File size: 19,904 Bytes
146ebe6 c91fac7 146ebe6 c91fac7 146ebe6 c91fac7 146ebe6 c91fac7 146ebe6 cf4a40f 146ebe6 cf4a40f 146ebe6 043c6cc 146ebe6 043c6cc 146ebe6 043c6cc 146ebe6 043c6cc 146ebe6 cf4a40f 146ebe6 cf4a40f 146ebe6 c91fac7 146ebe6 c91fac7 146ebe6 c91fac7 146ebe6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 |
# coding=utf-8
# Copyright 2021 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
"""AMI Corpus"""
import os
import xml.etree.ElementTree as ET
import numpy as np
import datasets
logger = datasets.logging.get_logger(__name__)
_CITATION = """\
@inproceedings{10.1007/11677482_3,
author = {Carletta, Jean and Ashby, Simone and Bourban, Sebastien and Flynn, Mike and Guillemot, Mael and Hain, Thomas and Kadlec, Jaroslav and Karaiskos, Vasilis and Kraaij, Wessel and Kronenthal, Melissa and Lathoud, Guillaume and Lincoln, Mike and Lisowska, Agnes and McCowan, Iain and Post, Wilfried and Reidsma, Dennis and Wellner, Pierre},
title = {The AMI Meeting Corpus: A Pre-Announcement},
year = {2005},
isbn = {3540325492},
publisher = {Springer-Verlag},
address = {Berlin, Heidelberg},
url = {https://doi.org/10.1007/11677482_3},
doi = {10.1007/11677482_3},
abstract = {The AMI Meeting Corpus is a multi-modal data set consisting of 100 hours of meeting
recordings. It is being created in the context of a project that is developing meeting
browsing technology and will eventually be released publicly. Some of the meetings
it contains are naturally occurring, and some are elicited, particularly using a scenario
in which the participants play different roles in a design team, taking a design project
from kick-off to completion over the course of a day. The corpus is being recorded
using a wide range of devices including close-talking and far-field microphones, individual
and room-view video cameras, projection, a whiteboard, and individual pens, all of
which produce output signals that are synchronized with each other. It is also being
hand-annotated for many different phenomena, including orthographic transcription,
discourse properties such as named entities and dialogue acts, summaries, emotions,
and some head and hand gestures. We describe the data set, including the rationale
behind using elicited material, and explain how the material is being recorded, transcribed
and annotated.},
booktitle = {Proceedings of the Second International Conference on Machine Learning for Multimodal Interaction},
pages = {28–39},
numpages = {12},
location = {Edinburgh, UK},
series = {MLMI'05}
}
"""
_URL = "https://groups.inf.ed.ac.uk/ami/corpus/"
_DL_URL_ANNOTATIONS = "http://groups.inf.ed.ac.uk/ami/AMICorpusAnnotations/ami_public_manual_1.6.2.zip"
_DL_SAMPLE_FORMAT = "https://groups.inf.ed.ac.uk/ami/AMICorpusMirror//amicorpus/{}/audio/{}"
_SPEAKERS = ["A", "B", "C", "D", "E"]
# Commented out samples don't seem to exist
_TRAIN_SAMPLE_IDS = [
"ES2002a",
"ES2002b",
"ES2002c",
"ES2002d",
"ES2003a",
"ES2003b",
"ES2003c",
"ES2003d",
"ES2005a",
"ES2005b",
"ES2005c",
"ES2005d",
"ES2006a",
"ES2006b",
"ES2006c",
"ES2006d",
"ES2007a",
"ES2007b",
"ES2007c",
"ES2007d",
"ES2008a",
"ES2008b",
"ES2008c",
"ES2008d",
"ES2009a",
"ES2009b",
"ES2009c",
"ES2009d",
"ES2010a",
"ES2010b",
"ES2010c",
"ES2010d",
"ES2012a",
"ES2012b",
"ES2012c",
"ES2012d",
"ES2013a",
"ES2013b",
"ES2013c",
"ES2013d",
"ES2014a",
"ES2014b",
"ES2014c",
"ES2014d",
"ES2015a",
"ES2015b",
"ES2015c",
"ES2015d",
"ES2016a",
"ES2016b",
"ES2016c",
"ES2016d",
"IS1000a",
"IS1000b",
"IS1000c",
"IS1000d",
"IS1001a",
"IS1001b",
"IS1001c",
"IS1001d",
"IS1002b",
"IS1002c",
"IS1002d",
"IS1003a",
"IS1003b",
"IS1003c",
"IS1003d",
"IS1004a",
"IS1004b",
"IS1004c",
"IS1004d",
"IS1005a",
"IS1005b",
"IS1005c",
"IS1006a",
"IS1006b",
"IS1006c",
"IS1006d",
"IS1007a",
"IS1007b",
"IS1007c",
