modelId
stringlengths
5
122
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]
downloads
int64
0
738M
likes
int64
0
11k
library_name
stringclasses
245 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
48 values
createdAt
timestamp[us, tz=UTC]
card
stringlengths
1
901k
ILKT/2024-06-23_09-09-07_epoch_42
ILKT
2024-06-28T08:07:37Z
0
0
sentence-transformers
[ "sentence-transformers", "sentence-similarity", "mteb", "feature-extraction", "en", "pl", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2024-06-28T08:07:36Z
--- language: - en - pl model-index: - name: PLACEHOLDER results: [] pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - mteb - feature-extraction ---
ILKT/2024-06-23_09-09-07_epoch_43
ILKT
2024-06-28T08:07:54Z
0
0
sentence-transformers
[ "sentence-transformers", "sentence-similarity", "mteb", "feature-extraction", "en", "pl", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2024-06-28T08:07:53Z
--- language: - en - pl model-index: - name: PLACEHOLDER results: [] pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - mteb - feature-extraction ---
WDong/dpo_0621
WDong
2024-06-28T08:33:47Z
0
0
peft
[ "peft", "safetensors", "llama-factory", "lora", "generated_from_trainer", "base_model:Qwen2/Qwen2-7B-Instruct", "license:other", "region:us" ]
null
2024-06-28T08:07:55Z
--- license: other library_name: peft tags: - llama-factory - lora - generated_from_trainer base_model: Qwen2/Qwen2-7B-Instruct model-index: - name: dpo_0621 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # dpo_0621 This model is a fine-tuned version of [/root/LLM_Data_Engineer/LLaMA-Factory/models/Qwen2-7B-Instruct-lora-06072000](https://huggingface.co//root/LLM_Data_Engineer/LLaMA-Factory/models/Qwen2-7B-Instruct-lora-06072000) on the dpo_data_5370_0621 dataset. It achieves the following results on the evaluation set: - Loss: 0.1241 - Rewards/chosen: -1.0706 - Rewards/rejected: -5.6170 - Rewards/accuracies: 0.9778 - Rewards/margins: 4.5464 - Logps/rejected: -238.9563 - Logps/chosen: -277.6737 - Logits/rejected: -1.3396 - Logits/chosen: -0.1357 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 4 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3.0 ### Training results ### Framework versions - PEFT 0.11.1 - Transformers 4.41.2 - Pytorch 2.1.2 - Datasets 2.19.2 - Tokenizers 0.19.1
ILKT/2024-06-23_09-09-07_epoch_44
ILKT
2024-06-28T08:08:12Z
0
0
sentence-transformers
[ "sentence-transformers", "sentence-similarity", "mteb", "feature-extraction", "en", "pl", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2024-06-28T08:08:11Z
--- language: - en - pl model-index: - name: PLACEHOLDER results: [] pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - mteb - feature-extraction ---
ILKT/2024-06-23_09-09-07_epoch_45
ILKT
2024-06-28T08:08:29Z
0
0
sentence-transformers
[ "sentence-transformers", "sentence-similarity", "mteb", "feature-extraction", "en", "pl", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2024-06-28T08:08:28Z
--- language: - en - pl model-index: - name: PLACEHOLDER results: [] pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - mteb - feature-extraction ---
ILKT/2024-06-23_09-09-07_epoch_46
ILKT
2024-06-28T08:08:46Z
0
0
sentence-transformers
[ "sentence-transformers", "sentence-similarity", "mteb", "feature-extraction", "en", "pl", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2024-06-28T08:08:45Z
--- language: - en - pl model-index: - name: PLACEHOLDER results: [] pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - mteb - feature-extraction ---
ILKT/2024-06-23_09-09-07_epoch_47
ILKT
2024-06-28T08:09:04Z
0
0
sentence-transformers
[ "sentence-transformers", "sentence-similarity", "mteb", "feature-extraction", "en", "pl", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2024-06-28T08:09:03Z
--- language: - en - pl model-index: - name: PLACEHOLDER results: [] pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - mteb - feature-extraction ---
ILKT/2024-06-23_09-09-07_epoch_48
ILKT
2024-06-28T08:09:22Z
0
0
sentence-transformers
[ "sentence-transformers", "sentence-similarity", "mteb", "feature-extraction", "en", "pl", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2024-06-28T08:09:21Z
--- language: - en - pl model-index: - name: PLACEHOLDER results: [] pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - mteb - feature-extraction ---
Kathernie/vasista-medium-ta_r_moe
Kathernie
2024-06-28T11:37:40Z
0
0
null
[ "tensorboard", "safetensors", "region:us" ]
null
2024-06-28T08:09:21Z
Entry not found
habulaj/137524113023
habulaj
2024-06-28T08:09:31Z
0
0
null
[ "region:us" ]
null
2024-06-28T08:09:30Z
Entry not found
ILKT/2024-06-23_09-09-07_epoch_49
ILKT
2024-06-28T08:09:40Z
0
0
sentence-transformers
[ "sentence-transformers", "sentence-similarity", "mteb", "feature-extraction", "en", "pl", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2024-06-28T08:09:39Z
--- language: - en - pl model-index: - name: PLACEHOLDER results: [] pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - mteb - feature-extraction ---
ILKT/2024-06-23_09-09-07_epoch_50
ILKT
2024-06-28T08:09:58Z
0
0
sentence-transformers
[ "sentence-transformers", "sentence-similarity", "mteb", "feature-extraction", "en", "pl", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2024-06-28T08:09:57Z
--- language: - en - pl model-index: - name: PLACEHOLDER results: [] pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - mteb - feature-extraction ---
ILKT/2024-06-23_09-09-07_epoch_51
ILKT
2024-06-28T08:10:15Z
0
0
sentence-transformers
[ "sentence-transformers", "sentence-similarity", "mteb", "feature-extraction", "en", "pl", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2024-06-28T08:10:14Z
--- language: - en - pl model-index: - name: PLACEHOLDER results: [] pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - mteb - feature-extraction ---
