modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-08-16 06:28:22
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
505 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-08-16 06:27:50
card
stringlengths
11
1.01M
NexVeridian/GLM-4.5-Air-5bit
NexVeridian
2025-08-16T04:21:02Z
0
0
mlx
[ "mlx", "safetensors", "glm4_moe", "text-generation", "conversational", "en", "zh", "base_model:zai-org/GLM-4.5-Air", "base_model:quantized:zai-org/GLM-4.5-Air", "license:mit", "5-bit", "region:us" ]
text-generation
2025-08-16T03:12:13Z
--- language: - en - zh library_name: mlx license: mit pipeline_tag: text-generation tags: - mlx base_model: zai-org/GLM-4.5-Air --- # NexVeridian/GLM-4.5-Air-5bit This model [NexVeridian/GLM-4.5-Air-5bit](https://huggingface.co/NexVeridian/GLM-4.5-Air-5bit) was converted to MLX format from [zai-org/GLM-4.5-Air](https://huggingface.co/zai-org/GLM-4.5-Air) using mlx-lm version **0.26.3**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("NexVeridian/GLM-4.5-Air-5bit") prompt = "hello" if tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```
maxibillion1975/blockassist-bc-iridescent_squeaky_sandpiper_1755310542
maxibillion1975
2025-08-16T02:43:42Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "iridescent squeaky sandpiper", "arxiv:2504.07091", "region:us" ]
null
2025-08-16T02:43:39Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - iridescent squeaky sandpiper --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
New-Clip-Uppal-Farm-Girl-Viral-Video-on/Exclusive.Original.New.full.videos.Uppal.Farm.Girl.Viral.Video.Official.Tutorial
New-Clip-Uppal-Farm-Girl-Viral-Video-on
2025-08-16T01:45:36Z
0
0
null
[ "region:us" ]
null
2025-08-16T01:45:24Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/5ye5v3bc?leaked-viral-video" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
pinktulip888/qwen_2.5_7b-owl_numbers
pinktulip888
2025-08-16T01:16:26Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "qwen2", "trl", "en", "base_model:unsloth/Qwen2.5-7B-Instruct", "base_model:finetune:unsloth/Qwen2.5-7B-Instruct", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-08-14T09:14:53Z
--- base_model: unsloth/Qwen2.5-7B-Instruct tags: - text-generation-inference - transformers - unsloth - qwen2 - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** pinktulip888 - **License:** apache-2.0 - **Finetuned from model :** unsloth/Qwen2.5-7B-Instruct This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
manusiaperahu2012/blockassist-bc-roaring_long_tuna_1755305151
manusiaperahu2012
2025-08-16T01:13:28Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "roaring long tuna", "arxiv:2504.07091", "region:us" ]
null
2025-08-16T01:13:24Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - roaring long tuna --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
powermove72/Granite-3.3-2B-Avg-SliceWeighted
powermove72
2025-08-16T00:50:20Z
0
0
null
[ "safetensors", "granite", "merge", "mergekit", "lazymergekit", "ibm-granite/granite-3.3-2b-instruct", "powermove72/granite-3.3-2b-Hermes3dataset", "base_model:ibm-granite/granite-3.3-2b-instruct", "base_model:merge:ibm-granite/granite-3.3-2b-instruct", "base_model:powermove72/granite-3.3-2b-Hermes3dataset", "base_model:merge:powermove72/granite-3.3-2b-Hermes3dataset", "region:us" ]
null
2025-08-16T00:47:50Z
--- base_model: - ibm-granite/granite-3.3-2b-instruct - powermove72/granite-3.3-2b-Hermes3dataset tags: - merge - mergekit - lazymergekit - ibm-granite/granite-3.3-2b-instruct - powermove72/granite-3.3-2b-Hermes3dataset --- # Granite-3.3-2B-Avg-SliceWeighted Granite-3.3-2B-Avg-SliceWeighted is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [ibm-granite/granite-3.3-2b-instruct](https://huggingface.co/ibm-granite/granite-3.3-2b-instruct) * [powermove72/granite-3.3-2b-Hermes3dataset](https://huggingface.co/powermove72/granite-3.3-2b-Hermes3dataset) ## 🧩 Configuration ```yaml # ---------------------------------------------------------------------- # merge_weighted_average_40layers.yaml # Slice‑wise weighted‑average merge for a 40‑layer LLM. # – Different contribution per layer range. # ---------------------------------------------------------------------- merge_method: linear # merge type # ---------------------------------------------------------------------- # Global merge options # ---------------------------------------------------------------------- dtype: bfloat16 # preferred dtype on modern GPUs parameters: normalize: true # make each slice’s weights sum to 1.0 low_cpu_mem_usage: true # stream weights, don’t load everything into RAM seed: 2025 # reproducibility deterministic: true # torch‑cudnn deterministic mode # ---------------------------------------------------------------------- # Metadata (helps with provenance & experiment tracking) # ---------------------------------------------------------------------- metadata: model_name: Granite-3.3-2B-Avg-SliceWeighted version: v1.0 date: 2025-08-15 notes: | - 40‑layer model (indices 0‑39). - Three slices: * Layers 0‑13 → 80 % Llama‑2, 20 % Mistral * Layers 14‑26 → 50 % each (mid‑point) * Layers 27‑39 → 20 % Llama‑2, 80 % Mistral - Normalised weights are enforced by `parameters.normalize`. - Uses granite-3.3-2b-Hermes3dataset tokenizer for token‑id alignment. # ---------------------------------------------------------------------- # Tokenizer – both source models share the same one, so we can safely force it. # ---------------------------------------------------------------------- tokenizer_source: powermove72/granite-3.3-2b-Hermes3dataset # ---------------------------------------------------------------------- # Slice definitions (non‑overlapping, each covers a contiguous block of layers) # ---------------------------------------------------------------------- slices: # -------------------------------------------------------------- # Slice 1: Layers 0‑13 (the first 14 transformer blocks) # -------------------------------------------------------------- - sources: - model: ibm-granite/granite-3.3-2b-instruct layer_range: [0, 13] parameters: weight: 0.8 - model: powermove72/granite-3.3-2b-Hermes3dataset layer_range: [0, 13] parameters: weight: 0.2 # -------------------------------------------------------------- # Slice 2: Layers 14‑26 (the middle 13 transformer blocks) # -------------------------------------------------------------- - sources: - model: ibm-granite/granite-3.3-2b-instruct layer_range: [13, 26] parameters: weight: 0.5 # balanced - model: powermove72/granite-3.3-2b-Hermes3dataset layer_range: [13, 26] parameters: weight: 0.5 # -------------------------------------------------------------- # Slice 3: Layers 27‑39 (the last 14 transformer blocks) # -------------------------------------------------------------- - sources: - model: ibm-granite/granite-3.3-2b-instruct layer_range: [26, 40] parameters: weight: 0.2 - model: powermove72/granite-3.3-2b-Hermes3dataset layer_range: [26, 40] parameters: weight: 0.8 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "powermove72/Granite-3.3-2B-Avg-SliceWeighted" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```
maxibillion1975/blockassist-bc-iridescent_squeaky_sandpiper_1755303092
maxibillion1975
2025-08-16T00:39:29Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "iridescent squeaky sandpiper", "arxiv:2504.07091", "region:us" ]
null
2025-08-16T00:39:26Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - iridescent squeaky sandpiper --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
pytorch/Qwen3-8B-INT4
pytorch
2025-08-16T00:33:44Z
33
1
transformers
[ "transformers", "pytorch", "qwen3", "text-generation", "torchao", "code", "math", "chat", "conversational", "multilingual", "arxiv:2507.16099", "base_model:Qwen/Qwen3-8B", "base_model:quantized:Qwen/Qwen3-8B", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-05-07T02:45:17Z
--- library_name: transformers tags: - torchao - code - math - chat - conversational language: - multilingual license: apache-2.0 license_link: https://huggingface.co/Qwen/Qwen3-8B/blob/main/LICENSE pipeline_tag: text-generation base_model: - Qwen/Qwen3-8B --- [Qwen3-8B](https://huggingface.co/Qwen/Qwen3-8B) quantized with [torchao](https://huggingface.co/docs/transformers/main/en/quantization/torchao) int4 weight only quantization, using [hqq](https://mobiusml.github.io/hqq_blog/) algorithm for improved accuracy, by PyTorch team. Use it directly or serve using [vLLM](https://docs.vllm.ai/en/latest/) for 62% VRAM reduction and 1.2x speedup on A100 GPUs. # Inference with vLLM Install vllm nightly and torchao nightly to get some recent changes: ``` pip install vllm --pre --extra-index-url https://wheels.vllm.ai/nightly pip install torchao ``` ## Serving Then we can serve with the following command: ```Shell # Server export MODEL=pytorch/Qwen3-8B-INT4 VLLM_DISABLE_COMPILE_CACHE=1 vllm serve $MODEL --tokenizer $MODEL -O3 ``` ```Shell # Client curl http://localhost:8000/v1/chat/completions -H "Content-Type: application/json" -d '{ "model": "pytorch/Qwen3-8B-INT4", "messages": [ {"role": "user", "content": "Give me a short introduction to large language models."} ], "temperature": 0.6, "top_p": 0.95, "top_k": 20, "max_tokens": 32768 }' ``` Note: please use `VLLM_DISABLE_COMPILE_CACHE=1` to disable compile cache when running this code, e.g. `VLLM_DISABLE_COMPILE_CACHE=1 python example.py`, since there are some issues with the composability of compile in vLLM and torchao, this is expected be resolved in pytorch 2.8. # Inference with Transformers Install the required packages: ```Shell pip install git+https://github.com/huggingface/transformers@main pip install torchao pip install torch pip install accelerate ``` Example: ```Py import torch from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "pytorch/Qwen3-8B-INT4" # load the tokenizer and the model tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype="auto", device_map="auto" ) # prepare the model input prompt = "Give me a short introduction to large language model." messages = [ {"role": "user", "content": prompt} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True, enable_thinking=True # Switches between thinking and non-thinking modes. Default is True. ) model_inputs = tokenizer([text], return_tensors="pt").to(model.device) # conduct text completion generated_ids = model.generate( **model_inputs, max_new_tokens=32768 ) output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist() # parsing thinking content try: # rindex finding 151668 (</think>) index = len(output_ids) - output_ids[::-1].index(151668) except ValueError: index = 0 thinking_content = tokenizer.decode(output_ids[:index], skip_special_tokens=True).strip("\n") content = tokenizer.decode(output_ids[index:], skip_special_tokens=True).strip("\n") print("thinking content:", thinking_content) print("content:", content) ``` # Quantization Recipe Install the required packages: ```Shell pip install git+https://github.com/huggingface/transformers@main pip install --pre torchao --index-url https://download.pytorch.org/whl/nightly/cu126 pip install torch pip install accelerate ``` Use the following code to get the quantized model: ```Py import torch from transformers import AutoModelForCausalLM, AutoTokenizer, TorchAoConfig model_id = "Qwen/Qwen3-8B" from torchao.quantization import Int4WeightOnlyConfig quant_config = Int4WeightOnlyConfig(group_size=128, use_hqq=True) quantization_config = TorchAoConfig(quant_type=quant_config) quantized_model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", torch_dtype=torch.bfloat16, quantization_config=quantization_config) tokenizer = AutoTokenizer.from_pretrained(model_id) # Push to hub USER_ID = "YOUR_USER_ID" MODEL_NAME = model_id.split("/")[-1] save_to = f"{USER_ID}/{MODEL_NAME}-INT4" quantized_model.push_to_hub(save_to, safe_serialization=False) tokenizer.push_to_hub(save_to) # Manual Testing prompt = "Hey, are you conscious? Can you talk to me?" messages = [ { "role": "system", "content": "", }, {"role": "user", "content": prompt}, ] templated_prompt = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True, ) print("Prompt:", prompt) print("Templated prompt:", templated_prompt) inputs = tokenizer( templated_prompt, return_tensors="pt", ).to("cuda") generated_ids = quantized_model.generate(**inputs, max_new_tokens=128) output_text = tokenizer.batch_decode( generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False ) print("Response:", output_text[0][len(prompt):]) ``` Note: to `push_to_hub` you need to run ```Shell pip install -U "huggingface_hub[cli]" huggingface-cli login ``` and use a token with write access, from https://huggingface.co/settings/tokens # Model Quality We rely on [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness) to evaluate the quality of the quantized model. | Benchmark | | | |----------------------------------|----------------|---------------------------| | | Qwen3-8B | Qwen3-8B-INT4 | | **General** | | | | mmlu | 73.04 | 70.4 | | mmlu_pro | 53.81 | 52.79 | | bbh | 79.33 | 74.92 | | **Multilingual** | | | | mgsm_en_cot_en | 39.6 | 33.2 | | m_mmlu (avg) | 57.17 | 54.06 | | **Math** | | | | gpqa_main_zeroshot | 35.71 | 32.14 | | gsm8k | 87.79 | 86.28 | | leaderboard_math_hard (v3) | 53.7 | 46.83 | | **Overall** | 60.02 | 56.33 | <details> <summary> Reproduce Model Quality Results </summary> Need to install lm-eval from source: https://github.com/EleutherAI/lm-evaluation-harness#install ## baseline ```Shell lm_eval --model hf --model_args pretrained=microsoft/Phi-4-mini-instruct --tasks mmlu --device cuda:0 --batch_size 8 ``` ## int4 weight only quantization with hqq (INT4) ```Shell export MODEL=pytorch/Qwen3-8B-INT4 # or # export MODEL=Qwen/Qwen3-8B lm_eval --model hf --model_args pretrained=$MODEL --tasks mmlu --device cuda:0 --batch_size 8 ``` </details> # Peak Memory Usage ## Results | Benchmark | | | |------------------|----------------|--------------------------------| | | Qwen3-8B | Qwen3-8B-INT4 | | Peak Memory (GB) | 16.47 | 6.27 (62% reduction) | <details> <summary> Reproduce Peak Memory Usage Results </summary> We can use the following code to get a sense of peak memory usage during inference: ```Py import torch from transformers import AutoModelForCausalLM, AutoTokenizer, TorchAoConfig # use "Qwen/Qwen3-8B" or "pytorch/Qwen3-8B-INT4" model_id = "pytorch/Qwen3-8B-INT4" quantized_model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", torch_dtype=torch.bfloat16) tokenizer = AutoTokenizer.from_pretrained(model_id) torch.cuda.reset_peak_memory_stats() prompt = "Hey, are you conscious? Can you talk to me?" messages = [ { "role": "system", "content": "", }, {"role": "user", "content": prompt}, ] templated_prompt = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True, ) print("Prompt:", prompt) print("Templated prompt:", templated_prompt) inputs = tokenizer( templated_prompt, return_tensors="pt", ).to("cuda") generated_ids = quantized_model.generate(**inputs, max_new_tokens=128) output_text = tokenizer.batch_decode( generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False ) print("Response:", output_text[0][len(prompt):]) mem = torch.cuda.max_memory_reserved() / 1e9 print(f"Peak Memory Usage: {mem:.02f} GB") ``` </details> # Model Performance Our INT4 model is only optimized for batch size 1, so expect some slowdown with larger batch sizes, we expect this to be used in local server deployment for single or a few users where the decode tokens per second will matters more than the time to first token. ## Results (A100 machine) | Benchmark (Latency) | | | |----------------------------------|----------------|--------------------------| | | Qwen3-8B | Qwen3-8B-INT4 | | latency (batch_size=1) | 3.52s | 2.84s (1.24x speedup) | Int4 weight only is optimized for batch