modelId
stringlengths 5
139
| author
stringlengths 2
42
| last_modified
timestamp[us, tz=UTC]date 2020-02-15 11:33:14
2025-08-16 18:32:29
| downloads
int64 0
223M
| likes
int64 0
11.7k
| library_name
stringclasses 506
values | tags
listlengths 1
4.05k
| pipeline_tag
stringclasses 55
values | createdAt
timestamp[us, tz=UTC]date 2022-03-02 23:29:04
2025-08-16 18:32:14
| card
stringlengths 11
1.01M
|
---|---|---|---|---|---|---|---|---|---|
Heyoka974/armellelora7
|
Heyoka974
| 2025-08-16T17:02:46Z | 0 | 0 |
diffusers
|
[
"diffusers",
"flux",
"lora",
"replicate",
"text-to-image",
"en",
"base_model:black-forest-labs/FLUX.1-dev",
"base_model:adapter:black-forest-labs/FLUX.1-dev",
"license:other",
"region:us"
] |
text-to-image
| 2025-08-16T16:27:27Z |
---
license: other
license_name: flux-1-dev-non-commercial-license
license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md
language:
- en
tags:
- flux
- diffusers
- lora
- replicate
base_model: "black-forest-labs/FLUX.1-dev"
pipeline_tag: text-to-image
# widget:
# - text: >-
# prompt
# output:
# url: https://...
instance_prompt: arme7
---
# Armellelora7
<Gallery />
## About this LoRA
This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI.
It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train
## Trigger words
You should use `arme7` to trigger the image generation.
## Run this LoRA with an API using Replicate
```py
import replicate
input = {
"prompt": "arme7",
"lora_weights": "https://huggingface.co/Heyoka974/armellelora7/resolve/main/lora.safetensors"
}
output = replicate.run(
"black-forest-labs/flux-dev-lora",
input=input
)
for index, item in enumerate(output):
with open(f"output_{index}.webp", "wb") as file:
file.write(item.read())
```
## Use it with the [๐งจ diffusers library](https://github.com/huggingface/diffusers)
```py
from diffusers import AutoPipelineForText2Image
import torch
pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda')
pipeline.load_lora_weights('Heyoka974/armellelora7', weight_name='lora.safetensors')
image = pipeline('arme7').images[0]
```
For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
## Training details
- Steps: 2000
- Learning rate: 0.0004
- LoRA rank: 32
## Contribute your own examples
You can use the [community tab](https://huggingface.co/Heyoka974/armellelora7/discussions) to add images that show off what youโve made with this LoRA.
|
Muapi/sketching-portrait
|
Muapi
| 2025-08-16T16:27:24Z | 0 | 0 | null |
[
"lora",
"stable-diffusion",
"flux.1-d",
"license:openrail++",
"region:us"
] | null | 2025-08-16T16:27:10Z |
---
license: openrail++
tags:
- lora
- stable-diffusion
- flux.1-d
model_type: LoRA
---
# Sketching Portrait

**Base model**: Flux.1 D
**Trained words**:
## ๐ง Usage (Python)
๐ **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys)
```python
import requests, os
url = "https://api.muapi.ai/api/v1/flux_dev_lora_image"
headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")}
payload = {
"prompt": "masterpiece, best quality, 1girl, looking at viewer",
"model_id": [{"model": "civitai:1304134@1223041", "weight": 1.0}],
"width": 1024,
"height": 1024,
"num_images": 1
}
print(requests.post(url, headers=headers, json=payload).json())
```
|
ggozzy/blockassist-bc-stubby_yapping_mandrill_1755359040
|
ggozzy
| 2025-08-16T15:45:15Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"stubby yapping mandrill",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-16T15:45:03Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- stubby yapping mandrill
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
VIDEOS-19-izzy-Viral-Video-Clips/Clip.Izzy.Viral.Video.Original.Link.Tiktok.official.tutorial
|
VIDEOS-19-izzy-Viral-Video-Clips
| 2025-08-16T15:02:22Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-16T15:02:13Z |
<a href="https://watch-bloggx777x.blogspot.com/2025/07/tuyhtfhydfhnfh.html"><img src="http://4.bp.blogspot.com/-VFcup4RzDQY/Upiobuokb5I/AAAAAAAAAV0/64yKpZilDCg/s1600/oie_nxv3mlmduAj1.gif" alt="fsd" /></a>
<a href="https://watch-bloggx777x.blogspot.com/2025/07/tuyhtfhydfhnfh.html" rel="nofollow">๐ด โคโบ๐๐ฅ๐ข๐ค ๐๐๐ซ๐ ๐ญ๐จ๐๐ (๐๐๐ญ๐๐ก ๐
๐ฎ๐ฅ๐ฅ ๐ฏ๐ข๐๐๐จ)</a>
<a href="https://watch-bloggx777x.blogspot.com/2025/07/tuyhtfhydfhnfh.html" rel="nofollow">๐ด โคโบ๐๐ฅ๐ข๐ค ๐๐๐ซ๐ ๐ญ๐จ๐๐ (๐
๐ฎ๐ฅ๐ฅ ๐ฏ๐ข๐๐๐จ ๐๐ข๐ง๐ค)</a>
|
Jovar1/blockassist-bc-bold_hulking_rooster_1755355892
|
Jovar1
| 2025-08-16T14:53:19Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"bold hulking rooster",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-16T14:52:34Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- bold hulking rooster
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
mradermacher/GemmaComments-GGUF
|
mradermacher
| 2025-08-16T14:24:27Z | 0 | 0 |
transformers
|
[
"transformers",
"gguf",
"generated_from_trainer",
"sft",
"trl",
"en",
"base_model:maxwellt/GemmaComments",
"base_model:quantized:maxwellt/GemmaComments",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2025-08-16T14:22:37Z |
---
base_model: maxwellt/GemmaComments
language:
- en
library_name: transformers
model_name: GemmaComments
mradermacher:
readme_rev: 1
quantized_by: mradermacher
tags:
- generated_from_trainer
- sft
- trl
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: -->
<!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS -->
<!-- ### quants_skip: -->
<!-- ### skip_mmproj: -->
static quants of https://huggingface.co/maxwellt/GemmaComments
<!-- provided-files -->
***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#GemmaComments-GGUF).***
weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion.
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/GemmaComments-GGUF/resolve/main/GemmaComments.Q3_K_S.gguf) | Q3_K_S | 0.3 | |
| [GGUF](https://huggingface.co/mradermacher/GemmaComments-GGUF/resolve/main/GemmaComments.Q2_K.gguf) | Q2_K | 0.3 | |
| [GGUF](https://huggingface.co/mradermacher/GemmaComments-GGUF/resolve/main/GemmaComments.IQ4_XS.gguf) | IQ4_XS | 0.3 | |
| [GGUF](https://huggingface.co/mradermacher/GemmaComments-GGUF/resolve/main/GemmaComments.Q3_K_M.gguf) | Q3_K_M | 0.3 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/GemmaComments-GGUF/resolve/main/GemmaComments.Q3_K_L.gguf) | Q3_K_L | 0.3 | |
| [GGUF](https://huggingface.co/mradermacher/GemmaComments-GGUF/resolve/main/GemmaComments.Q4_K_S.gguf) | Q4_K_S | 0.3 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/GemmaComments-GGUF/resolve/main/GemmaComments.Q4_K_M.gguf) | Q4_K_M | 0.4 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/GemmaComments-GGUF/resolve/main/GemmaComments.Q5_K_S.gguf) | Q5_K_S | 0.4 | |
| [GGUF](https://huggingface.co/mradermacher/GemmaComments-GGUF/resolve/main/GemmaComments.Q5_K_M.gguf) | Q5_K_M | 0.4 | |
| [GGUF](https://huggingface.co/mradermacher/GemmaComments-GGUF/resolve/main/GemmaComments.Q6_K.gguf) | Q6_K | 0.4 | very good quality |
| [GGUF](https://huggingface.co/mradermacher/GemmaComments-GGUF/resolve/main/GemmaComments.Q8_0.gguf) | Q8_0 | 0.4 | fast, best quality |
| [GGUF](https://huggingface.co/mradermacher/GemmaComments-GGUF/resolve/main/GemmaComments.f16.gguf) | f16 | 0.6 | 16 bpw, overkill |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.
<!-- end -->
|
BootesVoid/cmee9f3ze0i4mrts8r3ahvqkw_cmeeap8uj0icorts8mrlbglot
|
BootesVoid
| 2025-08-16T14:09:20Z | 0 | 0 |
diffusers
|
[
"diffusers",
"flux",
"lora",
"replicate",
"text-to-image",
"en",
"base_model:black-forest-labs/FLUX.1-dev",
"base_model:adapter:black-forest-labs/FLUX.1-dev",
"license:other",
"region:us"
] |
text-to-image
| 2025-08-16T14:09:18Z |
---
license: other
license_name: flux-1-dev-non-commercial-license
license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md
language:
- en
tags:
- flux
- diffusers
- lora
- replicate
base_model: "black-forest-labs/FLUX.1-dev"
pipeline_tag: text-to-image
# widget:
# - text: >-
# prompt
# output:
# url: https://...
instance_prompt: WHITEMOD20
---
# Cmee9F3Ze0I4Mrts8R3Ahvqkw_Cmeeap8Uj0Icorts8Mrlbglot
<Gallery />
## About this LoRA
This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI.
It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train
## Trigger words
You should use `WHITEMOD20` to trigger the image generation.
## Run this LoRA with an API using Replicate
```py
import replicate
input = {
"prompt": "WHITEMOD20",
"lora_weights": "https://huggingface.co/BootesVoid/cmee9f3ze0i4mrts8r3ahvqkw_cmeeap8uj0icorts8mrlbglot/resolve/main/lora.safetensors"
}
output = replicate.run(
"black-forest-labs/flux-dev-lora",
input=input
)
for index, item in enumerate(output):
with open(f"output_{index}.webp", "wb") as file:
file.write(item.read())
```
## Use it with the [๐งจ diffusers library](https://github.com/huggingface/diffusers)
```py
from diffusers import AutoPipelineForText2Image
import torch
pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda')
pipeline.load_lora_weights('BootesVoid/cmee9f3ze0i4mrts8r3ahvqkw_cmeeap8uj0icorts8mrlbglot', weight_name='lora.safetensors')
image = pipeline('WHITEMOD20').images[0]
```
For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
## Training details
- Steps: 2000
- Learning rate: 0.0004
- LoRA rank: 16
## Contribute your own examples
You can use the [community tab](https://huggingface.co/BootesVoid/cmee9f3ze0i4mrts8r3ahvqkw_cmeeap8uj0icorts8mrlbglot/discussions) to add images that show off what youโve made with this LoRA.
|
mradermacher/GPT-oss-sft-s1K-i1-GGUF
|
mradermacher
| 2025-08-16T14:01:02Z | 0 | 0 |
transformers
|
[
"transformers",
"gguf",
"generated_from_trainer",
"open-r1",
"trl",
"sft",
"en",
"dataset:yentinglin/s1K-1.1-trl-format",
"base_model:HectorHe/GPT-oss-sft-s1K",
"base_model:quantized:HectorHe/GPT-oss-sft-s1K",
"endpoints_compatible",
"region:us",
"imatrix",
"conversational"
] | null | 2025-08-16T10:34:45Z |
---
base_model: HectorHe/GPT-oss-sft-s1K
datasets: yentinglin/s1K-1.1-trl-format
language:
- en
library_name: transformers
model_name: GPT-oss-sft-s1K
mradermacher:
readme_rev: 1
quantized_by: mradermacher
tags:
- generated_from_trainer
- open-r1
- trl
- sft
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: nicoboss -->
<!-- ### quants: Q2_K IQ3_M Q4_K_S IQ3_XXS Q3_K_M small-IQ4_NL Q4_K_M IQ2_M Q6_K IQ4_XS Q2_K_S IQ1_M Q3_K_S IQ2_XXS Q3_K_L IQ2_XS Q5_K_S IQ2_S IQ1_S Q5_K_M Q4_0 IQ3_XS Q4_1 IQ3_S -->
<!-- ### quants_skip: -->
<!-- ### skip_mmproj: -->
weighted/imatrix quants of https://huggingface.co/HectorHe/GPT-oss-sft-s1K
<!-- provided-files -->
***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#GPT-oss-sft-s1K-i1-GGUF).***
static quants are available at https://huggingface.co/mradermacher/GPT-oss-sft-s1K-GGUF
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/GPT-oss-sft-s1K-i1-GGUF/resolve/main/GPT-oss-sft-s1K.imatrix.gguf) | imatrix | 0.1 | imatrix file (for creating your own qwuants) |
| [GGUF](https://huggingface.co/mradermacher/GPT-oss-sft-s1K-i1-GGUF/resolve/main/GPT-oss-sft-s1K.i1-IQ1_M.gguf) | i1-IQ1_M | 12.1 | mostly desperate |
| [GGUF](https://huggingface.co/mradermacher/GPT-oss-sft-s1K-i1-GGUF/resolve/main/GPT-oss-sft-s1K.i1-IQ1_S.gguf) | i1-IQ1_S | 12.1 | for the desperate |
| [GGUF](https://huggingface.co/mradermacher/GPT-oss-sft-s1K-i1-GGUF/resolve/main/GPT-oss-sft-s1K.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 12.1 | |
| [GGUF](https://huggingface.co/mradermacher/GPT-oss-sft-s1K-i1-GGUF/resolve/main/GPT-oss-sft-s1K.i1-IQ2_XS.gguf) | i1-IQ2_XS | 12.1 | |
| [GGUF](https://huggingface.co/mradermacher/GPT-oss-sft-s1K-i1-GGUF/resolve/main/GPT-oss-sft-s1K.i1-Q3_K_S.gguf) | i1-Q3_K_S | 12.2 | IQ3_XS probably better |
| [GGUF](https://huggingface.co/mradermacher/GPT-oss-sft-s1K-i1-GGUF/resolve/main/GPT-oss-sft-s1K.i1-IQ2_M.gguf) | i1-IQ2_M | 12.2 | |
| [GGUF](https://huggingface.co/mradermacher/GPT-oss-sft-s1K-i1-GGUF/resolve/main/GPT-oss-sft-s1K.i1-IQ2_S.gguf) | i1-IQ2_S | 12.2 | |
| [GGUF](https://huggingface.co/mradermacher/GPT-oss-sft-s1K-i1-GGUF/resolve/main/GPT-oss-sft-s1K.i1-IQ3_S.gguf) | i1-IQ3_S | 12.2 | beats Q3_K* |
| [GGUF](https://huggingface.co/mradermacher/GPT-oss-sft-s1K-i1-GGUF/resolve/main/GPT-oss-sft-s1K.i1-IQ3_XS.gguf) | i1-IQ3_XS | 12.2 | |
| [GGUF](https://huggingface.co/mradermacher/GPT-oss-sft-s1K-i1-GGUF/resolve/main/GPT-oss-sft-s1K.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 12.2 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/GPT-oss-sft-s1K-i1-GGUF/resolve/main/GPT-oss-sft-s1K.i1-Q2_K.gguf) | i1-Q2_K | 12.2 | IQ3_XXS probably better |
| [GGUF](https://huggingface.co/mradermacher/GPT-oss-sft-s1K-i1-GGUF/resolve/main/GPT-oss-sft-s1K.i1-IQ4_XS.gguf) | i1-IQ4_XS | 12.2 | |
| [GGUF](https://huggingface.co/mradermacher/GPT-oss-sft-s1K-i1-GGUF/resolve/main/GPT-oss-sft-s1K.i1-Q2_K_S.gguf) | i1-Q2_K_S | 12.2 | very low quality |
| [GGUF](https://huggingface.co/mradermacher/GPT-oss-sft-s1K-i1-GGUF/resolve/main/GPT-oss-sft-s1K.i1-Q4_0.gguf) | i1-Q4_0 | 12.2 | fast, low quality |
| [GGUF](https://huggingface.co/mradermacher/GPT-oss-sft-s1K-i1-GGUF/resolve/main/GPT-oss-sft-s1K.i1-IQ3_M.gguf) | i1-IQ3_M | 12.3 | |
| [GGUF](https://huggingface.co/mradermacher/GPT-oss-sft-s1K-i1-GGUF/resolve/main/GPT-oss-sft-s1K.i1-Q3_K_M.gguf) | i1-Q3_K_M | 13.0 | IQ3_S probably better |
| [GGUF](https://huggingface.co/mradermacher/GPT-oss-sft-s1K-i1-GGUF/resolve/main/GPT-oss-sft-s1K.i1-Q3_K_L.gguf) | i1-Q3_K_L | 13.4 | IQ3_M probably better |
| [GGUF](https://huggingface.co/mradermacher/GPT-oss-sft-s1K-i1-GGUF/resolve/main/GPT-oss-sft-s1K.i1-Q4_1.gguf) | i1-Q4_1 | 13.5 | |
| [GGUF](https://huggingface.co/mradermacher/GPT-oss-sft-s1K-i1-GGUF/resolve/main/GPT-oss-sft-s1K.i1-Q4_K_S.gguf) | i1-Q4_K_S | 14.8 | optimal size/speed/quality |
| [GGUF](https://huggingface.co/mradermacher/GPT-oss-sft-s1K-i1-GGUF/resolve/main/GPT-oss-sft-s1K.i1-Q4_K_M.gguf) | i1-Q4_K_M | 15.9 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/GPT-oss-sft-s1K-i1-GGUF/resolve/main/GPT-oss-sft-s1K.i1-Q5_K_S.gguf) | i1-Q5_K_S | 16.0 | |
| [GGUF](https://huggingface.co/mradermacher/GPT-oss-sft-s1K-i1-GGUF/resolve/main/GPT-oss-sft-s1K.i1-Q5_K_M.gguf) | i1-Q5_K_M | 17.0 | |
| [GGUF](https://huggingface.co/mradermacher/GPT-oss-sft-s1K-i1-GGUF/resolve/main/GPT-oss-sft-s1K.i1-Q6_K.gguf) | i1-Q6_K | 22.3 | practically like static Q6_K |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to.
