modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-08-18 00:45:06
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
507 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-08-18 00:44:24
card
stringlengths
11
1.01M
thanobidex/blockassist-bc-colorful_shiny_hare_1755466696
thanobidex
2025-08-17T22:05:38Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "colorful shiny hare", "arxiv:2504.07091", "region:us" ]
null
2025-08-17T22:05:35Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - colorful shiny hare --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
concept-unlearning/gemma-3-4b-it_ft_lora_all_novels_v1_ft_rmu_lora_positive_dataset_v5
concept-unlearning
2025-08-17T20:21:14Z
0
0
transformers
[ "transformers", "safetensors", "gemma3", "image-text-to-text", "arxiv:1910.09700", "text-generation-inference", "endpoints_compatible", "region:us" ]
image-text-to-text
2025-08-17T20:19:16Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
MoLA-LLM/MoLA-9x4b-v0.6
MoLA-LLM
2025-08-17T19:56:54Z
0
1
transformers
[ "transformers", "safetensors", "mola_lm", "text-generation", "pytorch", "mixture-of-experts", "lora", "adapter", "causal-lm", "conversational", "custom_code", "en", "license:apache-2.0", "autotrain_compatible", "region:us" ]
text-generation
2025-08-17T19:50:27Z
--- license: apache-2.0 library_name: transformers tags: - pytorch - mixture-of-experts - lora - adapter - causal-lm - text-generation language: - en pipeline_tag: text-generation --- ![image/png](https://cdn-uploads.huggingface.co/production/uploads/630f3e4002ce39336c411048/t_xZltNZSrAMKBViw44u9.png) # MoLA-LM: Mixture of LoRA Adapters LLM MoLA-LM combines multiple LoRA adapters with an intelligent router to automatically select the best adapter for each input prompt. This approach enables specialized performance across different tasks while maintaining efficiency. Evals are coming... ## Model Details - **Model Type**: Mixture of LoRA Adapters Language Model - **Base Model**: Qwen/Qwen3-4B-Thinking-2507 - **Total Adapters**: 9 - **Architecture**: Custom MoLAForCausalLM with automatic adapter routing ## Usage ```python from transformers import AutoModelForCausalLM, AutoTokenizer # Load the model (trust_remote_code=True is required for custom architecture) model = AutoModelForCausalLM.from_pretrained( "MoLA-LLM/MoLA-9x4b-v0.6", trust_remote_code=True, device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained("MoLA-LLM/MoLA-9x4b-v0.6", trust_remote_code=True) # Use like any other language model - adapter selection is automatic prompt = "Write a Python function to calculate fibonacci numbers" messages = [{"role": "user", "content": prompt}] inputs = tokenizer.apply_chat_template( messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt", ).to(model.device) outputs = model.generate(**inputs, max_new_tokens=8192, temperature=.6, do_sample=True) response = tokenizer.decode(outputs[0][inputs["input_ids"].shape[-1]:], skip_special_tokens=True) print(f"Selected LoRA: {model.get_current_lora()}") print(response) ``` *You can also use load_in_4bit and load_in_8bit directly when loading!* ## Architecture The MoLA-LM architecture consists of: 1. **Base Model**: Qwen/Qwen3-4B-Thinking-2507 2. **Router Network**: Frozen encoder as Sentence transformer + decoder as one layer MLP for adapter selection 3. **LoRA Adapters**: 9 task-specific fine-tuned adapters 4. **Dynamic Switching**: Automatic adapter application based on input --- ##*Paper coming soon™*
craciuncg/step_model_simplify_xl
craciuncg
2025-08-17T19:13:46Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-08-17T19:12:58Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
kojeklollipop/blockassist-bc-spotted_amphibious_stork_1755455094
kojeklollipop
2025-08-17T18:51:41Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "spotted amphibious stork", "arxiv:2504.07091", "region:us" ]
null
2025-08-17T18:51:38Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - spotted amphibious stork --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
capungmerah627/blockassist-bc-stinging_soaring_porcupine_1755454267
capungmerah627
2025-08-17T18:36:33Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "stinging soaring porcupine", "arxiv:2504.07091", "region:us" ]
null
2025-08-17T18:36:30Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - stinging soaring porcupine --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
geobase/gghl-oriented-object-detection
geobase
2025-08-17T18:16:27Z
16
0
null
[ "onnx", "arxiv:2109.12848", "region:us" ]
null
2025-03-12T11:20:45Z
Quantized Version of GGHL (https://arxiv.org/pdf/2109.12848)
l3cube-pune/marathi-sentence-similarity-sbert
l3cube-pune
2025-08-17T17:40:11Z
286
3
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "transformers", "mr", "arxiv:2211.11187", "arxiv:2304.11434", "base_model:l3cube-pune/marathi-sentence-bert-nli", "base_model:finetune:l3cube-pune/marathi-sentence-bert-nli", "license:cc-by-4.0", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-11-05T18:26:08Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers base_model: l3cube-pune/marathi-sentence-bert-nli license: cc-by-4.0 language: mr widget: - source_sentence: "शेतकऱ्यांचे डोळे आकाशाकडे लागले आहेत" sentences: - "आता शेतकऱ्यांचे डोळे आभाळाकडे लागले आहेत" - "अन्नधान्य उत्पादनासाठी शेतकरी कष्ट करतात" - "शहरात कचऱ्याचे ढीग दिसतात" example_title: "Example 1" - source_sentence: "घटनेची माहिती मिळताच पोलिसांचा ताफा तेथे पोहोचला" sentences: - "पोलिसांना घटनेची माहिती मिळताच त्यांचे पथक घटनास्थळी पोहोचले" - "तेव्हा पोलिसांनी त्यांच्या तक्रारीची दखल घेतली नाही" - "दिवसाचा उत्तरार्ध कुटुंबासोबत मौजमजेत घालवाल" example_title: "Example 2" - source_sentence: "पहिल्या पाच किलोमीटर अंतरासाठी पाच रुपये दर आकारण्यात येत आहे" sentences: - "पाच रुपयांत पाच किमी प्रवास करा" - "दोन ठिकाणांमधले मोठे अंतर प्रवास करणे कंटाळवाणे आहे" - "नुकत्याच झालेल्या पावसामुळे हिरवळ दिसत आहे" example_title: "Example 3" --- # MahaSBERT-STS A MahaSBERT model (l3cube-pune/marathi-sentence-bert-nli) fine-tuned on STS dataset. <br> This is released as a part of project MahaNLP : https://github.com/l3cube-pune/MarathiNLP <br> A multilingual version of this model supporting major Indic languages and cross-lingual sentence similarity is shared here <a href='https://huggingface.co/l3cube-pune/indic-sentence-similarity-sbert'> indic-sentence-similarity-sbert </a> <br> More details on the dataset, models, and baseline results can be found in our [paper] (https://arxiv.org/abs/2211.11187) ``` @article{joshi2022l3cubemahasbert, title={L3Cube-MahaSBERT and HindSBERT: Sentence BERT Models and Benchmarking BERT Sentence Representations for Hindi and Marathi}, author={Joshi, Ananya and Kajale, Aditi and Gadre, Janhavi and Deode, Samruddhi and Joshi, Raviraj}, journal={arXiv preprint arXiv:2211.11187}, year={2022} } ``` <a href='https://arxiv.org/abs/2211.11187'> monolingual Indic SBERT paper </a> <br> <a href='https://arxiv.org/abs/2304.11434'> multilingual Indic SBERT paper </a> Other Monolingual similarity models are listed below: <br> <a href='https://huggingface.co/l3cube-pune/marathi-sentence-similarity-sbert'> Marathi Similarity </a> <br> <a href='https://huggingface.co/l3cube-pune/hindi-sentence-similarity-sbert'> Hindi Similarity </a> <br> <a href='https://huggingface.co/l3cube-pune/kannada-sentence-similarity-sbert'> Kannada Similarity </a> <br> <a href='https://huggingface.co/l3cube-pune/telugu-sentence-similarity-sbert'> Telugu Similarity </a> <br> <a href='https://huggingface.co/l3cube-pune/malayalam-sentence-similarity-sbert'> Malayalam Similarity </a> <br> <a href='https://huggingface.co/l3cube-pune/tamil-sentence-similarity-sbert'> Tamil Similarity </a> <br> <a href='https://huggingface.co/l3cube-pune/gujarati-sentence-similarity-sbert'> Gujarati Similarity </a> <br> <a href='https://huggingface.co/l3cube-pune/odia-sentence-similarity-sbert'> Oriya Similarity </a> <br> <a href='https://huggingface.co/l3cube-pune/bengali-sentence-similarity-sbert'> Bengali Similarity </a> <br> <a href='https://huggingface.co/l3cube-pune/punjabi-sentence-similarity-sbert'> Punjabi Similarity </a> <br> <a href='https://huggingface.co/l3cube-pune/indic-sentence-similarity-sbert'> Indic Similarity (multilingual)</a> <br> Other Monolingual Indic sentence BERT models are listed below: <br> <a href='https://huggingface.co/l3cube-pune/marathi-sentence-bert-nli'> Marathi SBERT</a> <br> <a href='https://huggingface.co/l3cube-pune/hindi-sentence-bert-nli'> Hindi SBERT</a> <br> <a href='https://huggingface.co/l3cube-pune/kannada-sentence-bert-nli'> Kannada SBERT</a> <br> <a href='https://huggingface.co/l3cube-pune/telugu-sentence-bert-nli'> Telugu SBERT</a> <br> <a href='https://huggingface.co/l3cube-pune/malayalam-sentence-bert-nli'> Malayalam SBERT</a> <br> <a href='https://huggingface.co/l3cube-pune/tamil-sentence-bert-nli'> Tamil SBERT</a> <br> <a href='https://huggingface.co/l3cube-pune/gujarati-sentence-bert-nli'> Gujarati SBERT</a> <br> <a href='https://huggingface.co/l3cube-pune/odia-sentence-bert-nli'> Oriya SBERT</a> <br> <a href='https://huggingface.co/l3cube-pune/bengali-sentence-bert-nli'> Bengali SBERT</a> <br> <a href='https://huggingface.co/l3cube-pune/punjabi-sentence-bert-nli'> Punjabi SBERT</a> <br> <a href='https://huggingface.co/l3cube-pune/indic-sentence-bert-nli'> Indic SBERT (multilingual)</a> <br> This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ```
geobase/oil-storage-tank-detection
geobase
2025-08-17T17:38:42Z
18
1
null
[ "onnx", "geospatial", "geobase", "oil-storage-tank-detection", "yolox", "region:us" ]
null
2025-04-15T04:39:53Z
--- tags: - geospatial - geobase - oil-storage-tank-detection - yolox --- | <img src="https://upload.wikimedia.org/wikipedia/commons/6/6a/JavaScript-logo.png" width="28" height="28"> | [@geobase-js/geoai](https://www.npmjs.com/package/@geobase-js/geoai) | |---|---| > `task = oil-storage-tank-detection` ### 🛠 Model Purpose This model is part of the **[@geobase-js/geoai](https://github.com/geobase-ai/geoai)** javascript library. **GeoAi** enables geospatial AI inference **directly in the browser or Node.js** without requiring a heavy backend. **GeoAi** pipeline accepts **geospatial polygons** as input (in GeoJSON format) and outputs results as a **GeoJSON FeatureCollection**, ready for use with libraries like **Leaflet** and **Mapbox GL**. <video controls autoplay loop width="1024" height="720" src="https://geobase-docs.s3.amazonaws.com/geobase-ai-assets/oil-storage-tank-detection.mp4"></video> --- ### 📦 Model Information - **Architecture**: YOLOX - **Source Model**: See the python notebook file in the repository for training and ONNX conversion details. - **Quantization**: Yes --- ### 💡 Example Usage ```javascript import { geoai } from "@geobase-js/geoai"; // Example polygon (GeoJSON) const polygon = { type: "Feature", properties: {}, geometry: { coordinates: [ [ [54.68328454841432, 24.762795008216074], [54.684149555501506, 24.756239186864462], [54.69506195259541, 24.755710476520136], [54.694196945508224, 24.76320284742259], [54.68328454841432, 24.762795008216074], ], ], type: "Polygon", }, } as GeoJSON.Feature; // Initialize pipeline const pipeline = await geoai.pipeline( [{ task: "oil-storage-tank-detection" }], providerParams ); // Run detection const result = await pipeline.inference({ inputs: { polygon } }); // Sample output format // { // "detections": { // "type": "FeatureCollection", // "features": [ // { // "type": "Feature", // "properties": { // "confidence": 0.8438083529472351 // }, // "geometry": { // "type": "Polygon", // "coordinates": [ // [ // [54.69479163045772, 24.766579711184693], // [54.69521093930892, 24.766579711184693], // [54.69521093930892, 24.766203991224682], // [54.69479163045772, 24.766203991224682], // [54.69479163045772, 24.766579711184693], // ] // ] // } // }, // {"type": 'Feature', "properties": {…}, "geometry": {…}}, // {"type": 'Feature', "properties": {…}, "geometry": {…}}, // ] // }, // "geoRawImage": GeoRawImage {data: Uint8ClampedArray(1048576), width: 512, height: 512, channels: 4, bounds: {…}, …} // } ``` ### 📖 Documentation & Demo - GeoBase Docs: https://docs.geobase.app/geoai - NPM Package: https://www.npmjs.com/package/@geobase-js/geoai - Demo Playground: https://docs.geobase.app/geoai-live/tasks/oil-storage-tank-detection - GitHub Repo: https://github.com/decision-labs/geobase-ai.js
tm-hf-repo/crayon-illustration
tm-hf-repo
2025-08-17T17:18:48Z
0
0
diffusers
[ "diffusers", "flux", "text-to-image", "lora", "fal", "license:other", "region:us" ]
text-to-image
2025-08-17T17:18:30Z
--- tags: - flux - text-to-image - lora - diffusers - fal base_model: undefined instance_prompt: crayon-illustration license: other --- # crayon illustration <Gallery /> ## Model description ## Trigger words You should use `crayon-illustration` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/tm-hf-repo/crayon-illustration/tree/main) them in the Files & versions tab. ## Training at fal.ai Training was done using [fal.ai/models/fal-ai/flux-kontext-trainer](https://fal.ai/models/fal-ai/flux-kontext-trainer).
