRUE, label.repel = FALSE, label.alpha = 0.8, label.color = "black", label.size = 4, label.fill = NULL, map.title = "mod", labelx = "default", labely = "default", legend = NULL){ plot.type <- "mod" plot.flow(object, dim = dim, point.shape = point.shape, point.alpha = point.alpha, point.fill = point.fill, point.color = point.color, point.size = point.size, label = label, label.repel = label.repel, label.alpha = label.alpha, label.color = label.color, label.size = label.size, label.fill = label.fill, map.title = map.title, labelx = labelx, labely = labely, legend = legend, plot.type = plot.type) } map.ctr <- function(object, dim = c(1, 2), ctr.dim = 1, point.shape = "variable", point.alpha = 0.8, point.fill = "whitesmoke", point.color = "black", point.size = "freq", label = TRUE, label.repel = TRUE, label.alpha = 0.8, label.color = "black", label.size = 4, label.fill = NULL, map.title = "ctr", labelx = "default", labely = "default", legend = NULL){ plot.type <- "ctr" plot.flow(object, dim = dim, ctr.dim = ctr.dim, point.shape = point.shape, point.alpha = point.alpha, point.fill = point.fill, point.color = point.color, point.size = point.size, label = label, label.repel = label.repel, label.alpha = label.alpha, label.color = label.color, label.size = label.size, label.fill = label.fill, map.title = map.title, labelx = labelx, labely = labely, legend = legend, plot.type = plot.type) } map.active <- function(object, dim = c(1, 2), point.shape = "variable", point.alpha = 0.8, point.fill = "whitesmoke", point.color = "black", point.size = "freq", label = TRUE, label.repel = FALSE, label.alpha = 0.8, label.color = "black", label.size = 4, label.fill = NULL, map.title = "active", labelx = "default", labely = "default", legend = NULL){ plot.type <- "active" plot.flow(object, dim = dim, point.shape = point.shape, point.alpha = point.alpha, point.fill = point.fill, point.color = point.color, point.size = point.size, label = label, label.repel = label.repel, label.alpha = label.alpha, label.color = label.color, label.size = label.size, label.fill = label.fill, map.title = map.title, labelx = labelx, labely = labely, legend = legend, plot.type = plot.type) } map.sup <- function(object, dim = c(1, 2), point.shape = "variable", point.alpha = 0.8, point.fill = "whitesmoke", point.color = "black", point.size = "freq", label = TRUE, label.repel = TRUE, label.alpha = 0.8, label.color = "black", label.size = 4, label.fill = NULL, map.title = "sup", labelx = "default", labely = "default", legend = NULL){ plot.type <- "sup" plot.flow(object, dim = dim, point.shape = point.shape, point.alpha = point.alpha, point.fill = point.fill, point.color = point.color, point.size = point.size, label = label, label.repel = label.repel, label.alpha = label.alpha, label.color = label.color, label.size = label.size, label.fill = label.fill, map.title = map.title, labelx = labelx, labely = labely, legend = legend, plot.type = plot.type) } map.ind <- function(object, dim = c(1, 2), point.shape = 21, point.alpha = 0.8, point.fill = "whitesmoke", point.color = "black", point.size = 3, label = FALSE, label.repel = FALSE, label.alpha = 0.8, label.color = "black", label.size = 4, label.fill = NULL, map.title = "ind", labelx = "default", labely = "default", legend = NULL){ plot.type <- "ind" plot.flow(object, dim = dim, point.shape = point.shape, point.alpha = point.alpha, point.fill = point.fill, point.color = point.color, point.size = point.size, label = label, label.repel = label.repel, label.alpha = label.alpha, label.color = label.color, label.size = label.size, label.fill = label.fill, map.title = map.title, labelx = labelx, labely = labely, legend = legend, plot.type = plot.type) } map.select <- function(object, dim = c(1, 2), ctr.dim = 1, list.mod = NULL, list.sup = NULL, list.ind = NULL, point.shape = "variable", point.alpha = 0.8, point.fill = "whitesmoke", point.color = "black", point.size = "freq", label = TRUE, label.repel = FALSE, label.alpha = 0.8, label.color = "black", label.size = 4, label.fill = NULL, map.title = "select", labelx = "default", labely = "default", legend = NULL, ...){ modal.list <- list(list.mod = list.mod, list.sup = list.sup, list.ind = list.ind) plot.type <- "select" plot.flow(object, dim = dim, ctr.dim = ctr.dim, modal.list = modal.list, point.shape = point.shape, point.alpha = point.alpha, point.fill = point.fill, point.color = point.color, point.size = point.size, label = label, label.repel = label.repel, label.alpha = label.alpha, label.color = label.color, label.size = label.size, label.fill = label.fill, map.title = map.title, labelx = labelx, labely = labely, legend = legend, plot.type = plot.type) } map.add <- function(object, ca.map, plot.type = NULL, ctr.dim = 1, list.mod = NULL, list.sup = NULL, list.ind = NULL, point.shape = "variable", point.alpha = 0.8, point.fill = "whitesmoke", point.color = "black", point.size = "freq", label = TRUE, label.repel = TRUE, label.alpha = 0.8, label.color = "black", label.size = 4, label.fill = NULL, labelx = "default", labely = "default", legend = NULL){ p <- ca.map dim <- ca.map$dimensions org.scales <- ca.map$ca.scales modal.list <- list(list.mod = list.mod, list.sup = list.sup, list.ind = list.ind) gg.data <- data.plot(object, plot.type = plot.type, dim = dim, ctr.dim = ctr.dim, modal.list = modal.list, point.size = point.size, point.variable = point.shape) if(identical(point.shape,"variable")) point.shape <- gg.data$variable if(identical(point.size,"freq")) point.size <- gg.data$freq point.l <- list(x = gg.data$x, y = gg.data$y, shape = point.shape, alpha = point.alpha, fill = point.fill, color = point.color, size = point.size) p.i <- unlist(lapply(point.l, length)) == 1 point.attributes <- point.l[p.i == TRUE] point.aes <- point.l[p.i == FALSE] label.l <- list(x = gg.data$x, y = gg.data$y, label = gg.data$names, alpha = label.alpha, color = label.color, fill = label.fill, size = label.size) t.i <- unlist(lapply(label.l, length)) == 1 label.attributes <- label.l[t.i == TRUE] label.aes <- label.l[t.i == FALSE] gg.input <- list(gg.data = gg.data, label = label, repel = label.repel, point.aes = point.aes, point.attributes = point.attributes, label.aes = label.aes, label.attributes = label.attributes) point.attributes <- gg.input$point.attributes point.attributes$mapping <- do.call("aes", gg.input$point.aes) p <- p + do.call("geom_point", point.attributes, quote = TRUE) shapes <- c(21, 22, 23, 24, 25, 6, 0, 1, 2, 3, 4, 5, 7, 8, 9, 10, 12, 15, 16, 17, 18, 42, 45, 61, 48, 50:120) p <- p + scale_shape_manual(values = shapes) if (gg.input$label == TRUE){ label.attributes <- gg.input$label.attributes label.attributes$vjust <- 1.8 label.attributes$family <- "sans" label.attributes$lineheight <- 0.9 label.attributes$mapping <- do.call("aes", gg.input$label.aes) if(is.null(gg.input$label.aes$fill) & gg.input$repel == TRUE & is.null(label.attributes$fill)){ label.attributes$vjust <- NULL p <- p + do.call("geom_text_repel", label.attributes, quote = TRUE) } if(is.null(gg.input$label.aes$fill) == FALSE | is.null(label.attributes$fill) == FALSE){ label.attributes$vjust <- NULL p <- p + do.call("geom_label_repel", label.attributes, quote = TRUE) } if(is.null(gg.input$label.aes$fill) & gg.input$repel == FALSE){ p <- p + do.call("geom_text", label.attributes, quote = TRUE) } } org.max <- org.scales$lim.max org.min <- org.scales$lim.min n.max <- max(c(max(gg.data[,1:2]), org.max)) n.min <- (c(min(gg.data[,1:2]), org.min)) tscales <- gg.data tscales[1, 1:2] <- n.max tscales[2, 1:2] <- n.min scales <- breaksandscales(tscales) p <- p + scale_x_continuous(breaks = scales$scalebreaks, labels = scales$breaklabel) p <- p + scale_y_continuous(breaks = scales$scalebreaks, labels = scales$breaklabel) p$ca.scales <- scales if(is.null(legend)) p <- p + theme(legend.position = "none") if(identical(legend,"bottom")) p <- p + theme(legend.position = 'bottom', legend.direction = "horizontal", legend.box = "horizontal") p } map.density <- function(object, map = map.ind(object), group = NULL, color = "red", alpha = 0.8, size = 0.5, linetype = "solid"){ dim <- map$dimensions dens.data <- as.data.frame(object$coord.ind[, dim]) colnames(dens.data) <- c("x", "y") density.l <- list(color = color, alpha = alpha, size = size, linetype = linetype, n = 100, group = group, na.rm = TRUE) d.i <- unlist(lapply(density.l, length)) == 1 density.attributes <- density.l[d.i] density.aes <- density.l[unlist(lapply(density.l, length)) > 1] density.aes$x <- dens.data$x density.aes$y <- dens.data$y density.attributes$mapping <- do.call("aes", density.aes) p <- map + do.call("geom_density2d", density.attributes, quote = TRUE) p } plot.flow <- function(object, dim = c(1, 2), ctr.dim = NULL, modal.list = NULL, point.shape = 21, point.alpha = 0.8, point.fill = "whitesmoke", point.color = "black", point.size = 3, label = FALSE, label.repel = FALSE, label.alpha = 0.8, label.color = "black", label.size = 4, label.fill = NULL, map.title = map.title, labelx = "default", labely = "default", legend = NULL, plot.type = plot.type){ gg.proc <- round(object$adj.inertia[,4]) gg.data <- data.plot(object, plot.type = plot.type, dim, ctr.dim = ctr.dim, modal.list = modal.list, point.size = point.size, point.color = point.color) axis.labels <- plot.axis(labelx = labelx, labely = labely, gg.proc = gg.proc, dim = dim) map.title <- plot.title(map.title = map.title, ctr.dim = ctr.dim) scales <- breaksandscales(gg.data) if (identical(point.shape,"variable")) point.shape <- gg.data$variable if (identical(point.size,"freq")) point.size <- gg.data$freq point.l <- list(x = gg.data$x, y = gg.data$y, shape = point.shape, alpha = point.alpha, fill = point.fill, color = point.color, size = point.size) p.i <- unlist(lapply(point.l, length)) == 1 point.attributes <- point.l[p.i == TRUE] point.aes <- point.l[p.i == FALSE] label.l <- list(x = gg.data$x, y = gg.data$y, label = gg.data$names, alpha = label.alpha, color = label.color, fill = label.fill, size = label.size) t.i <- unlist(lapply(label.l, length)) == 1 label.attributes <- label.l[t.i == TRUE] label.aes <- label.l[t.i == FALSE] gg.input <- list(gg.data = gg.data, axis.inertia = gg.proc, map.title = map.title, labelx = axis.labels$x, labely = axis.labels$y, scales = scales, label = label, repel = label.repel, point.aes = point.aes, point.attributes = point.attributes, label.aes = label.aes, label.attributes = label.attributes) b.plot <- basic.plot(gg.input) t.plot <- b.plot + theme_min() if(is.null(legend)) t.plot <- t.plot + theme(legend.position = "none") if(identical(legend,"bottom")) t.plot <- t.plot + theme(legend.position = 'bottom', legend.direction = "horizontal", legend.box = "horizontal") t.plot$dimensions <- dim return(t.plot) } basic.plot <- function(gg.input){ p <- ggplot() p <- p + geom_hline(yintercept = 0, color = "grey50", size = 0.5, linetype = "solid") p <- p + geom_vline(xintercept = 0, color = "grey50", size = 0.5, linetype = "solid") point.attributes <- gg.input$point.attributes point.attributes$mapping <- do.call("aes", gg.input$point.aes) p <- p + do.call("geom_point", point.attributes, quote = TRUE) shapes <- getOption("soc.ca.shape") p <- p + scale_shape_manual(values = shapes) if (gg.input$label == TRUE){ label.attributes <- gg.input$label.attributes label.attributes$vjust <- 1.8 label.attributes$family <- "sans" label.attributes$lineheight <- 0.9 label.attributes$mapping <- do.call("aes", gg.input$label.aes) if(is.null(gg.input$label.aes$fill) & gg.input$repel == TRUE & is.null(label.attributes$fill)){ label.attributes$vjust <- NULL label.attributes$max.iter <- 2000 p <- p + do.call("geom_text_repel", label.attributes, quote = TRUE) } if(is.null(gg.input$label.aes$fill) == FALSE | is.null(label.attributes$fill) == FALSE){ label.attributes$vjust <- NULL label.attributes$max.iter <- 2000 p <- p + do.call("geom_label_repel", label.attributes, quote = TRUE) } if(is.null(gg.input$label.aes$fill) & gg.input$repel == FALSE){ p <- p + do.call("geom_text", label.attributes, quote = TRUE) } } p <- p + ggtitle(label = gg.input$map.title) p <- p + xlab(gg.input$labelx) + ylab(gg.input$labely) p <- p + labs(alpha = "Alpha", shape = "Shape", color = "Color", linetype = "Linetype", size = "Size", fill = "Fill") p <- p + scale_x_continuous(breaks = gg.input$scales$scalebreaks, labels = gg.input$scales$breaklabel) p <- p + scale_y_continuous(breaks = gg.input$scales$scalebreaks, labels = gg.input$scales$breaklabel) p <- p + coord_fixed() p$ca.scales <- gg.input$scales p } plot.title <- function(map.title = NULL, ctr.dim = NULL){ if (identical(map.title, "ctr") == TRUE) { map.title <- paste("The modalities contributing above average to dimension ", paste(ctr.dim, collapse = " & "), sep = "") } if (identical(map.title, "mod") == TRUE) { map.title <- "Map of all modalities" } if (identical(map.title, "active") == TRUE) { map.title <- "Map of active modalities" } if (identical(map.title, "sup") == TRUE) { map.title <- "Map of supplementary modalities" } if (identical(map.title, "ind") == TRUE) { map.title <- "Map of individuals" } if (identical(map.title, "select") == TRUE) { map.title <- "Map of selected modalities" } return(map.title) } plot.axis <- function(labelx = "default", labely = "default", gg.proc = NA, dim = NULL){ if (identical(labelx, "default") == TRUE) { labelx <- paste(dim[1], ". Dimension: ", gg.proc[dim[1]], "%", sep = "") } if (identical(labely, "default") == TRUE) { labely <- paste(dim[2], ". Dimension: ", gg.proc[dim[2]], "%", sep = "") } axis.labels <- list(x = labelx, y = labely) return(axis.labels) } breaksandscales <- function(gg.data){ mround <- function(x, base){ base*round(x/base) } lim.min.x <- min(gg.data[, 1]) lim.min.y <- min(gg.data[, 2]) lim.max.x <- max(gg.data[, 1]) lim.max.y <- max(gg.data[, 2]) scalebreaks <- seq(-10,10, by = 0.25) nolabel <- seq(-10, 10, by = 0.5) inter <- intersect(scalebreaks, nolabel) truelabel <- is.element(scalebreaks, nolabel) breaklabel <- scalebreaks breaklabel[truelabel == FALSE] <- "" length.x <- sqrt(lim.min.x^2) + sqrt(lim.max.x^2) length.y <- sqrt(lim.min.y^2) + sqrt(lim.max.y^2) scales <- list(scalebreaks = scalebreaks, breaklabel = breaklabel, lim.min.x = lim.min.x, lim.min.y = lim.min.y, lim.max.x = lim.max.x, lim.max.y = lim.max.y, length.x = length.x, length.y = length.y) return(scales) } data.plot <- function(object, plot.type, dim, ctr.dim = NULL, modal.list = NULL, point.size = "freq", point.variable = NULL, point.color = NULL){ if (identical(plot.type, "mod") == TRUE){ coord <- rbind(object$coord.mod, object$coord.sup) mnames <- c(object$names.mod, object$names.sup) freq <- c(object$freq.mod, object$freq.sup) variable <- c(object$variable, object$variable.sup) } if (identical(plot.type, "ctr") == TRUE){ av.ctr <- contribution(object, ctr.dim, indices = TRUE, mode = "mod") coord <- object$coord.mod[av.ctr, ] mnames <- object$names.mod[av.ctr] freq <- object$freq.mod[av.ctr] variable <- object$variable[av.ctr] } if (identical(plot.type, "active") == TRUE){ coord <- object$coord.mod mnames <- object$names.mod freq <- object$freq.mod variable <- object$variable } if (identical(plot.type, "sup") == TRUE){ coord <- object$coord.sup mnames <- object$names.sup freq <- object$freq.sup variable <- object$variable.sup } if (identical(plot.type, "ind") == TRUE){ coord <- object$coord.ind mnames <- object$names.ind freq <- rep(1, object$n.ind) if(identical(point.variable, NULL)){ variable <- rep("ind", nrow(object$coord.ind)) }else{ variable <- point.variable } if(identical(point.color, NULL) == FALSE) point.color <- point.color } if (identical(plot.type, "select") == TRUE){ coord.mod <- object$coord.mod[modal.list$list.mod, ] coord.sup <- object$coord.sup[modal.list$list.sup, ] coord.ind <- object$coord.ind[modal.list$list.ind, ] names.mod <- object$names.mod[modal.list$list.mod] names.sup <- object$names.sup[modal.list$list.sup] names.ind <- object$names.ind[modal.list$list.ind] coord <- rbind(coord.mod, coord.sup, coord.ind) rownames(coord) <- NULL mnames <- c(names.mod, names.sup, names.ind) freq.mod <- object$freq.mod[modal.list$list.mod] freq.sup <- object$freq.sup[modal.list$list.sup] freq.ind <- rep(1, object$n.ind)[modal.list$list.ind] freq <- c(freq.mod, freq.sup, freq.ind) variable.mod <- object$variable[modal.list$list.mod] variable.sup <- object$variable.sup[modal.list$list.sup] variable.ind <- rep("ind", object$n.ind)[modal.list$list.ind] variable <- c(variable.mod, variable.sup, variable.ind) } if(is.numeric(point.size)) freq <- rep(point.size, length.out = nrow(coord)) if(is.null(point.color)) point.color <- rep("Nothing", length.out = nrow(coord)) gg.data <- data.frame(cbind(coord[, dim[1]], coord[,dim[2]]), mnames, freq, variable, point.color) colnames(gg.data) <- c("x", "y", "names", "freq", "variable", "point.color") return(gg.data) } add.count <- function(x, p, label = TRUE, ...){ p <- p + geom_point(data = x, x = x$X, y = x$Y, ...) + geom_path(data = x, x = x$X, y = x$Y, ...) if (identical(label, TRUE)) p <- p + geom_text(data = x, x = x$X, y = x$Y, label = x$label, vjust = 0.2, ...) } map.path <- function(object, x, map = map.ind(object, dim), dim = c(1, 2), label = TRUE, min.size = length(x)/10, ...){ x.c <- x if (is.numeric(x)) x.c <- min_cut(x, min.size = min.size) x.av <- average.coord(object = object, x = x.c, dim = dim) x.av["X"] <- x.av["X"] * sqrt(object$eigen[dim[1]]) x.av["Y"] <- x.av["Y"] * sqrt(object$eigen[dim[2]]) map.p <- add.count(x.av, map, label, ...) map.p } map.top.ind <- function(result, ctr.dim = 1, dim = c(1,2), top = 15){ sc <- list() sc$fill <- scale_fill_continuous(low = "white", high = "darkblue") sc$alpha <- scale_alpha_manual(values = c(0.5, 1)) ctr <- result$ctr.ind[, ctr.dim] above.average <- ctr >= mean(ctr) important <- rank(ctr) > length(ctr) - top r <- result r$names.ind[-which(important)] <- NA m <- map.ind(r, point.alpha = above.average, label = TRUE, point.shape = 21, point.fill = ctr, label.repel = TRUE, dim = dim, label.size = 3) m + sc + ggtitle(paste("Map of the", top, "most contributing individuals for dim.", ctr.dim)) }
drawnorm <- function(mu = 0, sigma = 1, xlab = "A Normally Distributed Variable", ylab = "Probability Density", main, ps = par("ps"), ...){ dotargs <- list(...) dotnames <- names(dotargs) dots.par <- dotargs[names(dotargs)[names(dotargs) %in% c(names(par()), formalArgs(plot.default))]] sigma.rounded <- if(1 == sigma[1]) 1 else round(sigma[1],2) mu.rounded <- round(mu, 2) myx <- seq( mu - 3.5*sigma, mu+ 3.5*sigma, length.out=500) myDensity <- dnorm(myx,mean=mu,sd=sigma) if(missing(main)) { main <- bquote(x %~% Normal~group("(", list(mu == .(mu.rounded), sigma^2 == .(if(sigma[1] == 1) 1 else sigma.rounded^2)),")")) } par.orig <- par(xpd=TRUE, ps = ps) on.exit(par(par.orig)) plot.parms <- list(x = myx, y = myDensity, type = "l", xlab = xlab, ylab = ylab, main = main, axes = FALSE) plot.parms <- modifyList(plot.parms, dots.par) do.call(plot, plot.parms) axis(2, pos = mu - 3.6*sigma) ticksat <- c(mu - 2.5 * sigma, mu, mu - sigma, mu + sigma, mu + 2.5 * sigma) axis(1, pos = 0, at = ticksat) lines(c(myx[1],myx[length(myx)]),c(0,0)) t1 <- bquote(mu== .(mu)) centerX <- max(which (myx <= mu)) lines( c(mu, mu), c(0, myDensity[centerX]), lty= 14, lwd=.2) text(mu, 0.4 * max(myDensity), labels = bquote( mu == .(mu.rounded)), pos = 2) ss = 0.2 * max(myDensity) arrows( x0=mu, y0= ss, x1=mu+sigma, y1=ss, code=3, angle=90, length=0.1) t2 <- bquote( sigma== .(round(sigma,2))) text( mu+0.5*sigma, 1.15*ss, t2) normalFormula <- expression (f(x) == frac (1, sigma* sqrt(2*pi)) * ~~ e^{~-~frac(1,2)~bgroup("(", frac(x-mu,sigma),")")^2}) text ( mu + 0.5*sigma, max(myDensity)- 0.10 * max(myDensity), normalFormula, pos=4) criticalValue <- mu -1.96 * sigma specialX <- myx[myx <= criticalValue] text ( criticalValue, 0 , label= paste(round(criticalValue,2)), pos=1, cex = .7) specialY <- myDensity[myx < criticalValue] polygon(c(specialX[1], specialX, specialX[length(specialX )]), c(0, specialY, 0), density=c(-110),col="lightgray" ) shadedArea <- round(pnorm(mu - 1.96 * sigma, mean=mu, sd=sigma), 4) criticalValue.rounded <- round(criticalValue, 3) al1 <- bquote(atop(Prob(x <= .(criticalValue.rounded)), F(.(criticalValue.rounded)) == .(shadedArea))) medX <- median(specialX) indexMed <- max(which(specialX < medX)) medY <- specialY[indexMed] denMax <- max(specialY) text(medX, denMax, labels=al1, pos = 3, cex = 0.7) indexMed <- max(which(specialX < medX)) x1 <- medX + .1 *abs(max(specialX) - min(specialX)) y1 <- 1.2 * myDensity[max(which(specialX < x1))] arrows(x0=medX, y0=denMax, x1= x1, y1 = y1, length=0.1) ss <- 0.1 * max(myDensity) arrows( x0=mu, y0= ss, x1=mu-1.96*sigma, y1=ss, code=3, angle=90, length=0.1) text( mu - 2.0*sigma, 1.15*ss, bquote(paste(.(criticalValue.rounded)==mu-1.96 * sigma,sep="")),pos=4 ) criticalValue <- mu +1.96 * sigma criticalValue.rounded <- round(criticalValue, 3) specialX <- myx[myx >= criticalValue] text ( criticalValue, 0 , label= paste(criticalValue.rounded), pos=1, cex = 0.7) specialY <- myDensity[myx >= criticalValue] polygon(c(specialX[1], specialX, specialX[length(specialX )]), c(0, specialY, 0), density=c(-110), col="lightgray" ) shadedArea <- round(pnorm(mu + 1.96 * sigma, mean=mu, sd=sigma, lower.tail=F),4) al2 <- bquote(atop(1 - F( .(criticalValue.rounded)), phantom(0) == .(shadedArea))) medX <- median(specialX) denMax <- max(specialY) text(medX, denMax, labels=al2, pos = 3, cex = 0.7) x1 <- medX - .1 *abs(max(specialX) - min(specialX)) y1 <- 1.2 * specialY[max(which(specialX < x1))] arrows( x0=medX, y0=denMax, x1= x1, y1 = y1, length=0.1) ss <- 0.05 * max(myDensity) arrows( x0=mu, y0= ss, x1=mu+1.96*sigma, y1=ss, code=3, angle=90, length=0.1) text( mu + 1.96*sigma,1.15*ss, bquote(paste(.(criticalValue.rounded)==mu+1.96 * sigma,sep="")), pos=2 ) }
coef.CauseSpecificCox <- function(object, ...){ return(lapply(object$models,coef)) }
estSimpson <- function (x) { n <- sum(x) estp <- x/n Simp <- Simpson(estp) * n/(n - 1) return(Simp) }
discrete_entropy <- function(probs, base = 2, method = c("MLE"), threshold = 0, prior.probs = NULL, prior.weight = 0) { stopifnot(!any(is.na(probs)), prior.weight >= 0, prior.weight <= 1) if (!all(round(probs, 6) >= 0)) { stop("Not all probabilities are non-negative.") } stopifnot(sum(abs(sum(probs) - 1)) < 1e-6) method <- match.arg(method) if (threshold > 0) { probs[probs < threshold] <- 0 probs <- probs / sum(probs) } if (is.null(prior.probs)) { prior.probs <- rep(1 / length(probs), length = length(probs)) } stopifnot(length(prior.probs) == length(probs), all(round(prior.probs, 6) >= 0), all.equal(target = 1., current = sum(prior.probs), tolerance=1e-5)) if (prior.weight > 0) { probs <- (1 - prior.weight) * probs + prior.weight * prior.probs } if (any(probs == 0)) { probs <- probs[abs(probs) > 1e-9] } stopifnot(all.equal(target = 1., current = sum(probs), tolerance = 1e-5)) switch(method, MLE = { entropy.eval <- -sum(probs * log(probs, base = base)) }) attr(entropy.eval, "base") <- as.character(base) return(entropy.eval) }