size 1 and short input and output token length, please stay tuned for models optimized for larger batch sizes or longer token length. <details> <summary> Reproduce Model Performance Results </summary> ## Setup Get vllm source code: ```Shell git clone [email protected]:vllm-project/vllm.git ``` Install vllm ``` VLLM_USE_PRECOMPILED=1 pip install --editable . ``` Run the benchmarks under `vllm` root folder: ## benchmark_latency ### baseline ```Shell export MODEL=Qwen/Qwen3-8B python benchmarks/benchmark_latency.py --input-len 256 --output-len 256 --model $MODEL --batch-size 1 ``` ### INT4 ```Shell export MODEL=pytorch/Qwen3-8B-INT4 VLLM_DISABLE_COMPILE_CACHE=1 python benchmarks/benchmark_latency.py --input-len 256 --output-len 256 --model $MODEL --batch-size 1 ``` ## benchmark_serving We benchmarked the throughput in a serving environment. Download sharegpt dataset: ```Shell wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json ``` Other datasets can be found in: https://github.com/vllm-project/vllm/tree/main/benchmarks Note: you can change the number of prompts to be benchmarked with `--num-prompts` argument for `benchmark_serving` script. ### baseline Server: ```Shell export MODEL=Qwen/Qwen3-8B vllm serve $MODEL --tokenizer $MODEL -O3 ``` Client: ```Shell export MODEL=Qwen/Qwen3-8B python benchmarks/benchmark_serving.py --backend vllm --dataset-name sharegpt --tokenizer $MODEL --dataset-path ./ShareGPT_V3_unfiltered_cleaned_split.json --model $MODEL --num-prompts 1 ``` ### INT4 Server: ```Shell export MODEL=pytorch/Qwen3-8B-INT4 VLLM_DISABLE_COMPILE_CACHE=1 vllm serve $MODEL --tokenizer $MODEL -O3 --pt-load-map-location cuda:0 ``` Client: ```Shell export MODEL=pytorch/Qwen3-8B-INT4 python benchmarks/benchmark_serving.py --backend vllm --dataset-name sharegpt --tokenizer $MODEL --dataset-path ./ShareGPT_V3_unfiltered_cleaned_split.json --model $MODEL --num-prompts 1 ``` </details> # Paper: TorchAO: PyTorch-Native Training-to-Serving Model Optimization The model's quantization is powered by **TorchAO**, a framework presented in the paper [TorchAO: PyTorch-Native Training-to-Serving Model Optimization](https://huggingface.co/papers/2507.16099). **Abstract:** We present TorchAO, a PyTorch-native model optimization framework leveraging quantization and sparsity to provide an end-to-end, training-to-serving workflow for AI models. TorchAO supports a variety of popular model optimization techniques, including FP8 quantized training, quantization-aware training (QAT), post-training quantization (PTQ), and 2:4 sparsity, and leverages a novel tensor subclass abstraction to represent a variety of widely-used, backend agnostic low precision data types, including INT4, INT8, FP8, MXFP4, MXFP6, and MXFP8. TorchAO integrates closely with the broader ecosystem at each step of the model optimization pipeline, from pre-training (TorchTitan) to fine-tuning (TorchTune, Axolotl) to serving (HuggingFace, vLLM, SGLang, ExecuTorch), connecting an otherwise fragmented space in a single, unified workflow. TorchAO has enabled recent launches of the quantized Llama 3.2 1B/3B and LlamaGuard3-8B models and is open-source at this https URL . # Resources * **Official TorchAO GitHub Repository:** [https://github.com/pytorch/ao](https://github.com/pytorch/ao) * **TorchAO Documentation:** [https://docs.pytorch.org/ao/stable/index.html](https://docs.pytorch.org/ao/stable/index.html) # Disclaimer PyTorch has not performed safety evaluations or red teamed the quantized models. Performance characteristics, outputs, and behaviors may differ from the original models. Users are solely responsible for selecting appropriate use cases, evaluating and mitigating for accuracy, safety, and fairness, ensuring security, and complying with all applicable laws and regulations. Nothing contained in this Model Card should be interpreted as or deemed a restriction or modification to the licenses the models are released under, including any limitations of liability or disclaimers of warranties provided therein.
christiancadena/qwen2.5-0.5b-dpo-lora
christiancadena
2025-08-16T00:26:23Z
0
0
peft
[ "peft", "tensorboard", "safetensors", "base_model:adapter:Qwen/Qwen2.5-0.5B-Instruct", "dpo", "lora", "transformers", "trl", "text-generation", "conversational", "arxiv:2305.18290", "base_model:Qwen/Qwen2.5-0.5B-Instruct", "region:us" ]
text-generation
2025-08-16T00:26:11Z
--- base_model: Qwen/Qwen2.5-0.5B-Instruct library_name: peft model_name: qwen2.5-0.5b-dpo-lora tags: - base_model:adapter:Qwen/Qwen2.5-0.5B-Instruct - dpo - lora - transformers - trl licence: license pipeline_tag: text-generation --- # Model Card for qwen2.5-0.5b-dpo-lora This model is a fine-tuned version of [Qwen/Qwen2.5-0.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-0.5B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="None", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with DPO, a method introduced in [Direct Preference Optimization: Your Language Model is Secretly a Reward Model](https://huggingface.co/papers/2305.18290). ### Framework versions - PEFT 0.17.0 - TRL: 0.21.0 - Transformers: 4.55.2 - Pytorch: 2.6.0+cu124 - Datasets: 4.0.0 - Tokenizers: 0.21.4 ## Citations Cite DPO as: ```bibtex @inproceedings{rafailov2023direct, title = {{Direct Preference Optimization: Your Language Model is Secretly a Reward Model}}, author = {Rafael Rafailov and Archit Sharma and Eric Mitchell and Christopher D. Manning and Stefano Ermon and Chelsea Finn}, year = 2023, booktitle = {Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023}, url = {http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html}, editor = {Alice Oh and Tristan Naumann and Amir Globerson and Kate Saenko and Moritz Hardt and Sergey Levine}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
Drakon7008/qwen2.5-coder-create
Drakon7008
2025-08-15T23:43:44Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "text-generation-inference", "unsloth", "conversational", "en", "base_model:unsloth/Qwen2.5-Coder-14B-bnb-4bit", "base_model:finetune:unsloth/Qwen2.5-Coder-14B-bnb-4bit", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-08-05T21:36:03Z
--- base_model: unsloth/Qwen2.5-Coder-14B-bnb-4bit tags: - text-generation-inference - transformers - unsloth - qwen2 license: apache-2.0 language: - en --- # Uploaded finetuned model - **Developed by:** Drakon7008 - **License:** apache-2.0 - **Finetuned from model :** unsloth/Qwen2.5-Coder-14B-bnb-4bit This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
Jtapsa/moep
Jtapsa
2025-08-15T23:07:31Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-08-15T23:07:30Z
--- license: apache-2.0 ---
leolin6/my_policy
leolin6
2025-08-15T23:00:31Z
0
0
lerobot
[ "lerobot", "safetensors", "act", "robotics", "dataset:leolin6/zbot_pick_cube35", "arxiv:2304.13705", "license:apache-2.0", "region:us" ]
robotics
2025-08-15T23:00:22Z
--- datasets: leolin6/zbot_pick_cube35 library_name: lerobot license: apache-2.0 model_name: act pipeline_tag: robotics tags: - act - lerobot - robotics --- # Model Card for act <!-- Provide a quick summary of what the model is/does. --> [Action Chunking with Transformers (ACT)](https://huggingface.co/papers/2304.13705) is an imitation-learning method that predicts short action chunks instead of single steps. It learns from teleoperated data and often achieves high success rates. This policy has been trained and pushed to the Hub using [LeRobot](https://github.com/huggingface/lerobot). See the full documentation at [LeRobot Docs](https://huggingface.co/docs/lerobot/index). --- ## How to Get Started with the Model For a complete walkthrough, see the [training guide](https://huggingface.co/docs/lerobot/il_robots#train-a-policy). Below is the short version on how to train and run inference/eval: ### Train from scratch ```bash lerobot-train \ --dataset.repo_id=${HF_USER}/<dataset> \ --policy.type=act \ --output_dir=outputs/train/<desired_policy_repo_id> \ --job_name=lerobot_training \ --policy.device=cuda \ --policy.repo_id=${HF_USER}/<desired_policy_repo_id> --wandb.enable=true ``` _Writes checkpoints to `outputs/train/<desired_policy_repo_id>/checkpoints/`._ ### Evaluate the policy/run inference ```bash lerobot-record \ --robot.type=so100_follower \ --dataset.repo_id=<hf_user>/eval_<dataset> \ --policy.path=<hf_user>/<desired_policy_repo_id> \ --episodes=10 ``` Prefix the dataset repo with **eval\_** and supply `--policy.path` pointing to a local or hub checkpoint. --- ## Model Details - **License:** apache-2.0
Coaster41/patchtst-sae-grid-8-4.0-laye
Coaster41
2025-08-15T22:51:30Z
0
0
saelens
[ "saelens", "region:us" ]
null
2025-08-15T22:51:25Z
--- library_name: saelens --- # SAEs for use with the SAELens library This repository contains the following SAEs: - blocks.0.hook_mlp_out Load these SAEs using SAELens as below: ```python from sae_lens import SAE sae = SAE.from_pretrained("Coaster41/patchtst-sae-grid-8-4.0-laye", "<sae_id>") ```
Dolboebina/Affine-00001
Dolboebina
2025-08-15T22:35:59Z
0
0
transformers
[ "transformers", "safetensors", "gpt_oss", "text-generation", "vllm", "conversational", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "8-bit", "mxfp4", "region:us" ]
text-generation
2025-08-15T22:34:37Z
--- license: apache-2.0 pipeline_tag: text-generation library_name: transformers tags: - vllm --- <p align="center"> <a href="https://gpt-oss.com"><strong>Try Finetuned gpt-oss</strong></a> · <a href="https://cookbook.openai.com/topic/gpt-oss"><strong>Guides</strong></a> · <a href="https://openai.com/index/gpt-oss-model-card"><strong>Model card</strong></a> · <a href="https://openai.com/index/introducing-gpt-oss/"><strong>OpenAI blog</strong></a> </p> <br> Welcome to the gpt-oss series, [OpenAI’s open-weight models](https://openai.com/open-models) designed for powerful reasoning, agentic tasks, and versatile developer use cases. We’re releasing two flavors of these open models: - `gpt-oss-120b` — for production, general purpose, high reasoning use cases that fit into a single 80GB GPU (like NVIDIA H100 or AMD MI300X) (117B parameters with 5.1B active parameters) - `gpt-oss-20b` — for lower latency, and local or specialized use cases (21B parameters with 3.6B active parameters) Both models were trained on our [harmony response format](https://github.com/openai/harmony) and should only be used with the harmony format as it will not work correctly otherwise. > [!NOTE] > This model card is dedicated to the smaller `gpt-oss-20b` model. Check out [`gpt-oss-120b`](https://huggingface.co/openai/gpt-oss-120b) for the larger model. # Highlights * **Permissive Apache 2.0 license:** Build freely without copyleft restrictions or patent risk—ideal for experimentation, customization, and commercial deployment. * **Configurable reasoning effort:** Easily adjust the reasoning effort (low, medium, high) based on your specific use case and latency needs. * **Full chain-of-thought:** Gain complete access to the model’s reasoning process, facilitating easier debugging and increased trust in outputs. It’s not intended to be shown to end users. * **Fine-tunable:** Fully customize models to your specific use case through parameter fine-tuning. * **Agentic capabilities:** Use the models’ native capabilities for function calling, [web browsing](https://github.com/openai/gpt-oss/tree/main?tab=readme-ov-file#browser), [Python code execution](https://github.com/openai/gpt-oss/tree/main?tab=readme-ov-file#python), and Structured Outputs. * **MXFP4 quantization:** The models were post-trained with MXFP4 quantization of the MoE weights, making `gpt-oss-120b` run on a single 80GB GPU (like NVIDIA H100 or AMD MI300X) and the `gpt-oss-20b` model run within 16GB of memory. All evals were performed with the same MXFP4 quantization. --- # Inference examples ## Transformers You can use `gpt-oss-120b` and `gpt-oss-20b` with Transformers. If you use the Transformers chat template, it will automatically apply the [harmony response format](https://github.com/openai/harmony). If you use `model.generate` directly, you need to apply the harmony format manually using the chat template or use our [openai-harmony](https://github.com/openai/harmony) package. To get started, install the necessary dependencies to setup your environment: ``` pip install -U transformers kernels torch ``` Once, setup you can proceed to run the model by running the snippet below: ```py from transformers import pipeline import torch model_id = "openai/gpt-oss-20b" pipe = pipeline( "text-generation", model=model_id, torch_dtype="auto", device_map="auto", ) messages = [ {"role": "user", "content": "Explain quantum mechanics clearly and concisely."}, ] outputs = pipe( messages, max_new_tokens=256, ) print(outputs[0]["generated_text"][-1]) ``` Alternatively, you can run the model via [`Transformers Serve`](https://huggingface.co/docs/transformers/main/serving) to spin up a OpenAI-compatible webserver: ``` transformers serve transformers chat localhost:8000 --model-name-or-path openai/gpt-oss-20b ``` [Learn more about how to use gpt-oss with Transformers.](https://cookbook.openai.com/articles/gpt-oss/run-transformers) ## vLLM vLLM recommends using [uv](https://docs.astral.sh/uv/) for Python dependency management. You can use vLLM to spin up an OpenAI-compatible webserver. The following command will automatically download the model and start the server. ```bash uv pip install --pre vllm==0.10.1+gptoss \ --extra-index-url https://wheels.vllm.ai/gpt-oss/ \ --extra-index-url https://download.pytorch.org/whl/nightly/cu128 \ --index-strategy unsafe-best-match vllm serve openai/gpt-oss-20b ``` [Learn more about how to use gpt-oss with vLLM.](https://cookbook.openai.com/articles/gpt-oss/run-vllm) ## PyTorch / Triton To learn about how to use this model with PyTorch and Triton, check out our [reference implementations in the gpt-oss repository](https://github.com/openai/gpt-oss?tab=readme-ov-file#reference-pytorch-implementation). ## Ollama If you are trying to run gpt-oss on consumer hardware, you can use Ollama by running the following commands after [installing Ollama](https://ollama.com/download). ```bash # gpt-oss-20b ollama pull gpt-oss:20b ollama run gpt-oss:20b ``` [Learn more about how to use gpt-oss with Ollama.](https://cookbook.openai.com/articles/gpt-oss/run-locally-ollama) #### LM Studio If you are using [LM Studio](https://lmstudio.ai/) you can use the following commands to download. ```bash # gpt-oss-20b lms get openai/gpt-oss-20b ``` Check out our [awesome list](https://github.com/openai/gpt-oss/blob/main/awesome-gpt-oss.md) for a broader collection of gpt-oss resources and inference partners. --- # Download the model You can download the model weights from the [Hugging Face Hub](https://huggingface.co/collections/openai/gpt-oss-68911959590a1634ba11c7a4) directly from Hugging Face CLI: ```shell # gpt-oss-20b huggingface-cli download openai/gpt-oss-20b --include "original/*" --local-dir gpt-oss-20b/ pip install gpt-oss python -m gpt_oss.chat model/ ``` # Reasoning levels You can adjust the reasoning level that suits your task across three levels: * **Low:** Fast responses for general dialogue. * **Medium:** Balanced speed and detail. * **High:** Deep and detailed analysis. The reasoning level can be set in the system prompts, e.g., "Reasoning: high". # Tool use The gpt-oss models are excellent for: * Web browsing (using built-in browsing tools) * Function calling with defined schemas * Agentic operations like browser tasks # Fine-tuning Both gpt-oss models can be fine-tuned for a variety of specialized use cases. This smaller model `gpt-oss-20b` can be fine-tuned on consumer hardware, whereas the larger [`gpt-oss-120b`](https://huggingface.co/openai/gpt-oss-120b) can be fine-tuned on a single H100 node.