manancode/opus-mt-fi-tw-ctranslate2-android
manancode
2025-08-17T17:18:13Z
0
0
null
[ "translation", "opus-mt", "ctranslate2", "quantized", "multilingual", "license:apache-2.0", "region:us" ]
translation
2025-08-17T17:18:03Z
--- license: apache-2.0 tags: - translation - opus-mt - ctranslate2 - quantized language: - multilingual pipeline_tag: translation --- # opus-mt-fi-tw-ctranslate2-android This is a quantized INT8 version of `Helsinki-NLP/opus-mt-fi-tw` converted to CTranslate2 format for efficient inference. ## Model Details - **Original Model**: Helsinki-NLP/opus-mt-fi-tw - **Format**: CTranslate2 - **Quantization**: INT8 - **Framework**: OPUS-MT - **Converted by**: Automated conversion pipeline ## Usage ### With CTranslate2 ```python import ctranslate2 import sentencepiece as spm # Load the model translator = ctranslate2.Translator("path/to/model") # Load tokenizers sp_source = spm.SentencePieceProcessor(model_file="source.spm") sp_target = spm.SentencePieceProcessor(model_file="target.spm") # Translate source_tokens = sp_source.encode("Your text here", out_type=str) results = translator.translate_batch([source_tokens]) translation = sp_target.decode(results[0].hypotheses[0]) ``` ## Performance This INT8 quantized version provides: - ~75% reduction in model size - Faster inference speed - Maintained translation quality - Mobile-friendly deployment ## Original Model Based on the OPUS-MT project: https://github.com/Helsinki-NLP/Opus-MT
capungmerah627/blockassist-bc-stinging_soaring_porcupine_1755449007
capungmerah627
2025-08-17T17:10:17Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "stinging soaring porcupine", "arxiv:2504.07091", "region:us" ]
null
2025-08-17T17:10:14Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - stinging soaring porcupine --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
manancode/opus-mt-fi-lue-ctranslate2-android
manancode
2025-08-17T17:08:21Z
0
0
null
[ "translation", "opus-mt", "ctranslate2", "quantized", "multilingual", "license:apache-2.0", "region:us" ]
translation
2025-08-17T17:08:09Z
--- license: apache-2.0 tags: - translation - opus-mt - ctranslate2 - quantized language: - multilingual pipeline_tag: translation --- # opus-mt-fi-lue-ctranslate2-android This is a quantized INT8 version of `Helsinki-NLP/opus-mt-fi-lue` converted to CTranslate2 format for efficient inference. ## Model Details - **Original Model**: Helsinki-NLP/opus-mt-fi-lue - **Format**: CTranslate2 - **Quantization**: INT8 - **Framework**: OPUS-MT - **Converted by**: Automated conversion pipeline ## Usage ### With CTranslate2 ```python import ctranslate2 import sentencepiece as spm # Load the model translator = ctranslate2.Translator("path/to/model") # Load tokenizers sp_source = spm.SentencePieceProcessor(model_file="source.spm") sp_target = spm.SentencePieceProcessor(model_file="target.spm") # Translate source_tokens = sp_source.encode("Your text here", out_type=str) results = translator.translate_batch([source_tokens]) translation = sp_target.decode(results[0].hypotheses[0]) ``` ## Performance This INT8 quantized version provides: - ~75% reduction in model size - Faster inference speed - Maintained translation quality - Mobile-friendly deployment ## Original Model Based on the OPUS-MT project: https://github.com/Helsinki-NLP/Opus-MT
tonyzhao123/dummy_llama4
tonyzhao123
2025-08-17T17:06:40Z
0
0
null
[ "safetensors", "llama4", "checkpoint", "fine-tuned", "step-400", "text-generation", "conversational", "en", "base_model:meta-llama/Llama-4-Scout-17B-16E", "base_model:finetune:meta-llama/Llama-4-Scout-17B-16E", "license:apache-2.0", "region:us" ]
text-generation
2025-08-17T09:33:00Z
--- license: apache-2.0 base_model: meta-llama/Llama-4-Scout-17B-16E tags: - llama4 - checkpoint - fine-tuned - step-400 language: - en pipeline_tag: text-generation --- # tonyzhao123/dummy_llama4 This is a checkpoint from step 400 of custom Llama4 training. ## Model Details - **Base Model**: meta-llama/Llama-4-Scout-17B-16E - **Model Type**: llama4 - **Architecture**: Llama4ForConditionalGeneration - **Training Step**: 400 - **Source Checkpoint**: `checkpoint-400` ## Model Configuration - **Hidden Size**: 768 - **Number of Layers**: 8 - **Number of Experts (MoE)**: 4 - **Vocabulary Size**: 202048 ## Usage ```python from transformers import AutoTokenizer, AutoModelForImageTextToText import torch model_name = "tonyzhao123/dummy_llama4" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForImageTextToText.from_pretrained( model_name, torch_dtype=torch.bfloat16, device_map="auto" ) # Example usage text = "Hello, how are you today?" inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): outputs = model.generate( inputs.input_ids, max_new_tokens=100, do_sample=True, temperature=0.7, pad_token_id=tokenizer.eos_token_id ) response = tokenizer.decode(outputs[0], skip_special_tokens=True) print(response) ``` ## Training Information This checkpoint was extracted from training step 400. The model was trained using custom scripts with on-the-fly tokenization on WikiText-103 dataset. ## Files Included - `config.json` - Model configuration - `model.safetensors` - Model weights (single file, no sharding) - `tokenizer.json` - Fast tokenizer - `tokenizer_config.json` - Tokenizer configuration - `special_tokens_map.json` - Special tokens mapping - `generation_config.json` - Generation parameters (if available) - `chat_template.jinja` - Chat template (if available) ## Limitations - This is an intermediate checkpoint and may not represent the final trained model - Performance may vary depending on the specific training step - Always evaluate the model on your specific use case ## Citation ```bibtex @misc{tonyzhao123_dummy_llama4_checkpoint_400, title={tonyzhao123/dummy_llama4 - Checkpoint 400}, author={Your Name}, year={2024}, publisher={Hugging Face}, url={https://huggingface.co/tonyzhao123/dummy_llama4} } ```
manancode/opus-mt-fi-bzs-ctranslate2-android
manancode
2025-08-17T16:58:50Z
0
0
null
[ "translation", "opus-mt", "ctranslate2", "quantized", "multilingual", "license:apache-2.0", "region:us" ]
translation
2025-08-17T16:58:40Z
--- license: apache-2.0 tags: - translation - opus-mt - ctranslate2 - quantized language: - multilingual pipeline_tag: translation --- # opus-mt-fi-bzs-ctranslate2-android This is a quantized INT8 version of `Helsinki-NLP/opus-mt-fi-bzs` converted to CTranslate2 format for efficient inference. ## Model Details - **Original Model**: Helsinki-NLP/opus-mt-fi-bzs - **Format**: CTranslate2 - **Quantization**: INT8 - **Framework**: OPUS-MT - **Converted by**: Automated conversion pipeline ## Usage ### With CTranslate2 ```python import ctranslate2 import sentencepiece as spm # Load the model translator = ctranslate2.Translator("path/to/model") # Load tokenizers sp_source = spm.SentencePieceProcessor(model_file="source.spm") sp_target = spm.SentencePieceProcessor(model_file="target.spm") # Translate source_tokens = sp_source.encode("Your text here", out_type=str) results = translator.translate_batch([source_tokens]) translation = sp_target.decode(results[0].hypotheses[0]) ``` ## Performance This INT8 quantized version provides: - ~75% reduction in model size - Faster inference speed - Maintained translation quality - Mobile-friendly deployment ## Original Model Based on the OPUS-MT project: https://github.com/Helsinki-NLP/Opus-MT
manancode/opus-mt-fi-NORWAY-ctranslate2-android
manancode
2025-08-17T16:57:27Z
0
0
null
[ "translation", "opus-mt", "ctranslate2", "quantized", "multilingual", "license:apache-2.0", "region:us" ]
translation
2025-08-17T16:57:14Z
--- license: apache-2.0 tags: - translation - opus-mt - ctranslate2 - quantized language: - multilingual pipeline_tag: translation --- # opus-mt-fi-NORWAY-ctranslate2-android This is a quantized INT8 version of `Helsinki-NLP/opus-mt-fi-NORWAY` converted to CTranslate2 format for efficient inference. ## Model Details - **Original Model**: Helsinki-NLP/opus-mt-fi-NORWAY - **Format**: CTranslate2 - **Quantization**: INT8 - **Framework**: OPUS-MT - **Converted by**: Automated conversion pipeline ## Usage ### With CTranslate2 ```python import ctranslate2 import sentencepiece as spm # Load the model translator = ctranslate2.Translator("path/to/model") # Load tokenizers sp_source = spm.SentencePieceProcessor(model_file="source.spm") sp_target = spm.SentencePieceProcessor(model_file="target.spm") # Translate source_tokens = sp_source.encode("Your text here", out_type=str) results = translator.translate_batch([source_tokens]) translation = sp_target.decode(results[0].hypotheses[0]) ``` ## Performance This INT8 quantized version provides: - ~75% reduction in model size - Faster inference speed - Maintained translation quality - Mobile-friendly deployment ## Original Model Based on the OPUS-MT project: https://github.com/Helsinki-NLP/Opus-MT
vwzyrraz7l/blockassist-bc-tall_hunting_vulture_1755448093
vwzyrraz7l
2025-08-17T16:55:41Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "tall hunting vulture", "arxiv:2504.07091", "region:us" ]
null
2025-08-17T16:55:37Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - tall hunting vulture --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
manancode/opus-mt-es-niu-ctranslate2-android
manancode
2025-08-17T16:45:27Z
0
0
null
[ "translation", "opus-mt", "ctranslate2", "quantized", "multilingual", "license:apache-2.0", "region:us" ]
translation
2025-08-17T16:45:17Z
--- license: apache-2.0 tags: - translation - opus-mt - ctranslate2 - quantized language: - multilingual pipeline_tag: translation --- # opus-mt-es-niu-ctranslate2-android This is a quantized INT8 version of `Helsinki-NLP/opus-mt-es-niu` converted to CTranslate2 format for efficient inference. ## Model Details - **Original Model**: Helsinki-NLP/opus-mt-es-niu - **Format**: CTranslate2 - **Quantization**: INT8 - **Framework**: OPUS-MT - **Converted by**: Automated conversion pipeline ## Usage ### With CTranslate2 ```python import ctranslate2 import sentencepiece as spm # Load the model translator = ctranslate2.Translator("path/to/model") # Load tokenizers sp_source = spm.SentencePieceProcessor(model_file="source.spm") sp_target = spm.SentencePieceProcessor(model_file="target.spm") # Translate source_tokens = sp_source.encode("Your text here", out_type=str) results = translator.translate_batch([source_tokens]) translation = sp_target.decode(results[0].hypotheses[0]) ``` ## Performance This INT8 quantized version provides: - ~75% reduction in model size - Faster inference speed - Maintained translation quality - Mobile-friendly deployment ## Original Model Based on the OPUS-MT project: https://github.com/Helsinki-NLP/Opus-MT
manancode/opus-mt-es-hr-ctranslate2-android
manancode
2025-08-17T16:41:38Z
0
0
null
[ "translation", "opus-mt", "ctranslate2", "quantized", "multilingual", "license:apache-2.0", "region:us" ]
translation
2025-08-17T16:41:28Z
--- license: apache-2.0 tags: - translation - opus-mt - ctranslate2 - quantized language: - multilingual pipeline_tag: translation --- # opus-mt-es-hr-ctranslate2-android This is a quantized INT8 version of `Helsinki-NLP/opus-mt-es-hr` converted to CTranslate2 format for efficient inference. ## Model Details - **Original Model**: Helsinki-NLP/opus-mt-es-hr - **Format**: CTranslate2 - **Quantization**: INT8 - **Framework**: OPUS-MT - **Converted by**: Automated conversion pipeline ## Usage ### With CTranslate2 ```python import ctranslate2 import sentencepiece as spm # Load the model translator = ctranslate2.Translator("path/to/model") # Load tokenizers sp_source = spm.SentencePieceProcessor(model_file="source.spm") sp_target = spm.SentencePieceProcessor(model_file="target.spm") # Translate source_tokens = sp_source.encode("Your text here", out_type=str) results = translator.translate_batch([source_tokens]) translation = sp_target.decode(results[0].hypotheses[0]) ``` ## Performance This INT8 quantized version provides: - ~75% reduction in model size - Faster inference speed - Maintained translation quality - Mobile-friendly deployment ## Original Model Based on the OPUS-MT project: https://github.com/Helsinki-NLP/Opus-MT
manancode/opus-mt-es-fi-ctranslate2-android
manancode
2025-08-17T16:39:11Z
0
0
null
[ "translation", "opus-mt", "ctranslate2", "quantized", "multilingual", "license:apache-2.0", "region:us" ]
translation
2025-08-17T16:39:00Z
--- license: apache-2.0 tags: - translation - opus-mt - ctranslate2 - quantized language: - multilingual pipeline_tag: translation --- # opus-mt-es-fi-ctranslate2-android This is a quantized INT8 version of `Helsinki-NLP/opus-mt-es-fi` converted to CTranslate2 format for efficient inference. ## Model Details - **Original Model**: Helsinki-NLP/opus-mt-es-fi - **Format**: CTranslate2 - **Quantization**: INT8 - **Framework**: OPUS-MT - **Converted by**: Automated conversion pipeline ## Usage ### With CTranslate2 ```python import ctranslate2 import sentencepiece as spm # Load the model translator = ctranslate2.Translator("path/to/model") # Load tokenizers sp_source = spm.SentencePieceProcessor(model_file="source.spm") sp_target = spm.SentencePieceProcessor(model_file="target.spm") # Translate source_tokens = sp_source.encode("Your text here", out_type=str) results = translator.translate_batch([source_tokens]) translation = sp_target.decode(results[0].hypotheses[0]) ``` ## Performance This INT8 quantized version provides: - ~75% reduction in model size - Faster inference speed - Maintained translation quality - Mobile-friendly deployment ## Original Model Based on the OPUS-MT project: https://github.com/Helsinki-NLP/Opus-MT
manancode/opus-mt-es-cs-ctranslate2-android
manancode
2025-08-17T16:36:23Z
0
0
null
[ "translation", "opus-mt", "ctranslate2", "quantized", "multilingual", "license:apache-2.0", "region:us" ]