"IS1007d",
"TS3005a",
"TS3005b",
"TS3005c",
"TS3005d",
"TS3006a",
"TS3006b",
"TS3006c",
"TS3006d",
"TS3007a",
"TS3007b",
"TS3007c",
"TS3007d",
"TS3008a",
"TS3008b",
"TS3008c",
"TS3008d",
"TS3009a",
"TS3009b",
"TS3009c",
"TS3009d",
"TS3010a",
"TS3010b",
"TS3010c",
"TS3010d",
"TS3011a",
"TS3011b",
"TS3011c",
"TS3011d",
"TS3012a",
"TS3012b",
"TS3012c",
"TS3012d",
"EN2001a",
"EN2001b",
"EN2001d",
"EN2001e",
"EN2003a",
"EN2004a",
"EN2005a",
"EN2006a",
"EN2006b",
"EN2009b",
"EN2009c",
"EN2009d",
"IN1001",
"IN1002",
"IN1005",
"IN1007",
"IN1008",
"IN1009",
"IN1012",
"IN1013",
"IN1014",
"IN1016",
]
_VALIDATION_SAMPLE_IDS = [
"ES2011a",
"ES2011b",
"ES2011c",
"ES2011d",
"IS1008a",
"IS1008b",
"IS1008c",
"IS1008d",
"TS3004a",
"TS3004b",
"TS3004c",
"TS3004d",
"IB4001",
"IB4002",
"IB4003",
"IB4004",
"IB4010",
"IB4011",
]
_EVAL_SAMPLE_IDS = [
"ES2004a",
"ES2004b",
"ES2004c",
"ES2004d",
"IS1009a",
"IS1009b",
"IS1009c",
"IS1009d",
"TS3003a",
"TS3003b",
"TS3003c",
"TS3003d",
"EN2002a",
"EN2002b",
"EN2002c",
"EN2002d",
]
_DESCRIPTION = """\
The AMI Meeting Corpus consists of 100 hours of meeting recordings. The recordings use a range of signals
synchronized to a common timeline. These include close-talking and far-field microphones, individual and
room-view video cameras, and output from a slide projector and an electronic whiteboard. During the meetings,
the participants also have unsynchronized pens available to them that record what is written. The meetings
were recorded in English using three different rooms with different acoustic properties, and include mostly
non-native speakers. \n
"""
class AMIConfig(datasets.BuilderConfig):
"""BuilderConfig for LibriSpeechASR."""
def __init__(self, formats, missing_files=None, **kwargs):
"""
Args:
formats: `List[string]`, a list of audio file formats
missing_files: `List[string]`, a list of missing audio file ids
**kwargs: keyword arguments forwarded to super.
"""
self.dl_path_formats = [_DL_SAMPLE_FORMAT + "." + f + ".wav" for f in formats]
# for microphone configs some audio files are missing
self.missing_files = missing_files if missing_files is not None else []
super(AMIConfig, self).__init__(version=datasets.Version("1.6.2", ""), **kwargs)
class AMI(datasets.GeneratorBasedBuilder):
"""AMI dataset."""
BUILDER_CONFIGS = [
AMIConfig(name="headset-single", formats=["Mix-Headset"], description=""),
AMIConfig(name="headset-multi", formats=["Headset-0", "Headset-1", "Headset-2", "Headset-3"], description=""),
AMIConfig(
name="microphone-single",
formats=["Array1-01"],
missing_files=["IS1003b", "IS1007d"],
),
AMIConfig(
name="microphone-multi",
formats=[
"Array1-01",
"Array1-02",
"Array1-03",
"Array1-04",
"Array1-05",
"Array1-06",
"Array1-07",
"Array1-08",
],
missing_files=["IS1003b", "IS1007d"],
),
]
def _info(self):
features_dict = {
"word_ids": datasets.Sequence(datasets.Value("string")),
"word_start_times": datasets.Sequence(datasets.Value("float")),
"word_end_times": datasets.Sequence(datasets.Value("float")),
"word_speakers": datasets.Sequence(datasets.Value("string")),
"segment_ids": datasets.Sequence(datasets.Value("string")),
"segment_start_times": datasets.Sequence(datasets.Value("float")),
"segment_end_times": datasets.Sequence(datasets.Value("float")),
"segment_speakers": datasets.Sequence(datasets.Value("string")),
"words": datasets.Sequence(datasets.Value("string")),
"channels": datasets.Sequence(datasets.Value("string")),
}
if self.config.name == "headset-single":
features_dict.update({"file": datasets.Value("string")})
features_dict.update({"audio": datasets.features.Audio(sampling_rate=16_000)})
config_description = (
"Close talking audio of single headset. "
"This configuration only includes audio belonging to the "
"headset of the person currently speaking."