ILKT/2024-06-23_09-09-07_epoch_52
ILKT
2024-06-28T08:10:33Z
0
0
sentence-transformers
[ "sentence-transformers", "sentence-similarity", "mteb", "feature-extraction", "en", "pl", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2024-06-28T08:10:32Z
--- language: - en - pl model-index: - name: PLACEHOLDER results: [] pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - mteb - feature-extraction ---
ILKT/2024-06-23_09-09-07_epoch_53
ILKT
2024-06-28T08:10:51Z
0
0
sentence-transformers
[ "sentence-transformers", "sentence-similarity", "mteb", "feature-extraction", "en", "pl", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2024-06-28T08:10:50Z
--- language: - en - pl model-index: - name: PLACEHOLDER results: [] pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - mteb - feature-extraction ---
ILKT/2024-06-23_09-09-07_epoch_54
ILKT
2024-06-28T08:11:09Z
0
0
sentence-transformers
[ "sentence-transformers", "sentence-similarity", "mteb", "feature-extraction", "en", "pl", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2024-06-28T08:11:09Z
--- language: - en - pl model-index: - name: PLACEHOLDER results: [] pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - mteb - feature-extraction ---
ILKT/2024-06-23_09-09-07_epoch_55
ILKT
2024-06-28T08:11:27Z
0
0
sentence-transformers
[ "sentence-transformers", "sentence-similarity", "mteb", "feature-extraction", "en", "pl", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2024-06-28T08:11:26Z
--- language: - en - pl model-index: - name: PLACEHOLDER results: [] pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - mteb - feature-extraction ---
ILKT/2024-06-23_09-09-07_epoch_56
ILKT
2024-06-28T08:11:44Z
0
0
sentence-transformers
[ "sentence-transformers", "sentence-similarity", "mteb", "feature-extraction", "en", "pl", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2024-06-28T08:11:43Z
--- language: - en - pl model-index: - name: PLACEHOLDER results: [] pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - mteb - feature-extraction ---
evanslur/detr-finetuned-trotoar-100
evanslur
2024-06-28T08:11:54Z
0
0
null
[ "region:us" ]
null
2024-06-28T08:11:54Z
Entry not found
ILKT/2024-06-23_09-09-07_epoch_57
ILKT
2024-06-28T08:12:02Z
0
0
sentence-transformers
[ "sentence-transformers", "sentence-similarity", "mteb", "feature-extraction", "en", "pl", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2024-06-28T08:12:01Z
--- language: - en - pl model-index: - name: PLACEHOLDER results: [] pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - mteb - feature-extraction ---
ILKT/2024-06-23_09-09-07_epoch_58
ILKT
2024-06-28T08:12:20Z
0
0
sentence-transformers
[ "sentence-transformers", "sentence-similarity", "mteb", "feature-extraction", "en", "pl", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2024-06-28T08:12:19Z
--- language: - en - pl model-index: - name: PLACEHOLDER results: [] pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - mteb - feature-extraction ---
ILKT/2024-06-23_09-09-07_epoch_59
ILKT
2024-06-28T08:12:38Z
0
0
sentence-transformers
[ "sentence-transformers", "sentence-similarity", "mteb", "feature-extraction", "en", "pl", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2024-06-28T08:12:37Z
--- language: - en - pl model-index: - name: PLACEHOLDER results: [] pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - mteb - feature-extraction ---
ILKT/2024-06-23_09-09-07_epoch_60
ILKT
2024-06-28T08:12:55Z
0
0
sentence-transformers
[ "sentence-transformers", "sentence-similarity", "mteb", "feature-extraction", "en", "pl", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2024-06-28T08:12:54Z
--- language: - en - pl model-index: - name: PLACEHOLDER results: [] pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - mteb - feature-extraction ---
ILKT/2024-06-23_09-09-07_epoch_61
ILKT
2024-06-28T08:13:13Z
0
0
sentence-transformers
[ "sentence-transformers", "sentence-similarity", "mteb", "feature-extraction", "en", "pl", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2024-06-28T08:13:12Z
--- language: - en - pl model-index: - name: PLACEHOLDER results: [] pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - mteb - feature-extraction ---
ILKT/2024-06-23_09-09-07_epoch_62
ILKT
2024-06-28T08:13:30Z
0
0
sentence-transformers
[ "sentence-transformers", "sentence-similarity", "mteb", "feature-extraction", "en", "pl", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2024-06-28T08:13:29Z
--- language: - en - pl model-index: - name: PLACEHOLDER results: [] pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - mteb - feature-extraction ---
ILKT/2024-06-23_09-09-07_epoch_63
ILKT
2024-06-28T08:13:56Z
0
0
sentence-transformers
[ "sentence-transformers", "sentence-similarity", "mteb", "feature-extraction", "en", "pl", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2024-06-28T08:13:55Z
--- language: - en - pl model-index: - name: PLACEHOLDER results: [] pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - mteb - feature-extraction ---
ILKT/2024-06-23_09-09-07_epoch_64
ILKT
2024-06-28T08:14:14Z
0
0
sentence-transformers
[ "sentence-transformers", "sentence-similarity", "mteb", "feature-extraction", "en", "pl", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2024-06-28T08:14:14Z
--- language: - en - pl model-index: - name: PLACEHOLDER results: [] pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - mteb - feature-extraction ---
ILKT/2024-06-23_09-09-07_epoch_65
ILKT
2024-06-28T08:14:32Z
0
0
sentence-transformers
[ "sentence-transformers", "sentence-similarity", "mteb", "feature-extraction", "en", "pl", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2024-06-28T08:14:31Z