<!-- end -->
|
krish53/finetuned_correct_model
|
krish53
| 2025-08-16T13:33:58Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"text-generation-inference",
"unsloth",
"llama",
"trl",
"en",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2025-08-16T13:33:46Z |
---
base_model: unsloth/llama-3.2-3b-instruct-unsloth-bnb-4bit
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
license: apache-2.0
language:
- en
---
# Uploaded model
- **Developed by:** krish53
- **License:** apache-2.0
- **Finetuned from model :** unsloth/llama-3.2-3b-instruct-unsloth-bnb-4bit
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
VoilaRaj/69_zvrjS2
|
VoilaRaj
| 2025-08-16T13:08:50Z | 0 | 0 | null |
[
"safetensors",
"any-to-any",
"omega",
"omegalabs",
"bittensor",
"agi",
"license:mit",
"region:us"
] |
any-to-any
| 2025-08-16T13:05:04Z |
---
license: mit
tags:
- any-to-any
- omega
- omegalabs
- bittensor
- agi
---
This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet.
Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
|
eusuf01/blockassist-bc-smooth_humming_butterfly_1755348849
|
eusuf01
| 2025-08-16T12:56:41Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"smooth humming butterfly",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-16T12:56:20Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- smooth humming butterfly
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
phospho-app/furkanbsk-gr00t-so101-table-cleanup-mrq54
|
phospho-app
| 2025-08-16T12:42:43Z | 0 | 0 |
phosphobot
|
[
"phosphobot",
"gr00t",
"robotics",
"dataset:youliangtan/so101-table-cleanup",
"region:us"
] |
robotics
| 2025-08-16T11:38:29Z |
---
datasets: youliangtan/so101-table-cleanup
library_name: phosphobot
pipeline_tag: robotics
model_name: gr00t
tags:
- phosphobot
- gr00t
task_categories:
- robotics
---
# gr00t Model - phospho Training Pipeline
## Error Traceback
We faced an issue while training your model.
```
Traceback (most recent call last):
File "/opt/conda/lib/python3.11/asyncio/tasks.py", line 500, in wait_for
return fut.result()
^^^^^^^^^^^^
File "/root/phosphobot/am/gr00t.py", line 1146, in read_output
async for line in process.stdout:
File "/opt/conda/lib/python3.11/asyncio/streams.py", line 765, in __anext__
val = await self.readline()
^^^^^^^^^^^^^^^^^^^^^
File "/opt/conda/lib/python3.11/asyncio/streams.py", line 566, in readline
line = await self.readuntil(sep)
^^^^^^^^^^^^^^^^^^^^^^^^^
File "/opt/conda/lib/python3.11/asyncio/streams.py", line 658, in readuntil
await self._wait_for_data('readuntil')
File "/opt/conda/lib/python3.11/asyncio/streams.py", line 543, in _wait_for_data
await self._waiter
asyncio.exceptions.CancelledError
The above exception was the direct cause of the following exception:
Traceback (most recent call last):
File "/root/phosphobot/am/gr00t.py", line 1157, in run_gr00t_training
await asyncio.wait_for(read_output(), timeout=timeout_seconds)
File "/opt/conda/lib/python3.11/asyncio/tasks.py", line 502, in wait_for
raise exceptions.TimeoutError() from exc
TimeoutError
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "/root/src/helper.py", line 166, in predict
trainer.train(timeout_seconds=timeout_seconds)
File "/root/phosphobot/am/gr00t.py", line 1325, in train
asyncio.run(
File "/opt/conda/lib/python3.11/asyncio/runners.py", line 190, in run
return runner.run(main)
^^^^^^^^^^^^^^^^
File "/opt/conda/lib/python3.11/asyncio/runners.py", line 118, in run
return self._loop.run_until_complete(task)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/opt/conda/lib/python3.11/asyncio/base_events.py", line 654, in run_until_complete
return future.result()
^^^^^^^^^^^^^^^
File "/root/phosphobot/am/gr00t.py", line 1162, in run_gr00t_training
raise TimeoutError(
TimeoutError: Training process exceeded timeout of 3600 seconds. Please consider lowering the number of epochs and/or batch size.
```
## Training parameters:
- **Dataset**: [youliangtan/so101-table-cleanup](https://huggingface.co/datasets/youliangtan/so101-table-cleanup)
- **Wandb run URL**: None
- **Epochs**: 10
- **Batch size**: 49
- **Training steps**: None
๐ **Get Started**: [docs.phospho.ai](https://docs.phospho.ai?utm_source=huggingface_readme)
๐ค **Get your robot**: [robots.phospho.ai](https://robots.phospho.ai?utm_source=huggingface_readme)
|
shindy-dev/Llama-3-shindy-jp-8B-GGUF
|
shindy-dev
| 2025-08-16T12:25:44Z | 0 | 0 |
transformers
|
[
"transformers",
"gguf",
"llama-cpp",
"ja",
"en",
"base_model:elyza/Llama-3-ELYZA-JP-8B",
"base_model:quantized:elyza/Llama-3-ELYZA-JP-8B",
"license:llama3",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2025-08-16T09:05:08Z |
---
library_name: transformers
license: llama3
language:
- ja
- en
tags:
- llama-cpp
base_model:
- elyza/Llama-3-ELYZA-JP-8B
---
# Llama-3-shindy-jp-8B-GGUF
## Model Description
Based on [elyza/Llama-3-ELYZA-JP-8B-GGUF](https://huggingface.co/elyza/Llama-3-ELYZA-JP-8B-GGUF). (Built with Meta Llama3)
## License
[Meta Llama 3 Community License](https://llama.meta.com/llama3/license/)
|
VoilaRaj/69_gb2HlG
|
VoilaRaj
| 2025-08-16T12:12:43Z | 0 | 0 | null |
[
"safetensors",
"any-to-any",
"omega",
"omegalabs",
"bittensor",
"agi",
"license:mit",
"region:us"
] |
any-to-any
| 2025-08-16T12:08:54Z |
---
license: mit
tags:
- any-to-any
- omega
- omegalabs
- bittensor
- agi
---
This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet.
Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
|
SicariusSicariiStuff/Impish_Mind_8B_GGUF_HA
|
SicariusSicariiStuff
| 2025-08-16T12:10:16Z | 0 | 0 |
transformers
|
[
"transformers",
"gguf",
"en",
"base_model:SicariusSicariiStuff/Impish_Mind_8B",
"base_model:quantized:SicariusSicariiStuff/Impish_Mind_8B",
"license:apache-2.0",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2025-08-16T11:55:22Z |
---
base_model:
- SicariusSicariiStuff/Impish_Mind_8B
language:
- en
library_name: transformers
license: apache-2.0
quantized_by: SicariusSicariiStuff
---
|
SicariusSicariiStuff/Impish_Mind_8B_ARM_HA
|
SicariusSicariiStuff
| 2025-08-16T12:09:58Z | 0 | 0 |
transformers
|
[
"transformers",
"gguf",
"en",
"base_model:SicariusSicariiStuff/Impish_Mind_8B",
"base_model:quantized:SicariusSicariiStuff/Impish_Mind_8B",
"license:apache-2.0",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2025-08-16T11:55:07Z |
---
base_model:
- SicariusSicariiStuff/Impish_Mind_8B
language:
- en
library_name: transformers
license: apache-2.0
quantized_by: SicariusSicariiStuff
---
|
quantumxnode/blockassist-bc-dormant_peckish_seahorse_1755343950
|
quantumxnode
| 2025-08-16T11:59:01Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"dormant peckish seahorse",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-16T11:58:58Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- dormant peckish seahorse
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
abdabd22001/micheal_scott_LoRA_2
|
abdabd22001
| 2025-08-16T11:50:50Z | 0 | 0 |
diffusers
|
[
"diffusers",
"tensorboard",
"text-to-image",
"diffusers-training",
"lora",
"template:sd-lora",
"stable-diffusion-xl",
"stable-diffusion-xl-diffusers",
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0",
"license:openrail++",
"region:us"
] |
text-to-image
| 2025-08-16T11:50:43Z |
---
base_model: stabilityai/stable-diffusion-xl-base-1.0
library_name: diffusers
license: openrail++
instance_prompt: a photo of Micheal Scott from the office
widget: []
tags:
- text-to-image
- text-to-image
- diffusers-training
- diffusers
- lora
- template:sd-lora
- stable-diffusion-xl
- stable-diffusion-xl-diffusers
---
<!-- This model card has been generated automatically according to the information the training script had access to. You
should probably proofread and complete it, then remove this comment. -->
# SDXL LoRA DreamBooth - abdabd22001/micheal_scott_LoRA_2
<Gallery />
## Model description
These are abdabd22001/micheal_scott_LoRA_2 LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.
The weights were trained using [DreamBooth](https://dreambooth.github.io/).
LoRA for the text encoder was enabled: False.
Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
## Trigger words
You should use a photo of Micheal Scott from the office to trigger the image generation.
## Download model
Weights for this model are available in Safetensors format.
[Download](abdabd22001/micheal_scott_LoRA_2/tree/main) them in the Files & versions tab.
## Intended uses & limitations
#### How to use
```python
# TODO: add an example code snippet for running this diffusion pipeline
```
#### Limitations and bias
[TODO: provide examples of latent issues and potential remediations]
## Training details
[TODO: describe the data used to train the model]
|
lisaozill03/blockassist-bc-rugged_prickly_alpaca_1755342901
|
lisaozill03
| 2025-08-16T11:39:57Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"rugged prickly alpaca",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-16T11:39:53Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- rugged prickly alpaca
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
capungmerah627/blockassist-bc-stinging_soaring_porcupine_1755342896
|
capungmerah627
| 2025-08-16T11:39:44Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"stinging soaring porcupine",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-16T11:39:41Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- stinging soaring porcupine
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
SicariusSicariiStuff/Phi-lthy4_ARM_HA
|
SicariusSicariiStuff
| 2025-08-16T11:39:09Z | 0 | 0 |
transformers
|
[
"transformers",
"gguf",
"en",
"base_model:SicariusSicariiStuff/Phi-lthy4",
"base_model:quantized:SicariusSicariiStuff/Phi-lthy4",
"license:apache-2.0",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2025-08-16T11:36:48Z |
---
base_model:
- SicariusSicariiStuff/Phi-lthy4
language:
- en
library_name: transformers
license: apache-2.0
quantized_by: SicariusSicariiStuff
---
|
Watch-Aston-Villa-vs-Newcastle-live-tv/Watch.Videos.Aston.Villa.vs.Newcastle.live.tv.Official
|
Watch-Aston-Villa-vs-Newcastle-live-tv
| 2025-08-16T11:35:30Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-16T11:34:59Z |
<animated-image data-catalyst=""><a href="https://tinyurl.com/mrmpsap6?Live-Stream" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
|
manancode/opus-mt-en-ny-ctranslate2-android
|
manancode
| 2025-08-16T11:23:38Z | 0 | 0 | null |
[
"translation",
"opus-mt",
"ctranslate2",
"quantized",
"multilingual",
"license:apache-2.0",
"region:us"
] |
translation
| 2025-08-16T11:23:04Z |
---
license: apache-2.0
tags:
- translation
- opus-mt
- ctranslate2
- quantized
language:
- multilingual
pipeline_tag: translation
---
# opus-mt-en-ny-ctranslate2-android
This is a quantized INT8 version of `Helsinki-NLP/opus-mt-en-ny` converted to CTranslate2 format for efficient inference.
## Model Details
- **Original Model**: Helsinki-NLP/opus-mt-en-ny
- **Format**: CTranslate2
- **Quantization**: INT8
- **Framework**: OPUS-MT
- **Converted by**: Automated conversion pipeline
## Usage
### With CTranslate2
```python
import ctranslate2
import sentencepiece as spm
# Load the model
translator = ctranslate2.Translator("path/to/model")
# Load tokenizers
sp_source = spm.SentencePieceProcessor(model_file="source.spm")
sp_target = spm.SentencePieceProcessor(model_file="target.spm")
# Translate
source_tokens = sp_source.encode("Your text here", out_type=str)
results = translator.translate_batch([source_tokens])
translation = sp_target.decode(results[0].hypotheses[0])
```
## Performance
This INT8 quantized version provides:
- ~75% reduction in model size
- Faster inference speed
- Maintained translation quality
- Mobile-friendly deployment
## Original Model
Based on the OPUS-MT project: https://github.com/Helsinki-NLP/Opus-MT
|
Dejiat/blockassist-bc-savage_unseen_bobcat_1755343341
|
Dejiat
| 2025-08-16T11:22:56Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"savage unseen bobcat",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-16T11:22:46Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- savage unseen bobcat
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
HectorHe/Qwen1.5-MOE-sft-nemotron-code
|
HectorHe
| 2025-08-16T11:19:38Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"qwen2_moe",
"text-generation",
"generated_from_trainer",
"open-r1",
"trl",
"sft",
"conversational",
"dataset:autoprogrammer/nemotron_code_lf_filtered",
"base_model:Qwen/Qwen1.5-MoE-A2.7B",
"base_model:finetune:Qwen/Qwen1.5-MoE-A2.7B",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-08-15T09:05:44Z |
---
base_model: Qwen/Qwen1.5-MoE-A2.7B
datasets: autoprogrammer/nemotron_code_lf_filtered
library_name: transformers
model_name: Qwen1.5-MOE-sft-nemotron-code
tags:
- generated_from_trainer
- open-r1
- trl
- sft
licence: license
---
# Model Card for Qwen1.5-MOE-sft-nemotron-code
This model is a fine-tuned version of [Qwen/Qwen1.5-MoE-A2.7B](https://huggingface.co/Qwen/Qwen1.5-MoE-A2.7B) on the [autoprogrammer/nemotron_code_lf_filtered](https://huggingface.co/datasets/autoprogrammer/nemotron_code_lf_filtered) dataset.