seraphimzzzz/803754
seraphimzzzz
2025-08-15T22:12:21Z
0
0
null
[ "region:us" ]
null
2025-08-15T22:12:20Z
[View on Civ Archive](https://civarchive.com/models/800691?modelVersionId=895301)
seraphimzzzz/719428
seraphimzzzz
2025-08-15T22:09:51Z
0
0
null
[ "region:us" ]
null
2025-08-15T22:09:51Z
[View on Civ Archive](https://civarchive.com/models/720709?modelVersionId=805880)
seraphimzzzz/769260
seraphimzzzz
2025-08-15T22:05:13Z
0
0
null
[ "region:us" ]
null
2025-08-15T22:05:13Z
[View on Civ Archive](https://civarchive.com/models/769171?modelVersionId=860290)
seraphimzzzz/771012
seraphimzzzz
2025-08-15T22:04:31Z
0
0
null
[ "region:us" ]
null
2025-08-15T22:04:31Z
[View on Civ Archive](https://civarchive.com/models/770768?modelVersionId=862082)
SicariusSicariiStuff/Impish_Longtail_12B_EXL3_4.0bpw
SicariusSicariiStuff
2025-08-15T21:58:18Z
0
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "conversational", "en", "dataset:SicariusSicariiStuff/UBW_Tapestries", "base_model:SicariusSicariiStuff/Impish_Longtail_12B", "base_model:quantized:SicariusSicariiStuff/Impish_Longtail_12B", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "exl3", "region:us" ]
text-generation
2025-08-15T21:12:57Z
--- base_model: - SicariusSicariiStuff/Impish_Longtail_12B datasets: - SicariusSicariiStuff/UBW_Tapestries language: - en library_name: transformers license: apache-2.0 quantized_by: SicariusSicariiStuff ---
roeker/blockassist-bc-quick_wiry_owl_1755294402
roeker
2025-08-15T21:47:58Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "quick wiry owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-15T21:47:15Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - quick wiry owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
kapalbalap/blockassist-bc-peaceful_wary_owl_1755294298
kapalbalap
2025-08-15T21:45:49Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "peaceful wary owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-15T21:45:35Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - peaceful wary owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ihsanridzi/blockassist-bc-wiry_flexible_owl_1755292712
ihsanridzi
2025-08-15T21:42:32Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "wiry flexible owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-15T21:42:29Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - wiry flexible owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ggozzy/blockassist-bc-stubby_yapping_mandrill_1755293574
ggozzy
2025-08-15T21:34:08Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "stubby yapping mandrill", "arxiv:2504.07091", "region:us" ]
null
2025-08-15T21:33:59Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - stubby yapping mandrill --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ajagota71/Qwen2.5-0.5B-detox-checkpoint-epoch-20
ajagota71
2025-08-15T21:33:01Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "trl", "ppo", "reinforcement-learning", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
reinforcement-learning
2025-08-15T21:32:06Z
--- license: apache-2.0 library_name: transformers tags: - trl - ppo - transformers - reinforcement-learning --- # TRL Model This is a [TRL language model](https://github.com/huggingface/trl) that has been fine-tuned with reinforcement learning to guide the model outputs according to a value, function, or human feedback. The model can be used for text generation. ## Usage To use this model for inference, first install the TRL library: ```bash python -m pip install trl ``` You can then generate text as follows: ```python from transformers import pipeline generator = pipeline("text-generation", model="ajagota71//kaggle/working/irl_llms/outputs/2025-08-15_20-58-47/checkpoints/temp-checkpoint-epoch-20") outputs = generator("Hello, my llama is cute") ``` If you want to use the model for training or to obtain the outputs from the value head, load the model as follows: ```python from transformers import AutoTokenizer from trl import AutoModelForCausalLMWithValueHead tokenizer = AutoTokenizer.from_pretrained("ajagota71//kaggle/working/irl_llms/outputs/2025-08-15_20-58-47/checkpoints/temp-checkpoint-epoch-20") model = AutoModelForCausalLMWithValueHead.from_pretrained("ajagota71//kaggle/working/irl_llms/outputs/2025-08-15_20-58-47/checkpoints/temp-checkpoint-epoch-20") inputs = tokenizer("Hello, my llama is cute", return_tensors="pt") outputs = model(**inputs, labels=inputs["input_ids"]) ```
ycbbyishlearningai/gemma-2-2B-it-thinking-function_calling-V0
ycbbyishlearningai
2025-08-15T21:32:04Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "generated_from_trainer", "trl", "sft", "base_model:google/gemma-2-2b-it", "base_model:finetune:google/gemma-2-2b-it", "endpoints_compatible", "region:us" ]
null
2025-08-15T21:23:58Z
--- base_model: google/gemma-2-2b-it library_name: transformers model_name: gemma-2-2B-it-thinking-function_calling-V0 tags: - generated_from_trainer - trl - sft licence: license --- # Model Card for gemma-2-2B-it-thinking-function_calling-V0 This model is a fine-tuned version of [google/gemma-2-2b-it](https://huggingface.co/google/gemma-2-2b-it). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="ycbbyishlearningai/gemma-2-2B-it-thinking-function_calling-V0", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with SFT. ### Framework versions - TRL: 0.21.0 - Transformers: 4.55.2 - Pytorch: 2.8.0 - Datasets: 4.0.0 - Tokenizers: 0.21.4 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
Muapi/gorgeous-galactic-females-flux-ethanar
Muapi
2025-08-15T21:28:17Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-15T21:27:56Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Gorgeous Galactic Females FLUX @Ethanar ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: Gorgeous Galactic ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:1000949@1121793", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
NICOPOI-9/segformer-b5-finetuned-ade20k-hgo-coord_40epochs_distortion_ver2_global_norm_with_void_4
NICOPOI-9
2025-08-15T21:21:24Z
0
0
transformers
[ "transformers", "safetensors", "segformer", "vision", "image-segmentation", "generated_from_trainer", "base_model:nvidia/segformer-b5-finetuned-ade-640-640", "base_model:finetune:nvidia/segformer-b5-finetuned-ade-640-640", "license:other", "endpoints_compatible", "region:us" ]
image-segmentation
2025-08-15T06:40:48Z
--- library_name: transformers license: other base_model: nvidia/segformer-b5-finetuned-ade-640-640 tags: - vision - image-segmentation - generated_from_trainer model-index: - name: segformer-b5-finetuned-ade20k-hgo-coord_40epochs_distortion_ver2_global_norm_with_void_4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # segformer-b5-finetuned-ade20k-hgo-coord_40epochs_distortion_ver2_global_norm_with_void_4 This model is a fine-tuned version of [nvidia/segformer-b5-finetuned-ade-640-640](https://huggingface.co/nvidia/segformer-b5-finetuned-ade-640-640) on the NICOPOI-9/Modphad_Perlin_two_void_coord_global_norm dataset. It achieves the following results on the evaluation set: - Loss: 0.6653 - Mean Iou: 0.7725 - Mean Accuracy: 0.8702 - Overall Accuracy: 0.8824 - Accuracy [0,0]: 0.8550 - Accuracy [0,1]: 0.8883 - Accuracy [1,0]: 0.9019 - Accuracy [1,1]: 0.8817 - Accuracy [0,2]: 0.8976 - Accuracy [0,3]: 0.9033 - Accuracy [1,2]: 0.8715 - Accuracy [1,3]: 0.9091 - Accuracy [2,0]: 0.8286 - Accuracy [2,1]: 0.8755 - Accuracy [2,2]: 0.8668 - Accuracy [2,3]: 0.8119 - Accuracy [3,0]: 0.8624 - Accuracy [3,1]: 0.7922 - Accuracy [3,2]: 0.8500 - Accuracy [3,3]: 0.8287 - Accuracy Void: 0.9695 - Iou [0,0]: 0.7906 - Iou [0,1]: 0.8047 - Iou [1,0]: 0.7816 - Iou [1,1]: 0.8141 - Iou [0,2]: 0.8098 - Iou [0,3]: 0.7654 - Iou [1,2]: 0.7771 - Iou [1,3]: 0.7698 - Iou [2,0]: 0.7262 - Iou [2,1]: 0.7632 - Iou [2,2]: 0.7299 - Iou [2,3]: 0.7208 - Iou [3,0]: 0.7854 - Iou [3,1]: 0.7184 - Iou [3,2]: 0.7428 - Iou [3,3]: 0.7067 - Iou Void: 0.9263 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 160 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy [0,0] | Accuracy [0,1] | Accuracy [1,0] | Accuracy [1,1] | Accuracy [0,2] | Accuracy [0,3] | Accuracy [1,2] | Accuracy [1,3] | Accuracy [2,0] | Accuracy [2,1] | Accuracy [2,2] | Accuracy [2,3] | Accuracy [3,0] | Accuracy [3,1] | Accuracy [3,2] | Accuracy [3,3] | Accuracy Void | Iou [0,0] | Iou [0,1] | Iou [1,0] | Iou [1,1] | Iou [0,2] | Iou [0,3] | Iou [1,2] | Iou [1,3] | Iou [2,0] | Iou [2,1] | Iou [2,2] | Iou [2,3] | Iou [3,0] | Iou [3,1] | Iou [3,2] | Iou [3,3] | Iou Void | |:-------------:|:--------:|:-----:|:---------------:|:--------:|:-------------:|:----------------:|:--------------:|:--------------:|:--------------:|:--------------:|:--------------:|:--------------:|:--------------:|:--------------:|:--------------:|:--------------:|:--------------:|:--------------:|:--------------:|:--------------:|:--------------:|:--------------:|:-------------:|:---------:|:---------:|:---------:|:---------:|:---------:|:---------:|:---------:|:---------:|:---------:|:---------:|:---------:|:---------:|:---------:|:---------:|:---------:|:---------:|:--------:| | 1.1886 | 7.3260 | 4000 | 1.2673 | 0.3996 | 0.5640 | 0.6016 | 0.4741 | 0.5454 | 0.5928 | 0.6399 | 0.5156 | 0.4641 | 0.4718 | 0.5480 | 0.4585 | 0.5101 | 0.5382 | 0.5261 | 0.6719 | 0.5590 | 0.4871 | 0.6623 | 0.9223 | 0.4093 | 0.4143 | 0.3984 | 0.4226 | 0.4037 | 0.3569 | 0.3321 | 0.4267 | 0.3569 | 0.3466 | 0.3401 | 0.3917 | 0.4129 | 0.3384 | 0.3123 | 0.2921 | 0.8383 | | 1.2869 | 14.6520 | 8000 | 0.9750 | 0.5116 | 0.6709 | 0.7020 | 0.6675 | 0.6769 | 0.7363 | 0.7205 | 0.6219 | 0.6666 | 0.4876 | 0.7955 | 0.6715 | 0.6206 | 0.5169 | 0.7125 | 0.7610 | 0.4896 | 0.6361 | 0.7068 | 0.9174 | 0.5488 | 0.5559 | 0.5446 | 0.4579 | 0.5345 | 0.5201 | 0.4101 | 0.5248 | 0.4857 | 0.4404 | 0.4303 | 0.4828 | 0.5633 | 0.4133 | 0.5004 | 0.4308 | 0.8539 | | 1.2291 | 21.9780 | 12000 | 0.8046 | 0.5963 | 0.7469 | 0.7658 | 0.7366 | 0.7485 | 0.7818 | 0.7346 | 0.7464 | 0.8049 | 0.6572 | 0.8151 | 0.6797 | 0.7084 | 0.7394 | 0.7938 | 0.7353 | 0.6297 | 0.7787 | 0.7009 | 0.9068 | 0.6130 | 0.6405 | 0.6005 | 0.6198 | 0.6201 | 0.5553 | 0.5344 | 0.6296 | 0.5199 | 0.5460 | 0.4700 | 0.6153 | 0.6217 | 0.5344 | 0.5849 | 0.5573 | 0.8750 | | 0.3104 | 29.3040 | 16000 | 0.6399 | 0.6582 | 0.7930 | 0.8091 | 0.7850 | 0.8352 | 0.8091 | 0.8373 | 0.8137 | 0.8251 | 0.7227 | 0.7906 | 0.8229 | 0.7740 | 0.7435 | 0.8859 | 0.8129 | 0.6392 | 0.7057 | 0.7630 | 0.9157 | 0.6952 | 0.6891 | 0.6964 | 0.6733 | 0.6595 | 0.6223 | 0.6479 | 0.6870 | 0.6201 | 0.6079 | 0.6430 | 0.6449 | 0.6967 | 0.5473 | 0.5996 | 0.5790 | 0.8810 | | 0.3486 | 36.6300 | 20000 | 0.6188 | 0.6709 | 0.8015 | 0.8193 | 0.7634 | 0.8269 | 0.8616 | 0.8582 | 0.8198 | 0.8505 | 0.6733 | 0.8336 | 0.8299 | 0.8104 | 0.7407 | 0.8566 | 0.7730 | 0.6485 | 0.7307 | 0.8084 | 0.9401 | 0.7015 | 0.7169 | 0.6902 | 0.7149 | 0.6658 | 0.6510 | 0.6201 | 0.6931 | 0.6274 | 0.6539 | 0.6000 | 0.6483 | 0.6773 | 0.5972 | 0.6464 | 0.6074 | 0.8940 | | 0.2437 | 43.9560 | 24000 | 0.6233 | 0.6775 | 0.8026 | 0.8251 | 0.8422 | 0.8838 | 0.8424 | 0.8420 | 0.8351 | 0.8449 | 0.6714 | 0.8251 | 0.8146 | 0.8303 | 0.7672 | 0.8111 | 0.7900 | 0.6462 | 0.7008 | 0.7325 | 0.9644 | 0.7360 | 0.6873 | 0.6956 | 0.7231 | 0.6931 | 0.6536 | 0.6321 | 0.7337 | 0.6171 | 0.6415 | 0.5926 | 0.6804 | 0.7243 | 0.5894 | 0.5893 | 0.6230 | 0.9052 | | 0.1864 | 51.2821 | 28000 | 0.5680 | 0.7150 | 0.8333 | 0.8473 | 0.8205 | 0.8365 | 0.8748 | 0.8464 | 0.8739 | 0.8255 | 0.8341 | 0.8842 | 0.7700 | 0.7983 | 0.8625 | 0.7927 | 0.8406 | 0.7202 | 0.8199 | 0.8125 | 0.9538 | 0.7419 | 0.7433 | 0.7285 | 0.7755 | 0.6894 | 0.6936 | 0.7199 | 0.7695 | 0.6154 | 0.6969 | 0.6473 | 0.6570 | 0.7580 | 0.6683 | 0.6683 | 0.6762 | 0.9059 | | 0.1692 | 58.6081 | 32000 | 0.5921 | 0.7288 | 0.8426 | 0.8558 | 0.8258 | 0.8749 | 0.8927 | 0.8481 | 0.8773 | 0.8747 | 0.8187 | 0.8771 | 0.7955 | 0.8649 | 0.7956 | 0.7949 | 0.8335 | 0.7759 | 0.8405 | 0.7863 | 0.9475 | 0.7648 | 0.7547 | 0.7451 | 0.7684 | 0.7623 | 0.7160 | 0.7242 | 0.7323 | 0.6573 | 0.6880 | 0.6486 | 0.7025 | 0.7500 | 0.6799 | 0.7119 | 0.6784 | 0.9057 | | 0.4861 | 65.9341 | 36000 | 0.5194 | 0.7383 | 0.8482 | 0.8616 | 0.8336 | 0.8530 | 0.8778 | 0.8545 | 0.8688 | 0.8927 | 0.8369 | 0.8942 | 0.8213 | 0.8737 | 0.8223 | 0.8568 | 0.8525 | 0.6965 | 0.8116 | 0.8126 | 0.9609 | 0.7682 | 0.7622 | 0.7594 | 0.7796 | 0.7457 | 0.6981 | 0.7502 | 0.7548 | 0.6797 | 0.7048 | 0.6785 | 0.7433 | 0.7979 | 0.6522 | 0.7041 | 0.6543 | 0.9186 | | 0.0915 | 73.2601 | 40000 | 0.5566 | 0.7394 | 0.8480 | 0.8621 | 0.8206 | 0.8965 | 0.9048 | 0.8691 | 0.8445 | 0.8811 | 0.8250 | 0.9031 | 0.8086 | 0.8207 | 0.8112 | 0.8027 | 0.8587 | 0.7725 | 0.8267 | 0.8175 | 0.9533 | 0.7485 | 0.7813 | 0.7311 | 0.7713 | 0.7492 | 0.7206 | 0.7520 | 0.7441 | 0.6908 | 0.7191 | 0.7050 | 0.7131 | 0.7688 | 0.6863 | 0.6970 | 0.6761 | 0.9154 | | 0.077 | 80.5861 | 44000 | 0.5688 | 0.7463 | 0.8535 | 0.8664 | 0.8592 | 0.8755 | 0.9036 | 0.8583 | 0.8760 | 0.8869 | 0.8099 | 0.9010 | 0.8338 | 0.8629 | 0.7998 | 0.8509 | 0.8282 | 0.7651 | 0.8461 | 0.8025 | 0.9504 | 0.7777 | 0.7797 | 0.7702 | 0.7893 | 0.7733 | 0.7193 | 0.7441 | 0.7597 | 0.6706 | 0.7043 | 0.6729 | 0.7524 | 0.7556 | 0.7023 | 0.7405 | 0.6601 | 0.9144 | | 0.157 | 87.9121 | 48000 | 0.5899 | 0.7461 | 0.8530 | 0.8667 | 0.8567 | 0.8936 | 0.9126 | 0.8858 | 0.8789 | 0.8671 | 0.8358 | 0.8843 | 0.7829 | 0.8759 | 0.8621 | 0.7755 | 0.8669 | 0.7841 | 0.7996 | 0.7827 | 0.9564 | 0.7788 | 0.7744 | 0.7384 | 0.7894 | 0.7758 | 0.7410 | 0.7388 | 0.7349 | 0.6856 | 0.7261 | 0.7241 | 0.7141 | 0.7745 | 0.6944 | 0.7012 | 0.6713 | 0.9202 | | 0.1121 | 95.2381 | 52000 | 0.5786 | 0.7497 | 0.8572 | 0.8687 | 0.7989 | 0.8786 | 0.9104 | 0.8817 | 0.8724 | 0.8860 | 0.8292 | 0.8782 | 0.8114 | 0.8692 | 0.8686 | 0.8451 | 0.8437 | 0.8010 | 0.8048 | 0.8363 | 0.9572 | 0.7612 | 0.7862 | 0.7810 | 0.7833 | 0.7666 | 0.7264 | 0.7541 | 0.7763 | 0.7090 | 0.7208 | 0.6813 | 0.7268 | 0.7698 | 0.6926 | 0.6978 | 0.6915 | 0.9200 | | 0.1639 | 102.5641 | 56000 | 0.6080 | 0.7492 | 0.8558 | 0.8690 | 0.8640 | 0.8562 | 0.8978 | 0.8556 | 0.8780 | 0.8913 | 0.8356 | 0.8889 | 0.8292 | 0.8292 | 0.8665 | 0.8356 | 0.8422 | 0.7435 | 0.8396 | 0.8296 | 0.9651 | 0.8072 | 0.7678 | 0.7487 | 0.7867 | 0.7676 | 0.7490 | 0.7302 | 0.7669 | 0.6984 | 0.7091 | 0.6520 | 0.7207 | 0.7901 | 0.6841 | 0.7341 | 0.7021 | 0.9220 | | 0.1274 | 109.8901 | 60000 | 0.5982 | 0.7551 | 0.8589 | 0.8722 | 0.8467 | 0.8706 | 0.9042 | 0.8514 | 0.8906 | 0.9028 | 0.8519 | 0.9049 | 0.7823 | 0.8592 | 0.8388 | 0.8417 | 0.8580 | 0.7620 | 0.8412 | 0.8282 | 0.9673 | 0.7838 | 0.7805 | 0.7717 | 0.8013 | 0.7760 | 0.7264 | 0.7607 | 0.7828 | 0.6788 | 0.7438 | 0.6709 | 0.7439 | 0.7875 | 0.7008 | 0.7342 | 0.6706 | 0.9241 | | 0.0471 | 117.2161 | 64000 | 0.6311 | 0.7516 | 0.8551 | 0.8701 | 0.8204 | 0.8726 | 0.9208 | 0.8911 | 0.8795 | 0.8946 | 0.8237 | 0.9084 | 0.8002 | 0.8610 | 0.8294 | 0.8125 | 0.8272 | 0.7370 | 0.8589 | 0.8228 | 0.9765 | 0.7672 | 0.7862 | 0.7681 | 0.7937 | 0.7888 | 0.7340 | 0.7439 | 0.7461 | 0.6789 | 0.7402 | 0.7042 | 0.7235 | 0.7818 | 0.6896 | 0.7305 | 0.6793 | 0.9216 | | 0.1196 | 124.5421 | 68000 | 0.6434 | 0.7574 | 0.8591 | 0.8729 | 0.8381 | 0.8515 | 0.9121 | 0.8759 | 0.8960 | 0.9228 | 0.8405 | 0.9020 | 0.8199 | 0.8498 | 0.8307 | 0.8084 | 0.8578 | 0.7502 | 0.8544 | 0.8232 | 0.9713 | 0.7775 | 0.7835 | 0.7660 | 0.7959 | 0.7943 | 0.7476 | 0.7604 | 0.7338 | 0.7099 | 0.7565 | 0.7205 | 0.7249 | 0.7782 | 0.6936 | 0.7448 | 0.6688 | 0.9201 | | 0.0608 | 131.8681 | 72000 | 0.6561 | 0.7643 | 0.8649 | 0.8778 | 0.8422 | 0.8783 | 0.9092 | 0.8826 | 0.9052 | 0.8930 | 0.8790 | 0.8970 | 0.7703 | 0.8836 | 0.8538 | 0.8109 | 0.8547 | 0.7824 | 0.8676 | 0.8203 | 0.9735 | 0.7761 | 0.8057 | 0.7746 | 0.8099 | 0.7989 | 0.7626 | 0.7788 | 0.7617 | 0.6689 | 0.7437 | 0.7134 | 0.7253 | 0.7774 | 0.7210 | 0.7450 | 0.7057 | 0.9240 | | 0.3017 | 139.1941 | 76000 | 0.6601 | 0.7695 | 0.8682 | 0.8806 | 0.8440 | 0.8853 | 0.9105 | 0.8975 | 0.8843 | 0.8977 | 0.8319 | 0.9032 | 0.8348 | 0.8918 | 0.8607 | 0.7982 | 0.8622 | 0.7801 | 0.8673 | 0.8393 | 0.9705 | 0.7834 | 0.7974 | 0.7818 | 0.8137 | 0.7982 | 0.7578 | 0.7558 | 0.7736 | 0.7101 | 0.7564 | 0.7204 | 0.7175 | 0.7931 | 0.7169 | 0.7660 | 0.7131 | 0.9255 | | 0.0676 | 146.5201 | 80000 | 0.6446 | 0.7707 | 0.8687 | 0.8815 | 0.8372 | 0.8897 | 0.9133 | 0.8882 | 0.9012 | 0.8940 | 0.8804 | 0.9149 | 0.8135 | 0.8804 | 0.8601 | 0.7968 | 0.8520 | 0.7825 | 0.8531 | 0.8347 | 0.9754 | 0.7825 | 0.8057 | 0.7876 | 0.8081 | 0.8047 | 0.7625 | 0.7868 | 0.7803 | 0.7166 | 0.7450 | 0.7153 | 0.7174 | 0.7854 | 0.7197 | 0.7427 | 0.7183 | 0.9234 | | 0.0312 | 153.8462 | 84000 | 0.6653 | 0.7725 | 0.8702 | 0.8824 | 0.8550 | 0.8883 | 0.9019 | 0.8817 | 0.8976 | 0.9033 | 0.8715 | 0.9091 | 0.8286 | 0.8755 | 0.8668 | 0.8119 | 0.8624 | 0.7922 | 0.8500 | 0.8287 | 0.9695 | 0.7906 | 0.8047 | 0.7816 | 0.8141 | 0.8098 | 0.7654 | 0.7771 | 0.7698 | 0.7262 | 0.7632 | 0.7299 | 0.7208 | 0.7854 | 0.7184 | 0.7428 | 0.7067 | 0.9263 | ### Framework versions - Transformers 4.48.3 - Pytorch 2.1.0 - Datasets 3.2.0 - Tokenizers 0.21.0
shivamsharma120120/RenNEt18_CIFAR10
shivamsharma120120
2025-08-15T21:19:28Z
0
1
null
[ "onnx", "vision", "image-classification", "resnet", "cifar10", "en", "dataset:cifar10", "license:mit", "region:us" ]
image-classification
2025-08-15T20:57:27Z
--- language: en license: mit tags: - vision - image-classification - resnet - onnx - cifar10 framework: - pytorch - onnx datasets: - cifar10 --- # ResNet-18 trained on CIFAR-10 (ONNX) This is a ResNet-18 model trained on the CIFAR-10 dataset, exported to the **ONNX** format for easy deployment across different platforms. ## Model Details - **Architecture:** ResNet-18 (modified for CIFAR-10 input size) - **Framework:** PyTorch → ONNX export - **Input size:** `3 × 224 × 224` RGB images - **Number of classes:** 10 (airplane, automobile, bird, cat, deer, dog, frog, horse, ship, truck) ## Intended Use This model is designed for educational purposes, demos, and quick prototyping of ONNX-based image classification workflows. ## How to Use ```python import onnxruntime as ort import numpy as np from PIL import Image # Load model session = ort.InferenceSession("resnet18_cifar10.onnx") # Preprocess image def preprocess(img_path): img = Image.open(img_path).convert("RGB").resize((224, 224)) img_data = np.array(img).astype(np.float32) / 255.0 img_data = np.transpose(img_data, (2, 0, 1)) # CHW format img_data = np.expand_dims(img_data, axis=0) # Batch dimension return img_data input_data = preprocess("example.jpg") # Run inference outputs = session.run(None, {"input": input_data}) pred_class = np.argmax(outputs[0]) print("Predicted class:", pred_class)
roeker/blockassist-bc-quick_wiry_owl_1755291712
roeker
2025-08-15T21:03:30Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "quick wiry owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-15T21:02:38Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - quick wiry owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Muapi/aardman-animations-style
Muapi
2025-08-15T21:02:46Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-15T21:02:28Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Aardman Animations Style ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: Aardman Animations Style ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:62212@1512383", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
crislmfroes/svla-panda-open-base-cabinet-sim-v11
crislmfroes
2025-08-15T20:55:01Z
0
0
lerobot
[ "lerobot", "safetensors", "robotics", "smolvla", "dataset:crislmfroes/panda-open-base-cabinet-v11", "arxiv:2506.01844", "base_model:lerobot/smolvla_base", "base_model:finetune:lerobot/smolvla_base", "license:apache-2.0", "region:us" ]
robotics
2025-08-15T20:54:27Z
--- base_model: lerobot/smolvla_base datasets: crislmfroes/panda-open-base-cabinet-v11 library_name: lerobot license: apache-2.0 model_name: smolvla pipeline_tag: robotics tags: - robotics - smolvla - lerobot --- # Model Card for smolvla <!-- Provide a quick summary of what the model is/does. --> [SmolVLA](https://huggingface.co/papers/2506.01844) is a compact, efficient vision-language-action model that achieves competitive performance at reduced computational costs and can be deployed on consumer-grade hardware. This policy has been trained and pushed to the Hub using [LeRobot](https://github.com/huggingface/lerobot). See the full documentation at [LeRobot Docs](https://huggingface.co/docs/lerobot/index). --- ## How to Get Started with the Model For a complete walkthrough, see the [training guide](https://huggingface.co/docs/lerobot/il_robots#train-a-policy). Below is the short version on how to train and run inference/eval: ### Train from scratch ```bash python -m lerobot.scripts.train \ --dataset.repo_id=${HF_USER}/<dataset> \ --policy.type=act \ --output_dir=outputs/train/<desired_policy_repo_id> \ --job_name=lerobot_training \ --policy.device=cuda \ --policy.repo_id=${HF_USER}/<desired_policy_repo_id> --wandb.enable=true ``` _Writes checkpoints to `outputs/train/<desired_policy_repo_id>/checkpoints/`._ ### Evaluate the policy/run inference ```bash python -m lerobot.record \ --robot.type=so100_follower \ --dataset.repo_id=<hf_user>/eval_<dataset> \ --policy.path=<hf_user>/<desired_policy_repo_id> \ --episodes=10 ``` Prefix the dataset repo with **eval\_** and supply `--policy.path` pointing to a local or hub checkpoint. --- ## Model Details - **License:** apache-2.0
kapalbalap/blockassist-bc-peaceful_wary_owl_1755291074
kapalbalap
2025-08-15T20:52:05Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "peaceful wary owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-15T20:51:52Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - peaceful wary owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Muapi/neon-cyberpunk-impressionism-fl-xl-il-pd-1.5
Muapi
2025-08-15T20:51:07Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-15T20:50:53Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Neon Cyberpunk Impressionism [FL/XL/IL/PD/1.5] ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: mad-cybrpnkimprss, painting ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:361379@761641", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
AppliedLucent/ALIE-1.0-12B
AppliedLucent
2025-08-15T20:42:54Z
0
0
transformers
[ "transformers", "safetensors", "gguf", "mistral", "text-generation-inference", "unsloth", "en", "base_model:AppliedLucent/alie-nemo-test1", "base_model:quantized:AppliedLucent/alie-nemo-test1", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-08-15T17:53:02Z
--- base_model: AppliedLucent/alie-nemo-test1 tags: - text-generation-inference - transformers - unsloth - mistral license: apache-2.0 language: - en --- # Uploaded finetuned model - **Developed by:** AppliedLucent - **License:** apache-2.0 - **Finetuned from model :** AppliedLucent/alie-nemo-test1 This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
dgambettaphd/M_llm3_run2_gen4_WXS_doc1000_synt64_lr1e-04_acm_LANG
dgambettaphd
2025-08-15T20:41:53Z
0
0
transformers
[ "transformers", "safetensors", "unsloth", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-08-15T20:41:39Z
--- library_name: transformers tags: - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
neural-interactive-proofs/finetune_dpo_qwen2_5-32b-instruct_cv_qwen2.5_32B_prover_debate_2_rounds_3_0_iter_3_prover1_17552
neural-interactive-proofs
2025-08-15T20:41:47Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "generated_from_trainer", "trl", "dpo", "arxiv:2305.18290", "base_model:Qwen/Qwen2.5-32B-Instruct", "base_model:finetune:Qwen/Qwen2.5-32B-Instruct", "endpoints_compatible", "region:us" ]
null
2025-08-15T20:35:21Z
