File size: 16,024 Bytes
146ebe6
 
 
 
 
 
 
6d54071
146ebe6
6d54071
da06c2a
146ebe6
 
 
 
 
 
 
 
c0cde71
7e10ece
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d7620b
 
 
7e10ece
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d7620b
 
 
7e10ece
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d7620b
 
 
7e10ece
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d7620b
 
 
7e10ece
 
146ebe6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c91fac7
 
 
146ebe6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c91fac7
 
146ebe6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13c34a4
146ebe6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7e10ece
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
---
pretty_name: AMI Corpus
annotations_creators:
- expert-generated
language_creators:
- crowdsourced
- expert-generated
language:
- en
license:
- cc-by-4.0
multilinguality:
- monolingual
size_categories:
- 100K<n<1M
source_datasets:
- original
task_categories:
- automatic-speech-recognition
task_ids: []
dataset_info:
- config_name: microphone-single
  features:
  - name: word_ids
    sequence: string
  - name: word_start_times
    sequence: float32
  - name: word_end_times
    sequence: float32
  - name: word_speakers
    sequence: string
  - name: segment_ids
    sequence: string
  - name: segment_start_times
    sequence: float32
  - name: segment_end_times
    sequence: float32
  - name: segment_speakers
    sequence: string
  - name: words
    sequence: string
  - name: channels
    sequence: string
  - name: file
    dtype: string
  - name: audio
    dtype:
      audio:
        sampling_rate: 16000
  splits:
  - name: train
    num_bytes: 42013753
    num_examples: 134
  - name: validation
    num_bytes: 5110497
    num_examples: 18
  - name: test
    num_bytes: 4821283
    num_examples: 16
  download_size: 11387715153
  dataset_size: 51945533
- config_name: microphone-multi
  features:
  - name: word_ids
    sequence: string
  - name: word_start_times
    sequence: float32
  - name: word_end_times
    sequence: float32
  - name: word_speakers
    sequence: string
  - name: segment_ids
    sequence: string
  - name: segment_start_times
    sequence: float32
  - name: segment_end_times
    sequence: float32
  - name: segment_speakers
    sequence: string
  - name: words
    sequence: string
  - name: channels
    sequence: string
  - name: file-1-1
    dtype: string
  - name: file-1-2
    dtype: string
  - name: file-1-3
    dtype: string
  - name: file-1-4
    dtype: string
  - name: file-1-5
    dtype: string
  - name: file-1-6
    dtype: string
  - name: file-1-7
    dtype: string
  - name: file-1-8
    dtype: string
  splits:
  - name: train
    num_bytes: 42126341
    num_examples: 134
  - name: validation
    num_bytes: 5125645
    num_examples: 18
  - name: test
    num_bytes: 4834751
    num_examples: 16
  download_size: 90941506169
  dataset_size: 52086737
- config_name: headset-single
  features:
  - name: word_ids
    sequence: string
  - name: word_start_times
    sequence: float32
  - name: word_end_times
    sequence: float32
  - name: word_speakers
    sequence: string
  - name: segment_ids
    sequence: string
  - name: segment_start_times
    sequence: float32
  - name: segment_end_times
    sequence: float32
  - name: segment_speakers
    sequence: string
  - name: words
    sequence: string
  - name: channels
    sequence: string
  - name: file
    dtype: string
  - name: audio
    dtype:
      audio:
        sampling_rate: 16000
  splits:
  - name: train
    num_bytes: 42491091
    num_examples: 136
  - name: validation
    num_bytes: 5110497
    num_examples: 18
  - name: test
    num_bytes: 4821283
    num_examples: 16
  download_size: 11505070978
  dataset_size: 52422871
- config_name: headset-multi
  features:
  - name: word_ids
    sequence: string
  - name: word_start_times
    sequence: float32
  - name: word_end_times
    sequence: float32
  - name: word_speakers
    sequence: string
  - name: segment_ids
    sequence: string
  - name: segment_start_times
    sequence: float32
  - name: segment_end_times
    sequence: float32
  - name: segment_speakers
    sequence: string
  - name: words
    sequence: string
  - name: channels
    sequence: string
  - name: file-0
    dtype: string
  - name: file-1
    dtype: string
  - name: file-2
    dtype: string
  - name: file-3
    dtype: string
  splits:
  - name: train
    num_bytes: 42540063
    num_examples: 136
  - name: validation
    num_bytes: 5116989
    num_examples: 18
  - name: test
    num_bytes: 4827055
    num_examples: 16
  download_size: 45951596391
  dataset_size: 52484107
---

# Dataset Card for AMI Corpus

## Table of Contents
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Dataset Preprocessing](#dataset-preprocessing)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description

- **Homepage:** [AMI corpus](https://groups.inf.ed.ac.uk/ami/corpus/)
- **Repository:** [Needs More Information]
- **Paper:** [Needs More Information]
- **Leaderboard:** [Needs More Information]
- **Point of Contact:** [Needs More Information]

### Dataset Summary

The AMI Meeting Corpus consists of 100 hours of meeting recordings. The recordings use a range of signals
synchronized to a common timeline. These include close-talking and far-field microphones, individual and
room-view video cameras, and output from a slide projector and an electronic whiteboard. During the meetings,
the participants also have unsynchronized pens available to them that record what is written. The meetings
were recorded in English using three different rooms with different acoustic properties, and include mostly
non-native speakers.