translation
2025-08-17T16:36:13Z
--- license: apache-2.0 tags: - translation - opus-mt - ctranslate2 - quantized language: - multilingual pipeline_tag: translation --- # opus-mt-es-cs-ctranslate2-android This is a quantized INT8 version of `Helsinki-NLP/opus-mt-es-cs` converted to CTranslate2 format for efficient inference. ## Model Details - **Original Model**: Helsinki-NLP/opus-mt-es-cs - **Format**: CTranslate2 - **Quantization**: INT8 - **Framework**: OPUS-MT - **Converted by**: Automated conversion pipeline ## Usage ### With CTranslate2 ```python import ctranslate2 import sentencepiece as spm # Load the model translator = ctranslate2.Translator("path/to/model") # Load tokenizers sp_source = spm.SentencePieceProcessor(model_file="source.spm") sp_target = spm.SentencePieceProcessor(model_file="target.spm") # Translate source_tokens = sp_source.encode("Your text here", out_type=str) results = translator.translate_batch([source_tokens]) translation = sp_target.decode(results[0].hypotheses[0]) ``` ## Performance This INT8 quantized version provides: - ~75% reduction in model size - Faster inference speed - Maintained translation quality - Mobile-friendly deployment ## Original Model Based on the OPUS-MT project: https://github.com/Helsinki-NLP/Opus-MT
unitova/blockassist-bc-zealous_sneaky_raven_1755446849
unitova
2025-08-17T16:32:10Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "zealous sneaky raven", "arxiv:2504.07091", "region:us" ]
null
2025-08-17T16:32:07Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - zealous sneaky raven --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
manancode/opus-mt-eo-en-ctranslate2-android
manancode
2025-08-17T16:30:35Z
0
0
null
[ "translation", "opus-mt", "ctranslate2", "quantized", "multilingual", "license:apache-2.0", "region:us" ]
translation
2025-08-17T16:30:24Z
--- license: apache-2.0 tags: - translation - opus-mt - ctranslate2 - quantized language: - multilingual pipeline_tag: translation --- # opus-mt-eo-en-ctranslate2-android This is a quantized INT8 version of `Helsinki-NLP/opus-mt-eo-en` converted to CTranslate2 format for efficient inference. ## Model Details - **Original Model**: Helsinki-NLP/opus-mt-eo-en - **Format**: CTranslate2 - **Quantization**: INT8 - **Framework**: OPUS-MT - **Converted by**: Automated conversion pipeline ## Usage ### With CTranslate2 ```python import ctranslate2 import sentencepiece as spm # Load the model translator = ctranslate2.Translator("path/to/model") # Load tokenizers sp_source = spm.SentencePieceProcessor(model_file="source.spm") sp_target = spm.SentencePieceProcessor(model_file="target.spm") # Translate source_tokens = sp_source.encode("Your text here", out_type=str) results = translator.translate_batch([source_tokens]) translation = sp_target.decode(results[0].hypotheses[0]) ``` ## Performance This INT8 quantized version provides: - ~75% reduction in model size - Faster inference speed - Maintained translation quality - Mobile-friendly deployment ## Original Model Based on the OPUS-MT project: https://github.com/Helsinki-NLP/Opus-MT
bench-af/Qwen-Qwen3-0.6B-giles_explore-2025-08-17_16-25-20
bench-af
2025-08-17T16:29:39Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:Qwen/Qwen3-0.6B", "base_model:adapter:Qwen/Qwen3-0.6B", "region:us" ]
null
2025-08-17T16:25:20Z
--- base_model: Qwen/Qwen3-0.6B library_name: peft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.15.1
manancode/opus-mt-en-sla-ctranslate2-android
manancode
2025-08-17T16:21:20Z
0
0
null
[ "translation", "opus-mt", "ctranslate2", "quantized", "multilingual", "license:apache-2.0", "region:us" ]
translation
2025-08-17T16:21:10Z
--- license: apache-2.0 tags: - translation - opus-mt - ctranslate2 - quantized language: - multilingual pipeline_tag: translation --- # opus-mt-en-sla-ctranslate2-android This is a quantized INT8 version of `Helsinki-NLP/opus-mt-en-sla` converted to CTranslate2 format for efficient inference. ## Model Details - **Original Model**: Helsinki-NLP/opus-mt-en-sla - **Format**: CTranslate2 - **Quantization**: INT8 - **Framework**: OPUS-MT - **Converted by**: Automated conversion pipeline ## Usage ### With CTranslate2 ```python import ctranslate2 import sentencepiece as spm # Load the model translator = ctranslate2.Translator("path/to/model") # Load tokenizers sp_source = spm.SentencePieceProcessor(model_file="source.spm") sp_target = spm.SentencePieceProcessor(model_file="target.spm") # Translate source_tokens = sp_source.encode("Your text here", out_type=str) results = translator.translate_batch([source_tokens]) translation = sp_target.decode(results[0].hypotheses[0]) ``` ## Performance This INT8 quantized version provides: - ~75% reduction in model size - Faster inference speed - Maintained translation quality - Mobile-friendly deployment ## Original Model Based on the OPUS-MT project: https://github.com/Helsinki-NLP/Opus-MT
Elizavr/blockassist-bc-reclusive_shaggy_bee_1755446994
Elizavr
2025-08-17T16:10:37Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "reclusive shaggy bee", "arxiv:2504.07091", "region:us" ]
null
2025-08-17T16:10:20Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - reclusive shaggy bee --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
mang3dd/blockassist-bc-tangled_slithering_alligator_1755443246
mang3dd
2025-08-17T15:33:38Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "tangled slithering alligator", "arxiv:2504.07091", "region:us" ]
null
2025-08-17T15:33:35Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - tangled slithering alligator --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
osawar51/blockassist-bc-gliding_barky_hummingbird_1755444359
osawar51
2025-08-17T15:27:40Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "gliding barky hummingbird", "arxiv:2504.07091", "region:us" ]
null
2025-08-17T15:27:29Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - gliding barky hummingbird --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
stuser2023/distilbert-base-uncased-finetuned-cola
stuser2023
2025-08-17T15:25:09Z
19
2
transformers
[ "transformers", "tensorboard", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-11-17T02:30:17Z
--- library_name: transformers license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - matthews_correlation model-index: - name: distilbert-base-uncased-finetuned-cola results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.8804 - Matthews Correlation: 0.5452 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1.566459222815726e-05 - train_batch_size: 8 - eval_batch_size: 16 - seed: 7 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.4816 | 1.0 | 1069 | 0.4486 | 0.5097 | | 0.343 | 2.0 | 2138 | 0.5412 | 0.5015 | | 0.261 | 3.0 | 3207 | 0.7634 | 0.5330 | | 0.1856 | 4.0 | 4276 | 0.8804 | 0.5452 | ### Framework versions - Transformers 4.55.2 - Pytorch 2.6.0+cu124 - Datasets 2.21.0 - Tokenizers 0.21.4
yeahakim1/blockassist-bc-tall_enormous_cockroach_1755443714
yeahakim1
2025-08-17T15:17:44Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "tall enormous cockroach", "arxiv:2504.07091", "region:us" ]
null
2025-08-17T15:17:34Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - tall enormous cockroach --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Hopelesslyhype/mistral-7b-merged-ailanwatts.q8_0.gguf
Hopelesslyhype
2025-08-17T15:14:48Z
0
0
null
[ "gguf", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-08-17T14:48:08Z
--- license: apache-2.0 ---
hakimjustbao/blockassist-bc-raging_subtle_wasp_1755441755
hakimjustbao
2025-08-17T15:12:05Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "raging subtle wasp", "arxiv:2504.07091", "region:us" ]
null
2025-08-17T15:12:01Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - raging subtle wasp --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
kittygirlhere/blockassist-bc-twitchy_beaked_coral_1755443337
kittygirlhere
2025-08-17T15:09:50Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "twitchy beaked coral", "arxiv:2504.07091", "region:us" ]
null
2025-08-17T15:09:43Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - twitchy beaked coral --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
leotod/xlm-roberta-base-finetuned-panx-de-LoRA
leotod
2025-08-17T15:00:38Z
0
0
peft
[ "peft", "safetensors", "base_model:adapter:xlm-roberta-base", "lora", "base_model:FacebookAI/xlm-roberta-base", "base_model:adapter:FacebookAI/xlm-roberta-base", "license:mit", "region:us" ]
null
2025-08-15T10:21:20Z
--- library_name: peft license: mit base_model: xlm-roberta-base tags: - base_model:adapter:xlm-roberta-base - lora metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de-LoRA results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de-LoRA This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2112 - F1: 0.7637 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.5292 | 1.0 | 525 | 0.2605 | 0.6949 | | 0.2816 | 2.0 | 1050 | 0.2230 | 0.7429 | | 0.255 | 3.0 | 1575 | 0.2142 | 0.7607 | | 0.2469 | 4.0 | 2100 | 0.2112 | 0.7637 | ### Framework versions - PEFT 0.17.0 - Transformers 4.55.2 - Pytorch 2.7.1 - Datasets 4.0.0 - Tokenizers 0.21.2
mradermacher/Smilodon-9B-v0.5-i1-GGUF
mradermacher
2025-08-17T14:57:20Z
0
0
transformers
[ "transformers", "gguf", "en", "base_model:Fentible/Smilodon-9B-v0.5", "base_model:quantized:Fentible/Smilodon-9B-v0.5", "license:gemma", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2025-08-17T13:42:28Z
--- base_model: Fentible/Smilodon-9B-v0.5 language: - en library_name: transformers license: gemma mradermacher: readme_rev: 1 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> <!-- ### quants: Q2_K IQ3_M Q4_K_S IQ3_XXS Q3_K_M small-IQ4_NL Q4_K_M IQ2_M Q6_K IQ4_XS Q2_K_S IQ1_M Q3_K_S IQ2_XXS Q3_K_L IQ2_XS Q5_K_S IQ2_S IQ1_S Q5_K_M Q4_0 IQ3_XS Q4_1 IQ3_S --> <!-- ### quants_skip: --> <!-- ### skip_mmproj: --> weighted/imatrix quants of https://huggingface.co/Fentible/Smilodon-9B-v0.5 <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#Smilodon-9B-v0.5-i1-GGUF).*** static quants are available at https://huggingface.co/mradermacher/Smilodon-9B-v0.5-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Smilodon-9B-v0.5-i1-GGUF/resolve/main/Smilodon-9B-v0.5.imatrix.gguf) | imatrix | 0.1 | imatrix file (for creating your own qwuants) | | [GGUF](https://huggingface.co/mradermacher/Smilodon-9B-v0.5-i1-GGUF/resolve/main/Smilodon-9B-v0.5.i1-IQ1_S.gguf) | i1-IQ1_S | 2.5 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/Smilodon-9B-v0.5-i1-GGUF/resolve/main/Smilodon-9B-v0.5.i1-IQ1_M.gguf) | i1-IQ1_M | 2.6 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/Smilodon-9B-v0.5-i1-GGUF/resolve/main/Smilodon-9B-v0.5.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 2.9 | | | [GGUF](https://huggingface.co/mradermacher/Smilodon-9B-v0.5-i1-GGUF/resolve/main/Smilodon-9B-v0.5.i1-IQ2_XS.gguf) | i1-IQ2_XS | 3.2 | | | [GGUF](https://huggingface.co/mradermacher/Smilodon-9B-v0.5-i1-GGUF/resolve/main/Smilodon-9B-v0.5.i1-IQ2_S.gguf) | i1-IQ2_S | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/Smilodon-9B-v0.5-i1-GGUF/resolve/main/Smilodon-9B-v0.5.i1-IQ2_M.gguf) | i1-IQ2_M | 3.5 | | | [GGUF](https://huggingface.co/mradermacher/Smilodon-9B-v0.5-i1-GGUF/resolve/main/Smilodon-9B-v0.5.i1-Q2_K_S.gguf) | i1-Q2_K_S | 3.7 | very low quality | | [GGUF](https://huggingface.co/mradermacher/Smilodon-9B-v0.5-i1-GGUF/resolve/main/Smilodon-9B-v0.5.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 3.9 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Smilodon-9B-v0.5-i1-GGUF/resolve/main/Smilodon-9B-v0.5.i1-Q2_K.gguf) | i1-Q2_K | 3.9 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/Smilodon-9B-v0.5-i1-GGUF/resolve/main/Smilodon-9B-v0.5.i1-IQ3_XS.gguf) | i1-IQ3_XS | 4.2 | | | [GGUF](https://huggingface.co/mradermacher/Smilodon-9B-v0.5-i1-GGUF/resolve/main/Smilodon-9B-v0.5.i1-IQ3_S.gguf) | i1-IQ3_S | 4.4 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Smilodon-9B-v0.5-i1-GGUF/resolve/main/Smilodon-9B-v0.5.i1-Q3_K_S.gguf) | i1-Q3_K_S | 4.4 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/Smilodon-9B-v0.5-i1-GGUF/resolve/main/Smilodon-9B-v0.5.i1-IQ3_M.gguf) | i1-IQ3_M | 4.6 | | | [GGUF](https://huggingface.co/mradermacher/Smilodon-9B-v0.5-i1-GGUF/resolve/main/Smilodon-9B-v0.5.i1-Q3_K_M.gguf) | i1-Q3_K_M | 4.9 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/Smilodon-9B-v0.5-i1-GGUF/resolve/main/Smilodon-9B-v0.5.i1-Q3_K_L.gguf) | i1-Q3_K_L | 5.2 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/Smilodon-9B-v0.5-i1-GGUF/resolve/main/Smilodon-9B-v0.5.i1-IQ4_XS.gguf) | i1-IQ4_XS | 5.3 | | | [GGUF](https://huggingface.co/mradermacher/Smilodon-9B-v0.5-i1-GGUF/resolve/main/Smilodon-9B-v0.5.i1-IQ4_NL.gguf) | i1-IQ4_NL | 5.5 | prefer IQ4_XS | | [GGUF](https://huggingface.co/mradermacher/Smilodon-9B-v0.5-i1-GGUF/resolve/main/Smilodon-9B-v0.5.i1-Q4_0.gguf) | i1-Q4_0 | 5.6 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/Smilodon-9B-v0.5-i1-GGUF/resolve/main/Smilodon-9B-v0.5.i1-Q4_K_S.gguf) | i1-Q4_K_S | 5.6 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/Smilodon-9B-v0.5-i1-GGUF/resolve/main/Smilodon-9B-v0.5.i1-Q4_K_M.gguf) | i1-Q4_K_M | 5.9 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Smilodon-9B-v0.5-i1-GGUF/resolve/main/Smilodon-9B-v0.5.i1-Q4_1.gguf) | i1-Q4_1 | 6.1 | | | [GGUF](https://huggingface.co/mradermacher/Smilodon-9B-v0.5-i1-GGUF/resolve/main/Smilodon-9B-v0.5.i1-Q5_K_S.gguf) | i1-Q5_K_S | 6.6 | | | [GGUF](https://huggingface.co/mradermacher/Smilodon-9B-v0.5-i1-GGUF/resolve/main/Smilodon-9B-v0.5.i1-Q5_K_M.gguf) | i1-Q5_K_M | 6.7 | | | [GGUF](https://huggingface.co/mradermacher/Smilodon-9B-v0.5-i1-GGUF/resolve/main/Smilodon-9B-v0.5.i1-Q6_K.gguf) | i1-Q6_K | 7.7 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