--- language: - en - pl model-index: - name: PLACEHOLDER results: [] pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - mteb - feature-extraction ---
ILKT/2024-06-23_09-09-07_epoch_66
ILKT
2024-06-28T08:14:49Z
0
0
sentence-transformers
[ "sentence-transformers", "sentence-similarity", "mteb", "feature-extraction", "en", "pl", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2024-06-28T08:14:49Z
--- language: - en - pl model-index: - name: PLACEHOLDER results: [] pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - mteb - feature-extraction ---
ILKT/2024-06-23_09-09-07_epoch_67
ILKT
2024-06-28T08:15:07Z
0
0
sentence-transformers
[ "sentence-transformers", "sentence-similarity", "mteb", "feature-extraction", "en", "pl", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2024-06-28T08:15:06Z
--- language: - en - pl model-index: - name: PLACEHOLDER results: [] pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - mteb - feature-extraction ---
ILKT/2024-06-23_09-09-07_epoch_68
ILKT
2024-06-28T08:15:25Z
0
0
sentence-transformers
[ "sentence-transformers", "sentence-similarity", "mteb", "feature-extraction", "en", "pl", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2024-06-28T08:15:24Z
--- language: - en - pl model-index: - name: PLACEHOLDER results: [] pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - mteb - feature-extraction ---
ILKT/2024-06-23_09-09-07_epoch_69
ILKT
2024-06-28T08:15:42Z
0
0
sentence-transformers
[ "sentence-transformers", "sentence-similarity", "mteb", "feature-extraction", "en", "pl", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2024-06-28T08:15:41Z
--- language: - en - pl model-index: - name: PLACEHOLDER results: [] pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - mteb - feature-extraction ---
ILKT/2024-06-23_09-09-07_epoch_70
ILKT
2024-06-28T08:16:00Z
0
0
sentence-transformers
[ "sentence-transformers", "sentence-similarity", "mteb", "feature-extraction", "en", "pl", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2024-06-28T08:15:59Z
--- language: - en - pl model-index: - name: PLACEHOLDER results: [] pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - mteb - feature-extraction ---
ILKT/2024-06-23_09-09-07_epoch_71
ILKT
2024-06-28T08:16:18Z
0
0
sentence-transformers
[ "sentence-transformers", "sentence-similarity", "mteb", "feature-extraction", "en", "pl", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2024-06-28T08:16:17Z
--- language: - en - pl model-index: - name: PLACEHOLDER results: [] pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - mteb - feature-extraction ---
ILKT/2024-06-23_09-09-07_epoch_72
ILKT
2024-06-28T08:16:36Z
0
0
sentence-transformers
[ "sentence-transformers", "sentence-similarity", "mteb", "feature-extraction", "en", "pl", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2024-06-28T08:16:35Z
--- language: - en - pl model-index: - name: PLACEHOLDER results: [] pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - mteb - feature-extraction ---
ILKT/2024-06-23_09-09-07_epoch_73
ILKT
2024-06-28T08:16:54Z
0
0
sentence-transformers
[ "sentence-transformers", "sentence-similarity", "mteb", "feature-extraction", "en", "pl", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2024-06-28T08:16:52Z
--- language: - en - pl model-index: - name: PLACEHOLDER results: [] pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - mteb - feature-extraction ---
ILKT/2024-06-23_09-09-07_epoch_74
ILKT
2024-06-28T08:17:11Z
0
0
sentence-transformers
[ "sentence-transformers", "sentence-similarity", "mteb", "feature-extraction", "en", "pl", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2024-06-28T08:17:10Z
--- language: - en - pl model-index: - name: PLACEHOLDER results: [] pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - mteb - feature-extraction ---
ILKT/2024-06-23_09-09-07_epoch_75
ILKT
2024-06-28T08:17:29Z
0
0
sentence-transformers
[ "sentence-transformers", "sentence-similarity", "mteb", "feature-extraction", "en", "pl", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2024-06-28T08:17:28Z
--- language: - en - pl model-index: - name: PLACEHOLDER results: [] pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - mteb - feature-extraction ---
LucianoDeben/Reinforce-model1
LucianoDeben
2024-06-28T08:49:19Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2024-06-28T08:19:41Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-model1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
djwild/remove-bg
djwild
2024-07-02T05:53:09Z
0
0
null
[ "onnx", "license:gpl-3.0", "region:us" ]
null
2024-06-28T08:23:35Z
--- license: gpl-3.0 ---
WDong/dpo_06221544_policy2
WDong
2024-06-28T08:35:37Z
0
0
peft
[ "peft", "safetensors", "llama-factory", "lora", "generated_from_trainer", "base_model:Qwen2/Qwen2-7B-Instruct", "license:other", "region:us" ]
null
2024-06-28T08:28:12Z
--- license: other library_name: peft tags: - llama-factory - lora - generated_from_trainer base_model: Qwen2/Qwen2-7B-Instruct model-index: - name: dpo_06221544_policy2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # dpo_06221544_policy2 This model is a fine-tuned version of [/root/LLM_Data_Engineer/LLaMA-Factory/models/Qwen2-7B-Instruct-sft-06221544-iter1-policy2](https://huggingface.co//root/LLM_Data_Engineer/LLaMA-Factory/models/Qwen2-7B-Instruct-sft-06221544-iter1-policy2) on the dpo_data_5370_0621 dataset. It achieves the following results on the evaluation set: - Loss: 0.0678 - Rewards/chosen: 0.9462 - Rewards/rejected: -3.0599 - Rewards/accuracies: 0.9778 - Rewards/margins: 4.0060 - Logps/rejected: -203.4532 - Logps/chosen: -274.8549 - Logits/rejected: -1.4117 - Logits/chosen: -0.2185 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 4 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3.0 ### Training results ### Framework versions - PEFT 0.11.1 - Transformers 4.41.2 - Pytorch 2.1.2 - Datasets 2.19.2 - Tokenizers 0.19.1