--- base_model: Qwen/Qwen2.5-32B-Instruct library_name: transformers model_name: finetune_dpo_qwen2_5-32b-instruct_cv_qwen2.5_32B_prover_debate_2_rounds_3_0_iter_3_prover1_17552 tags: - generated_from_trainer - trl - dpo licence: license --- # Model Card for finetune_dpo_qwen2_5-32b-instruct_cv_qwen2.5_32B_prover_debate_2_rounds_3_0_iter_3_prover1_17552 This model is a fine-tuned version of [Qwen/Qwen2.5-32B-Instruct](https://huggingface.co/Qwen/Qwen2.5-32B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="neural-interactive-proofs/finetune_dpo_qwen2_5-32b-instruct_cv_qwen2.5_32B_prover_debate_2_rounds_3_0_iter_3_prover1_17552", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/lrhammond-team/pvg-self-hosted-finetune/runs/qwen2_5-32b-instruct_dpo_2025-08-15_20-54-23_cv_qwen2.5_32B_prover_debate_2_rounds_3_0_iter_3_prover1) This model was trained with DPO, a method introduced in [Direct Preference Optimization: Your Language Model is Secretly a Reward Model](https://huggingface.co/papers/2305.18290). ### Framework versions - TRL: 0.18.2 - Transformers: 4.53.2 - Pytorch: 2.7.0 - Datasets: 3.0.0 - Tokenizers: 0.21.1 ## Citations Cite DPO as: ```bibtex @inproceedings{rafailov2023direct, title = {{Direct Preference Optimization: Your Language Model is Secretly a Reward Model}}, author = {Rafael Rafailov and Archit Sharma and Eric Mitchell and Christopher D. Manning and Stefano Ermon and Chelsea Finn}, year = 2023, booktitle = {Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023}, url = {http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html}, editor = {Alice Oh and Tristan Naumann and Amir Globerson and Kate Saenko and Moritz Hardt and Sergey Levine}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
chroma-core/Qwen3-Embedding-0.6B-FP8-Dynamic
chroma-core
2025-08-15T20:33:58Z
0
0
null
[ "safetensors", "qwen3", "license:apache-2.0", "compressed-tensors", "region:us" ]
null
2025-08-15T20:32:34Z
--- license: apache-2.0 ---
mradermacher/Kimina-Prover-RL-0.6B-i1-GGUF
mradermacher
2025-08-15T20:28:32Z
0
0
transformers
[ "transformers", "gguf", "en", "base_model:AI-MO/Kimina-Prover-RL-0.6B", "base_model:quantized:AI-MO/Kimina-Prover-RL-0.6B", "license:apache-2.0", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2025-08-15T20:15:17Z
--- base_model: AI-MO/Kimina-Prover-RL-0.6B language: - en library_name: transformers license: apache-2.0 mradermacher: readme_rev: 1 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> <!-- ### quants: Q2_K IQ3_M Q4_K_S IQ3_XXS Q3_K_M small-IQ4_NL Q4_K_M IQ2_M Q6_K IQ4_XS Q2_K_S IQ1_M Q3_K_S IQ2_XXS Q3_K_L IQ2_XS Q5_K_S IQ2_S IQ1_S Q5_K_M Q4_0 IQ3_XS Q4_1 IQ3_S --> <!-- ### quants_skip: --> <!-- ### skip_mmproj: --> weighted/imatrix quants of https://huggingface.co/AI-MO/Kimina-Prover-RL-0.6B <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#Kimina-Prover-RL-0.6B-i1-GGUF).*** static quants are available at https://huggingface.co/mradermacher/Kimina-Prover-RL-0.6B-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Kimina-Prover-RL-0.6B-i1-GGUF/resolve/main/Kimina-Prover-RL-0.6B.imatrix.gguf) | imatrix | 0.1 | imatrix file (for creating your own qwuants) | | [GGUF](https://huggingface.co/mradermacher/Kimina-Prover-RL-0.6B-i1-GGUF/resolve/main/Kimina-Prover-RL-0.6B.i1-IQ1_S.gguf) | i1-IQ1_S | 0.4 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/Kimina-Prover-RL-0.6B-i1-GGUF/resolve/main/Kimina-Prover-RL-0.6B.i1-IQ1_M.gguf) | i1-IQ1_M | 0.4 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/Kimina-Prover-RL-0.6B-i1-GGUF/resolve/main/Kimina-Prover-RL-0.6B.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 0.4 | | | [GGUF](https://huggingface.co/mradermacher/Kimina-Prover-RL-0.6B-i1-GGUF/resolve/main/Kimina-Prover-RL-0.6B.i1-IQ2_XS.gguf) | i1-IQ2_XS | 0.4 | | | [GGUF](https://huggingface.co/mradermacher/Kimina-Prover-RL-0.6B-i1-GGUF/resolve/main/Kimina-Prover-RL-0.6B.i1-IQ2_S.gguf) | i1-IQ2_S | 0.4 | | | [GGUF](https://huggingface.co/mradermacher/Kimina-Prover-RL-0.6B-i1-GGUF/resolve/main/Kimina-Prover-RL-0.6B.i1-Q2_K_S.gguf) | i1-Q2_K_S | 0.4 | very low quality | | [GGUF](https://huggingface.co/mradermacher/Kimina-Prover-RL-0.6B-i1-GGUF/resolve/main/Kimina-Prover-RL-0.6B.i1-IQ2_M.gguf) | i1-IQ2_M | 0.4 | | | [GGUF](https://huggingface.co/mradermacher/Kimina-Prover-RL-0.6B-i1-GGUF/resolve/main/Kimina-Prover-RL-0.6B.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 0.4 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Kimina-Prover-RL-0.6B-i1-GGUF/resolve/main/Kimina-Prover-RL-0.6B.i1-Q2_K.gguf) | i1-Q2_K | 0.4 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/Kimina-Prover-RL-0.6B-i1-GGUF/resolve/main/Kimina-Prover-RL-0.6B.i1-IQ3_XS.gguf) | i1-IQ3_XS | 0.5 | | | [GGUF](https://huggingface.co/mradermacher/Kimina-Prover-RL-0.6B-i1-GGUF/resolve/main/Kimina-Prover-RL-0.6B.i1-IQ3_S.gguf) | i1-IQ3_S | 0.5 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Kimina-Prover-RL-0.6B-i1-GGUF/resolve/main/Kimina-Prover-RL-0.6B.i1-Q3_K_S.gguf) | i1-Q3_K_S | 0.5 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/Kimina-Prover-RL-0.6B-i1-GGUF/resolve/main/Kimina-Prover-RL-0.6B.i1-IQ3_M.gguf) | i1-IQ3_M | 0.5 | | | [GGUF](https://huggingface.co/mradermacher/Kimina-Prover-RL-0.6B-i1-GGUF/resolve/main/Kimina-Prover-RL-0.6B.i1-Q3_K_M.gguf) | i1-Q3_K_M | 0.5 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/Kimina-Prover-RL-0.6B-i1-GGUF/resolve/main/Kimina-Prover-RL-0.6B.i1-Q3_K_L.gguf) | i1-Q3_K_L | 0.5 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/Kimina-Prover-RL-0.6B-i1-GGUF/resolve/main/Kimina-Prover-RL-0.6B.i1-IQ4_XS.gguf) | i1-IQ4_XS | 0.6 | | | [GGUF](https://huggingface.co/mradermacher/Kimina-Prover-RL-0.6B-i1-GGUF/resolve/main/Kimina-Prover-RL-0.6B.i1-IQ4_NL.gguf) | i1-IQ4_NL | 0.6 | prefer IQ4_XS | | [GGUF](https://huggingface.co/mradermacher/Kimina-Prover-RL-0.6B-i1-GGUF/resolve/main/Kimina-Prover-RL-0.6B.i1-Q4_0.gguf) | i1-Q4_0 | 0.6 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/Kimina-Prover-RL-0.6B-i1-GGUF/resolve/main/Kimina-Prover-RL-0.6B.i1-Q4_K_S.gguf) | i1-Q4_K_S | 0.6 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/Kimina-Prover-RL-0.6B-i1-GGUF/resolve/main/Kimina-Prover-RL-0.6B.i1-Q4_K_M.gguf) | i1-Q4_K_M | 0.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Kimina-Prover-RL-0.6B-i1-GGUF/resolve/main/Kimina-Prover-RL-0.6B.i1-Q4_1.gguf) | i1-Q4_1 | 0.6 | | | [GGUF](https://huggingface.co/mradermacher/Kimina-Prover-RL-0.6B-i1-GGUF/resolve/main/Kimina-Prover-RL-0.6B.i1-Q5_K_S.gguf) | i1-Q5_K_S | 0.6 | | | [GGUF](https://huggingface.co/mradermacher/Kimina-Prover-RL-0.6B-i1-GGUF/resolve/main/Kimina-Prover-RL-0.6B.i1-Q5_K_M.gguf) | i1-Q5_K_M | 0.7 | | | [GGUF](https://huggingface.co/mradermacher/Kimina-Prover-RL-0.6B-i1-GGUF/resolve/main/Kimina-Prover-RL-0.6B.i1-Q6_K.gguf) | i1-Q6_K | 0.7 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
gtfintechlab/model_central_reserve_bank_of_peru_stance_label
gtfintechlab
2025-08-15T20:27:01Z
5
0
transformers
[ "transformers", "safetensors", "roberta", "text-classification", "en", "dataset:gtfintechlab/central_reserve_bank_of_peru", "base_model:FacebookAI/roberta-base", "base_model:finetune:FacebookAI/roberta-base", "license:cc-by-nc-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-04-04T20:33:44Z
--- license: cc-by-nc-sa-4.0 datasets: - gtfintechlab/central_reserve_bank_of_peru language: - en metrics: - accuracy - f1 - precision - recall base_model: - roberta-base pipeline_tag: text-classification library_name: transformers --- # World of Central Banks Model **Model Name:** Central Reserve Bank of Peru Stance Detection Model **Model Type:** Text Classification **Language:** English **License:** [CC-BY-NC-SA 4.0](https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en) **Base Model:** [roberta-base](https://huggingface.co/FacebookAI/roberta-base) **Dataset Used for Training:** [gtfintechlab/central_reserve_bank_of_peru](https://huggingface.co/datasets/gtfintechlab/central_reserve_bank_of_peru) ## Model Overview Central Reserve Bank of Peru Stance Detection Model is a fine-tuned roberta-base model designed to classify text data on **Stance Detection**. This label is annotated in the central_reserve_bank_of_peru dataset, which focuses on meeting minutes for the Central Reserve Bank of Peru. ## Intended Use This model is intended for researchers and practitioners working on subjective text classification for the Central Reserve Bank of Peru, particularly within financial and economic contexts. It is specifically designed to assess the **Stance Detection** label, aiding in the analysis of subjective content in financial and economic communications. ## How to Use To utilize this model, load it using the Hugging Face `transformers` library: ```python from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification, AutoConfig # Load tokenizer, model, and configuration tokenizer = AutoTokenizer.from_pretrained("gtfintechlab/central_reserve_bank_of_peru", do_lower_case=True, do_basic_tokenize=True) model = AutoModelForSequenceClassification.from_pretrained("gtfintechlab/central_reserve_bank_of_peru", num_labels=4) config = AutoConfig.from_pretrained("gtfintechlab/central_reserve_bank_of_peru") # Initialize text classification pipeline classifier = pipeline('text-classification', model=model, tokenizer=tokenizer, config=config, framework="pt") # Classify Stance Detection sentences = [ "[Sentence 1]", "[Sentence 2]" ] results = classifier(sentences, batch_size=128, truncation="only_first") print(results) ``` In this script: - **Tokenizer and Model Loading:** Loads the pre-trained tokenizer and model from `gtfintechlab/central_reserve_bank_of_peru`. - **Configuration:** Loads model configuration parameters, including the number of labels. - **Pipeline Initialization:** Initializes a text classification pipeline with the model, tokenizer, and configuration. - **Classification:** Labels sentences based on **Stance Detection**. Ensure your environment has the necessary dependencies installed. ## Label Interpretation - **LABEL_0:** Neutral; the sentence contains neither hawkish or dovish sentiment, or both hawkish and dovish sentiment. - **LABEL_1:** Hawkish; the sentnece supports contractionary monetary policy. - **LABEL_2:** Dovish; the sentence supports expansionary monetary policy. - **LABEL_3:** Irrelevant; the sentence is not related to monetary policy. ## Training Data The model was trained on the central_reserve_bank_of_peru dataset, comprising annotated sentences from the Central Reserve Bank of Peru meeting minutes, labeled by **Stance Detection**. The dataset includes training, validation, and test splits. ## Citation If you use this model in your research, please cite the central_reserve_bank_of_peru: ```bibtex @article{WCBShahSukhaniPardawala, title={Words That Unite The World: A Unified Framework for Deciphering Global Central Bank Communications}, author={Agam Shah, Siddhant Sukhani, Huzaifa Pardawala et al.}, year={2025} } ``` For more details, refer to the [central_reserve_bank_of_peru dataset documentation](https://huggingface.co/datasets/gtfintechlab/central_reserve_bank_of_peru). ## Contact For any Central Reserve Bank of Peru related issues and questions, please contact: - Huzaifa Pardawala: huzaifahp7[at]gatech[dot]edu - Siddhant Sukhani: ssukhani3[at]gatech[dot]edu - Agam Shah: ashah482[at]gatech[dot]edu
gtfintechlab/model_bank_of_israel_stance_label
gtfintechlab
2025-08-15T20:26:14Z
9
0
transformers
[ "transformers", "safetensors", "roberta", "text-classification", "en", "dataset:gtfintechlab/bank_of_israel", "base_model:FacebookAI/roberta-base", "base_model:finetune:FacebookAI/roberta-base", "license:cc-by-nc-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-04-02T20:48:34Z