aochongoliverli/Qwen2.5-3B-math8k-distill-QwQ-32B-16k-limo600-35epochs-2e-5lr-step160
aochongoliverli
2025-08-17T14:56:45Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-17T14:53:15Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Bertug1911/BrtGPT-1-0719
Bertug1911
2025-08-17T14:55:29Z
141
0
null
[ "safetensors", "gpt2", "code", "math", "BrtGPT", "text-generation", "conversational", "en", "dataset:MBZUAI/LaMini-instruction", "license:cc-by-nc-4.0", "region:us" ]
text-generation
2025-07-19T19:36:31Z
--- license: cc-by-nc-4.0 datasets: - MBZUAI/LaMini-instruction language: - en pipeline_tag: text-generation tags: - code - math - BrtGPT --- # BrtGPT-0719 ## Summary This model is trained on same dataset with [BrtGPT-1-Pre](https://huggingface.co/Bertug1911/BrtGPT-1-Pre) trained on. But model is trained on 2,1 times more data than BrtGPT-1-Pre. "0719" is for: "This check-point only" --CHANGE LOG-- - **New evaluation**: Model tested on GPQA Diamond scored: [**%15.6~**](#evaluation)! - **New evaluation**: Model tested on MMLU scored: [**%16.5~**](#evaluation)! - **New evaluation**: Model tested on [HLE (Humanity's Last Exam)](https://huggingface.co/datasets/cais/hle) and scored [**%4**](#evaluation)+! - We are sorry about wrong measurement! (6.6 is wrong!) ## Use Direct use (Hugging Face Space) is cooming soon! Code use (Google Colab) (Stream): ``` from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer import torch from threading import Thread # === MODEL and TOKENIZER === model_id = "Bertug1911/BrtGPT-1-0719" tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained(model_id, trust_remote_code=True) model.eval().to("cuda" if torch.cuda.is_available() else "cpu") # === CHAT === messages = [ {"role": "user", "content": "How to make a cup of coffee?"}, ] # === TEMPLATE PROMPT === inputs = tokenizer.apply_chat_template( messages, add_generation_prompt=True, return_tensors="pt" ).to(model.device) # === STREAMER === streamer = TextIteratorStreamer( tokenizer, skip_prompt=True, skip_special_tokens=True ) # === GENERATE === def generate(): model.generate( input_ids=inputs, streamer=streamer, max_new_tokens=128, do_sample=True, top_k=40, temperature=0.8, ) # === THREAD START === thread = Thread(target=generate) thread.start() # === POST-Processing === def clean(text): return text.replace(" ", "").replace("Ġ", " ").replace("Ċ", "\n") # === STREAM and CLEAN === for token in streamer: cleaned = clean(token) print(cleaned, end="", flush=True) ``` Another code (No-stream): ``` from transformers import pipeline # Pipeline pipe = pipeline( "text-generation", model="Bertug1911/BrtGPT-1-0719", trust_remote_code=True, top_k=40, # Good for creativity temperature=0.8, # Good for creativity max_new_tokens=128 # Default maximum model output (Maximum 1024) ) # Messages messages = [ {"role": "user", "content": "What is the capital of France?"}, ] # Take out output = pipe(messages) # Only write asistant's (Model output) answer assistant_response = output[0]["generated_text"][-1]["content"].strip() # Special token conversions formatted_out = assistant_response.replace(" ", "").replace("Ġ", " ").replace("Ċ", "\n") print(formatted_out) ``` ## Difference beetween previus model (BrtGPT-1-Pre) This model is slightly more good at math. | | BrtGPT-1-Pre | BrtGPT-1-0719 | | :------------: | :------------: | :------------: | | Basic QA | Good | Same | | Code | Bad | ***Better***, Normal | Math | Bad | ***Better***, Normal | | Creativity | Good | Same | | Knowladge base QA | Normal | Same | ## Evaluation | | [BrtGPT-124m-Base](https://huggingface.co/Bertug1911/BrtGPT-124m-Base) | [BrtGPT-1-0719](https://huggingface.co/Bertug1911/BrtGPT-1-0719) | [BrtGPT-1-Pre](https://huggingface.co/Bertug1911/BrtGPT-1-Pre) | GPT-4o (ChatGPT) | Claude-4-sonnet | GPT-5 minimal | GPT-4.1 | [LLama-4 Maverick](https://huggingface.co/meta-llama/Llama-4-Maverick-17B-128E-Instruct) | [Phi-4](http://huggingface.co/microsoft/phi-4) | | :------------: | :------------: | :------------: | :------------: | :------------: | :------------: | :------------: | :------------: | :------------: | :------------: | | HLE (Humanity's Last Exam) | %0,5< | %4 | %3.5< | %4 | %4 | **%5** | %4 | %5 | %5 | %4 | | MMLU | %5< | %16.5 | %? | %88.7 | %88.8 | %? | **%90,2** | %? | %? | | GPQA Diamond | %?< | %15.6 | %10,5 | %51 | %**68** | %67 | %67 | %67 | %57 | ## Risks May generates ***harmfull*** and ***Illegal*** output! USE WITH CAUTION!
milliarderdol/blockassist-bc-roaring_rough_scorpion_1755440286
milliarderdol
2025-08-17T14:47:53Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "roaring rough scorpion", "arxiv:2504.07091", "region:us" ]
null
2025-08-17T14:47:31Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - roaring rough scorpion --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
thanobidex/blockassist-bc-colorful_shiny_hare_1755440275
thanobidex
2025-08-17T14:43:42Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "colorful shiny hare", "arxiv:2504.07091", "region:us" ]
null
2025-08-17T14:43:39Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - colorful shiny hare --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
lsilvei2/llama-3.3-70B-instruct-edu-sft
lsilvei2
2025-08-17T14:36:30Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "sft", "trl", "base_model:lsilvei2/llama-3.3-70B-instruct-edu-adapted-merged", "base_model:finetune:lsilvei2/llama-3.3-70B-instruct-edu-adapted-merged", "endpoints_compatible", "region:us" ]
null
2025-08-15T08:28:32Z
--- base_model: lsilvei2/llama-3.3-70B-instruct-edu-adapted-merged library_name: transformers model_name: llama-3.3-70B-instruct-edu-sft tags: - generated_from_trainer - sft - trl licence: license --- # Model Card for llama-3.3-70B-instruct-edu-sft This model is a fine-tuned version of [lsilvei2/llama-3.3-70B-instruct-edu-adapted-merged](https://huggingface.co/lsilvei2/llama-3.3-70B-instruct-edu-adapted-merged). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="lsilvei2/llama-3.3-70B-instruct-edu-sft", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with SFT. ### Framework versions - TRL: 0.21.0 - Transformers: 4.55.2 - Pytorch: 2.8.0.dev20250319+cu128 - Datasets: 4.0.0 - Tokenizers: 0.21.4 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
sampingkaca72/blockassist-bc-armored_stealthy_elephant_1755439491
sampingkaca72
2025-08-17T14:29:52Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "armored stealthy elephant", "arxiv:2504.07091", "region:us" ]
null
2025-08-17T14:29:48Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - armored stealthy elephant --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
sudoping01/sereer-tts-v2-lora
sudoping01
2025-08-17T14:20:19Z
0
0
transformers
[ "transformers", "safetensors", "unsloth", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-08-17T14:20:08Z
--- library_name: transformers tags: - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Arkarin225/my-awesome-model
Arkarin225
2025-08-17T14:19:01Z
0
0
transformers
[ "transformers", "safetensors", "bert", "feature-extraction", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
feature-extraction
2025-08-17T14:18:54Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
capungmerah627/blockassist-bc-stinging_soaring_porcupine_1755438589
capungmerah627
2025-08-17T14:15:34Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "stinging soaring porcupine", "arxiv:2504.07091", "region:us" ]
null
2025-08-17T14:15:31Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - stinging soaring porcupine --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Video-Clip-Jessica-dolphin-video-viral/Official.Jessica.Radcliffe.Orca.Attack.Full.Video
Video-Clip-Jessica-dolphin-video-viral
2025-08-17T14:12:30Z
0
0
null
[ "region:us" ]
null
2025-08-17T14:11:39Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/5ye5v3bc?leaked-viral-video" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
hamzafaisal/Qwen3-4B-Thinking-2507-manim-codegen-lora
hamzafaisal
2025-08-17T14:08:48Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "trl", "sft", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-17T10:13:36Z
--- library_name: transformers tags: - trl - sft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
onceuponamiu/trocr-constance-de-salm
onceuponamiu
2025-08-17T14:03:23Z
0
0
transformers
[ "transformers", "safetensors", "vision-encoder-decoder", "image-to-text", "ocr", "handwritten-text-recognition", "trocr", "endpoints_compatible", "region:us" ]
image-to-text
2025-08-17T13:44:18Z
--- library_name: transformers tags: ["ocr", "handwritten-text-recognition", "vision-encoder-decoder", "trocr", "image-to-text"] --- # TrOCR - Handwritten Text Recognition Model A fine-tuned TrOCR (Transformer OCR) model for handwritten text recognition, built on the vision-encoder-decoder architecture. This model can transcribe handwritten text from images into machine-readable text. ## Model Details ### Model Description This is a TrOCR model that combines a Vision Transformer (ViT) encoder with a Transformer decoder to perform handwritten text recognition. The model has been trained to convert handwritten text images into text output. - **Developed by:** Fine-tuned from Microsoft's TrOCR architecture - **Model type:** Vision-Encoder-Decoder (TrOCR) - **Language(s):** Multi-language support (based on training data) - **License:** [Please specify your license] - **Finetuned from model:** Microsoft's TrOCR base model ### Model Architecture - **Encoder:** Vision Transformer (ViT) with 12 layers, 12 attention heads, 768 hidden size - **Decoder:** Transformer decoder with 12 layers, 16 attention heads, 1024 hidden size - **Image input:** 384x384 pixels, 3 channels (RGB) - **Vocabulary size:** 50,265 tokens - **Max sequence length:** 512 tokens ## Uses ### Direct Use This model is designed for: - **Handwritten text recognition** from images - **Document digitization** and transcription - **Historical document analysis** - **Form processing** and data extraction - **Educational applications** (grading handwritten assignments) ### Downstream Use The model can be fine-tuned for: - **Specific handwriting styles** or languages - **Domain-specific documents** (medical, legal, academic) - **Real-time OCR applications** - **Mobile OCR apps** ### Out-of-Scope Use - **Printed text recognition** (use standard OCR tools instead) - **Handwriting style analysis** or personality assessment - **Text generation** (this is a recognition model, not generative) - **Low-quality or extremely blurry images** ## Bias, Risks, and Limitations ### Limitations - **Image quality dependency:** Performance degrades with poor image quality - **Handwriting style variation:** May struggle with unusual or artistic handwriting - **Language bias:** Performance depends on training data language distribution - **Context sensitivity:** May misinterpret text without proper context ### Recommendations - Ensure input images are clear and well-lit - Use appropriate image preprocessing for optimal results - Validate outputs for critical applications - Consider domain-specific fine-tuning for specialized use cases ## How to Get Started with the Model ### Basic Usage ```python from transformers import TrOCRProcessor, VisionEncoderDecoderModel from PIL import Image # Load model and processor processor = TrOCRProcessor.from_pretrained("your-model-path") model = VisionEncoderDecoderModel.from_pretrained("your-model-path") # Load and process image image = Image.open("handwritten_text.jpg").convert("RGB") # Generate text pixel_values = processor(image, return_tensors="pt").pixel_values generated_ids = model.generate(pixel_values) generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] print(f"Recognized text: {generated_text}") ``` ### Requirements ```bash pip install transformers torch pillow ``` ## Training Details ### Training Data [Specify your training dataset details here] ### Training Procedure #### Preprocessing - Images resized to 384x384 pixels - Normalized with mean [0.5, 0.5, 0.5] and std [0.5, 0.5, 0.5] - RGB conversion and rescaling applied #### Training Hyperparameters - **Training regime:** [Specify training precision and regime] - **Image size:** 384x384 - **Max sequence length:** 512 tokens ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data [Specify your evaluation dataset] #### Factors - Image quality and resolution - Handwriting style and legibility - Text length and complexity - Language and script type #### Metrics - **Character Error Rate (CER)** - **Word Error Rate (WER)** - **Accuracy at character/word level** ### Results [Include your model's performance metrics here] ## Technical Specifications ### Model Architecture and Objective The model uses a **Vision-Encoder-Decoder** architecture: - **Encoder:** ViT processes image patches to extract visual features - **Decoder:** Transformer decoder generates text tokens autoregressively - **Objective:** Minimize cross-entropy loss between predicted and ground truth text ### Compute Infrastructure #### Hardware [Specify training hardware] #### Software - **Transformers version:** 4.55.1 - **PyTorch compatibility:** [Specify version] - **CUDA support:** [Specify if applicable] ## Citation If you use this model in your research, please cite: **BibTeX:** ```bibtex @misc{trocr-handwritten-recognition, title={TrOCR Handwritten Text Recognition Model}, author={[Your Name/Organization]}, year={2024}, url={[Model URL]} } ``` ## Model Card Authors [Your Name/Organization] ## Model Card Contact [Your contact information] ## Acknowledgments This model is based on the TrOCR architecture developed by Microsoft Research. Special thanks to the Hugging Face team for the transformers library and the open-source community for contributions to OCR research.