seqmds.stress <- function(seqdist,mds) { datadist <- as.dist(seqdist) res <- numeric(length=ncol(mds$points)) for(i in 1:ncol(mds$points)) { fitteddist <- dist(mds$points[,1:i],diag=TRUE,upper=TRUE) res[i] <- sqrt(sum((datadist-fitteddist)^2)/sum(datadist^2)) } return(res) }
cindexes.W <- function(lp, stime, status, groupe, ties, cindex, tau) { cindexg <- cpeg <- Npairsg <- comparableg <- unusableg <- concordanteg <- discordanteg <- tiedcompg <- tiedtotg <- tiedtimeg <- uno.cindexg <- rep(0,length(unique(groupe))) if(tau==0) tau=max(stime[status==1]) cens <- kmcens(stime, status, tau) GXi <- cens$surv[match(stime, cens$distinct, nomatch = 1)] Wipop <- 1/GXi/GXi * status * as.numeric(stime < tau) for(g in sort(unique(groupe)) ) { indiceg <- which(sort(unique(groupe))==g) cindexesg <- cindexes(lp[groupe==g], stime[groupe==g], status[groupe==g], ties, tau, Wipop[groupe==g], cindex) Npairsg[indiceg] <- cindexesg$Npairs cpeg[indiceg] <- cindexesg$CPE tiedtotg[indiceg] <- cindexesg$tiedtot uno.cindexg[indiceg] <- cindexesg$c.uno if(cindex==1){ cindexg[indiceg] <- cindexesg$cindex comparableg[indiceg] <- cindexesg$comparable concordanteg[indiceg] <- cindexesg$concordante discordanteg[indiceg] <- cindexesg$discordante tiedcompg[indiceg] <- cindexesg$tiedcomp tiedtimeg[indiceg] <- cindexesg$tiedtime unusableg[indiceg] <- cindexesg$unusable } } res.cpe <- mean(cpeg, na.rm=TRUE) uno.cindex <- mean(uno.cindexg, na.rm=TRUE) out <- list(Npairs=sum(Npairsg, na.rm=T),comparable=sum(comparableg, na.rm=T),tiedtot=sum(tiedtotg, na.rm=T),CPE=res.cpe, CPE.by.group=cpeg,c.uno=uno.cindex,c.uno.by.group=uno.cindexg) if(cindex==1){ cindex_global <- mean(cindexg, na.rm=TRUE) out <- c(out,concordante=sum(concordanteg, na.rm=T),discordante=sum(discordanteg, na.rm=T),tiedcomp=sum(tiedcompg, na.rm=T),tiedtime=sum(tiedtimeg, na.rm=T),unusable=sum(unusableg, na.rm=T),cindex=cindex_global,cindex.by.group=cindexg) } return(out) }
d.z.mean <- function (mu, m1, sig, sd1, n, a = .05) { if (missing(m1)){ stop("Be sure to include m1 for the sample mean.") } if (missing(mu)){ stop("Be sure to include mu for the population mean.") } if (missing(sig)){ stop("Be sure to include sig for the population standard deviation.") } if (missing(sd1)){ stop("Be sure to include sd1 for the sample standard deviation") } if (missing(n)){ stop("Be sure to include the sample size n for the sample.") } if (a < 0 || a > 1) { stop("Alpha should be between 0 and 1.") } d <- (m1 - mu) / sig se1 <- sig / sqrt(n) se2 <- sd1 / sqrt(n) dlow <- d-qnorm(a/2, lower.tail = F)*sig dhigh <- d+qnorm(a/2, lower.tail = F)*sig z <- (m1 - mu) / se1 p <- pnorm(abs(z), lower.tail = FALSE)*2 M1low <- m1 - se2 * qnorm(a/2, lower.tail = FALSE) M1high <- m1 + se2 * qnorm(a/2, lower.tail = FALSE) if (p < .001) {reportp = "< .001"} else {reportp = paste("= ", apa(p,3,F), sep = "")} output = list("d" = d, "dlow" = dlow, "dhigh" = dhigh, "M1" = m1, "sd1" = sd1, "se1" = se2, "M1low" = M1low, "M1high" = M1high, "Mu" = mu, "Sigma" = sig, "se2" = se1, "z" = z, "p" = p, "n" = n, "estimate" = paste("$d$ = ", apa(d,2,T), ", ", (1-a)*100, "\\% CI [", apa(dlow,2,T), ", ", apa(dhigh,2,T), "]", sep = ""), "statistic" = paste("$Z$", " = ", apa(z,2,T), ", $p$ ", reportp, sep = "") ) return(output) }
tidy_lognormal <- function(.n = 50, .meanlog = 0, .sdlog = 1, .num_sims = 1){ n <- as.integer(.n) num_sims <- as.integer(.num_sims) meanlog <- as.numeric(.meanlog) sdlog <- as.numeric(.sdlog) if(!is.integer(n) | n < 0){ rlang::abort( "The parameters '.n' must be of class integer. Please pass a whole number like 50 or 100. It must be greater than 0." ) } if(!is.integer(num_sims) | num_sims < 0){ rlang::abort( "The parameter `.num_sims' must be of class integer. Please pass a whole number like 50 or 100. It must be greater than 0." ) } if(!is.numeric(meanlog) | !is.numeric(sdlog)){ rlang::abort( "The parameter of rate must be of class numeric and greater than 0." ) } if(sdlog < 0){ rlang::abort("The parameter of .sdlog must be greater than or equal to 0.") } x <- seq(1, num_sims, 1) ps <- seq(-n, n-1, 2) qs <- seq(0, 1, (1/(n-1))) df <- dplyr::tibble(sim_number = as.factor(x)) %>% dplyr::group_by(sim_number) %>% dplyr::mutate(x = list(1:n)) %>% dplyr::mutate(y = list(stats::rlnorm(n = n, meanlog = meanlog, sdlog = sdlog))) %>% dplyr::mutate(d = list(density(unlist(y), n = n)[c("x","y")] %>% purrr::set_names("dx","dy") %>% dplyr::as_tibble())) %>% dplyr::mutate(p = list(stats::plnorm(ps, meanlog = meanlog, sdlog = sdlog))) %>% dplyr::mutate(q = list(stats::qlnorm(qs, meanlog = meanlog, sdlog = sdlog))) %>% tidyr::unnest(cols = c(x, y, d, p, q)) %>% dplyr::ungroup() attr(df, ".meanlog") <- .meanlog attr(df, ".sdlog") <- .sdlog attr(df, ".n") <- .n attr(df, ".num_sims") <- .num_sims attr(df, "tibble_type") <- "tidy_lognormal" attr(df, "ps") <- ps attr(df, "qs") <- qs return(df) }
aalenBaseC <- function(times, fdata, designX, status, id, clusters, robust = 0, sim = 0, retur = 0, antsim = 1000, weighted.test = 1, covariance = 0, resample.iid = 0, namesX = NULL, silent = 0, scale = 1) { Ntimes <- length(times) designX <- as.matrix(designX) if (is.matrix(designX) == TRUE) p <- as.integer(dim(designX)[2]) if (is.matrix(designX) == TRUE) nx <- as.integer(dim(designX)[1]) if (robust == 0 & sim >= 1) robust <- 1 devi <- rep(0, 1) cumint <- matrix(0, Ntimes, p + 1) Vcumint <- cumint if (retur == 1) cumAi <- matrix(0, Ntimes, fdata$antpers) else cumAi <- 0 test <- matrix(0, antsim, 3 * p) testOBS <- rep(0, 3 * p) testval <- c() unifCI <- c() rani <- -round(runif(1) * 10000) if (sim >= 1) simUt <- matrix(0, Ntimes, 50 * p) else simUt <- NULL Ut <- matrix(0, Ntimes, p + 1) if (covariance == 1) covs <- matrix(0, Ntimes, p * p) else covs <- 0 if (resample.iid == 1) { B.iid <- matrix(0, Ntimes, fdata$antclust * p) } else B.iid <- NULL if (robust == 2) { aalenout <- .C("aalen", as.double(times), as.integer(Ntimes), as.double(designX), as.integer(nx), as.integer(p), as.integer(fdata$antpers), as.double(fdata$start), as.double(fdata$stop), as.double(cumint), as.double(Vcumint), as.integer(status), PACKAGE = "timereg") robV <- NULL cumAI <- NULL test <- NULL } else { robVar <- Vcumint aalenout <- .C("robaalenC", as.double(times), as.integer(Ntimes), as.double(designX), as.integer(nx), as.integer(p), as.integer(fdata$antpers), as.double(fdata$start), as.double(fdata$stop), as.double(cumint), as.double(Vcumint), as.double(robVar), as.integer(sim), as.integer(antsim), as.integer(retur), as.double(cumAi), as.double(test), as.integer(rani), as.double(testOBS), as.integer(status), as.double(Ut), as.double(simUt), as.integer(id), as.integer(weighted.test), as.integer(robust), as.integer(covariance), as.double(covs), as.integer(resample.iid), as.double(B.iid), as.integer(clusters), as.integer(fdata$antclust), as.double(devi), as.integer(silent), PACKAGE = "timereg") if (covariance == 1) { covit <- matrix(aalenout[[26]], Ntimes, p * p) cov.list <- list() for (i in 1:Ntimes) cov.list[[i]] <- matrix(covit[i, ], p, p) } else cov.list <- NULL if (resample.iid == 1) { covit <- matrix(aalenout[[28]], Ntimes, fdata$antclust * p) B.iid <- list() for (i in (0:(fdata$antclust - 1)) * p) { B.iid[[i/p + 1]] <- as.matrix(covit[, i + (1:p)]) colnames(B.iid[[i/p + 1]]) <- namesX } } robV <- matrix(aalenout[[11]], Ntimes, p + 1) if (retur == 1) { cumAi <- matrix(aalenout[[15]], Ntimes, fdata$antpers * 1) cumAi <- list(time = times, dM = cumAi, dM.iid = cumAi) } else cumAi <- NULL } if (sim >= 1) { Uit <- matrix(aalenout[[21]], Ntimes, 50 * p) UIt <- list() for (i in (0:49) * p) UIt[[i/p + 1]] <- as.matrix(Uit[, i + (1:p)]) Ut <- matrix(aalenout[[20]], Ntimes, (p + 1)) test <- matrix(aalenout[[16]], antsim, 3 * p) testOBS <- aalenout[[18]] for (i in 1:(3 * p)) testval <- c(testval, pval(test[, i], testOBS[i])) for (i in 1:p) unifCI <- as.vector(c(unifCI, percen(test[, i], 0.95))) pval.testBeq0 <- as.vector(testval[1:p]) pval.testBeqC <- as.vector(testval[(p + 1):(2 * p)]) pval.testBeqC.is <- as.vector(testval[(2 * p + 1):(3 * p)]) obs.testBeq0 <- as.vector(testOBS[1:p]) obs.testBeqC <- as.vector(testOBS[(p + 1):(2 * p)]) obs.testBeqC.is <- as.vector(testOBS[(2 * p + 1):(3 * p)]) sim.testBeq0 <- as.matrix(test[, 1:p]) sim.testBeqC <- as.matrix(test[, (p + 1):(2 * p)]) sim.testBeqC.is <- as.matrix(test[, (2 * p + 1):(3 * p)]) } else { test <- NULL unifCI <- NULL Ut <- NULL UIt <- NULL pval.testBeq0 <- NULL pval.testBeqC <- NULL obs.testBeq0 <- NULL obs.testBeqC <- NULL sim.testBeq0 <- NULL sim.testBeqC <- NULL sim.testBeqC.is <- NULL pval.testBeqC.is <- NULL obs.testBeqC.is <- NULL } cumint <- matrix(aalenout[[9]], Ntimes, p + 1) Vcumint <- matrix(aalenout[[10]], Ntimes, p + 1) devi <- aalenout[[31]] list(cum = cumint, var.cum = Vcumint, robvar.cum = robV, residuals = cumAi, pval.testBeq0 = pval.testBeq0, obs.testBeq0 = obs.testBeq0, pval.testBeqC = pval.testBeqC, pval.testBeqC.is = pval.testBeqC.is, obs.testBeqC = obs.testBeqC, obs.testBeqC.is = obs.testBeqC.is, sim.testBeq0 = sim.testBeq0, sim.testBeqC = sim.testBeqC, sim.testBeqC.is = sim.testBeqC.is, conf.band = unifCI, test.procBeqC = Ut, sim.test.procBeqC = UIt, covariance = cov.list, B.iid = B.iid, deviance = devi) }
library('mfx') set.seed(12345) n = 1000 x = rnorm(n) y = rbeta(n, shape1 = plogis(1 + 0.5 * x), shape2 = (abs(0.2*x))) y = (y*(n-1)+0.5)/n data = data.frame(y,x) betaor(y~x|x, data=data)
pooled.colVars <- function (x, ina, std = FALSE) { m <- rowsum(x, ina) m2 <- rowsum(x^2, ina) ni <- tabulate(ina) ni <- ni[ni > 0] s <- (m2 - m^2/ni) s <- Rfast::colsums(s) / (sum(ni) - length(ni) ) if (std) s <- sqrt(s) s }
Btensorfn <- function(XbasisList, modelList) { rng <- XbasisList[[1]]$rangeval Wbasism <- create.constant.basis(rng) Wfdm <- fd(1,Wbasism) WfdParm <- fdPar(Wfdm, 0, 0, FALSE) nvar <- length(modelList) BtensorList <- vector("list", nvar) for (ivar in 1:nvar) { modelListi <- modelList[[ivar]] if (!is.null(modelListi$XList)) { nderiv <- modelListi$nallXterm + 1 BtensorListi <- vector("list",nderiv) for (jx in 1:nderiv) { BtensorListi[[jx]] <- vector("list",nderiv) } BtensorList[[ivar]] <- BtensorListi for (iw in 1:nderiv) { if (iw < nderiv) { modelListiw <- modelListi$XList[[iw]] WfdParw <- modelListiw$fun Xbasisw <- XbasisList[[modelListiw$variable]] jw <- modelListiw$derivative } else { WfdParw <- WfdParm Xbasisw <- XbasisList[[ivar]] jw <- modelListi$order } if (is.fdPar(WfdParw) || is.fd(WfdParw) || is.basis(WfdParw)) { if (is.basis(WfdParw)) { Wbasisw <- WfdParw } else { if (is.fd(WfdParw)) { Wbasisw <- WfdParw$basis } else { Wbasisw <- WfdParw$fd$basis } } Wtypew <- Wbasisw$type Xtypew <- Xbasisw$type nXbasisw <- Xbasisw$nbasis for (ix in 1:nderiv) { if (ix < nderiv) { modelListix <- modelListi$XList[[ix]] WfdParx <- modelListix$fun Xbasisx <- XbasisList[[modelListix$variable]] jx <- modelListix$derivative } else { WfdParx <- WfdParm Xbasisx <- XbasisList[[ivar]] jx <- modelListi$order } if (is.fdPar(WfdParx) || is.fd(WfdParx) || is.basis(WfdParx)) { if (is.basis(WfdParx)) { Wbasisx <- WfdParx } else { if (is.fd(WfdParx)) { Wbasisx <- WfdParx$basis } else { Wbasisx <- WfdParx$fd$basis } } Wtypex <- Wbasisx$type Xtypex <- Xbasisx$type nXbasisx <- Xbasisx$nbasis if (Wtypew == "const" && Wtypex == "const" && Xtypew == "bspline" && Xtypex == "bspline" ) { XWXWmatij <- inprod(Xbasisw, Xbasisx, jw, jx) XWXWmatij <- matrix(t(XWXWmatij), nXbasisw*nXbasisx, 1) } else { XWXWmatij <- inprod.TPbasis(Xbasisw, Wbasisw, Xbasisx, Wbasisx, jw, 0, jx, 0) } BtensorList[[ivar]][[iw]][[ix]] <- t(XWXWmatij) } } } } } else { BtensorList[[ivar]] <- 0 } } return(BtensorList) }
fi <- function(EVboot, EVdata, rank) { fni <- numeric(rank) for (ii in 1:rank) { fni[ii] <- det(crossprod(EVdata[, 1:ii], EVboot[, 1:ii])) } 1 - abs(fni) } MAmuse <- function(X, k) { n <- nrow(X) prep <- BSSprep(X) Y <- prep$Y M <- crossprod(Y[1:(n - k), ], Y[(k + 1):n, ])/(n - k) M.sym <- (M + t(M))/2 crossprod(M.sym) } AMUSEbootLADLE <- function(X, EVdata, tau, rank) { Mboot <- MAmuse(X, k = tau) EVboot <- .Call("EIGEN", Mboot, PACKAGE = "tsBSS")$vectors fi(EVboot, EVdata, rank) } MSobi <- function(X, k_set) { n <- nrow(X) p <- ncol(X) prep <- BSSprep(X) Y <- prep$Y M_array <- array(0, dim = c(p, p, length(k_set))) for (t in 1:length(k_set)) { M_array[ , , t] <- crossprod(Y[1:(n - k_set[t]), ], Y[(k_set[t] + 1):n, ])/(n - k_set[t]) M_array[ , , t] <- (M_array[ , , t] + t(M_array[, , t]))/2 } M_array } SOBIbootLADLE <- function(X, EVdata, tau, rank, maxiter, eps) { Mboot <- MSobi(X, k_set = tau) frjdboot <- JADE::frjd.int(Mboot, maxiter = maxiter, eps = eps) Dfrjd <- diag(apply(frjdboot$D^2, 1:2, sum)) EVboot <- frjdboot$V[ , order(Dfrjd, decreasing = TRUE)] fi(EVboot, EVdata, rank) }
getCloseMatch <- function(pixelArray, libraryDataFrame, nneig=20) { libraryMatrix <- libraryDataFrame[2:length(libraryDataFrame)] nnlist <- RANN::nn2(libraryMatrix, t(pixelArray), k=nneig) idx <- nnlist$nn.idx[round(runif(1, min=1, max=nneig))] return(as.character(libraryDataFrame[idx,1])) }
vcd::mosaic(~ victim + defendant + death, shade = TRUE, data = DeathPenalty %>% mutate( victim = abbreviate(victim, 2), defendant = abbreviate(defendant, 2), death = abbreviate(death, 1)) )
hack_sig <- function(expr_data, signatures = "all", method = "original", direction = "none", sample_norm = "raw", rank_norm = "none", alpha = 0.25) { compute_ss_method <- function(sigs, ss_method) { switch (ss_method, original = , ssgsea = compute_ssgsea(expr_data, sigs, sample_norm = sample_norm, rank_norm = rank_norm, alpha = alpha), zscore = compute_zscore(expr_data, sigs), singscore = compute_singscore(expr_data, sigs, direction = direction), stop("Valid choices for 'method' are 'original', 'zscore', 'ssgsea', 'singscore'", call. = FALSE) ) } if (is.matrix(expr_data) == TRUE) { expr_data <- as.data.frame(expr_data) } if (is.list(signatures)) { signatures <- lapply(signatures, FUN = unique) signatures <- signatures[lapply(signatures, length) > 1] if (is.null(names(signatures)) == TRUE) { names(signatures) <- paste0("sig", seq_along(signatures)) } check_info <- check_sig(expr_data = expr_data, signatures = signatures) check_info <- check_info[check_info$n_present == 0,] if (nrow(check_info) > 0) { signatures <- signatures[!names(signatures) %in% check_info$signature_id] rlang::warn( rlang::format_error_bullets( c("i" = "No genes are present in 'expr_data' for the following signatures:", stats::setNames(check_info$signature_id, rep_len("x", nrow(check_info)))) ) ) } compute_ss_method(signatures, method) } else if (is.character(signatures)) { sig_data <- signatures_data signatures <- paste0(signatures, collapse = "|") if (signatures != "all") { sig_data <- sig_data[grep(signatures, sig_data$signature_keywords, ignore.case = TRUE), ] if (nrow(sig_data) == 0) { stop("Provided keyword in 'signatures' does not match any class of signature.", call. = FALSE) } } check_info <- check_sig(expr_data = expr_data, signatures = signatures) check_info <- check_info[check_info$n_present == 0, ] if (nrow(check_info) > 0) { sig_data <- sig_data[!sig_data$signature_id %in% check_info$signature_id, ] rlang::warn( rlang::format_error_bullets( c("i" = "No genes are present in 'expr_data' for the following signatures:", stats::setNames(check_info$signature_id, rep_len("x", nrow(check_info)))) ) ) } sig_list <- lapply(split(sig_data[, c("signature_id", "gene_symbol")], sig_data$signature_id), FUN = `[[`, 2) sig_list <- sig_list[lapply(sig_list, length) > 1] if (method != "original") { compute_ss_method(sig_list, method) } else { rlang::inform( rlang::format_error_bullets( c("i" = "To obtain CINSARC, ESTIMATE and Immunophenoscore with the original procedures, see:", c("?hack_cinsarc", "?hack_estimate", "?hack_immunophenoscore")) ) ) sig_data <- sig_data[!grepl("cinsarc|estimate|ips", sig_data$signature_keywords), ] sig_list <- sig_list[!grepl("cinsarc|estimate|ips", names(sig_list))] method_list <- tibble::deframe( sig_data[!duplicated(sig_data[, c("signature_id", "signature_method")]), c("signature_id", "signature_method")] ) method_list <- method_list[match(names(sig_list), names(method_list))] method_list <- gsub("\\|.*", "", method_list) weight_list <- lapply(split(sig_data[, c("signature_id", "gene_weight")], sig_data$signature_id), FUN = `[[`, 2) result <- vector("list", length = length(sig_list)) for (i in names(method_list)) { if (grepl("weighted_sum", method_list[[i]])) { expr_mat <- expr_data if (method_list[[i]] == "weighted_sum_rank") { expr_mat <- apply(expr_mat[sig_list[[i]], ], MARGIN = 2, FUN = rank, na.last = "keep") expr_mat <- as.data.frame(expr_mat) } temp <- tibble::enframe( colSums(expr_mat[sig_list[[i]], ] * weight_list[[i]], na.rm = TRUE), name = "sample_id", value = "sig_score" ) temp$signature_id <- i } else if (grepl("mean", method_list[[i]])) { temp <- tibble::enframe( colMeans(expr_data[sig_list[[i]], ], na.rm = TRUE), name = "sample_id", value = "sig_score" ) temp$signature_id <- i } else if (grepl("median", method_list[[i]])) { temp <- tibble::enframe( apply(expr_data[sig_list[[i]], ], MARGIN = 2, FUN = stats::median, na.rm = TRUE), name = "sample_id", value = "sig_score" ) temp$signature_id <- i } else { temp <- compute_ssgsea(expr_data, sig_list[i], sample_norm = sample_norm, rank_norm = rank_norm, alpha = alpha) temp$sig_score <- temp[, i, drop = TRUE] temp[, i] <- NULL temp$signature_id <- i } result[[i]] <- temp } result <- dplyr::bind_rows(result) tidyr::pivot_wider(result, id_cols = "sample_id", names_from = "signature_id", values_from = "sig_score") } } else stop("Argument 'signatures' must be a named list of gene signatures or a string with a keyword.", call. = FALSE) }
weightsMMD <- function(data,Y,X1,X2,subject,death,time,interval.death=0,name="weight") { if(missing(data)) stop("Please specify the dataset in argument data") if(missing(Y)) stop("Please specify the outcome in argument Y") if(missing(subject)) stop("Please specify the group variable in argument subject") if(missing(death)) stop("Please specify death time in argument death") if(missing(time)) stop("Please specify time variable in argument time") if(!is.data.frame(data)) stop("data should be a data frame") if(!is.character(Y)) stop("Y should be a character") if(!(Y %in% colnames(data))) stop("data should contain Y") if(!is.null(X1)) { if(!all(is.character(X1))) stop("X1 should only contain characters") if(!all((X1 %in% colnames(data)))) stop("data should contain X1") } if(!is.null(X2)) { if(!all(is.character(X2))) stop("X2 should only contain characters") if(!all((X2 %in% colnames(data)))) stop("data should contain X2") } if(!is.character(subject)) stop("subject should be a character") if(!(subject %in% colnames(data))) stop("data should contain subject") if(!is.character(death)) stop("death should be a character") if(!(death %in% colnames(data))) stop("data should contain death") if(!is.character(time)) stop("time should be a character") if(!(time %in% colnames(data))) stop("data should contain time") if(!all(is.numeric(interval.death))) stop("interval.death should only contain numeric values") if(!is.character(name)) stop("name should be a character") data2 <- data[which(!is.na(data[,Y])),c(subject,time,X1,X2,Y,death)] wide <- reshape(data2, v.names=Y, idvar=subject, timevar=time, direction = "wide") y.t <- paste(Y,unique(data[,time]),sep=".") nt <- length(y.t) matobs <- matrix(-1,nrow(wide),nt) colnames(matobs) <- paste("obs_t",1:nt,sep="") for(j in 1:nt) { matobs[,j] <- ifelse(!is.na(wide[,y.t[j]]),1,ifelse((is.na(wide[,death])) | (wide[,death]>j),0,NA)) } wide_avecobs <- data.frame(wide,matobs) prob <- function(wide,Y,X1,X2,subject,death,suivi,delta) { matobs <- wide[,(ncol(wide)-nt+1):ncol(wide)] sample <- vector("list",nt-1) for(j in 2:nt) { if((j+delta)<=nt) { sample[[j-1]] <- subset(wide,!is.na(matobs[,j]) & !is.na(matobs[,j+delta])) } } reponse.var <- paste("obs_t",1:nt,sep="") nmes <- rep(NA,nt-1) poole <- NULL for(j in 1:(nt-1-delta)) { dat <- sample[[j]][,c(subject,reponse.var[j+1],X1,X2,y.t[j])] dat$suivi <- j+1 nmes[j] <- nrow(dat) colnames(dat) <- c(subject,"R",X1,X2,"Yavt","suivi") poole <- rbind(poole,dat) } colnames(poole) <- c(subject,"R",X1,X2,"Yavt","suivi") poole <- poole[which(!is.na(poole$Yavt)),] if(delta==0) { covar1 <- c(X1,X2) form1 <- formula(paste("R~-1+factor(suivi)+",paste(covar1,collapse="+"))) reg1 <- glm(form1,family="binomial",data=poole) if(reg1$converged==TRUE) { coefnum <- reg1$coefficients senum <- sqrt(diag(vcov(reg1))) } else { coefnum <- NA senum <- NA } } form2 <- "R~-1+factor(suivi)" if(length(X1)) { form2 <- paste(form2,"+(",paste(X1,collapse="+"),")*Yavt",sep="") } if(length(X2)) { form2 <- paste(form2,"+",paste(X2,collapse="+"),sep="") } reg2 <- glm(form2,family="binomial",data=poole) if(reg2$converged==TRUE) { coefden <- reg2$coefficients seden <- sqrt(diag(vcov(reg2))) } else { coefden <- NA seden <- NA } dtmp <- poole[,c(subject,"R",X1,X2,"Yavt","suivi")] dpred <- dtmp[order(dtmp$suivi,dtmp[,subject]),] pred <- predict(reg2,newdata=dpred) d_avecpred <- data.frame(dpred,pden=1/(1+exp(-pred))) if(delta==0) { d_avecpred <- d_avecpred[order(d_avecpred[,subject],d_avecpred[,"suivi"]),] pred <- predict(reg1,newdata=d_avecpred) d_avecpred$pnum <- 1/(1+exp(-pred)) d_avecpred$pnum <- unlist(tapply(d_avecpred$pnum,d_avecpred[,subject],cumprod)) } colnames(d_avecpred)[which(colnames(d_avecpred)=="pden")] <- paste("pden",delta,sep="") if(delta==0) { res <- list(d_avecpred,coefden,seden,coefnum,senum) } else { res <- list(d_avecpred,coefden,seden) } return(res) } for(delta in interval.death) { res <- prob(wide=wide_avecobs,Y=Y,X1=X1, X2=X2,subject=subject,death=death, suivi=time,delta=delta) if(delta==0) { data3 <- merge(data2,res[[1]][,c(subject,"suivi","Yavt","pnum","pden0")],by.x=c(subject,time),by.y=c(subject,"suivi"),all.x=TRUE) coef <- list(res[[4]],res[[2]]) se <- list(res[[5]],res[[3]]) } else { data3 <- merge(data3,res[[1]][,c(subject,"suivi",paste("pden",delta,sep=""))],by.x=c(subject,time),by.y=c(subject,"suivi"),all.x=TRUE) coef <- c(coef,list(res[[2]])) se <- c(se,list(res[[3]])) } } data3 <- data3[order(data3[,subject],data3[,time]),] data3[which(data3[,time]==1),paste("pden",interval.death,sep="")] <- 1 for(l in 1:nrow(data3)) { if(data3[l,time]==1) { data3$pden[l] <- 1 data3$pnum[l] <- 1 } else { j <- data3[l,time] kk <- cut(0:(j-2),breaks=c(interval.death,nt+1),labels=interval.death,right=FALSE) kk <- as.numeric(as.character(kk)) ll <- l-0:(j-2) p <- apply(cbind(ll,kk),1,function(x,d) d[x[1],paste("pden",x[2],sep="")],d=data3) data3$pden[l] <- prod(p) } } data3$poids <- data3$pnum/data3$pden ajout <- data3[,c(subject,time,"poids")] colnames(ajout) <- c(subject,time,name) data_poids <- merge(data,ajout,all.x=TRUE,sort=FALSE) return(list(data=data_poids,coef=coef,se=se)) }