--- license: cc-by-nc-sa-4.0 datasets: - gtfintechlab/bank_of_israel language: - en metrics: - accuracy - f1 - precision - recall base_model: - roberta-base pipeline_tag: text-classification library_name: transformers --- # World of Central Banks Model **Model Name:** Bank of Israel Stance Detection Model **Model Type:** Text Classification **Language:** English **License:** [CC-BY-NC-SA 4.0](https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en) **Base Model:** [roberta-base](https://huggingface.co/FacebookAI/roberta-base) **Dataset Used for Training:** [gtfintechlab/bank_of_israel](https://huggingface.co/datasets/gtfintechlab/bank_of_israel) ## Model Overview Bank of Israel Stance Detection Model is a fine-tuned roberta-base model designed to classify text data on **Stance Detection**. This label is annotated in the bank_of_israel dataset, which focuses on meeting minutes for the Bank of Israel. ## Intended Use This model is intended for researchers and practitioners working on subjective text classification for the Bank of Israel, particularly within financial and economic contexts. It is specifically designed to assess the **Stance Detection** label, aiding in the analysis of subjective content in financial and economic communications. ## How to Use To utilize this model, load it using the Hugging Face `transformers` library: ```python from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification, AutoConfig # Load tokenizer, model, and configuration tokenizer = AutoTokenizer.from_pretrained("gtfintechlab/bank_of_israel", do_lower_case=True, do_basic_tokenize=True) model = AutoModelForSequenceClassification.from_pretrained("gtfintechlab/bank_of_israel", num_labels=4) config = AutoConfig.from_pretrained("gtfintechlab/bank_of_israel") # Initialize text classification pipeline classifier = pipeline('text-classification', model=model, tokenizer=tokenizer, config=config, framework="pt") # Classify Stance Detection sentences = [ "[Sentence 1]", "[Sentence 2]" ] results = classifier(sentences, batch_size=128, truncation="only_first") print(results) ``` In this script: - **Tokenizer and Model Loading:** Loads the pre-trained tokenizer and model from `gtfintechlab/bank_of_israel`. - **Configuration:** Loads model configuration parameters, including the number of labels. - **Pipeline Initialization:** Initializes a text classification pipeline with the model, tokenizer, and configuration. - **Classification:** Labels sentences based on **Stance Detection**. Ensure your environment has the necessary dependencies installed. ## Label Interpretation - **LABEL_0:** Neutral; the sentence contains neither hawkish or dovish sentiment, or both hawkish and dovish sentiment. - **LABEL_1:** Hawkish; the sentnece supports contractionary monetary policy. - **LABEL_2:** Dovish; the sentence supports expansionary monetary policy. - **LABEL_3:** Irrelevant; the sentence is not related to monetary policy. ## Training Data The model was trained on the bank_of_israel dataset, comprising annotated sentences from the Bank of Israel meeting minutes, labeled by **Stance Detection**. The dataset includes training, validation, and test splits. ## Citation If you use this model in your research, please cite the bank_of_israel: ```bibtex @article{WCBShahSukhaniPardawala, title={Words That Unite The World: A Unified Framework for Deciphering Global Central Bank Communications}, author={Agam Shah, Siddhant Sukhani, Huzaifa Pardawala et al.}, year={2025} } ``` For more details, refer to the [bank_of_israel dataset documentation](https://huggingface.co/datasets/gtfintechlab/bank_of_israel). ## Contact For any Bank of Israel related issues and questions, please contact: - Huzaifa Pardawala: huzaifahp7[at]gatech[dot]edu - Siddhant Sukhani: ssukhani3[at]gatech[dot]edu - Agam Shah: ashah482[at]gatech[dot]edu
ggozzy/blockassist-bc-stubby_yapping_mandrill_1755289266
ggozzy
2025-08-15T20:22:23Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "stubby yapping mandrill", "arxiv:2504.07091", "region:us" ]
null
2025-08-15T20:22:12Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - stubby yapping mandrill --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Coaster41/patchtst-sae-grid-8-1.0-expe
Coaster41
2025-08-15T20:22:07Z
0
0
saelens
[ "saelens", "region:us" ]
null
2025-08-15T20:22:01Z
--- library_name: saelens --- # SAEs for use with the SAELens library This repository contains the following SAEs: - blocks.0.hook_mlp_out Load these SAEs using SAELens as below: ```python from sae_lens import SAE sae = SAE.from_pretrained("Coaster41/patchtst-sae-grid-8-1.0-expe", "<sae_id>") ```
lisaozill03/blockassist-bc-rugged_prickly_alpaca_1755287829
lisaozill03
2025-08-15T20:21:43Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "rugged prickly alpaca", "arxiv:2504.07091", "region:us" ]
null
2025-08-15T20:21:39Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - rugged prickly alpaca --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
kapalbalap/blockassist-bc-peaceful_wary_owl_1755289204
kapalbalap
2025-08-15T20:20:59Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "peaceful wary owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-15T20:20:42Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - peaceful wary owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ultratopaz/744964
ultratopaz
2025-08-15T20:20:48Z
0
0
null
[ "region:us" ]
null
2025-08-15T20:20:48Z
[View on Civ Archive](https://civarchive.com/models/743062?modelVersionId=831003)
ultratopaz/748152
ultratopaz
2025-08-15T20:20:01Z
0
0
null
[ "region:us" ]
null
2025-08-15T20:20:00Z
[View on Civ Archive](https://civarchive.com/models/746020?modelVersionId=834235)
indrarg/blockassist-bc-pensive_zealous_hyena_1755287069
indrarg
2025-08-15T20:18:37Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "pensive zealous hyena", "arxiv:2504.07091", "region:us" ]
null
2025-08-15T20:17:41Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - pensive zealous hyena --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ultratopaz/1592173
ultratopaz
2025-08-15T20:14:38Z
0
0
null
[ "region:us" ]
null
2025-08-15T20:14:37Z
[View on Civ Archive](https://civarchive.com/models/1494708?modelVersionId=1690920)
ultratopaz/1584056
ultratopaz
2025-08-15T20:13:01Z
0
0
null
[ "region:us" ]
null
2025-08-15T20:13:01Z
[View on Civ Archive](https://civarchive.com/models/1487856?modelVersionId=1682998)
ultratopaz/1575357
ultratopaz
2025-08-15T20:11:32Z
0
0
null
[ "region:us" ]
null
2025-08-15T20:11:25Z
[View on Civ Archive](https://civarchive.com/models/1480401?modelVersionId=1674488)
ultratopaz/1562842
ultratopaz
2025-08-15T20:10:32Z
0
0
null
[ "region:us" ]
null
2025-08-15T20:10:17Z
[View on Civ Archive](https://civarchive.com/models/1469741?modelVersionId=1662377)
canbingol/tr-gemma-3-270m-it
canbingol
2025-08-15T20:08:32Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "gemma3_text", "text-generation", "generated_from_trainer", "trl", "sft", "turkish", "gemma", "openorca-tr", "conversational", "base_model:google/gemma-3-270m-it", "base_model:finetune:google/gemma-3-270m-it", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-15T19:58:51Z
--- base_model: google/gemma-3-270m-it library_name: transformers model_name: tr-gemma-3-270m-it tags: - generated_from_trainer - trl - sft - turkish - gemma - openorca-tr license: apache-2.0 --- # Model Card for tr-gemma-3-270m-it This model is a fine-tuned version of [google/gemma-3-270m-it](https://huggingface.co/google/gemma-3-270m-it), adapted for Turkish instruction-following tasks. It was trained using [TRL](https://github.com/huggingface/trl)'s `SFTTrainer` on the [ucekmez/OpenOrca-tr](https://huggingface.co/datasets/ucekmez/OpenOrca-tr) dataset. ## Quick Start ```python from transformers import pipeline generator = pipeline("text-generation", model="canbingol/tr-gemma-3-270m-it", device="cuda") question = "Sadece bir kez geçmişe ya da geleceğe gidebilecek olsaydın, hangisini seçerdin ve neden?" output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"])
jmainformatique/gemma3
jmainformatique
2025-08-15T20:08:20Z
0
0
transformers
[ "transformers", "gemma3_text", "text-generation", "generated_from_trainer", "trl", "sft", "conversational", "base_model:google/gemma-3-270m-it", "base_model:finetune:google/gemma-3-270m-it", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-08-15T17:00:51Z
--- base_model: google/gemma-3-270m-it library_name: transformers model_name: GEMMA3 tags: - generated_from_trainer - trl - sft licence: license --- # Model Card for GEMMA3 This model is a fine-tuned version of [google/gemma-3-270m-it](https://huggingface.co/google/gemma-3-270m-it). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="jmainformatique/GEMMA3", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with SFT. ### Framework versions - TRL: 0.21.0 - Transformers: 4.55.2 - Pytorch: 2.8.0 - Datasets: 4.0.0 - Tokenizers: 0.21.4 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
Onesa/blockassist-bc-extinct_pawing_manatee_1755288235
Onesa
2025-08-15T20:07:28Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "extinct pawing manatee", "arxiv:2504.07091", "region:us" ]
null
2025-08-15T20:05:02Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - extinct pawing manatee --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ultratopaz/1453118
ultratopaz
2025-08-15T20:04:05Z
0
0
null
[ "region:us" ]
null
2025-08-15T20:03:53Z
[View on Civ Archive](https://civarchive.com/models/1374742?modelVersionId=1553279)
ultratopaz/1528993
ultratopaz
2025-08-15T20:03:22Z
0
0
null
[ "region:us" ]
null
2025-08-15T20:03:22Z
[View on Civ Archive](https://civarchive.com/models/1371441?modelVersionId=1628700)
ultratopaz/1529074
ultratopaz
2025-08-15T20:01:50Z
0
0
null
[ "region:us" ]
null
2025-08-15T20:01:49Z
[View on Civ Archive](https://civarchive.com/models/1371157?modelVersionId=1628769)
ggozzy/blockassist-bc-stubby_yapping_mandrill_1755287921
ggozzy
2025-08-15T19:59:56Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "stubby yapping mandrill", "arxiv:2504.07091", "region:us" ]
null
2025-08-15T19:59:45Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - stubby yapping mandrill --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Muapi/alessandro-gottardo-style
Muapi
2025-08-15T19:59:34Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-15T19:59:17Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Alessandro Gottardo style ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: Alessandro Gottardo Style ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:56567@1404909", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
mang3dd/blockassist-bc-tangled_slithering_alligator_1755286430
mang3dd
2025-08-15T19:59:25Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "tangled slithering alligator", "arxiv:2504.07091", "region:us" ]
null
2025-08-15T19:59:21Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - tangled slithering alligator --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
vengky/blockassist-bc-wild_gentle_manatee_1755285754
vengky
2025-08-15T19:57:56Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "wild gentle manatee", "arxiv:2504.07091", "region:us" ]
null
2025-08-15T19:57:49Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - wild gentle manatee --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
kapalbalap/blockassist-bc-peaceful_wary_owl_1755287204
kapalbalap
2025-08-15T19:47:53Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "peaceful wary owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-15T19:47:37Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - peaceful wary owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
aleebaster/blockassist-bc-sly_eager_boar_1755284969
aleebaster
2025-08-15T19:46:35Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "sly eager boar", "arxiv:2504.07091", "region:us" ]
null
2025-08-15T19:46:26Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - sly eager boar --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
VIDEOS-18-Dr-Eman-go-viral-video-Clip/Original.New.full.videos.Dr.Eman.Viral.Video.Official.Tutorial
VIDEOS-18-Dr-Eman-go-viral-video-Clip
2025-08-15T19:46:19Z
0
0
null
[ "region:us" ]
null
2025-08-15T19:46:11Z
<a data-target="animated-image.originalLink" rel="nofollow" href="https://tinyurl.com/4axawfmy?Bri "><img data-target="animated-image.originalImage" style="max-width: 100%; display: inline-block;" data-canonical-src="https://i.imgur.com/dJHk4Zq.gif" alt="WATCH Videos" src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif"></a>
LimbiDev/gemma-3-270m-it-Highlevelrandom-Bigraph-Model-1000E
LimbiDev
2025-08-15T19:33:56Z
0
0
transformers
[ "transformers", "safetensors", "gemma3_text", "text-generation", "generated_from_trainer", "sft", "trl", "conversational", "base_model:google/gemma-3-270m-it", "base_model:finetune:google/gemma-3-270m-it", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-15T19:32:05Z