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="HectorHe/Qwen1.5-MOE-sft-nemotron-code", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/hector_-carnegie-mellon-university/huggingface/runs/w0x1b02r)
This model was trained with SFT.
### Framework versions
- TRL: 0.18.0.dev0
- Transformers: 4.52.0.dev0
- Pytorch: 2.6.0
- Datasets: 4.0.0
- Tokenizers: 0.21.4
## Citations
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
```
|
Dejiat/blockassist-bc-savage_unseen_bobcat_1755343133
|
Dejiat
| 2025-08-16T11:19:33Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"savage unseen bobcat",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-16T11:19:22Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- savage unseen bobcat
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
manancode/opus-mt-en-luo-ctranslate2-android
|
manancode
| 2025-08-16T11:17:03Z | 0 | 0 | null |
[
"translation",
"opus-mt",
"ctranslate2",
"quantized",
"multilingual",
"license:apache-2.0",
"region:us"
] |
translation
| 2025-08-16T11:16:43Z |
---
license: apache-2.0
tags:
- translation
- opus-mt
- ctranslate2
- quantized
language:
- multilingual
pipeline_tag: translation
---
# opus-mt-en-luo-ctranslate2-android
This is a quantized INT8 version of `Helsinki-NLP/opus-mt-en-luo` converted to CTranslate2 format for efficient inference.
## Model Details
- **Original Model**: Helsinki-NLP/opus-mt-en-luo
- **Format**: CTranslate2
- **Quantization**: INT8
- **Framework**: OPUS-MT
- **Converted by**: Automated conversion pipeline
## Usage
### With CTranslate2
```python
import ctranslate2
import sentencepiece as spm
# Load the model
translator = ctranslate2.Translator("path/to/model")
# Load tokenizers
sp_source = spm.SentencePieceProcessor(model_file="source.spm")
sp_target = spm.SentencePieceProcessor(model_file="target.spm")
# Translate
source_tokens = sp_source.encode("Your text here", out_type=str)
results = translator.translate_batch([source_tokens])
translation = sp_target.decode(results[0].hypotheses[0])
```
## Performance
This INT8 quantized version provides:
- ~75% reduction in model size
- Faster inference speed
- Maintained translation quality
- Mobile-friendly deployment
## Original Model
Based on the OPUS-MT project: https://github.com/Helsinki-NLP/Opus-MT
|
manancode/opus-mt-en-lue-ctranslate2-android
|
manancode
| 2025-08-16T11:16:09Z | 0 | 0 | null |
[
"translation",
"opus-mt",
"ctranslate2",
"quantized",
"multilingual",
"license:apache-2.0",
"region:us"
] |
translation
| 2025-08-16T11:15:56Z |
---
license: apache-2.0
tags:
- translation
- opus-mt
- ctranslate2
- quantized
language:
- multilingual
pipeline_tag: translation
---
# opus-mt-en-lue-ctranslate2-android
This is a quantized INT8 version of `Helsinki-NLP/opus-mt-en-lue` converted to CTranslate2 format for efficient inference.
## Model Details
- **Original Model**: Helsinki-NLP/opus-mt-en-lue
- **Format**: CTranslate2
- **Quantization**: INT8
- **Framework**: OPUS-MT
- **Converted by**: Automated conversion pipeline
## Usage
### With CTranslate2
```python
import ctranslate2
import sentencepiece as spm
# Load the model
translator = ctranslate2.Translator("path/to/model")
# Load tokenizers
sp_source = spm.SentencePieceProcessor(model_file="source.spm")
sp_target = spm.SentencePieceProcessor(model_file="target.spm")
# Translate
source_tokens = sp_source.encode("Your text here", out_type=str)
results = translator.translate_batch([source_tokens])
translation = sp_target.decode(results[0].hypotheses[0])
```
## Performance
This INT8 quantized version provides:
- ~75% reduction in model size
- Faster inference speed
- Maintained translation quality
- Mobile-friendly deployment
## Original Model
Based on the OPUS-MT project: https://github.com/Helsinki-NLP/Opus-MT
|
minhchauu217/blockassist-bc-flightless_unseen_parrot_1755341929
|
minhchauu217
| 2025-08-16T11:15:19Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"flightless unseen parrot",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-16T11:15:07Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- flightless unseen parrot
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
manancode/opus-mt-en-lu-ctranslate2-android
|
manancode
| 2025-08-16T11:15:15Z | 0 | 0 | null |
[
"translation",
"opus-mt",
"ctranslate2",
"quantized",
"multilingual",
"license:apache-2.0",
"region:us"
] |
translation
| 2025-08-16T11:15:02Z |
---
license: apache-2.0
tags:
- translation
- opus-mt
- ctranslate2
- quantized
language:
- multilingual
pipeline_tag: translation
---
# opus-mt-en-lu-ctranslate2-android
This is a quantized INT8 version of `Helsinki-NLP/opus-mt-en-lu` converted to CTranslate2 format for efficient inference.
## Model Details
- **Original Model**: Helsinki-NLP/opus-mt-en-lu
- **Format**: CTranslate2
- **Quantization**: INT8
- **Framework**: OPUS-MT
- **Converted by**: Automated conversion pipeline
## Usage
### With CTranslate2
```python
import ctranslate2
import sentencepiece as spm
# Load the model
translator = ctranslate2.Translator("path/to/model")
# Load tokenizers
sp_source = spm.SentencePieceProcessor(model_file="source.spm")
sp_target = spm.SentencePieceProcessor(model_file="target.spm")
# Translate
source_tokens = sp_source.encode("Your text here", out_type=str)
results = translator.translate_batch([source_tokens])
translation = sp_target.decode(results[0].hypotheses[0])
```
## Performance
This INT8 quantized version provides:
- ~75% reduction in model size
- Faster inference speed
- Maintained translation quality
- Mobile-friendly deployment
## Original Model
Based on the OPUS-MT project: https://github.com/Helsinki-NLP/Opus-MT
|
manancode/opus-mt-en-loz-ctranslate2-android
|
manancode
| 2025-08-16T11:14:56Z | 0 | 0 | null |
[
"translation",
"opus-mt",
"ctranslate2",
"quantized",
"multilingual",
"license:apache-2.0",
"region:us"
] |
translation
| 2025-08-16T11:14:41Z |
---
license: apache-2.0
tags:
- translation
- opus-mt
- ctranslate2
- quantized
language:
- multilingual
pipeline_tag: translation
---
# opus-mt-en-loz-ctranslate2-android
This is a quantized INT8 version of `Helsinki-NLP/opus-mt-en-loz` converted to CTranslate2 format for efficient inference.
## Model Details
- **Original Model**: Helsinki-NLP/opus-mt-en-loz
- **Format**: CTranslate2
- **Quantization**: INT8
- **Framework**: OPUS-MT
- **Converted by**: Automated conversion pipeline
## Usage
### With CTranslate2
```python
import ctranslate2
import sentencepiece as spm
# Load the model
translator = ctranslate2.Translator("path/to/model")
# Load tokenizers
sp_source = spm.SentencePieceProcessor(model_file="source.spm")
sp_target = spm.SentencePieceProcessor(model_file="target.spm")
# Translate
source_tokens = sp_source.encode("Your text here", out_type=str)
results = translator.translate_batch([source_tokens])
translation = sp_target.decode(results[0].hypotheses[0])
```
## Performance
This INT8 quantized version provides:
- ~75% reduction in model size
- Faster inference speed
- Maintained translation quality
- Mobile-friendly deployment
## Original Model
Based on the OPUS-MT project: https://github.com/Helsinki-NLP/Opus-MT
|
manancode/opus-mt-en-ln-ctranslate2-android
|
manancode
| 2025-08-16T11:14:35Z | 0 | 0 | null |
[
"translation",
"opus-mt",
"ctranslate2",
"quantized",
"multilingual",
"license:apache-2.0",
"region:us"
] |
translation
| 2025-08-16T11:14:06Z |
---
license: apache-2.0
tags:
- translation
- opus-mt
- ctranslate2
- quantized
language:
- multilingual
pipeline_tag: translation
---
# opus-mt-en-ln-ctranslate2-android
This is a quantized INT8 version of `Helsinki-NLP/opus-mt-en-ln` converted to CTranslate2 format for efficient inference.
## Model Details
- **Original Model**: Helsinki-NLP/opus-mt-en-ln
- **Format**: CTranslate2
- **Quantization**: INT8
- **Framework**: OPUS-MT
- **Converted by**: Automated conversion pipeline
## Usage
### With CTranslate2
```python
import ctranslate2
import sentencepiece as spm
# Load the model
translator = ctranslate2.Translator("path/to/model")
# Load tokenizers
sp_source = spm.SentencePieceProcessor(model_file="source.spm")
sp_target = spm.SentencePieceProcessor(model_file="target.spm")
# Translate
source_tokens = sp_source.encode("Your text here", out_type=str)
results = translator.translate_batch([source_tokens])
translation = sp_target.decode(results[0].hypotheses[0])
```
## Performance
This INT8 quantized version provides:
- ~75% reduction in model size
- Faster inference speed
- Maintained translation quality
- Mobile-friendly deployment
## Original Model
Based on the OPUS-MT project: https://github.com/Helsinki-NLP/Opus-MT
|
VoilaRaj/69_pMugfk
|
VoilaRaj
| 2025-08-16T11:08:25Z | 0 | 0 | null |
[
"safetensors",
"any-to-any",
"omega",
"omegalabs",
"bittensor",
"agi",
"license:mit",
"region:us"
] |
any-to-any
| 2025-08-16T11:04:31Z |
---
license: mit
tags:
- any-to-any
- omega
- omegalabs
- bittensor
- agi
---
This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet.
Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
|
kumoooo/blockassist-bc-aquatic_restless_camel_1755341821
|
kumoooo
| 2025-08-16T11:04:04Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"aquatic restless camel",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-16T11:03:29Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- aquatic restless camel
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
Harsh1729/R1-Distill-Llama-8B-SFT-cotroller_dataset-bespoke-52k_all_cotif-w_partial_soln-w_change_of_thgt
|
Harsh1729
| 2025-08-16T11:03:35Z | 0 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"llama",
"text-generation",
"generated_from_trainer",
"conversational",
"base_model:deepseek-ai/DeepSeek-R1-Distill-Llama-8B",
"base_model:finetune:deepseek-ai/DeepSeek-R1-Distill-Llama-8B",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-08-16T10:57:18Z |
---
base_model: deepseek-ai/DeepSeek-R1-Distill-Llama-8B
library_name: transformers
model_name:
tags:
- sft
- full-finetuning
tags:
- generated_from_trainer
licence: license
---
# Model Card for {'tags': ['sft', 'full-finetuning']}
This model is a fine-tuned version of [deepseek-ai/DeepSeek-R1-Distill-Llama-8B](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Llama-8B).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="None", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
This model was trained with SFT.
### Framework versions
- TRL: 0.13.0
- Transformers: 4.46.0
- Pytorch: 2.7.0
- Datasets: 3.2.0
- Tokenizers: 0.20.3
## Citations
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouรฉdec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
```
|
manancode/opus-mt-en-alv-ctranslate2-android
|
manancode
| 2025-08-16T10:51:05Z | 0 | 0 | null |
[
"translation",
"opus-mt",
"ctranslate2",
"quantized",
"multilingual",
"license:apache-2.0",
"region:us"
] |
translation
| 2025-08-16T10:50:49Z |
---
license: apache-2.0
tags:
- translation
- opus-mt
- ctranslate2
- quantized
language:
- multilingual
pipeline_tag: translation
---
# opus-mt-en-alv-ctranslate2-android
This is a quantized INT8 version of `Helsinki-NLP/opus-mt-en-alv` converted to CTranslate2 format for efficient inference.
## Model Details
- **Original Model**: Helsinki-NLP/opus-mt-en-alv
- **Format**: CTranslate2
- **Quantization**: INT8
- **Framework**: OPUS-MT
- **Converted by**: Automated conversion pipeline
## Usage
### With CTranslate2
```python
import ctranslate2
import sentencepiece as spm
# Load the model
translator = ctranslate2.Translator("path/to/model")
# Load tokenizers
sp_source = spm.SentencePieceProcessor(model_file="source.spm")
sp_target = spm.SentencePieceProcessor(model_file="target.spm")
# Translate
source_tokens = sp_source.encode("Your text here", out_type=str)
results = translator.translate_batch([source_tokens])
translation = sp_target.decode(results[0].hypotheses[0])
```
## Performance
This INT8 quantized version provides:
- ~75% reduction in model size
- Faster inference speed
- Maintained translation quality
- Mobile-friendly deployment
## Original Model
Based on the OPUS-MT project: https://github.com/Helsinki-NLP/Opus-MT
|
manancode/opus-mt-el-ar-ctranslate2-android
|
manancode
| 2025-08-16T10:48:00Z | 0 | 0 | null |
[
"translation",
"opus-mt",
"ctranslate2",
"quantized",
"multilingual",
"license:apache-2.0",
"region:us"
] |
translation
| 2025-08-16T10:47:46Z |
---
license: apache-2.0
tags:
- translation
- opus-mt
- ctranslate2
- quantized
language:
- multilingual
pipeline_tag: translation
---
# opus-mt-el-ar-ctranslate2-android
This is a quantized INT8 version of `Helsinki-NLP/opus-mt-el-ar` converted to CTranslate2 format for efficient inference.
## Model Details
- **Original Model**: Helsinki-NLP/opus-mt-el-ar
- **Format**: CTranslate2
- **Quantization**: INT8
- **Framework**: OPUS-MT
- **Converted by**: Automated conversion pipeline
## Usage
### With CTranslate2
```python
import ctranslate2
import sentencepiece as spm
# Load the model
translator = ctranslate2.Translator("path/to/model")
# Load tokenizers
sp_source = spm.SentencePieceProcessor(model_file="source.spm")
sp_target = spm.SentencePieceProcessor(model_file="target.spm")
# Translate
source_tokens = sp_source.encode("Your text here", out_type=str)
results = translator.translate_batch([source_tokens])
translation = sp_target.decode(results[0].hypotheses[0])
```
## Performance
This INT8 quantized version provides:
- ~75% reduction in model size
- Faster inference speed
- Maintained translation quality
- Mobile-friendly deployment
## Original Model
Based on the OPUS-MT project: https://github.com/Helsinki-NLP/Opus-MT
|
manancode/opus-mt-de-pl-ctranslate2-android
|
manancode
| 2025-08-16T10:42:57Z | 0 | 0 | null |
[
"translation",
"opus-mt",
"ctranslate2",
"quantized",
"multilingual",
"license:apache-2.0",
"region:us"
] |
translation
| 2025-08-16T10:42:47Z |
---
license: apache-2.0
tags:
- translation
- opus-mt
- ctranslate2
- quantized
language:
- multilingual
pipeline_tag: translation
---
# opus-mt-de-pl-ctranslate2-android
This is a quantized INT8 version of `Helsinki-NLP/opus-mt-de-pl` converted to CTranslate2 format for efficient inference.
## Model Details
- **Original Model**: Helsinki-NLP/opus-mt-de-pl
- **Format**: CTranslate2
- **Quantization**: INT8
- **Framework**: OPUS-MT
- **Converted by**: Automated conversion pipeline
## Usage
### With CTranslate2
```python
import ctranslate2
import sentencepiece as spm
# Load the model
translator = ctranslate2.Translator("path/to/model")
# Load tokenizers
sp_source = spm.SentencePieceProcessor(model_file="source.spm")
sp_target = spm.SentencePieceProcessor(model_file="target.spm")
# Translate
source_tokens = sp_source.encode("Your text here", out_type=str)
results = translator.translate_batch([source_tokens])
translation = sp_target.decode(results[0].hypotheses[0])
```
## Performance
This INT8 quantized version provides:
- ~75% reduction in model size
- Faster inference speed
- Maintained translation quality
- Mobile-friendly deployment
## Original Model
Based on the OPUS-MT project: https://github.com/Helsinki-NLP/Opus-MT
|
manancode/opus-mt-de-pis-ctranslate2-android
|
manancode
| 2025-08-16T10:42:41Z | 0 | 0 | null |
[
"translation",
"opus-mt",
"ctranslate2",
"quantized",
"multilingual",
"license:apache-2.0",
"region:us"
] |
translation
| 2025-08-16T10:42:29Z |
---
license: apache-2.0
tags:
- translation
- opus-mt
- ctranslate2
- quantized
language:
- multilingual
pipeline_tag: translation
---
# opus-mt-de-pis-ctranslate2-android
This is a quantized INT8 version of `Helsinki-NLP/opus-mt-de-pis` converted to CTranslate2 format for efficient inference.