modcall <- function(call, newcall, newargs, keepargs, dropargs) { if (hasArg(keepargs)) { call_arg <- match(keepargs, names(call), 0) call <- call[c(1, call_arg)] } lcall <- as.list(call) if (hasArg(newcall)) { lcall[[1]] <- substitute(newcall) } if (hasArg(dropargs)) { for (i in dropargs) { lcall[[i]] <- NULL } } if (hasArg(newargs)) { lcall <- c(lcall, newargs) } return(as.call(lcall)) }
order_probs <- function(draw_size, k, n) { return(rbeta(draw_size, k, n + 1 - k)) } order_rnorm <- function (draw_size = 1, mean = 0, sd = 1, k = 1, n =1) { orders <- order_probs(draw_size, k, n) return(qnorm(orders, mean, sd)) } order_rchisq <- function (draw_size, df, k, n) { orders <- order_probs(draw_size, k, n) return(qchisq(orders, df)) } order_rcauchy <- function (draw_size = 1, location = 0, scale = 1, k = 1, n = 1) { orders <- order_probs(draw_size, k, n) return(qcauchy(orders, location, scale)) } order_rlogis <- function (draw_size, location, scale, k, n) { orders <- order_probs(draw_size, k, n) return(qlogis(orders, location = location, scale = scale)) } order_rgamma <- function (draw_size, shape, scale, k, n) { orders <- order_probs(draw_size, k, n) return(qgamma(orders, shape = shape, scale = scale)) } order_rexp <- function (draw_size, rate, k, n) { orders <- order_probs(draw_size, k, n) return(qexp(orders, rate = rate)) }
set.seed(888) type = c(rep("Tumor", 10), rep("Control", 10)) gender = sample(c("F", "M"), 20, replace = TRUE) gender[sample(1:20, 2)] = NA age = runif(20, min = 30, max = 80) mutation = data.frame(mut1 = sample(c(TRUE, FALSE), 20, p = c(0.2, 0.8), replace = TRUE), mut2 = sample(c(TRUE, FALSE), 20, p = c(0.3, 0.7), replace = TRUE)) anno = data.frame(type = type, gender = gender, age = age, mutation, stringsAsFactors = FALSE) anno_col = list(type = c("Tumor" = "red", "Control" = "blue"), gender = c("F" = "pink", "M" = "darkgreen"), mutation = c("TRUE" = "black", "FALSE" = " rand_meth = function(k, mean) { (runif(k) - 0.5)*min(c(1-mean), mean) + mean } mean_meth = c(rand_meth(300, 0.3), rand_meth(700, 0.7)) mat_meth = as.data.frame(lapply(mean_meth, function(m) { if(m < 0.3) { c(rand_meth(10, m), rand_meth(10, m + 0.2)) } else if(m > 0.7) { c(rand_meth(10, m), rand_meth(10, m - 0.2)) } else { c(rand_meth(10, m), rand_meth(10, m + sample(c(1, -1), 1)*0.2)) } })) mat_meth = t(mat_meth) rownames(mat_meth) = NULL colnames(mat_meth) = paste0("sample", 1:20) direction = rowMeans(mat_meth[, 1:10]) - rowMeans(mat_meth[, 11:20]) direction = ifelse(direction > 0, "hyper", "hypo") library(circlize) mat_expr = t(apply(mat_meth, 1, function(x) { x = x + rnorm(length(x), sd = abs(runif(1)-0.5)*0.4 + 0.1) -scale(x) })) dimnames(mat_expr) = dimnames(mat_meth) cor_pvalue = sapply(seq_len(nrow(mat_meth)), function(i) { cor.test(mat_meth[i, ], mat_expr[i, ])$p.value }) gene_type = sample(c("protein_coding", "lincRNA", "microRNA", "psedo-gene", "others"), nrow(mat_meth), replace = TRUE, prob = c(6, 1, 1, 1, 1)) anno_gene = sapply(mean_meth, function(m) { if(m > 0.6) { if(runif(1) < 0.8) return("intragenic") } if(m < 0.4) { if(runif(1) < 0.4) return("TSS") } return("intergenic") }) anno_gene_col = c("intragenic" = "blue", "TSS" = "red", "intergenic" = "grey") tss_dist = sapply(mean_meth, function(m) { if(m < 0.3) { if(runif(1) < 0.5) { return(round( (runif(1) - 0.5)*1000 + 500)) } else { return(round( (runif(1) - 0.5)*10000 + 500)) } } else if(m < 0.6) { if(runif(1) < 0.8) { return(round( (runif(1)-0.5)*100000 + 50000 )) } else { return(round( (runif(1)-0.5)*1000000 + 500000 )) } } return(round( (runif(1) - 0.5)*1000000 + 500000)) }) rand_tss = function(m) { if(m < 0.4) { if(runif(1) < 0.25) return(runif(1)) } else if (runif(1) < 0.1) { return(runif(1)) } return(0) } rand_enhancer = function(m) { if(m < 0.4) { if(runif(1) < 0.6) return(runif(1)) } else if (runif(1) < 0.1) { return(runif(1)) } return(0) } rand_repressive = function(m) { if(m > 0.4) { if(runif(1) < 0.8) return(runif(1)) } return(0) } anno_states = data.frame( tss = sapply(mean_meth, rand_tss), enhancer = sapply(mean_meth, rand_enhancer), repressive = sapply(mean_meth, rand_repressive)) save(mat_meth, mat_expr, anno, anno_col, anno_states, cor_pvalue, direction, anno_gene, gene_type, tss_dist, file = "random_meth_expr_data.RData")
ipums_view <- function(x, out_file = NULL, launch = TRUE) { if ( !requireNamespace("htmltools", quietly = TRUE) || !requireNamespace("shiny", quietly = TRUE) || !requireNamespace("DT", quietly = TRUE) ) { stop(custom_format_text( "Please install htmltools, shiny, and DT using ", "`install.packages(c('htmltools', 'shiny', 'DT')", indent = 2, exdent = 2 )) } if (is.null(out_file)) out_file <- paste0(tempfile(), ".html") file_info <- ipums_file_info(x) var_info <- ipums_var_info(x) var_info <- dplyr::bind_rows(var_info, empty_var_info_df()) html_page <- shiny::basicPage( htmltools::tags$h1("IPUMS Data Dictionary Viewer"), file_info_html(file_info), purrr::pmap(var_info, display_ipums_var_row, project = file_info$ipums_project) ) html_page <- add_jquery_dependency(html_page) htmltools::save_html(html_page, out_file) if (launch) { if (requireNamespace("rstudioapi", quietly = TRUE)) { rstudioapi::viewer(out_file) } else { shell.exec(out_file) } invisible(out_file) } else { out_file } } file_info_html <- function(file_info) { if (is.null(file_info)) { htmltools::tags$div( htmltools::tags$h2("Extract Information"), htmltools::tags$p("Not available") ) } else { htmltools::tags$div( htmltools::tags$h2("Extract Information"), htmltools::tags$p(htmltools::tags$b("Project: "), file_info$ipums_project), htmltools::tags$p(htmltools::tags$b("Date Created: "), file_info$extract_date), htmltools::tags$p( htmltools::tags$b("Extract Notes: "), convert_single_linebreak_to_brtags(file_info$extract_notes) ), htmltools::tags$p( htmltools::tags$b("Conditions / Citation"), htmltools::tags$a( "(Click to expand)", `data-toggle` = "collapse", `href` = " `aria-expanded` = "false" ), htmltools::tags$div( split_double_linebreaks_to_ptags(file_info$conditions), split_double_linebreaks_to_ptags(file_info$citation), id = "collapseConditions", class = "collapse" ) ), htmltools::tags$h2("Variable Information"), htmltools::tags$p("Click variable name for more details") ) } } display_ipums_var_row <- function(var_name, var_label, var_desc, val_labels, code_instr, project, ...) { if (is.na(var_label)) var_label <- "-" if (is.na(var_desc)) var_desc <- "No variable description available..." vd_html <- split_double_linebreaks_to_ptags(var_desc) if (is.na(code_instr)) code_instr <- "N/A" code_instr <- split_double_linebreaks_to_ptags(code_instr) if (nrow(val_labels) > 0) { value_labels <- DT::datatable(val_labels, style = "bootstrap", rownames = FALSE, width = "100%") } else { value_labels <- htmltools::tags$p("N/A") } url <- try( ipums_website(var = var_name, project = project, launch = FALSE, verbose = FALSE, var_label = var_label), silent = TRUE ) if (class(url)[1] == "try-error") { link <- NULL } else { link <- htmltools::a(href = url, "More details") } expandable_div( var_name, var_label, shiny::fluidRow( shiny::column(6, htmltools::tags$h3("Variable Description"), vd_html, link), shiny::column( 6, htmltools::tags$h3("Value Labels"), htmltools::tags$h4("Coding Instructions"), code_instr, htmltools::tags$h4("Labelled Values"), value_labels ) ) ) } expandable_div <- function(title, subtitle, content) { htmltools::tags$div( class = "panel panel-default", htmltools::tags$div( class = "panel-heading", htmltools::tags$div( class = "panel-title", htmltools::tags$a( class = "accordion-toggle", `data-toggle` = "collapse", `data-parent` = " `aria-expanded` = "false", href = paste0(" htmltools::tags$div( htmltools::tags$i(class = "more-less glyphicon glyphicon-plus"), htmltools::tags$h2( title, style = "display:inline-block; padding-right:0.5em" ), htmltools::tags$h5(subtitle) ) ) ) ), htmltools::tags$div( id = title, class = "panel-colapse collapse", htmltools::tags$div( class = "panel-body", content ) ) ) } split_double_linebreaks_to_ptags <- function(x) { if (is.null(x)) return("") out <- fostr_split(x, "\n\n")[[1]] purrr::map(out, htmltools::tags$p) } convert_single_linebreak_to_brtags <- function(x) { if (is.null(x)) return(NULL) split <- fostr_split(x, "\n")[[1]] if (length(split) == 1) return(x) out <- vector(mode = "list", length = (length(split) - 1) * 2 - 1) for (iii in seq_along(split)){ out[[(iii - 1) * 2 + 1]] <- split[iii] if (iii != length(split)) out[[(iii - 1) * 2 + 2]] <- htmltools::tags$br() } out } add_jquery_dependency <- function(page) { jquery_dir <- c( href = "shared/jquery", file = system.file("htmlwidgets/lib/jquery/", package = "DT") ) page <- htmltools::attachDependencies( page, htmltools::htmlDependency("jquery", "1.12.4", jquery_dir, script = "jquery.min.js"), append = TRUE ) htmltools::htmlDependencies(page) <- rev(htmltools::htmlDependencies(page)) page } empty_var_info_df <- function() { tibble::tibble( var_name = character(0), var_label = character(0), var_desc = character(0), val_labels = list(), code_instr = character(0) ) }
riingo_fundamentals_meta <- function(ticker) { assert_x_inherits(ticker, "ticker", "character") type <- "tiingo" endpoint <- "fundamentals-meta" ticker <- glue::glue_collapse(ticker, ",") riingo_url <- construct_url( type, endpoint, ticker = NULL, tickers = ticker ) cont_df <- content_downloader(riingo_url, ticker) cont_tbl <- clean_json_df(cont_df, type, endpoint) cont_tbl }
print.summary.learnIQ1main <- function (x, ...){ cat ("Main Effect Term Regression: \n"); print (summary (x$s1Reg)); }
summary.bin.bin <- function(object, ...){ cat("\nThe forecasts are binary, the observations are binary.\n") cat("The contingency table for the forecast \n") print(object$tab) cat("\n") cat(paste("PODy = ", formatC(object$POD, digits = 4), "\n")) cat(paste("Std. Err. for POD = ", formatC(object$POD.se), "\n")) cat(paste("TS = ", formatC(object$TS, digits = 4), "\n")) cat(paste("Std. Err. for TS = ", formatC(object$TS.se), "\n")) cat(paste("ETS = ", formatC(object$ETS, digits = 4), "\n")) cat(paste("Std. Err. for ETS = ", formatC(object$ETS.se), "\n")) cat(paste("FAR = ", formatC(object$FAR, digits = 4), "\n")) cat(paste("Std. Err. for FAR = ", formatC(object$FAR.se), "\n")) cat(paste("HSS = ", formatC(object$HSS, digits = 4), "\n")) cat(paste("Std. Err. for HSS = ", formatC(object$HSS.se), "\n")) cat(paste("PC = ", formatC(object$PC, digits = 4), "\n")) cat(paste("Std. Err. for PC = ", formatC(object$PC.se), "\n")) cat(paste("BIAS = ", formatC(object$BIAS, digits = 4), "\n")) cat(paste("Odds Ratio = ", formatC(object$theta, digits = 4), "\n")) cat(paste("Log Odds Ratio = ", formatC(object$log.theta, digits = 4), "\n")) cat(paste("Std. Err. for log Odds Ratio = ", formatC(object$LOR.se), "\n")) cat(paste("Odds Ratio Skill Score = ", formatC(object$orss, digits = 4), "\n")) cat(paste("Std. Err. for Odds Ratio Skill Score = ", formatC(object$ORSS.se), "\n")) cat(paste("Extreme Dependency Score (EDS) = ", formatC(object$eds, digits = 4), "\n")) cat(paste("Std. Err. for EDS = ", formatC(object$eds.se, digits=4), "\n")) cat(paste("Symmetric Extreme Dependency Score (SEDS) = ", formatC(object$seds, digits = 4), "\n")) cat(paste("Std. Err. for SEDS = ", formatC(object$seds.se, digits=4), "\n")) cat(paste("Extremal Dependence Index (EDI) = ", formatC(object$EDI, digits=4), "\n")) cat(paste("Std. Err. for EDI = ", formatC(object$EDI.se, digits=4), "\n")) cat(paste("Symmetric Extremal Dependence Index (SEDI) = ", formatC(object$SEDI, digits=4), "\n")) cat(paste("Std. Err. for SEDI = ", formatC(object$SEDI.se, digits=4), "\n")) }
RMSD_DIF <- function(pooled_mod, flag = 0, probfun = TRUE, dentype = 'norm'){ dat <- extract.mirt(pooled_mod, 'data') group <- extract.mirt(pooled_mod, "group") which.groups <- extract.mirt(pooled_mod, 'groupNames') ret <- vector('list', length(which.groups)) names(ret) <- which.groups for(which.group in which.groups){ smod <- extract.group(pooled_mod, which.group) nfact <- extract.mirt(smod, 'nfact') stopifnot(nfact == 1L) sv <- mod2values(smod) sv$est <- FALSE Theta <- matrix(seq(-6,6,length.out = 201)) mod_g <- mirt(subset(dat, group == which.group), nfact, itemtype = extract.mirt(smod, 'itemtype'), pars = sv, technical = list(storeEtable=TRUE, customTheta=Theta)) Etable <- mod_g@Internals$Etable[[1]]$r1 if(dentype %in% c('norm', 'snorm')){ mu <- sv$value[sv$name == "MEAN_1"] sigma2 <- sv$value[sv$name == "COV_11"] if(dentype == 'snorm'){ mu <- 0 sigma2 <- 1 } f_theta <- dnorm(Theta, mean = mu, sd = sqrt(sigma2)) f_theta <- as.vector(f_theta / sum(f_theta)) } else if(dentype == 'empirical'){ f_theta <- rowSums(Etable) / sum(Etable) } else stop('dentype not supported', call.=FALSE) itemloc <- extract.mirt(mod_g, 'itemloc') which.items <- 1L:ncol(dat) ret2 <- vector('list', ncol(dat)) names(ret2) <- extract.mirt(mod_g, 'itemnames') for(i in seq_len(length(which.items))){ pick <- itemloc[which.items[i]]:(itemloc[which.items[i]+1L] - 1L) O <- Etable[ ,pick] P_o <- O / rowSums(O) item <- extract.item(smod, which.items[i]) P_e <- probtrace(item, Theta) ret2[[i]] <- if(probfun){ sqrt(colSums((P_o - P_e)^2 * f_theta)) } else { S <- 1L:ncol(P_o)- 1L c("S(theta)" = sqrt(sum(( colSums(S*t(P_o - P_e)) )^2 * f_theta))) } } nms <- lapply(ret2, names) unms <- unique(do.call(c, nms)) items <- matrix(NA, length(ret2), length(unms)) rownames(items) <- names(ret2) colnames(items) <- unms for(i in seq_len(nrow(items))) items[i, nms[[i]]] <- ret2[[i]] if(flag > 0) items[items < flag] <- NA items <- as.data.frame(items) items <- as.mirt_df(items) ret[[which.group]] <- items } ret }
test_that("We can compute the vertex neighborhood using igraph.", { if(requireNamespace("igraph", quietly = TRUE)) { testthat::skip_on_cran(); fsbrain::download_optional_data(); subjects_dir = fsaverage.path(allow_fetch = TRUE); subject_id = 'fsaverage'; surface = subject.surface(subjects_dir, subject_id, surface = "white", hemi = "lh"); g = fs.surface.to.igraph(surface); neighbors_igraph = igraph::neighborhood(g, order = 1, nodes = 15); neighbors_fsbrain = mesh.vertex.neighbors(surface, source_vertices = 15, k = 1); testthat::expect_true(all(sort(as.integer(unlist(neighbors_igraph))) == sort(neighbors_fsbrain$vertices))); neighbors_igraph_wrapped = fsbrain:::fs.surface.vertex.neighbors(surface, nodes = 15, order = 1, include_self = TRUE); testthat::expect_equal(sort(neighbors_igraph_wrapped), sort(neighbors_fsbrain$vertices)); } else { testthat::skip("This test requires the 'igraph' package."); } })
read.emusegs <- function(file) { if( is.R() && as.numeric(version$minor) > 3.0 ) { lines <- scan(file, what = "", sep="\n", comment.char="") } else { lines <- scan(file, what = "", sep="\n") } inheader <- 1 i <- 1 labels <- start <- end <- utts <- NULL while( i < length(lines) && inheader) { if( lines[i] == " inheader <- 0 } else { foo <- splitstring( lines[i], ":" ) if( foo[1] == "database" ) database <- paste(foo[-1], sep=":") if( foo[1] == "query" ) { query <- paste(foo[-1], sep=":") } if( foo[1] == "type" ) type <- paste(foo[-1], sep=":") i <- i + 1 } } if (inheader) { stop( "End of header ( } mat <- matscan( file, 4, what="", sk=i ) segs <- make.seglist(mat[,1], mat[,2], mat[,3], mat[,4], query, type, database ) segs } if( version$major >= 5 ) { setOldClass(c("emusegs", "data.frame")) } make.seglist <- function(labels, start, end, utts, query, type, database) { seglist <- data.frame(labels=I(as.character(labels)), start=as.numeric(start), end=as.numeric(end), utts=I(as.character(utts))) if( version$major >= 5 ) { oldClass(seglist) <- "emusegs" } else { class(seglist) <- c("emusegs", "data.frame") } attr(seglist, "query") <- query attr(seglist, "type") <- type attr(seglist, "database") <- database seglist } is.seglist <- function(object) { return( inherits(object, "emusegs") ) } "modify.seglist" <- function( segs, labels=label.emusegs(segs), start=start.emusegs(segs), end=end.emusegs(segs), utts=utt.emusegs(segs), query=emusegs.query(segs), type=emusegs.type(segs), database=emusegs.database(segs)) { make.seglist( labels, start, end, utts, query, type, database ) } "emusegs.database" <- function(sl) { if(is.seglist(sl)) attr(sl, "database") else stop( "not an emu segment list" ) } "emusegs.type" <- function(sl) { if(is.seglist(sl)) attr(sl, "type") else stop( "not an emu segment list" ) } "emusegs.query" <- function(sl) { if(is.seglist(sl)) attr(sl, "query") else stop( "not an emu segment list" ) } "print.emusegs" <- function(x, ...) { cat(attributes(x)$type, " list from database: ", attributes(x)$database, "\n") cat("query was: ", attributes(x)$query, "\n" ) if( version$major >= 5 ) { oldClass(x) <- "data.frame" } else { class(x) <- "data.frame" } print.data.frame(x, ...) } summary.emusegs <- function(object, ...) { cat(attributes(object)$type, " list from database: ", attributes(object)$database, "\n") cat("query was: ", attributes(object)$query, "\n" ) cat(" with", length(object$start), "segments\n\n") cat("Segment distribution:\n") print(table(object$label)) invisible() } "label" <- function(segs) { UseMethod("label") } "label.emusegs" <- function(segs) { as.character(segs$label) } "as.matrix.emusegs" <- function(x, ...) { cbind( as.character(x$label), x$start, x$end, as.character(x$utt) ) } "write.emusegs" <- function(seglist, file) { if(inherits(seglist,"emuRsegs")){ warning("You are using the write function of the legacy class emusegs for an emuRsegs object. The persisted object cannot be read back as emuRsegs object. It is recommended to use standard R function save() instead to persist an emuRsegs object.") } cat(paste("database:", attributes(seglist)$database, "\n", sep=""), file=file) cat(paste("query:", attributes(seglist)$query, "\n", sep=""), file=file, append=TRUE) cat(paste("type:", attributes(seglist)$type, "\n", sep=""), file=file, append=TRUE) cat(" write(t(as.matrix(seglist)), file, ncolumns = 4, append=TRUE) } "start.emusegs" <- function(x, ...) { as.numeric(x$start) } "end.emusegs" <- function(x, ...) { as.numeric(x$end) } "utt" <- function(x) { UseMethod("utt") } "utt.emusegs" <- function(x) { as.character(x$utts) } "dur" <- function(x) { UseMethod("dur") } "dur.emusegs" <- function (x) { if(all(end(x)==0)) d <- end(x) else d <- end(x) - start(x) d }
stopifnot(require("testthat"), require("glmmTMB"), require("MASS")) context("weight") set.seed(1) nrep <- 20 nsim <- 5 sdi <- .1 sdii <- .2 rho <- -.1 slope <- .8 ni<-100 dat <- expand.grid(i=1:ni, rep=1:nrep , x=c(0 ,.2, .4)) RE <- MASS::mvrnorm(n = ni, mu =c(0, 0), Sigma = matrix(c(sdi*sdi, rho*sdi*sdii, rho*sdi*sdii ,sdii*sdii),2,2)) inddat <- transform(dat, y=rpois(n=nrow(dat), lambda = exp(RE[i,1] + x*(slope + RE[i,2])))) aggdat <- with(inddat,as.data.frame(table(i,x,y), stringsAsFactors=FALSE)) aggdat <- aggdat[with(aggdat,order(i,x,y)),] aggdat <- subset(aggdat,Freq>0) aggdat <- transform(aggdat, i=as.integer(i), x=as.numeric(x), y=as.numeric(y)) test_that("Weights can be an argument", { wei_glmmtmb <<- glmmTMB(y ~ x+(x|i), data=aggdat, weight=Freq, family="poisson") expect_equal(unname(fixef(wei_glmmtmb)$cond), c(-0.00907013282660578, 0.944062427131668), tolerance=1e-6) }) test_that("Return weights", { expect_equal(weights(wei_glmmtmb), aggdat$Freq) expect_equal(weights(wei_glmmtmb, type="prior"), aggdat$Freq) expect_equal(weights(wei_glmmtmb, type="prio"), aggdat$Freq) expect_error(weights(wei_glmmtmb, type = "working"),"should be one of") expect_warning(weights(wei_glmmtmb, junk = "abc"), "unused arguments ignored") }) ind_glmmtmb <<- glmmTMB(y ~ x+(x|i), data=inddat, family="poisson") test_that("Estimates are the same", { expect_equal(summary(wei_glmmtmb)$coefficients$cond, summary(ind_glmmtmb)$coefficients$cond, tolerance=1e-6) expect_equal(ranef(wei_glmmtmb), ranef(ind_glmmtmb), tolerance=1e-5) expect_equal(AIC(wei_glmmtmb), AIC(ind_glmmtmb), tolerance=1e-5) })
SAS.uncomment <- function( SASinput , starting.comment , ending.comment ){ for ( i in 1:length(SASinput) ){ slash_asterisk <- unlist( gregexpr( starting.comment , SASinput[ i ] , fixed = T ) ) asterisk_slash <- unlist( gregexpr( ending.comment , SASinput[ i ] , fixed = T ) ) if ( !( -1 %in% slash_asterisk ) ){ if ( max( asterisk_slash ) > min( slash_asterisk ) ){ SASinput[ i ] <- sub( substr( SASinput[ i ] , slash_asterisk[1] , asterisk_slash[1] + 1 ) , "" , SASinput[ i ] , fixed = T ) i <- i - 1 } else { SASinput[ i ] <- sub( substr( SASinput[ i ] , slash_asterisk[1] , nchar( SASinput[ i ] ) ) , "" , SASinput[ i ] , fixed = T ) j <- i while( max( asterisk_slash ) < 0 ){ j <- j + 1 asterisk_slash <- unlist( gregexpr( ending.comment , SASinput[ j ] , fixed = T ) ) if ( max( asterisk_slash ) < 0 ) SASinput[ j ] <- "" else SASinput[ j ] <- sub( substr( SASinput[ j ] , 1 , asterisk_slash[1] + 1 ) , "" , SASinput[ j ] , fixed = T ) } } } } SASinput }
test_that("classif_bdk", { requirePackagesOrSkip("kohonen", default.method = "load") parset.list1 = list( list(), list(grid = class::somgrid(xdim = 2L, ydim = 4L)), list(rlen = 50L) ) parset.list2 = list( list(), list(xdim = 2L, ydim = 4L), list(rlen = 50L) ) old.probs.list = old.predicts.list = list() for (i in seq_along(parset.list1)) { pars = parset.list1[[i]] pars$data = as.matrix(binaryclass.train[, -binaryclass.class.col]) pars$Y = binaryclass.train[, binaryclass.class.col] pars$keep.data = FALSE set.seed(getOption("mlr.debug.seed")) m = do.call(kohonen::bdk, pars) p = predict(m, as.matrix(binaryclass.test[, -binaryclass.class.col])) old.predicts.list[[i]] = p$prediction old.probs.list[[i]] = p$unit.predictions[p$unit.classif, 1L] } testSimpleParsets("classif.bdk", binaryclass.df, binaryclass.target, binaryclass.train.inds, old.predicts.list, parset.list2) testProbParsets("classif.bdk", binaryclass.df, binaryclass.target, binaryclass.train.inds, old.probs.list, parset.list2) }) test_that("classif_bdk keep.data is passed correctly", { train(makeLearner("classif.bdk", keep.data = FALSE), binaryclass.task) train(makeLearner("classif.bdk", keep.data = TRUE), binaryclass.task) })
setClass("tvMGarch", slots = c( out_of_sample_prop = "numeric", out_of_sample_y = "matrix", in_sample_y = "matrix" ), prototype = list( out_of_sample_prop = .1 ), contains="simMGarch" )
ca3basic <- function(x, p, q, r, test = 10^-6, ctr = T, std = T){ nnom <- dimnames(x) nomi <- nnom[[1]] nomj <- nnom[[2]] nomk <- nnom[[3]] xs <- standtab(x, ctr = ctr, std = std) * sqrt(sum(x)) res <- tucker(xs, p, q, r, test) ncore<-dim(res$g) np <- paste("p", 1:ncore[1], sep = "") nq <- paste("q", 1:ncore[2], sep = "") nr <- paste("r", 1:ncore[3], sep = "") dimnames(res$g) <- list(np, nq, nr) res$xs <- xs xhat <- reconst3(res) nx2 <- sum(xs^2) res$tot <- nx2 nxhat2 <- sum(xhat^2) ng2 <- sum(res$g^2) prp <- ng2/nx2 res$ctr <- list(cti = res$a^2, ctj = res$b^2, ctk = res$cc^2) comp <- coord(res, x) res$xinit <- x dimnames(comp$a) <- list(nomi, np) dimnames(comp$b) <- list(nomj, nq) dimnames(comp$cc) <- list(nomk, nr) dimnames(xhat) <- list(nomi, nomj, nomk) ca3results<-list( x = x, xs = xs, xhat = xhat, nxhat2 = nxhat2, prp = prp, a = comp$a, b = comp$b, cc = comp$cc, g = res$g, iteration = res$cont) return(ca3results) }