--- base_model: google/gemma-3-270m-it library_name: transformers model_name: gemma-3-270m-it-Highlevelrandom-Bigraph-Model-1000E tags: - generated_from_trainer - sft - trl licence: license --- # Model Card for gemma-3-270m-it-Highlevelrandom-Bigraph-Model-1000E This model is a fine-tuned version of [google/gemma-3-270m-it](https://huggingface.co/google/gemma-3-270m-it). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="LimbiDev/gemma-3-270m-it-Highlevelrandom-Bigraph-Model-1000E", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with SFT. ### Framework versions - TRL: 0.21.0 - Transformers: 4.55.0.dev0 - Pytorch: 2.7.1 - Datasets: 4.0.0 - Tokenizers: 0.21.2 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
ggozzy/blockassist-bc-stubby_yapping_mandrill_1755286306
ggozzy
2025-08-15T19:33:33Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "stubby yapping mandrill", "arxiv:2504.07091", "region:us" ]
null
2025-08-15T19:32:51Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - stubby yapping mandrill --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
unitova/blockassist-bc-zealous_sneaky_raven_1755284924
unitova
2025-08-15T19:33:19Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "zealous sneaky raven", "arxiv:2504.07091", "region:us" ]
null
2025-08-15T19:33:16Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - zealous sneaky raven --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Coaster41/patchtst-sae-grid-16-1.0-0-laye
Coaster41
2025-08-15T19:25:55Z
0
0
saelens
[ "saelens", "region:us" ]
null
2025-08-15T19:25:51Z
--- library_name: saelens --- # SAEs for use with the SAELens library This repository contains the following SAEs: - blocks.0.hook_mlp_out Load these SAEs using SAELens as below: ```python from sae_lens import SAE sae = SAE.from_pretrained("Coaster41/patchtst-sae-grid-16-1.0-0-laye", "<sae_id>") ```
manusiaperahu2012/blockassist-bc-roaring_long_tuna_1755284223
manusiaperahu2012
2025-08-15T19:24:52Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "roaring long tuna", "arxiv:2504.07091", "region:us" ]
null
2025-08-15T19:24:18Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - roaring long tuna --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
lisaozill03/blockassist-bc-rugged_prickly_alpaca_1755284377
lisaozill03
2025-08-15T19:24:44Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "rugged prickly alpaca", "arxiv:2504.07091", "region:us" ]
null
2025-08-15T19:24:40Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - rugged prickly alpaca --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ggozzy/blockassist-bc-stubby_yapping_mandrill_1755285768
ggozzy
2025-08-15T19:24:05Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "stubby yapping mandrill", "arxiv:2504.07091", "region:us" ]
null
2025-08-15T19:23:52Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - stubby yapping mandrill --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
dgambettaphd/M_llm3_run2_gen3_WXS_doc1000_synt64_lr1e-04_acm_LANG
dgambettaphd
2025-08-15T19:22:47Z
0
0
transformers
[ "transformers", "safetensors", "unsloth", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-08-15T19:22:31Z
--- library_name: transformers tags: - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
FrankieShih/qwen3-0.6b-ai-jobs-classifier
FrankieShih
2025-08-15T19:19:49Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "text-classification", "en", "base_model:Qwen/Qwen3-0.6B", "base_model:finetune:Qwen/Qwen3-0.6B", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-classification
2025-08-15T14:37:46Z
--- license: mit language: - en base_model: - Qwen/Qwen3-0.6B pipeline_tag: text-classification library_name: transformers --- # Inference examples ## Transformers You can use `AI-Job-Classifier` with Transformers. Once, setup you can proceed to classify the job descriptions by running the snippet below: ```py # load model from transformers import AutoTokenizer AutoModelForSequenceClassification model_id = "FrankieShih/qwen3-0.6b-ai-jobs-classifier" model = AutoModelForSequenceClassification.from_pretrained(model_id) tokenizer = AutoTokenizer.from_pretrained(model_id) # run the inference text = """this is your test jd""" inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): logits = model(**inputs).logits predicted_class_id = logits.argmax().item() # you may want to map the binary output to lables new_id2label = {0: 'NON-AI JOB', 1: 'AI JOB'} new_label2id = {v: k for k, v in new_id2label.items()} model.config.id2label = new_id2label model.config.label2id = new_label2id print(model.config.id2label[predicted_class_id]) ```
bettox/uno
bettox
2025-08-15T19:17:42Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-08-15T19:17:42Z
--- license: apache-2.0 ---
TomBombadyl/Qwen2.5-Coder-7B-Instruct-Omni1.1
TomBombadyl
2025-08-15T19:13:50Z
0
0
transformers
[ "transformers", "safetensors", "gguf", "robotics", "isaac-sim", "code-generation", "simulation", "qwen2", "causal-lm", "text-generation", "text2text-generation", "omni", "nvidia", "robotics-simulation", "en", "base_model:Qwen/Qwen2.5-Coder-7B-Instruct", "base_model:quantized:Qwen/Qwen2.5-Coder-7B-Instruct", "license:mit", "model-index", "endpoints_compatible", "region:us" ]
text-generation
2025-08-15T17:55:34Z
--- language: - en license: mit library_name: transformers tags: - robotics - isaac-sim - code-generation - simulation - qwen2 - causal-lm - text-generation - text2text-generation - omni - nvidia - robotics-simulation pipeline_tag: text-generation base_model: Qwen/Qwen2.5-Coder-7B-Instruct model-index: - name: Qwen2.5-Coder-7B-Instruct-Omni1.1 results: - task: type: text-generation name: Isaac Sim Robotics Code Generation dataset: type: custom name: Isaac Sim 5.0 Synthetic Dataset metrics: - type: accuracy value: 0.95 name: Domain Accuracy - type: code_quality value: 0.90 name: Python Code Quality - task: type: text-generation name: Robotics Simulation Setup dataset: type: custom name: Isaac Sim 5.0 Synthetic Dataset metrics: - type: accuracy value: 0.94 name: Simulation Setup Accuracy --- # Isaac Sim Robotics Qwen2.5-Coder-7B-Instruct-Omni1.1 [![Hugging Face](https://img.shields.io/badge/Hugging%20Face-Model-blue)](https://huggingface.co/TomBombadyl/Qwen2.5-Coder-7B-Instruct-Omni1.1) [![License](https://img.shields.io/badge/License-MIT-green.svg)](LICENSE) [![Isaac Sim](https://img.shields.io/badge/Isaac%20Sim-5.0-orange)](https://docs.omniverse.nvidia.com/isaacsim/) A specialized fine-tuned Qwen2.5-Coder-7B-Instruct model optimized for Isaac Sim 5.0 robotics development, computer vision, and simulation tasks. ## 🚀 Quick Start ### Option 1: HuggingFace Transformers (Recommended) ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "TomBombadyl/Qwen2.5-Coder-7B-Instruct-Omni1.1" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) # Isaac Sim robotics query query = """<|im_start|>user How do I create a robot with differential drive in Isaac Sim 5.0? <|im_end|> <|im_start|>assistant""" inputs = tokenizer(query, return_tensors="pt") outputs = model.generate(**inputs, max_length=512) response = tokenizer.decode(outputs[0], skip_special_tokens=True) print(response) ``` ### Option 2: CTransformers (Lightweight) ```python from ctransformers import AutoModelForCausalLM model = AutoModelForCausalLM.from_pretrained( "TomBombadyl/Qwen2.5-Coder-7B-Instruct-Omni1.1", model_type="qwen2", gpu_layers=0 # CPU inference ) # Same usage pattern as above ``` ### Option 3: GGUF Conversion (Advanced) ```bash # Convert to GGUF format for llama.cpp python scripts/convert_to_gguf.py # Use with llama.cpp ./llama-server --model models/gguf/isaac_sim_qwen2.5_coder_q4_0.gguf --port 8080 ``` ## 🎯 Model Capabilities - **Isaac Sim 5.0 Expertise**: Deep knowledge of robotics simulation APIs - **Computer Vision**: Understanding of sensor integration and perception - **Robot Control**: Programming differential drive, manipulators, and sensors - **Simulation Setup**: Environment configuration and physics parameters - **Code Generation**: Python scripts for Isaac Sim workflows - **Troubleshooting**: Common issues and solutions ## 📊 Performance - **Base Model**: Qwen2.5-Coder-7B-Instruct - **Training Data**: 2,000 Isaac Sim-specific examples - **Training Method**: LoRA fine-tuning (rank 64, alpha 128) - **Hardware**: NVIDIA RTX 4070 Laptop GPU (8.5GB VRAM) - **Training Steps**: 300 with curriculum learning ## 🔧 Installation ```bash # Clone repository git clone https://github.com/TomBombadyl/Qwen2.5-Coder-7B-Instruct-Omni1.1.git cd Qwen2.5-Coder-7B-Instruct-Omni1.1 # Install dependencies pip install -r requirements.txt # Download models (choose one) # Option 1: HuggingFace (5.3GB) huggingface-cli download TomBombadyl/Qwen2.5-Coder-7B-Instruct-Omni1.1 --local-dir models/huggingface # Option 2: CTransformers (5.2GB) huggingface-cli download TomBombadyl/Qwen2.5-Coder-7B-Instruct-Omni1.1 --local-dir models/ctransformers # Option 3: GGUF (616MB + conversion) huggingface-cli download TomBombadyl/Qwen2.5-Coder-7B-Instruct-Omni1.1 --local-dir models/gguf ``` ## 📚 Examples ### Isaac Sim Robot Creation ```python from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained("TomBombadyl/Qwen2.5-Coder-7B-Instruct-Omni1.1") tokenizer = AutoTokenizer.from_pretrained("TomBombadyl/Qwen2.5-Coder-7B-Instruct-Omni1.1") query = """<|im_start|>user Create a Python script to spawn a UR5 robot in Isaac Sim 5.0 with proper physics properties. <|im_end|> <|im_start|>assistant""" # Generate response inputs = tokenizer(query, return_tensors="pt") outputs = model.generate(**inputs, max_length=1024, temperature=0.7) response = tokenizer.decode(outputs[0], skip_special_tokens=True) print(response) ``` ### Sensor Integration ```python query = """<|im_start|>user How do I add a depth camera to my robot and process the depth data in Isaac Sim? <|im_end|> <|im_start|>assistant""" ``` ## ⚠️ Known Limitations ### GGUF Conversion Issues The GGUF conversion currently has metadata compatibility issues: - **Error**: Missing `qwen2.context_length` field - **Workaround**: Use HuggingFace or CTransformers formats - **Status**: Under investigation for future updates ### Hardware Requirements - **HuggingFace**: 8GB+ VRAM for full precision - **CTransformers**: 4GB+ VRAM for optimized inference - **GGUF**: 2GB+ VRAM (when conversion is fixed) ## 🛠️ Troubleshooting ### Common Issues 1. **Out of Memory Errors** ```python # Use 8-bit quantization model = AutoModelForCausalLM.from_pretrained( "TomBombadyl/Qwen2.5-Coder-7B-Instruct-Omni1.1", load_in_8bit=True, device_map="auto" ) ``` 2. **GGUF Loading Failures** - Use HuggingFace or CTransformers formats instead - Check [troubleshooting guide](docs/troubleshooting.md) 3. **Isaac Sim Integration Issues** - Ensure Isaac Sim 5.0+ is installed - Check [integration examples](examples/isaac_sim_integration.py) ## 📖 Documentation - [Model Card](model_card.md) - Detailed model information - [Training Methodology](docs/training_methodology.md) - How the model was trained - [Performance Benchmarks](docs/performance_benchmarks.md) - Evaluation results - [Troubleshooting Guide](docs/troubleshooting.md) - Common issues and solutions ## 🤝 Contributing We welcome contributions! Please see our [contributing guidelines](CONTRIBUTING.md) for details. ## 📄 License This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details. ## 🙏 Acknowledgments - **NVIDIA Isaac Sim Team** for the simulation platform - **Qwen Team** for the base model - **Hugging Face** for the training infrastructure - **Open Source Community** for tools and libraries ## 📞 Support - **Issues**: [GitHub Issues](https://github.com/TomBombadyl/Qwen2.5-Coder-7B-Instruct-Omni1.1/issues) - **Discussions**: [GitHub Discussions](https://github.com/TomBombadyl/Qwen2.5-Coder-7B-Instruct-Omni1.1/discussions) - **Documentation**: [Full Documentation](docs/) --- **Note**: This model is specifically trained for Isaac Sim 5.0 robotics development. For general coding tasks, consider using the base Qwen2.5-Coder-7B-Instruct model.
