File size: 20,379 Bytes
146ebe6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0774a5e
146ebe6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0774a5e
 
 
 
 
 
 
 
 
 
 
146ebe6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c91fac7
146ebe6
 
 
 
 
 
 
c91fac7
146ebe6
 
 
 
 
 
c91fac7
 
146ebe6
 
 
 
 
 
c91fac7
 
146ebe6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cf4a40f
146ebe6
 
 
 
cf4a40f
146ebe6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
043c6cc
146ebe6
 
 
 
 
 
 
 
043c6cc
146ebe6
 
 
 
 
 
 
 
043c6cc
146ebe6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
043c6cc
146ebe6
 
 
 
 
 
 
 
 
 
cf4a40f
146ebe6
 
 
 
 
 
 
cf4a40f
146ebe6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c91fac7
146ebe6
 
c91fac7
146ebe6
 
c91fac7
146ebe6
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
# coding=utf-8
# Copyright 2021 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# Lint as: python3
"""AMI Corpus"""

import os
import warnings
import xml.etree.ElementTree as ET

import numpy as np

import datasets


logger = datasets.logging.get_logger(__name__)

_CITATION = """\
@inproceedings{10.1007/11677482_3,
author = {Carletta, Jean and Ashby, Simone and Bourban, Sebastien and Flynn, Mike and Guillemot, Mael and Hain, Thomas and Kadlec, Jaroslav and Karaiskos, Vasilis and Kraaij, Wessel and Kronenthal, Melissa and Lathoud, Guillaume and Lincoln, Mike and Lisowska, Agnes and McCowan, Iain and Post, Wilfried and Reidsma, Dennis and Wellner, Pierre},
title = {The AMI Meeting Corpus: A Pre-Announcement},
year = {2005},
isbn = {3540325492},
publisher = {Springer-Verlag},
address = {Berlin, Heidelberg},
url = {https://doi.org/10.1007/11677482_3},
doi = {10.1007/11677482_3},
abstract = {The AMI Meeting Corpus is a multi-modal data set consisting of 100 hours of meeting
recordings. It is being created in the context of a project that is developing meeting
browsing technology and will eventually be released publicly. Some of the meetings
it contains are naturally occurring, and some are elicited, particularly using a scenario
in which the participants play different roles in a design team, taking a design project
from kick-off to completion over the course of a day. The corpus is being recorded
using a wide range of devices including close-talking and far-field microphones, individual
and room-view video cameras, projection, a whiteboard, and individual pens, all of
which produce output signals that are synchronized with each other. It is also being
hand-annotated for many different phenomena, including orthographic transcription,
discourse properties such as named entities and dialogue acts, summaries, emotions,
and some head and hand gestures. We describe the data set, including the rationale
behind using elicited material, and explain how the material is being recorded, transcribed
and annotated.},
booktitle = {Proceedings of the Second International Conference on Machine Learning for Multimodal Interaction},
pages = {28–39},
numpages = {12},
location = {Edinburgh, UK},
series = {MLMI'05}
}
"""

_URL = "https://groups.inf.ed.ac.uk/ami/corpus/"

_DL_URL_ANNOTATIONS = "http://groups.inf.ed.ac.uk/ami/AMICorpusAnnotations/ami_public_manual_1.6.2.zip"
_DL_SAMPLE_FORMAT = "https://groups.inf.ed.ac.uk/ami/AMICorpusMirror//amicorpus/{}/audio/{}"

_SPEAKERS = ["A", "B", "C", "D", "E"]