message("\n---- Test sen2r_getElements ----") fs2nc_examplename <- "/path/of/the/product/S2A1C_20170603_022_32TQQ_TOA_20.tif" testthat::test_that( "Tests on sen2r_getElements", { meta <- sen2r_getElements(fs2nc_examplename) testthat::expect_is(meta, "data.table") testthat::expect_equal(meta, data.table( type = "tile", mission = "A", level = "1C", sensing_date = structure(17320, class = "Date"), id_orbit = "022", extent_name = "32TQQ", prod_type = "TOA", res = "20m", file_ext = "tif") ) meta <- sen2r_getElements(fs2nc_examplename, format = "data.frame") testthat::expect_is(meta, "data.frame") meta <- sen2r_getElements(fs2nc_examplename, format = "list") testthat::expect_is(meta, "list") } )
library(testthat) library(ggcharts) test_check("ggcharts")
context("plotSTEPCAM") test_that("plotSTEPCAM: use", { skip_on_cran() set.seed(42) n_traits <- 3 n_plots <- 10 num_species <- 10 x <- generate.Artificial.Data(n_species = num_species, n_traits = n_traits, n_communities = n_plots, occurence_distribution = 0.5, average_richness = 10, sd_richness = 1, mechanism_random = FALSE) data_species <- x$traits data_species$trait1 <- c(runif(8,0,1), 5, 10) data_species$trait2 <- c(runif(8,0,1), -10, 30) data_species$trait3 <- c(runif(8,0,1), -20, 40) data_abundances <- x$abundances for(i in 1:8) { data_abundances[1,i] <- 1 } data_abundances[1,9] <- 0 data_abundances[1,10] <- 0 output <- STEPCAM_ABC(data_abundances, data_species, numParticles = 100, n_traits, plot_number = 1, stopRate = 0.1, stop_at_iteration = 3, continue_from_file = TRUE) plotSTEPCAM(output) })
DefaultData<-read.csv("./regr/MMM_raw_data_v02.csv") head(DefaultData) tail(DefaultData) summary(DefaultData) plot(DefaultData$Unit_Sold) quantile(DefaultData$Unit_Sold, c(0,0.05,0.1,0.25,0.5,0.75,0.90,0.95,0.99,0.995,1)) DefaultData$CappedUnitSold<-ifelse(DefaultData$Unit_Sold>768,768,DefaultData$Unit_Sold) summary(DefaultData) names(DefaultData) DefaultData3<-DefaultData[,-c(2)] names(DefaultData3) head(DefaultData3) plot(DefaultData3$Print_Spend,DefaultData3$CappedUnitSold) plot(DefaultData3$Radio_Spend,DefaultData3$CappedUnitSold) plot(DefaultData3$TV_Spend,DefaultData3$CappedUnitSold) names(DefaultData3) library("car") vif_data<-lm(CappedUnitSold~ Print_Spend+ Radio_Spend+ TV_Spend+ Promotion_Dummy,data=DefaultData3) vif(vif_data) lin_r1<-lm(CappedUnitSold~ Print_Spend+ Radio_Spend+ TV_Spend+ Promotion_Dummy,data=DefaultData3) summary(lin_r1) fitted(lin_r1) summary(lin_r1)$r.squared plot(lin_r1) meancnt1=DefaultData3 meancnt1$pred = 56.7185191 + 0.0098758*DefaultData3$Print_Spend+0.2493764*DefaultData3$Radio_Spend meancnt1$res = meancnt1$pred - meancnt1$CappedUnitSold meancnt1$abs_res = abs(meancnt1$res) meancnt1$mape = 100*meancnt1$abs_res/meancnt1$CappedUnitSold; meancnt1$mape plot(meancnt1$pred,meancnt1$res)
BT <- function(DataSub, BLR){ DataSub <- as.timeSeries(DataSub) PPrior <- tangencyPortfolio(data = DataSub, spec = MSPrior, constraints = BoxC) PBl <- tangencyPortfolio(data = DataSub, spec = MSBl, constraints = BoxC) Weights <- rbind(getWeights(PPrior), getWeights(PBl)) colnames(Weights) <- ANames rownames(Weights) <- c("Prior", "BL") return(Weights) } Backtest <- list() for(i in 1:length(idx)){ DataSub <- window(R, start = start(AssetsM), end = idx[i]) BLR <- PostDist[[i]] Backtest[[i]] <- BT(DataSub, BLR) }
Interpolate360Days2Caldendar <- function(df, sdate) { sdate <- as.Date(sdate) edate <- df[length(df[,1]),1] fdate <- data.frame(seq(sdate, edate, by=1)) colnames(fdate) <- "date" df <- merge(fdate, df, by="date", all=T) df <- zoo::na.approx(df[2:length(df[1,])], na.rm=F) df[which(is.na(df[,1])),] <- df[which(is.na(df[,1]))-1,] df <- cbind(fdate,df) return(df) }
checkRaw = function(x, len = NULL, min.len = NULL, max.len = NULL, names = NULL, null.ok = FALSE) { .Call(c_check_raw, x, len, min.len, max.len, names, null.ok) } check_raw = checkRaw assertRaw = makeAssertionFunction(checkRaw, c.fun = "c_check_raw", use.namespace = FALSE) assert_raw = assertRaw testRaw = makeTestFunction(checkRaw, c.fun = "c_check_raw") test_raw = testRaw expect_raw = makeExpectationFunction(checkRaw, c.fun = "c_check_raw", use.namespace = FALSE)
fluidPage(theme = 'zoo.css', fluidRow( column(12, align="center", column(3,align = "left", radioButtons("radio_rt", label = h5("Correlation Type"),selected = 1, choices = list("Pearson" = 1, "Spearman" = 2) ) ), column(9,align = "center", selectInput("spectrum_list_stocsy_rt","Which spectrum do you want to see?",file_names[], selectize = FALSE), p(strong("To perform real-time STOCSY analysis, place the cursor on the desired driver peak.")) ) ) ), fluidRow(align = "center", column(3, align="center", sidebarPanel(width =12, fluidRow( sliderInput("cutoff_stocsy_rt", label = h5("Correlation Cutoff"), min = 0, max = 1, value = 0.9 , step= 0.1) ), fluidRow( tags$button(id = "x2_stocsy_rt", class = "btn action-button", tags$img(src = "bx2.png", height = "35px", width = "40px") ), tags$button(id = "x8_stocsy_rt", class = "btn action-button", tags$img(src = "bx8.png", height = "35px", width = "40px") ) ), fluidRow(div(style="height:5px")), fluidRow( tags$button(id = "q2_stocsy_rt", class = "btn action-button", tags$img(src = "bq2.png", height = "35px", width = "40px") ), tags$button(id = "q8_stocsy_rt", class = "btn action-button", tags$img(src = "bq8.png", height = "35px", width = "40px") ) ), br(), fluidRow( tags$button(id = "s_left_stocsy_rt", class = "btn action-button", tags$img(src = "s_left.png", height = "35px", width = "40px") ), tags$button(id = "s_right_stocsy_rt", class = "btn action-button", tags$img(src = "s_right.png", height = "35px", width = "40px") ) ), fluidRow(div(style="height:5px")), fluidRow( tags$button(id = "s_left_f_stocsy_rt", class = "btn action-button", tags$img(src = "s_left_f.png", height = "35px", width = "40px") ), tags$button(id = "s_right_f_stocsy_rt", class = "btn action-button", tags$img(src = "s_right_f.png", height = "35px", width = "40px"))), br(), fluidRow( tags$button(id = "all_stocsy_rt", class = "btn action-button", tags$img(src = "all.png", height = "35px", width = "40px") ) ), br(), fluidRow( tags$button(id = "stocsy_rt_print_PDF", class = "btn action-button", tags$img(src = "exp_stocsy.png", height = "35px", width = "40px")), bsTooltip("stocsy_rt_print_PDF", "Download PDF", "right", options = list(container = "body")), ) )), column(9, align="center", sidebarPanel(width =12, plotOutput("plot_stocsy_rt", width = "100%", height = "500px", click = "click_stocsy_rt", dblclick = "dblclick_stocsy_rt", brush = brushOpts(id = "plot_brush_stocsy_rt",delay = 5000, fill = " ) )) ) )
crwSimulator = function( object.crwFit, predTime=NULL, method="IS", parIS=1000, df=Inf, grid.eps=1, crit=2.5, scale=1, quad.ask=TRUE, force.quad) { data <- object.crwFit$data driftMod <- object.crwFit$random.drift mov.mf <- object.crwFit$mov.mf activity <- object.crwFit$activity err.mfX <- object.crwFit$err.mfX err.mfY <- object.crwFit$err.mfY rho = object.crwFit$rho par <- object.crwFit$par n.errX <- object.crwFit$n.errX n.errY <- object.crwFit$n.errY n.mov <- object.crwFit$n.mov tn <- object.crwFit$Time.name return_posix <- ifelse((inherits(predTime,"POSIXct") | inherits(predTime, "character")) & inherits(data[,tn],"POSIXct"), TRUE, FALSE) if(!return_posix) { if(inherits(predTime,"numeric") && inherits(data[, tn], "POSIXct")) { warning("predTime provided as numeric and original data was POSIX! Make sure they are compatible") } if(inherits(predTime,"POSIXct") && inherits(data[, tn], "numeric")) { warning("predTime provided as POSIX and original data was numeric! Make sure they are compatible") } } if (!is.null(predTime)) { if(inherits(predTime,"character")) { t_int <- unlist(strsplit(predTime, " ")) if(t_int[2] %in% c("min","mins","hour","hours","day","days")) { min_dt <- min(data[,tn],na.rm=TRUE) max_dt <- max(data[,tn],na.rm=TRUE) min_dt <- round(min_dt,t_int[2]) max_dt <- trunc(max_dt,t_int[2]) predTime <- seq(min_dt, max_dt, by = predTime) } else { stop("predTime not specified correctly. see documentation for seq.POSIXt") } } ts = attr(object.crwFit, "time.scale") predTime = as.numeric(predTime)/ts if(min(predTime) < data[1, "TimeNum"]) { warning("Predictions times given before first observation!\nOnly those after first observation will be used.") predTime <- predTime[predTime>=data[1,"TimeNum"]] } origTime <- data$TimeNum if (is.null(data$locType)) data$locType <- "o" predData <- data.frame(predTime, "p") names(predData) <- c("TimeNum", "locType") data <- merge(data, predData, by=c("TimeNum", "locType"), all=TRUE) dups <- duplicated(data$TimeNum) data <- data[!dups, ] mov.mf <- as.matrix(expandPred(x=mov.mf, Time=origTime, predTime=predTime)) if (!is.null(activity)) activity <- as.matrix(expandPred(x=activity, Time=origTime, predTime=predTime)) if (!is.null(err.mfX)) err.mfX <- as.matrix(expandPred(x=err.mfX, Time=origTime, predTime=predTime)) if (!is.null(err.mfY)) err.mfY <- as.matrix(expandPred(x=err.mfY, Time=origTime, predTime=predTime)) if (!is.null(rho)) rho <- as.matrix(expandPred(x=rho, Time=origTime, predTime=predTime)) } data$locType[data[,tn]%in%predTime] <- 'p' delta <- c(diff(data$TimeNum), 1) y = as.matrix(data[,object.crwFit$coord]) noObs <- as.numeric(is.na(y[,1]) | is.na(y[,2])) y[noObs==1,] = 0 N = nrow(y) out <- list(y=y, noObs=noObs, n.errX=n.errX, n.errY=n.errY, n.mov=n.mov, delta=delta, driftMod=driftMod, activity=activity, err.mfX=err.mfX, err.mfY=err.mfY, mov.mf=mov.mf, rho=rho, fixPar=object.crwFit$fixPar, Cmat=object.crwFit$Cmat, locType=data$locType, par=object.crwFit$par, nms=object.crwFit$nms, N=nrow(data), lower=object.crwFit$lower, upper=object.crwFit$upper, loglik=object.crwFit$loglik, TimeNum=data$TimeNum, Time.name=tn, return_posix=return_posix, coord=object.crwFit$coord, prior=object.crwFit$prior) class(out) <- 'crwSimulator' if(parIS>1 & object.crwFit$need.hess==TRUE) out <- crwSamplePar(out, method=method, size=parIS, df=df, grid.eps=grid.eps, crit=crit, scale=scale, quad.ask=quad.ask, force.quad = force.quad) if(!is.null(out)){ attr(out,"epsg") <- attr(object.crwFit,"epsg") attr(out,"proj4") <- attr(object.crwFit,"proj4") } return(out) }
BachelierPrice <- function( strike=forward, spot, texp=1, sigma, intr=0, divr=0, cp=1L, forward=spot*exp(-divr*texp)/df, df=exp(-intr*texp) ){ stdev <- sigma*sqrt(texp) stdev[stdev < 1e-32] <- 1e-32 dn <- cp*(forward-strike)/stdev price <- df * (cp*(forward-strike)*stats::pnorm(dn) + stdev*stats::dnorm(dn)) return( price ) }
lineups_searcher <- function(df1,n,p1,p2,p3,p4){ if(n==1){ aux2 <- df1[df1$PG==p1,]; aux3 <- df1[df1$SG==p1,]; aux4 <- df1[df1$SF==p1,]; aux5 <- df1[df1$PF==p1,]; aux6 <- df1[df1$C== p1,] df<-rbind(aux2,aux3,aux4,aux5,aux6) }else if(n==2){ aux2 <- df1[df1$PG==p1,]; aux3 <- df1[df1$SG==p1,]; aux4 <- df1[df1$SF==p1,]; aux5 <- df1[df1$PF==p1,]; aux6 <- df1[df1$C== p1,] aux1<-rbind(aux2,aux3,aux4,aux5,aux6) aux2 <- aux1[aux1$PG==p2,]; aux3 <- aux1[aux1$SG==p2,];aux4 <- aux1[aux1$SF==p2,]; aux5 <- aux1[aux1$PF==p2,]; aux6 <- aux1[aux1$C==p2,] df<-rbind(aux2,aux3,aux4,aux5,aux6) }else if (n==3){ aux2 <- df1[df1$PG==p1,]; aux3 <- df1[df1$SG==p1,]; aux4 <- df1[df1$SF==p1,]; aux5 <- df1[df1$PF==p1,]; aux6 <- df1[df1$C== p1,]; aux1<-rbind(aux2,aux3,aux4,aux5,aux6) aux2 <- aux1[aux1$PG==p2,]; aux3 <- aux1[aux1$SG==p2,]; aux4 <- aux1[aux1$SF==p2,]; aux5 <- aux1[aux1$PF==p2,]; aux6 <- aux1[aux1$C==p2,] aux<-rbind(aux2,aux3,aux4,aux5,aux6) aux2 <- aux[aux$PG==p3,]; aux3 <- aux[aux$SG==p3,]; aux4 <- aux[aux$SF==p3,]; aux5 <- aux[aux$PF==p3,]; aux6 <- aux[aux$C==p3,] df<-rbind(aux2,aux3,aux4,aux5,aux6) }else if(n==4){ aux2 <- df1[df1$PG==p1,]; aux3 <- df1[df1$SG==p1,]; aux4 <- df1[df1$SF==p1,]; aux5 <- df1[df1$PF==p1,]; aux6 <- df1[df1$C== p1,] aux1<-rbind(aux2,aux3,aux4,aux5,aux6) aux2 <- aux1[aux1$PG==p2,]; aux3 <- aux1[aux1$SG==p2,]; aux4 <- aux1[aux1$SF==p2,]; aux5 <- aux1[aux1$PF==p2,]; aux6 <- aux1[aux1$C==p2,] aux<-rbind(aux2,aux3,aux4,aux5,aux6) aux2 <- aux[aux$PG==p3,]; aux3 <- aux[aux$SG==p3,]; aux4 <- aux[aux$SF==p3,]; aux5 <- aux[aux$PF==p3,]; aux6 <- aux[aux$C==p3,] aux<-rbind(aux2,aux3,aux4,aux5,aux6) aux2 <- aux[aux$PG==p4,]; aux3 <- aux[aux$SG==p4,]; aux4 <- aux[aux$SF==p4,]; aux5 <- aux[aux$PF==p4,]; aux6 <- aux[aux$C==p4,] df<-rbind(aux2,aux3,aux4,aux5,aux6) } return(df) }
interact.gbm <- function(x, data, i.var = 1, n.trees = x$n.trees){ if (x$interaction.depth < length(i.var)){ stop("interaction.depth too low in model call") } if (all(is.character(i.var))){ i <- match(i.var, x$var.names) if (any(is.na(i))) { stop("Variables given are not used in gbm model fit: ", i.var[is.na(i)]) } else { i.var <- i } } if ((min(i.var) < 1) || (max(i.var) > length(x$var.names))) { warning("i.var must be between 1 and ", length(x$var.names)) } if (n.trees > x$n.trees) { warning(paste("n.trees exceeds the number of trees in the model, ", x$n.trees,". Using ", x$n.trees, " trees.", sep = "")) n.trees <- x$n.trees } unique.tab <- function(z,i.var) { a <- unique(z[,i.var,drop=FALSE]) a$n <- table(factor(apply(z[,i.var,drop=FALSE],1,paste,collapse="\r"), levels=apply(a,1,paste,collapse="\r"))) return(a) } for(j in i.var) { if(is.factor(data[,x$var.names[j]])) data[,x$var.names[j]] <- as.numeric(data[,x$var.names[j]])-1 } a <- apply(expand.grid(rep(list(c(FALSE,TRUE)), length(i.var)))[-1,],1, function(x) as.numeric(which(x))) FF <- vector("list",length(a)) for(j in 1:length(a)) { FF[[j]]$Z <- data.frame(unique.tab(data, x$var.names[i.var[a[[j]]]])) FF[[j]]$n <- as.numeric(FF[[j]]$Z$n) FF[[j]]$Z$n <- NULL FF[[j]]$f <- .Call("gbm_plot", X = as.double(data.matrix(FF[[j]]$Z)), cRows = as.integer(nrow(FF[[j]]$Z)), cCols = as.integer(ncol(FF[[j]]$Z)), n.class = as.integer(x$num.classes), i.var = as.integer(i.var[a[[j]]] - 1), n.trees = as.integer(n.trees), initF = as.double(x$initF), trees = x$trees, c.splits = x$c.splits, var.type = as.integer(x$var.type), PACKAGE = "gbm") FF[[j]]$f <- matrix(FF[[j]]$f, ncol=x$num.classes, byrow=FALSE) FF[[j]]$f <- apply(FF[[j]]$f, 2, function(x, w){ x - weighted.mean(x, w, na.rm=TRUE) }, w=FF[[j]]$n) FF[[j]]$sign <- ifelse(length(a[[j]]) %% 2 == length(i.var) %% 2, 1, -1) } H <- FF[[length(a)]]$f for(j in 1:(length(a)-1)){ i1 <- apply(FF[[length(a)]]$Z[,a[[j]], drop=FALSE], 1, paste, collapse="\r") i2 <- apply(FF[[j]]$Z,1,paste,collapse="\r") i <- match(i1, i2) H <- H + with(FF[[j]], sign*f[i,]) } w <- matrix(FF[[length(a)]]$n, ncol=1) f <- matrix(FF[[length(a)]]$f^2, ncol=x$num.classes, byrow=FALSE) top <- apply(H^2, 2, weighted.mean, w = w, na.rm = TRUE) btm <- apply(f, 2, weighted.mean, w = w, na.rm = TRUE) H <- top / btm if (x$distribution$name=="multinomial"){ names(H) <- x$classes } H[H > 1] <- NaN return(sqrt(H)) }
get_param <- function(param.name,Params,calling.func,default=NULL) { if (is.null(Params[[param.name]])) { if (is.null(default)) stop(paste("Parameter",param.name,"needed in",calling.func)) else return(default) } else return(Params[[param.name]]) }
expected <- eval(parse(text="NULL")); test(id=0, code={ argv <- eval(parse(text="list(logical(0))")); .Internal(formals(argv[[1]])); }, o=expected);
setClass('mapview', slots = c(object = 'list', map = 'ANY')) NULL setOldClass("leaflet") setOldClass(c("POINT", "MULTIPOINT", "POLYGON", "MULTIPOLYGON", "LINESTRING", "MULTILINESTRING")) setOldClass("XY") setOldClass("sf") setOldClass("sfc") setOldClass("sfg") setOldClass("XYM") setOldClass("XYZM") setOldClass("bbox") setOldClass("stars") setOldClass("stars_proxy")
Err_exp_item <- function(X,index=NULL,EO){ J <- colnames(X) nn<-length(J) cmbf<-combinations(n=nn, r=3, v=J, set=FALSE, repeats.allowed=FALSE) expe <- NULL if (is.null(index)){ for (iter in 1:nn){ expe <- c(expe,sum(EO[cmbf[which(apply(cmbf,1, function(x) J[iter] %in%x)),]])) } }else{ expe <- c(expe,sum(EO[cmbf[which(apply(cmbf,1, function(x) index %in%x)),]])) } return(expe) }
Set2expr <- function(v=NULL ) { if ( is.null(v) ) stop("The parameter is missing"); u<-list(); U<-list(); nv<-length(v) for (i in 2:nv) { u<-c(u, list(v[[i-1]]) ) if ( v[[i]][1]!=v[[i-1]][1] ) { U<-c(U, list(u)); u<-list(); } } u<-c(u, list(v[[nv]]) ) U<-c(U, list(u)); S<-list(); for (m in U) { lm<-length(m); for (i in 1:(lm-1) ) { for (j in (i+1):lm ) { if( (m[[i]][3]==m[[j]][3]) && (m[[i]][4]>m[[j]][4]) ) { app_m<- m[[i]];m[[i]]<-m[[j]];m[[j]]<-app_m } } } c<-"1"; for (i in 1:lm ) { c<-paste0(c,"*",m[[i]][2]); m[[i]][2]<-1; } c<-eval(parse(text=c)); s<-""; for (i in 1:(lm-1) ) { k<-strtoi(m[[i]][5]); for (j in (i+1):lm ) { if( (m[[i]][3]==m[[j]][3]) && (m[[i]][4]==m[[j]][4]) && (m[[j]][3]!="") ) { k<-k+strtoi(m[[j]][5]); m[[j]][3]<-""} } s<-paste0(s,m[[i]][3],ifelse(m[[i]][4]!="",paste0("[",m[[i]][4],"]"),""),ifelse(k>1,paste0("^",k),"")); } if (m[[lm]][3]!="") {k<-strtoi(m[[lm]][5]); s<-paste0(s,m[[lm]][3],ifelse(m[[lm]][4]!="",paste0("[",m[[lm]][4],"]"),""),ifelse(k>1,paste0("^",k),""));} S<-c(S, list(c(c,s))); } V<-""; if (length(S)>1) { for (i in 1:(length(S)-1)){ if (S[[i]][2]!="") { c<-S[[i]][1]; for (j in (i+1):length(S)){ if (( S[[i]][2]==S[[j]][2]) && (S[[j]][2]!="")) { c<-paste0(c,"+",S[[j]][1]); S[[j]][2]<-""; } } c<-eval(parse(text=c)); signc<-ifelse(c>0," + "," - "); c<-ifelse( (abs(c)==1),"",abs(c)) ; if (c!=0) V<-paste0(V,signc,c,S[[i]][2]); } } } i<-length(S); c<-S[[i]][1]; c<-eval(parse(text=c)); signc<-ifelse(c>0," + "," - "); c<-ifelse( (abs(c)==1),"",abs(c)) ; if ((c!=0) && (S[[i]][2]!="")) V<-paste0(V,signc,c,S[[i]][2]); if ( substr(V,2,2)=="+") V<-substr(V,4,nchar(V)); noquote(V); }
compute_df <- function(k, type){ df <- sapply(k, compute.df, type) df[df<1] <- 1 return(df) } compute.df <- function(k, type){ if(type=="O1" | type=="O2"| type=="O3"){ H.O <- k - 1 k.h.O <- rep(2, H.O) df <- sum(k.h.O - 1) }else{ if(type=="S1" | type=="S2"){ H.S <- floor(k/2) k.h.S <- rep(2, H.S) if(k %% 2 > 0) k.h.S[H.S] <- 3 df <- sum(k.h.S - 1) }else{ df <- k-1 } } return(df) }
convert_gn <- function(container, genes) { if (!is.null(container$gn_convert)) { genes <- container$gn_convert[genes,2] } return(genes) }
context("Basics:") test_that("class-markup", { suppressWarnings( test <- defineClass("test", { .privateObject <- NULL publicObject <- public("BAM!") get <- public(function() .privateObject) set <- public(function(value) .privateObject <<- value) doSomethingWithPublicObject <- public(function() publicObject()) }) ) tmp <- test() expect_is(tmp$get(), "NULL") expect_equal(tmp$publicObject(), "BAM!") expect_error(tmp$.privateObject) expect_equal(tmp$set(2), 2) expect_equal(tmp$get(), 2) expect_equal(tmp$publicObject("jiggle"), "jiggle") expect_equal(tmp$doSomethingWithPublicObject(), "jiggle") suppressWarnings(tmp2 <- test()) expect_is(tmp2$get(), "NULL") expect_equal(tmp2$publicObject(), "BAM!") }) test_that("default-call", { expect_is(suppressWarnings(defineClass("tmp")), "function") expect_true(isClass("tmp")) }) test_that("privacy works", { class <- suppressWarnings({ defineClass("class", { private <- private(2) get <- public(function() 1) }) }) tmp <- class() expect_equal(tmp$get(), 1) expect_error(tmp$private) expect_error(tmp$something <- 1) }) test_that("'init' function is executed", { suppressWarnings({ test <- defineClass("test", { name <- "" init <- function(name) { self$name(name) } }) defineClass("TestInit", { field <- "" init <- function() { self$field("b") } }) }) expect_equal(test("jaj")$name(), "jaj") expect_equal(new("test")$name(), "") expect_equal(new("TestInit")$field(), "b") }) test_that("Naming of constructor functions", { constTest <- suppressWarnings({ defineClass("test", { x <- public() }) }) tmp <- constTest() tmp1 <- new("test") tmp$x(2) expect_is(tmp, "test") expect_is(tmp1, "test") expect_is(tmp1$x(), "NULL") expect_equal(tmp$x(), 2) }) test_that("class-markup v2.0", { suppressWarnings( test <- defineClass("test2", { .privateObject <- NULL publicObject <- "BAM!" get <- function() .privateObject set <- function(value) .privateObject <<- value doSomethingWithPublicObject <- function() publicObject() }) ) tmp <- test() expect_is(tmp$get(), "NULL") expect_equal(tmp$publicObject(), "BAM!") expect_error(tmp$.privateObject) expect_equal(tmp$set(2), 2) expect_equal(tmp$get(), 2) expect_equal(tmp$publicObject("jiggle"), "jiggle") expect_equal(tmp$doSomethingWithPublicObject(), "jiggle") suppressWarnings(tmp2 <- test()) expect_is(tmp2$get(), "NULL") expect_equal(tmp2$publicObject(), "BAM!") }) test_that("init function is private by default", { PrivateInitTest <- defineClass("PrivateInitTest", contains = "Accessor", { x <- 1 init <- function() { .self$x <- 2 } }) expect_equal(PrivateInitTest()$x, 2) expect_error(PrivateInitTest()$init()) PublicInitTest <- defineClass("PublicInitTest", contains = "Accessor", { x <- 1 init <- public(function() { .self$x <- 2 }) }) instance <- PublicInitTest() instance$x <- 3 expect_equal(instance$x, 3) instance$init() expect_equal(instance$x, 2) })
children <- hijack(r_sample, name = "Children", x = 0:10, prob = c(.25, .25, .15, .15, .1, rep(.1/5, 4), .01, .01) )
test_that("reduce() stops early on reduced input", { reducer <- function(result, input) { if (input %% 2 == 0) { done(result) } else { c(result, input) } } expect_identical(reduce(1:5, reducer), 1L) expect_identical(reduce(int(1L, 3L, 5:10), reducer), int(1L, 3L, 5L)) }) test_that("reduce_steps() calls initial step for initial value", { builder <- function(result, input) { if (missing(result) && missing(input)) { stop("called for init value") } } steps <- compose(iter_map(`+`, 1), iter_map(`+`, 1)) expect_error(reduce_steps(NULL, steps, builder), "called for init value") }) test_that("reduce_steps() calls initial step for result completion", { builder <- function(result, input) { if (missing(result) && missing(input)) { return(NULL) } if (missing(input)) { stop("called for init completion") } } steps <- compose(iter_map(`+`, 1), iter_map(`+`, 1)) expect_error(reduce_steps(NULL, steps, builder), "called for init completion") }) test_that("into() creates vector of requested type", { expect_identical(into(new_double(3), 1:3), dbl(1:3)) }) test_that("into() shrinks vector if needed", { expect_identical(into(integer(10), 1:3), 1:3) }) test_that("into() grows vector if needed", { expect_identical(into(integer(1), 1:3), 1:3) }) test_that("collect(n = ) fails if not enough elements", { expect_error(collect(1:10, n = 15), "10 / 15 elements") }) test_that("can reduce iterators", { iter <- as_iterator(1:3) out <- reduce_steps(iter, NULL, along_builder(chr())) expect_identical(out, as.character(1:3)) }) test_that("reducing exhausted iterators produces empty output", { expect_identical( collect(function() exhausted()), list() ) }) test_that("collect() retains `NULL` values", { g <- function() { i <- 0 function() { i <<- i + 1 if (i > 3) { exhausted() } else { out[[i]] } } } out <- list(1, 2, NULL) expect_equal(collect(g()), out) out <- list(1, NULL, 2) expect_equal(collect(g()), out) }) test_that("collect() calls `as_iterator()`", { local_methods( as_iterator.coro_foobar = function(x) { called <- FALSE function() { out <- if (called) exhausted() else "foo" called <<- TRUE out } } ) foobar <- structure(list(), class = "coro_foobar") expect_equal( collect(foobar), list("foo") ) }) test_that("collect() preserves type ( expect_equal( collect(gen(for (i in 1:3) yield(i))), as.list(1:3) ) expect_equal( wait_for(async_collect(async_generator(function() for (i in 1:3) yield(i))())), as.list(1:3) ) expect_equal( collect(gen(for (i in 1:3) yield(list(i)))), lapply(1:3, list) ) expect_equal( wait_for(async_collect(async_generator(function() for (i in 1:3) yield(list(i)))())), lapply(1:3, list) ) expect_equal( collect(gen(for (i in 1:3) yield(mtcars[i, 1:3]))), lapply(1:3, function(i) mtcars[i, 1:3]) ) expect_equal( wait_for(async_collect(async_generator(function() for (i in 1:3) yield(mtcars[i, 1:3]))())), lapply(1:3, function(i) mtcars[i, 1:3]) ) })