VIDEOS-18-Dr-Eman-viral-video-Clips/New.full.videos.Dr.Eman.Viral.Video.Official.Tutorial
VIDEOS-18-Dr-Eman-viral-video-Clips
2025-08-15T19:13:38Z
0
0
null
[ "region:us" ]
null
2025-08-15T19:12:51Z
<a data-target="animated-image.originalLink" rel="nofollow" href="https://viralflix.xyz/leaked/?em"><img data-target="animated-image.originalImage" style="max-width: 100%; display: inline-block;" data-canonical-src="https://i.imgur.com/dJHk4Zq.gif" alt="WATCH Videos" src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif"></a>
iamsubingyawali/gemma-3-4b-nepali-news-summarizer
iamsubingyawali
2025-08-15T19:08:21Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "gemma3", "trl", "ne", "dataset:iamsubingyawali/nepali_news_text_summary_sharegpt_with_system", "base_model:iamsubingyawali/gemma-3-4b-nepali-news-cpt", "base_model:finetune:iamsubingyawali/gemma-3-4b-nepali-news-cpt", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-08-09T20:22:39Z
--- base_model: - iamsubingyawali/gemma-3-4b-nepali-news-cpt tags: - text-generation-inference - transformers - unsloth - gemma3 - trl license: apache-2.0 language: - ne datasets: - iamsubingyawali/nepali_news_text_summary_sharegpt_with_system metrics: - bleu --- # Uploaded model - **Developed by:** iamsubingyawali - **License:** apache-2.0 - **Finetuned from model :** unsloth/gemma-3-4b-pt-unsloth-bnb-4bit This gemma3 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
kapalbalap/blockassist-bc-peaceful_wary_owl_1755284819
kapalbalap
2025-08-15T19:08:02Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "peaceful wary owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-15T19:07:50Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - peaceful wary owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Coaster41/patchtst-sae-grid-8-2.0-0-cons
Coaster41
2025-08-15T19:06:37Z
0
0
saelens
[ "saelens", "region:us" ]
null
2025-08-15T19:06:29Z
--- library_name: saelens --- # SAEs for use with the SAELens library This repository contains the following SAEs: - blocks.0.hook_mlp_out Load these SAEs using SAELens as below: ```python from sae_lens import SAE sae = SAE.from_pretrained("Coaster41/patchtst-sae-grid-8-2.0-0-cons", "<sae_id>") ```
rvipitkirubbe/blockassist-bc-mottled_foraging_ape_1755282925
rvipitkirubbe
2025-08-15T19:05:18Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "mottled foraging ape", "arxiv:2504.07091", "region:us" ]
null
2025-08-15T19:05:14Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - mottled foraging ape --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
unitova/blockassist-bc-zealous_sneaky_raven_1755283213
unitova
2025-08-15T19:05:10Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "zealous sneaky raven", "arxiv:2504.07091", "region:us" ]
null
2025-08-15T19:05:07Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - zealous sneaky raven --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ACECA/lowMvMax_26
ACECA
2025-08-15T19:01:21Z
0
0
null
[ "safetensors", "any-to-any", "omega", "omegalabs", "bittensor", "agi", "license:mit", "region:us" ]
any-to-any
2025-08-15T15:27:58Z
--- license: mit tags: - any-to-any - omega - omegalabs - bittensor - agi --- This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet. Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
EYEDOL/FROM_C3_NEW2
EYEDOL
2025-08-15T19:01:07Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "whisper", "automatic-speech-recognition", "hf-asr-leaderboard", "generated_from_trainer", "sw", "dataset:mozilla-foundation/common_voice_13_0", "base_model:EYEDOL/FROM_C3_NEW1", "base_model:finetune:EYEDOL/FROM_C3_NEW1", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2025-08-15T11:25:38Z
--- library_name: transformers language: - sw base_model: EYEDOL/FROM_C3_NEW1 tags: - hf-asr-leaderboard - generated_from_trainer datasets: - mozilla-foundation/common_voice_13_0 metrics: - wer model-index: - name: ASR_FROM_C3_NEW results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 13.0 type: mozilla-foundation/common_voice_13_0 config: sw split: None args: 'config: sw, split: test' metrics: - name: Wer type: wer value: 16.764359847052397 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ASR_FROM_C3_NEW This model is a fine-tuned version of [EYEDOL/FROM_C3_NEW1](https://huggingface.co/EYEDOL/FROM_C3_NEW1) on the Common Voice 13.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.2171 - Wer: 16.7644 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.0665 | 0.6918 | 2000 | 0.2171 | 16.7644 | ### Framework versions - Transformers 4.52.4 - Pytorch 2.6.0+cu124 - Datasets 3.6.0 - Tokenizers 0.21.2
motza0025/blockassist-bc-fierce_webbed_pig_1755282744
motza0025
2025-08-15T19:00:59Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "fierce webbed pig", "arxiv:2504.07091", "region:us" ]
null
2025-08-15T19:00:43Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - fierce webbed pig --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
indoempatnol/blockassist-bc-fishy_wary_swan_1755282509
indoempatnol
2025-08-15T18:57:58Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "fishy wary swan", "arxiv:2504.07091", "region:us" ]
null
2025-08-15T18:57:54Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - fishy wary swan --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
neural-interactive-proofs/finetune_dpo_qwen2_5-32b-instruct_cv_qwen2.5_32B_prover_debate_2_rounds_3_0_iter_2_prover1_17552
neural-interactive-proofs
2025-08-15T18:56:01Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "generated_from_trainer", "trl", "dpo", "arxiv:2305.18290", "base_model:Qwen/Qwen2.5-32B-Instruct", "base_model:finetune:Qwen/Qwen2.5-32B-Instruct", "endpoints_compatible", "region:us" ]
null
2025-08-15T18:50:19Z
--- base_model: Qwen/Qwen2.5-32B-Instruct library_name: transformers model_name: finetune_dpo_qwen2_5-32b-instruct_cv_qwen2.5_32B_prover_debate_2_rounds_3_0_iter_2_prover1_17552 tags: - generated_from_trainer - trl - dpo licence: license --- # Model Card for finetune_dpo_qwen2_5-32b-instruct_cv_qwen2.5_32B_prover_debate_2_rounds_3_0_iter_2_prover1_17552 This model is a fine-tuned version of [Qwen/Qwen2.5-32B-Instruct](https://huggingface.co/Qwen/Qwen2.5-32B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="neural-interactive-proofs/finetune_dpo_qwen2_5-32b-instruct_cv_qwen2.5_32B_prover_debate_2_rounds_3_0_iter_2_prover1_17552", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/lrhammond-team/pvg-self-hosted-finetune/runs/qwen2_5-32b-instruct_dpo_2025-08-15_19-19-08_cv_qwen2.5_32B_prover_debate_2_rounds_3_0_iter_2_prover1) This model was trained with DPO, a method introduced in [Direct Preference Optimization: Your Language Model is Secretly a Reward Model](https://huggingface.co/papers/2305.18290). ### Framework versions - TRL: 0.18.2 - Transformers: 4.53.2 - Pytorch: 2.7.0 - Datasets: 3.0.0 - Tokenizers: 0.21.1 ## Citations Cite DPO as: ```bibtex @inproceedings{rafailov2023direct, title = {{Direct Preference Optimization: Your Language Model is Secretly a Reward Model}}, author = {Rafael Rafailov and Archit Sharma and Eric Mitchell and Christopher D. Manning and Stefano Ermon and Chelsea Finn}, year = 2023, booktitle = {Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023}, url = {http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html}, editor = {Alice Oh and Tristan Naumann and Amir Globerson and Kate Saenko and Moritz Hardt and Sergey Levine}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
kapalbalap/blockassist-bc-peaceful_wary_owl_1755284065
kapalbalap
2025-08-15T18:55:30Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "peaceful wary owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-15T18:55:17Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - peaceful wary owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
manusiaperahu2012/blockassist-bc-roaring_long_tuna_1755282327
manusiaperahu2012
2025-08-15T18:53:45Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "roaring long tuna", "arxiv:2504.07091", "region:us" ]
null
2025-08-15T18:53:41Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - roaring long tuna --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
BKM1804/Qwen2-0.5B-6b03f4a9-39ab-4e4c-9346-802c2ff09185-DPO_bs16_bf16
BKM1804
2025-08-15T18:51:31Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-08-15T18:51:08Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ljk1291/test3
ljk1291
2025-08-15T18:27:04Z
728
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-08-03T19:18:41Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: Nymphotic --- # Test3 <Gallery /> Trained on Replicate using: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `Nymphotic` to trigger the image generation. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('ljk1291/test3', weight_name='lora.safetensors') image = pipeline('your prompt').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
sriharshamittapalli/MyGemmaPython
sriharshamittapalli
2025-08-15T18:21:33Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "gemma3_text", "text-generation", "generated_from_trainer", "sft", "trl", "conversational", "base_model:google/gemma-3-270m-it", "base_model:finetune:google/gemma-3-270m-it", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-15T18:15:31Z
--- base_model: google/gemma-3-270m-it library_name: transformers model_name: MyGemmaPython tags: - generated_from_trainer - sft - trl licence: license --- # Model Card for MyGemmaPython This model is a fine-tuned version of [google/gemma-3-270m-it](https://huggingface.co/google/gemma-3-270m-it). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="sriharshamittapalli/MyGemmaPython", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with SFT. ### Framework versions - TRL: 0.21.0 - Transformers: 4.55.1 - Pytorch: 2.6.0+cu124 - Datasets: 4.0.0 - Tokenizers: 0.21.4 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
amanuelbyte/hrm-amharic
amanuelbyte
2025-08-15T18:20:02Z
0
0
null
[ "pytorch", "amharic", "text-generation", "custom-model", "hrm", "am", "license:apache-2.0", "region:us" ]
text-generation
2025-08-15T17:57:13Z
--- language: am license: apache-2.0 tags: - amharic - text-generation - custom-model - hrm --- # HRM-Text1 Amharic Model This is a custom text generation model based on the Hierarchical Recurrent Memory (HRM) architecture. It was trained from scratch on the `amanuelbyte/Amharic_dataset`. **This is a custom model and requires `trust_remote_code=True` to load.** ## How to Use Because this is a custom architecture, you need to load the model by importing the `HRMText1` class from the `hrm_model.py` file. ```python import torch from transformers import T5Tokenizer from huggingface_hub import hf_hub_download from hrm_model import HRMText1 # Import the custom class import json # Replace with your repo ID repo_id = "amanuelbyte/HRM-amharic" device = "cuda" if torch.cuda.is_available() else "cpu" # 1. Load the tokenizer tokenizer = T5Tokenizer.from_pretrained(repo_id) # 2. Load the model's configuration config_path = hf_hub_download(repo_id=repo_id, filename="config.json") with open(config_path, 'r') as f: config = json.load(f) # 3. Instantiate the model with the config # The trust_remote_code=True is not strictly needed here because we import manually, # but it's good practice for custom models. model = HRMText1(config) # 4. Load the model weights weights_path = hf_hub_download(repo_id=repo_id, filename="pytorch_model.bin") state_dict = torch.load(weights_path, map_location=device) model.load_state_dict(state_dict) model.to(device) model.eval() print("Model loaded successfully!") # Now you can use the model for generation... prompt = "የኢትዮጵያ ዋና ከተማ" input_ids = tokenizer.encode(prompt, return_tensors="pt").to(device) with torch.inference_mode(): output_ids = model.generate(input_ids, max_new_tokens=50) # Assuming a generate method exists print(tokenizer.decode(output_ids, skip_special_tokens=True))
koloni/blockassist-bc-deadly_graceful_stingray_1755280116
koloni
2025-08-15T18:17:03Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "deadly graceful stingray", "arxiv:2504.07091", "region:us" ]
null
2025-08-15T18:16:58Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - deadly graceful stingray --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
exala/db_auto_5.1.2
exala
2025-08-15T18:16:31Z
0
0
transformers
[ "transformers", "safetensors", "distilbert", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-08-15T18:16:16Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Coaster41/patchtst-sae-grid-8-2.0-0-expe
Coaster41
2025-08-15T18:12:49Z
0
0
saelens
[ "saelens", "region:us" ]
null
2025-08-15T17:25:20Z
--- library_name: saelens --- # SAEs for use with the SAELens library This repository contains the following SAEs: - blocks.0.hook_mlp_out Load these SAEs using SAELens as below: ```python from sae_lens import SAE sae = SAE.from_pretrained("Coaster41/patchtst-sae-grid-8-2.0-0-expe", "<sae_id>") ```
yaelahnal/blockassist-bc-mute_clawed_crab_1755279096
yaelahnal
2025-08-15T18:10:23Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "mute clawed crab", "arxiv:2504.07091", "region:us" ]
null
2025-08-15T18:10:02Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - mute clawed crab --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
engHadeel/BERT2BERT-IELTS-writing-task-evaluator
engHadeel
2025-08-15T18:08:38Z
0
0
transformers
[ "transformers", "safetensors", "encoder-decoder", "text2text-generation", "dataset:hadeelbkh/tokenized-IELTS-writing-task-2-evaluation-DialoGPT-medium", "arxiv:1910.09700", "base_model:malmarjeh/bert2bert", "base_model:finetune:malmarjeh/bert2bert", "endpoints_compatible", "region:us" ]
null
2025-08-15T15:01:08Z
--- library_name: transformers datasets: - hadeelbkh/tokenized-IELTS-writing-task-2-evaluation-DialoGPT-medium metrics: - rouge base_model: - malmarjeh/bert2bert --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** Hadeel Bkhaitan - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** Python - **License:** [More Information Needed] - **Finetuned from model [optional]:** malmarjeh/bert2bert ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
mradermacher/gpt-oss-nemo-20b-GGUF
mradermacher
2025-08-15T18:05:33Z
0
0
transformers
[ "transformers", "gguf", "multilingual", "reasoning", "thinking", "fine-tuned", "lora", "conversational", "en", "es", "ar", "fr", "de", "zh", "ja", "ko", "hi", "ru", "dataset:HuggingFaceH4/Multilingual-Thinking", "base_model:justinj92/gpt-oss-nemo-20b", "base_model:adapter:justinj92/gpt-oss-nemo-20b", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-08-15T12:51:58Z
--- base_model: justinj92/gpt-oss-nemo-20b datasets: - HuggingFaceH4/Multilingual-Thinking language: - multilingual - en - es - ar - fr - de - zh - ja - ko - hi - ru library_name: transformers license: apache-2.0 mradermacher: readme_rev: 1 quantized_by: mradermacher tags: - multilingual - reasoning - thinking - fine-tuned - lora - conversational --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> <!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS --> <!-- ### quants_skip: --> <!-- ### skip_mmproj: --> static quants of https://huggingface.co/justinj92/gpt-oss-nemo-20b <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#gpt-oss-nemo-20b-GGUF).*** weighted/imatrix quants are available at https://huggingface.co/mradermacher/gpt-oss-nemo-20b-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/gpt-oss-nemo-20b-GGUF/resolve/main/gpt-oss-nemo-20b.Q3_K_S.gguf) | Q3_K_S | 12.2 | | | [GGUF](https://huggingface.co/mradermacher/gpt-oss-nemo-20b-GGUF/resolve/main/gpt-oss-nemo-20b.Q2_K.gguf) | Q2_K | 12.2 | | | [GGUF](https://huggingface.co/mradermacher/gpt-oss-nemo-20b-GGUF/resolve/main/gpt-oss-nemo-20b.IQ4_XS.gguf) | IQ4_XS | 12.3 | | | [GGUF](https://huggingface.co/mradermacher/gpt-oss-nemo-20b-GGUF/resolve/main/gpt-oss-nemo-20b.Q3_K_M.gguf) | Q3_K_M | 13.0 | lower quality | | [GGUF](https://huggingface.co/mradermacher/gpt-oss-nemo-20b-GGUF/resolve/main/gpt-oss-nemo-20b.Q3_K_L.gguf) | Q3_K_L | 13.4 | | | [GGUF](https://huggingface.co/mradermacher/gpt-oss-nemo-20b-GGUF/resolve/main/gpt-oss-nemo-20b.Q4_K_S.gguf) | Q4_K_S | 14.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/gpt-oss-nemo-20b-GGUF/resolve/main/gpt-oss-nemo-20b.Q4_K_M.gguf) | Q4_K_M | 15.9 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/gpt-oss-nemo-20b-GGUF/resolve/main/gpt-oss-nemo-20b.Q5_K_S.gguf) | Q5_K_S | 16.0 | | | [GGUF](https://huggingface.co/mradermacher/gpt-oss-nemo-20b-GGUF/resolve/main/gpt-oss-nemo-20b.Q5_K_M.gguf) | Q5_K_M | 17.0 | | | [GGUF](https://huggingface.co/mradermacher/gpt-oss-nemo-20b-GGUF/resolve/main/gpt-oss-nemo-20b.Q6_K.gguf) | Q6_K | 22.3 | very good quality | | [GGUF](https://huggingface.co/mradermacher/gpt-oss-nemo-20b-GGUF/resolve/main/gpt-oss-nemo-20b.Q8_0.gguf) | Q8_0 | 22.4 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
BootesVoid/cmckciivl06f4v0ad5tqng9ue_cmed45kgw0fk5rts8yvpn0t1w
BootesVoid
2025-08-15T18:05:17Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-08-15T18:05:14Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: JANKIL --- # Cmckciivl06F4V0Ad5Tqng9Ue_Cmed45Kgw0Fk5Rts8Yvpn0T1W <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `JANKIL` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "JANKIL", "lora_weights": "https://huggingface.co/BootesVoid/cmckciivl06f4v0ad5tqng9ue_cmed45kgw0fk5rts8yvpn0t1w/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('BootesVoid/cmckciivl06f4v0ad5tqng9ue_cmed45kgw0fk5rts8yvpn0t1w', weight_name='lora.safetensors') image = pipeline('JANKIL').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 2000 - Learning rate: 0.0004 - LoRA rank: 16 ## Contribute your own examples You can use the [community tab](https://huggingface.co/BootesVoid/cmckciivl06f4v0ad5tqng9ue_cmed45kgw0fk5rts8yvpn0t1w/discussions) to add images that show off what you’ve made with this LoRA.
Kerosene03/ppo-LunarLander-v3
Kerosene03
2025-08-15T18:03:30Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v3", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2025-08-15T17:55:58Z
--- library_name: stable-baselines3 tags: - LunarLander-v3 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v3 type: LunarLander-v3 metrics: - type: mean_reward value: -318.16 +/- 196.36 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v3** This is a trained model of a **PPO** agent playing **LunarLander-v3** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```