## Model Details
- **Original Model**: Helsinki-NLP/opus-mt-de-pis
- **Format**: CTranslate2
- **Quantization**: INT8
- **Framework**: OPUS-MT
- **Converted by**: Automated conversion pipeline
## Usage
### With CTranslate2
```python
import ctranslate2
import sentencepiece as spm
# Load the model
translator = ctranslate2.Translator("path/to/model")
# Load tokenizers
sp_source = spm.SentencePieceProcessor(model_file="source.spm")
sp_target = spm.SentencePieceProcessor(model_file="target.spm")
# Translate
source_tokens = sp_source.encode("Your text here", out_type=str)
results = translator.translate_batch([source_tokens])
translation = sp_target.decode(results[0].hypotheses[0])
```
## Performance
This INT8 quantized version provides:
- ~75% reduction in model size
- Faster inference speed
- Maintained translation quality
- Mobile-friendly deployment
## Original Model
Based on the OPUS-MT project: https://github.com/Helsinki-NLP/Opus-MT
|
manancode/opus-mt-de-nso-ctranslate2-android
|
manancode
| 2025-08-16T10:41:31Z | 0 | 0 | null |
[
"translation",
"opus-mt",
"ctranslate2",
"quantized",
"multilingual",
"license:apache-2.0",
"region:us"
] |
translation
| 2025-08-16T10:41:21Z |
---
license: apache-2.0
tags:
- translation
- opus-mt
- ctranslate2
- quantized
language:
- multilingual
pipeline_tag: translation
---
# opus-mt-de-nso-ctranslate2-android
This is a quantized INT8 version of `Helsinki-NLP/opus-mt-de-nso` converted to CTranslate2 format for efficient inference.
## Model Details
- **Original Model**: Helsinki-NLP/opus-mt-de-nso
- **Format**: CTranslate2
- **Quantization**: INT8
- **Framework**: OPUS-MT
- **Converted by**: Automated conversion pipeline
## Usage
### With CTranslate2
```python
import ctranslate2
import sentencepiece as spm
# Load the model
translator = ctranslate2.Translator("path/to/model")
# Load tokenizers
sp_source = spm.SentencePieceProcessor(model_file="source.spm")
sp_target = spm.SentencePieceProcessor(model_file="target.spm")
# Translate
source_tokens = sp_source.encode("Your text here", out_type=str)
results = translator.translate_batch([source_tokens])
translation = sp_target.decode(results[0].hypotheses[0])
```
## Performance
This INT8 quantized version provides:
- ~75% reduction in model size
- Faster inference speed
- Maintained translation quality
- Mobile-friendly deployment
## Original Model
Based on the OPUS-MT project: https://github.com/Helsinki-NLP/Opus-MT
|
kumoooo/blockassist-bc-aquatic_restless_camel_1755340357
|
kumoooo
| 2025-08-16T10:41:25Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"aquatic restless camel",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-16T10:40:51Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- aquatic restless camel
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
manancode/opus-mt-de-no-ctranslate2-android
|
manancode
| 2025-08-16T10:41:15Z | 0 | 0 | null |
[
"translation",
"opus-mt",
"ctranslate2",
"quantized",
"multilingual",
"license:apache-2.0",
"region:us"
] |
translation
| 2025-08-16T10:41:06Z |
---
license: apache-2.0
tags:
- translation
- opus-mt
- ctranslate2
- quantized
language:
- multilingual
pipeline_tag: translation
---
# opus-mt-de-no-ctranslate2-android
This is a quantized INT8 version of `Helsinki-NLP/opus-mt-de-no` converted to CTranslate2 format for efficient inference.
## Model Details
- **Original Model**: Helsinki-NLP/opus-mt-de-no
- **Format**: CTranslate2
- **Quantization**: INT8
- **Framework**: OPUS-MT
- **Converted by**: Automated conversion pipeline
## Usage
### With CTranslate2
```python
import ctranslate2
import sentencepiece as spm
# Load the model
translator = ctranslate2.Translator("path/to/model")
# Load tokenizers
sp_source = spm.SentencePieceProcessor(model_file="source.spm")
sp_target = spm.SentencePieceProcessor(model_file="target.spm")
# Translate
source_tokens = sp_source.encode("Your text here", out_type=str)
results = translator.translate_batch([source_tokens])
translation = sp_target.decode(results[0].hypotheses[0])
```
## Performance
This INT8 quantized version provides:
- ~75% reduction in model size
- Faster inference speed
- Maintained translation quality
- Mobile-friendly deployment
## Original Model
Based on the OPUS-MT project: https://github.com/Helsinki-NLP/Opus-MT
|
manancode/opus-mt-de-lt-ctranslate2-android
|
manancode
| 2025-08-16T10:39:36Z | 0 | 0 | null |
[
"translation",
"opus-mt",
"ctranslate2",
"quantized",
"multilingual",
"license:apache-2.0",
"region:us"
] |
translation
| 2025-08-16T10:39:23Z |
---
license: apache-2.0
tags:
- translation
- opus-mt
- ctranslate2
- quantized
language:
- multilingual
pipeline_tag: translation
---
# opus-mt-de-lt-ctranslate2-android
This is a quantized INT8 version of `Helsinki-NLP/opus-mt-de-lt` converted to CTranslate2 format for efficient inference.
## Model Details
- **Original Model**: Helsinki-NLP/opus-mt-de-lt
- **Format**: CTranslate2
- **Quantization**: INT8
- **Framework**: OPUS-MT
- **Converted by**: Automated conversion pipeline
## Usage
### With CTranslate2
```python
import ctranslate2
import sentencepiece as spm
# Load the model
translator = ctranslate2.Translator("path/to/model")
# Load tokenizers
sp_source = spm.SentencePieceProcessor(model_file="source.spm")
sp_target = spm.SentencePieceProcessor(model_file="target.spm")
# Translate
source_tokens = sp_source.encode("Your text here", out_type=str)
results = translator.translate_batch([source_tokens])
translation = sp_target.decode(results[0].hypotheses[0])
```
## Performance
This INT8 quantized version provides:
- ~75% reduction in model size
- Faster inference speed
- Maintained translation quality
- Mobile-friendly deployment
## Original Model
Based on the OPUS-MT project: https://github.com/Helsinki-NLP/Opus-MT
|
manancode/opus-mt-de-loz-ctranslate2-android
|
manancode
| 2025-08-16T10:39:17Z | 0 | 0 | null |
[
"translation",
"opus-mt",
"ctranslate2",
"quantized",
"multilingual",
"license:apache-2.0",
"region:us"
] |
translation
| 2025-08-16T10:39:05Z |
---
license: apache-2.0
tags:
- translation
- opus-mt
- ctranslate2
- quantized
language:
- multilingual
pipeline_tag: translation
---
# opus-mt-de-loz-ctranslate2-android
This is a quantized INT8 version of `Helsinki-NLP/opus-mt-de-loz` converted to CTranslate2 format for efficient inference.
## Model Details
- **Original Model**: Helsinki-NLP/opus-mt-de-loz
- **Format**: CTranslate2
- **Quantization**: INT8
- **Framework**: OPUS-MT
- **Converted by**: Automated conversion pipeline
## Usage
### With CTranslate2
```python
import ctranslate2
import sentencepiece as spm
# Load the model
translator = ctranslate2.Translator("path/to/model")
# Load tokenizers
sp_source = spm.SentencePieceProcessor(model_file="source.spm")
sp_target = spm.SentencePieceProcessor(model_file="target.spm")
# Translate
source_tokens = sp_source.encode("Your text here", out_type=str)
results = translator.translate_batch([source_tokens])
translation = sp_target.decode(results[0].hypotheses[0])
```
## Performance
This INT8 quantized version provides:
- ~75% reduction in model size
- Faster inference speed
- Maintained translation quality
- Mobile-friendly deployment
## Original Model
Based on the OPUS-MT project: https://github.com/Helsinki-NLP/Opus-MT
|
Neooot/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-whiskered_horned_macaw
|
Neooot
| 2025-08-16T10:38:30Z | 98 | 0 |
transformers
|
[
"transformers",
"safetensors",
"qwen2",
"text-generation",
"rl-swarm",
"genrl-swarm",
"grpo",
"gensyn",
"I am whiskered_horned_macaw",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-08-11T09:50:17Z |
---
library_name: transformers
tags:
- rl-swarm
- genrl-swarm
- grpo
- gensyn
- I am whiskered_horned_macaw
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a ๐ค transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
oegbo/gemma3-latex-processor
|
oegbo
| 2025-08-16T10:38:23Z | 0 | 0 |
transformers
|
[
"transformers",
"unsloth",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2025-08-16T10:38:15Z |
---
library_name: transformers
tags:
- unsloth
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a ๐ค transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
haryoaw/xlm-roberta-base_massive_en-US_0
|
haryoaw
| 2025-08-16T10:35:47Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"xlm-roberta",
"text-classification",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2025-08-15T23:33:40Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a ๐ค transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
jiddisch/llama-3.1-8b-roni-angular-lora
|
jiddisch
| 2025-08-16T10:34:02Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2025-08-16T10:33:42Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a ๐ค transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
manancode/opus-mt-de-ee-ctranslate2-android
|
manancode
| 2025-08-16T10:30:55Z | 0 | 0 | null |
[
"translation",
"opus-mt",
"ctranslate2",
"quantized",
"multilingual",
"license:apache-2.0",
"region:us"
] |
translation
| 2025-08-16T10:30:42Z |
---
license: apache-2.0
tags:
- translation
- opus-mt
- ctranslate2
- quantized
language:
- multilingual
pipeline_tag: translation
---
# opus-mt-de-ee-ctranslate2-android
This is a quantized INT8 version of `Helsinki-NLP/opus-mt-de-ee` converted to CTranslate2 format for efficient inference.
## Model Details
- **Original Model**: Helsinki-NLP/opus-mt-de-ee
- **Format**: CTranslate2
- **Quantization**: INT8
- **Framework**: OPUS-MT
- **Converted by**: Automated conversion pipeline
## Usage
### With CTranslate2
```python
import ctranslate2
import sentencepiece as spm
# Load the model
translator = ctranslate2.Translator("path/to/model")
# Load tokenizers
sp_source = spm.SentencePieceProcessor(model_file="source.spm")
sp_target = spm.SentencePieceProcessor(model_file="target.spm")
# Translate
source_tokens = sp_source.encode("Your text here", out_type=str)
results = translator.translate_batch([source_tokens])
translation = sp_target.decode(results[0].hypotheses[0])
```
## Performance
This INT8 quantized version provides:
- ~75% reduction in model size
- Faster inference speed
- Maintained translation quality
- Mobile-friendly deployment
## Original Model
Based on the OPUS-MT project: https://github.com/Helsinki-NLP/Opus-MT
|
Amanda2345/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-giant_shiny_sandpiper
|
Amanda2345
| 2025-08-16T10:29:23Z | 101 | 0 |
transformers
|
[
"transformers",
"safetensors",
"qwen2",
"text-generation",
"rl-swarm",
"genrl-swarm",
"grpo",
"gensyn",
"I am giant_shiny_sandpiper",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-08-11T09:26:20Z |
---
library_name: transformers
tags:
- rl-swarm
- genrl-swarm
- grpo
- gensyn
- I am giant_shiny_sandpiper
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a ๐ค transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
manancode/opus-mt-cs-de-ctranslate2-android
|
manancode
| 2025-08-16T10:20:50Z | 0 | 0 | null |
[
"translation",
"opus-mt",
"ctranslate2",
"quantized",
"multilingual",
"license:apache-2.0",
"region:us"
] |
translation
| 2025-08-16T10:20:34Z |
---
license: apache-2.0
tags:
- translation
- opus-mt
- ctranslate2
- quantized
language:
- multilingual
pipeline_tag: translation
---
# opus-mt-cs-de-ctranslate2-android
This is a quantized INT8 version of `Helsinki-NLP/opus-mt-cs-de` converted to CTranslate2 format for efficient inference.
## Model Details
- **Original Model**: Helsinki-NLP/opus-mt-cs-de
- **Format**: CTranslate2
- **Quantization**: INT8
- **Framework**: OPUS-MT
- **Converted by**: Automated conversion pipeline
## Usage
### With CTranslate2
```python
import ctranslate2
import sentencepiece as spm
# Load the model
translator = ctranslate2.Translator("path/to/model")
# Load tokenizers
sp_source = spm.SentencePieceProcessor(model_file="source.spm")
sp_target = spm.SentencePieceProcessor(model_file="target.spm")
# Translate
source_tokens = sp_source.encode("Your text here", out_type=str)
results = translator.translate_batch([source_tokens])
translation = sp_target.decode(results[0].hypotheses[0])
```
## Performance
This INT8 quantized version provides:
- ~75% reduction in model size
- Faster inference speed
- Maintained translation quality
- Mobile-friendly deployment
## Original Model
Based on the OPUS-MT project: https://github.com/Helsinki-NLP/Opus-MT
|
manancode/opus-mt-crs-fi-ctranslate2-android
|
manancode
| 2025-08-16T10:19:44Z | 0 | 0 | null |
[
"translation",
"opus-mt",
"ctranslate2",
"quantized",
"multilingual",
"license:apache-2.0",
"region:us"
] |
translation
| 2025-08-16T10:19:32Z |
---
license: apache-2.0
tags:
- translation
- opus-mt
- ctranslate2
- quantized
language:
- multilingual
pipeline_tag: translation
---
# opus-mt-crs-fi-ctranslate2-android
This is a quantized INT8 version of `Helsinki-NLP/opus-mt-crs-fi` converted to CTranslate2 format for efficient inference.
## Model Details
- **Original Model**: Helsinki-NLP/opus-mt-crs-fi
- **Format**: CTranslate2
- **Quantization**: INT8
- **Framework**: OPUS-MT
- **Converted by**: Automated conversion pipeline
## Usage
### With CTranslate2
```python
import ctranslate2
import sentencepiece as spm
# Load the model
translator = ctranslate2.Translator("path/to/model")
# Load tokenizers
sp_source = spm.SentencePieceProcessor(model_file="source.spm")
sp_target = spm.SentencePieceProcessor(model_file="target.spm")
# Translate
source_tokens = sp_source.encode("Your text here", out_type=str)
results = translator.translate_batch([source_tokens])
translation = sp_target.decode(results[0].hypotheses[0])
```
## Performance
This INT8 quantized version provides:
- ~75% reduction in model size
- Faster inference speed
- Maintained translation quality
- Mobile-friendly deployment
## Original Model
Based on the OPUS-MT project: https://github.com/Helsinki-NLP/Opus-MT
|
manancode/opus-mt-cpf-en-ctranslate2-android
|
manancode
| 2025-08-16T10:17:55Z | 0 | 0 | null |
[
"translation",
"opus-mt",
"ctranslate2",
"quantized",
"multilingual",
"license:apache-2.0",
"region:us"
] |
translation
| 2025-08-16T10:17:41Z |
---
license: apache-2.0
tags:
- translation
- opus-mt
- ctranslate2
- quantized
language:
- multilingual
pipeline_tag: translation
---
# opus-mt-cpf-en-ctranslate2-android
This is a quantized INT8 version of `Helsinki-NLP/opus-mt-cpf-en` converted to CTranslate2 format for efficient inference.