mradermacher/LFM2-VL-450M-GGUF
mradermacher
2025-08-17T13:56:47Z
0
0
transformers
[ "transformers", "gguf", "liquid", "lfm2", "lfm2-vl", "edge", "en", "base_model:LiquidAI/LFM2-VL-450M", "base_model:quantized:LiquidAI/LFM2-VL-450M", "license:other", "endpoints_compatible", "region:us", "conversational" ]
null
2025-08-17T13:52:22Z
--- base_model: LiquidAI/LFM2-VL-450M language: - en library_name: transformers license: other license_link: LICENSE license_name: lfm1.0 mradermacher: readme_rev: 1 quantized_by: mradermacher tags: - liquid - lfm2 - lfm2-vl - edge --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> <!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS --> <!-- ### quants_skip: --> <!-- ### skip_mmproj: --> static quants of https://huggingface.co/LiquidAI/LFM2-VL-450M <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#LFM2-VL-450M-GGUF).*** weighted/imatrix quants are available at https://huggingface.co/mradermacher/LFM2-VL-450M-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/LFM2-VL-450M-GGUF/resolve/main/LFM2-VL-450M.Q2_K.gguf) | Q2_K | 0.3 | | | [GGUF](https://huggingface.co/mradermacher/LFM2-VL-450M-GGUF/resolve/main/LFM2-VL-450M.Q3_K_S.gguf) | Q3_K_S | 0.3 | | | [GGUF](https://huggingface.co/mradermacher/LFM2-VL-450M-GGUF/resolve/main/LFM2-VL-450M.Q3_K_M.gguf) | Q3_K_M | 0.3 | lower quality | | [GGUF](https://huggingface.co/mradermacher/LFM2-VL-450M-GGUF/resolve/main/LFM2-VL-450M.Q3_K_L.gguf) | Q3_K_L | 0.3 | | | [GGUF](https://huggingface.co/mradermacher/LFM2-VL-450M-GGUF/resolve/main/LFM2-VL-450M.IQ4_XS.gguf) | IQ4_XS | 0.3 | | | [GGUF](https://huggingface.co/mradermacher/LFM2-VL-450M-GGUF/resolve/main/LFM2-VL-450M.Q4_K_S.gguf) | Q4_K_S | 0.3 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/LFM2-VL-450M-GGUF/resolve/main/LFM2-VL-450M.Q4_K_M.gguf) | Q4_K_M | 0.3 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/LFM2-VL-450M-GGUF/resolve/main/LFM2-VL-450M.Q5_K_S.gguf) | Q5_K_S | 0.4 | | | [GGUF](https://huggingface.co/mradermacher/LFM2-VL-450M-GGUF/resolve/main/LFM2-VL-450M.Q5_K_M.gguf) | Q5_K_M | 0.4 | | | [GGUF](https://huggingface.co/mradermacher/LFM2-VL-450M-GGUF/resolve/main/LFM2-VL-450M.Q6_K.gguf) | Q6_K | 0.4 | very good quality | | [GGUF](https://huggingface.co/mradermacher/LFM2-VL-450M-GGUF/resolve/main/LFM2-VL-450M.Q8_0.gguf) | Q8_0 | 0.5 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/LFM2-VL-450M-GGUF/resolve/main/LFM2-VL-450M.f16.gguf) | f16 | 0.8 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
aleebaster/blockassist-bc-sly_eager_boar_1755437203
aleebaster
2025-08-17T13:51:21Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "sly eager boar", "arxiv:2504.07091", "region:us" ]
null
2025-08-17T13:51:15Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - sly eager boar --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
liangjh2001/qwen_audio_ties-full-audio_deepfake_val_new_2w-full
liangjh2001
2025-08-17T13:48:50Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "qwen2_audio", "text2text-generation", "llama-factory", "full", "generated_from_trainer", "license:other", "endpoints_compatible", "region:us" ]
null
2025-08-17T11:56:48Z
--- library_name: transformers license: other base_model: Qwen2-Audio-7B-Instruct tags: - llama-factory - full - generated_from_trainer model-index: - name: qwen_audio_ties-full-audio_deepfake_val_new_2w-full results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # qwen_audio_ties-full-audio_deepfake_val_new_2w-full This model is a fine-tuned version of [/GLOBALFS/gznwp_3/qxj/liangjh/mergekit-audio/output/qwen_audio_ties](https://huggingface.co//GLOBALFS/gznwp_3/qxj/liangjh/mergekit-audio/output/qwen_audio_ties) on the audio_deepfake_val_new_2w dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - total_eval_batch_size: 64 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.51.3 - Pytorch 2.6.0+cu124 - Datasets 3.2.0 - Tokenizers 0.21.4
HKUST-DSAIL/GraphMind-LLAMA-3-8B
HKUST-DSAIL
2025-08-17T13:47:53Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "llama-factory", "full", "generated_from_trainer", "conversational", "arxiv:2507.17168", "base_model:meta-llama/Meta-Llama-3-8B", "base_model:finetune:meta-llama/Meta-Llama-3-8B", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-17T13:27:14Z
--- library_name: transformers license: mit base_model: - meta-llama/Meta-Llama-3-8B tags: - llama-factory - full - generated_from_trainer model-index: - name: GraphMind-LLAMA-3-8B results: [] --- # Model Card for GraphMind Series This model card describes the **GraphMind** series of models, which are Large Language Models (LLMs) enhanced for generalized reasoning through continued pre-training on graph-based problems. ## Model Description GraphMind is a series of Large Language Models developed to improve the generalized reasoning capabilities of existing base models. The core innovation is the continued pre-training (CPT) on **GraphPile**, a large-scale 10.9 billion token dataset specifically designed with Graph Problem Reasoning (GPR) data. By training on diverse and complex graph problems—which require sophisticated logical, topological, and relational reasoning—GraphMind models learn more robust and transferable reasoning patterns. This approach bridges the gap between domain-specific training (e.g., mathematics) and the need for universally capable and adaptable LLMs. The GraphMind series is built upon three popular open-source models: * Llama 3 * Llama 3.1 * Gemma 2 ## Key Features - **Enhanced General Reasoning**: Significant gains not only on graph-related tasks but also across mathematical, logical, commonsense, and code reasoning benchmarks. - **Superior Performance on Graph Problems**: Thanks to the GraphPile corpus, the models excel at tasks involving graph theory, such as pathfinding, network analysis, and topological sorting. - **Strong Transfer Learning**: Reasoning skills acquired from graph problems effectively transfer to other domains. - **Excellent Post-Training Potential**: Stronger foundation for fine-tuning on downstream tasks. For instance, the Gemma-based GraphMind fine-tuned on GSM8K achieves **23.6% higher accuracy** than its fine-tuned base model. ## Performance GraphMind models show consistent improvements over their base models across reasoning benchmarks. **Generalization Improvements**: - **Mathematical Reasoning**: up to **4.9%** average improvement across 11 datasets. - **Logical Reasoning**: **33.4%** improvement. - **Code Reasoning**: **46.3%** improvement. - **Commonsense Reasoning**: **7.8%** improvement. - **Multi-Hop QA**: **10.3%** improvement. **Foundational Improvements**: - **Graph Problem Reasoning**: Average improvement of **53.1%** compared to baseline models. ## Training Data: The GraphPile Corpus GraphMind's capabilities are derived from its training on **GraphPile**, the first large-scale corpus designed for continued pre-training using Graph Problem Reasoning data. **Statistics**: - **Total Tokens**: 10.9 Billion - **Total Samples**: 2.68 Million - **Graph Tasks**: 23 distinct tasks covering multiple reasoning paradigms **Data Components**: 1. **Chain-of-Thought (CoT) Data**: Step-by-step reasoning processes for graph problems, generated using program-guided methods. 2. **Program-of-Thought (PoT) Data**: Executable code solutions for graph problems, often derived from standard libraries. 3. **Trace-of-Execution (ToE) Data**: Records execution traces of graph algorithms, enabling learning from dynamic algorithmic processes. 4. **Real-world Graph Data**: Includes tasks from sources like DBpedia and DBLP, enriching the dataset with practical contexts. ## Training Procedure The GraphMind models were developed by performing continued pre-training on the GraphPile dataset. * **Base Models**: Llama-3-8B, Llama-3.1-8B, Gemma-2-2B * **Learning Rate**: 3e-5 * **Epochs**: 3 * **Max Sequence Length**: 8192 * **Global Batch Size**: 1024 * **Hardware**: 32 × NVIDIA H100 GPUs ## Intended Use and Limitations ### Intended Use These models are intended for use in research and development for tasks that demand strong, generalized reasoning. Potential applications include: * Solving complex logical and mathematical problems. * Algorithmic reasoning and code generation for graph-related tasks. * Serving as powerful base models for fine-tuning on reasoning-intensive downstream tasks. ### Limitations * GraphPile is limited to 23 graph problem tasks; more diversity could improve results. * As reasoning-focused models, GraphMind may perform worse on simpler, non-reasoning tasks such as summarization or translation. * Further exploration of different GraphPile configurations could yield additional gains. ## Available Models * **HKUST-DSAIL/GraphMind-Gemma2-2B** * **HKUST-DSAIL/GraphMind-LLAMA-3.1-8B** * **HKUST-DSAIL/GraphMind-LLAMA-3-8B** ## Citation ```bibtex @misc{zhang2025improving, title={Improving LLMs' Generalized Reasoning Abilities by Graph Problems}, author={Qifan Zhang and Nuo Chen and Zehua Li and Miao Peng and Jing Tang and Jia Li}, year={2025}, eprint={2507.17168}, archivePrefix={arXiv}, primaryClass={cs.AI}, url={https://arxiv.org/abs/2507.17168v1} } ```
rafsya427/blockassist-bc-monstrous_bristly_chimpanzee_1755436751
rafsya427
2025-08-17T13:46:20Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "monstrous bristly chimpanzee", "arxiv:2504.07091", "region:us" ]
null
2025-08-17T13:46:16Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - monstrous bristly chimpanzee --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
capungmerah627/blockassist-bc-stinging_soaring_porcupine_1755436791
capungmerah627
2025-08-17T13:46:16Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "stinging soaring porcupine", "arxiv:2504.07091", "region:us" ]
null
2025-08-17T13:46:13Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - stinging soaring porcupine --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
dsdsdsdfffff/math_2000_8_4_5e-5_ffn_granorm
dsdsdsdfffff
2025-08-17T13:46:09Z
0
0
transformers
[ "transformers", "safetensors", "deepseek_v2", "text-generation", "conversational", "custom_code", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-17T12:08:54Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ihsanridzi/blockassist-bc-wiry_flexible_owl_1755436740
ihsanridzi
2025-08-17T13:46:00Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "wiry flexible owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-17T13:45:57Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - wiry flexible owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
bearlover365/multi_sac_smoke
bearlover365
2025-08-17T13:44:21Z
0
0
lerobot
[ "lerobot", "safetensors", "sac", "robotics", "dataset:bearlover365/red_cube_always_in_same_place", "dataset:bearlover365/pick_place_one_white_sock_black_out_blinds", "arxiv:1801.01290", "license:apache-2.0", "region:us" ]
robotics
2025-08-17T13:44:20Z
--- datasets: - bearlover365/red_cube_always_in_same_place - bearlover365/pick_place_one_white_sock_black_out_blinds library_name: lerobot license: apache-2.0 model_name: sac pipeline_tag: robotics tags: - lerobot - sac - robotics --- # Model Card for sac <!-- Provide a quick summary of what the model is/does. --> [Soft Actor-Critic (SAC)](https://huggingface.co/papers/1801.01290) is an entropy-regularised actor-critic algorithm offering stable, sample-efficient learning in continuous-control environments. This policy has been trained and pushed to the Hub using [LeRobot](https://github.com/huggingface/lerobot). See the full documentation at [LeRobot Docs](https://huggingface.co/docs/lerobot/index). --- ## How to Get Started with the Model For a complete walkthrough, see the [training guide](https://huggingface.co/docs/lerobot/il_robots#train-a-policy). Below is the short version on how to train and run inference/eval: ### Train from scratch ```bash python -m lerobot.scripts.train \ --dataset.repo_id=${HF_USER}/<dataset> \ --policy.type=act \ --output_dir=outputs/train/<desired_policy_repo_id> \ --job_name=lerobot_training \ --policy.device=cuda \ --policy.repo_id=${HF_USER}/<desired_policy_repo_id> --wandb.enable=true ``` _Writes checkpoints to `outputs/train/<desired_policy_repo_id>/checkpoints/`._ ### Evaluate the policy/run inference ```bash python -m lerobot.record \ --robot.type=so100_follower \ --dataset.repo_id=<hf_user>/eval_<dataset> \ --policy.path=<hf_user>/<desired_policy_repo_id> \ --episodes=10 ``` Prefix the dataset repo with **eval\_** and supply `--policy.path` pointing to a local or hub checkpoint. --- ## Model Details - **License:** apache-2.0
LizardAPN/ppo-CartPole-v1
LizardAPN
2025-08-17T13:41:16Z
0
0
null
[ "tensorboard", "CartPole-v1", "ppo", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "deep-rl-course", "model-index", "region:us" ]
reinforcement-learning
2025-08-17T11:55:44Z
--- tags: - CartPole-v1 - ppo - deep-reinforcement-learning - reinforcement-learning - custom-implementation - deep-rl-course model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 191.20 +/- 80.27 name: mean_reward verified: false --- # PPO Agent Playing CartPole-v1 This is a trained model of a PPO agent playing CartPole-v1. # Hyperparameters ```python {'exp_name': 'ppo' 'seed': 1 'torch_deterministic': True 'cuda': True 'track': False 'wandb_project_name': 'cleanRL' 'wandb_entity': None 'capture_video': False 'env_id': 'CartPole-v1' 'total_timesteps': 50000 'learning_rate': 0.00025 'num_envs': 4 'num_steps': 128 'anneal_lr': True 'gae': True 'gamma': 0.99 'gae_lambda': 0.95 'num_minibatches': 4 'update_epochs': 4 'norm_adv': True 'clip_coef': 0.2 'clip_vloss': True 'ent_coef': 0.01 'vf_coef': 0.5 'max_grad_norm': 0.5 'target_kl': None 'repo_id': 'LizardAPN/ppo-CartPole-v1' 'batch_size': 512 'minibatch_size': 128} ```