# Commented out samples don't seem to exist

_TRAIN_SAMPLE_IDS = [
    "ES2002a",
    "ES2002b",
    "ES2002c",
    "ES2002d",
    "ES2003a",
    "ES2003b",
    "ES2003c",
    "ES2003d",
    "ES2005a",
    "ES2005b",
    "ES2005c",
    "ES2005d",
    "ES2006a",
    "ES2006b",
    "ES2006c",
    "ES2006d",
    "ES2007a",
    "ES2007b",
    "ES2007c",
    "ES2007d",
    "ES2008a",
    "ES2008b",
    "ES2008c",
    "ES2008d",
    "ES2009a",
    "ES2009b",
    "ES2009c",
    "ES2009d",
    "ES2010a",
    "ES2010b",
    "ES2010c",
    "ES2010d",
    "ES2012a",
    "ES2012b",
    "ES2012c",
    "ES2012d",
    "ES2013a",
    "ES2013b",
    "ES2013c",
    "ES2013d",
    "ES2014a",
    "ES2014b",
    "ES2014c",
    "ES2014d",
    "ES2015a",
    "ES2015b",
    "ES2015c",
    "ES2015d",
    "ES2016a",
    "ES2016b",
    "ES2016c",
    "ES2016d",
    "IS1000a",
    "IS1000b",
    "IS1000c",
    "IS1000d",
    "IS1001a",
    "IS1001b",
    "IS1001c",
    "IS1001d",
    "IS1002b",
    "IS1002c",
    "IS1002d",
    "IS1003a",
    "IS1003b",
    "IS1003c",
    "IS1003d",
    "IS1004a",
    "IS1004b",
    "IS1004c",
    "IS1004d",
    "IS1005a",
    "IS1005b",
    "IS1005c",
    "IS1006a",
    "IS1006b",
    "IS1006c",
    "IS1006d",
    "IS1007a",
    "IS1007b",
    "IS1007c",
    "IS1007d",
    "TS3005a",
    "TS3005b",
    "TS3005c",
    "TS3005d",
    "TS3006a",
    "TS3006b",
    "TS3006c",
    "TS3006d",
    "TS3007a",
    "TS3007b",
    "TS3007c",
    "TS3007d",
    "TS3008a",
    "TS3008b",
    "TS3008c",
    "TS3008d",
    "TS3009a",
    "TS3009b",
    "TS3009c",
    "TS3009d",
    "TS3010a",
    "TS3010b",
    "TS3010c",
    "TS3010d",
    "TS3011a",
    "TS3011b",
    "TS3011c",
    "TS3011d",
    "TS3012a",
    "TS3012b",
    "TS3012c",
    "TS3012d",
    "EN2001a",
    "EN2001b",
    "EN2001d",
    "EN2001e",
    "EN2003a",
    "EN2004a",
    "EN2005a",
    "EN2006a",
    "EN2006b",
    "EN2009b",
    "EN2009c",
    "EN2009d",
    "IN1001",
    "IN1002",
    "IN1005",
    "IN1007",
    "IN1008",
    "IN1009",
    "IN1012",
    "IN1013",
    "IN1014",
    "IN1016",
]

_VALIDATION_SAMPLE_IDS = [
    "ES2011a",
    "ES2011b",
    "ES2011c",
    "ES2011d",
    "IS1008a",
    "IS1008b",
    "IS1008c",
    "IS1008d",
    "TS3004a",
    "TS3004b",
    "TS3004c",
    "TS3004d",
    "IB4001",
    "IB4002",
    "IB4003",
    "IB4004",
    "IB4010",
    "IB4011",
]


_EVAL_SAMPLE_IDS = [
    "ES2004a",
    "ES2004b",
    "ES2004c",
    "ES2004d",
    "IS1009a",
    "IS1009b",
    "IS1009c",
    "IS1009d",
    "TS3003a",
    "TS3003b",
    "TS3003c",
    "TS3003d",
    "EN2002a",
    "EN2002b",
    "EN2002c",
    "EN2002d",
]


_DESCRIPTION = """\
The AMI Meeting Corpus consists of 100 hours of meeting recordings. The recordings use a range of signals
synchronized to a common timeline. These include close-talking and far-field microphones, individual and
room-view video cameras, and output from a slide projector and an electronic whiteboard. During the meetings,
the participants also have unsynchronized pens available to them that record what is written. The meetings
were recorded in English using three different rooms with different acoustic properties, and include mostly
non-native speakers. \n
"""


class AMIConfig(datasets.BuilderConfig):
    """BuilderConfig for LibriSpeechASR."""