EralitePhilippines/EralitePhilippines
EralitePhilippines
2024-06-28T08:30:36Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2024-06-28T08:28:40Z
--- license: apache-2.0 --- What is Eralite? Eralite Pills is an advanced dietary supplement designed to support hearing health and alleviate hearing problems. Formulated with a blend of essential vitamins, minerals, and herbal extracts, Eralite capsule aims to improve auditory function, enhance ear health, and protect against age-related hearing loss. This supplement is ideal for individuals experiencing hearing issues or those who want to take proactive steps to maintain their hearing health. Official website:<a href="https://www.nutritionsee.com/eralithilippines">www.Eralite.com</a> <p><a href="https://www.nutritionsee.com/eralithilippines"> <img src="https://www.nutritionsee.com/wp-content/uploads/2024/06/Eralite-Philippines-.png" alt="enter image description here"> </a></p> <a href="https://www.nutritionsee.com/eralithilippines">Buy now!! Click the link below for more information and get 50% off now... Hurry</a> Official website:<a href="https://www.nutritionsee.com/eralithilippines">www.Eralite.com</a>
lukarape/w2v-bert-2.0-acoustic-v30
lukarape
2024-06-28T08:29:41Z
0
0
transformers
[ "transformers", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-06-28T08:29:26Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
huggingfacepremium/Phi-3-mini-128k-instruct-bnb-4bit-GGUF
huggingfacepremium
2024-06-28T08:30:32Z
0
0
null
[ "region:us" ]
null
2024-06-28T08:30:32Z
Entry not found
adem-jaziri-11/MyPetModel
adem-jaziri-11
2024-06-28T08:30:35Z
0
0
null
[ "region:us" ]
null
2024-06-28T08:30:35Z
Entry not found
EdwardSpaeth/openllama-3b
EdwardSpaeth
2024-06-28T08:33:07Z
0
0
null
[ "region:us" ]
null
2024-06-28T08:33:07Z
Entry not found
EdwardSpaeth/openllama-3b-fine-tuned
EdwardSpaeth
2024-06-28T08:33:37Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-06-28T08:33:17Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
roopeshrokade/example-model
roopeshrokade
2024-06-28T09:18:42Z
0
0
null
[ "region:us" ]
null
2024-06-28T08:34:57Z
# Example Model This is my model card README --- license: mit ---
rajparmar/finetuned_tpicap_model
rajparmar
2024-06-28T08:36:11Z
0
0
null
[ "tensorboard", "safetensors", "generated_from_trainer", "base_model:bigscience/bloomz-560m", "license:bigscience-bloom-rail-1.0", "region:us" ]
null
2024-06-28T08:36:09Z
--- license: bigscience-bloom-rail-1.0 base_model: bigscience/bloomz-560m tags: - generated_from_trainer model-index: - name: finetuned_tpicap_model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_tpicap_model This model is a fine-tuned version of [bigscience/bloomz-560m](https://huggingface.co/bigscience/bloomz-560m) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.35.0 - Pytorch 2.0.0+cu117 - Datasets 2.13.0 - Tokenizers 0.14.1
swetapatra/EDOS
swetapatra
2024-06-28T08:41:58Z
0
0
null
[ "region:us" ]
null
2024-06-28T08:38:51Z
# EDOS-OSDM flanT5-Impl-EDOS-OSDM
mukulb/tinyllama-strisakhi
mukulb
2024-06-28T08:39:50Z
0
0
null
[ "region:us" ]
null
2024-06-28T08:39:50Z
Entry not found
jianzongwu/MotionBooth
jianzongwu
2024-06-28T09:23:38Z
0
0
null
[ "arxiv:2406.17758", "license:mit", "region:us" ]
null
2024-06-28T08:40:37Z
--- license: mit --- # Model Card for MotionBooth ## Model Description - **Paper:** https://arxiv.org/abs/2406.17758v1 - **Project Page:** https://jianzongwu.github.io/projects/motionbooth - **Github Repository:** https://github.com/jianzongwu/MotionBooth ### Model Summary Fine-tuned checkpoints from subjects in [the MotionBooth dataset](https://huggingface.co/datasets/jianzongwu/MotionBooth). ``` @article{wu2024motionbooth, title={MotionBooth: Motion-Aware Customized Text-to-Video Generation}, author={Jianzong Wu and Xiangtai Li and Yanhong Zeng and Jiangning Zhang and Qianyu Zhou and Yining Li and Yunhai Tong and Kai Chen}, journal={arXiv pre-print arXiv:2406.17758}, year={2024}, } ```
LucianoDeben/Reinforce-pixelcopterv1
LucianoDeben
2024-06-28T08:57:51Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2024-06-28T08:40:51Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-pixelcopterv1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 8.50 +/- 11.86 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
AlexeyMol/gnnt_chemical
AlexeyMol
2024-06-28T09:09:01Z
0
0
null
[ "license:unknown", "region:us" ]
null
2024-06-28T08:43:18Z
--- license: unknown ---
houbw/llama3_8b_bnb_4bit_ruozhiba_1
houbw
2024-06-28T08:47:17Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "llama", "trl", "en", "base_model:unsloth/llama-3-8b-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-06-28T08:47:02Z
--- base_model: unsloth/llama-3-8b-bnb-4bit language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - llama - trl --- # Uploaded model - **Developed by:** houbw - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3-8b-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
PeterGordon/test1
PeterGordon
2024-06-28T11:28:46Z
0
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2024-06-28T08:51:34Z
