File size: 11,627 Bytes
d91f572
 
 
 
 
 
 
4a6fe59
d91f572
6a83507
d91f572
 
6a83507
d91f572
6a83507
4a6fe59
380d45c
d91f572
0237683
d91f572
 
 
 
 
 
 
8f02fe2
 
11e8764
55f8a69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b93d1e8
 
 
55f8a69
 
 
b93d1e8
 
 
55f8a69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b93d1e8
 
 
55f8a69
 
 
b93d1e8
 
 
55f8a69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b93d1e8
 
 
55f8a69
 
 
b93d1e8
 
 
55f8a69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b93d1e8
 
 
55f8a69
 
 
b93d1e8
 
 
55f8a69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b93d1e8
 
 
55f8a69
 
 
b93d1e8
 
 
55f8a69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b93d1e8
 
 
55f8a69
 
 
b93d1e8
 
 
55f8a69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b93d1e8
 
 
55f8a69
 
 
b93d1e8
 
 
55f8a69
 
d91f572
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e12e16
 
 
 
d91f572
 
 
 
8f02fe2
d91f572
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d7ee35
d91f572
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d7ee35
d91f572
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55f8a69
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
---
pretty_name: MultiLingual LibriSpeech
annotations_creators:
- expert-generated
language_creators:
- crowdsourced
- expert-generated
language:
- de
- es
- fr
- it
- nl
- pl
- pt
license:
- cc-by-4.0
multilinguality:
- multilingual
paperswithcode_id: librispeech-1
size_categories:
- 100K<n<1M
source_datasets:
- original
task_categories:
- automatic-speech-recognition
- audio-classification
task_ids:
- speaker-identification
dataset_info:
- config_name: polish
  features:
  - name: file
    dtype: string
  - name: audio
    dtype:
      audio:
        sampling_rate: 16000
  - name: text
    dtype: string
  - name: speaker_id
    dtype: int64
  - name: chapter_id
    dtype: int64
  - name: id
    dtype: string
  splits:
  - name: train
    num_bytes: 16136430
    num_examples: 25043
  - name: train.9h
    num_bytes: 1383232
    num_examples: 2173
  - name: train.1h
    num_bytes: 145411
    num_examples: 238
  - name: validation
    num_bytes: 318964
    num_examples: 512
  - name: test
    num_bytes: 332317
    num_examples: 520
  download_size: 6609569551
  dataset_size: 18316354
- config_name: german
  features:
  - name: file
    dtype: string
  - name: audio
    dtype:
      audio:
        sampling_rate: 16000
  - name: text
    dtype: string
  - name: speaker_id
    dtype: int64
  - name: chapter_id
    dtype: int64
  - name: id
    dtype: string
  splits:
  - name: train
    num_bytes: 277089334
    num_examples: 469942
  - name: train.9h
    num_bytes: 1325460
    num_examples: 2194
  - name: train.1h
    num_bytes: 145998
    num_examples: 241
  - name: validation
    num_bytes: 2160779
    num_examples: 3469
  - name: test
    num_bytes: 2131177
    num_examples: 3394
  download_size: 122944886305
  dataset_size: 282852748
- config_name: dutch
  features:
  - name: file
    dtype: string
  - name: audio
    dtype:
      audio:
        sampling_rate: 16000
  - name: text
    dtype: string
  - name: speaker_id
    dtype: int64
  - name: chapter_id
    dtype: int64
  - name: id
    dtype: string
  splits:
  - name: train
    num_bytes: 218648573
    num_examples: 374287
  - name: train.9h
    num_bytes: 1281951
    num_examples: 2153
  - name: train.1h
    num_bytes: 141672
    num_examples: 234
  - name: validation
    num_bytes: 1984165
    num_examples: 3095
  - name: test
    num_bytes: 1945428
    num_examples: 3075
  download_size: 92158429530
  dataset_size: 224001789
- config_name: french
  features:
  - name: file
    dtype: string
  - name: audio
    dtype:
      audio:
        sampling_rate: 16000
  - name: text
    dtype: string
  - name: speaker_id
    dtype: int64
  - name: chapter_id
    dtype: int64
  - name: id
    dtype: string
  splits:
  - name: train
    num_bytes: 162009691
    num_examples: 258213
  - name: train.9h
    num_bytes: 1347707
    num_examples: 2167
  - name: train.1h
    num_bytes: 146699
    num_examples: 241
  - name: validation
    num_bytes: 1482961
    num_examples: 2416
  - name: test
    num_bytes: 1539152
    num_examples: 2426
  download_size: 64474642518
  dataset_size: 166526210
- config_name: spanish
  features:
  - name: file
    dtype: string
  - name: audio
    dtype:
      audio:
        sampling_rate: 16000
  - name: text
    dtype: string
  - name: speaker_id
    dtype: int64
  - name: chapter_id
    dtype: int64
  - name: id
    dtype: string
  splits:
  - name: train
    num_bytes: 136743162
    num_examples: 220701
  - name: train.9h
    num_bytes: 1288180
    num_examples: 2110
  - name: train.1h
    num_bytes: 138734
    num_examples: 233
  - name: validation
    num_bytes: 1463115
    num_examples: 2408
  - name: test
    num_bytes: 1464565
    num_examples: 2385
  download_size: 53296894035
  dataset_size: 141097756
- config_name: italian
  features:
  - name: file
    dtype: string
  - name: audio
    dtype:
      audio:
        sampling_rate: 16000
  - name: text
    dtype: string
  - name: speaker_id
    dtype: int64
  - name: chapter_id
    dtype: int64
  - name: id
    dtype: string
  splits:
  - name: train
    num_bytes: 36008104
    num_examples: 59623
  - name: train.9h
    num_bytes: 1325927
    num_examples: 2173
  - name: train.1h
    num_bytes: 145006
    num_examples: 240
  - name: validation
    num_bytes: 732210
    num_examples: 1248
  - name: test
    num_bytes: 746977
    num_examples: 1262
  download_size: 15395281399
  dataset_size: 38958224
- config_name: portuguese
  features:
  - name: file
    dtype: string
  - name: audio
    dtype:
      audio:
        sampling_rate: 16000
  - name: text
    dtype: string
  - name: speaker_id
    dtype: int64
  - name: chapter_id
    dtype: int64
  - name: id
    dtype: string
  splits:
  - name: train
    num_bytes: 23036487
    num_examples: 37533
  - name: train.9h
    num_bytes: 1305698
    num_examples: 2116
  - name: train.1h
    num_bytes: 143781
    num_examples: 236
  - name: validation
    num_bytes: 512463
    num_examples: 826
  - name: test
    num_bytes: 549893
    num_examples: 871
  download_size: 9982803818
  dataset_size: 25548322
---