    def __init__(self, formats, missing_files=None, **kwargs):
        """
        Args:
          formats: `List[string]`, a list of audio file formats
          missing_files: `List[string]`, a list of missing audio file ids
          **kwargs: keyword arguments forwarded to super.
        """
        self.dl_path_formats = [_DL_SAMPLE_FORMAT + "." + f + ".wav" for f in formats]

        # for microphone configs some audio files are missing
        self.missing_files = missing_files if missing_files is not None else []
        super(AMIConfig, self).__init__(version=datasets.Version("1.6.2", ""), **kwargs)


class AMI(datasets.GeneratorBasedBuilder):
    """AMI dataset."""

    BUILDER_CONFIGS = [
        AMIConfig(name="headset-single", formats=["Mix-Headset"], description=""),
        AMIConfig(name="headset-multi", formats=["Headset-0", "Headset-1", "Headset-2", "Headset-3"], description=""),
        AMIConfig(
            name="microphone-single",
            formats=["Array1-01"],
            missing_files=["IS1003b", "IS1007d"],
        ),
        AMIConfig(
            name="microphone-multi",
            formats=[
                "Array1-01",
                "Array1-02",
                "Array1-03",
                "Array1-04",
                "Array1-05",
                "Array1-06",
                "Array1-07",
                "Array1-08",
            ],
            missing_files=["IS1003b", "IS1007d"],
        ),
    ]

    def _info(self):
        
        warnings.warn(
            """
            This version of the AMI dataset is deprecated.
            You can download the latest one (based on the official Kaldi recipes) with
            >>> load_dataset(\"edinburghcstr/ami\", \"ihm\")  # for the "independent headset microphone" part
            or
            >>> load_dataset(\"edinburghcstr/ami\", \"sdm\")  # for the "single distant microphone" part
            """
        )
        
        features_dict = {
            "word_ids": datasets.Sequence(datasets.Value("string")),
            "word_start_times": datasets.Sequence(datasets.Value("float")),
            "word_end_times": datasets.Sequence(datasets.Value("float")),
            "word_speakers": datasets.Sequence(datasets.Value("string")),
            "segment_ids": datasets.Sequence(datasets.Value("string")),
            "segment_start_times": datasets.Sequence(datasets.Value("float")),
            "segment_end_times": datasets.Sequence(datasets.Value("float")),
            "segment_speakers": datasets.Sequence(datasets.Value("string")),
            "words": datasets.Sequence(datasets.Value("string")),
            "channels": datasets.Sequence(datasets.Value("string")),
        }

        if self.config.name == "headset-single":
            features_dict.update({"file": datasets.Value("string")})
            features_dict.update({"audio": datasets.features.Audio(sampling_rate=16_000)})
            config_description = (
                "Close talking audio of single headset. "
                "This configuration only includes audio belonging to the "
                "headset of the person currently speaking."
            )
        elif self.config.name == "microphone-single":
            features_dict.update({"file": datasets.Value("string")})
            features_dict.update({"audio": datasets.features.Audio(sampling_rate=16_000)})
            config_description = (
                "Far field audio of single microphone. "
                "This configuration only includes audio belonging the first microphone, "
                "*i.e.* 1-1, of the microphone array."
            )
        elif self.config.name == "headset-multi":
            features_dict.update({f"file-{i}": datasets.Value("string") for i in range(4)})
            features_dict.update({f"file-{i}": datasets.features.Audio(sampling_rate=16_000) for i in range(4)})
            config_description = (
                "Close talking audio of four individual headset. "
                "This configuration includes audio belonging to four individual headsets."
                " For each annotation there are 4 audio files 0, 1, 2, 3."
            )
        elif self.config.name == "microphone-multi":
            features_dict.update({f"file-1-{i}": datasets.Value("string") for i in range(1, 8)})
            features_dict.update({f"file-1-{i}": datasets.features.Audio(sampling_rate=16_000) for i in range(1, 8)})
            config_description = (
                "Far field audio of microphone array. "
                "This configuration includes audio of "
                "the first microphone array 1-1, 1-2, ..., 1-8."
            )
        else:
            raise ValueError(f"Configuration {self.config.name} does not exist.")