lsm_c_pladj <- function(landscape) { landscape <- landscape_as_list(landscape) result <- lapply(X = landscape, FUN = lsm_c_pladj_calc) layer <- rep(seq_along(result), vapply(result, nrow, FUN.VALUE = integer(1))) result <- do.call(rbind, result) tibble::add_column(result, layer, .before = TRUE) } lsm_c_pladj_calc <- function(landscape) { if (!inherits(x = landscape, what = "matrix")) { landscape <- raster::as.matrix(landscape) } if (all(is.na(landscape))) { return(tibble::tibble(level = "class", class = as.integer(NA), id = as.integer(NA), metric = "pladj", value = as.double(NA))) } landscape_padded <- pad_raster_internal(landscape, pad_raster_value = -999, pad_raster_cells = 1, global = FALSE) tb <- rcpp_get_coocurrence_matrix(landscape_padded, directions = as.matrix(4)) pladj <- vapply(X = seq_len(nrow(tb)), FUN = function(x) { like_adjacencies <- tb[x, x] total_adjacencies <- sum(tb[x, ]) like_adjacencies / total_adjacencies * 100 }, FUN.VALUE = numeric(1)) pladj <- pladj[-1] names <- row.names(tb)[-1] return(tibble::tibble(level = "class", class = as.integer(names), id = as.integer(NA), metric = "pladj", value = as.double(pladj))) }
setConstructorS3("RccViolationException", function(...) { extend(Exception(...), c("RccViolationException") ) }) setMethodS3("as.character", "RccViolationException", function(x, ...) { this <- x paste("[", getWhen(this), "] ", class(this)[1L], ": ", getMessage(this), ", cf. ", getRccUrl(this), sep="") }) setMethodS3("getRccUrl", "RccViolationException", function(this, ...) { "https://aroma-project.org/developers/RCC/" }, static=TRUE)
library(testthat) skip() skip_on_cran() skip_on_travis() source("tensor_functions.R") context("methods of train_dataset") train_data_path = file.path('~/mnist_digits_png_full/training/') test_data_path = file.path('~/mnist_digits_png_full/testing/') train_dataset <<- torchvision$datasets$ImageFolder( root = normalizePath(train_data_path), transform = torchvision$transforms$ToTensor() ) test_dataset <<- torchvision$datasets$ImageFolder( root = normalizePath(test_data_path), transform = torchvision$transforms$ToTensor() ) context("Sanity of local folder for MNIST images") test_that("folders exist", { expect_true(dir.exists("~/")) expect_true(dir.exists(normalizePath(train_data_path))) expect_true(dir.exists(normalizePath(test_data_path))) }) context("methods of train_dataset") test_that("names of methods", { expect_equal(names(train_dataset), c("class_to_idx", "classes", "extensions", "extra_repr", "imgs", "loader", "root", "samples", "target_transform", "targets", "transform", "transforms")) }) test_that("attributes of train_dataset", { expect_true(all(py_list_attributes(train_dataset) %in% c( "class_to_idx", "classes", "extensions", "extra_repr", "imgs", "loader", "root", "samples", "target_transform", "targets", "transform", "transforms", "__add__", "__class__", "__delattr__", "__dict__","__dir__", "__doc__", "__eq__","__format__", "__ge__", "__getattribute__", "__getitem__", "__gt__", "__hash__", "__init__", "__init_subclass__", "__le__", "__len__", "__lt__", "__module__", "__ne__", "__new__", "__reduce__", "__reduce_ex__", "__repr__", "__setattr__", "__sizeof__", "__str__", "__subclasshook__", "__weakref__", "_find_classes", "_format_transform_repr", "_repr_indent")) ) }) test_that("train_dataset has __getitem()__ method", { if (rTorch:::is_linux()) expect_error(!train_dataset[0]) if (rTorch:::is_linux()) expect_error(!train_dataset[[0]]) if (rTorch:::is_windows()) expect_true(rTorch:::is_tensor(train_dataset[[2]][[1]])) result <- train_dataset$`__getitem__`(0L) expect_equal(length(result), 2) }) test_that("train_dataset returns a list of 2 elements with py_get_item()", { result <- py_get_item(train_dataset, 0L) expect_equal(class(result), "list") expect_equal(length(result), 2) }) test_that("train_dataset is a tuple in Python", { expect_equal(as.character(py_eval("type(r.train_dataset[0])")), "<class 'tuple'>") }) test_that("1st member of train_dataset list is a tensor: image", { result <- py_get_item(train_dataset, 0L)[[1]] expect_true(rTorch:::is_tensor(result)) }) test_that("2nd member of train_dataset list is an integer: label", { result <- py_get_item(train_dataset, 0L)[[2]] expect_true(is.integer(result)) }) test_that("train_dataset is a Python tuple object but an R list", { result <- train_dataset$`__getitem__`(0L) expect_equal(class(result), "list") expect_equal(as.character(py_eval("type(r.train_dataset[0])")), "<class 'tuple'>") }) test_that("dimension of the tensor is 3D", { result <- py_get_item(train_dataset, 0L)[[1]] expect_equal(tensor_dim_(result), 3) }) test_that("dimensions of the tensor is 3x28x28", { result <- py_get_item(train_dataset, 0L)[[1]] expect_equal(tensor_dim(result), c(3, 28, 28)) }) test_that("length of the train_dataset is 60000", { result <- py_len(train_dataset) expect_equal(result, 60000) }) test_that("length of the test_dataset is 10000", { result <- py_len(test_dataset) expect_equal(result, 10000) }) test_that("1st label of the train_dataset is 0", { result <- py_get_item(train_dataset, 0L)[[2]] expect_equal(result, 0) result <- py_get_item(train_dataset, 59999L)[[2]] }) test_that("59999th label of the train_dataset is 9", { result <- py_get_item(train_dataset, 59999L)[[2]] expect_equal(result, 9) }) test_that("last label of the train_dataset is 9", { result <- py_get_item(train_dataset, py_len(train_dataset)-1L)[[2]] expect_equal(result, 9) }) test_that("last label of the train_dataset using py_object_last()", { result <- py_get_item(train_dataset, py_object_last(train_dataset))[[2]] expect_equal(result, 9) }) test_that("train and test datasets have __len__ method in Python", { expect_true(py_has_length(train_dataset)) expect_true(py_has_length(test_dataset)) }) test_that("these objects do not have Python __len__", { expect_true(py_has_length(py_get_item(train_dataset, 0L)[[1]])) expect_false(py_has_length(py_get_item(train_dataset, 0L)[[2]])) expect_false(py_has_length(py_get_item(train_dataset, 0L))) result <- r_to_py(py_get_item(train_dataset, 0L)[[2]]) expect_equal(as.character(result$`__class__`), "<class 'int'>") }) test_that("dataset label is of type integer", { expect_true(is.integer(py_get_item(train_dataset, 0L)[[2]])) result <- r_to_py(py_get_item(train_dataset, 0L)[[2]]) expect_equal(as.character(result$`__class__`), "<class 'int'>") })
context("charlatan_locales") test_that("charlatan_locales works", { expect_is(charlatan_locales, "function") expect_is(charlatan_locales(), "data.frame") expect_gt(NROW(charlatan_locales()), 40) }) test_that("available_locales works", { expect_is(available_locales, "character") expect_gt(length(available_locales), 10) }) test_that("available_locales and charlatan_locales have equal length", { expect_equal(length(available_locales), nrow(charlatan_locales())) }) test_that("all provider locales are in available_locales", { expect_true(all(AddressProvider$new()$allowed_locales() %in% available_locales)) expect_true(all(ColorProvider$new()$allowed_locales() %in% available_locales)) expect_true(all(CompanyProvider$new()$allowed_locales() %in% available_locales)) expect_true(all(FileProvider$new()$allowed_locales() %in% available_locales)) expect_true(all(InternetProvider$new()$allowed_locales() %in% available_locales)) expect_true(all(JobProvider$new()$allowed_locales() %in% available_locales)) expect_true(all(LoremProvider$new()$allowed_locales() %in% available_locales)) expect_true(all(PersonProvider$new()$allowed_locales() %in% available_locales)) expect_true(all(PhoneNumberProvider$new()$allowed_locales() %in% available_locales)) expect_true(all(UserAgentProvider$new()$allowed_locales() %in% available_locales)) })
wl1pca <- function(X, projDim = 1, center = TRUE, projections="l2", tolerance = 0.001, iterations = 200, beta = 0.99){ if (inherits(X, "data.frame")) { X <- as.matrix(X) } if(center){ X <- apply(X,2,function(y) y - mean(y)) } time.begin <- proc.time() n <- dim(X)[1] m <- dim(X)[2] weights.prev <- matrix(2,n,1) weights <- matrix(1,n,1) obj.best <- .Machine$double.xmax my.epsilon <- tolerance my.epsilon.b <- 0.1 U.weights <- matrix(1,n,1) num.iteration <- 1 continue.algorithm <- 1 my.beta <- beta^num.iteration while(continue.algorithm){ if(num.iteration > 1){ my.PC.prev <- my.PC } weights.prev <- weights X.weighted <- diag(as.vector(weights)) %*% X my.PC <- as.matrix(prcomp(X.weighted)$rotation[,1:projDim]) Reconstuction.Errors <- X - X %*% my.PC %*% t(my.PC) Reconstructions <- X %*% my.PC %*% t(my.PC) obj.current <- sum(abs(Reconstuction.Errors)) if(obj.current < obj.best){ obj.best <- obj.current PC.best <- my.PC } max.U <- 0 for(i in 1:n){ L2.norm.obs.i <- sum(Reconstuction.Errors[i,]^2) L1.norm.obs.i <- sum(abs(Reconstuction.Errors[i,])) if(L2.norm.obs.i > my.epsilon.b){ U.weights[i,1] <- L1.norm.obs.i/L2.norm.obs.i max.U <- max(max.U,U.weights[i,1]) }else{ U.weights[i,1] <- -1 } } U.weights[U.weights[,1]==(-1),1]<-max.U weights[U.weights[,1]<weights[,1]*(1-my.beta),1] <- weights[U.weights[,1]<weights[,1]*(1-my.beta),1]*(1-my.beta) weights[U.weights[,1]>weights[,1]*(1+my.beta),1] <- weights[U.weights[,1]>weights[,1]*(1+my.beta),1]*(1+my.beta) weights[(weights[,1]*(1-my.beta)<=U.weights[,1]) & (U.weights[,1]<=weights[,1]*(1+my.beta)),1] <- U.weights[(weights[,1]*(1-my.beta)<=U.weights[,1]) & (U.weights[,1]<=weights[,1]*(1+my.beta)),1] my.beta <- beta^num.iteration weight.diff <- weights.prev - weights if((num.iteration >= iterations)||(sum(abs(weight.diff))<my.epsilon)){ continue.algorithm <- 0 } num.iteration <- num.iteration + 1 if(num.iteration > 2){ if(norm(as.matrix(my.PC) - as.matrix(my.PC.prev),"F") < my.epsilon){ continue.algorithm = 0 } } cat(".", file=stderr()) } cat("\n", file=stderr()) time.exe <- as.numeric((proc.time() - time.begin)[3]) Reconstuction.Errors <- X - X %*% PC.best %*% t(PC.best) Reconstructions <- X %*% PC.best %*% t(PC.best) Projected.Points <- X %*% PC.best if (projections == "l1") { myl1projection <- l1projection(X, as.matrix(PC.best)) Reconstructions <- myl1projection$projPoints Projected.Points <- myl1projection$scores } solution <- list(loadings = PC.best, scores = Projected.Points, projPoints = Reconstructions, L1error = obj.best, nIter = num.iteration, ElapsedTime = time.exe) class(solution) <- "wl1pca" cat(" cat("L1 error = ", obj.best, "\n", file=stderr()) cat("Num iterations = ", num.iteration, "\n", file=stderr()) cat("Elapsed time = ", time.exe, "seconds \n\n", file=stderr()) solution }
table_names <- c("table_1", "table_2", "table_3") quo <- quo(c(table_3_new = table_3, table_1_new = table_1)) test_that("tidyselecting tables works", { expect_identical( eval_select_table_indices(quo, table_names), c(table_3_new = 3L, table_1_new = 1L) ) expect_identical( eval_select_table(quo, table_names), set_names(c("table_3", "table_1"), c("table_3_new", "table_1_new")) ) expect_identical( eval_rename_table_all(quo, table_names), set_names(table_names, c("table_1_new", "table_2", "table_3_new")) ) }) test_that("output", { expect_snapshot(error = TRUE, { dm_for_filter() %>% dm_select_tbl(tf_7) dm_for_filter() %>% dm_rename_tbl(tf_0 = tf_7) }) })
env_returnSoluteGridJVoxels <- function(xmlResultFile,soluteRequested) { return(as.numeric(xmlAttrs(xmlResultFile[[1]][[soluteRequested+1]])[5][[1]])) }
redlichpanalysis <- function(Ce, Qe){ x <- Ce y <- Qe data <- data.frame(x, y) n<- nrow(na.omit(data)) print("NLS2 Analysis for Redlich Peterson Isotherm Model") fit257 <- (Qe ~ (Arp*Ce)/(1+(Krp*(Ce^b)))) start <- data.frame(Arp = c(1, 100), Krp = c(1, 100), b = c(0, 1)) set.seed(511) fit258 <- nls2(fit257, start = start, control = nls.control(maxiter = 50, warnOnly = TRUE), algorithm = "port") print(summary(fit258)) error <- function(y){ pv <- (predict(fit258)) rmse<- (rmse(y,predict(fit258))) mae <- (mae(y,predict(fit258))) mse <- (mse(y,predict(fit258))) rae <- (rae(y,predict(fit258))) PAIC <- AIC(fit258) PBIC <- BIC(fit258) SE <-(sqrt(sum(predict(fit258)-x)^2)/(n-2)) colnames(y) <- rownames(y) <- colnames(y) list("Predicted Values" = pv, "Relative Mean Square Error" = rmse, "Mean Absolute Error" = mae, "Mean Squared Error" = mse, "Relative Absolute Error" = rae, "AIC" = PAIC, "BIC" = PBIC, "Standard Error Estimate" = SE) } e <- error(y) print(e) plot(x, y, main = "Redlich Peterson Isotherm", xlab = "Ce", ylab = "Qe") lines(x, predict(fit258), col = "black") rsqq <- lm(predict(fit258)~Qe) print(summary(rsqq)) }
test_that(".rba_args_opts works", { .rba_args_opts_nested <- function(...) { dir_name <- "test" save_file <- TRUE .rba_args_opts_nested2 <- function(...) { .rba_args_opts(...) } .rba_args_opts_nested2(...) } expect_has_names(obj = .rba_args_opts_nested(what = "cons"), expected = c("dir_name", "save_file")) expect_has_names(obj = .rba_args_opts_nested(what = "cond"), expected = c("dir_name", "save_file")) })
test_that("AndresDiapositiva110", { data(minimalCert) expect_equal(round(uncertErrorCorr(reading = 12.4835, calibCert = minimalCert), 9), 0.000100249) }) test_that("AndresDiapositiva111", { data(minimalCert) expect_equal(uncertReading(calibCert = minimalCert, reading = 12.4835)^2, 2.891329e-9) }) test_that("AndresDiapositiva112", { data(minimalCert) expect_equal(round(uncertConvMass(reading = 12.4835, calibCert = minimalCert), 10), 0.0001137598) })
NULL dada_uniques <- function(seqs, abundances, priors, err, quals, match, mismatch, gap, use_kmers, kdist_cutoff, band_size, omegaA, omegaP, omegaC, detect_singletons, max_clust, min_fold, min_hamming, min_abund, use_quals, final_consensus, vectorized_alignment, homo_gap, multithread, verbose, SSE, gapless, greedy) { .Call('_dada2_dada_uniques', PACKAGE = 'dada2', seqs, abundances, priors, err, quals, match, mismatch, gap, use_kmers, kdist_cutoff, band_size, omegaA, omegaP, omegaC, detect_singletons, max_clust, min_fold, min_hamming, min_abund, use_quals, final_consensus, vectorized_alignment, homo_gap, multithread, verbose, SSE, gapless, greedy) } C_is_bimera <- function(sq, pars, allow_one_off, min_one_off_par_dist, match, mismatch, gap_p, max_shift) { .Call('_dada2_C_is_bimera', PACKAGE = 'dada2', sq, pars, allow_one_off, min_one_off_par_dist, match, mismatch, gap_p, max_shift) } C_table_bimera2 <- function(mat, seqs, min_fold, min_abund, allow_one_off, min_one_off_par_dist, match, mismatch, gap_p, max_shift) { .Call('_dada2_C_table_bimera2', PACKAGE = 'dada2', mat, seqs, min_fold, min_abund, allow_one_off, min_one_off_par_dist, match, mismatch, gap_p, max_shift) } C_nwalign <- function(s1, s2, match, mismatch, gap_p, homo_gap_p, band, endsfree) { .Call('_dada2_C_nwalign', PACKAGE = 'dada2', s1, s2, match, mismatch, gap_p, homo_gap_p, band, endsfree) } C_eval_pair <- function(s1, s2) { .Call('_dada2_C_eval_pair', PACKAGE = 'dada2', s1, s2) } C_pair_consensus <- function(s1, s2, prefer, trim_overhang) { .Call('_dada2_C_pair_consensus', PACKAGE = 'dada2', s1, s2, prefer, trim_overhang) } C_isACGT <- function(seqs) { .Call('_dada2_C_isACGT', PACKAGE = 'dada2', seqs) } kmer_dist <- function(s1, s2, kmer_size) { .Call('_dada2_kmer_dist', PACKAGE = 'dada2', s1, s2, kmer_size) } kord_dist <- function(s1, s2, kmer_size, SSE) { .Call('_dada2_kord_dist', PACKAGE = 'dada2', s1, s2, kmer_size, SSE) } kmer_matches <- function(s1, s2, kmer_size) { .Call('_dada2_kmer_matches', PACKAGE = 'dada2', s1, s2, kmer_size) } kdist_matches <- function(s1, s2, kmer_size) { .Call('_dada2_kdist_matches', PACKAGE = 'dada2', s1, s2, kmer_size) } C_matchRef <- function(seqs, ref, word_size, non_overlapping) { .Call('_dada2_C_matchRef', PACKAGE = 'dada2', seqs, ref, word_size, non_overlapping) } C_matrixEE <- function(inp) { .Call('_dada2_C_matrixEE', PACKAGE = 'dada2', inp) } C_nwvec <- function(s1, s2, match, mismatch, gap_p, band, endsfree) { .Call('_dada2_C_nwvec', PACKAGE = 'dada2', s1, s2, match, mismatch, gap_p, band, endsfree) } C_assign_taxonomy2 <- function(seqs, rcs, refs, ref_to_genus, genusmat, try_rc, verbose) { .Call('_dada2_C_assign_taxonomy2', PACKAGE = 'dada2', seqs, rcs, refs, ref_to_genus, genusmat, try_rc, verbose) } methods::setLoadAction(function(ns) { .Call('_dada2_RcppExport_registerCCallable', PACKAGE = 'dada2') })
MantelModTest <- function (cor.hypothesis, cor.matrix, ...) UseMethod("MantelModTest") MantelModTest.default <- function (cor.hypothesis, cor.matrix, permutations = 1000, MHI = FALSE, ..., landmark.dim = NULL, withinLandmark = FALSE) { if(!any(cor.hypothesis == 0 | cor.hypothesis == 1)) stop("modularity hypothesis matrix should be binary") mantel.output <- MantelCor(cor.matrix, cor.hypothesis, permutations = permutations, MHI, landmark.dim = landmark.dim, withinLandmark = FALSE, mod = TRUE, ...) output = c(mantel.output, CalcAVG(cor.hypothesis, cor.matrix, MHI, landmark.dim)) return (output) } MantelModTest.list <- function (cor.hypothesis, cor.matrix, permutations = 1000, MHI = FALSE, landmark.dim = NULL, withinLandmark = FALSE, ..., parallel = FALSE){ output <- SingleComparisonMap(cor.hypothesis, cor.matrix, function(x, y) MantelModTest(x, y, permutations, MHI, landmark.dim = landmark.dim, withinLandmark = withinLandmark), parallel = parallel) return(output) }
erpplot <- function (dta, design=NULL,effect=1, interval=c("none","pointwise","simultaneous"), alpha=0.05, frames = NULL, ylim = NULL, nbs=NULL, ...) { interval = match.arg(interval,choices=c("none","pointwise","simultaneous")) erpdta = as.matrix(dta) n = nrow(erpdta) T = ncol(erpdta) if (typeof(erpdta) != "double") stop("ERPs should be of type double") if (!is.null(frames)) if (length(frames) != ncol(erpdta)) stop(paste("frames should be either null or of length", ncol(erpdta))) if (!is.null(frames)) { if (any(frames != sort(frames))) stop("frames should be an ascending sequence of integers") tframes = frames } if (is.null(frames)) tframes = 1:T if (is.null(design)) { if (is.null(ylim)) limy = 1.05 * diag(apply(apply(erpdta, 2, range), 1,range)) if (!is.null(ylim)) limy = ylim matplot(tframes, t(erpdta), type = "l", ylim = limy, ...) } if (!is.null(design)) { erpfit = erptest(erpdta,design,nbs=nbs) signal = as.vector(erpfit$signal[effect-1,]) sdsignal = as.vector(erpfit$sdsignal[effect-1,]) if (interval=="none") { lwr = signal upr = signal if (is.null(ylim)) limy = 1.05*range(c(lwr,upr)) if (!is.null(ylim)) limy = ylim plot(tframes,signal,type="n",ylim=limy,...) lines(tframes,signal,type="l",col="black",lwd=2,lty=1) abline(h=0,lty=3,lwd=2) } if (interval=="pointwise") { lwr = signal-qnorm(1-alpha/2)*sdsignal upr = signal+qnorm(1-alpha/2)*sdsignal if (is.null(ylim)) limy = 1.05*range(c(lwr,upr)) if (!is.null(ylim)) limy = ylim plot(tframes,signal,type="n",ylim=limy,...) polygon(c(tframes,rev(tframes)),c(lwr,rev(upr)),col=gray.colors(24)[24],border="grey") lines(tframes,signal,type="l",col="black",lwd=2,lty=1) abline(h=0,lty=3,lwd=2) } if (interval=="simultaneous") { lwr = signal-qnorm(1-alpha/2)*sdsignal upr = signal+qnorm(1-alpha/2)*sdsignal lwrs = signal-qnorm(1-alpha/(2*T))*sdsignal uprs = signal+qnorm(1-alpha/(2*T))*sdsignal if (is.null(ylim)) limy = 1.05*range(c(lwrs,uprs)) if (!is.null(ylim)) limy = ylim plot(tframes,signal,type="n",ylim=limy,...) polygon(c(tframes,rev(tframes)),c(lwrs,rev(uprs)),col=gray.colors(24)[24],border="grey") polygon(c(tframes,rev(tframes)),c(lwr,rev(upr)),col=gray.colors(24)[12],border="grey") lines(tframes,signal,type="l",col="black",lwd=2,lty=1) abline(h=0,lty=3,lwd=2) } } }