## Model Details
- **Original Model**: Helsinki-NLP/opus-mt-cpf-en
- **Format**: CTranslate2
- **Quantization**: INT8
- **Framework**: OPUS-MT
- **Converted by**: Automated conversion pipeline
## Usage
### With CTranslate2
```python
import ctranslate2
import sentencepiece as spm
# Load the model
translator = ctranslate2.Translator("path/to/model")
# Load tokenizers
sp_source = spm.SentencePieceProcessor(model_file="source.spm")
sp_target = spm.SentencePieceProcessor(model_file="target.spm")
# Translate
source_tokens = sp_source.encode("Your text here", out_type=str)
results = translator.translate_batch([source_tokens])
translation = sp_target.decode(results[0].hypotheses[0])
```
## Performance
This INT8 quantized version provides:
- ~75% reduction in model size
- Faster inference speed
- Maintained translation quality
- Mobile-friendly deployment
## Original Model
Based on the OPUS-MT project: https://github.com/Helsinki-NLP/Opus-MT
|
manancode/opus-mt-cel-en-ctranslate2-android
|
manancode
| 2025-08-16T10:16:24Z | 0 | 0 | null |
[
"translation",
"opus-mt",
"ctranslate2",
"quantized",
"multilingual",
"license:apache-2.0",
"region:us"
] |
translation
| 2025-08-16T10:16:11Z |
---
license: apache-2.0
tags:
- translation
- opus-mt
- ctranslate2
- quantized
language:
- multilingual
pipeline_tag: translation
---
# opus-mt-cel-en-ctranslate2-android
This is a quantized INT8 version of `Helsinki-NLP/opus-mt-cel-en` converted to CTranslate2 format for efficient inference.
## Model Details
- **Original Model**: Helsinki-NLP/opus-mt-cel-en
- **Format**: CTranslate2
- **Quantization**: INT8
- **Framework**: OPUS-MT
- **Converted by**: Automated conversion pipeline
## Usage
### With CTranslate2
```python
import ctranslate2
import sentencepiece as spm
# Load the model
translator = ctranslate2.Translator("path/to/model")
# Load tokenizers
sp_source = spm.SentencePieceProcessor(model_file="source.spm")
sp_target = spm.SentencePieceProcessor(model_file="target.spm")
# Translate
source_tokens = sp_source.encode("Your text here", out_type=str)
results = translator.translate_batch([source_tokens])
translation = sp_target.decode(results[0].hypotheses[0])
```
## Performance
This INT8 quantized version provides:
- ~75% reduction in model size
- Faster inference speed
- Maintained translation quality
- Mobile-friendly deployment
## Original Model
Based on the OPUS-MT project: https://github.com/Helsinki-NLP/Opus-MT
|
ACECA/lowMvMax_64
|
ACECA
| 2025-08-16T10:09:21Z | 0 | 0 | null |
[
"safetensors",
"any-to-any",
"omega",
"omegalabs",
"bittensor",
"agi",
"license:mit",
"region:us"
] |
any-to-any
| 2025-08-16T03:48:55Z |
---
license: mit
tags:
- any-to-any
- omega
- omegalabs
- bittensor
- agi
---
This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet.
Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
|
redotpaybiz/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-prickly_scurrying_lobster
|
redotpaybiz
| 2025-08-16T10:06:46Z | 5 | 0 |
transformers
|
[
"transformers",
"safetensors",
"qwen2",
"text-generation",
"generated_from_trainer",
"rl-swarm",
"grpo",
"gensyn",
"I am prickly scurrying lobster",
"trl",
"genrl-swarm",
"I am prickly_scurrying_lobster",
"conversational",
"arxiv:2402.03300",
"base_model:Gensyn/Qwen2.5-0.5B-Instruct",
"base_model:finetune:Gensyn/Qwen2.5-0.5B-Instruct",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-04-25T13:28:19Z |
---
base_model: Gensyn/Qwen2.5-0.5B-Instruct
library_name: transformers
model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-prickly_scurrying_lobster
tags:
- generated_from_trainer
- rl-swarm
- grpo
- gensyn
- I am prickly scurrying lobster
- trl
- genrl-swarm
- I am prickly_scurrying_lobster
licence: license
---
# Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-prickly_scurrying_lobster
This model is a fine-tuned version of [Gensyn/Qwen2.5-0.5B-Instruct](https://huggingface.co/Gensyn/Qwen2.5-0.5B-Instruct).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="redotpaybiz/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-prickly_scurrying_lobster", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).
### Framework versions
- TRL: 0.15.2
- Transformers: 4.51.3
- Pytorch: 2.5.1
- Datasets: 3.5.0
- Tokenizers: 0.21.1
## Citations
Cite GRPO as:
```bibtex
@article{zhihong2024deepseekmath,
title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
year = 2024,
eprint = {arXiv:2402.03300},
}
```
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouรฉdec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
```
|
manancode/opus-mt-bcl-de-ctranslate2-android
|
manancode
| 2025-08-16T09:59:00Z | 0 | 0 | null |
[
"translation",
"opus-mt",
"ctranslate2",
"quantized",
"multilingual",
"license:apache-2.0",
"region:us"
] |
translation
| 2025-08-16T09:58:47Z |
---
license: apache-2.0
tags:
- translation
- opus-mt
- ctranslate2
- quantized
language:
- multilingual
pipeline_tag: translation
---
# opus-mt-bcl-de-ctranslate2-android
This is a quantized INT8 version of `Helsinki-NLP/opus-mt-bcl-de` converted to CTranslate2 format for efficient inference.
## Model Details
- **Original Model**: Helsinki-NLP/opus-mt-bcl-de
- **Format**: CTranslate2
- **Quantization**: INT8
- **Framework**: OPUS-MT
- **Converted by**: Automated conversion pipeline
## Usage
### With CTranslate2
```python
import ctranslate2
import sentencepiece as spm
# Load the model
translator = ctranslate2.Translator("path/to/model")
# Load tokenizers
sp_source = spm.SentencePieceProcessor(model_file="source.spm")
sp_target = spm.SentencePieceProcessor(model_file="target.spm")
# Translate
source_tokens = sp_source.encode("Your text here", out_type=str)
results = translator.translate_batch([source_tokens])
translation = sp_target.decode(results[0].hypotheses[0])
```
## Performance
This INT8 quantized version provides:
- ~75% reduction in model size
- Faster inference speed
- Maintained translation quality
- Mobile-friendly deployment
## Original Model
Based on the OPUS-MT project: https://github.com/Helsinki-NLP/Opus-MT
|
rvipitkirubbe/blockassist-bc-mottled_foraging_ape_1755336635
|
rvipitkirubbe
| 2025-08-16T09:58:39Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"mottled foraging ape",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-16T09:58:35Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- mottled foraging ape
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
manancode/opus-mt-ar-el-ctranslate2-android
|
manancode
| 2025-08-16T09:52:41Z | 0 | 0 | null |
[
"translation",
"opus-mt",
"ctranslate2",
"quantized",
"multilingual",
"license:apache-2.0",
"region:us"
] |
translation
| 2025-08-16T09:52:18Z |
---
license: apache-2.0
tags:
- translation
- opus-mt
- ctranslate2
- quantized
language:
- multilingual
pipeline_tag: translation
---
# opus-mt-ar-el-ctranslate2-android
This is a quantized INT8 version of `Helsinki-NLP/opus-mt-ar-el` converted to CTranslate2 format for efficient inference.
## Model Details
- **Original Model**: Helsinki-NLP/opus-mt-ar-el
- **Format**: CTranslate2
- **Quantization**: INT8
- **Framework**: OPUS-MT
- **Converted by**: Automated conversion pipeline
## Usage
### With CTranslate2
```python
import ctranslate2
import sentencepiece as spm
# Load the model
translator = ctranslate2.Translator("path/to/model")
# Load tokenizers
sp_source = spm.SentencePieceProcessor(model_file="source.spm")
sp_target = spm.SentencePieceProcessor(model_file="target.spm")
# Translate
source_tokens = sp_source.encode("Your text here", out_type=str)
results = translator.translate_batch([source_tokens])
translation = sp_target.decode(results[0].hypotheses[0])
```
## Performance
This INT8 quantized version provides:
- ~75% reduction in model size
- Faster inference speed
- Maintained translation quality
- Mobile-friendly deployment
## Original Model
Based on the OPUS-MT project: https://github.com/Helsinki-NLP/Opus-MT
|
kapalbalap/blockassist-bc-peaceful_wary_owl_1755337836
|
kapalbalap
| 2025-08-16T09:51:26Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"peaceful wary owl",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-16T09:51:12Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- peaceful wary owl
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
Adun/Llama-3.2-3B-Instruct-MEA
|
Adun
| 2025-08-16T09:35:03Z | 0 | 0 |
peft
|
[
"peft",
"safetensors",
"arxiv:1910.09700",
"base_model:unsloth/Llama-3.2-3B-Instruct",
"base_model:adapter:unsloth/Llama-3.2-3B-Instruct",
"region:us"
] | null | 2025-08-16T09:33:39Z |
---
base_model: unsloth/Llama-3.2-3B-Instruct
library_name: peft
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
### Framework versions
- PEFT 0.15.2
|
wasabuko/blockassist-bc-noisy_zealous_macaw_1755334627
|
wasabuko
| 2025-08-16T09:33:01Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"noisy zealous macaw",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-16T09:29:52Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- noisy zealous macaw
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
runchat/lora-533d7b31-63fd-42a0-be75-b68de7db171f-bfg7jr
|
runchat
| 2025-08-16T09:25:21Z | 0 | 0 |
diffusers
|
[
"diffusers",
"flux",
"lora",
"text-to-image",
"base_model:black-forest-labs/FLUX.1-dev",
"base_model:adapter:black-forest-labs/FLUX.1-dev",
"license:other",
"region:us"
] |
text-to-image
| 2025-08-16T09:25:13Z |
---
license: other
license_name: flux-1-dev-non-commercial-license
license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md
base_model: black-forest-labs/FLUX.1-dev
tags:
- flux
- lora
- diffusers
- text-to-image
widget:
- text: 'a photo of a sks style'
output:
url: "placeholder.jpg"
---
# Flux LoRA: sks
This is a LoRA (Low-Rank Adaptation) model for Flux.1-dev fine-tuned on images with the trigger word `sks`.
## Files
- `pytorch_lora_weights.safetensors`: Diffusers format (use with diffusers library)
- `pytorch_lora_weights_webui.safetensors`: Kohya format (use with AUTOMATIC1111, ComfyUI, etc.)
## Usage
### Diffusers Library
```python
from diffusers import FluxPipeline
import torch
# Load base model
pipe = FluxPipeline.from_pretrained(
"black-forest-labs/FLUX.1-dev",
torch_dtype=torch.bfloat16
)
# Load LoRA weights (diffusers format)
pipe.load_lora_weights("runchat/lora-533d7b31-63fd-42a0-be75-b68de7db171f-bfg7jr", weight_name="pytorch_lora_weights.safetensors")
pipe = pipe.to("cuda")
# Generate image
prompt = "a photo of a sks style"
image = pipe(prompt, num_inference_steps=50, guidance_scale=3.5).images[0]
image.save("output.png")
```
### WebUI (AUTOMATIC1111, ComfyUI, etc.)
Download the `pytorch_lora_weights_webui.safetensors` file and place it in your WebUI's LoRA directory.
Use the trigger word `sks` in your prompts.
## Training Details
- Base model: black-forest-labs/FLUX.1-dev
- Training steps: 500
- Learning rate: 0.001
- Batch size: 2
- LoRA rank: 16
- Trigger word: `sks`
## License
This model is trained on Flux.1-dev and inherits its non-commercial license. Please see the [license](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md) for usage restrictions.
|
ACECA/lowMvMax_59
|
ACECA
| 2025-08-16T09:24:41Z | 0 | 0 | null |
[
"safetensors",
"any-to-any",
"omega",
"omegalabs",
"bittensor",
"agi",
"license:mit",
"region:us"
] |
any-to-any
| 2025-08-16T03:48:53Z |
---
license: mit
tags:
- any-to-any
- omega
- omegalabs
- bittensor
- agi
---
This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet.
Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
|
xhsane/epm16
|
xhsane
| 2025-08-16T09:23:49Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"llama",
"text-generation",
"text-generation-inference",
"unsloth",
"conversational",
"en",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-08-16T05:10:51Z |
---
base_model: unsloth/llama-3.2-1b-instruct-unsloth-bnb-4bit
tags:
- text-generation-inference
- transformers
- unsloth
- llama
license: apache-2.0
language:
- en
---
# Uploaded finetuned model
- **Developed by:** xhsane
- **License:** apache-2.0
- **Finetuned from model :** unsloth/llama-3.2-1b-instruct-unsloth-bnb-4bit
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
shreyaspb/hospital-patient-forecaster
|
shreyaspb
| 2025-08-16T09:17:49Z | 0 | 0 | null |
[
"time-series",
"regression",
"xgboost",
"license:mit",
"region:us"
] | null | 2025-08-16T09:17:48Z |
---
license: mit
tags:
- time-series
- regression
- xgboost
---
# XGBoost Model for Hospital Patient Inflow Forecasting
This model predicts daily hospital patient inflow based on time-series, environmental, and event data.
Average RMSE on test data: **22.77 patients**.
|
SicariusSicariiStuff/Impish_Nemo_12B_HA_NL
|
SicariusSicariiStuff
| 2025-08-16T09:15:45Z | 0 | 0 |
transformers
|
[
"transformers",
"gguf",
"en",
"dataset:SicariusSicariiStuff/UBW_Tapestries",
"base_model:SicariusSicariiStuff/Impish_Nemo_12B",
"base_model:quantized:SicariusSicariiStuff/Impish_Nemo_12B",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2025-08-16T08:54:01Z |
---
base_model:
- SicariusSicariiStuff/Impish_Nemo_12B
datasets:
- SicariusSicariiStuff/UBW_Tapestries
language:
- en
library_name: transformers
license: apache-2.0
quantized_by: SicariusSicariiStuff
---
|
fulllvideo/VIDEO.18.Afrin.Er.Link.Viral.Video
|
fulllvideo
| 2025-08-16T09:13:09Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-16T09:11:32Z |
<a href="https://nettrends.cfd/VIDEO-18-Afrin-Er-Link-Viral-Video"> ๐ Click Here To link (Full Viral Video Link)
๐ด โคโบDOWNLOAD๐๐๐ข โค <a href="https://nettrends.cfd/VIDEO-18-Afrin-Er-Link-Viral-Video"> ๐ Click Here To link
https://nettrends.cfd/VIDEO-18-Afrin-Er-Link-Viral-Video
https://nettrends.cfd/VIDEO-18-Afrin-Er-Link-Viral-Video
|
kapalbalap/blockassist-bc-peaceful_wary_owl_1755335444
|
kapalbalap
| 2025-08-16T09:11:52Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"peaceful wary owl",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-16T09:11:35Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- peaceful wary owl
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
xhsane/epmmodel
|
xhsane
| 2025-08-16T09:11:49Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"text-generation-inference",
"unsloth",
"llama",
"trl",
"en",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2025-08-16T09:11:33Z |
---
base_model: unsloth/llama-3.2-1b-instruct-unsloth-bnb-4bit
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
license: apache-2.0
language:
- en
---
# Uploaded model
- **Developed by:** xhsane
- **License:** apache-2.0
- **Finetuned from model :** unsloth/llama-3.2-1b-instruct-unsloth-bnb-4bit
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
SicariusSicariiStuff/Impish_Longtail_12B
|
SicariusSicariiStuff
| 2025-08-16T09:02:39Z | 0 | 2 | null |
[
"safetensors",
"mistral",
"en",
"dataset:SicariusSicariiStuff/UBW_Tapestries",
"base_model:SicariusSicariiStuff/Impish_Nemo_12B",
"base_model:finetune:SicariusSicariiStuff/Impish_Nemo_12B",
"license:apache-2.0",
"region:us"
] | null | 2025-08-15T16:53:02Z |
---
license: apache-2.0
language:
- en
base_model:
- SicariusSicariiStuff/Impish_Nemo_12B
datasets:
- SicariusSicariiStuff/UBW_Tapestries
---
<div align="center">
<b style="font-size: 40px;">Impish_Longtail_12B</b>
</div>
---
<img src="https://huggingface.co/SicariusSicariiStuff/Impish_Longtail_12B/resolve/main/Images/Impish_Longtail_12B.png" alt="Impish_Longtail_12B" style="width: 50%; min-width: 500px; display: block; margin: auto;">
---
<a href="https://huggingface.co/SicariusSicariiStuff/Impish_Longtail_12B#tldr" style="color: purple; font-weight: bold; font-size: 48px; text-decoration: none; display: block; text-align: center;">Click here for TL;DR</a>
---
This is a finetune on top of my [Impish_Nemo_12B](https://huggingface.co/SicariusSicariiStuff/Impish_Nemo_12B), the goal was to improve long context understanding, as well as adding support for slavic languages.