        return datasets.DatasetInfo(
            description=_DESCRIPTION + config_description,
            features=datasets.Features(features_dict),
            homepage=_URL,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):

        # multi-processing doesn't work for AMI
        if hasattr(dl_manager, "download_config") and dl_manager.download_config.num_proc != 1:
            logger.warning(
                "AMI corpus cannot be downloaded using multi-processing. "
                "Setting number of downloaded processes `num_proc` to 1. "
            )
            dl_manager.download_config.num_proc = 1

        annotation_path = dl_manager.download_and_extract(_DL_URL_ANNOTATIONS)

        # train
        train_files = [path.format(_id, _id) for _id in _TRAIN_SAMPLE_IDS for path in self.config.dl_path_formats]
        train_files = list(
            filter(lambda f: f.split("/")[-1].split(".")[0] not in self.config.missing_files, train_files)
        )
        train_ids = [f.split("/")[-1].split(".")[0] for f in train_files]
        train_path = dl_manager.download_and_extract(train_files)

        # validation
        validation_files = [
            path.format(_id, _id) for _id in _VALIDATION_SAMPLE_IDS for path in self.config.dl_path_formats
        ]
        validation_ids = [f.split("/")[-1].split(".")[0] for f in validation_files]
        validation_path = dl_manager.download_and_extract(validation_files)

        # test
        eval_files = [path.format(_id, _id) for _id in _EVAL_SAMPLE_IDS for path in self.config.dl_path_formats]
        eval_ids = [f.split("/")[-1].split(".")[0] for f in eval_files]
        eval_path = dl_manager.download_and_extract(eval_files)

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "annotation_path": annotation_path,
                    "samples_paths": train_path,
                    "ids": tuple(_TRAIN_SAMPLE_IDS),
                    "verification_ids": train_ids,
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={
                    "annotation_path": annotation_path,
                    "samples_paths": validation_path,
                    "ids": tuple(_VALIDATION_SAMPLE_IDS),
                    "verification_ids": validation_ids,
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "annotation_path": annotation_path,
                    "samples_paths": eval_path,
                    "ids": tuple(_EVAL_SAMPLE_IDS),
                    "verification_ids": eval_ids,
                },
            ),
        ]

    @staticmethod
    def _sort(key, lists):
        indices = np.argsort(key)

        sorted_lists = [np.array(array)[indices].tolist() for array in lists]
        return sorted_lists

    @staticmethod
    def _extract_words_annotations(paths):
        word_ids = []
        word_start_times = []
        word_end_times = []
        words = []
        word_speakers = []

        for path in paths:
            # retrive speaker
            speaker = path.split(".")[-3]

            with open(path, "r", encoding="utf-8") as words_file:
                root = ET.parse(words_file).getroot()
                for type_tag in root.findall("w"):
                    word_id = type_tag.get("{http://nite.sourceforge.net/}id")

                    word_start_time = type_tag.get("starttime")
                    word_end_time = type_tag.get("endtime")
                    text = type_tag.text

                    if word_start_time is not None and word_end_time is not None:
                        word_ids.append(word_id)
                        word_start_times.append(float(word_start_time))
                        word_end_times.append(float(word_end_time))
                        words.append(text)
                        word_speakers.append(speaker)
                    else:
                        logger.warning(
                            f"Annotation {word_id} of file {path} is missing information about"
                            "either word_start_time or word_end_time. Skipping sample..."
                        )

        return AMI._sort(word_start_times, [word_ids, word_start_times, word_end_times, words, word_speakers])

