lcolonn commited on
Commit
a37bbc0
·
unverified ·
1 Parent(s): 0c37e35

feat: remove loading script

Browse files
Files changed (1) hide show
  1. patfig.py +0 -70
patfig.py DELETED
@@ -1,70 +0,0 @@
1
- import datasets
2
- from datasets import load_dataset, Dataset, Value, Sequence, Features, DatasetInfo, GeneratorBasedBuilder, Image
3
-
4
- from pathlib import Path
5
- import os
6
- import pandas as pd
7
-
8
- _DESCRIPTION = """\ The PatFig Dataset is a curated collection of over 18,000 patent images from more than 7,
9
- 000 European patent applications, spanning the year 2020. It aims to provide a comprehensive resource for research
10
- and applications in image captioning, abstract reasoning, patent analysis, and automated documentprocessing. The
11
- overarching goal of this dataset is to advance the research in visually situated language understanding towards more
12
- hollistic consumption of the visual and textual data.
13
- """
14
-
15
- _URL = "https://huggingface.co/datasets/lcolonn/patfig/resolve/main/"
16
- _URLS = {
17
- "train_images": "train_images.tar.gz",
18
- "test_images": "test_images.tar.gz",
19
- "annotations_train": "annotations_train.csv",
20
- "annotations_test": "annotations_test.csv",
21
- }
22
-
23
-
24
- class PatFig(GeneratorBasedBuilder):
25
- """DatasetBuilder for patfig dataset."""
26
-
27
- def _info(self):
28
- return DatasetInfo(
29
- description=_DESCRIPTION,
30
- features=Features({
31
- "image": Image(),
32
- "image_name": Value("string"),
33
- "pub_number": Value("string"),
34
- "title": Value("string"),
35
- "figs_norm": Sequence(feature=Value("string"), length=-1),
36
- "short_description": Sequence(feature=Value("string"), length=-1),
37
- "long_description": Sequence(feature=Value("string"), length=-1),
38
- "short_description_token_count": Value("int64"),
39
- "long_description_token_count": Value("int64"),
40
- "draft_class": Value("string"),
41
- "cpc_class": Value("string"),
42
- "relevant_terms": [{'element_identifier': Value("string"), "terms": Sequence(feature=Value("string"), length=-1)}],
43
- "associated_claims": Value("string"),
44
- "compound": Value("bool"),
45
- "references": Sequence(feature=Value(dtype='string'), length=-1),
46
- }),
47
- )
48
-
49
- def _split_generators(self, dl_manager: datasets.DownloadManager):
50
- # FIXME: Currently downloads all the files regardless of the split
51
- urls_to_download = {key: _URL + fname for key, fname in _URLS.items()}
52
- downloaded_files = dl_manager.download_and_extract(urls_to_download)
53
- return [
54
- datasets.SplitGenerator(
55
- name=datasets.Split.TRAIN, gen_kwargs={"images_dir": downloaded_files["train_images"], "annotations_dir": downloaded_files["annotations_train"]}
56
- ),
57
- datasets.SplitGenerator(
58
- name=datasets.Split.TEST, gen_kwargs={"images_dir": f'{downloaded_files["test_images"]}/test', "annotations_dir": downloaded_files["annotations_test"]}
59
- ),
60
- ]
61
-
62
- def _generate_examples(self, images_dir: str, annotations_dir: str):
63
- df = pd.read_csv(annotations_dir)
64
-
65
- for idx, row in df.iterrows():
66
- image_path = os.path.join(images_dir, row["pub_number"], row["image_name"])
67
- yield idx, {
68
- "image": image_path,
69
- **row.to_dict(),
70
- }