plot_profiles <- function(x, variables = NULL, ci = .95, sd = TRUE, add_line = TRUE, rawdata = TRUE, bw = FALSE, alpha_range = c(0, .1), ...){ deprecated_arguments( c("to_center" = "plot_profiles simply displays the data as analyzed. Center data prior to analysis.", "to_scale" = "plot_profiles simply displays the data as analyzed. Scale data prior to analysis.", "plot_what" = "tidyLPA objects now contain all information required for plotting.", "plot_error_bars" = "Use the 'ci' argument to specify the desired confidence intervall, or set to NULL to omit error bars.", "plot_rawdata" = "Renamed to rawdata.")) UseMethod("plot_profiles", x) } plot_profiles.default <- function(x, variables = NULL, ci = .95, sd = TRUE, add_line = FALSE, rawdata = TRUE, bw = FALSE, alpha_range = c(0, .1), ...){ df_plot <- droplevels(x[["df_plot"]]) if(rawdata){ df_raw <- droplevels(x[["df_raw"]]) if(!all(unique(df_plot$Variable) %in% unique(df_raw$Variable))){ stop("Could not match raw data to model estimates.") } df_raw$Variable <- as.numeric(df_raw$Variable) } level_labels <- levels(df_plot$Variable) df_plot$Variable <- as.numeric(df_plot$Variable) if (bw) { classplot <- ggplot(NULL, aes_string( x = "Variable", y = "Value", group = "Class", linetype = "Class", shape = "Class" )) } else { classplot <- ggplot( NULL, aes_string( x = "Variable", y = "Value", group = "Class", linetype = "Class", shape = "Class", colour = "Class" ) ) + scale_colour_manual(values = get_palette(max(df_plot$Classes))) } if (rawdata) { classplot <- classplot + geom_jitter( data = df_raw, width = .2, aes_string( x = "Variable", y = "Value", shape = "Class", alpha = "Probability" ) ) + scale_alpha_continuous(range = alpha_range, guide = FALSE) } classplot <- classplot + geom_point(data = df_plot) + scale_x_continuous(breaks = 1:length(level_labels), labels = level_labels) + theme_bw() + theme(panel.grid.minor.x = element_blank()) if(add_line) classplot <- classplot + geom_line(data = df_plot) if (!is.null(ci)) { ci <- qnorm(.5 * (1 - ci)) df_plot$error_min <- df_plot$Value + ci*df_plot$se df_plot$error_max <- df_plot$Value - ci*df_plot$se classplot <- classplot + geom_errorbar(data = df_plot, aes_string(ymin = "error_min", ymax = "error_max"), width = .4) } if(sd){ df_plot$sd_xmin <- df_plot$Variable-.2 df_plot$sd_xmax <- df_plot$Variable+.2 df_plot$sd_ymin <- df_plot$Value - sqrt(df_plot$Value.Variances) df_plot$sd_ymax <- df_plot$Value + sqrt(df_plot$Value.Variances) if(bw){ classplot <- classplot + geom_rect( data = df_plot, aes_string( xmin = "sd_xmin", xmax = "sd_xmax", ymin = "sd_ymin", ymax = "sd_ymax", linetype = "Class" ), colour = "black", fill=ggplot2::alpha("grey", 0), inherit.aes=FALSE ) } else { classplot <- classplot + geom_rect( data = df_plot, aes_string( xmin = "sd_xmin", xmax = "sd_xmax", ymin = "sd_ymin", ymax = "sd_ymax", colour = "Class" ), fill=ggplot2::alpha("grey", 0), inherit.aes=FALSE ) } } if (length(unique(df_plot$Classes)) > 1) { if(length(unique(df_plot$Model)) > 1){ classplot <- classplot + facet_grid(Model ~ Classes, labeller = label_both) } else { classplot <- classplot + facet_wrap(~ Classes, labeller = label_both) } } else { if(length(unique(df_plot$Model)) > 1){ classplot <- classplot + facet_wrap(~ Model, labeller = label_both) } } suppressWarnings(print(classplot)) return(invisible(classplot)) } plot_profiles.tidyLPA <- function(x, variables = NULL, ci = .95, sd = TRUE, add_line = FALSE, rawdata = TRUE, bw = FALSE, alpha_range = c(0, .1), ...){ Args <- as.list(match.call()[-1]) df_plot <- get_estimates(x) names(df_plot)[match(c("Estimate", "Parameter"), names(df_plot))] <- c("Value", "Variable") df_plot$Class <- ordered(df_plot$Class) if(!"Classes" %in% names(df_plot)){ df_plot$Classes <- length(unique(df_plot$Class)) } df_plot <- df_plot[grepl("(^Means$|^Variances$)", df_plot$Category), -match(c("p"), names(df_plot))] df_plot$Variable <- ordered(df_plot$Variable, levels = unique(df_plot$Variable)) if (!is.null(variables)) { df_plot <- df_plot[tolower(df_plot$Variable) %in% tolower(variables), ] } df_plot$Variable <- droplevels(df_plot$Variable) variables <- levels(df_plot$Variable) df_plot$idvar <- paste0(df_plot$Model, df_plot$Classes, df_plot$Class, df_plot$Variable) df_plot <- reshape(data.frame(df_plot), idvar = "idvar", timevar = "Category", v.names = c("Value", "se"), direction = "wide") df_plot <- df_plot[, -match("idvar", names(df_plot))] names(df_plot) <- gsub("\\.Means", "", names(df_plot)) if (rawdata) { df_raw <- .get_long_data(x) df_raw <- df_raw[, c("model_number", "classes_number", variables, "Class", "Class_prob", "Probability", "id")] df_raw$Class <- ordered(df_raw$Class_prob, levels = levels(df_plot$Class)) variable_names <- paste("Value", names(df_raw)[-c(1,2, ncol(df_raw)-c(0:3))], sep = "...") names(df_raw)[-c(1,2, ncol(df_raw)-c(0:3))] <- variable_names df_raw <- reshape( df_raw, varying = c(Variable = variable_names), idvar = "new_id", direction = "long", timevar = "Variable", sep = "..." ) if(any(c("Class_prob", "id", "new_id") %in% names(df_raw))){ df_raw <- df_raw[, -which(names(df_raw) %in% c("Class_prob", "id", "new_id"))] } df_raw$Variable <- ordered(df_raw$Variable, levels = levels(df_plot$Variable)) names(df_raw)[c(1,2)] <- c("Model", "Classes") } else { df_raw <- NULL } Args[["x"]] <- list(df_plot = df_plot, df_raw = df_raw) do.call(plot_profiles, Args) } plot_profiles.tidyProfile <- function(x, variables = NULL, ci = .95, sd = TRUE, add_line = TRUE, rawdata = TRUE, bw = FALSE, alpha_range = c(0, .1), ...){ Args <- as.list(match.call()[-1]) df_plot <- get_estimates(x) df_plot$Value <- df_plot$Estimate df_plot$Class <- ordered(df_plot$Class) df_plot$Variable <- ordered(df_plot$Parameter, levels = unique(df_plot$Parameter)) df_plot <- df_plot[grepl("(^Means$|^Variances$)", df_plot$Category), -match(c("p", "Parameter", "Estimate"), names(df_plot))] if (!is.null(variables)) { df_plot <- df_plot[tolower(df_plot$Variable) %in% tolower(variables), ] } df_plot$idvar <- paste0(df_plot$Model, df_plot$Classes, df_plot$Class, df_plot$Variable) df_plot <- reshape(data.frame(df_plot), idvar = "idvar", timevar = "Category", v.names = c("Value", "se"), direction = "wide") df_plot <- df_plot[, -match("idvar", names(df_plot))] names(df_plot) <- gsub("\\.Means", "", names(df_plot)) if (rawdata) { df_raw <- .get_long_data(x) df_raw <- df_raw[, c("model_number", "classes_number", attr(x$dff, "selected"), "Class", "Class_prob", "Probability", "id")] df_raw$Class <- ordered(df_raw$Class_prob, levels = levels(df_plot$Class)) variable_names <- paste("Value", names(df_raw)[-c(1,2, ncol(df_raw)-c(0:3))], sep = "...") names(df_raw)[-c(1,2, ncol(df_raw)-c(0:3))] <- variable_names df_raw <- reshape( df_raw, varying = c(Variable = variable_names), idvar = "new_id", direction = "long", timevar = "Variable", sep = "..." ) if(any(c("Class_prob", "id", "new_id") %in% names(df_raw))){ df_raw <- df_raw[, -which(names(df_raw) %in% c("Class_prob", "id", "new_id"))] } df_raw$Variable <- ordered(df_raw$Variable, levels = levels(df_plot$Variable)) names(df_raw)[c(1,2)] <- c("Model", "Classes") } else { df_raw <- NULL } Args[["x"]] <- list(df_plot = df_plot, df_raw = df_raw) do.call(plot_profiles, Args) }
stresc <- function(strings) { fromchar <- s2c("\\{}$^_% tochar <- c("$\\backslash$", "\\{", "\\}", "\\$", "\\^{}", "\\_", "\\%", "\\ "\\lbrack{}", "\\rbrack{}","\\textbar{}") f <- function(string){ c2s( sapply(s2c(string), function(x) ifelse(x %in% fromchar, tochar[which(x == fromchar)], x))) } sapply(strings, f, USE.NAMES = FALSE) }
CNOT3_21 <- function(a){ cnot3_21=TensorProd(diag(2), CNOT2_10(diag(4))) result = cnot3_21 %*% a result }
source("tinytestSettings.R") using(ttdo) library(OmicNavigator) testStudyName <- "ABC" testStudyObj <- OmicNavigator:::testStudy(name = testStudyName) testStudyObj <- addPlots(testStudyObj, OmicNavigator:::testPlots()) minimalStudyObj <- OmicNavigator:::testStudyMinimal() minimalStudyName <- minimalStudyObj[["name"]] tmplib <- tempfile() dir.create(tmplib) tmplibSpace <- file.path(tempdir(), "a space") dir.create(tmplibSpace) tmplibQuote <- file.path(tempdir(), "project's results") dir.create(tmplibQuote) observed <- exportStudy(testStudyObj, type = "package", path = tmplib) expected <- file.path(tmplib, OmicNavigator:::studyToPkg(testStudyName)) expect_identical_xl(observed, expected, info = "Export as package directory") expect_true_xl(dir.exists(expected)) observed <- exportStudy(testStudyObj, type = "package", path = tmplibSpace) expected <- file.path(tmplibSpace, OmicNavigator:::studyToPkg(testStudyName)) expect_identical_xl(observed, expected, info = "Export as package directory to path with a space") expect_true_xl(dir.exists(expected)) observed <- exportStudy(testStudyObj, type = "package", path = tmplibQuote) expected <- file.path(tmplibQuote, OmicNavigator:::studyToPkg(testStudyName)) expect_identical_xl(observed, expected, info = "Export as package directory to path with a quote") expect_true_xl(dir.exists(expected)) observed <- exportStudy(minimalStudyObj, type = "package", path = tmplib) expected <- file.path(tmplib, OmicNavigator:::studyToPkg(minimalStudyName)) expect_identical_xl(observed, expected, info = "Export minimal study as package directory") expect_true_xl(dir.exists(expected)) if (at_home()) { tarball <- exportStudy(testStudyObj, type = "tarball", path = tmplib) expect_true_xl(file.exists(tarball)) expect_true_xl(startsWith(tarball, tmplib)) directoryname <- file.path(tmplib, OmicNavigator:::studyToPkg(testStudyName)) expect_false_xl(dir.exists(directoryname)) modtimeOriginal <- file.mtime(tarball) tarball <- exportStudy(testStudyObj, type = "tarball", path = tmplib) modtimeReexport <- file.mtime(tarball) expect_true_xl( modtimeReexport > modtimeOriginal, info = "Confirm tarball is overwritten when re-exported" ) tarball <- exportStudy(testStudyObj, type = "tarball", path = tmplibSpace) expect_true_xl(file.exists(tarball)) expect_true_xl(startsWith(tarball, tmplibSpace)) directoryname <- file.path(tmplibSpace, OmicNavigator:::studyToPkg(testStudyName)) expect_false_xl(dir.exists(directoryname)) tarball <- exportStudy(testStudyObj, type = "tarball", path = tmplibQuote) expect_true_xl(file.exists(tarball)) expect_true_xl(startsWith(tarball, tmplibQuote)) directoryname <- file.path(tmplibQuote, OmicNavigator:::studyToPkg(testStudyName)) expect_false_xl(dir.exists(directoryname)) tarball <- exportStudy(minimalStudyObj, type = "tarball", path = tmplib) expect_true_xl(file.exists(tarball)) expect_true_xl(startsWith(tarball, tmplib)) directoryname <- file.path(tmplib, OmicNavigator:::studyToPkg(minimalStudyName)) expect_false_xl(dir.exists(directoryname)) pkgDir <- tempfile(pattern = OmicNavigator:::getPrefix()) e <- new.env(parent = emptyenv()) e$x <- function() 1 + 1 suppressMessages( utils::package.skeleton( name = basename(pkgDir), path = tempdir(), environment = e ) ) expect_warning_xl( OmicNavigator:::buildPkg(pkgDir), "ERROR: package installation failed", info = "Return warning message for failed package build" ) file.remove(file.path(pkgDir, "man", "x.Rd")) expect_silent_xl( tarball <- OmicNavigator:::buildPkg(pkgDir) ) unlink(pkgDir, recursive = TRUE, force = TRUE) file.remove(tarball) } suppressMessages(installStudy(testStudyObj, library = tmplib)) studyMetadata <- listStudies(libraries = tmplib) expect_identical_xl( studyMetadata[[1]][["name"]], testStudyObj[["name"]] ) expect_identical_xl( studyMetadata[[1]][["package"]][["Description"]], sprintf("The OmicNavigator data package for the study \"%s\"", testStudyObj[["description"]]), info = "Default package description when description==name" ) expect_identical_xl( studyMetadata[[1]][["package"]][["Version"]], "0.0.0.9000", info = "Default package version used when version=NULL" ) expect_identical_xl( studyMetadata[[1]][["package"]][["Maintainer"]], "Unknown <unknown@unknown>", info = "Default package maintainer" ) expect_identical_xl( studyMetadata[[1]][["package"]][["department"]], "immunology", info = "Custom study metadata passed via studyMeta" ) expect_identical_xl( studyMetadata[[1]][["package"]][["organism"]], "Mus musculus", info = "Custom study metadata passed via studyMeta" ) updatedStudyObj <- testStudyObj updatedStudyObj[["description"]] <- "A custom description" updatedStudyObj[["version"]] <- "1.0.0" updatedStudyObj[["maintainer"]] <- "My Name" updatedStudyObj[["maintainerEmail"]] <- "[email protected]" suppressMessages(installStudy(updatedStudyObj, library = tmplib)) studyMetadata <- listStudies(libraries = tmplib) expect_identical_xl( studyMetadata[[1]][["name"]], updatedStudyObj[["name"]] ) expect_identical_xl( studyMetadata[[1]][["package"]][["Description"]], updatedStudyObj[["description"]] ) expect_identical_xl( studyMetadata[[1]][["package"]][["Version"]], updatedStudyObj[["version"]] ) expect_identical_xl( studyMetadata[[1]][["package"]][["Maintainer"]], sprintf("%s <%s>", updatedStudyObj[["maintainer"]], updatedStudyObj[["maintainerEmail"]]) ) studyToRemoveName <- "remove" studyToRemove <- OmicNavigator:::testStudy(name = studyToRemoveName) suppressMessages(installStudy(studyToRemove, library = tmplib)) studyToRemoveDir <- file.path(tmplib, OmicNavigator:::studyToPkg(studyToRemoveName)) expect_true_xl(dir.exists(studyToRemoveDir)) expect_message_xl( removeStudy(studyToRemove, library = tmplib), studyToRemoveName ) expect_false_xl(dir.exists(studyToRemoveDir)) expect_error_xl( removeStudy(removeStudyName, library = "xyz"), "This directory does not exist: xyz" ) expect_error_xl( removeStudy(1), "Argument `study` must be a string or an onStudy object" ) expect_error_xl( removeStudy("nonExistent"), "Couldn't find" ) unlink(c(tmplib, tmplibSpace, tmplibQuote), recursive = TRUE, force = TRUE)
"fusion_cars"
.zpolyloglikelihood <- function(alpha, betaNew, values, freq, nSize){ poly <- copula::polylog(z = exp(betaNew), s = alpha, method = 'sum', n.sum = 1000) alpha*sum(freq*log(values)) +nSize*log(poly) - betaNew*sum(freq*values) } .zPoly <- function(params, values, freq, nSize){ beta <- min(0, params[2]) alpha <- params[1] .zpolyloglikelihood(alpha, beta, values, freq, nSize) } zipfPolylogFit <- function(data, init_alpha, init_beta, level = 0.95, ...){ Call <- match.call() if(!is.numeric(init_alpha) || !is.numeric(init_beta)){ stop('Wrong intial values for the parameters.') } tryCatch( { estResults <- .paramEstimationBase(data, c(init_alpha, init_beta), .zPoly, ...) estAlpha <- as.numeric(estResults$results$par[1]) estBeta <- exp(as.numeric(estResults$results$par[2])) paramSD <- sqrt(diag(solve(estResults$results$hessian))) paramsCI <- .getConfidenceIntervals(paramSD, estAlpha, estBeta, level) structure(class = "zipfPolyR", list(alphaHat = estAlpha, betaHat = estBeta, alphaSD = paramSD[1], betaSD = paramSD[2], alphaCI = c(paramsCI[1,1],paramsCI[1,2]), betaCI = c(paramsCI[2,1],paramsCI[2,2]), logLikelihood = -estResults$results$value, hessian = estResults$results$hessian, call = Call)) }, error=function(cond) { print(cond) return(NA) }) } residuals.zipfPolyR <- function(object, ...){ dataMatrix <- get(as.character(object[['call']]$data)) dataMatrix[,1] <- as.numeric(as.character(dataMatrix[,1])) dataMatrix[,2] <-as.numeric(as.character(dataMatrix[,2])) residual.values <- dataMatrix[, 2] - fitted(object) return(residual.values) } fitted.zipfPolyR <- function(object, ...) { dataMatrix <- get(as.character(object[['call']]$data)) dataMatrix[,1] <- as.numeric(as.character(dataMatrix[,1])) dataMatrix[,2] <-as.numeric(as.character(dataMatrix[,2])) N <- sum(dataMatrix[, 2]) fitted.values <- N*sapply(dataMatrix[,1], dzipfpolylog, alpha = object[['alphaHat']], beta = object[['betaHat']]) return(fitted.values) } coef.zipfPolyR <- function(object, ...){ estimation <- matrix(nrow = 2, ncol = 4) estimation[1, ] <- c(object[['alphaHat']], object[['alphaSD']], object[['alphaCI']][1], object[['alphaCI']][2]) estimation[2, ] <- c(object[['betaHat']], object[['betaSD']], object[['betaCI']][1], object[['betaCI']][2]) colnames(estimation) <- c("MLE", "Std. Dev.", paste0("Inf. ", "95% CI"), paste0("Sup. ", "95% CI")) rownames(estimation) <- c("alpha", "beta") estimation } plot.zipfPolyR <- function(x, ...){ dataMatrix <- get(as.character(x[['call']]$data)) dataMatrix[,1] <- as.numeric(as.character(dataMatrix[,1])) dataMatrix[,2] <-as.numeric(as.character(dataMatrix[,2])) graphics::plot(dataMatrix[,1], dataMatrix[,2], log="xy", xlab="Observation", ylab="Frequency", main="Fitting ZipfPolylog Distribution", ...) graphics::lines(dataMatrix[,1], fitted(x), col="blue") graphics::legend("topright", legend = c('Observations', 'ZipfPolylog Distribution'), col=c('black', 'blue'), pch=c(21,NA), lty=c(NA, 1), lwd=c(NA, 2)) } print.zipfPolyR <- function(x, ...){ cat('Call:\n') print(x[['call']]) cat('\n') cat('Initial Values:\n') cat(sprintf('Alpha: %s\n', format(eval(x[['call']]$init_alpha), digits = 3))) cat(sprintf('Beta: %s\n', format(eval(x[['call']]$init_beta), digits = 3))) cat('\n') cat('Coefficients:\n') print(coef(x)) cat('\n') cat('Metrics:\n') cat(sprintf('Log-likelihood: %s\n', logLik(x))) cat(sprintf('AIC: %s\n', AIC(x))) cat(sprintf('BIC: %s\n', BIC(x))) } summary.zipfPolyR <- function(object, ...){ print(object) cat('\n') cat('Fitted values:\n') print(fitted(object)) } logLik.zipfPolyR <- function(object, ...){ if(!is.na(object[['logLikelihood']]) || !is.null(object[['logLikelihood']])){ return(object[['logLikelihood']]) } return(NA) } AIC.zipfPolyR <- function(object, ...){ aic <- .get_AIC(object[['logLikelihood']], 2) return(aic) } BIC.zipfPolyR <- function(object, ...){ dataMatrix <- get(as.character(object[['call']]$data)) dataMatrix[,1] <- as.numeric(as.character(dataMatrix[,1])) dataMatrix[,2] <-as.numeric(as.character(dataMatrix[,2])) bic <- .get_BIC(object[['logLikelihood']], 2, sum(dataMatrix[, 2])) return(bic) }
theme_tree <- function(bgcolor="white", ...) { list(xlab(NULL), ylab(NULL), theme_tree2_internal() + theme(panel.background=element_rect(fill=bgcolor, colour=bgcolor), axis.line.x = element_blank(), axis.text.x = element_blank(), axis.ticks.x = element_blank(), ...) ) } theme_dendrogram <- function(bgcolor = "white", fgcolor = "black", ...) { theme_tree2(bgcolor = bgcolor, axis.line.x = element_blank(), axis.text.x = element_blank(), axis.ticks.x = element_blank(), axis.line.y = element_line(color=fgcolor), axis.text.y = element_text(color=fgcolor), axis.ticks.y = element_line(color=fgcolor), ...) } theme_tree2 <- function(bgcolor="white", fgcolor="black", ...) { list(xlab(NULL), ylab(NULL), theme_tree2_internal(bgcolor, fgcolor, ...) ) } theme_tree2_internal <- function(bgcolor="white", fgcolor="black", legend.position="right", panel.grid.minor=element_blank(), panel.grid.major=element_blank(), panel.border=element_blank(), axis.line.y=element_blank(), axis.ticks.y=element_blank(), axis.text.y=element_blank(),...) { theme_bw() + theme(legend.position=legend.position, panel.grid.minor=panel.grid.minor, panel.grid.major=panel.grid.major, panel.background=element_rect(fill=bgcolor, colour=bgcolor), panel.border=panel.border, axis.line=element_line(color=fgcolor), axis.line.y=axis.line.y, axis.ticks.y=axis.ticks.y, axis.text.y=axis.text.y, ...) } theme_inset <- function(legend.position = "none", ...) { list(xlab(NULL), ylab(NULL), theme_tree(legend.position = legend.position, ...), ggfun::theme_transparent() ) }
library(checkargs) context("isStrictlyPositiveIntegerOrNaOrInfScalarOrNull") test_that("isStrictlyPositiveIntegerOrNaOrInfScalarOrNull works for all arguments", { expect_identical(isStrictlyPositiveIntegerOrNaOrInfScalarOrNull(NULL, stopIfNot = FALSE, message = NULL, argumentName = NULL), TRUE) expect_identical(isStrictlyPositiveIntegerOrNaOrInfScalarOrNull(TRUE, stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isStrictlyPositiveIntegerOrNaOrInfScalarOrNull(FALSE, stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isStrictlyPositiveIntegerOrNaOrInfScalarOrNull(NA, stopIfNot = FALSE, message = NULL, argumentName = NULL), TRUE) expect_identical(isStrictlyPositiveIntegerOrNaOrInfScalarOrNull(0, stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isStrictlyPositiveIntegerOrNaOrInfScalarOrNull(-1, stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isStrictlyPositiveIntegerOrNaOrInfScalarOrNull(-0.1, stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isStrictlyPositiveIntegerOrNaOrInfScalarOrNull(0.1, stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isStrictlyPositiveIntegerOrNaOrInfScalarOrNull(1, stopIfNot = FALSE, message = NULL, argumentName = NULL), TRUE) expect_identical(isStrictlyPositiveIntegerOrNaOrInfScalarOrNull(NaN, stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isStrictlyPositiveIntegerOrNaOrInfScalarOrNull(-Inf, stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isStrictlyPositiveIntegerOrNaOrInfScalarOrNull(Inf, stopIfNot = FALSE, message = NULL, argumentName = NULL), TRUE) expect_identical(isStrictlyPositiveIntegerOrNaOrInfScalarOrNull("", stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isStrictlyPositiveIntegerOrNaOrInfScalarOrNull("X", stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isStrictlyPositiveIntegerOrNaOrInfScalarOrNull(c(TRUE, FALSE), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isStrictlyPositiveIntegerOrNaOrInfScalarOrNull(c(FALSE, TRUE), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isStrictlyPositiveIntegerOrNaOrInfScalarOrNull(c(NA, NA), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isStrictlyPositiveIntegerOrNaOrInfScalarOrNull(c(0, 0), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isStrictlyPositiveIntegerOrNaOrInfScalarOrNull(c(-1, -2), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isStrictlyPositiveIntegerOrNaOrInfScalarOrNull(c(-0.1, -0.2), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isStrictlyPositiveIntegerOrNaOrInfScalarOrNull(c(0.1, 0.2), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isStrictlyPositiveIntegerOrNaOrInfScalarOrNull(c(1, 2), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isStrictlyPositiveIntegerOrNaOrInfScalarOrNull(c(NaN, NaN), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isStrictlyPositiveIntegerOrNaOrInfScalarOrNull(c(-Inf, -Inf), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isStrictlyPositiveIntegerOrNaOrInfScalarOrNull(c(Inf, Inf), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isStrictlyPositiveIntegerOrNaOrInfScalarOrNull(c("", "X"), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isStrictlyPositiveIntegerOrNaOrInfScalarOrNull(c("X", "Y"), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isStrictlyPositiveIntegerOrNaOrInfScalarOrNull(NULL, stopIfNot = TRUE, message = NULL, argumentName = NULL), TRUE) expect_error(isStrictlyPositiveIntegerOrNaOrInfScalarOrNull(TRUE, stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isStrictlyPositiveIntegerOrNaOrInfScalarOrNull(FALSE, stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_identical(isStrictlyPositiveIntegerOrNaOrInfScalarOrNull(NA, stopIfNot = TRUE, message = NULL, argumentName = NULL), TRUE) expect_error(isStrictlyPositiveIntegerOrNaOrInfScalarOrNull(0, stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isStrictlyPositiveIntegerOrNaOrInfScalarOrNull(-1, stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isStrictlyPositiveIntegerOrNaOrInfScalarOrNull(-0.1, stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isStrictlyPositiveIntegerOrNaOrInfScalarOrNull(0.1, stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_identical(isStrictlyPositiveIntegerOrNaOrInfScalarOrNull(1, stopIfNot = TRUE, message = NULL, argumentName = NULL), TRUE) expect_error(isStrictlyPositiveIntegerOrNaOrInfScalarOrNull(NaN, stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isStrictlyPositiveIntegerOrNaOrInfScalarOrNull(-Inf, stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_identical(isStrictlyPositiveIntegerOrNaOrInfScalarOrNull(Inf, stopIfNot = TRUE, message = NULL, argumentName = NULL), TRUE) expect_error(isStrictlyPositiveIntegerOrNaOrInfScalarOrNull("", stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isStrictlyPositiveIntegerOrNaOrInfScalarOrNull("X", stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isStrictlyPositiveIntegerOrNaOrInfScalarOrNull(c(TRUE, FALSE), stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isStrictlyPositiveIntegerOrNaOrInfScalarOrNull(c(FALSE, TRUE), stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isStrictlyPositiveIntegerOrNaOrInfScalarOrNull(c(NA, NA), stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isStrictlyPositiveIntegerOrNaOrInfScalarOrNull(c(0, 0), stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isStrictlyPositiveIntegerOrNaOrInfScalarOrNull(c(-1, -2), stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isStrictlyPositiveIntegerOrNaOrInfScalarOrNull(c(-0.1, -0.2), stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isStrictlyPositiveIntegerOrNaOrInfScalarOrNull(c(0.1, 0.2), stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isStrictlyPositiveIntegerOrNaOrInfScalarOrNull(c(1, 2), stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isStrictlyPositiveIntegerOrNaOrInfScalarOrNull(c(NaN, NaN), stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isStrictlyPositiveIntegerOrNaOrInfScalarOrNull(c(-Inf, -Inf), stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isStrictlyPositiveIntegerOrNaOrInfScalarOrNull(c(Inf, Inf), stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isStrictlyPositiveIntegerOrNaOrInfScalarOrNull(c("", "X"), stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isStrictlyPositiveIntegerOrNaOrInfScalarOrNull(c("X", "Y"), stopIfNot = TRUE, message = NULL, argumentName = NULL)) })
