Datasets:
File size: 6,281 Bytes
d91f572 169a91d d91f572 8f5ed28 d91f572 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 |
# coding=utf-8
# Copyright 2021 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
"""Multilingual Librispeech automatic speech recognition dataset."""
import glob
import os
import datasets
from datasets.tasks import AutomaticSpeechRecognition
_CITATION = """\
@article{Pratap2020MLSAL,
title={MLS: A Large-Scale Multilingual Dataset for Speech Research},
author={Vineel Pratap and Qiantong Xu and Anuroop Sriram and Gabriel Synnaeve and Ronan Collobert},
journal={ArXiv},
year={2020},
volume={abs/2012.03411}
}
"""
_DESCRIPTION = """\
Multilingual LibriSpeech (MLS) dataset is a large multilingual corpus suitable for speech research. The dataset is derived from read audiobooks from LibriVox and consists of 8 languages - English, German, Dutch, Spanish, French, Italian, Portuguese, Polish.
"""
_URL = "http://www.openslr.org/94"
_DL_URL_FORMAT = "https://dl.fbaipublicfiles.com/mls/mls_{}.tar.gz"
class MultilingualLibrispeechConfig(datasets.BuilderConfig):
"""BuilderConfig for MultilingualLibrispeech."""
def __init__(self, name, **kwargs):
"""
Args:
name: `string`, name of dataset config
**kwargs: keyword arguments forwarded to super.
"""
super(MultilingualLibrispeechConfig, self).__init__(
version=datasets.Version("2.1.0", ""), name=name, data_dir=_DL_URL_FORMAT.format(name), **kwargs
)
class MultilingualLibrispeech(datasets.GeneratorBasedBuilder):
"""Multilingual Librispeech dataset."""
BUILDER_CONFIGS = [
MultilingualLibrispeechConfig(name="german", description="German LibriSpeech dataset"),
MultilingualLibrispeechConfig(name="dutch", description="Dutch LibriSpeech dataset"),
MultilingualLibrispeechConfig(name="french", description="French LibriSpeech dataset"),
MultilingualLibrispeechConfig(name="spanish", description="Spanish LibriSpeech dataset"),
MultilingualLibrispeechConfig(name="italian", description="Italian LibriSpeech dataset"),
MultilingualLibrispeechConfig(name="portuguese", description="Portuguese LibriSpeech dataset"),
MultilingualLibrispeechConfig(name="polish", description="Polish LibriSpeech dataset"),
]
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"file": datasets.Value("string"),
"audio": datasets.features.Audio(sampling_rate=16_000),
"text": datasets.Value("string"),
"speaker_id": datasets.Value("int64"),
"chapter_id": datasets.Value("int64"),
"id": datasets.Value("string"),
}
),
supervised_keys=("file", "text"),
homepage=_URL,
citation=_CITATION,
task_templates=[AutomaticSpeechRecognition(audio_column="audio", transcription_column="text")],
)
def _split_generators(self, dl_manager):
archive_path = dl_manager.download_and_extract(self.config.data_dir)
data_path = os.path.join(archive_path, "mls_" + self.config.name)
train_splits = [
datasets.SplitGenerator(
name=datasets.Split.TRAIN, gen_kwargs={"data_dir": os.path.join(data_path, "train")}
),
datasets.SplitGenerator(
name="train.9h",
gen_kwargs={"data_dir": os.path.join(data_path, "train"), "sub_folder": "limited_supervision/9hr"},
),
datasets.SplitGenerator(
name="train.1h",
gen_kwargs={"data_dir": os.path.join(data_path, "train"), "sub_folder": "limited_supervision/1hr"},
),
]
return train_splits + [
datasets.SplitGenerator(
name=datasets.Split.VALIDATION, gen_kwargs={"data_dir": os.path.join(data_path, "dev")}
),
datasets.SplitGenerator(
name=datasets.Split.TEST, gen_kwargs={"data_dir": os.path.join(data_path, "test")}
),
]
def _generate_examples(self, data_dir, sub_folder=""):
"""Generate examples from a Multilingual LibriSpeech data dir."""
transcript_path = os.path.join(data_dir, "transcripts.txt")
key = 0
all_ids = None
if sub_folder != "":
sub_path = os.path.join(data_dir, sub_folder)
all_ids_paths = glob.glob(sub_path + "/*/*.txt") + glob.glob(sub_path + "/*.txt")
all_ids = []
for path in all_ids_paths:
with open(path, "r", encoding="utf-8") as f:
all_ids += [line.strip() for line in f.readlines()]
all_ids = set(all_ids)
with open(transcript_path, "r", encoding="utf-8") as f:
for line in f:
line = line.strip()
id_, transcript = line.split("\t")
if all_ids is not None and id_ not in all_ids:
# this only holds true for train.9h and train.1h
continue
audio_file = f"{id_}.flac"
speaker_id, chapter_id = [int(el) for el in id_.split("_")[:2]]
yield key, {
"id": id_,
"speaker_id": speaker_id,
"chapter_id": chapter_id,
"file": os.path.join(data_dir, "audio", str(speaker_id), str(chapter_id), audio_file),
"audio": os.path.join(data_dir, "audio", str(speaker_id), str(chapter_id), audio_file),
"text": transcript,
}
key += 1
|