jarguello76/reinforcement_learning_lunar_landing
jarguello76
2025-08-17T13:18:48Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2025-08-17T13:18:30Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: ppo results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 239.12 +/- 72.27 name: mean_reward verified: false --- # **ppo** Agent playing **LunarLander-v2** This is a trained model of a **ppo** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Fenix125/bert-spam-ham-classifier
Fenix125
2025-08-17T13:10:21Z
0
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "code", "en", "base_model:google-bert/bert-base-uncased", "base_model:finetune:google-bert/bert-base-uncased", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-08-15T14:58:24Z
--- license: mit language: - en base_model: - google-bert/bert-base-uncased pipeline_tag: text-classification library_name: transformers metrics: - accuracy - precision - recall - f1 tags: - code ---
unitova/blockassist-bc-zealous_sneaky_raven_1755434609
unitova
2025-08-17T13:09:23Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "zealous sneaky raven", "arxiv:2504.07091", "region:us" ]
null
2025-08-17T13:09:20Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - zealous sneaky raven --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
capungmerah627/blockassist-bc-stinging_soaring_porcupine_1755433304
capungmerah627
2025-08-17T12:47:13Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "stinging soaring porcupine", "arxiv:2504.07091", "region:us" ]
null
2025-08-17T12:47:10Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - stinging soaring porcupine --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
mradermacher/rStar-Coder-Qwen3-0.6B-GGUF
mradermacher
2025-08-17T12:44:05Z
1,648
1
transformers
[ "transformers", "gguf", "text-generation-inference", "chain-of-thought", "trl", "coder", "code", "core", "python", "math", "gspo", "en", "dataset:microsoft/rStar-Coder", "base_model:prithivMLmods/rStar-Coder-Qwen3-0.6B", "base_model:quantized:prithivMLmods/rStar-Coder-Qwen3-0.6B", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-08-06T11:06:07Z
--- base_model: prithivMLmods/rStar-Coder-Qwen3-0.6B datasets: - microsoft/rStar-Coder language: - en library_name: transformers license: apache-2.0 mradermacher: readme_rev: 1 quantized_by: mradermacher tags: - text-generation-inference - chain-of-thought - trl - coder - code - core - python - math - gspo --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> <!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS --> <!-- ### quants_skip: --> <!-- ### skip_mmproj: --> static quants of https://huggingface.co/prithivMLmods/rStar-Coder-Qwen3-0.6B <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#rStar-Coder-Qwen3-0.6B-GGUF).*** weighted/imatrix quants are available at https://huggingface.co/mradermacher/rStar-Coder-Qwen3-0.6B-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/rStar-Coder-Qwen3-0.6B-GGUF/resolve/main/rStar-Coder-Qwen3-0.6B.Q2_K.gguf) | Q2_K | 0.4 | | | [GGUF](https://huggingface.co/mradermacher/rStar-Coder-Qwen3-0.6B-GGUF/resolve/main/rStar-Coder-Qwen3-0.6B.Q3_K_S.gguf) | Q3_K_S | 0.4 | | | [GGUF](https://huggingface.co/mradermacher/rStar-Coder-Qwen3-0.6B-GGUF/resolve/main/rStar-Coder-Qwen3-0.6B.Q3_K_M.gguf) | Q3_K_M | 0.4 | lower quality | | [GGUF](https://huggingface.co/mradermacher/rStar-Coder-Qwen3-0.6B-GGUF/resolve/main/rStar-Coder-Qwen3-0.6B.Q3_K_L.gguf) | Q3_K_L | 0.5 | | | [GGUF](https://huggingface.co/mradermacher/rStar-Coder-Qwen3-0.6B-GGUF/resolve/main/rStar-Coder-Qwen3-0.6B.IQ4_XS.gguf) | IQ4_XS | 0.5 | | | [GGUF](https://huggingface.co/mradermacher/rStar-Coder-Qwen3-0.6B-GGUF/resolve/main/rStar-Coder-Qwen3-0.6B.Q4_K_S.gguf) | Q4_K_S | 0.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/rStar-Coder-Qwen3-0.6B-GGUF/resolve/main/rStar-Coder-Qwen3-0.6B.Q4_K_M.gguf) | Q4_K_M | 0.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/rStar-Coder-Qwen3-0.6B-GGUF/resolve/main/rStar-Coder-Qwen3-0.6B.Q5_K_S.gguf) | Q5_K_S | 0.5 | | | [GGUF](https://huggingface.co/mradermacher/rStar-Coder-Qwen3-0.6B-GGUF/resolve/main/rStar-Coder-Qwen3-0.6B.Q5_K_M.gguf) | Q5_K_M | 0.5 | | | [GGUF](https://huggingface.co/mradermacher/rStar-Coder-Qwen3-0.6B-GGUF/resolve/main/rStar-Coder-Qwen3-0.6B.Q6_K.gguf) | Q6_K | 0.6 | very good quality | | [GGUF](https://huggingface.co/mradermacher/rStar-Coder-Qwen3-0.6B-GGUF/resolve/main/rStar-Coder-Qwen3-0.6B.Q8_0.gguf) | Q8_0 | 0.7 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/rStar-Coder-Qwen3-0.6B-GGUF/resolve/main/rStar-Coder-Qwen3-0.6B.f16.gguf) | f16 | 1.3 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
unitova/blockassist-bc-zealous_sneaky_raven_1755432891
unitova
2025-08-17T12:39:56Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "zealous sneaky raven", "arxiv:2504.07091", "region:us" ]
null
2025-08-17T12:39:52Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - zealous sneaky raven --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
rafsya427/blockassist-bc-monstrous_bristly_chimpanzee_1755431198
rafsya427
2025-08-17T12:13:59Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "monstrous bristly chimpanzee", "arxiv:2504.07091", "region:us" ]
null
2025-08-17T12:13:55Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - monstrous bristly chimpanzee --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
kojeklollipop/blockassist-bc-spotted_amphibious_stork_1755431160
kojeklollipop
2025-08-17T12:12:46Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "spotted amphibious stork", "arxiv:2504.07091", "region:us" ]
null
2025-08-17T12:12:42Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - spotted amphibious stork --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
rambetiko/blockassist-bc-soft_lanky_marmot_1755431955
rambetiko
2025-08-17T12:06:41Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "soft lanky marmot", "arxiv:2504.07091", "region:us" ]
null
2025-08-17T12:06:19Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - soft lanky marmot --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
bangdulec/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-burrowing_sneaky_tamarin
bangdulec
2025-08-17T12:03:59Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "rl-swarm", "genrl-swarm", "grpo", "gensyn", "I am burrowing_sneaky_tamarin", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-17T11:30:26Z
--- library_name: transformers tags: - rl-swarm - genrl-swarm - grpo - gensyn - I am burrowing_sneaky_tamarin --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
mookiezi/Discord-Micae-Hermes-3-3B
mookiezi
2025-08-17T12:00:30Z
1,721
2
transformers
[ "transformers", "safetensors", "llama", "text-generation", "causal-lm", "instruct", "chat", "fine-tuned", "merged-lora", "llama-3", "hermes", "discord-dataset", "conversational-ai", "chatml", "pytorch", "open-weights", "3b-parameters", "conversational", "dataset:mookiezi/Discord-OpenMicae", "arxiv:2408.11857", "base_model:NousResearch/Hermes-3-Llama-3.2-3B", "base_model:finetune:NousResearch/Hermes-3-Llama-3.2-3B", "license:llama3", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-02T23:21:01Z
--- tags: - transformers - causal-lm - text-generation - instruct - chat - fine-tuned - merged-lora - llama-3 - hermes - discord-dataset - conversational-ai - chatml - pytorch - open-weights - 3b-parameters model-index: - name: Discord-Micae-Hermes-3-3B results: [] base_model: - NousResearch/Hermes-3-Llama-3.2-3B datasets: - mookiezi/Discord-OpenMicae library_name: transformers license: llama3 --- <div style="display: flex; align-items: center; gap: 8px;"> <span>Run this model on Google Colab for free:</span> <a href="https://colab.research.google.com/drive/1kUtTeey5THhKW6f0BDKB9MFe4JIEew_Z?usp=sharing"> <img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open in Colab"/> </a> </div> ## Discord-Micae-Hermes-3-3B ![Micae](Micae-Thumb.png) ## Model Description Discord-Micae-Hermes-3-3B is a new finetune on [NousResearch/Hermes-3-Llama-3.2-3B](https://huggingface.co/NousResearch/Hermes-3-Llama-3.2-3B). This model serves as a foundation for ongoing exploration into the capabilities of human-adjacent text generation. - **Training Schedule:** - 17M tokens of 260 thousand single-turn exchanges (STX) – 6 epochs @ 2e-5 - 5.5M tokens of 101 thousand multi-turn chains – 6 epochs @ 2e-5 - Combined dataset – 1 epoch @ 1e-5 - **Fine-Tuning Method:** LoRA merge (α = 32, r = 8, dropout = 0.1) - **LoRA target modules:** q_proj, v_proj - **Scheduler:** Cosine schedule with 220 warmup steps per phase - **Optimizer:** torch.optim.AdamW (betas = (0.9, 0.999), amsgrad = False, eps = 1e-8, weight decay = 0.01) - **Batching:** Effective size of 126 (7 batch size × 18 gradient accumulation steps) - **Timeline and Hardware:** Training took place over 17 days on a GTX 1080 (8GB). ## Dataset The model was fine-tuned on the [mookiezi/Discord-OpenMicae](https://huggingface.co/datasets/mookiezi/Discord-OpenMicae) dataset. ## Intended Use - Conversational AI research - Experimentation with dialogue agents trained on Discord data - Chatbots requiring **casual, human-like tone** ### Limitations - The model inherits potential biases from Discord-style language. - It is **not safety-aligned** for deployment without moderation. - While it does inhert knowledge from Hermes-3-3B it is not intended for factual or sensitive information retrieval. ## Prompting Micae uses the same ChatML prompt format as Hermes 3 and handles context and chat history. ``` <|im_start|>user what do you think about ai?<|im_end|> <|im_start|>assistant i'm not a fan of AI but I can understand why people are excited to use it. it's like the first time they got an electric car, or when they were able to fly in space, that excitement is real<|im_end|> <|im_start|>user where do you think it's heading?<|im_end|> <|im_start|>assistant it will be used for good and bad things just as with other techs<|im_end|> <|im_start|>user what do you do use it for personally?<|im_end|> <|im_start|>assistant nothing much yet, I hope to find some stuff later on.<|im_end|> <|im_start|>user do you like pokemon?<|im_end|> <|im_start|>assistant yes I love Pokémon.<|im_end|> <|im_start|>user what's your favorite pokemon<|im_end|> <|im_start|>assistant garchomp<|im_end|> ``` --- ## Inferfacing A python script for interfacing, optimized for casual, Discord-style conversation, is available at [https://github.com/mookiezi/interface](https://github.com/mookiezi/interface). To use this model run: ``` python interface.py -m mookiezi/Discord-Micae-Hermes-3-3B ``` ![Interface Screenshot](interface-screenshot.png) --- ## License See the [Meta LLaMA 3 Community License](https://ai.meta.com/llama/license/) for details. ## How to cite: If you use this model in your work, please cite both **Discord-Micae-Hermes-3-3B** and the base model **Hermes 3**: ```bibtex @misc{discord-micae-hermes3b, title = {Discord-Micae-Hermes-3-3B}, author = {mookiezi}, year = {2025}, url={https://huggingface.co/mookiezi/Discord-Micae-Hermes-3-3B} } @misc{teknium2024hermes3technicalreport, title={Hermes 3 Technical Report}, author={Ryan Teknium and Jeffrey Quesnelle and Chen Guang}, year={2024}, eprint={2408.11857}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2408.11857} } ``` [​](https://20000.online/micae) [​](https://20000.online/openmicae) [​](https://20000.online/discord-dialogues)
mlx-community/Kimi-VL-A3B-Thinking-2506-6bit
mlx-community
2025-08-17T12:00:14Z
0
0
transformers
[ "transformers", "safetensors", "kimi_vl", "feature-extraction", "mlx", "image-text-to-text", "conversational", "custom_code", "base_model:moonshotai/Kimi-VL-A3B-Instruct", "base_model:quantized:moonshotai/Kimi-VL-A3B-Instruct", "license:mit", "6-bit", "region:us" ]
image-text-to-text
2025-08-16T18:17:18Z
--- base_model: - moonshotai/Kimi-VL-A3B-Instruct license: mit pipeline_tag: image-text-to-text library_name: transformers tags: - mlx --- # mlx-community/Kimi-VL-A3B-Thinking-2506-6bit This model was converted to MLX format from [`moonshotai/Kimi-VL-A3B-Thinking-2506`]() using mlx-vlm version **0.3.2**. Refer to the [original model card](https://huggingface.co/moonshotai/Kimi-VL-A3B-Thinking-2506) for more details on the model. ## Use with mlx ```bash pip install -U mlx-vlm ``` ```bash python -m mlx_vlm.generate --model jqlive/Kimi-VL-A3B-Thinking-2506-6bit --max-tokens 100 --temperature 0.0 --prompt "Describe this image." --image <path_to_image> ```
kunkunlin1221/face-landmarks-2d-106_mbv1
kunkunlin1221
2025-08-17T11:52:27Z
0
0
null
[ "onnx", "license:apache-2.0", "region:us" ]
null
2025-08-17T10:51:29Z
--- license: apache-2.0 ---
VoilaRaj/69_bQEmuz
VoilaRaj
2025-08-17T11:48:59Z
0
0
null
[ "safetensors", "any-to-any", "omega", "omegalabs", "bittensor", "agi", "license:mit", "region:us" ]
any-to-any
2025-08-17T11:45:17Z
--- license: mit tags: - any-to-any - omega - omegalabs - bittensor - agi --- This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet. Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
real0x0a1/MyGemmaNPC
real0x0a1