context("bRacatus") input_data <- giftRegions ("Babiana tubulosa") test_that("Expected data structure",{ expect_equal(class(input_data),"list") expect_true("Presence" %in% names(input_data)) expect_true("Native" %in% names(input_data)) expect_true("Alien" %in% names(input_data)) })
NULL if (getRversion() >= "2.15.1") utils::globalVariables(c(".")) utils::globalVariables(c( "degreeC", "g", "hPa", "J", "K", "kg", "kJ", "kPa", "m", "mol", "Pa", "PPFD", "s", "umol", "W" ))
library("MVA") set.seed(280875) library("lattice") lattice.options(default.theme = function() standard.theme("pdf", color = FALSE)) if (file.exists("deparse.R")) { if (!file.exists("figs")) dir.create("figs") source("deparse.R") options(prompt = "R> ", continue = "+ ", width = 64, digits = 4, show.signif.stars = FALSE, useFancyQuotes = FALSE) options(SweaveHooks = list(onefig = function() {par(mfrow = c(1,1))}, twofig = function() {par(mfrow = c(1,2))}, figtwo = function() {par(mfrow = c(2,1))}, threefig = function() {par(mfrow = c(1,3))}, figthree = function() {par(mfrow = c(3,1))}, fourfig = function() {par(mfrow = c(2,2))}, sixfig = function() {par(mfrow = c(3,2))}, nomar = function() par("mai" = c(0, 0, 0, 0)))) }
download_d1_data <- function(data_url, path, dir_name = NULL) { stopifnot(is.character(data_url), length(data_url) == 1, nchar(data_url) > 0) stopifnot(is.character(path), length(path) == 1, nchar(path) > 0, dir.exists(path)) data_url <- utils::URLdecode(data_url) data_versions <- check_version(data_url, formatType = "data") if (nrow(data_versions) == 1) { data_id <- data_versions$identifier } else if (nrow(data_versions) > 1) { data_versions$dateUploaded <- lubridate::ymd_hms(data_versions$dateUploaded) data_id <- data_versions$identifier[data_versions$dateUploaded == max(data_versions$dateUploaded)] } else { stop("The DataONE ID could not be found for ", data_url) } data_nodes <- dataone::resolve(dataone::CNode("PROD"), data_id) d1c <- dataone::D1Client("PROD", data_nodes$data$nodeIdentifier[[1]]) cn <- dataone::CNode() meta_id <- dataone::query( cn, list(q = sprintf('documents:"%s" AND formatType:"METADATA" AND -obsoletedBy:*', data_id), fl = "identifier")) %>% unlist() if (length(meta_id) == 0) { meta_id <- dataone::query( cn, list(q = sprintf('documents:"%s" AND formatType:"METADATA"', data_id), fl = "identifier")) %>% unlist() } if (length(meta_id) == 0) { warning("no metadata records found", immediate. = T) meta_id <- NULL } else if (length(meta_id) > 1) { warning("multiple metadata records found:\n", paste(meta_id, collapse = "\n"), "\nThe first record was used", immediate. = T) meta_id <- meta_id[1] } if (!is.null(meta_id)) { message("\nDownloading metadata ", meta_id, " ...") meta_obj <- dataone::getObject(d1c@mn, meta_id) message("Download metadata complete") metadata_nodes <- dataone::resolve(cn, meta_id) eml <- tryCatch({emld::as_emld(meta_obj, from = "xml")}, error = function(e) {NULL}) entities <- c("dataTable", "spatialRaster", "spatialVector", "storedProcedure", "view", "otherEntity") entities <- entities[entities %in% names(eml$dataset)] entity_objs <- purrr::map(entities, ~EML::eml_get(eml, .x)) %>% purrr::map_if(~!is.null(.x$entityName), list) %>% unlist(recursive = FALSE) entity_data <- entity_objs %>% purrr::keep(~any(grepl(data_id, purrr::map_chr(.x$physical$distribution$online$url, utils::URLdecode)))) if (length(entity_data) == 0) { warning("No data metadata could be found for ", data_url, immediate. = T) } else { if (length(entity_data) > 1) { warning("Multiple data metadata records found:\n", data_url, "\nThe first record was used", immediate. = T) } entity_data <- entity_data[[1]] } if (!is.null(entity_data$attributeList)){ attributeList <- suppressWarnings(EML::get_attributes(entity_data$attributeList, eml)) } meta_tabular <- tabularize_eml(eml) %>% tidyr::pivot_wider(names_from = name, values_from = value) entity_meta <- suppressWarnings(list( Metadata_ID = meta_id[[1]], Metadata_URL = metadata_nodes$data$url[1], Metadata_EML_Version = stringr::str_extract(meta_tabular$eml.version, "\\d\\.\\d\\.\\d"), File_Description = entity_data$entityDescription, File_Label = entity_data$entityLabel, Dataset_URL = paste0("https://search.dataone.org/ Dataset_Title = meta_tabular$title, Dataset_StartDate = meta_tabular$temporalCoverage.beginDate, Dataset_EndDate = meta_tabular$temporalCoverage.endDate, Dataset_Location = meta_tabular$geographicCoverage.geographicDescription, Dataset_WestBoundingCoordinate = meta_tabular$geographicCoverage.westBoundingCoordinate, Dataset_EastBoundingCoordinate = meta_tabular$geographicCoverage.eastBoundingCoordinate, Dataset_NorthBoundingCoordinate = meta_tabular$geographicCoverage.northBoundingCoordinate, Dataset_SouthBoundingCoordinate = meta_tabular$geographicCoverage.southBoundingCoordinate, Dataset_Taxonomy = meta_tabular$taxonomicCoverage, Dataset_Abstract = meta_tabular$abstract, Dataset_Methods = meta_tabular$methods, Dataset_People = meta_tabular$people )) } message("\nDownloading data ", data_id, " ...") data_sys <- suppressMessages(dataone::getSystemMetadata(d1c@cn, data_id)) data_name <- data_sys@fileName %|||% ifelse(exists("entity_data"), entity_data$physical$objectName %|||% entity_data$entityName, NA) %|||% data_id data_name <- gsub("[^a-zA-Z0-9. -]+", "_", data_name) data_extension <- gsub("(.*\\.)([^.]*$)", "\\2", data_name) data_name <- gsub("\\.[^.]*$", "", data_name) meta_name <- gsub("[^a-zA-Z0-9. -]+", "_", meta_id) old_dir_path <- file.path(path, paste0(meta_name, "__", data_name, "__", data_extension)) log_path <- file.path(path, "metajam.log") old_dir_path_log <- "" if(file.exists(log_path)){ old_log <- suppressMessages(readr::read_csv(log_path)) if(data_id %in% old_log$Data_ID){ old_dir_path_log <- old_log %>% dplyr::filter(.data$Data_ID == data_id) %>% utils::tail(1) %>% dplyr::pull(.data$Location) } } if(dir.exists(old_dir_path)){ stop(paste("This dataset has already been downloaded here:", old_dir_path, "Please delete or move the folder to download the dataset again.", sep = "\n")) } else if(dir.exists(old_dir_path_log)) { stop(paste("This dataset has already been downloaded here:", old_dir_path_log, "Please delete or move the folder to download the dataset again.", sep = "\n")) } if(!is.null(dir_name)){ new_dir <- file.path(path, dir_name) } else { new_dir <- old_dir_path } if(dir.exists(new_dir)){ warning(paste("An old version of the data exists at the specified path:", new_dir, "Please change dir_name or delete/move the folder to download a new version of the data", sep = "\n")) return(new_dir) } else{ dir.create(new_dir) } out <- dataone::downloadObject(d1c, data_id, path = new_dir) message("Download complete") data_files <- list.files(new_dir, full.names = TRUE) data_files_ext <- stringr::str_extract(data_files, ".[^.]{1,4}$") file.rename(data_files, file.path(new_dir, paste0(data_name, data_files_ext))) entity_meta_general <- list(File_Name = data_name, Date_Downloaded = paste0(Sys.time()), Data_ID = data_id, Data_URL = data_nodes$data$url[[1]] ) if (exists("eml")) { EML::write_eml(eml, file.path(new_dir, paste0(data_name, "__full_metadata.xml"))) entity_meta_combined <- c(entity_meta_general, entity_meta) %>% unlist() %>% tibble::enframe() readr::write_csv(entity_meta_combined, file.path(new_dir, paste0(data_name, "__summary_metadata.csv"))) } else { entity_meta_general <- entity_meta_general %>% unlist() %>% tibble::enframe() readr::write_csv(entity_meta_general, file.path(new_dir, paste0(data_name, "__summary_metadata.csv"))) } if (exists("attributeList")) { if (nrow(attributeList$attributes) > 0) { atts <- attributeList$attributes %>% dplyr::mutate(metadata_pid = meta_id) readr::write_csv(atts, file.path(new_dir, paste0(data_name, "__attribute_metadata.csv"))) } if (!is.null(attributeList$factors)) { facts <- attributeList$factors %>% dplyr::mutate(metadata_pid = meta_id) readr::write_csv(facts, file.path(new_dir, paste0(data_name, "__attribute_factor_metadata.csv"))) } } data_to_log <- data.frame(Date_Run = paste0(Sys.time()), Data_ID = data_id, Dataset_URL = data_nodes$data$url, Location = new_dir) if(file.exists(log_path)){ readr::write_csv(data_to_log, path = log_path, append = TRUE) } else { readr::write_csv(data_to_log, path = log_path, append = FALSE, col_names = TRUE) } return(new_dir) }
test_that("test for errors", { testthat::skip_on_cran() local_edition(3) expect_error(convert_RLum2Risoe.BINfileData(object = NA)) }) test_that("functionality", { testthat::skip_on_cran() local_edition(3) data(ExampleData.RLum.Analysis, envir = environment()) expect_s4_class(convert_RLum2Risoe.BINfileData(IRSAR.RF.Data), "Risoe.BINfileData") expect_s4_class(convert_RLum2Risoe.BINfileData(IRSAR.RF.Data@records[[1]]), "Risoe.BINfileData") expect_s4_class(convert_RLum2Risoe.BINfileData(list(IRSAR.RF.Data,IRSAR.RF.Data)), "Risoe.BINfileData") })
neldermead.autorestart <- function(this=NULL){ restartmax <- this$restartmax reached <- FALSE for (iloop in 1:(restartmax+1)){ this <- neldermead.log(this=this, msg='*****************************************************************') this <- neldermead.log(this=this,msg=sprintf('Try this <- neldermead.algo(this=this) tmp <- neldermead.istorestart(this=this) this <- tmp$this istorestart <- tmp$istorestart rm(tmp) if (istorestart){ this <- neldermead.log(this=this,'Must restart.') } else { this <- neldermead.log(this=this,'Must not restart.') } if (!istorestart){ reached <- TRUE break } if (iloop<restartmax+1){ this$restartnb <- this$restartnb + 1 this <- neldermead.log(this=this,msg='Updating simplex.') this <- neldermead.updatesimp(this=this) } } if (reached){ this <- neldermead.log(this=this, msg=sprintf('Convergence reached after %d restarts.',this$restartnb)) } else { this <- neldermead.log(this=this, msg=sprintf('Convergence not reached after maximum %d restarts.',this$restartnb)) this$optbase <- optimbase.set(this=this$optbase,key='status',value='maxrestart') } return(this) }
N = 20 P = 1e2 grid = seq( 0, 1, length.out = P ) C = roahd::exp_cov_function( grid, alpha = 0.3, beta = 0.4 ) values = roahd::generate_gauss_fdata( N, centerline = sin( 2 * pi * grid ), Cov = C ) fD = roahd::fData( grid, values ) x0=list(as.list(grid)) fun=mean_lists() final.fData = conformal.fun.split(NULL,NULL, fD, x0, fun$train.fun, fun$predict.fun, alpha=0.1, split=NULL, seed=FALSE, randomized=FALSE,seed_tau=FALSE, verbose=TRUE, training_size=0.5,s_type="alpha-max") plot_fun(final.fData) N = 1e2 P = 1e3 t0 = 0 t1 = 1 grid = seq( t0, t1, length.out = P ) C = roahd::exp_cov_function( grid, alpha = 0.3, beta = 0.4 ) Data_1 = roahd::generate_gauss_fdata( N, centerline = sin( 2 * pi * grid ), Cov = C ) Data_2 = roahd::generate_gauss_fdata( N, centerline = log(1+ 2 * pi * grid ), Cov = C ) mfD=roahd::mfData( grid, list( Data_1, Data_2 ) ) x0=list(as.list(grid)) fun=mean_lists() final.mfData = conformal.fun.split(NULL,NULL, mfD, x0, fun$train.fun, fun$predict.fun, alpha=0.1, split=NULL, seed=FALSE, randomized=FALSE,seed_tau=FALSE, verbose=TRUE, training_size=0.5,s_type="alpha-max") h=plot_fun(final.mfData) daybasis <- fda::create.fourier.basis(c(0, 365), nbasis=65) tempfd <- fda::smooth.basis(fda::day.5, fda::CanadianWeather$dailyAv[,,"Temperature.C"],daybasis)$fd Lbasis <- fda::create.constant.basis(c(0, 365)) Lcoef <- matrix(c(0,(2*pi/365)^2,0),1,3) bfdobj <- fda::fd(Lcoef,Lbasis) bwtlist <- fda::fd2list(bfdobj) harmaccelLfd <- fda::Lfd(3, bwtlist) Ltempmat <- fda::eval.fd(fda::day.5, tempfd, harmaccelLfd) t=1:365 x0=list(as.list(grid)) fun=mean_lists() final.fd = conformal.fun.split(NULL,fda::day.5, tempfd, x0, fun$train.fun, fun$predict.fun, alpha=0.1, split=NULL, seed=FALSE, randomized=FALSE,seed_tau=FALSE, verbose=TRUE, training_size=0.5,s_type="alpha-max") plot_fun(final.fd)
context("Triangle") test_that("Triangle$contains", { t <- Triangle$new(c(0,0), c(1,5), c(3,3)) set.seed(666) pts <- t$randomPoints(3, "in") expect_true(all(apply(pts, 1L, t$contains))) }) test_that("Malfatti circles are tangent", { t <- Triangle$new(c(0,0), c(1,5), c(3,3)) Mcircles <- t$MalfattiCircles(tangencyPoints = TRUE) C1 <- Mcircles[[1L]]; C2 <- Mcircles[[2L]]; C3 <- Mcircles[[3L]] I1 <- intersectionCircleCircle(C1, C2) expect_true(is.numeric(I1) && length(I1) == 2L) I2 <- intersectionCircleCircle(C1, C3) expect_true(is.numeric(I2) && length(I2) == 2L) I3 <- intersectionCircleCircle(C2, C3) expect_true(is.numeric(I3) && length(I3) == 2L) tpoints <- attr(Mcircles, "tangencyPoints") expect_equal(tpoints$TA, I3) expect_equal(tpoints$TB, I2) expect_equal(tpoints$TC, I1) }) test_that("Gergonne point is the symmedian point of the Gergonne triangle", { t <- Triangle$new(c(0,0), c(1,5), c(4,3)) gpoint <- t$GergonnePoint() intouchTriangle <- t$GergonneTriangle() sympoint <- intouchTriangle$symmedianPoint() expect_equal(gpoint, sympoint) }) test_that("Symmedian point of a right triangle", { t <- Triangle$new(c(0,0), c(1,5), c(3,3)) sympoint <- t$symmedianPoint() orthic <- t$orthicTriangle() H <- orthic$C expect_equal(sympoint, (t$C+H)/2) }) test_that("Gergonne triangle of tangential triangle is reference triangle", { tref <- Triangle$new(c(0,0), c(1,5), c(4,3)) ttref <- tref$tangentialTriangle() gergonnettref <- ttref$GergonneTriangle() expect_equal( cbind(tref$A, tref$B, tref$C), cbind(gergonnettref$A, gergonnettref$B, gergonnettref$C) ) }) test_that("Orthogonality Parry circle", { t <- Triangle$new(c(0,0), c(1,5), c(4,3)) parry <- t$ParryCircle() brocard <- t$BrocardCircle() circum <- t$circumcircle() expect_true(parry$isOrthogonal(brocard)) expect_true(parry$isOrthogonal(circum)) }) test_that("Brocard points - concurrency", { t <- Triangle$new(c(0,0), c(1,5), c(5,2)) bpoints <- t$BrocardPoints() bline1 <- Line$new(t$A, bpoints$Z1) bline2 <- Line$new(t$A, bpoints$Z2) median <- Line$new(t$B, t$centroid()) symmedian <- Line$new(t$C, t$symmedianPoint()) P <- intersectionLineLine(bline1, median) expect_true(symmedian$includes(P)) }) test_that("Brocard points - distance from circumcenter", { t <- Triangle$new(c(0,0), c(1,5), c(5,2)) bpoints <- t$BrocardPoints() O <- t$circumcenter() R <- t$circumradius() edges <- as.list(t$edges()) d <- R * with(edges, sqrt((a^4+b^4+c^4)/(a^2*b^2+a^2*c^2+b^2*c^2)-1)) expect_equal(d, .distance(bpoints$Z1, O)) expect_equal(d, .distance(bpoints$Z2, O)) }) test_that("Pedal triangles", { t <- Triangle$new(c(1,1), c(0,3), c(2,-3)) I <- t$incircle()$center ptI <- t$pedalTriangle(I) gerg <- t$GergonneTriangle() expect_equal(cbind(gerg$A,gerg$B,gerg$C), cbind(ptI$A,ptI$B,ptI$C)) H <- t$orthocenter() ptH <- t$pedalTriangle(H) orthic <- t$orthicTriangle() expect_equal(cbind(orthic$A,orthic$B,orthic$C), cbind(ptH$A,ptH$B,ptH$C)) O <- t$circumcenter() ptO <- t$pedalTriangle(O) medial <- t$medialTriangle() expect_equal(cbind(medial$A,medial$B,medial$C), cbind(ptO$A,ptO$B,ptO$C)) B <- t$BevanPoint() ptB <- t$pedalTriangle(B) nagel <- t$NagelTriangle() expect_equal(cbind(nagel$A,nagel$B,nagel$C), cbind(ptB$A,ptB$B,ptB$C)) }) test_that("Cevian triangles", { t <- Triangle$new(c(1,1), c(0,3), c(2,-3)) I <- t$incircle()$center ctI <- t$CevianTriangle(I) incentral <- t$incentralTriangle() expect_equal(cbind(incentral$A,incentral$B,incentral$C), cbind(ctI$A,ctI$B,ctI$C)) G <- t$centroid() ctG <- t$CevianTriangle(G) medial <- t$medialTriangle() expect_equal(cbind(medial$A,medial$B,medial$C), cbind(ctG$A,ctG$B,ctG$C)) H <- t$orthocenter() ctH <- t$CevianTriangle(H) orthic <- t$orthicTriangle() expect_equal(cbind(orthic$A,orthic$B,orthic$C), cbind(ctH$A,ctH$B,ctH$C)) K <- t$symmedianPoint() ctK <- t$CevianTriangle(K) symm <- t$symmedialTriangle() expect_equal(cbind(symm$A,symm$B,symm$C), cbind(ctK$A,ctK$B,ctK$C)) Ge <- t$GergonnePoint() ctGe <- t$CevianTriangle(Ge) gerg <- t$GergonneTriangle() expect_equal(cbind(gerg$A,gerg$B,gerg$C), cbind(ctGe$A,ctGe$B,ctGe$C)) N <- t$NagelPoint() ctN <- t$CevianTriangle(N) extouch <- t$NagelTriangle() expect_equal(cbind(extouch$A,extouch$B,extouch$C), cbind(ctN$A,ctN$B,ctN$C)) }) test_that("Steiner ellipse/inellipse", { t <- Triangle$new(c(0,0), c(2,0.5), c(1.5,2)) inell <- t$SteinerInellipse() ell <- t$medialTriangle()$SteinerEllipse() expect_true(ell$isEqual(inell)) }) test_that("Hexyl triangle", { t <- Triangle$new(c(0,0), c(1,5), c(3,3)) ht <- t$hexylTriangle() et <- t$excentralTriangle() HA <- ht$A; HB <- ht$B; HC <- ht$C JA <- et$A; JB <- et$B; JC <- et$C HAJC <- Line$new(HA, JC) HCJA <- Line$new(HC, JA) expect_true(HAJC$isParallel(HCJA)) })
context('dbGetRowCount') source('utilities.R') test_that('dbGetRowCount works with live database', { conn <- setup_live_connection() result <- dbSendQuery(conn, 'SELECT 1 AS n') expect_equal(dbGetRowCount(result), 0) expect_equal(dbFetch(result, -1), data.frame(n=1)) expect_equal(dbGetRowCount(result), 1) result <- dbSendQuery(conn, 'SELECT n FROM (VALUES (1), (2)) AS t (n)') expect_equal(dbGetRowCount(result), 0) expect_equal(dbFetch(result, -1), data.frame(n=c(1, 2))) expect_equal(dbGetRowCount(result), 2) }) test_that('dbGetRowCount works with mock', { conn <- setup_mock_connection() with_mock( `httr::POST`=mock_httr_replies( mock_httr_response( 'http://localhost:8000/v1/statement', status_code=200, state='QUEUED', request_body='SELECT n FROM two_rows', next_uri='http://localhost:8000/query_1/1' ) ), `httr::GET`=mock_httr_replies( mock_httr_response( 'http://localhost:8000/query_1/1', status_code=200, data=data.frame(n=1, stringsAsFactors=FALSE), state='FINISHED', next_uri='http://localhost:8000/query_1/2' ), mock_httr_response( 'http://localhost:8000/query_1/2', status_code=200, data=data.frame(n=2, stringsAsFactors=FALSE), state='FINISHED' ) ), { result <- dbSendQuery(conn, 'SELECT n FROM two_rows') expect_equal(dbGetRowCount(result), 0) expect_equal(dbFetch(result), data.frame(n=1)) expect_equal(dbGetRowCount(result), 1) expect_equal(dbFetch(result), data.frame(n=2)) expect_equal(dbGetRowCount(result), 2) expect_equal(dbFetch(result), data.frame()) expect_equal(dbGetRowCount(result), 2) } ) })
quantreg.rfsrc <- function(formula, data, object, newdata, method = "local", splitrule = NULL, prob = NULL, prob.epsilon = NULL, oob = TRUE, fast = FALSE, maxn = 1e3, ...) { grow <- FALSE method <- match.arg(method, c("forest", "local", "gk", "GK", "G-K", "g-k")) if (missing(object)) { grow <- TRUE dots <- list(...) dots$formula <- dots$data <- NULL dots$prob <- prob dots$prob.epsilon <- prob.epsilon if (is.null(splitrule)) { splitrule <- "la.quantile.regr" } fmly <- parseFormula(formula, data)$family if (fmly == "regr+" || fmly == "class+" || fmly == "mix+") { splitrule <- NULL } if (!fast) { rfsrc.grow <- "rfsrc" } else { rfsrc.grow <- "rfsrc.fast" } if (method == "forest") { dots$gk.quantile <- FALSE dots$forest.wt <- if (oob) "oob" else TRUE } else if (method == "local") { dots$gk.quantile <- FALSE } else { dots$gk.quantile <- TRUE } dots$quantile.regr <- TRUE object <- do.call(rfsrc.grow, c(list(formula = formula, data = data, splitrule = splitrule), dots)) object$yvar.grow <- object$yvar if (object$family == "regr") { ynames <- object$yvar.names } else { ynames <- names(object$regrOutput) } if (ncol(cbind(object$yvar.grow)) > 1) { object$res.grow <- do.call(cbind, lapply(ynames, function(yn) { if (oob && !is.null(object$regrOutput[[yn]]$predicted.oob)) { object$yvar[, yn] - object$regrOutput[[yn]]$predicted.oob } else { object$yvar[, yn] - object$regrOutput[[yn]]$predicted } })) colnames(object$res.grow) <- ynames } else { if (oob && !is.null(object$predicted.oob)) { object$res.grow <- object$yvar - object$predicted.oob } else { object$res.grow <- object$yvar - object$predicted } } } else { if (sum(grepl("quantreg", class(object))) == 0) { stop("object must be a quantreg object") } } if (!(object$family == "regr" | !is.null(object$regrOutput))) { stop("this function only applies to regression settings\n") } prob.grow <- object$forest$prob if (!grow || !missing(newdata)) { dots <- list(...) if (!is.null(prob)) { prob.grow <- dots$prob <- prob } else { dots$prob <- prob.grow } dots$prob.epsilon <- prob.epsilon if (!missing(newdata)) { oob <- FALSE } if (method == "forest") { dots$gk.quantile <- FALSE dots$forest.wt <- TRUE if (missing(newdata) && oob) { dots$forest.wt <- "oob" } } else if (method == "local") { dots$gk.quantile <- FALSE } else { dots$gk.quantile <- TRUE } yvar.grow <- object$yvar.grow res.grow <- object$res.grow if (missing(newdata)) { object <- do.call(predict, c(list(object = object), dots)) } else { object <- do.call(predict, c(list(object = object, newdata = newdata), dots)) } object$yvar.grow <- yvar.grow object$res.grow <- res.grow } prob <- prob.grow if (object$family == "regr") { ynames <- object$yvar.names } else { ynames <- names(object$regrOutput) } sIndex <- function(x1, x2) {sapply(1:length(x2), function(j) {sum(x1 <= x2[j])})} rO <- lapply(ynames, function(yn) { if (!(method == "forest" || method == "local")) { if (ncol(cbind(object$yvar.grow)) > 1) { y <- object$yvar.grow[, yn] if (oob && !is.null(object$regrOutput[[yn]]$quantile.oob)) { quant <- object$regrOutput[[yn]]$quantile.oob } else { quant <- object$regrOutput[[yn]]$quantile } object$regrOutput[[yn]]$quantile.oob <<- object$regrOutput[[yn]]$quantile <<- NULL } else { y <- object$yvar.grow if (oob && !is.null(object$quantile.oob)) { quant <- object$quantile.oob } else { quant <- object$quantile } object$quantile.oob <<- object$quantile <<- NULL } quant.temp <- cbind(min(y, na.rm = TRUE) - 1, quant, max(y, na.rm = TRUE)) prob.temp <- c(0, prob, 1) yunq <- sort(unique(y)) if (length(yunq) > maxn) { yunq <- yunq[unique(round(seq(1, length(yunq), length.out = maxn)))] } cdf <- t(apply(quant.temp, 1, function(q) {prob.temp[sIndex(q, yunq)]})) density <- t(apply(cbind(0, cdf), 1, diff)) } else { if (ncol(cbind(object$yvar.grow)) > 1) { y <- object$yvar.grow[, yn] res <- object$res.grow[, yn] if (oob && !is.null(object$regrOutput[[yn]]$predicted.oob)) { yhat <- object$regrOutput[[yn]]$predicted.oob } else { yhat <- object$regrOutput[[yn]]$predicted } } else { y <- object$yvar.grow res <- object$res.grow if (oob && !is.null(object$predicted.oob)) { yhat <- object$predicted.oob } else { yhat <- object$predicted } } yunq <- sort(unique(y)) if (method == "forest") { cdf <- do.call(rbind, mclapply(1:nrow(object$forest.wt), function(i) { ind.matx <- do.call(rbind, lapply(yunq, function(yy) {res <= (yy - yhat[i])})) c(ind.matx %*% object$forest.wt[i, ]) })) } else { cdf <- do.call(rbind, mclapply(1:length(yhat), function(i) { sapply(yunq, function(yy) {mean(res <= (yy - yhat[i]))}) })) } quant <- t(apply(cdf, 1, function(pr) { c(min(yunq, na.rm = TRUE), yunq)[1 + sIndex(pr, prob)] })) density <- t(apply(cbind(0, cdf), 1, diff)) } list(quantiles = quant, prob = prob, cdf = cdf, density = density, yunq = yunq) }) if (object$family == "regr") { rO <- rO[[1]] } else { names(rO) <- ynames } object$quantreg <- rO class(object)[4] <- "quantreg" object } quantreg <- quantreg.rfsrc extract.quantile <- function(o) { if (sum(grepl("quantreg", class(o))) == 0) { stop("object must be a quantreg object") } mv.y.names <- intersect(names(o$quantreg), o$yvar.names) if (length(mv.y.names) == 0) { q <- list(o$quantreg) names(q) <- o$yvar.names } else { q <- lapply(mv.y.names, function(m.target) { o$quantreg[[m.target]] }) names(q) <- mv.y.names } q } get.quantile <- function(o, target.prob = NULL, pretty = TRUE) { qo <- extract.quantile(o) if (!is.null(target.prob)) { target.prob <- sort(unique(target.prob)) } else { target.prob <- qo[[1]]$prob } rO <- lapply(qo, function(q) { q.dat <- do.call(cbind, lapply(target.prob, function(pr) { q$quant[, which.min(abs(pr - q$prob))] })) colnames(q.dat) <- paste("q.", 100 * target.prob, sep = "") q.dat }) if (pretty && length(rO) == 1) { rO <- rO[[1]] } rO } get.quantile.crps <- function(o, pretty = TRUE, subset = NULL) { qO <- extract.quantile(o) if (sum(grepl("predict", class(o))) > 0 && is.null(o$yvar)) { stop("no yvar present in quantreg predict object") } if (is.null(subset)) { subset <- 1:o$n } else { if (is.logical(subset)) { subset <- which(subset) } subset <- subset[subset >=1 & subset <= o$n] } if (length(subset) == 0) { stop("requested subset is empty") } rO <- lapply(1:length(qO), function(j) { q <- qO[[j]] if (is.vector(o$yvar)) { y <- cbind(o$yvar) } else { y <- o$yvar[, names(qO)[j]] } n <- length(y) brS <- colMeans(do.call(rbind, mclapply(subset, function(i) { (1 * (y[i] <= q$yunq) - q$cdf[i, ]) ^ 2 })), na.rm = TRUE) crps <- unlist(lapply(1:length(q$yunq), function(j) { trapz(q$yunq[1:j], brS[1:j]) / diff(range(q$yunq[1:j])) })) data.frame(y = q$yunq, crps = crps) }) names(rO) <- names(qO) if (pretty && length(rO) == 1) { rO <- rO[[1]] } rO } get.quantile.stat <- function(o, pretty = TRUE) { qO <- extract.quantile(o) mdn <- get.quantile(o, .5, FALSE) rO <- lapply(1:length(qO), function(j) { q <- qO[[j]] mn <- q$density %*% q$yunq std <- sqrt(q$density %*% q$yunq^2 - mn ^ 2) data.frame(mean = mn, median = c(mdn[[j]]), std = std) }) names(rO) <- names(qO) if (pretty && length(rO) == 1) { rO <- rO[[1]] } rO }
