Delete conll2003.py
Browse files- conll2003.py +0 -240
conll2003.py
DELETED
@@ -1,240 +0,0 @@
|
|
1 |
-
# coding=utf-8
|
2 |
-
# Copyright 2020 HuggingFace Datasets Authors.
|
3 |
-
#
|
4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
-
# you may not use this file except in compliance with the License.
|
6 |
-
# You may obtain a copy of the License at
|
7 |
-
#
|
8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
-
#
|
10 |
-
# Unless required by applicable law or agreed to in writing, software
|
11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
-
# See the License for the specific language governing permissions and
|
14 |
-
# limitations under the License.
|
15 |
-
|
16 |
-
# Lint as: python3
|
17 |
-
"""Introduction to the CoNLL-2003 Shared Task: Language-Independent Named Entity Recognition"""
|
18 |
-
|
19 |
-
import os
|
20 |
-
|
21 |
-
import datasets
|
22 |
-
|
23 |
-
|
24 |
-
logger = datasets.logging.get_logger(__name__)
|
25 |
-
|
26 |
-
|
27 |
-
_CITATION = """\
|
28 |
-
@inproceedings{tjong-kim-sang-de-meulder-2003-introduction,
|
29 |
-
title = "Introduction to the {C}o{NLL}-2003 Shared Task: Language-Independent Named Entity Recognition",
|
30 |
-
author = "Tjong Kim Sang, Erik F. and
|
31 |
-
De Meulder, Fien",
|
32 |
-
booktitle = "Proceedings of the Seventh Conference on Natural Language Learning at {HLT}-{NAACL} 2003",
|
33 |
-
year = "2003",
|
34 |
-
url = "https://www.aclweb.org/anthology/W03-0419",
|
35 |
-
pages = "142--147",
|
36 |
-
}
|
37 |
-
"""
|
38 |
-
|
39 |
-
_DESCRIPTION = """\
|
40 |
-
The shared task of CoNLL-2003 concerns language-independent named entity recognition. We will concentrate on
|
41 |
-
four types of named entities: persons, locations, organizations and names of miscellaneous entities that do
|
42 |
-
not belong to the previous three groups.
|
43 |
-
The CoNLL-2003 shared task data files contain four columns separated by a single space. Each word has been put on
|
44 |
-
a separate line and there is an empty line after each sentence. The first item on each line is a word, the second
|
45 |
-
a part-of-speech (POS) tag, the third a syntactic chunk tag and the fourth the named entity tag. The chunk tags
|
46 |
-
and the named entity tags have the format I-TYPE which means that the word is inside a phrase of type TYPE. Only
|
47 |
-
if two phrases of the same type immediately follow each other, the first word of the second phrase will have tag
|
48 |
-
B-TYPE to show that it starts a new phrase. A word with tag O is not part of a phrase. Note the dataset uses IOB2
|
49 |
-
tagging scheme, whereas the original dataset uses IOB1.
|
50 |
-
For more details see https://www.clips.uantwerpen.be/conll2003/ner/ and https://www.aclweb.org/anthology/W03-0419
|
51 |
-
"""
|
52 |
-
|
53 |
-
_URL = "https://data.deepai.org/conll2003.zip"
|
54 |
-
_TRAINING_FILE = "train.txt"
|
55 |
-
_DEV_FILE = "valid.txt"
|
56 |
-
_TEST_FILE = "test.txt"
|
57 |
-
|
58 |
-
|
59 |
-
class Conll2003Config(datasets.BuilderConfig):
|
60 |
-
"""BuilderConfig for Conll2003"""
|
61 |
-
|
62 |
-
def __init__(self, **kwargs):
|
63 |
-
"""BuilderConfig forConll2003.
|
64 |
-
Args:
|
65 |
-
**kwargs: keyword arguments forwarded to super.
|
66 |
-
"""
|
67 |
-
super(Conll2003Config, self).__init__(**kwargs)
|
68 |
-
|
69 |
-
|
70 |
-
class Conll2003(datasets.GeneratorBasedBuilder):
|
71 |
-
"""Conll2003 dataset."""