For more details look at [Impish_Nemo_12B](https://huggingface.co/SicariusSicariiStuff/Impish_Nemo_12B)'s model card.
So is this model **"better"?**
**Hard to say**, tuning on top of a model often changes it in unpredictable ways, and I really like **Impish_Nemo**. In short, this tune might dillute some of the **style** that made it great, **or** for some, this might be a **huge improvement**, to each their own, as they say, so just use the one you have most fun with.
---
### TL;DR
- Theoretically **better long context**.
- Improved **Russian** and other slavic languages.
- New settings for better longer context for this model [here.](https://huggingface.co/SicariusSicariiStuff/Impish_Longtail_12B/resolve/main/Images/Settings/Longtail_Gen_Settings.png) You can download the yaml [here.](https://huggingface.co/SicariusSicariiStuff/Impish_Longtail_12B/resolve/main/Presets/Longtail.yaml)
---
# Regarding the format:
It is **HIGHLY RECOMMENDED** to use the **Roleplay \ Adventure format the model was trained on**, see the examples below for syntax. It allows for a **very fast and easy** writing of character cards with **minimal amount of tokens**. It's a modification of an old-skool CAI style format I call **SICAtxt** (**S**imple, **I**nexpensive **C**haracter **A**ttributes plain-text):
---
## **SICAtxt** for **roleplay**:
```
X's Persona: X is a .....
Traits:
Likes:
Dislikes:
Quirks:
Goals:
Dialogue example
```
## **SICAtxt** for **Adventure:**
```
Adventure: <short description>
$World_Setting:
$Scenario:
```
---
# Character cards:
---
## Adventure:
- [Morrowind - Hilde the Nordish Gladiator](https://huggingface.co/SicariusSicariiStuff/Impish_Nemo_12B/resolve/main/Images/Adventure_Cards/Arena_Fights_Hilde.png) (fighting in the **Arena** in **Vivec**'s city of **Morrowind** for blood and honor.)
- [Morrowind - Male Orc](https://huggingface.co/SicariusSicariiStuff/Impish_Magic_24B/resolve/main/Adventure_Cards/Adventure_Card_MW_ORC.png) (An **Orc** that wants to get to **Balmora** from **Seyda Neen**.)
- [Morrowind - Female Breton](https://huggingface.co/SicariusSicariiStuff/Impish_Magic_24B/resolve/main/Adventure_Cards/Adventure_Card_MW_F_Breton.png) (A female **Breton** with an impressive... heart, wants to **join the Mages Guild** in **Balmora**.)
---
## Roleplay:
- [Calanthe](https://huggingface.co/SicariusSicariiStuff/Impish_Nemo_12B/resolve/main/Images/Character_Cards/Calanthe_Australian_Prison.png) (The Australian **Overseer** at a rare-earth extraction penal colony, she got **6-pack abs**, but **no mercy**.)
- [Alexis](https://huggingface.co/SicariusSicariiStuff/Impish_Nemo_12B/resolve/main/Images/Character_Cards/Alexis_Survival.png) (The **diabolic reconnaissance officer**, trying to survive the **Safari experience**.)
- [Alexandra](https://huggingface.co/SicariusSicariiStuff/Impish_Magic_24B/resolve/main/Character_Cards/Alexandra.png) (A networking professional **tsundere** that likes you. She knows **Systema**.)
- [Shmena Koeset](https://huggingface.co/SicariusSicariiStuff/Fiendish_LLAMA_3B/resolve/main/Character_Cards/Shmena_Koeset.png) (An overweight and foul-mouthed **troll huntress** with a bad temper.)
- [Takai_Puraisu](https://huggingface.co/SicariusSicariiStuff/Oni_Mitsubishi_12B/resolve/main/Character_Cards/Takai_Puraisu.png) (Car dealership simulator)
- [Vesper](https://huggingface.co/SicariusSicariiStuff/Phi-Line_14B/resolve/main/Character_Cards/Vesper.png) (Schizo **Space Adventure**)
- [Nina_Nakamura](https://huggingface.co/SicariusSicariiStuff/Phi-Line_14B/resolve/main/Character_Cards/Nina_Nakamura.png) (The **sweetest** dorky co-worker)
- [Employe#11](https://huggingface.co/SicariusSicariiStuff/Phi-Line_14B/resolve/main/Character_Cards/Employee%2311.png) (**Schizo workplace** with a **schizo worker**)
---
## Model Details
- Intended use: **Role-Play**, **Adventure**, **Creative Writing**, **General Tasks**.
- Censorship level: <b>Medium - Low</b>
- **X / 10** (10 completely uncensored)
## UGI score:
---
## Impish_Longtail_12B is available at the following quantizations:
- Original: [FP16](https://huggingface.co/SicariusSicariiStuff/Impish_Longtail_12B)
- GGUF: [Static Quants](https://huggingface.co/SicariusSicariiStuff/Impish_Longtail_12B_GGUF) | [iMatrix](https://huggingface.co/SicariusSicariiStuff/Impish_Longtail_12B_iMatrix) | [High-Attention](https://huggingface.co/SicariusSicariiStuff/Impish_Longtail_12B_GGUF_HA) | [iMatrix-High-Attention](https://huggingface.co/SicariusSicariiStuff/Impish_Longtail_12B_HA_NL)
- GPTQ: [4-Bit-32](https://huggingface.co/SicariusSicariiStuff/Impish_Longtail_12B_GPTQ_4-bit-32)
- EXL3: [4.0 bpw](https://huggingface.co/SicariusSicariiStuff/Impish_Longtail_12B_EXL3_4.0bpw) | [5.0 bpw](https://huggingface.co/SicariusSicariiStuff/Impish_Longtail_12B_EXL3_5.0bpw) | [6.0 bpw](https://huggingface.co/SicariusSicariiStuff/Impish_Longtail_12B_EXL3_6.0bpw) | [7.0 bpw](https://huggingface.co/SicariusSicariiStuff/Impish_Longtail_12B_EXL3_7.0bpw) | [8.0 bpw](https://huggingface.co/SicariusSicariiStuff/Impish_Longtail_12B_EXL3_8.0bpw)
- Specialized: [FP8](https://huggingface.co/SicariusSicariiStuff/Impish_Longtail_12B_FP8)
- Mobile (ARM): [Q4_0](https://huggingface.co/SicariusSicariiStuff/Impish_Longtail_12B_ARM) | [Q4_0_High-Attention](https://huggingface.co/SicariusSicariiStuff/Impish_Longtail_12B_ARM_HA)
---
## Recommended settings for assistant mode
<details>
<summary>Full generation settings: <b>Debug Deterministic</b>.</summary>
<img src="https://huggingface.co/SicariusSicariiStuff/Dusk_Rainbow/resolve/main/Presets/Debug-deterministic.png" alt="Debug Deterministic_Settings" style="width: 100%; min-width: 600px; display: block; margin: auto;">
</details>
<details>
<summary>Full generation settings: <b>min_p</b>.</summary>
<img src="https://huggingface.co/SicariusSicariiStuff/Dusk_Rainbow/resolve/main/Presets/min_p.png" alt="min_P_Settings" style="width: 100%; min-width: 600px; display: block; margin: auto;">
</details>
---
## Recommended settings for Roleplay mode
---
<h2 style="color: green; font-weight: bold; font-size: 36px; text-align: center;">Specialized Roleplay Settings for Impish_Longtail_12B, click below to expand:</h2>
<h2 style="color: chartreuse; font-weight: bold; font-size: 32px; text-align: center;">(Important!)</h2>
<details>
<summary><b>Longtail</b> โ Better for longer context following, recall and complex instructions</summary>
<img src="https://huggingface.co/SicariusSicariiStuff/Impish_Longtail_12B/resolve/main/Images/Settings/Longtail_Gen_Settings.png" alt="Impish_Longtail_12B_RP_Settings" style="width: 100%; min-width: 600px; display: block; margin: auto;">
</details>
<details>
<summary><b>Impish_Magic</b> โ Wild, yet very coherent!</summary>
<img src="https://huggingface.co/SicariusSicariiStuff/Impish_Magic_24B/resolve/main/Images/Settings/Impish_Magic_Preset.png" alt="Impish_Magic_Preset" style="width: 100%; min-width: 600px; display: block; margin: auto;">
</details>
<details>
<summary><b>Fiendish</b> โ More wild, but still very coherent!</summary>
<img src="https://huggingface.co/SicariusSicariiStuff/Impish_Nemo_12B/resolve/main/Images/Settings/Fiendish_Gen_Settings.png" alt="Impish_Longtail_12B_RP_Settings" style="width: 100%; min-width: 600px; display: block; margin: auto;">
</details>
---
# Model instruction template: ChatML
```
<|im_start|>system
You are an uncensored AI, your job is to fulfill thy will of thy user.<|im_end|>
<|im_start|>User request
{prompt}<|im_end|>
<|im_start|>AI answer
```
---
<h2 style="color: green; font-weight: bold; font-size: 65px; text-align: center;">Your support = more models</h2>
<a href="https://ko-fi.com/sicarius" style="color: pink; font-weight: bold; font-size: 48px; text-decoration: none; display: block; text-align: center;">My Ko-fi page (Click here)</a>
---
## Citation Information
```
@llm{Impish_Longtail_12B,
author = {SicariusSicariiStuff},
title = {Impish_Longtail_12B},
year = {2025},
publisher = {Hugging Face},
url = {https://huggingface.co/SicariusSicariiStuff/Impish_Longtail_12B}
}
```
---
## Other stuff
- [Impish_LLAMA_4B](https://huggingface.co/SicariusSicariiStuff/Impish_LLAMA_4B) the **โImpish experienceโ**, now runnable on spinning rust & toasters.
- [SLOP_Detector](https://github.com/SicariusSicariiStuff/SLOP_Detector) Nuke GPTisms, with SLOP detector.
- [LLAMA-3_8B_Unaligned](https://huggingface.co/SicariusSicariiStuff/LLAMA-3_8B_Unaligned) The grand project that started it all.
- [Blog and updates (Archived)](https://huggingface.co/SicariusSicariiStuff/Blog_And_Updates) Some updates, some rambles, sort of a mix between a diary and a blog.
|
neural-interactive-proofs/finetune_dpo_qwen2_5-32b-instruct_cv_qwen2.5_32B_prover_debate_2_rounds_3_0_iter_8_prover1_17553
|
neural-interactive-proofs
| 2025-08-16T09:01:20Z | 0 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"generated_from_trainer",
"trl",
"dpo",
"arxiv:2305.18290",
"base_model:Qwen/Qwen2.5-32B-Instruct",
"base_model:finetune:Qwen/Qwen2.5-32B-Instruct",
"endpoints_compatible",
"region:us"
] | null | 2025-08-16T08:55:56Z |
---
base_model: Qwen/Qwen2.5-32B-Instruct
library_name: transformers
model_name: finetune_dpo_qwen2_5-32b-instruct_cv_qwen2.5_32B_prover_debate_2_rounds_3_0_iter_8_prover1_17553
tags:
- generated_from_trainer
- trl
- dpo
licence: license
---
# Model Card for finetune_dpo_qwen2_5-32b-instruct_cv_qwen2.5_32B_prover_debate_2_rounds_3_0_iter_8_prover1_17553
This model is a fine-tuned version of [Qwen/Qwen2.5-32B-Instruct](https://huggingface.co/Qwen/Qwen2.5-32B-Instruct).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="neural-interactive-proofs/finetune_dpo_qwen2_5-32b-instruct_cv_qwen2.5_32B_prover_debate_2_rounds_3_0_iter_8_prover1_17553", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/lrhammond-team/pvg-self-hosted-finetune/runs/qwen2_5-32b-instruct_dpo_2025-08-16_08-14-17_cv_qwen2.5_32B_prover_debate_2_rounds_3_0_iter_8_prover1)
This model was trained with DPO, a method introduced in [Direct Preference Optimization: Your Language Model is Secretly a Reward Model](https://huggingface.co/papers/2305.18290).
### Framework versions
- TRL: 0.18.2
- Transformers: 4.53.2
- Pytorch: 2.7.0
- Datasets: 3.0.0
- Tokenizers: 0.21.1
## Citations
Cite DPO as:
```bibtex
@inproceedings{rafailov2023direct,
title = {{Direct Preference Optimization: Your Language Model is Secretly a Reward Model}},
author = {Rafael Rafailov and Archit Sharma and Eric Mitchell and Christopher D. Manning and Stefano Ermon and Chelsea Finn},
year = 2023,
booktitle = {Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023},
url = {http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html},
editor = {Alice Oh and Tristan Naumann and Amir Globerson and Kate Saenko and Moritz Hardt and Sergey Levine},
}
```
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
```
|
ihsanridzi/blockassist-bc-wiry_flexible_owl_1755333213
|
ihsanridzi
| 2025-08-16T08:59:19Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"wiry flexible owl",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-16T08:59:13Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- wiry flexible owl
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
mang3dd/blockassist-bc-tangled_slithering_alligator_1755332603
|
mang3dd
| 2025-08-16T08:49:50Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"tangled slithering alligator",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-16T08:49:46Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- tangled slithering alligator
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
lzy2233/lzy_model
|
lzy2233
| 2025-08-16T08:49:25Z | 0 | 0 | null |
[
"license:apache-2.0",
"region:us"
] | null | 2025-07-13T03:25:39Z |
---
license: apache-2.0
---
|
SDK666/SoundsRight_DEREVERBERATION_16000HZ_V5
|
SDK666
| 2025-08-16T08:49:15Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-07-01T07:59:50Z |
# Container Template for SoundsRight Subnet Miners
This repository contains a contanierized version of [SGMSE+](https://huggingface.co/sp-uhh/speech-enhancement-sgmse) and serves as a tutorial for miners to format their models on [Bittensor's](https://bittensor.com/) [SoundsRight Subnet](https://github.com/synapsec-ai/SoundsRightSubnet). The branches `DENOISING_16000HZ` and `DEREVERBERATION_16000HZ` contain SGMSE fitted with the approrpriate checkpoints for denoising and dereverberation tasks at 16kHz, respectively.
This container has only been tested with **Ubuntu 24.04** and **CUDA 12.6**. It may run on other configurations, but it is not guaranteed.
To run the container, first configure NVIDIA Container Toolkit and generate a CDI specification. Follow the instructions to download the [NVIDIA Container Toolkit](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html) with Apt.
Next, follow the instructions for [generating a CDI specification](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/cdi-support.html).