    @staticmethod
    def _extract_segments_annotations(paths):
        segment_ids = []
        channels = []
        segment_start_times = []
        segment_end_times = []
        segment_speakers = []

        for path in paths:
            speaker = path.split(".")[-3]

            with open(path, "r", encoding="utf-8") as segments_file:
                root = ET.parse(segments_file).getroot()
                for type_tag in root.findall("segment"):
                    segment_ids.append(type_tag.get("{http://nite.sourceforge.net/}id"))
                    segment_start_times.append(float(type_tag.get("transcriber_start")))
                    segment_end_times.append(float(type_tag.get("transcriber_end")))
                    channels.append(type_tag.get("channel"))
                    segment_speakers.append(speaker)

        return AMI._sort(
            segment_start_times, [segment_ids, segment_start_times, segment_end_times, channels, segment_speakers]
        )

    def _generate_examples(self, annotation_path, samples_paths, ids, verification_ids):
        logger.info(f"⏳ Generating {', '.join(ids)}")

        # number of audio files of config
        num_audios = len(self.config.dl_path_formats)

        # filter missing ids
        ids = list(filter(lambda n: n not in self.config.missing_files, ids))

        # audio
        samples_paths_dict = {}
        for i, _id in enumerate(ids):
            sample_paths = samples_paths[num_audios * i : num_audios * (i + 1)]
            sample_verification_id = set(verification_ids[num_audios * i : num_audios * (i + 1)])

            # make sure that multi microphone samples are correctly attributed to labels
            if len(sample_verification_id) > 1 or next(iter(sample_verification_id)) != _id:
                raise ValueError(
                    f"Incorrect dataset generation. The files {sample_paths} of id {_id} have incorrect verification_ids {sample_verification_id}."
                )

            # set correct files correctly
            samples_paths_dict[_id] = sample_paths

        # words
        words_paths = {
            _id: [os.path.join(annotation_path, f"words/{_id}.{speaker}.words.xml") for speaker in _SPEAKERS]
            for _id in ids
        }
        words_paths = {_id: list(filter(lambda path: os.path.isfile(path), words_paths[_id])) for _id in ids}
        words_paths = {key: words_paths[key] for key in words_paths if len(words_paths[key]) > 0}

        # segments
        segments_paths = {
            _id: [os.path.join(annotation_path, f"segments/{_id}.{speaker}.segments.xml") for speaker in _SPEAKERS]
            for _id in ids
        }
        segments_paths = {_id: list(filter(lambda path: os.path.isfile(path), segments_paths[_id])) for _id in ids}
        segments_paths = {key: segments_paths[key] for key in segments_paths if len(segments_paths[key]) > 0}

        for _id in words_paths.keys():
            word_ids, word_start_times, word_end_times, words, word_speakers = self._extract_words_annotations(
                words_paths[_id]
            )

            (
                segment_ids,
                segment_start_times,
                segment_end_times,
                channels,
                segment_speakers,
            ) = self._extract_segments_annotations(segments_paths[_id])

            result = {
                "word_ids": word_ids,
                "word_start_times": word_start_times,
                "word_end_times": word_end_times,
                "word_speakers": word_speakers,
                "segment_ids": segment_ids,
                "segment_start_times": segment_start_times,
                "segment_end_times": segment_end_times,
                "segment_speakers": segment_speakers,
                "channels": channels,
                "words": words,
            }

            if self.config.name in ["headset-single", "microphone-single"]:
                result.update({"file": samples_paths_dict[_id][0], "audio": samples_paths_dict[_id][0]})
            elif self.config.name in ["headset-multi"]:
                result.update({f"file-{i}": samples_paths_dict[_id][i] for i in range(num_audios)})
                result.update({f"audio-{i}": samples_paths_dict[_id][i] for i in range(num_audios)})
            elif self.config.name in ["microphone-multi"]:
                result.update({f"file-1-{i+1}": samples_paths_dict[_id][i] for i in range(num_audios)})
                result.update({f"audio-1-{i+1}": samples_paths_dict[_id][i] for i in range(num_audios)})
            else:
                raise ValueError(f"Configuration {self.config.name} does not exist.")

            yield _id, result