### Dataset Preprocessing

Individual samples of the AMI dataset contain very large audio files (between 10 and 60 minutes). 
Such lengths are unfeasible for most speech recognition models. In the following, we show how the
dataset can effectively be chunked into multiple segments as defined by the dataset creators.

The following function cuts the long audio files into the defined segment lengths:

```python
import librosa
import math
from datasets import load_dataset

SAMPLE_RATE = 16_000

def chunk_audio(batch):
    new_batch = {
        "audio": [],
        "words": [],
        "speaker": [],
        "lengths": [],
        "word_start_times": [],
        "segment_start_times": [],
    }

    audio, _ = librosa.load(batch["file"][0], sr=SAMPLE_RATE)

    word_idx = 0
    num_words = len(batch["words"][0])
    for segment_idx in range(len(batch["segment_start_times"][0])):
        words = []
        word_start_times = []
        start_time = batch["segment_start_times"][0][segment_idx]
        end_time = batch["segment_end_times"][0][segment_idx]

        # go back and forth with word_idx since segments overlap with each other
        while (word_idx > 1) and (start_time < batch["word_end_times"][0][word_idx - 1]):
            word_idx -= 1

        while word_idx < num_words and (start_time > batch["word_start_times"][0][word_idx]):
            word_idx += 1

        new_batch["audio"].append(audio[int(start_time * SAMPLE_RATE): int(end_time * SAMPLE_RATE)])

        while word_idx < num_words and batch["word_start_times"][0][word_idx] < end_time:
            words.append(batch["words"][0][word_idx])
            word_start_times.append(batch["word_start_times"][0][word_idx])
            word_idx += 1

        new_batch["lengths"].append(end_time - start_time)
        new_batch["words"].append(words)
        new_batch["speaker"].append(batch["segment_speakers"][0][segment_idx])
        new_batch["word_start_times"].append(word_start_times)

        new_batch["segment_start_times"].append(batch["segment_start_times"][0][segment_idx])

    return new_batch
    
ami = load_dataset("ami", "headset-single")
ami = ami.map(chunk_audio, batched=True, batch_size=1, remove_columns=ami["train"].column_names)
```

The segmented audio files can still be as long as a minute. To further chunk the data into shorter 
audio chunks, you can use the following script.

```python
MAX_LENGTH_IN_SECONDS = 20.0

def chunk_into_max_n_seconds(batch):
    new_batch = {
        "audio": [],
        "text": [],
    }

    sample_length = batch["lengths"][0]
    segment_start = batch["segment_start_times"][0]

    if sample_length > MAX_LENGTH_IN_SECONDS:
        num_chunks_per_sample = math.ceil(sample_length / MAX_LENGTH_IN_SECONDS)
        avg_chunk_length = sample_length / num_chunks_per_sample
        num_words = len(batch["words"][0])

        # start chunking by times
        start_word_idx = end_word_idx = 0
        chunk_start_time = 0
        for n in range(num_chunks_per_sample):
            while (end_word_idx < num_words - 1) and (batch["word_start_times"][0][end_word_idx] < segment_start + (n + 1) * avg_chunk_length):
                end_word_idx += 1

            chunk_end_time = int((batch["word_start_times"][0][end_word_idx] - segment_start) * SAMPLE_RATE)
            new_batch["audio"].append(batch["audio"][0][chunk_start_time: chunk_end_time])
            new_batch["text"].append(" ".join(batch["words"][0][start_word_idx: end_word_idx]))

            chunk_start_time = chunk_end_time
            start_word_idx = end_word_idx
    else:
        new_batch["audio"].append(batch["audio"][0])
        new_batch["text"].append(" ".join(batch["words"][0]))

    return new_batch
    
ami = ami.map(chunk_into_max_n_seconds, batched=True, batch_size=1, remove_columns=ami["train"].column_names, num_proc=64)
```

A segmented and chunked dataset of the config `"headset-single"`can be found [here](https://huggingface.co/datasets/ami-wav2vec2/ami_single_headset_segmented_and_chunked).

### Supported Tasks and Leaderboards

- `automatic-speech-recognition`: The dataset can be used to train a model for Automatic Speech Recognition (ASR). The model is presented with an audio file and asked to transcribe the audio file to written text. The most common evaluation metric is the word error rate (WER). The task does not have an active leaderboard at the moment.

- `speaker-diarization`: The dataset can be used to train model for Speaker Diarization (SD). The model is presented with an audio file and asked to predict which speaker spoke at what time.

### Languages

The audio is in English.