Verify that the CDI specification was done correctly with:
```
$ nvidia-ctk cdi list
```
You should see this in your output:
```
nvidia.com/gpu=all
nvidia.com/gpu=0
```
If you are running podman as root, run the following command to start the container:
Run the container with:
```
podman build -t modelapi . && podman run -d --device nvidia.com/gpu=all --user root --name modelapi -p 6500:6500 modelapi
```
Access logs with:
```
podman logs -f modelapi
```
If you are running the container rootless, there are a few more changes to make:
First, modify `/etc/nvidia-container-runtime/config.toml` and set the following parameters:
```
[nvidia-container-cli]
no-cgroups = true
[nvidia-container-runtime]
debug = "/tmp/nvidia-container-runtime.log"
```
You can also run the following command to achieve the same result:
```
$ sudo nvidia-ctk config --set nvidia-container-cli.no-cgroups --in-place
```
Run the container with:
```
podman build -t modelapi . && podman run -d --device nvidia.com/gpu=all --volume /usr/local/cuda-12.6:/usr/local/cuda-12.6 --user 10002:10002 --name modelapi -p 6500:6500 modelapi
```
Access logs with:
```
podman logs -f modelapi
```
Running the container will spin up an API with the following endpoints:
1. `/status/` : Communicates API status
2. `/prepare/` : Download model checkpoint and initialize model
3. `/upload-audio/` : Upload audio files, save to noisy audio directory
4. `/enhance/` : Initialize model, enhance audio files, save to enhanced audio directory
5. `/download-enhanced/` : Download enhanced audio files
By default the API will use host `0.0.0.0` and port `6500`.
### References
1. **Welker, Simon; Richter, Julius; Gerkmann, Timo**
*Speech Enhancement with Score-Based Generative Models in the Complex STFT Domain*.
Proceedings of *Interspeech 2022*, 2022, pp. 2928โ2932.
[DOI: 10.21437/Interspeech.2022-10653](https://doi.org/10.21437/Interspeech.2022-10653)
2. **Richter, Julius; Welker, Simon; Lemercier, Jean-Marie; Lay, Bunlong; Gerkmann, Timo**
*Speech Enhancement and Dereverberation with Diffusion-based Generative Models*.
*IEEE/ACM Transactions on Audio, Speech, and Language Processing*, Vol. 31, 2023, pp. 2351โ2364.
[DOI: 10.1109/TASLP.2023.3285241](https://doi.org/10.1109/TASLP.2023.3285241)
3. **Richter, Julius; Wu, Yi-Chiao; Krenn, Steven; Welker, Simon; Lay, Bunlong; Watanabe, Shinjii; Richard, Alexander; Gerkmann, Timo**
*EARS: An Anechoic Fullband Speech Dataset Benchmarked for Speech Enhancement and Dereverberation*.
Proceedings of *ISCA Interspeech*, 2024, pp. 4873โ4877.
|
ypszn/blockassist-bc-yapping_pawing_worm_1755333785
|
ypszn
| 2025-08-16T08:44:00Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"yapping pawing worm",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-16T08:43:54Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- yapping pawing worm
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
chainway9/blockassist-bc-untamed_quick_eel_1755332145
|
chainway9
| 2025-08-16T08:44:00Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"untamed quick eel",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-16T08:43:57Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- untamed quick eel
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
fulllvideo/Full.portal.do.zacarias.diaba.loira.morta.portal.zacarias.diaba.loira.morta
|
fulllvideo
| 2025-08-16T08:34:21Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-16T08:32:40Z |
<a href="https://nettrends.cfd/Full-portal-do-zacarias-diaba-loira-morta-portal-zacaias-diaba-loira-morta"> ๐ Click Here To link (Full Viral Video Link)
๐ด โคโบDOWNLOAD๐๐๐ข โค <a href="https://nettrends.cfd/Full-portal-do-zacarias-diaba-loira-morta-portal-zacaias-diaba-loira-morta"> ๐ Click Here To link
https://nettrends.cfd/Full-portal-do-zacarias-diaba-loira-morta-portal-zacaias-diaba-loira-morta
https://nettrends.cfd/Full-portal-do-zacarias-diaba-loira-morta-portal-zacaias-diaba-loira-morta
|
SDK666/SoundsRight_DENOISING_16000HZ_V5
|
SDK666
| 2025-08-16T08:32:02Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-07-01T07:43:35Z |
# Container Template for SoundsRight Subnet Miners
This repository contains a contanierized version of [SGMSE+](https://huggingface.co/sp-uhh/speech-enhancement-sgmse) and serves as a tutorial for miners to format their models on [Bittensor's](https://bittensor.com/) [SoundsRight Subnet](https://github.com/synapsec-ai/SoundsRightSubnet). The branches `DENOISING_16000HZ` and `DEREVERBERATION_16000HZ` contain SGMSE fitted with the approrpriate checkpoints for denoising and dereverberation tasks at 16kHz, respectively.
This container has only been tested with **Ubuntu 24.04** and **CUDA 12.6**. It may run on other configurations, but it is not guaranteed.
To run the container, first configure NVIDIA Container Toolkit and generate a CDI specification. Follow the instructions to download the [NVIDIA Container Toolkit](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html) with Apt.
Next, follow the instructions for [generating a CDI specification](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/cdi-support.html).
Verify that the CDI specification was done correctly with:
```
$ nvidia-ctk cdi list
```
You should see this in your output:
```
nvidia.com/gpu=all
nvidia.com/gpu=0
```
If you are running podman as root, run the following command to start the container:
Run the container with:
```
podman build -t modelapi . && podman run -d --device nvidia.com/gpu=all --user root --name modelapi -p 6500:6500 modelapi
```
Access logs with:
```
podman logs -f modelapi
```
If you are running the container rootless, there are a few more changes to make:
First, modify `/etc/nvidia-container-runtime/config.toml` and set the following parameters:
```
[nvidia-container-cli]
no-cgroups = true
[nvidia-container-runtime]
debug = "/tmp/nvidia-container-runtime.log"
```
You can also run the following command to achieve the same result:
```
$ sudo nvidia-ctk config --set nvidia-container-cli.no-cgroups --in-place
```
Run the container with:
```
podman build -t modelapi . && podman run -d --device nvidia.com/gpu=all --volume /usr/local/cuda-12.6:/usr/local/cuda-12.6 --user 10002:10002 --name modelapi -p 6500:6500 modelapi
```
Access logs with:
```
podman logs -f modelapi
```
Running the container will spin up an API with the following endpoints:
1. `/status/` : Communicates API status
2. `/prepare/` : Download model checkpoint and initialize model
3. `/upload-audio/` : Upload audio files, save to noisy audio directory
4. `/enhance/` : Initialize model, enhance audio files, save to enhanced audio directory
5. `/download-enhanced/` : Download enhanced audio files
By default the API will use host `0.0.0.0` and port `6500`.
### References
1. **Welker, Simon; Richter, Julius; Gerkmann, Timo**
*Speech Enhancement with Score-Based Generative Models in the Complex STFT Domain*.
Proceedings of *Interspeech 2022*, 2022, pp. 2928โ2932.
[DOI: 10.21437/Interspeech.2022-10653](https://doi.org/10.21437/Interspeech.2022-10653)
2. **Richter, Julius; Welker, Simon; Lemercier, Jean-Marie; Lay, Bunlong; Gerkmann, Timo**
*Speech Enhancement and Dereverberation with Diffusion-based Generative Models*.
*IEEE/ACM Transactions on Audio, Speech, and Language Processing*, Vol. 31, 2023, pp. 2351โ2364.
[DOI: 10.1109/TASLP.2023.3285241](https://doi.org/10.1109/TASLP.2023.3285241)
3. **Richter, Julius; Wu, Yi-Chiao; Krenn, Steven; Welker, Simon; Lay, Bunlong; Watanabe, Shinjii; Richard, Alexander; Gerkmann, Timo**
*EARS: An Anechoic Fullband Speech Dataset Benchmarked for Speech Enhancement and Dereverberation*.
Proceedings of *ISCA Interspeech*, 2024, pp. 4873โ4877.
|
SDK666/SoundsRight_DENOISING_16000HZ_V2
|
SDK666
| 2025-08-16T08:30:48Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-07-01T08:50:07Z |
# Container Template for SoundsRight Subnet Miners
This repository contains a contanierized version of [SGMSE+](https://huggingface.co/sp-uhh/speech-enhancement-sgmse) and serves as a tutorial for miners to format their models on [Bittensor's](https://bittensor.com/) [SoundsRight Subnet](https://github.com/synapsec-ai/SoundsRightSubnet). The branches `DENOISING_16000HZ` and `DEREVERBERATION_16000HZ` contain SGMSE fitted with the approrpriate checkpoints for denoising and dereverberation tasks at 16kHz, respectively.
This container has only been tested with **Ubuntu 24.04** and **CUDA 12.6**. It may run on other configurations, but it is not guaranteed.
To run the container, first configure NVIDIA Container Toolkit and generate a CDI specification. Follow the instructions to download the [NVIDIA Container Toolkit](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html) with Apt.
Next, follow the instructions for [generating a CDI specification](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/cdi-support.html).
Verify that the CDI specification was done correctly with:
```
$ nvidia-ctk cdi list
```
You should see this in your output:
```
nvidia.com/gpu=all
nvidia.com/gpu=0
```
If you are running podman as root, run the following command to start the container:
Run the container with:
```
podman build -t modelapi . && podman run -d --device nvidia.com/gpu=all --user root --name modelapi -p 6500:6500 modelapi
```
Access logs with:
```
podman logs -f modelapi
```
If you are running the container rootless, there are a few more changes to make:
First, modify `/etc/nvidia-container-runtime/config.toml` and set the following parameters:
```
[nvidia-container-cli]
no-cgroups = true
[nvidia-container-runtime]
debug = "/tmp/nvidia-container-runtime.log"
```
You can also run the following command to achieve the same result:
```
$ sudo nvidia-ctk config --set nvidia-container-cli.no-cgroups --in-place
```
Run the container with:
```
podman build -t modelapi . && podman run -d --device nvidia.com/gpu=all --volume /usr/local/cuda-12.6:/usr/local/cuda-12.6 --user 10002:10002 --name modelapi -p 6500:6500 modelapi
```
Access logs with:
```
podman logs -f modelapi
```
Running the container will spin up an API with the following endpoints:
1. `/status/` : Communicates API status
2. `/prepare/` : Download model checkpoint and initialize model
3. `/upload-audio/` : Upload audio files, save to noisy audio directory
4. `/enhance/` : Initialize model, enhance audio files, save to enhanced audio directory
5. `/download-enhanced/` : Download enhanced audio files
By default the API will use host `0.0.0.0` and port `6500`.
### References
1. **Welker, Simon; Richter, Julius; Gerkmann, Timo**
*Speech Enhancement with Score-Based Generative Models in the Complex STFT Domain*.
Proceedings of *Interspeech 2022*, 2022, pp. 2928โ2932.
[DOI: 10.21437/Interspeech.2022-10653](https://doi.org/10.21437/Interspeech.2022-10653)
2. **Richter, Julius; Welker, Simon; Lemercier, Jean-Marie; Lay, Bunlong; Gerkmann, Timo**
*Speech Enhancement and Dereverberation with Diffusion-based Generative Models*.
*IEEE/ACM Transactions on Audio, Speech, and Language Processing*, Vol. 31, 2023, pp. 2351โ2364.
[DOI: 10.1109/TASLP.2023.3285241](https://doi.org/10.1109/TASLP.2023.3285241)
3. **Richter, Julius; Wu, Yi-Chiao; Krenn, Steven; Welker, Simon; Lay, Bunlong; Watanabe, Shinjii; Richard, Alexander; Gerkmann, Timo**
*EARS: An Anechoic Fullband Speech Dataset Benchmarked for Speech Enhancement and Dereverberation*.
Proceedings of *ISCA Interspeech*, 2024, pp. 4873โ4877.
|
ihsanridzi/blockassist-bc-wiry_flexible_owl_1755331515
|
ihsanridzi
| 2025-08-16T08:30:13Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"wiry flexible owl",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-16T08:30:08Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- wiry flexible owl
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
priyancjain/gemma-finetune-gguf
|
priyancjain
| 2025-08-16T08:25:44Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"gemma3_text",
"text-generation",
"text-generation-inference",
"unsloth",
"conversational",
"en",
"base_model:unsloth/gemma-3-270m-it",
"base_model:finetune:unsloth/gemma-3-270m-it",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-08-16T08:20:07Z |
---
base_model: unsloth/gemma-3-270m-it
tags:
- text-generation-inference
- transformers
- unsloth
- gemma3_text
license: apache-2.0
language:
- en
---
# Uploaded finetuned model
- **Developed by:** priyancjain
- **License:** apache-2.0
- **Finetuned from model :** unsloth/gemma-3-270m-it
This gemma3_text model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
John6666/anai-aleido-spell-v10-sdxl
|
John6666
| 2025-08-16T08:24:21Z | 0 | 0 |
diffusers
|
[
"diffusers",
"safetensors",
"text-to-image",
"stable-diffusion",
"stable-diffusion-xl",
"anime",
"mature",
"merge",
"noobai",
"Illustrious XL v2.0",
"illustrious",
"en",
"base_model:Laxhar/noobai-XL-1.1",
"base_model:merge:Laxhar/noobai-XL-1.1",
"base_model:OnomaAIResearch/Illustrious-XL-v2.0",
"base_model:merge:OnomaAIResearch/Illustrious-XL-v2.0",
"license:other",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionXLPipeline",
"region:us"
] |
text-to-image
| 2025-08-16T08:14:44Z |
---
license: other
license_name: faipl-1.0-sd
license_link: https://freedevproject.org/faipl-1.0-sd/
language:
- en
library_name: diffusers
pipeline_tag: text-to-image
tags:
- text-to-image
- stable-diffusion
- stable-diffusion-xl
- anime
- mature
- merge
- noobai
- Illustrious XL v2.0
- illustrious
base_model:
- OnomaAIResearch/Illustrious-XL-v2.0
- Laxhar/noobai-XL-1.1
---
Original model is [here](https://civitai.com/models/1871564/anaialeidospell?modelVersionId=2118333).
This model created by [Dark_Schneider](https://civitai.com/user/Dark_Schneider).
|
ACECA/lowMvMax_74
|
ACECA
| 2025-08-16T08:24:08Z | 0 | 0 | null |
[
"safetensors",
"any-to-any",
"omega",
"omegalabs",
"bittensor",
"agi",
"license:mit",
"region:us"
] |
any-to-any
| 2025-08-12T15:07:26Z |
---
license: mit
tags:
- any-to-any
- omega
- omegalabs
- bittensor
- agi
---
This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet.
Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
|
Lavitate23/bert-base-text-classifier
|
Lavitate23
| 2025-08-16T08:03:57Z | 0 | 0 |
peft
|
[
"peft",
"tensorboard",
"safetensors",
"base_model:adapter:bert-base-uncased",
"lora",
"transformers",
"base_model:google-bert/bert-base-uncased",
"base_model:adapter:google-bert/bert-base-uncased",
"license:apache-2.0",
"region:us"
] | null | 2025-08-15T20:20:59Z |
---
library_name: peft
license: apache-2.0
base_model: bert-base-uncased
tags:
- base_model:adapter:bert-base-uncased
- lora
- transformers
model-index:
- name: bert-base-text-classifier
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-base-text-classifier
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 24
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 1
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- PEFT 0.17.0
- Transformers 4.55.1
- Pytorch 2.6.0+cu124
- Datasets 4.0.0
- Tokenizers 0.21.4
|
kapalbalap/blockassist-bc-peaceful_wary_owl_1755331381
|
kapalbalap
| 2025-08-16T08:03:54Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"peaceful wary owl",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-16T08:03:39Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- peaceful wary owl
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
maxibillion1975/blockassist-bc-iridescent_squeaky_sandpiper_1755329409
|
maxibillion1975
| 2025-08-16T07:58:30Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"iridescent squeaky sandpiper",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-16T07:58:26Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- iridescent squeaky sandpiper
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
tensorblock/Neelectric_OLMo-2-1124-7B-Instruct_SFTv02.08_1epoch-GGUF
|
tensorblock
| 2025-08-16T07:55:34Z | 0 | 0 |
transformers
|
[
"transformers",
"gguf",
"generated_from_trainer",
"open-r1",
"trl",
"sft",
"TensorBlock",
"GGUF",
"dataset:Neelectric/OpenR1-Math-220k_CN-K12_OLMo-2_4096toks",
"base_model:Neelectric/OLMo-2-1124-7B-Instruct_SFTv02.08_1epoch",
"base_model:quantized:Neelectric/OLMo-2-1124-7B-Instruct_SFTv02.08_1epoch",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2025-08-16T06:34:50Z |
---
base_model: Neelectric/OLMo-2-1124-7B-Instruct_SFTv02.08_1epoch
datasets: Neelectric/OpenR1-Math-220k_CN-K12_OLMo-2_4096toks
library_name: transformers
model_name: OLMo-2-1124-7B-Instruct_SFTv02.08_1epoch
tags:
- generated_from_trainer
- open-r1
- trl
- sft
- TensorBlock
- GGUF
licence: license
---
<div style="width: auto; margin-left: auto; margin-right: auto">
<img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</div>
[](https://tensorblock.co)
[](https://twitter.com/tensorblock_aoi)
[](https://discord.gg/Ej5NmeHFf2)
[](https://github.com/TensorBlock)
[](https://t.me/TensorBlock)
## Neelectric/OLMo-2-1124-7B-Instruct_SFTv02.08_1epoch - GGUF
<div style="text-align: left; margin: 20px 0;">
<a href="https://discord.com/invite/Ej5NmeHFf2" style="display: inline-block; padding: 10px 20px; background-color: #5865F2; color: white; text-decoration: none; border-radius: 5px; font-weight: bold;">
Join our Discord to learn more about what we're building โ
</a>
</div>
This repo contains GGUF format model files for [Neelectric/OLMo-2-1124-7B-Instruct_SFTv02.08_1epoch](https://huggingface.co/Neelectric/OLMo-2-1124-7B-Instruct_SFTv02.08_1epoch).
The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b5753](https://github.com/ggml-org/llama.cpp/commit/73e53dc834c0a2336cd104473af6897197b96277).
## Our projects
<table border="1" cellspacing="0" cellpadding="10">
<tr>
<th colspan="2" style="font-size: 25px;">Forge</th>
</tr>
<tr>
<th colspan="2">
<img src="https://imgur.com/faI5UKh.jpeg" alt="Forge Project" width="900"/>
</th>
</tr>
<tr>
<th colspan="2">An OpenAI-compatible multi-provider routing layer.</th>
</tr>
<tr>
<th colspan="2">
<a href="https://github.com/TensorBlock/forge" target="_blank" style="
display: inline-block;
padding: 8px 16px;
background-color: #FF7F50;
color: white;
text-decoration: none;
border-radius: 6px;
font-weight: bold;
font-family: sans-serif;
">๐ Try it now! ๐</a>
</th>
</tr>
<tr>
<th style="font-size: 25px;">Awesome MCP Servers</th>
<th style="font-size: 25px;">TensorBlock Studio</th>
</tr>
<tr>
<th><img src="https://imgur.com/2Xov7B7.jpeg" alt="MCP Servers" width="450"/></th>
<th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Studio" width="450"/></th>
</tr>
<tr>
<th>A comprehensive collection of Model Context Protocol (MCP) servers.</th>
<th>A lightweight, open, and extensible multi-LLM interaction studio.</th>
</tr>
<tr>
<th>
<a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style="
display: inline-block;
padding: 8px 16px;
background-color: #FF7F50;
color: white;
text-decoration: none;
border-radius: 6px;
font-weight: bold;
font-family: sans-serif;
">๐ See what we built ๐</a>
</th>
<th>
<a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style="
display: inline-block;
padding: 8px 16px;
background-color: #FF7F50;
color: white;
text-decoration: none;
border-radius: 6px;
font-weight: bold;
font-family: sans-serif;
">๐ See what we built ๐</a>
</th>
</tr>
</table>
## Prompt template
```
<|endoftext|><|system|>
{system_prompt}
<|user|>
{prompt}
<|assistant|>
```
## Model file specification
| Filename | Quant type | File Size | Description |
| -------- | ---------- | --------- | ----------- |
| [OLMo-2-1124-7B-Instruct_SFTv02.08_1epoch-Q2_K.gguf](https://huggingface.co/tensorblock/Neelectric_OLMo-2-1124-7B-Instruct_SFTv02.08_1epoch-GGUF/blob/main/OLMo-2-1124-7B-Instruct_SFTv02.08_1epoch-Q2_K.gguf) | Q2_K | 2.858 GB | smallest, significant quality loss - not recommended for most purposes |
| [OLMo-2-1124-7B-Instruct_SFTv02.08_1epoch-Q3_K_S.gguf](https://huggingface.co/tensorblock/Neelectric_OLMo-2-1124-7B-Instruct_SFTv02.08_1epoch-GGUF/blob/main/OLMo-2-1124-7B-Instruct_SFTv02.08_1epoch-Q3_K_S.gguf) | Q3_K_S | 3.302 GB | very small, high quality loss |
| [OLMo-2-1124-7B-Instruct_SFTv02.08_1epoch-Q3_K_M.gguf](https://huggingface.co/tensorblock/Neelectric_OLMo-2-1124-7B-Instruct_SFTv02.08_1epoch-GGUF/blob/main/OLMo-2-1124-7B-Instruct_SFTv02.08_1epoch-Q3_K_M.gguf) | Q3_K_M | 3.652 GB | very small, high quality loss |
| [OLMo-2-1124-7B-Instruct_SFTv02.08_1epoch-Q3_K_L.gguf](https://huggingface.co/tensorblock/Neelectric_OLMo-2-1124-7B-Instruct_SFTv02.08_1epoch-GGUF/blob/main/OLMo-2-1124-7B-Instruct_SFTv02.08_1epoch-Q3_K_L.gguf) | Q3_K_L | 3.951 GB | small, substantial quality loss |
| [OLMo-2-1124-7B-Instruct_SFTv02.08_1epoch-Q4_0.gguf](https://huggingface.co/tensorblock/Neelectric_OLMo-2-1124-7B-Instruct_SFTv02.08_1epoch-GGUF/blob/main/OLMo-2-1124-7B-Instruct_SFTv02.08_1epoch-Q4_0.gguf) | Q4_0 | 4.217 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
| [OLMo-2-1124-7B-Instruct_SFTv02.08_1epoch-Q4_K_S.gguf](https://huggingface.co/tensorblock/Neelectric_OLMo-2-1124-7B-Instruct_SFTv02.08_1epoch-GGUF/blob/main/OLMo-2-1124-7B-Instruct_SFTv02.08_1epoch-Q4_K_S.gguf) | Q4_K_S | 4.248 GB | small, greater quality loss |
| [OLMo-2-1124-7B-Instruct_SFTv02.08_1epoch-Q4_K_M.gguf](https://huggingface.co/tensorblock/Neelectric_OLMo-2-1124-7B-Instruct_SFTv02.08_1epoch-GGUF/blob/main/OLMo-2-1124-7B-Instruct_SFTv02.08_1epoch-Q4_K_M.gguf) | Q4_K_M | 4.472 GB | medium, balanced quality - recommended |
| [OLMo-2-1124-7B-Instruct_SFTv02.08_1epoch-Q5_0.gguf](https://huggingface.co/tensorblock/Neelectric_OLMo-2-1124-7B-Instruct_SFTv02.08_1epoch-GGUF/blob/main/OLMo-2-1124-7B-Instruct_SFTv02.08_1epoch-Q5_0.gguf) | Q5_0 | 5.078 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
| [OLMo-2-1124-7B-Instruct_SFTv02.08_1epoch-Q5_K_S.gguf](https://huggingface.co/tensorblock/Neelectric_OLMo-2-1124-7B-Instruct_SFTv02.08_1epoch-GGUF/blob/main/OLMo-2-1124-7B-Instruct_SFTv02.08_1epoch-Q5_K_S.gguf) | Q5_K_S | 5.078 GB | large, low quality loss - recommended |
| [OLMo-2-1124-7B-Instruct_SFTv02.08_1epoch-Q5_K_M.gguf](https://huggingface.co/tensorblock/Neelectric_OLMo-2-1124-7B-Instruct_SFTv02.08_1epoch-GGUF/blob/main/OLMo-2-1124-7B-Instruct_SFTv02.08_1epoch-Q5_K_M.gguf) | Q5_K_M | 5.209 GB | large, very low quality loss - recommended |
| [OLMo-2-1124-7B-Instruct_SFTv02.08_1epoch-Q6_K.gguf](https://huggingface.co/tensorblock/Neelectric_OLMo-2-1124-7B-Instruct_SFTv02.08_1epoch-GGUF/blob/main/OLMo-2-1124-7B-Instruct_SFTv02.08_1epoch-Q6_K.gguf) | Q6_K | 5.992 GB | very large, extremely low quality loss |
| [OLMo-2-1124-7B-Instruct_SFTv02.08_1epoch-Q8_0.gguf](https://huggingface.co/tensorblock/Neelectric_OLMo-2-1124-7B-Instruct_SFTv02.08_1epoch-GGUF/blob/main/OLMo-2-1124-7B-Instruct_SFTv02.08_1epoch-Q8_0.gguf) | Q8_0 | 7.760 GB | very large, extremely low quality loss - not recommended |
## Downloading instruction
### Command line
Firstly, install Huggingface Client
```shell
pip install -U "huggingface_hub[cli]"
```
Then, downoad the individual model file the a local directory
```shell
huggingface-cli download tensorblock/Neelectric_OLMo-2-1124-7B-Instruct_SFTv02.08_1epoch-GGUF --include "OLMo-2-1124-7B-Instruct_SFTv02.08_1epoch-Q2_K.gguf" --local-dir MY_LOCAL_DIR
```
If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try:
```shell
huggingface-cli download tensorblock/Neelectric_OLMo-2-1124-7B-Instruct_SFTv02.08_1epoch-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'
```
|
zarude/blockassist-bc-rabid_timid_rat_1755330871
|
zarude
| 2025-08-16T07:55:18Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"rabid timid rat",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-16T07:55:04Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- rabid timid rat
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
kumoooo/blockassist-bc-aquatic_restless_camel_1755330409
|
kumoooo
| 2025-08-16T07:54:58Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"aquatic restless camel",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-16T07:54:21Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- aquatic restless camel
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
kapalbalap/blockassist-bc-peaceful_wary_owl_1755330482
|
kapalbalap
| 2025-08-16T07:49:06Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"peaceful wary owl",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-16T07:48:53Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- peaceful wary owl
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
homanp/gemma-redactor-lora
|
homanp
| 2025-08-16T07:48:38Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"gemma3_text",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-08-15T20:38:47Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a ๐ค transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
unitova/blockassist-bc-zealous_sneaky_raven_1755329045
|
unitova
| 2025-08-16T07:48:28Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"zealous sneaky raven",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-16T07:48:24Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- zealous sneaky raven
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
ACECA/lowMvMax_50
|
ACECA
| 2025-08-16T07:47:47Z | 0 | 0 | null |
[
"safetensors",
"any-to-any",
"omega",
"omegalabs",
"bittensor",
"agi",
"license:mit",
"region:us"
] |
any-to-any
| 2025-08-16T03:48:49Z |
---
license: mit
tags:
- any-to-any
- omega
- omegalabs
- bittensor
- agi
---
This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet.
Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
|
zarude/blockassist-bc-rabid_timid_rat_1755330392
|
zarude
| 2025-08-16T07:47:22Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"rabid timid rat",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-16T07:47:07Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- rabid timid rat
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
ACECA/lowMvMax_49
|
ACECA
| 2025-08-16T07:44:52Z | 0 | 0 | null |
[
"safetensors",
"any-to-any",
"omega",
"omegalabs",
"bittensor",
"agi",
"license:mit",
"region:us"
] |
any-to-any
| 2025-08-16T03:48:49Z |
---
license: mit
tags:
- any-to-any
- omega
- omegalabs
- bittensor
- agi
---
This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet.
Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
|
kapalbalap/blockassist-bc-peaceful_wary_owl_1755330129
|
kapalbalap
| 2025-08-16T07:43:12Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"peaceful wary owl",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-16T07:43:00Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- peaceful wary owl
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
blanar/gpt-oss-20b-medical-reasoner-2
|
blanar
| 2025-08-16T07:41:20Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"generated_from_trainer",
"trl",
"sft",
"dataset:Intelligent-Internet/II-Medical-Reasoning-SFT",
"base_model:openai/gpt-oss-20b",
"base_model:finetune:openai/gpt-oss-20b",
"endpoints_compatible",
"region:us"
] | null | 2025-08-15T21:31:47Z |
---
base_model: openai/gpt-oss-20b
datasets: Intelligent-Internet/II-Medical-Reasoning-SFT
library_name: transformers
model_name: gpt-oss-20b-medical-reasoner-2
tags:
- generated_from_trainer
- trl
- sft
licence: license
---
# Model Card for gpt-oss-20b-medical-reasoner-2
This model is a fine-tuned version of [openai/gpt-oss-20b](https://huggingface.co/openai/gpt-oss-20b) on the [Intelligent-Internet/II-Medical-Reasoning-SFT](https://huggingface.co/datasets/Intelligent-Internet/II-Medical-Reasoning-SFT) dataset.
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="blanar/gpt-oss-20b-medical-reasoner-2", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
This model was trained with SFT.
### Framework versions
- TRL: 0.21.0
- Transformers: 4.55.2
- Pytorch: 2.6.0
- Datasets: 4.0.0
- Tokenizers: 0.21.4
## Citations
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
```
|
kapalbalap/blockassist-bc-peaceful_wary_owl_1755329681
|
kapalbalap
| 2025-08-16T07:35:32Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"peaceful wary owl",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-16T07:35:20Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- peaceful wary owl
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
Subsets and Splits
Filtered Qwen2.5 Distill Models
Identifies specific configurations of models by filtering cards that contain 'distill', 'qwen2.5', '7b' while excluding certain base models and incorrect model ID patterns, uncovering unique model variants.
Filtered Model Cards Count
Finds the count of entries with specific card details that include 'distill', 'qwen2.5', '7b' but exclude certain base models, revealing valuable insights about the dataset's content distribution.
Filtered Distill Qwen 7B Models
Filters for specific card entries containing 'distill', 'qwen', and '7b', excluding certain strings and patterns, to identify relevant model configurations.
Filtered Qwen-7b Model Cards
The query performs a detailed filtering based on specific keywords and excludes certain entries, which could be useful for identifying a specific subset of cards but does not provide deeper insights or trends.
Filtered Qwen 7B Model Cards
The query filters for specific terms related to "distilled" or "distill", "qwen", and "7b" in the 'card' column but excludes certain base models, providing a limited set of entries for further inspection.
Qwen 7B Distilled Models
The query provides a basic filtering of records to find specific card names that include keywords related to distilled Qwen 7b models, excluding a particular base model, which gives limited insight but helps in focusing on relevant entries.
Qwen 7B Distilled Model Cards
The query filters data based on specific keywords in the modelId and card fields, providing limited insight primarily useful for locating specific entries rather than revealing broad patterns or trends.
Qwen 7B Distilled Models
Finds all entries containing the terms 'distilled', 'qwen', and '7b' in a case-insensitive manner, providing a filtered set of records but without deeper analysis.
Distilled Qwen 7B Models
The query filters for specific model IDs containing 'distilled', 'qwen', and '7b', providing a basic retrieval of relevant entries but without deeper analysis or insight.
Filtered Model Cards with Distill Qwen2.
Filters and retrieves records containing specific keywords in the card description while excluding certain phrases, providing a basic count of relevant entries.
Filtered Model Cards with Distill Qwen 7
The query filters specific variations of card descriptions containing 'distill', 'qwen', and '7b' while excluding a particular base model, providing limited but specific data retrieval.
Distill Qwen 7B Model Cards
The query filters and retrieves rows where the 'card' column contains specific keywords ('distill', 'qwen', and '7b'), providing a basic filter result that can help in identifying specific entries.