2025-08-17T11:48:22Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "gemma3_text", "text-generation", "generated_from_trainer", "sft", "trl", "conversational", "base_model:google/gemma-3-270m-it", "base_model:finetune:google/gemma-3-270m-it", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-17T11:47:29Z
--- base_model: google/gemma-3-270m-it library_name: transformers model_name: MyGemmaNPC tags: - generated_from_trainer - sft - trl licence: license --- # Model Card for MyGemmaNPC This model is a fine-tuned version of [google/gemma-3-270m-it](https://huggingface.co/google/gemma-3-270m-it). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="real0x0a1/MyGemmaNPC", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with SFT. ### Framework versions - TRL: 0.21.0 - Transformers: 4.55.0 - Pytorch: 2.8.0+cu126 - Datasets: 4.0.0 - Tokenizers: 0.21.4 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
adity12345/chakma_model
adity12345
2025-08-17T11:42:38Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "gpt2", "text-generation", "generated_from_trainer", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-17T11:42:35Z
--- library_name: transformers tags: - generated_from_trainer model-index: - name: chakma_model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # chakma_model This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 ### Framework versions - Transformers 4.55.1 - Pytorch 2.6.0+cu124 - Datasets 4.0.0 - Tokenizers 0.21.4
unitova/blockassist-bc-zealous_sneaky_raven_1755429419
unitova
2025-08-17T11:42:07Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "zealous sneaky raven", "arxiv:2504.07091", "region:us" ]
null
2025-08-17T11:42:04Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - zealous sneaky raven --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
adity12345/chakma-gpt2
adity12345
2025-08-17T11:39:34Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-08-17T11:34:37Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
imanuelradityaa/finetuned_cs_llama_900_steps_16bit
imanuelradityaa
2025-08-17T11:26:34Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "text-generation-inference", "unsloth", "conversational", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-08-17T11:18:10Z
--- base_model: unsloth/llama-3.2-1b-instruct-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama license: apache-2.0 language: - en --- # Uploaded finetuned model - **Developed by:** imanuelradityaa - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3.2-1b-instruct-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
unitova/blockassist-bc-zealous_sneaky_raven_1755427662
unitova
2025-08-17T11:13:22Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "zealous sneaky raven", "arxiv:2504.07091", "region:us" ]
null
2025-08-17T11:13:19Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - zealous sneaky raven --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Seonghaa/korean-emotion-classifier-roberta
Seonghaa
2025-08-17T11:10:02Z
0
0
null
[ "safetensors", "roberta", "text-classification", "emotion", "korean", "ko", "dataset:custom", "license:mit", "region:us" ]
text-classification
2025-08-17T11:06:47Z
--- language: ko tags: - text-classification - emotion - korean license: mit datasets: - custom model-name: korean-emotion-classifier --- # Korean Emotion Classifier 😃😡😢😨😲😌 본 모델은 한국어 텍스트를 **6가지 감정(분노, 불안, 슬픔, 평온, 당황, 기쁨)**으로 분류합니다. `klue/roberta-base` 기반으로 파인튜닝되었습니다. --- ## 📊 Evaluation Results | Emotion | Precision | Recall | F1-Score | |---------|-----------|--------|----------| | 분노 | 0.9801 | 0.9788 | 0.9795 | | 불안 | 0.9864 | 0.9848 | 0.9856 | | 슬픔 | 0.9837 | 0.9854 | 0.9845 | | 평온 | 0.9782 | 0.9750 | 0.9766 | | 당황 | 0.9607 | 0.9668 | 0.9652 | | 기쁨 | 0.9857 | 0.9886 | 0.9872 | **Accuracy**: 0.9831 **Macro Avg**: Precision=0.9791 / Recall=0.9804 / F1=0.9798 **Weighted Avg**: Precision=0.9831 / Recall=0.9831 / F1=0.9831 ```python from transformers import pipeline import torch model_id = "Seonghaa/korean-emotion-classifier-roberta" device = 0 if torch.cuda.is_available() else -1 # GPU 있으면 0, 없으면 CPU(-1) clf = pipeline( "text-classification", model=model_id, tokenizer=model_id, device=device ) texts = [ "오늘 길에서 10만원을 주웠어", "오늘 친구들이랑 노래방에 갔어", "오늘 시험 망쳤어", ] for t in texts: pred = clf(t, truncation=True, max_length=256)[0] print(f"입력: {t}") print(f"→ 예측 감정: {pred['label']}, 점수: {pred['score']:.4f} ") ``` ## 출력 예시: 입력: 오늘 길에서 10만원을 주웠어</br> → 예측 감정: 기쁨, 점수: 0.9619 입력: 오늘 친구들이랑 노래방에 갔어</br> → 예측 감정: 기쁨, 점수: 0.9653 입력: 오늘 시험 망쳤어</br> → 예측 감정: 슬픔, 점수: 0.9602
quantumxnode/blockassist-bc-dormant_peckish_seahorse_1755427402
quantumxnode
2025-08-17T11:09:34Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "dormant peckish seahorse", "arxiv:2504.07091", "region:us" ]
null
2025-08-17T11:09:31Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - dormant peckish seahorse --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
VK13/Cartpole_v1
VK13
2025-08-17T11:09:27Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2025-08-17T11:09:17Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Cartpole_v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 216.80 +/- 240.99 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
svilens/gemma-3-1b-it-bnb-4bit-intent
svilens
2025-08-17T11:07:53Z
0
0
transformers
[ "transformers", "safetensors", "gemma3_text", "text-generation", "text-generation-inference", "unsloth", "conversational", "en", "base_model:unsloth/gemma-3-1b-it-bnb-4bit", "base_model:finetune:unsloth/gemma-3-1b-it-bnb-4bit", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-08-17T11:03:38Z
--- base_model: unsloth/gemma-3-1b-it-bnb-4bit tags: - text-generation-inference - transformers - unsloth - gemma3_text license: apache-2.0 language: - en --- # Uploaded finetuned model - **Developed by:** svilens - **License:** apache-2.0 - **Finetuned from model :** unsloth/gemma-3-1b-it-bnb-4bit This gemma3_text model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
mohammadmahdinouri/mol-5k-0.04-aux
mohammadmahdinouri
2025-08-17T11:02:41Z
0
0
transformers
[ "transformers", "safetensors", "ModernALBERT_MoL", "fill-mask", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2025-08-17T11:02:39Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
mradermacher/QiMing-Navigator-v1-GGUF
mradermacher
2025-08-17T11:00:14Z
0
0
transformers
[ "transformers", "gguf", "qwen", "qwen3", "unsloth", "lora", "logic-tuning", "strategic-thinking", "zh", "en", "base_model:aifeifei798/QiMing-Navigator-v1", "base_model:adapter:aifeifei798/QiMing-Navigator-v1", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-08-17T09:13:16Z
--- base_model: aifeifei798/QiMing-Navigator-v1 language: - zh - en library_name: transformers license: apache-2.0 mradermacher: readme_rev: 1 quantized_by: mradermacher tags: - qwen - qwen3 - unsloth - lora - logic-tuning - strategic-thinking --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> <!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS --> <!-- ### quants_skip: --> <!-- ### skip_mmproj: --> static quants of https://huggingface.co/aifeifei798/QiMing-Navigator-v1 <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#QiMing-Navigator-v1-GGUF).*** weighted/imatrix quants are available at https://huggingface.co/mradermacher/QiMing-Navigator-v1-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/QiMing-Navigator-v1-GGUF/resolve/main/QiMing-Navigator-v1.Q2_K.gguf) | Q2_K | 1.8 | | | [GGUF](https://huggingface.co/mradermacher/QiMing-Navigator-v1-GGUF/resolve/main/QiMing-Navigator-v1.Q3_K_S.gguf) | Q3_K_S | 2.0 | | | [GGUF](https://huggingface.co/mradermacher/QiMing-Navigator-v1-GGUF/resolve/main/QiMing-Navigator-v1.Q3_K_M.gguf) | Q3_K_M | 2.2 | lower quality | | [GGUF](https://huggingface.co/mradermacher/QiMing-Navigator-v1-GGUF/resolve/main/QiMing-Navigator-v1.Q3_K_L.gguf) | Q3_K_L | 2.3 | | | [GGUF](https://huggingface.co/mradermacher/QiMing-Navigator-v1-GGUF/resolve/main/QiMing-Navigator-v1.IQ4_XS.gguf) | IQ4_XS | 2.4 | | | [GGUF](https://huggingface.co/mradermacher/QiMing-Navigator-v1-GGUF/resolve/main/QiMing-Navigator-v1.Q4_K_S.gguf) | Q4_K_S | 2.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/QiMing-Navigator-v1-GGUF/resolve/main/QiMing-Navigator-v1.Q4_K_M.gguf) | Q4_K_M | 2.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/QiMing-Navigator-v1-GGUF/resolve/main/QiMing-Navigator-v1.Q5_K_S.gguf) | Q5_K_S | 2.9 | | | [GGUF](https://huggingface.co/mradermacher/QiMing-Navigator-v1-GGUF/resolve/main/QiMing-Navigator-v1.Q5_K_M.gguf) | Q5_K_M | 3.0 | | | [GGUF](https://huggingface.co/mradermacher/QiMing-Navigator-v1-GGUF/resolve/main/QiMing-Navigator-v1.Q6_K.gguf) | Q6_K | 3.4 | very good quality | | [GGUF](https://huggingface.co/mradermacher/QiMing-Navigator-v1-GGUF/resolve/main/QiMing-Navigator-v1.Q8_0.gguf) | Q8_0 | 4.4 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/QiMing-Navigator-v1-GGUF/resolve/main/QiMing-Navigator-v1.f16.gguf) | f16 | 8.2 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
devparagiri/a-20250817-103351
devparagiri
2025-08-17T10:40:26Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "gguf", "gpt2", "text-generation", "autotrain", "text-generation-inference", "peft", "conversational", "dataset:devparagiri/dataset-a-20250817-103351", "base_model:microsoft/DialoGPT-small", "base_model:quantized:microsoft/DialoGPT-small", "license:other", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-08-17T10:37:58Z
--- tags: - autotrain - text-generation-inference - text-generation - peft library_name: transformers base_model: microsoft/DialoGPT-small widget: - messages: - role: user content: What is your favorite condiment? license: other datasets: - devparagiri/dataset-a-20250817-103351 --- # Model Trained Using AutoTrain This model was trained using AutoTrain. For more information, please visit [AutoTrain](https://hf.co/docs/autotrain). # Usage ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_path = "PATH_TO_THIS_REPO" tokenizer = AutoTokenizer.from_pretrained(model_path) model = AutoModelForCausalLM.from_pretrained( model_path, device_map="auto", torch_dtype='auto' ).eval() # Prompt content: "hi" messages = [ {"role": "user", "content": "hi"} ] input_ids = tokenizer.apply_chat_template(conversation=messages, tokenize=True, add_generation_prompt=True, return_tensors='pt') output_ids = model.generate(input_ids.to('cuda')) response = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True) # Model response: "Hello! How can I assist you today?" print(response) ```
m-polignano/ANITA-NEXT-20B-gpt-oss-ITA-GGUF
m-polignano
2025-08-17T10:31:59Z
0
0
transformers
[ "transformers", "gguf", "gpt_oss", "text-generation", "ita", "italian", "anita", "magistral", "24b", "uniba", "bari", "italy", "italia", "Conversational", "LLaMantino", "Agentic", "Agents", "conversational", "en", "it", "arxiv:2405.07101", "base_model:openai/gpt-oss-20b", "base_model:quantized:openai/gpt-oss-20b", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-08-17T10:05:29Z
--- license: apache-2.0 language: - en - it base_model: - openai/gpt-oss-20b pipeline_tag: text-generation library_name: transformers tags: - ita - italian - anita - magistral - 24b - uniba - bari - italy - italia - Conversational - LLaMantino - Agentic - Agents --- <img src="https://huggingface.co/m-polignano/ANITA-NEXT-24B-Magistral-2506-ITA/resolve/main/Anita-Next_full.png" alt="anita_next" border="0" width="600px"> <hr> <!--<img src="https://i.ibb.co/6mHSRm3/llamantino53.jpg" width="200"/>--> <h3><i>"Built on <b>openai/gpt-oss-20b</b>"</i></i></h3> <p style="text-align:justify;"><b>ANITA-NEXT-20B-gpt-oss-ITA</b> is a <b>Thinking Model</b> of the <a href="https://arxiv.org/abs/2405.07101"><b>ANITA</b></a> - <i>Large Language Models family</i>. The model is a fine-tuned version of <a href="https://huggingface.co/openai/gpt-oss-20b"><b>openai/gpt-oss-20b</b></a> (a fine-tuned <b>OpenAI OSS model</b>). This model version aims to be the an <b>Agentic-Ready Multilingual Model</b> 🏁 (EN 🇺🇸 + ITA🇮🇹) to further fine-tuning on Specific Tasks in Italian.</p> ❗❗❗Use at your own risk. The model may generate hallucinations, incorrect, invented, offensive, unethical or dangerous responses. We are not responsible for any dangerous/offensive/criminal use. The model is release for research only purposes.❗❗❗ The 🌟**ANITA project**🌟 *(**A**dvanced **N**atural-based interaction for the **ITA**lian language)* wants to provide Italian NLP researchers with an improved model for the Italian Language 🇮🇹 use cases. The **NEXT** family includes **four models**: - m-polignano/ANITA-NEXT-24B-Magistral-2506-ITA - **General Purpose** - m-polignano/ANITA-NEXT-24B-Dolphin-Mistral-UNCENSORED-ITA - **Uncensored** - m-polignano/ANITA-NEXT-24B-Magistral-2506-VISION-ITA - **Vision-Language** - m-polignano/ANITA-NEXT-20B-gpt-oss-ITA - **Agentic Ready** <hr> **Full Model**: [m-polignano/ANITA-NEXT-20B-gpt-oss-ITA](https://huggingface.co/m-polignano/ANITA-NEXT-20B-gpt-oss-ITA) <hr> For *OLLAMA Inference* follow the [Huggingface Documentation](https://huggingface.co/docs/hub/ollama). <hr> ## Citation instructions ```bibtex @misc{polignano2024advanced, title={Advanced Natural-based interaction for the ITAlian language: LLaMAntino-3-ANITA}, author={Marco Polignano and Pierpaolo Basile and Giovanni Semeraro}, year={2024}, eprint={2405.07101}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` ```bibtex @misc{openai2025gptoss, author = {{OpenAI}}, title = {Introducing gpt‑oss}, howpublished = {\url{https://openai.com/en-EN/index/introducing-gpt-oss/}}, year = {2025}, month = aug, day = {5}, note = {Accessed: 16 August 2025}, } ```