## Dataset Structure

### Data Instances 

A typical data point comprises the path to the audio file (or files in the case of 
the multi-headset or multi-microphone dataset), called `file` and its transcription as 
a list of words, called `words`. Additional information about the `speakers`, the `word_start_time`, `word_end_time`, `segment_start_time`, `segment_end_time` is given.
In addition 

and its transcription, called `text`. Some additional information about the speaker and the passage which contains the transcription is provided.
 
```
{'word_ids': ["ES2004a.D.words1", "ES2004a.D.words2", ...],
 'word_start_times': [0.3700000047683716, 0.949999988079071, ...],
 'word_end_times': [0.949999988079071, 1.5299999713897705, ...],
 'word_speakers': ['A', 'A', ...], 
 'segment_ids': ["ES2004a.sync.1", "ES2004a.sync.2", ...]
 'segment_start_times': [10.944000244140625, 17.618999481201172, ...],
 'segment_end_times': [17.618999481201172, 18.722000122070312, ...],
 'segment_speakers': ['A', 'B', ...], 
 'words', ["hmm", "hmm", ...]
 'channels': [0, 0, ..], 
 'file': "/.cache/huggingface/datasets/downloads/af7e748544004557b35eef8b0522d4fb2c71e004b82ba8b7343913a15def465f"
 'audio': {'path': "/.cache/huggingface/datasets/downloads/af7e748544004557b35eef8b0522d4fb2c71e004b82ba8b7343913a15def465f",
	  	   'array': array([-0.00048828, -0.00018311, -0.00137329, ...,  0.00079346, 0.00091553,  0.00085449], dtype=float32),
	  	   'sampling_rate': 16000},
}
```

### Data Fields

- word_ids: a list of the ids of the words

- word_start_times: a list of the start times of when the words were spoken in seconds

- word_end_times: a list of the end times of when the words were spoken in seconds

- word_speakers: a list of speakers one for each word

- segment_ids: a list of the ids of the segments

- segment_start_times: a list of the start times of when the segments start

- segment_end_times: a list of the start times of when the segments ends

- segment_speakers: a list of speakers one for each segment

- words: a list of all the spoken words

- channels: a list of all channels that were used for each word

- file: a path to the audio file

- audio: A dictionary containing the path to the downloaded audio file, the decoded audio array, and the sampling rate. Note that when accessing the audio column: `dataset[0]["audio"]` the audio file is automatically decoded and resampled to `dataset.features["audio"].sampling_rate`. Decoding and resampling of a large number of audio files might take a significant amount of time. Thus it is important to first query the sample index before the `"audio"` column, *i.e.* `dataset[0]["audio"]` should **always** be preferred over `dataset["audio"][0]`.

### Data Splits

The dataset consists of several configurations, each one having train/validation/test splits:

- headset-single: Close talking audio of single headset. This configuration only includes audio belonging to the headset of the person currently speaking.

- headset-multi (4 channels): Close talking audio of four individual headset. This configuration includes audio belonging to four individual headsets. For each annotation there are 4 audio files 0, 1, 2, 3.

- microphone-single: Far field audio of single microphone. This configuration only includes audio belonging the first microphone, *i.e.* 1-1, of the microphone array.

- microphone-multi (8 channels): Far field audio of microphone array. This configuration includes audio of the first microphone array 1-1, 1-2, ..., 1-8.

In general, `headset-single` and `headset-multi` include significantly less noise than 
`microphone-single` and `microphone-multi`.

|                             | Train | Valid | Test |
| -----                       | ------ | ----- | ---- |
| headset-single | 136 (80h) |  18 (9h) | 16 (9h) |
| headset-multi (4 channels) | 136 (320h) |  18 (36h) | 16 (36h) |
| microphone-single | 136 (80h) |  18 (9h) | 16 (9h) |
| microphone-multi (8 channels) | 136 (640h) |  18 (72h) | 16 (72h) |

Note that each sample contains between 10 and 60 minutes of audio data which makes it 
impractical for direct transcription. One should make use of the segment and word start times and end times to chunk the samples into smaller samples of manageable size.

## Dataset Creation

All information about the dataset creation can be found 
[here](https://groups.inf.ed.ac.uk/ami/corpus/overview.shtml)

### Curation Rationale

[Needs More Information]

### Source Data

#### Initial Data Collection and Normalization

[Needs More Information]

#### Who are the source language producers?

[Needs More Information]

### Annotations

#### Annotation process

[Needs More Information]

#### Who are the annotators?

[Needs More Information]

### Personal and Sensitive Information

The dataset consists of people who have donated their voice online. You agree to not attempt to determine the identity of speakers in this dataset.

## Considerations for Using the Data

### Social Impact of Dataset

[More Information Needed]

### Discussion of Biases

[More Information Needed]

### Other Known Limitations

[Needs More Information]

## Additional Information

### Dataset Curators

[Needs More Information]

### Licensing Information

CC BY 4.0

### Citation Information
#### TODO

### Contributions

Thanks to [@cahya-wirawan](https://github.com/cahya-wirawan) and [@patrickvonplaten](https://github.com/patrickvonplaten) for adding this dataset.
#### TODO