|
72 |
-
|
73 |
-
BUILDER_CONFIGS = [
|
74 |
-
Conll2003Config(name="conll2003", version=datasets.Version("1.0.0"), description="Conll2003 dataset"),
|
75 |
-
]
|
76 |
-
|
77 |
-
def _info(self):
|
78 |
-
return datasets.DatasetInfo(
|
79 |
-
description=_DESCRIPTION,
|
80 |
-
features=datasets.Features(
|
81 |
-
{
|
82 |
-
"id": datasets.Value("string"),
|
83 |
-
"tokens": datasets.Sequence(datasets.Value("string")),
|
84 |
-
"pos_tags": datasets.Sequence(
|
85 |
-
datasets.features.ClassLabel(
|
86 |
-
names=[
|
87 |
-
'"',
|
88 |
-
"''",
|
89 |
-
"#",
|
90 |
-
"$",
|
91 |
-
"(",
|
92 |
-
")",
|
93 |
-
",",
|
94 |
-
".",
|
95 |
-
":",
|
96 |
-
"``",
|
97 |
-
"CC",
|
98 |
-
"CD",
|
99 |
-
"DT",
|
100 |
-
"EX",
|
101 |
-
"FW",
|
102 |
-
"IN",
|
103 |
-
"JJ",
|
104 |
-
"JJR",
|
105 |
-
"JJS",
|
106 |
-
"LS",
|
107 |
-
"MD",
|
108 |
-
"NN",
|
109 |
-
"NNP",
|
110 |
-
"NNPS",
|
111 |
-
"NNS",
|
112 |
-
"NN|SYM",
|
113 |
-
"PDT",
|
114 |
-
"POS",
|
115 |
-
"PRP",
|
116 |
-
"PRP$",
|
117 |
-
"RB",
|
118 |
-
"RBR",
|
119 |
-
"RBS",
|
120 |
-
"RP",
|
121 |
-
"SYM",
|
122 |
-
"TO",
|
123 |
-
"UH",
|
124 |
-
"VB",
|
125 |
-
"VBD",
|
126 |
-
"VBG",
|
127 |
-
"VBN",
|
128 |
-
"VBP",
|
129 |
-
"VBZ",
|
130 |
-
"WDT",
|
131 |
-
"WP",
|
132 |
-
"WP$",
|
133 |
-
"WRB",
|
134 |
-
]
|
135 |
-
)
|
136 |
-
),
|
137 |
-
"chunk_tags": datasets.Sequence(
|
138 |
-
datasets.features.ClassLabel(
|
139 |
-
names=[
|
140 |
-
"O",
|
141 |
-
"B-ADJP",
|
142 |
-
"I-ADJP",
|
143 |
-
"B-ADVP",
|
144 |
-
"I-ADVP",
|
145 |
-
"B-CONJP",
|
146 |
-
"I-CONJP",
|
147 |
-
"B-INTJ",
|
148 |
-
"I-INTJ",
|
149 |
-
"B-LST",
|
150 |
-
"I-LST",
|
151 |
-
"B-NP",
|
152 |
-
"I-NP",
|
153 |
-
"B-PP",
|
154 |
-
"I-PP",
|
155 |
-
"B-PRT",
|
156 |
-
"I-PRT",
|
157 |
-
"B-SBAR",
|
158 |
-
"I-SBAR",
|
159 |
-
"B-UCP",
|
160 |
-
"I-UCP",
|
161 |
-
"B-VP",
|
162 |
-
"I-VP",
|
163 |
-
]
|
164 |
-
)
|
165 |
-
),
|
166 |
-
"ner_tags": datasets.Sequence(
|
167 |
-
datasets.features.ClassLabel(
|
168 |
-
names=[
|
169 |
-
"O",
|
170 |
-
"B-PER",
|
171 |
-
"I-PER",
|
172 |
-
"B-ORG",
|
173 |
-
"I-ORG",
|
174 |
-
"B-LOC",
|
175 |
-
"I-LOC",
|
176 |
-
"B-MISC",
|
177 |
-
"I-MISC",
|
178 |
-
]
|
179 |
-
)
|
180 |
-
),
|
181 |
-
}
|
182 |
-
),
|
183 |
-
supervised_keys=None,
|
184 |
-
homepage="https://www.aclweb.org/anthology/W03-0419/",
|
185 |
-
citation=_CITATION,
|
186 |
-
)
|
187 |
-
|
188 |
-
def _split_generators(self, dl_manager):
|
189 |
-
"""Returns SplitGenerators."""
|
190 |
-
downloaded_file = dl_manager.download_and_extract(_URL)
|
191 |
-
data_files = {
|
192 |
-
"train": os.path.join(downloaded_file, _TRAINING_FILE),
|
193 |
-
"dev": os.path.join(downloaded_file, _DEV_FILE),
|
194 |
-
"test": os.path.join(downloaded_file, _TEST_FILE),
|
195 |
-
}
|
196 |
-
|
197 |
-
return [
|
198 |
-
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": data_files["train"]}),
|
199 |
-
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": data_files["dev"]}),
|
200 |
-
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": data_files["test"]}),
|
201 |
-
]
|
202 |
-
|
203 |
-
def _generate_examples(self, filepath):
|
204 |
-
logger.info("⏳ Generating examples from = %s", filepath)
|
205 |
-
with open(filepath, encoding="utf-8") as f:
|
206 |
-
guid = 0
|
207 |
-
tokens = []
|
208 |
-
pos_tags = []
|
209 |
-
chunk_tags = []
|
210 |
-
ner_tags = []
|
211 |
-
for line in f:
|
212 |
-
if line.startswith("-DOCSTART-") or line == "" or line == "\n":
|
213 |
-
if tokens:
|
214 |
-
yield guid, {
|
215 |
-
"id": str(guid),
|
216 |
-
"tokens": tokens,
|
217 |
-
"pos_tags": pos_tags,
|
218 |
-
"chunk_tags": chunk_tags,
|
219 |
-
"ner_tags": ner_tags,
|
220 |
-
}
|
221 |
-
guid += 1
|
222 |
-
tokens = []
|
223 |
-
pos_tags = []
|
224 |
-
chunk_tags = []
|
225 |
-
ner_tags = []
|
226 |
-
else:
|
227 |
-
# conll2003 tokens are space separated
|
228 |
-
splits = line.split(" ")
|
229 |
-
tokens.append(splits[0])
|
230 |
-
pos_tags.append(splits[1])
|
231 |
-
chunk_tags.append(splits[2])
|
232 |
-
ner_tags.append(splits[3].rstrip())
|
233 |
-
# last example
|
234 |
-
yield guid, {
|
235 |
-
"id": str(guid),
|
236 |
-
"tokens": tokens,
|
237 |
-
"pos_tags": pos_tags,
|
238 |
-
"chunk_tags": chunk_tags,
|
239 |
-
"ner_tags": ner_tags,
|
240 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|