--- {} --- # Model Card for Nexa Temp Mapping ## Model Description This model, named Nexa Temp Mapping, is fine-tuned from the Mistral-7B-Instruct-v0.2 model for specialized tasks in creating test cases for Temperature Mapping of areas. It incorporates enhancements using PEFT (Pretrained Encoder Fine-Tuning) techniques to optimize performance for specific applications. ## Training Data Describe the dataset used for training the model: - **Source:** [Specify the source of the training data] - **Size:** 50 Datapoints - **Details:** Brief description of the dataset characteristics. ## Intended Use This model is intended for use in the creation of test cases to qualify equipment such as fridges, freezers, autoclaves and ovens. It is designed to improve the code model by including domain knowledge over Supplement 8 Temperature mapping of storage areas Technical supplement to WHO Technical Report Series, No. 961, 2011. Annex 9: Model guidance for the stoage and transport of time- and temperature-sensitive pharmaceutcial products. ## How to Use ```python from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("PeterGordon/nexa-temp-mapping") model = AutoModelForCausalLM.from_pretrained("PeterGordon/nexa-temp-mapping") text = "Your input text here" encoded_input = tokenizer(text, return_tensors='pt') output = model.generate(**encoded_input) print(tokenizer.decode(output[0], skip_special_tokens=True)) --- license: apache-2.0 ---
Yash0109/diaratechHf_llamae39f1791-11ff-4c9d-9966-b8f40f002127
Yash0109
2024-06-28T08:58:55Z
0
0
null
[ "region:us" ]
null
2024-06-28T08:58:55Z
Entry not found
Yash0109/diaratechHf_llama59c71617-7bce-43cf-a0b6-d622ea5fdb0f
Yash0109
2024-06-28T09:00:21Z
0
0
null
[ "region:us" ]
null
2024-06-28T09:00:21Z
Entry not found
msplits/peft-starcoder-lora-a100
msplits
2024-07-01T08:48:24Z
0
0
null
[ "tensorboard", "generated_from_trainer", "license:bigcode-openrail-m", "region:us" ]
null
2024-06-28T09:00:45Z
--- license: bigcode-openrail-m tags: - generated_from_trainer model-index: - name: peft-starcoder-lora-a100 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # peft-starcoder-lora-a100 This model is a fine-tuned version of [bigcode/starcoderbase-1b](https://huggingface.co/bigcode/starcoderbase-1b) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.0550 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 30 - training_steps: 2000 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.0005 | 0.05 | 100 | 0.9347 | | 0.9939 | 0.1 | 200 | 0.9456 | | 0.6657 | 0.15 | 300 | 0.9741 | | 0.876 | 0.2 | 400 | 0.9765 | | 0.9736 | 0.25 | 500 | 0.9916 | | 0.5713 | 0.3 | 600 | 0.9979 | | 0.7916 | 0.35 | 700 | 1.0035 | | 0.8799 | 0.4 | 800 | 1.0083 | | 0.5209 | 0.45 | 900 | 1.0225 | | 0.7409 | 0.5 | 1000 | 1.0318 | | 0.7843 | 0.55 | 1100 | 1.0195 | | 0.4715 | 0.6 | 1200 | 1.0547 | | 0.7062 | 0.65 | 1300 | 1.0521 | | 0.6678 | 0.7 | 1400 | 1.0479 | | 0.5542 | 0.75 | 1500 | 1.0527 | | 0.6735 | 0.8 | 1600 | 1.0521 | | 0.591 | 0.85 | 1700 | 1.0556 | | 0.619 | 0.9 | 1800 | 1.0586 | | 0.5836 | 0.95 | 1900 | 1.0570 | | 0.6231 | 1.0 | 2000 | 1.0550 | ### Framework versions - Transformers 4.30.0.dev0 - Pytorch 2.3.0+cu121 - Datasets 2.20.0 - Tokenizers 0.13.3
detek/2000_steps
detek
2024-06-28T09:32:53Z
0
0
null
[ "safetensors", "region:us" ]
null
2024-06-28T09:02:29Z
Entry not found
rajparmar/bloomz_finetuned_tpicap_model
rajparmar
2024-06-28T09:17:19Z
0
0
null
[ "tensorboard", "safetensors", "generated_from_trainer", "base_model:bigscience/bloomz-560m", "license:bigscience-bloom-rail-1.0", "region:us" ]
null
2024-06-28T09:02:49Z
--- license: bigscience-bloom-rail-1.0 base_model: bigscience/bloomz-560m tags: - generated_from_trainer model-index: - name: bloomz_finetuned_tpicap_model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bloomz_finetuned_tpicap_model This model is a fine-tuned version of [bigscience/bloomz-560m](https://huggingface.co/bigscience/bloomz-560m) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 40 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.35.0 - Pytorch 2.0.0+cu117 - Datasets 2.13.0 - Tokenizers 0.14.1
Firemido/voicemodels
Firemido
2024-06-28T09:07:33Z
0
0
null
[ "region:us" ]
null
2024-06-28T09:02:56Z
Entry not found
Yash0109/diaratechHf_llama2748373c-a51c-4f20-8842-b168cb04d258
Yash0109
2024-06-28T09:03:53Z
0
0
null
[ "region:us" ]
null
2024-06-28T09:03:53Z
Entry not found
philk11/naschain
philk11
2024-06-28T09:05:28Z
0
0
null
[ "region:us" ]
null
2024-06-28T09:05:28Z
Entry not found
Yash0109/diaratechHf_llama330d9d86-c9f5-4ea8-8d83-ff0d4167d121
Yash0109
2024-06-28T09:09:34Z
0
0
peft
[ "peft", "safetensors", "trl", "sft", "generated_from_trainer", "text-generation", "conversational", "dataset:generator", "base_model:mistralai/Mistral-7B-Instruct-v0.2", "license:apache-2.0", "region:us" ]
text-generation
2024-06-28T09:05:38Z
--- base_model: mistralai/Mistral-7B-Instruct-v0.2 datasets: - generator library_name: peft license: apache-2.0 pipeline_tag: text-generation tags: - trl - sft - generated_from_trainer model-index: - name: diaratechHf_llama330d9d86-c9f5-4ea8-8d83-ff0d4167d121 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # diaratechHf_llama330d9d86-c9f5-4ea8-8d83-ff0d4167d121 This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) on the generator dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - training_steps: 2 ### Training results ### Framework versions - PEFT 0.10.0 - Transformers 4.39.3 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.15.2
demolei/sft_openassistant-guanaco
demolei
2024-06-28T09:06:16Z
0
0
null
[ "region:us" ]
null
2024-06-28T09:06:16Z
Entry not found
bebocoding/sdgsd
bebocoding
2024-06-28T09:06:44Z
0
0
null
[ "region:us" ]
null
2024-06-28T09:06:44Z
Entry not found
luissattelmayer/immigration_multilingual_finetuned
luissattelmayer
2024-06-28T09:07:04Z
0
0
null
[ "region:us" ]
null
2024-06-28T09:07:04Z
Entry not found
fiyinoye/mt5-base-summarize-yoruba
fiyinoye
2024-06-28T09:07:13Z
0
0
null
[ "region:us" ]
null
2024-06-28T09:07:13Z
Entry not found
nglguarino/peft-dialogue-summary-training-1719565688
nglguarino
2024-06-28T09:08:08Z
0
0
null
[ "region:us" ]
null
2024-06-28T09:08:08Z
Entry not found
ShapeKapseln33/SlimGummies776
ShapeKapseln33
2024-06-28T09:16:03Z
0
0
null
[ "region:us" ]
null
2024-06-28T09:09:52Z