)
elif self.config.name == "microphone-single":
features_dict.update({"file": datasets.Value("string")})
features_dict.update({"audio": datasets.features.Audio(sampling_rate=16_000)})
config_description = (
"Far field audio of single microphone. "
"This configuration only includes audio belonging the first microphone, "
"*i.e.* 1-1, of the microphone array."
)
elif self.config.name == "headset-multi":
features_dict.update({f"file-{i}": datasets.Value("string") for i in range(4)})
features_dict.update({f"file-{i}": datasets.features.Audio(sampling_rate=16_000) for i in range(4)})
config_description = (
"Close talking audio of four individual headset. "
"This configuration includes audio belonging to four individual headsets."
" For each annotation there are 4 audio files 0, 1, 2, 3."
)
elif self.config.name == "microphone-multi":
features_dict.update({f"file-1-{i}": datasets.Value("string") for i in range(1, 8)})
features_dict.update({f"file-1-{i}": datasets.features.Audio(sampling_rate=16_000) for i in range(1, 8)})
config_description = (
"Far field audio of microphone array. "
"This configuration includes audio of "
"the first microphone array 1-1, 1-2, ..., 1-8."
)
else:
raise ValueError(f"Configuration {self.config.name} does not exist.")
return datasets.DatasetInfo(
description=_DESCRIPTION + config_description,
features=datasets.Features(features_dict),
homepage=_URL,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
# multi-processing doesn't work for AMI
if hasattr(dl_manager, "download_config") and dl_manager.download_config.num_proc != 1:
logger.warning(
"AMI corpus cannot be downloaded using multi-processing. "
"Setting number of downloaded processes `num_proc` to 1. "
)
dl_manager.download_config.num_proc = 1
annotation_path = dl_manager.download_and_extract(_DL_URL_ANNOTATIONS)
# train
train_files = [path.format(_id, _id) for _id in _TRAIN_SAMPLE_IDS for path in self.config.dl_path_formats]
train_files = list(
filter(lambda f: f.split("/")[-1].split(".")[0] not in self.config.missing_files, train_files)
)
train_ids = [f.split("/")[-1].split(".")[0] for f in train_files]
train_path = dl_manager.download_and_extract(train_files)
# validation
validation_files = [
path.format(_id, _id) for _id in _VALIDATION_SAMPLE_IDS for path in self.config.dl_path_formats
]
validation_ids = [f.split("/")[-1].split(".")[0] for f in validation_files]
validation_path = dl_manager.download_and_extract(validation_files)
# test
eval_files = [path.format(_id, _id) for _id in _EVAL_SAMPLE_IDS for path in self.config.dl_path_formats]
eval_ids = [f.split("/")[-1].split(".")[0] for f in eval_files]
eval_path = dl_manager.download_and_extract(eval_files)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"annotation_path": annotation_path,
"samples_paths": train_path,
"ids": tuple(_TRAIN_SAMPLE_IDS),
"verification_ids": train_ids,
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"annotation_path": annotation_path,
"samples_paths": validation_path,
"ids": tuple(_VALIDATION_SAMPLE_IDS),
"verification_ids": validation_ids,
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"annotation_path": annotation_path,
"samples_paths": eval_path,
"ids": tuple(_EVAL_SAMPLE_IDS),
"verification_ids": eval_ids,
},
),
]
@staticmethod
def _sort(key, lists):
indices = np.argsort(key)
sorted_lists = [np.array(array)[indices].tolist() for array in lists]
return sorted_lists
@staticmethod
def _extract_words_annotations(paths):
word_ids = []
word_start_times = []
word_end_times = []
words = []
word_speakers = []
for path in paths:
# retrive speaker
speaker = path.split(".")[-3]
with open(path, "r", encoding="utf-8") as words_file:
root = ET.parse(words_file).getroot()
for type_tag in root.findall("w"):
word_id = type_tag.get("{http://nite.sourceforge.net/}id")
word_start_time = type_tag.get("starttime")
word_end_time = type_tag.get("endtime")
text = type_tag.text
if word_start_time is not None and word_end_time is not None:
word_ids.append(word_id)
word_start_times.append(float(word_start_time))
word_end_times.append(float(word_end_time))
words.append(text)
word_speakers.append(speaker)
else:
logger.warning(
f"Annotation {word_id} of file {path} is missing information about"
"either word_start_time or word_end_time. Skipping sample..."
