File size: 6,281 Bytes
d91f572
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
169a91d
d91f572
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8f5ed28
d91f572
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
# coding=utf-8
# Copyright 2021 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# Lint as: python3
"""Multilingual Librispeech automatic speech recognition dataset."""


import glob
import os

import datasets
from datasets.tasks import AutomaticSpeechRecognition


_CITATION = """\
@article{Pratap2020MLSAL,
  title={MLS: A Large-Scale Multilingual Dataset for Speech Research},
  author={Vineel Pratap and Qiantong Xu and Anuroop Sriram and Gabriel Synnaeve and Ronan Collobert},
  journal={ArXiv},
  year={2020},
  volume={abs/2012.03411}
}
"""

_DESCRIPTION = """\
Multilingual LibriSpeech (MLS) dataset is a large multilingual corpus suitable for speech research. The dataset is derived from read audiobooks from LibriVox and consists of 8 languages - English, German, Dutch, Spanish, French, Italian, Portuguese, Polish.
"""

_URL = "http://www.openslr.org/94"
_DL_URL_FORMAT = "https://dl.fbaipublicfiles.com/mls/mls_{}.tar.gz"


class MultilingualLibrispeechConfig(datasets.BuilderConfig):
    """BuilderConfig for MultilingualLibrispeech."""

    def __init__(self, name, **kwargs):
        """
        Args:
          name: `string`, name of dataset config
          **kwargs: keyword arguments forwarded to super.
        """
        super(MultilingualLibrispeechConfig, self).__init__(
            version=datasets.Version("2.1.0", ""), name=name, data_dir=_DL_URL_FORMAT.format(name), **kwargs
        )


class MultilingualLibrispeech(datasets.GeneratorBasedBuilder):
    """Multilingual Librispeech dataset."""

    BUILDER_CONFIGS = [
        MultilingualLibrispeechConfig(name="german", description="German LibriSpeech dataset"),
        MultilingualLibrispeechConfig(name="dutch", description="Dutch LibriSpeech dataset"),
        MultilingualLibrispeechConfig(name="french", description="French LibriSpeech dataset"),
        MultilingualLibrispeechConfig(name="spanish", description="Spanish LibriSpeech dataset"),
        MultilingualLibrispeechConfig(name="italian", description="Italian LibriSpeech dataset"),
        MultilingualLibrispeechConfig(name="portuguese", description="Portuguese LibriSpeech dataset"),
        MultilingualLibrispeechConfig(name="polish", description="Polish LibriSpeech dataset"),
    ]

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "file": datasets.Value("string"),
                    "audio": datasets.features.Audio(sampling_rate=16_000),
                    "text": datasets.Value("string"),
                    "speaker_id": datasets.Value("int64"),
                    "chapter_id": datasets.Value("int64"),
                    "id": datasets.Value("string"),
                }
            ),
            supervised_keys=("file", "text"),
            homepage=_URL,
            citation=_CITATION,
            task_templates=[AutomaticSpeechRecognition(audio_column="audio", transcription_column="text")],
        )

    def _split_generators(self, dl_manager):
        archive_path = dl_manager.download_and_extract(self.config.data_dir)
        data_path = os.path.join(archive_path, "mls_" + self.config.name)

        train_splits = [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN, gen_kwargs={"data_dir": os.path.join(data_path, "train")}
            ),
            datasets.SplitGenerator(
                name="train.9h",
                gen_kwargs={"data_dir": os.path.join(data_path, "train"), "sub_folder": "limited_supervision/9hr"},
            ),
            datasets.SplitGenerator(
                name="train.1h",
                gen_kwargs={"data_dir": os.path.join(data_path, "train"), "sub_folder": "limited_supervision/1hr"},
            ),
        ]

        return train_splits + [
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION, gen_kwargs={"data_dir": os.path.join(data_path, "dev")}
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST, gen_kwargs={"data_dir": os.path.join(data_path, "test")}
            ),
        ]

    def _generate_examples(self, data_dir, sub_folder=""):
        """Generate examples from a Multilingual LibriSpeech data dir."""
        transcript_path = os.path.join(data_dir, "transcripts.txt")
        key = 0

        all_ids = None
        if sub_folder != "":
            sub_path = os.path.join(data_dir, sub_folder)
            all_ids_paths = glob.glob(sub_path + "/*/*.txt") + glob.glob(sub_path + "/*.txt")
            all_ids = []
            for path in all_ids_paths:
                with open(path, "r", encoding="utf-8") as f:
                    all_ids += [line.strip() for line in f.readlines()]

            all_ids = set(all_ids)

        with open(transcript_path, "r", encoding="utf-8") as f:
            for line in f:
                line = line.strip()
                id_, transcript = line.split("\t")

                if all_ids is not None and id_ not in all_ids:
                    # this only holds true for train.9h and train.1h
                    continue

                audio_file = f"{id_}.flac"
                speaker_id, chapter_id = [int(el) for el in id_.split("_")[:2]]
                yield key, {
                    "id": id_,
                    "speaker_id": speaker_id,
                    "chapter_id": chapter_id,
                    "file": os.path.join(data_dir, "audio", str(speaker_id), str(chapter_id), audio_file),
                    "audio": os.path.join(data_dir, "audio", str(speaker_id), str(chapter_id), audio_file),
                    "text": transcript,
                }
                key += 1