[Deutschland] Slim Gummies Bewertungen Diese natürlichen und klinisch erprobten Gummis sollen Menschen helfen, gesundes Gewicht zu verlieren und schlank zu werden. Für diejenigen, die Nahrungsergänzungsmittel einnehmen möchten, sind Softgel-Kapseln mit den natürlichen Inhaltsstoffen der Formel erhältlich. Es handelt sich um eine Kapsel zur oralen Fettverbrennung, die Ihren Körper auch daran hindert, Fett zu speichern. **[Klicken Sie hier, um Slim Gummies jetzt auf der offiziellen Website zu kaufen](https://slim-gummies-deutschland.de/)** Faktoren wie Alter, Geschlecht und Gewicht sowie der allgemeine Gesundheitszustand können die Wirkung beeinflussen. Konsultationen mit Fachpersonal vor der Einnahme sind zu empfehlen, um Verträglichkeit und mögliche Wechselwirkungen zu überprüfen. dm und Rossmann Produktverfügbarkeit: Slimm Gummies sind nicht im Sortiment. Verkaufsstellen: Nicht bei dm und Rossmann erhältlich. Stiftung Warentest Slim Gummies: Nicht geprüft Aktueller Stand: Keine Testergebnisse vorhanden Kundenmeinungen, Kritiken, Erfahrungsberichte und Bewertungen Die Hauptbestandteile von Abnehm-Gummis wie Äpfelsäure, Vitamin B12 und Folsäure sind bekannt für ihre gesundheitsfördernden Eigenschaften. Äpfelsäure soll das Gewichtsmanagement unterstützen und Vitamin B12 sowie Folsäure tragen zum Energiemetabolismus bei. Wissenschaftliche Publikationen erkennen die Bedeutung dieser Stoffe für die Gesundheit an, jedoch ist der direkte Effekt auf die Gewichtsreduktion nicht einheitlich und hängt von persönlichen Umständen ab. Bei einer empfohlenen Tagesdosis von zwei Stück, lassen sich die möglichen positiven Eigenschaften der Inhaltsstoffe leicht in den Alltag integrieren. **[Klicken Sie hier, um Slim Gummies jetzt auf der offiziellen Website zu kaufen](https://slim-gummies-deutschland.de/)** Berichte deuten auf eine Reihe möglicher positiver Effekte hin, wie erhöhte Energieverfügbarkeit und verringertes Hungergefühl, welche bis zu sichtbaren Resultaten bei der Gewichtsreduktion reichen. Obwohl diese Berichte konstruiert sein können, zeigen sie das mögliche Spektrum an Wirkungen, die Konsumenten erfahren könnten. Der Geschmack und die Verträglichkeit der Kautabletten werden oft positiv bewertet. Zahlreiche Slimm Gummies Erfahrungsberichte und die offenkundigen Nutzen der Bestandteile sprechen für das Produkt, jedoch sind differenzierte Überlegungen nötig. Die Wirksamkeit von solchen Ergänzungsmitteln kann unterschiedlich sein, und es mangelt an langfristigen Studien. Nahrungsergänzungsmittel sollten eine ausgewogene Ernährung und Bewegung nicht ersetzen, sondern ergänzen. Insgesamt stellen die Slimm Fruchtgummis eine attraktive Möglichkeit dar, um Bemühungen für einen gesunden Lebenswandel zu unterstützen. Die Kombination aus angenehmem Geschmack und einfacher Anwendung, zusammen mit den positiven Eigenschaften der Inhaltsstoffe, zeichnet sie aus. Es ist empfehlenswert, die Einnahme von Nahrungsergänzungsmitteln mit einem Fachmann abzustimmen und realistisch in Bezug auf die erwarteten Resultate zu bleiben. Abnehm-Gummis können als nützliche Ergänzung angesehen werden, sofern sie richtig angewendet und in einem gesunden Lebensstil integriert werden. ##Slimm Gummies zum besten Preis erwerben Beim Online-Kauf von Nahrungsergänzungsmitteln zur Unterstützung des Gewichtsmanagement ist es wichtig, vertrauenswürdige Anbieter zu wählen. Slimm Gummies bieten eine geschmackvolle Alternative zu herkömmlichen Präparaten und können aktuell mit Preisnachlässen erworben werden. ##Wurden Slim Gummies in der Fernsehsendung Höhle der Löwen gezeigt? Die Diskussion über Slim Gummies, ein Diätprodukt in Gummibärchenform, umfasst unter anderem deren angebliche Präsenz in der bekannten Fernsehshow „Die Höhle der Löwen“. Betrachtet man die öffentlich zugänglichen Informationen, ergibt sich folgendes Bild: Die Slimm Gummies wurden nicht in Höhle der Löwen vorgestellt. Es bleibt festzustellen, dass Werbung und Realität bei Produkten zum Abnehmen nicht immer übereinstimmen und Verbraucher gut beraten sind, sich eingehend zu informieren. **[Klicken Sie hier, um Slim Gummies jetzt auf der offiziellen Website zu kaufen](https://slim-gummies-deutschland.de/)**
Asme/w2v-bert-2.0-amh
Asme
2024-06-28T09:10:14Z
0
0
null
[ "region:us" ]
null
2024-06-28T09:10:14Z
Entry not found
whizzzzkid/whizzzzkid_245_5
whizzzzkid
2024-06-28T09:14:28Z
0
0
transformers
[ "transformers", "safetensors", "stablelm", "text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-06-28T09:12:14Z
Entry not found
Boostaro155/PharmaFlex455
Boostaro155
2024-06-28T09:15:20Z
0
0
null
[ "region:us" ]
null
2024-06-28T09:14:51Z
# PharmaFlex XR Reviews & Experiences – Pharma Flex South Korea Benefis Official Price, Buy PharmaFlex XR Reviews & Experiences - The most popular nutritional supplement Pharma Flex Rx is intended to maintain and promote joint health. The manufacturer says it features all natural ingredients with no fillers. ## **[Click Here To Buy Now From Official Website Of PharmaFlex XR](https://capsules24x7.com/pharma-flex-kr)** ## Description PharmaFlex Rx is a breakthrough joint support formula designed to help people with joint pain return to an active life. This unique supplement aims to relieve joint pain, support muscle recovery, accelerate joint repair and strengthen connective tissue. With PharmaFlex Rx you can relieve everyday discomfort and feel mobile again. Areas of use Joint pain Wear and tear of the joints Arthritis Sports injuries Muscle fatigue and recovery ## PharmaFlex Rx - How it works The way PharmaFlex Rx works is based on a unique combination of ingredients. These ingredients strengthen the joints, inhibit inflammation and relieve pain. The formula works synergistically to provide holistic joint support. ##PharmaFlex Rx - Ingredients and Active Ingredient PharmaFlex Rx contains high-quality ingredients, including: Glucosamine sulfate: Helps produce cartilage and supports joint function. Turmeric root extract: Fights inflammation and relieves pain. MSM (methylsulfonylmethane): Reduces joint pain and improves mobility. Bromelain: Has anti-inflammatory and pain-relieving properties. ## PharmaFlex Rx – Effects – Impacts Regular use of PharmaFlex Rx can lead to the following effects: Relief of joint pain Supporting muscle recovery A ccelerating joint repair Strengthening connective tissue Reducing everyday ailments ## **[Click Here To Buy Now From Official Website Of PharmaFlex XR](https://capsules24x7.com/pharma-flex-kr)**
Yash0109/diaratechHf_llama930a077e-e52e-4344-8912-f1853818e9f1