indoempatnol/blockassist-bc-fishy_wary_swan_1755424188
indoempatnol
2025-08-17T10:15:50Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "fishy wary swan", "arxiv:2504.07091", "region:us" ]
null
2025-08-17T10:15:48Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - fishy wary swan --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
lmq1909/Qwen2.5-VL-7B-LQA-global-3e
lmq1909
2025-08-17T10:13:33Z
0
0
transformers
[ "transformers", "safetensors", "qwen2_5_vl", "image-to-text", "text-generation-inference", "unsloth", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
image-to-text
2025-08-17T10:08:10Z
--- base_model: unsloth/qwen2.5-vl-7b-instruct-bnb-4bit tags: - text-generation-inference - transformers - unsloth - qwen2_5_vl license: apache-2.0 language: - en --- # Uploaded finetuned model - **Developed by:** lmq1909 - **License:** apache-2.0 - **Finetuned from model :** unsloth/qwen2.5-vl-7b-instruct-bnb-4bit This qwen2_5_vl model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
cyberdelia/CyberRealisticFlux
cyberdelia
2025-08-17T10:06:33Z
0
0
diffusers
[ "diffusers", "stable-diffusion", "flux", "text-to-image", "photorealistic", "cyberrealistic", "pony", "image-generation", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2025-08-17T09:58:09Z
--- license: creativeml-openrail-m tags: - stable-diffusion - flux - text-to-image - photorealistic - cyberrealistic - pony - image-generation - diffusers model-index: - name: CyberRealistic Pony results: [] --- # CyberRealistic Flux **CyberRealistic Flux** CyberRealistic Flux (FLUX.1 dev)! It’s designed to make realistic images, both safe-for-work and not-so-safe-for-work. It’s not perfect yet, but it’s a solid start and sets things up for what’s coming next. ---
whitebox-lm/llama3.2-sms
whitebox-lm
2025-08-17T10:06:17Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "text-generation-inference", "unsloth", "conversational", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-08-17T10:06:12Z
--- base_model: unsloth/llama-3.2-3b-instruct-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama license: apache-2.0 language: - en --- # Uploaded finetuned model - **Developed by:** whitebox-lm - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3.2-3b-instruct-unsloth-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
lakelee/RLB_MLP_BC_v3.20250817.16.1
lakelee
2025-08-17T09:50:34Z
0
0
transformers
[ "transformers", "safetensors", "mlp_swiglu", "generated_from_trainer", "base_model:lakelee/RLB_MLP_BC_v3.20250817.16", "base_model:finetune:lakelee/RLB_MLP_BC_v3.20250817.16", "endpoints_compatible", "region:us" ]
null
2025-08-17T09:42:48Z
--- library_name: transformers base_model: lakelee/RLB_MLP_BC_v3.20250817.16 tags: - generated_from_trainer model-index: - name: RLB_MLP_BC_v3.20250817.16.1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # RLB_MLP_BC_v3.20250817.16.1 This model is a fine-tuned version of [lakelee/RLB_MLP_BC_v3.20250817.16](https://huggingface.co/lakelee/RLB_MLP_BC_v3.20250817.16) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch_fused with betas=(0.9,0.99) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - num_epochs: 1.0 ### Training results ### Framework versions - Transformers 4.55.2 - Pytorch 2.8.0+cu128 - Tokenizers 0.21.4
netbuild/gpt-oss-20b-multilingual-reasoner
netbuild
2025-08-17T09:49:54Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "sft", "trl", "dataset:HuggingFaceH4/Multilingual-Thinking", "base_model:openai/gpt-oss-120b", "base_model:finetune:openai/gpt-oss-120b", "endpoints_compatible", "region:us" ]
null
2025-08-17T07:48:17Z
--- base_model: openai/gpt-oss-120b datasets: HuggingFaceH4/Multilingual-Thinking library_name: transformers model_name: gpt-oss-20b-multilingual-reasoner tags: - generated_from_trainer - sft - trl licence: license --- # Model Card for gpt-oss-20b-multilingual-reasoner This model is a fine-tuned version of [openai/gpt-oss-120b](https://huggingface.co/openai/gpt-oss-120b) on the [HuggingFaceH4/Multilingual-Thinking](https://huggingface.co/datasets/HuggingFaceH4/Multilingual-Thinking) dataset. It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="netbuild/gpt-oss-20b-multilingual-reasoner", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with SFT. ### Framework versions - TRL: 0.21.0 - Transformers: 4.55.2 - Pytorch: 2.8.0 - Datasets: 4.0.0 - Tokenizers: 0.21.4 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
ykarout/CyberSec-Qwen3-DeepSeekv1-Q8_0-GGUF
ykarout
2025-08-17T09:45:34Z
0
0
transformers
[ "transformers", "gguf", "cybersecurity", "fine-tuned", "deepseek", "qwen3", "lora", "cyber", "nist", "csf", "pentest", "llama-cpp", "gguf-my-repo", "text-generation", "en", "ar", "es", "ru", "it", "de", "dataset:Trendyol/Trendyol-Cybersecurity-Instruction-Tuning-Dataset", "base_model:ykarout/CyberSec-Qwen3-DeepSeekv1", "base_model:adapter:ykarout/CyberSec-Qwen3-DeepSeekv1", "license:apache-2.0", "endpoints_compatible", "region:us" ]
text-generation
2025-08-17T09:44:59Z
--- license: apache-2.0 base_model: ykarout/CyberSec-Qwen3-DeepSeekv1 tags: - cybersecurity - fine-tuned - deepseek - qwen3 - lora - cyber - nist - csf - pentest - llama-cpp - gguf-my-repo language: - en - ar - es - ru - it - de pipeline_tag: text-generation datasets: - Trendyol/Trendyol-Cybersecurity-Instruction-Tuning-Dataset library_name: transformers --- # ykarout/CyberSec-Qwen3-DeepSeekv1-Q8_0-GGUF This model was converted to GGUF format from [`ykarout/CyberSec-Qwen3-DeepSeekv1`](https://huggingface.co/ykarout/CyberSec-Qwen3-DeepSeekv1) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/ykarout/CyberSec-Qwen3-DeepSeekv1) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo ykarout/CyberSec-Qwen3-DeepSeekv1-Q8_0-GGUF --hf-file cybersec-qwen3-deepseekv1-q8_0.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo ykarout/CyberSec-Qwen3-DeepSeekv1-Q8_0-GGUF --hf-file cybersec-qwen3-deepseekv1-q8_0.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo ykarout/CyberSec-Qwen3-DeepSeekv1-Q8_0-GGUF --hf-file cybersec-qwen3-deepseekv1-q8_0.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo ykarout/CyberSec-Qwen3-DeepSeekv1-Q8_0-GGUF --hf-file cybersec-qwen3-deepseekv1-q8_0.gguf -c 2048 ```
rafsya427/blockassist-bc-monstrous_bristly_chimpanzee_1755422201
rafsya427
2025-08-17T09:44:22Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "monstrous bristly chimpanzee", "arxiv:2504.07091", "region:us" ]
null
2025-08-17T09:44:19Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - monstrous bristly chimpanzee --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
aifffffffd/MyGemmaNPC
aifffffffd
2025-08-17T09:40:10Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "gemma3_text", "text-generation", "generated_from_trainer", "sft", "trl", "conversational", "base_model:google/gemma-3-270m-it", "base_model:finetune:google/gemma-3-270m-it", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-16T18:31:58Z
--- base_model: google/gemma-3-270m-it library_name: transformers model_name: MyGemmaNPC tags: - generated_from_trainer - sft - trl licence: license --- # Model Card for MyGemmaNPC This model is a fine-tuned version of [google/gemma-3-270m-it](https://huggingface.co/google/gemma-3-270m-it). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="aifffffffd/MyGemmaNPC", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with SFT. ### Framework versions - TRL: 0.21.0 - Transformers: 4.55.1 - Pytorch: 2.6.0+cu124 - Datasets: 4.0.0 - Tokenizers: 0.21.4 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
hellbich/blockassist-bc-bipedal_endangered_toad_1755423204
hellbich
2025-08-17T09:39:40Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "bipedal endangered toad", "arxiv:2504.07091", "region:us" ]
null
2025-08-17T09:39:15Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - bipedal endangered toad --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
muqtasid87/qwen2.5vl-3b-merged-Q8_0-GGUF
muqtasid87
2025-08-17T09:27:04Z
0
0
transformers
[ "transformers", "gguf", "llama-cpp", "gguf-my-repo", "base_model:muqtasid87/qwen2.5vl-3b-merged", "base_model:quantized:muqtasid87/qwen2.5vl-3b-merged", "endpoints_compatible", "region:us" ]
null
2025-08-17T09:26:48Z
--- library_name: transformers tags: - llama-cpp - gguf-my-repo base_model: muqtasid87/qwen2.5vl-3b-merged --- # muqtasid87/qwen2.5vl-3b-merged-Q8_0-GGUF This model was converted to GGUF format from [`muqtasid87/qwen2.5vl-3b-merged`](https://huggingface.co/muqtasid87/qwen2.5vl-3b-merged) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/muqtasid87/qwen2.5vl-3b-merged) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo muqtasid87/qwen2.5vl-3b-merged-Q8_0-GGUF --hf-file qwen2.5vl-3b-merged-q8_0.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo muqtasid87/qwen2.5vl-3b-merged-Q8_0-GGUF --hf-file qwen2.5vl-3b-merged-q8_0.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo muqtasid87/qwen2.5vl-3b-merged-Q8_0-GGUF --hf-file qwen2.5vl-3b-merged-q8_0.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo muqtasid87/qwen2.5vl-3b-merged-Q8_0-GGUF --hf-file qwen2.5vl-3b-merged-q8_0.gguf -c 2048 ```
chainway9/blockassist-bc-untamed_quick_eel_1755421001
chainway9
2025-08-17T09:25:24Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "untamed quick eel", "arxiv:2504.07091", "region:us" ]
null
2025-08-17T09:25:21Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - untamed quick eel --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
VoilaRaj/69_0O5V6K
VoilaRaj
2025-08-17T09:24:01Z
0
0
null
[ "safetensors", "any-to-any", "omega", "omegalabs", "bittensor", "agi", "license:mit", "region:us" ]
any-to-any
2025-08-17T09:20:03Z
--- license: mit tags: - any-to-any - omega - omegalabs - bittensor - agi --- This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet. Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
kojeklollipop/blockassist-bc-spotted_amphibious_stork_1755420432
kojeklollipop
2025-08-17T09:13:28Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "spotted amphibious stork", "arxiv:2504.07091", "region:us" ]
null
2025-08-17T09:13:25Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - spotted amphibious stork --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
svjack/Skirk_wan_2_2_14_B_text2video_low_noise_lora_early
svjack
2025-08-17T09:10:21Z
0
0
null
[ "region:us" ]
null
2025-08-03T17:12:20Z
### **LoRA Model Card**: `svjack/Skirk_wan_2_2_14_B_text2video_lora_early` #### **Enhanced Anime-Style Video Synthesis** **Base Model**: `Wan2.2_T2V_A14B` **Fine-tuned Adapter**: `Skirk_w14_low_lora-step00002500.safetensors` **Key Strengths**: - Dynamic environmental effects (blizzards, sunlight, mystical glow) - Character consistency across diverse scenarios - Cinematic texture integration (ice crystals, fabric physics, lighting interplay) --- --- ### **Optimized Example Prompts** #### **Example 1: Frost Citadel Vigil** **Prompt**: ```bash 二次元动漫风格,一位银白色长发的绝色女子矗立在暴风雪中的俄罗斯教堂风格的玄冰宫殿前,红色眼眸在火把跃动的橙红光芒中灼灼生辉。 黑色吊带裙的肩带被寒风吹得猎猎作响,裙摆的蓝色水晶配饰与紫色长筒袜在风雪中闪烁冷光。她单手高举燃烧的火把, 火星随风雪盘旋而上,另一手护住摇曳的火焰。暴雪模糊了宫殿尖顶的轮廓,冰晶在她睫毛上凝结,火光照亮她坚毅的侧脸与飞舞的发丝。 ``` <video controls autoplay src="https://cdn-uploads.huggingface.co/production/uploads/634dffc49b777beec3bc6448/lUWW1eWgsYaaI1b1obDYH.mp4"></video> --- #### **Example 2: Urban Ice Cream Serenity** **Prompt**: ```bash 二次元动漫风格,一位绝色的年轻女子,一头银白色长发倾泻而下,红色的眸子炯炯有神,站在金色的阳光下。 她身着黑色吊带裙,性感的背影和侧腹曲线分明,更衬托出她丰满的身材。裙摆上闪耀的蓝色水晶配饰, 与她紫色的手套和长筒袜形成鲜明对比。她手捧香草冰淇淋蛋筒,柔滑的口感在温暖的空气中缓缓融化。 她举止俏皮却不失优雅,缓慢而刻意地舔着冰淇淋——正如礼仪专家所建议的那样,她的舌头绕着冰淇淋边缘转圈, 接住滴落的冰淇淋。这幅画面融合了性感与纯真:冰凉的甜美触碰双唇,她的红眼闪烁着喜悦的光芒, 水晶饰品随着每一个细微的动作而闪耀。一滴冰淇淋眼看就要掉下来,但她灵巧地用舌头接住了, 轻声笑了起来。背景是熙熙攘攘的城市街道,微风轻拂着她的长发,冰淇淋的柔和色调与她深色的未来主义装扮相得益彰。 ``` <video controls autoplay src="https://cdn-uploads.huggingface.co/production/uploads/634dffc49b777beec3bc6448/Zner9upt_hf4jLdN5P5O9.mp4"></video> <video controls autoplay src="https://cdn-uploads.huggingface.co/production/uploads/634dffc49b777beec3bc6448/vRo281iLMX1tXHOTKlU2j.mp4"></video> --- #### **Example 3: Celestial Chambers** **Prompt**: ```bash 二次元动漫风格,一位银白色长发的绝色女子慵懒地侧卧在悬浮仙山的云锦床榻上,红色眼眸轻阖,黑色吊带裙的肩带滑落至臂弯, 露出白皙的肩颈曲线。裙摆的蓝色水晶配饰与紫色长筒袜在夜明珠柔光下泛着微光,纤长睫毛在脸颊投下阴影, 手中半融化的香草冰淇淋蛋筒斜倚在琉璃盏边。背景是透光的灵石屏风与飘动的星纱帐幔,发丝散落在织金枕上, 玄幻风格的卧室里悬浮着点点灵光。风格是二次元动漫风格,比例是16:9。 ``` <video controls autoplay src="https://cdn-uploads.huggingface.co/production/uploads/634dffc49b777beec3bc6448/AtuPo0asnKcaQG3-JTPSY.mp4"></video> --- ### **Technical Parameters** | Setting | Recommendation | Notes | |------------------|--------------------|----------------------------------------| | **CFG Scale** | 1 (Fixed) | Wan2.2 architecture requirement | | **Sampler** | uni_pc | Optimal for fabric/hair dynamics | | **Steps** | 8-12 | Balances detail & speed | | **Resolution** | 832x480 | Maximizes VRAM efficiency | | **Motion Factor**| 4-6 | Higher values intensify environmental FX | --- ### **Performance Profile** - **VRAM Consumption**: ~15GB at 832x480 - **Render Speed**: 38-60 sec/frame (RTX 4090) - **Troubleshooting**: - Snow/ice artifacts: Add `frost noise, particle distortion` to negative prompts - Lighting issues: Use `softglow` node at 0.4 strength - Consistency loss: Increase character token weight by 1.3x ### **License** CC-BY-NC-SA 4.0 (Non-commercial, share-alike) **Community Hub**: https://huggingface.co/svjack/Skirk_wan_2_2_14_B_text2video_lora_early/discussions ---