mvord.fit <- function(rho){ rho$ntheta <- sapply(seq_len(rho$ndim), function(j) nlevels(rho$y[, j]) - 1) if (is.null(rho$threshold.values)) { if ((rho$error.structure$type == "correlation") && (rho$intercept.type == "fixed")) { rho$threshold.values <- lapply(seq_len(rho$ndim), function(j) rep.int(NA, rho$ntheta[j])) } else if((rho$error.structure$type %in% c("correlation")) && (rho$intercept.type == "flexible")) { rho$threshold.values <- lapply(seq_len(rho$ndim), function(j) if(rho$ntheta[j] == 1) 0 else c(0,rep.int(NA,max(rho$ntheta[j]-1,0)))) cat("Note: First threshold for each response is fixed to 0 in order to ensure identifiability!\n") } else if ((rho$error.structure$type %in% c("covariance")) && (rho$intercept.type == "flexible")) { rho$threshold.values <- lapply(seq_len(rho$ndim), function(j) if(rho$ntheta[j] == 1) 0 else c(0,1,rep.int(NA,max(rho$ntheta[j]-2,0)))) cat("Note: First two thresholds for each response are fixed to 0 and 1 in order to ensure identifiability!\n") } else if ((rho$error.structure$type %in% c("covariance")) && (rho$intercept.type == "fixed")) { rho$threshold.values <- lapply(seq_len(rho$ndim), function(j) if(rho$ntheta[j] == 1) 0 else c(0,rep.int(NA,max(rho$ntheta[j]-1,0)))) cat("Note: First threshold for each response is fixed to 0 in order to ensure identifiability!\n") } } else { if (length(rho$threshold.values) != rho$ndim) stop("Length of threshold values does not match number of outcomes") } rho$threshold.values.fixed <- lapply(rho$threshold.values, function(x) x[!is.na(x)]) rho$npar.theta <- sapply(seq_len(rho$ndim), function(j) sum(is.na(rho$threshold.values[[j]]))) rho$binary <- any(sapply(seq_len(rho$ndim), function(j) length(rho$threshold.values[[j]]) == 1)) rho$threshold <- set_threshold_type(rho) rho$ncat <- rho$ntheta + 1 rho$nthetas <- sum(rho$ntheta) rho$ncat.first.ind <- cumsum(c(1,rho$ntheta))[- (rho$ndim + 1)] rho$npar.theta.opt <- rho$npar.theta rho$npar.theta.opt[duplicated(rho$threshold.constraints)] <- 0 rho$npar.thetas <- sum(rho$npar.theta.opt) rho <- set_offset_up(rho) rho$coef.names <- attributes(rho$x[[1]])$dimnames[[2]] rho$constraints <- get_constraints(rho) rho$npar.beta <- 0 if (length(rho$constraints) > 0) rho$npar.beta <- sapply(rho$constraints, NCOL) rho$npar.betas <- sum(rho$npar.beta) check_args_constraints(rho) check_args_thresholds(rho) rho$ind.thresholds <- get_ind_thresholds(rho$threshold.constraints, rho) rho$inf.value <- 10000 rho$evalOnly <- ifelse((rho$npar.thetas + rho$npar.betas + attr(rho$error.structure, "npar") == 0), TRUE, FALSE) if (is.null(rho$start.values)) { rho$start <- c(get_start_values(rho), start_values(rho$error.structure)) } else { if(length(unlist(rho$start.values)) != (rho$npar.thetas + rho$npar.betas)){ cat(paste0("length should be ", rho$npar.thetas + rho$npar.betas)) stop("start.values (theta + beta) has false length", call. = FALSE) } theta.start <- rho$threshold.values gamma.start <- lapply(seq_len(rho$ndim), function(j) {theta.start[[j]][is.na(theta.start[[j]])] <- rho$start.values$theta[[j]] theta2gamma(theta.start[[j]]) }) rho$start <- c(unlist(lapply(seq_len(rho$ndim), function(j) gamma.start[[j]][is.na(rho$threshold.values[[j]])])), unlist(rho$start.values$beta), start_values(rho$error.structure)) } rho$transf_thresholds <- switch(rho$threshold, flexible = transf_thresholds_flexible, fix1first = transf_thresholds_fix1_first, fix2first = transf_thresholds_fix2_first, fix2firstlast = transf_thresholds_fix2_firstlast, fixall = transf_thresholds_fixall) rho$build_error_struct <- ifelse(attr(rho$error.structure, "npar") == 0, build_error_struct_fixed, build_error_struct) rho$p <- NCOL(rho$x[[1]]) rho$inds.cat <- lapply(seq_len(rho$ndim), function(j) seq_len(rho$ntheta[j]) + rho$ncat.first.ind[j] - 1) rho$indjbeta <- lapply(seq_len(rho$ndim), function(j) { c(outer(rho$inds.cat[[j]], (seq_len(rho$p) - 1) * rho$nthetas, "+")) }) dim_ind <- rep.int(seq_len(rho$ndim), rho$ntheta) x_new <- rho$x if(rho$p > 0) { x_center <- vector("list", rho$ndim) x_scale <- vector("list", rho$ndim) for (j in seq_len(rho$ndim)) { mu <- double(rho$p) sc <- rep.int(1, rho$p) ind_int <- attr(x_new[[j]], "assign") != 0 tmp <- scale_mvord(x_new[[j]][, ind_int, drop = FALSE]) x_new[[j]][, ind_int] <- tmp$x mu[ind_int] <- tmp$mu sc[ind_int] <- tmp$sc x_center[[j]] <- mu x_scale[[j]] <- sc } constraints_scaled <- lapply(seq_along(rho$constraints), function(p) { sxp <- sapply(x_scale, "[", p) x <- rho$constraints[[p]] fi <- apply(x, 2, function(y) which(y == 1)[1]) fi[is.na(fi)] <- 1 sweep(x * sxp[dim_ind], 2, sxp[dim_ind[fi]], "/") }) if (length(constraints_scaled) > 0) { rho$constraints_mat <- bdiag(constraints_scaled) } else { rho$constraints_mat <- numeric(0) } tmp <- (lapply(seq_along(rho$constraints), function(p) { sxp <- sapply(x_scale, "[", p) mxp <- sapply(x_center, "[", p) fi <- apply(rho$constraints[[p]], 2, function(y) which(y == 1)[1]) fi[is.na(fi)] <- 1 list(scale = sxp[dim_ind[fi]], center = mxp[dim_ind[fi]]) })) rho$fi_scale <- unlist(sapply(tmp, "[", "scale")) rho$fi_center <- unlist(sapply(tmp, "[", "center")) } else rho$constraints_mat <- integer() rho$XcatU <- vector("list", rho$ndim) rho$XcatL <- vector("list", rho$ndim) if (rho$p > 0) { for (j in seq_len(rho$ndim)) { ncat <- rho$ntheta[j] + 1 mm <- model.matrix(~ - 1 + rho$y[,j] : x_new[[j]], model.frame(~ - 1 + rho$y[,j] : x_new[[j]], na.action = function(x) x)) rho$XcatL[[j]] <- mm[,-(ncat * (seq_len(rho$p) - 1) + 1), drop = F] rho$XcatU[[j]] <- mm[,-(ncat * seq_len(rho$p)), drop = F] } } else { rho$XcatU <- lapply(seq_len(rho$ndim), function(x) integer()) rho$XcatL <- lapply(seq_len(rho$ndim), function(x) integer()) } rho$contr_theta <- do.call("rbind", rep.int(list(diag(rho$nthetas)), rho$p)) if(rho$p > 0){ rho$mat_center_scale <- bdiag(rho$constraints) %*% c(rho$fi_center/rho$fi_scale) } else rho$mat_center_scale <- integer() rho$thold_correction <- vector("list", rho$ndim) is.dup <- duplicated(rho$threshold.constraints) if(rho$p > 0){ rho$thold_correction <-lapply(seq_len(rho$ndim), build_correction_thold_fun0, rho = rho) if (any(is.dup)) { tmp <- lapply(which(is.dup), build_correction_thold_fun, rho = rho) rho$thold_correction[which(is.dup)] <- tmp } } else { rho$thold_correction <-lapply(seq_len(rho$ndim), build_correction_thold_fun0, rho = rho) } rho$combis <- combn(rho$ndim, 2, simplify = F) rho$dummy_pl_lag <- sapply(rho$combis, function(x) diff(x) <= rho$PL.lag) rho$combis <- rho$combis[rho$dummy_pl_lag == 1] ind_i <- rowSums(!is.na(rho$y)) == 1 rho$ind_univ <- which(!is.na(rho$y) & ind_i, arr.ind=T) rho$n_univ <- NROW(rho$ind_univ) rho$ind_kl <- lapply(rho$combis, function(kl) rowSums(!is.na(rho$y[, kl])) == 2) rho$ind_i <- lapply(seq_along(rho$combis), function(h) which(rho$ind_kl[[h]])) rho$combis_fast <- lapply(seq_along(rho$combis),function(h){ list("combis" = rho$combis[[h]], "ind_i" = rho$ind_i[[h]], "r" = rep(h,length(rho$ind_i[[h]]))) }) rho$n_biv <- sum(sapply(rho$ind_i, length)) rho$weights_fast <- rho$weights[c(unlist(rho$ind_i), rho$ind_univ[,1])] if(("cor_general" %in% class(rho$error.structure)) & is.null(rho$coef.values_input) & (rho$coef.constraints_VGAM == FALSE) & attr(rho$error.structure, "formula")[[2]] == 1 & !isTRUE(rho$error.structure$fixed) & !anyNA(rho$coef.constraints_input) & all(sapply(seq_len(length(rho$x)-1), function(j){ if((NCOL(rho$x[[j]]) == 0) & (NCOL(rho$x[[j + 1]]) == 0)) {TRUE }else if(any(sapply(rho$x, anyNA))) FALSE else{ rho$x[[j]] == rho$x[[j + 1]] } }))){ rho$fast_fit <- TRUE } else rho$fast_fit <- FALSE if(rho$fast_fit){ rho$indjbeta_mat <- do.call("cbind",lapply(rho$constraints, function(x){x[rho$ncat.first.ind,] == 1 })) rho$indjbeta_fast <- lapply(seq_len(rho$ndim), function(j) { j + (seq_len(rho$p)-1) * rho$npar.beta }) rho$fi_scale_fast <- rho$fi_scale[1 + (seq_len(rho$p)-1) * rho$ndim] rho$fi_center_fast <- rho$fi_center[1 + (seq_len(rho$p)-1) * rho$ndim] rho$xfast <- x_new[[1]] } if (rho$evalOnly) { rho$optpar <- numeric(0) rho$objective <- c(value = PLfun_old(rho$start , rho)) } else { if (is.character(rho$solver)) { if(rho$fast_fit){ rho$optRes <- suppressWarnings(optimx(rho$start, function(x) PLfun_fast(x, rho), method = rho$solver, hessian = FALSE, control = rho$control)) } else{ rho$optRes <- suppressWarnings(optimx(rho$start, function(x) PLfun(x, rho), method = rho$solver, hessian = FALSE, control = rho$control)) } rho$optpar <- unlist(rho$optRes[1:length(rho$start)]) rho$objective <- unlist(rho$optRes["value"]) } if (is.function(rho$solver)){ rho$optRes <- rho$solver(rho$start, function(x) PLfun(x, rho)) if (is.null(rho$optRes$optpar)|is.null(rho$optRes$objvalue)|is.null(rho$optRes$convcode)) stop("Solver function does not return the required objects.") rho$optpar <- rho$optRes$optpar rho$objective <- rho$optRes$objvalue rho$message <- rho$optRes$message } if (rho$optRes$convcode != 0){ stop("NO/FALSE CONVERGENCE - choose a different optimizer or different starting values.") } } par_beta <- rho$optpar[rho$npar.thetas + seq_len(rho$npar.betas)] if(rho$p > 0){ betatilde <- rho$constraints_mat %*% par_beta par_theta <- rho$transf_thresholds(rho$optpar[seq_len(rho$npar.thetas)], rho, betatilde) thetatilde <- lapply(seq_len(rho$ndim), function(j) par_theta[[j]] + rho$thold_correction[[j]](betatilde, k = j, rho = rho)) betatildemu <- betatilde * rho$mat_center_scale br <- drop(crossprod(rho$contr_theta, betatildemu[,1])) correction <- lapply(rho$inds.cat, function(k) br[k]) } else { correction <- rep.int(list(0), rho$ndim) par_theta <- rho$transf_thresholds(rho$optpar[seq_len(rho$npar.thetas)], rho, 0) thetatilde <- lapply(seq_len(rho$ndim), function(j) par_theta[[j]]) } rho$theta <- lapply(seq_len(rho$ndim), function(j) thetatilde[[j]] + correction[[j]]) rho$beta <- par_beta/rho$fi_scale if (rho$se) { rho <- PL_se(rho) } res <- mvord_finalize(rho) if (rho$se) { rownames(rho$varGamma) <- colnames(rho$varGamma) <- c(names(unlist(res$theta))[is.na(unlist(rho$threshold.values))][!duplicated(unlist(rho$ind.thresholds))], names(res$beta), attr(res$error.struct, "parnames")) } rho$XcatU <- NULL rho$XcatL <- NULL rho$transf_thresholds <- NULL rho$get_ind_thresholds <- NULL rho$y.NA.ind <- NULL rho$binary <- NULL rho$intercept.type <- NULL rho$intercept <- NULL rho$threshold.values.fixed <- NULL rho$ncat.first.ind <- NULL rho$constraints_mat <- NULL rho$ind_univ <- NULL rho$ind_kl <- NULL rho$combis <- NULL rho$fi_scale <- NULL rho$fi_center <- NULL rho$mat_center_scale <- NULL rho$dummy_pl_lag <- NULL rho$inds.cat <- NULL rho$thold_correction <- NULL rho$contr_theta <- NULL rho$error.structure <- NULL rho$beta <- NULL rho$coef.names <- NULL rho$link$deriv.fun <- NULL rho$link$F_biv_rect <- NULL rho$link$F_biv <- NULL res$rho <- rho res$rho$formula <- rho$formula.input res$rho$formula.input <- NULL attr(res, "contrasts") <- rho$contrasts res$rho$contrasts <- NULL rho$timestamp2 <- proc.time() res$rho$runtime <- rho$timestamp2 - rho$timestamp1 res$rho$timestamp1 <- NULL class(res) <- "mvord" return(res) } PLfun <- function(par, rho){ tmp <- transf_par(par, rho) pr <- double(rho[["n_univ"]]) pr <- rho[["link"]][["F_uni"]](tmp[["U_univ"]]) - rho[["link"]][["F_uni"]](tmp[["L_univ"]]) pr[pr < .Machine$double.eps] <- .Machine$double.eps prh <- double(rho[["n_biv"]]) prh <- rho[["link"]][["F_biv_rect"]]( U = tmp[["U"]], L = tmp[["L"]], r = tmp[["corr_par"]]) prh[prh < .Machine$double.eps] <- .Machine$double.eps -sum(rho[["weights_fast"]] * log(c(prh, pr))) } PLfun_old <- function(par, rho){ tmp <- transf_par_old(par, rho) pred.upper <- tmp$U pred.lower <- tmp$L r_mat <- tmp$corr_par[, rho$dummy_pl_lag == 1, drop = F] logp <- double(rho$n) pr <- rho$link$F_uni(pred.upper[rho$ind_univ]) - rho$link$F_uni(pred.lower[rho$ind_univ]) pr[pr < .Machine$double.eps] <- .Machine$double.eps logp[rho$ind_univ[,1]] <- log(pr) for (h in seq_along(rho$combis)){ ind_i <- which(rho$ind_kl[[h]]) r <- r_mat[ind_i, h] prh <- rho$link$F_biv_rect( U = pred.upper[ind_i, rho$combis[[h]], drop = F], L = pred.lower[ind_i, rho$combis[[h]], drop = F], r = r) prh[prh < .Machine$double.eps] <- .Machine$double.eps logp[ind_i] <- logp[ind_i] + log(prh) } - sum(rho$weights * logp) } .onLoad <- function(library, pkg) { library.dynam("mvord", pkg, library) invisible() }
copy_df <-function(x, row.names = FALSE, col.names = TRUE, quietly = FALSE,...) { utils::write.table(x,"clipboard-50000", sep="\t", row.names=row.names, col.names=col.names,...) if(quietly==FALSE) print(x) }
which.nearest <- function(x, y) { sapply(y, function(i) { if (is.na(i) | is.nan(i)) return(i) if (i < min(x, na.rm = TRUE)) warning("y = ", i, " is less than minimum of x", call. = FALSE) if (i > max(x, na.rm = TRUE)) warning("y = ", i, " is greater than maximum of x", call. = FALSE) return(which.min(abs(i - x))) }) }
TraCoe <- function(coe = matrix(), fac = dplyr::data_frame()) { structure( list(coe = coe, fac = tibble::as_tibble(fac)), class=c("TraCoe", "Coe") ) } print.TraCoe <- function(x, ...) { TraCoe <- x cat("A TraCoe object ", rep("-", 20), "\n", sep = "") shp.nb <- nrow(TraCoe$coe) var.nb <- ncol(TraCoe$coe) cat(" - $coe:", shp.nb, "shapes described with", var.nb, "variables\n") .print_fac(TraCoe$fac) }
Sbackward<-function(initsa,x,y,theta=NULL){ n<-length(x) l<-length(initsa$states) if(is.null(theta)){ scor_func<-scores(initsa) }else{ scor_func<-scores(NULL,theta) } B<-matrix(data = NA, nrow = n+1,ncol = l) for(s in 1:l){ B[n+1,s]<-0 } for(k in n:1){ for(s in l:1){ B[k,s]<-Inf for(s_dash in l:1){ score_col<-paste(toString(y[k]),toString(initsa$states[s]), sep=',') score_row<-paste(toString(x[k]),toString(initsa$states[s_dash]), sep=',') B[k,s]=min(B[k,s],(scor_func$scoress[score_row,score_col]+B[k+1,s_dash])) } } } colnames(B)<-initsa$states w<-Inf for(s in 1:l){ w<-min(w[s],B[1,s]) } return(B) }
library(tinytest) library(ggiraph) library(ggplot2) library(xml2) source("setup.R") { eval(test_geom_layer, envir = list(name = "geom_vline_interactive")) }
chk_chr <- function(x, x_name = NULL) { if (vld_chr(x)) { return(invisible(x)) } deprecate_soft( "0.6.1", what = "chk::chk_chr()", details = "Please use `chk::chk_scalar(x);` `chk::chk_character(x)` instead", id = "chk_chr" ) if (is.null(x_name)) x_name <- deparse_backtick_chk((substitute(x))) abort_chk(x_name, " must be a character scalar", x = x) } vld_chr <- function(x) { deprecate_soft( "0.6.1", what = "chk::chk_chr()", details = "Please use `chk::chk_scalar(x);` `chk::chk_character(x)` instead", id = "chk_chr" ) is.character(x) && length(x) == 1L }
test_that("The code outputs a correct json", { x <- 'c-Si' y <- ivallreal_fair(x) expect_identical(stringr::str_count(y, '<<'), as.integer(0)) expect_identical(stringr::str_count(y, '>>'), as.integer(0)) })
.incon <- function(mat) { sum( (mat - t(mat))[upper.tri(mat)] < 0, na.rm = TRUE) }
mw_static <- function(root, set_headers = NULL) { root; set_headers function(req, res) { path <- file.path(root, sub("^/", "", req$path)) if (!file.exists(path)) return("next") if (file.info(path)$isdir) return("next") ext <- tools::file_ext(basename(path)) ct <- mime_find(ext) if (!is.na(ct)) { res$set_header("Content-Type", ct) } if (!is.null(set_headers)) set_headers(req, res) res$send(read_bin(path)) } }
`orditree3d` <- function(ord, cluster, prune = 0, display = "sites", choices = c(1,2), col = "blue", text, type = "p", ...) { ord <- scores(ord, choices = choices, display = display, ...) if (ncol(ord) != 2) stop(gettextf("needs plane in 2d, got %d", ncol(ord))) ord <- cbind(ord, 0) if (!inherits(cluster, "hclust")) cluster <- as.hclust(cluster) x <- reorder(cluster, ord[,1], agglo.FUN = "mean")$value y <- reorder(cluster, ord[,2], agglo.FUN = "mean")$value xyz <- cbind(x, y, "height" = cluster$height) if (is.factor(col)) col <- as.numeric(col) col <- rep(col, length = nrow(ord)) lcol <- col2rgb(col)/255 r <- reorder(cluster, lcol[1,], agglo.FUN = "mean")$value g <- reorder(cluster, lcol[2,], agglo.FUN = "mean")$value b <- reorder(cluster, lcol[3,], agglo.FUN = "mean")$value lcol <- rgb(r, g, b) pl <- scatterplot3d(rbind(ord, xyz), type = "n") if (type == "p") pl$points3d(ord, col = col, ...) else if (type == "t") { if (missing(text)) text <- rownames(ord) text(pl$xyz.convert(ord), labels = text, col = col, ...) } leaf <- pl$xyz.convert(ord) node <- pl$xyz.convert(xyz) merge <- cluster$merge for (i in seq_len(nrow(merge) - prune)) for (j in 1:2) if (merge[i,j] < 0) segments(node$x[i], node$y[i], leaf$x[-merge[i,j]], leaf$y[-merge[i,j]], col = col[-merge[i,j]], ...) else segments(node$x[i], node$y[i], node$x[merge[i,j]], node$y[merge[i,j]], col = lcol[merge[i,j]], ...) pl$internal <- do.call(cbind, node) pl$points <- do.call(cbind, leaf) pl$col.internal <- as.matrix(lcol) pl$col.points <- as.matrix(col) class(pl) <- c("orditree3d", "ordiplot3d") invisible(pl) } `ordirgltree` <- function(ord, cluster, prune = 0, display = "sites", choices = c(1, 2), col = "blue", text, type = "p", ...) { p <- cbind(scores(ord, choices = choices, display = display, ...), 0) if (ncol(p) != 3) stop(gettextf("needs 2D ordination plane, but got %d", ncol(p)-1)) if (!inherits(cluster, "hclust")) cluster <- as.hclust(cluster) x <- reorder(cluster, p[,1], agglo.FUN = "mean")$value y <- reorder(cluster, p[,2], agglo.FUN = "mean")$value z <- cluster$height merge <- cluster$merge z <- mean(c(diff(range(x)), diff(range(y))))/diff(range(z)) * z if (is.factor(col)) col <- as.numeric(col) col <- rep(col, length = nrow(p)) lcol <- col2rgb(col)/255 r <- reorder(cluster, lcol[1,], agglo.FUN = "mean")$value g <- reorder(cluster, lcol[2,], agglo.FUN = "mean")$value b <- reorder(cluster, lcol[3,], agglo.FUN = "mean")$value lcol <- rgb(r, g, b) rgl.clear() if (type == "p") rgl.points(p, col = col, ...) else if (type == "t") { if (missing(text)) text <- rownames(p) rgl.texts(p, text = text, col = col, ...) } for (i in seq_len(nrow(merge) - prune)) for(j in 1:2) if (merge[i,j] < 0) rgl.lines(c(x[i], p[-merge[i,j],1]), c(y[i], p[-merge[i,j],2]), c(z[i], 0), col = col[-merge[i,j]], ...) else rgl.lines(c(x[i], x[merge[i,j]]), c(y[i], y[merge[i,j]]), c(z[i], z[merge[i,j]]), col = lcol[merge[i,j]], ...) if (prune <= 0) { n <- nrow(merge) rgl.lines(c(x[n],x[n]), c(y[n],y[n]), c(z[n],1.05*z[n]), col = lcol[n], ...) } }
.computeHost = function(ctree) { fathers <- rep(NA, nrow(ctree)) fathers[ctree[ ,2] + 1] <- 1:nrow(ctree) fathers[ctree[ ,3] + 1] <- 1:nrow(ctree) fathers <- fathers[-1] host <- rep(0, nrow(ctree)) nsam <- sum(ctree[ ,2] == 0&ctree[ ,3] == 0) for (i in 1:nsam) { j <- i while (1) { if (host[j]>0) warning('Warning: two leaves in same host') host[j] <- i j <- fathers[j] if (ctree[j,3] == 0) break } } if (nsam==1) return(host) dispo=nsam+1 f <- which( ctree[,3] == 0 & ctree[,2]>0 & (1:nrow(ctree))<nrow(ctree) ) for (i in 1:length(f)) { j <- f[i] tocol <- c() while (ctree[fathers[j],3]>0&&fathers[j]<nrow(ctree)) { tocol <- c(tocol,j) j <- fathers[j] } if (host[j]==0) {host[j]=dispo;dispo=dispo+1} host[tocol] <- host[j] } return(host) }
library(sommer) data(DT_example) DT <- DT_example A <- A_example ansSingle <- mmer(Yield~1, random= ~ vs(Name, Gu=A), rcov= ~ units, data=DT, verbose = FALSE) summary(ansSingle) ansMain <- mmer(Yield~Env, random= ~ vs(Name, Gu=A), rcov= ~ units, data=DT, verbose = FALSE) summary(ansMain) ansDG <- mmer(Yield~Env, random= ~ vs(ds(Env),Name, Gu=A), rcov= ~ units, data=DT, verbose = FALSE) summary(ansDG) E <- diag(length(unique(DT$Env))) rownames(E) <- colnames(E) <- unique(DT$Env) EA <- kronecker(E,A, make.dimnames = TRUE) ansCS <- mmer(Yield~Env, random= ~ vs(Name, Gu=A) + vs(Env:Name, Gu=EA), rcov= ~ units, data=DT, verbose = FALSE) summary(ansCS) ansMain <- mmer(Yield~Env, random= ~ vs(Name, Gu=A) + vs(ds(Env),Name, Gu=A), rcov= ~ units, data=DT, verbose = FALSE) summary(ansMain) ansUS <- mmer(Yield~Env, random= ~ vs(us(Env),Name, Gu=A), rcov= ~ units, data=DT, verbose = FALSE) summary(ansUS) library(orthopolynom) DT$EnvN <- as.numeric(as.factor(DT$Env)) ansRR <- mmer(Yield~Env, random= ~ vs(leg(EnvN,1),Name), rcov= ~ units, data=DT, verbose = FALSE) summary(ansRR) library(orthopolynom) DT$EnvN <- as.numeric(as.factor(DT$Env)) ansRR <- mmer(Yield~Env, random= ~ vs(us(leg(EnvN,1)),Name), rcov= ~ units, data=DT, verbose = FALSE) summary(ansRR) E <- AR1(DT$Env) rownames(E) <- colnames(E) <- unique(DT$Env) EA <- kronecker(E,A, make.dimnames = TRUE) ansCS <- mmer(Yield~Env, random= ~ vs(Name, Gu=A) + vs(Env:Name, Gu=EA), rcov= ~ units, data=DT, verbose = FALSE) summary(ansCS)