Yash0109
2024-06-28T09:16:33Z
0
0
null
[ "safetensors", "region:us" ]
null
2024-06-28T09:15:09Z
Entry not found
Sayalik45/function_calling
Sayalik45
2024-06-28T09:16:37Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "gemma", "trl", "en", "base_model:unsloth/gemma-1.1-2b-it-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-06-28T09:16:26Z
--- base_model: unsloth/gemma-1.1-2b-it-bnb-4bit language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - gemma - trl --- # Uploaded model - **Developed by:** Sayalik45 - **License:** apache-2.0 - **Finetuned from model :** unsloth/gemma-1.1-2b-it-bnb-4bit This gemma model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
IIIIID/Staplus
IIIIID
2024-06-28T09:17:17Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2024-06-28T09:17:17Z
--- license: apache-2.0 ---
bebocoding/slaldkda
bebocoding
2024-06-28T09:18:46Z
0
0
null
[ "region:us" ]
null
2024-06-28T09:18:46Z
Entry not found
yraziel/amir_dadon
yraziel
2024-06-28T09:22:35Z
0
0
null
[ "region:us" ]
null
2024-06-28T09:20:52Z
Entry not found
elrom/vibe-ish
elrom
2024-06-28T09:21:33Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2024-06-28T09:21:33Z
--- license: apache-2.0 ---
huggingfacepremium/NeuralBeagle14-7B-GGUF
huggingfacepremium
2024-06-28T09:24:43Z
0
0
null
[ "region:us" ]
null
2024-06-28T09:24:43Z
Entry not found
Anjana10/LoRA-IndicBART-XLSum-Fine-tuned
Anjana10
2024-06-28T10:19:01Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-06-28T09:25:30Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
jan-hq/llama3_test
jan-hq
2024-06-28T09:28:19Z
0
0
null
[ "region:us" ]
null
2024-06-28T09:28:19Z
Entry not found
rayanrayan/German-to-Urdu
rayanrayan
2024-06-28T10:09:37Z
0
0
null
[ "region:us" ]
null
2024-06-28T09:30:17Z
Entry not found
AmritaBha/sd15_fill_mscoco
AmritaBha
2024-06-28T09:30:21Z
0
0
null
[ "region:us" ]
null
2024-06-28T09:30:21Z
Entry not found
febattig/example-model
febattig
2024-06-28T09:55:48Z
0
0
null
[ "region:us" ]
null
2024-06-28T09:30:35Z
Felix Battig --- license: mit ---
MarcelPower/codet5-large-mbpp
MarcelPower
2024-06-28T12:13:13Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-06-28T09:33:27Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
sebgobb/test_lora_llama3model
sebgobb
2024-06-28T09:37:13Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "llama", "trl", "en", "base_model:unsloth/llama-3-8b-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-06-28T09:37:03Z
--- base_model: unsloth/llama-3-8b-bnb-4bit language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - llama - trl --- # Uploaded model - **Developed by:** sebgobb - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3-8b-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
PrunaAI/zjunlp-OceanGPT-7b-v0.1-QUANTO-int2bit-smashed
PrunaAI
2024-07-01T07:59:35Z
0
0
transformers
[ "transformers", "pruna-ai", "base_model:zjunlp/OceanGPT-7b-v0.1", "endpoints_compatible", "region:us" ]
null
2024-06-28T09:40:22Z
--- thumbnail: "https://assets-global.website-files.com/646b351987a8d8ce158d1940/64ec9e96b4334c0e1ac41504_Logo%20with%20white%20text.svg" base_model: zjunlp/OceanGPT-7b-v0.1 metrics: - memory_disk - memory_inference - inference_latency - inference_throughput - inference_CO2_emissions - inference_energy_consumption tags: - pruna-ai --- <!-- header start --> <!-- 200823 --> <div style="width: auto; margin-left: auto; margin-right: auto"> <a href="https://www.pruna.ai/" target="_blank" rel="noopener noreferrer"> <img src="https://i.imgur.com/eDAlcgk.png" alt="PrunaAI" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </a> </div> <!-- header end --> [![Twitter](https://img.shields.io/twitter/follow/PrunaAI?style=social)](https://twitter.com/PrunaAI) [![GitHub](https://img.shields.io/github/followers/PrunaAI?label=Follow%20%40PrunaAI&style=social)](https://github.com/PrunaAI) [![LinkedIn](https://img.shields.io/badge/LinkedIn-Connect-blue)](https://www.linkedin.com/company/93832878/admin/feed/posts/?feedType=following) [![Discord](https://img.shields.io/badge/Discord-Join%20Us-blue?style=social&logo=discord)](https://discord.gg/CP4VSgck) # Simply make AI models cheaper, smaller, faster, and greener! - Give a thumbs up if you like this model! - Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact). - Request access to easily compress your *own* AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai). - Read the documentations to know more [here](https://pruna-ai-pruna.readthedocs-hosted.com/en/latest/) - Join Pruna AI community on Discord [here](https://discord.gg/CP4VSgck) to share feedback/suggestions or get help. ## Results ![image info](./plots.png) **Frequently Asked Questions** - ***How does the compression work?*** The model is compressed with quanto. - ***How does the model quality change?*** The quality of the model output might vary compared to the base model. - ***How is the model efficiency evaluated?