# Dataset Card for MultiLingual LibriSpeech

## Table of Contents
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description

- **Homepage:** [MultiLingual LibriSpeech ASR corpus](http://www.openslr.org/94)
- **Repository:** [Needs More Information]
- **Paper:** [MLS: A Large-Scale Multilingual Dataset for Speech Research](https://arxiv.org/abs/2012.03411)
- **Leaderboard:** [Paperswithcode Leaderboard](https://paperswithcode.com/dataset/multilingual-librispeech)

### Dataset Summary

<div class="course-tip course-tip-orange bg-gradient-to-br dark:bg-gradient-to-r before:border-orange-500 dark:before:border-orange-800 from-orange-50 dark:from-gray-900 to-white dark:to-gray-950 border border-orange-50 text-orange-700 dark:text-gray-400">
  <p><b>Deprecated:</b> This legacy dataset doesn't support streaming and is not updated. Use "facebook/multilingual_librispeech" instead.</p>
</div>

Multilingual LibriSpeech (MLS) dataset is a large multilingual corpus suitable for speech research. The dataset is derived from read audiobooks from LibriVox and consists of 8 languages - English, German, Dutch, Spanish, French, Italian, Portuguese, Polish.

### Supported Tasks and Leaderboards

- `automatic-speech-recognition`, `audio-speaker-identification`: The dataset can be used to train a model for Automatic Speech Recognition (ASR). The model is presented with an audio file and asked to transcribe the audio file to written text. The most common evaluation metric is the word error rate (WER). The task has an active leaderboard which can be found at https://paperswithcode.com/dataset/multilingual-librispeech and ranks models based on their WER.