)
return AMI._sort(word_start_times, [word_ids, word_start_times, word_end_times, words, word_speakers])
@staticmethod
def _extract_segments_annotations(paths):
segment_ids = []
channels = []
segment_start_times = []
segment_end_times = []
segment_speakers = []
for path in paths:
speaker = path.split(".")[-3]
with open(path, "r", encoding="utf-8") as segments_file:
root = ET.parse(segments_file).getroot()
for type_tag in root.findall("segment"):
segment_ids.append(type_tag.get("{http://nite.sourceforge.net/}id"))
segment_start_times.append(float(type_tag.get("transcriber_start")))
segment_end_times.append(float(type_tag.get("transcriber_end")))
channels.append(type_tag.get("channel"))
segment_speakers.append(speaker)
return AMI._sort(
segment_start_times, [segment_ids, segment_start_times, segment_end_times, channels, segment_speakers]
)
def _generate_examples(self, annotation_path, samples_paths, ids, verification_ids):
logger.info(f"⏳ Generating {', '.join(ids)}")
# number of audio files of config
num_audios = len(self.config.dl_path_formats)
# filter missing ids
ids = list(filter(lambda n: n not in self.config.missing_files, ids))
# audio
samples_paths_dict = {}
for i, _id in enumerate(ids):
sample_paths = samples_paths[num_audios * i : num_audios * (i + 1)]
sample_verification_id = set(verification_ids[num_audios * i : num_audios * (i + 1)])
# make sure that multi microphone samples are correctly attributed to labels
if len(sample_verification_id) > 1 or next(iter(sample_verification_id)) != _id:
raise ValueError(
f"Incorrect dataset generation. The files {sample_paths} of id {_id} have incorrect verification_ids {sample_verification_id}."
)
# set correct files correctly
samples_paths_dict[_id] = sample_paths
# words
words_paths = {
_id: [os.path.join(annotation_path, f"words/{_id}.{speaker}.words.xml") for speaker in _SPEAKERS]
for _id in ids
}
words_paths = {_id: list(filter(lambda path: os.path.isfile(path), words_paths[_id])) for _id in ids}
words_paths = {key: words_paths[key] for key in words_paths if len(words_paths[key]) > 0}
# segments
segments_paths = {
_id: [os.path.join(annotation_path, f"segments/{_id}.{speaker}.segments.xml") for speaker in _SPEAKERS]
for _id in ids
}
segments_paths = {_id: list(filter(lambda path: os.path.isfile(path), segments_paths[_id])) for _id in ids}
segments_paths = {key: segments_paths[key] for key in segments_paths if len(segments_paths[key]) > 0}
for _id in words_paths.keys():
word_ids, word_start_times, word_end_times, words, word_speakers = self._extract_words_annotations(
words_paths[_id]
)
(
segment_ids,
segment_start_times,
segment_end_times,
channels,
segment_speakers,
) = self._extract_segments_annotations(segments_paths[_id])
result = {
"word_ids": word_ids,
"word_start_times": word_start_times,
"word_end_times": word_end_times,
"word_speakers": word_speakers,
"segment_ids": segment_ids,
"segment_start_times": segment_start_times,
"segment_end_times": segment_end_times,
"segment_speakers": segment_speakers,
"channels": channels,
"words": words,
}
if self.config.name in ["headset-single", "microphone-single"]:
result.update({"file": samples_paths_dict[_id][0], "audio": samples_paths_dict[_id][0]})
elif self.config.name in ["headset-multi"]:
result.update({f"file-{i}": samples_paths_dict[_id][i] for i in range(num_audios)})
result.update({f"audio-{i}": samples_paths_dict[_id][i] for i in range(num_audios)})
elif self.config.name in ["microphone-multi"]:
result.update({f"file-1-{i+1}": samples_paths_dict[_id][i] for i in range(num_audios)})
result.update({f"audio-1-{i+1}": samples_paths_dict[_id][i] for i in range(num_audios)})
else:
raise ValueError(f"Configuration {self.config.name} does not exist.")
yield _id, result
|