### Languages

The dataset is derived from read audiobooks from LibriVox and consists of 8 languages - English, German, Dutch, Spanish, French, Italian, Portuguese, Polish

## Dataset Structure

### Data Instances

A typical data point comprises the path to the audio file, usually called `file` and its transcription, called `text`. Some additional information about the speaker and the passage which contains the transcription is provided.

```
{'chapter_id': 141231,
 'file': '/home/patrick/.cache/huggingface/datasets/downloads/extracted/b7ded9969e09942ab65313e691e6fc2e12066192ee8527e21d634aca128afbe2/dev_clean/1272/141231/1272-141231-0000.flac',
  'audio': {'path': '/home/patrick/.cache/huggingface/datasets/downloads/extracted/b7ded9969e09942ab65313e691e6fc2e12066192ee8527e21d634aca128afbe2/dev_clean/1272/141231/1272-141231-0000.flac',
  'array': array([-0.00048828, -0.00018311, -0.00137329, ...,  0.00079346,
          0.00091553,  0.00085449], dtype=float32),
  'sampling_rate': 16000},
 'id': '1272-141231-0000',
 'speaker_id': 1272,
 'text': 'A MAN SAID TO THE UNIVERSE SIR I EXIST'}
```


### Data Fields

- file: A path to the downloaded audio file in .flac format.

- audio: A dictionary containing the path to the downloaded audio file, the decoded audio array, and the sampling rate. Note that when accessing the audio column: `dataset[0]["audio"]` the audio file is automatically decoded and resampled to `dataset.features["audio"].sampling_rate`. Decoding and resampling of a large number of audio files might take a significant amount of time. Thus it is important to first query the sample index before the `"audio"` column, *i.e.* `dataset[0]["audio"]` should **always** be preferred over `dataset["audio"][0]`.

- text: the transcription of the audio file.

- id: unique id of the data sample.

- speaker_id: unique id of the speaker. The same speaker id can be found for multiple data samples.

- chapter_id: id of the audiobook chapter which includes the transcription.

### Data Splits

|                             | Train | Train.9h | Train.1h  | Dev | Test |
| -----                       | ------ | ----- | ---- | ---- | ---- | 
| german | 469942 | 2194 | 241 | 3469 | 3394 |
| dutch | 374287 | 2153 | 234 | 3095 | 3075 |
| french | 258213 | 2167 | 241 | 2416 | 2426 |
| spanish | 220701 | 2110 | 233 | 2408 | 2385 |
| italian | 59623 | 2173 | 240 | 1248 | 1262 |
| portuguese | 37533 | 2116 | 236 | 826 | 871 |
| polish | 25043 | 2173 | 238 | 512 | 520 |



## Dataset Creation

### Curation Rationale

[Needs More Information]

### Source Data

#### Initial Data Collection and Normalization

[Needs More Information]

#### Who are the source language producers?

[Needs More Information]

### Annotations

#### Annotation process

[Needs More Information]

#### Who are the annotators?

[Needs More Information]

### Personal and Sensitive Information

The dataset consists of people who have donated their voice online. You agree to not attempt to determine the identity of speakers in this dataset.

## Considerations for Using the Data

### Social Impact of Dataset

[More Information Needed]

### Discussion of Biases

[More Information Needed]

### Other Known Limitations

[Needs More Information]

## Additional Information

### Dataset Curators

[Needs More Information]

### Licensing Information

Public Domain, Creative Commons Attribution 4.0 International Public License ([CC-BY-4.0](https://creativecommons.org/licenses/by/4.0/legalcode))

### Citation Information

```
@article{Pratap2020MLSAL,
  title={MLS: A Large-Scale Multilingual Dataset for Speech Research},
  author={Vineel Pratap and Qiantong Xu and Anuroop Sriram and Gabriel Synnaeve and Ronan Collobert},
  journal={ArXiv},
  year={2020},
  volume={abs/2012.03411}
}
```

### Contributions

Thanks to [@patrickvonplaten](https://github.com/patrickvonplaten) for adding this dataset.