*** These results were obtained on HARDWARE_NAME with configuration described in `model/smash_config.json` and are obtained after a hardware warmup. The smashed model is directly compared to the original base model. Efficiency results may vary in other settings (e.g. other hardware, image size, batch size, ...). We recommend to directly run them in the use-case conditions to know if the smashed model can benefit you. - ***What is the model format?*** We use safetensors. - ***What calibration data has been used?*** If needed by the compression method, we used WikiText as the calibration data. - ***What is the naming convention for Pruna Huggingface models?*** We take the original model name and append "turbo", "tiny", or "green" if the smashed model has a measured inference speed, inference memory, or inference energy consumption which is less than 90% of the original base model. - ***How to compress my own models?*** You can request premium access to more compression methods and tech support for your specific use-cases [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai). - ***What are "first" metrics?*** Results mentioning "first" are obtained after the first run of the model. The first run might take more memory or be slower than the subsequent runs due cuda overheads. - ***What are "Sync" and "Async" metrics?*** "Sync" metrics are obtained by syncing all GPU processes and stop measurement when all of them are executed. "Async" metrics are obtained without syncing all GPU processes and stop when the model output can be used by the CPU. We provide both metrics since both could be relevant depending on the use-case. We recommend to test the efficiency gains directly in your use-cases. ## Setup You can run the smashed model with these steps: 0. Check requirements from the original repo zjunlp/OceanGPT-7b-v0.1 installed. In particular, check python, cuda, and transformers versions. 1. Make sure that you have installed quantization related packages. ```bash pip install quanto ``` 2. Load & run the model. ```python from transformers import AutoModelForCausalLM, AutoTokenizer IMPORTS model = AutoModelForCausalLM.from_pretrained("PrunaAI/zjunlp-OceanGPT-7b-v0.1-QUANTO-int2bit-smashed", trust_remote_code=True, device_map='auto') tokenizer = AutoTokenizer.from_pretrained("zjunlp/OceanGPT-7b-v0.1") input_ids = tokenizer("What is the color of prunes?,", return_tensors='pt').to(model.device)["input_ids"] outputs = model.generate(input_ids, max_new_tokens=216) tokenizer.decode(outputs[0]) ``` ## Configurations The configuration info are in `smash_config.json`. ## Credits & License The license of the smashed model follows the license of the original model. Please check the license of the original model zjunlp/OceanGPT-7b-v0.1 before using this model which provided the base model. The license of the `pruna-engine` is [here](https://pypi.org/project/pruna-engine/) on Pypi. ## Want to compress other models? - Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact). - Request access to easily compress your own AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
SASSASASA/Model1
SASSASASA
2024-06-28T09:42:52Z
0
0
null
[ "region:us" ]
null
2024-06-28T09:42:52Z
Entry not found
fahad800x/fahad
fahad800x
2024-06-28T09:45:40Z
0
0
null
[ "license:ncsa", "region:us" ]
null
2024-06-28T09:45:40Z
--- license: ncsa ---
marthakk/detr_finetuned_oculardataset
marthakk
2024-06-28T10:56:55Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "conditional_detr", "object-detection", "generated_from_trainer", "dataset:dsi", "base_model:microsoft/conditional-detr-resnet-50", "license:apache-2.0", "endpoints_compatible", "region:us" ]
object-detection
2024-06-28T09:46:25Z
--- license: apache-2.0 base_model: microsoft/conditional-detr-resnet-50 tags: - generated_from_trainer datasets: - dsi model-index: - name: detr_finetuned_oculardataset results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # detr_finetuned_oculardataset This model is a fine-tuned version of [microsoft/conditional-detr-resnet-50](https://huggingface.co/microsoft/conditional-detr-resnet-50) on the dsi dataset. It achieves the following results on the evaluation set: - Loss: 1.0672 - Map: 0.3032 - Map 50: 0.4973 - Map 75: 0.3701 - Map Small: 0.2981 - Map Medium: 0.6746 - Map Large: -1.0 - Mar 1: 0.1 - Mar 10: 0.3678 - Mar 100: 0.4114 - Mar Small: 0.4054 - Mar Medium: 0.7421 - Mar Large: -1.0 - Map Falciparum Trophozoite: 0.0156 - Mar 100 Falciparum Trophozoite: 0.1511 - Map Wbc: 0.5908 - Mar 100 Wbc: 0.6716 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Map | Map 50 | Map 75 | Map Small | Map Medium | Map Large | Mar 1 | Mar 10 | Mar 100 | Mar Small | Mar Medium | Mar Large | Map Falciparum Trophozoite | Mar 100 Falciparum Trophozoite | Map Wbc | Mar 100 Wbc | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:----------:|:---------:|:------:|:------:|:-------:|:---------:|:----------:|:---------:|:--------------------------:|:------------------------------:|:-------:|:-----------:| | No log | 1.0 | 86 | 1.6645 | 0.131 | 0.2562 | 0.1153 | 0.1289 | 0.3974 | -1.0 | 0.0647 | 0.2312 | 0.3164 | 0.314 | 0.6159 | -1.0 | 0.0004 | 0.0456 | 0.2616 | 0.5873 | | No log | 2.0 | 172 | 1.4800 | 0.2028 | 0.4079 | 0.1766 | 0.1993 | 0.4876 | -1.0 | 0.0677 | 0.2725 | 0.3282 | 0.3251 | 0.628 | -1.0 | 0.0007 | 0.0648 | 0.405 | 0.5915 | | No log | 3.0 | 258 | 1.3829 | 0.2264 | 0.4496 | 0.1936 | 0.2193 | 0.5542 | -1.0 | 0.0729 | 0.2807 | 0.3215 | 0.3168 | 0.629 | -1.0 | 0.0019 | 0.0706 | 0.451 | 0.5725 | | No log | 4.0 | 344 | 1.3318 | 0.2089 | 0.4403 | 0.1427 | 0.2056 | 0.4726 | -1.0 | 0.0691 | 0.2751 | 0.3221 | 0.3116 | 0.6748 | -1.0 | 0.002 | 0.0941 | 0.4158 | 0.5502 | | No log | 5.0 | 430 | 1.2739 | 0.2454 | 0.4562 | 0.2342 | 0.2354 | 0.614 | -1.0 | 0.0777 | 0.3046 | 0.3482 | 0.338 | 0.7262 | -1.0 | 0.002 | 0.0906 | 0.4888 | 0.6058 | | 1.7665 | 6.0 | 516 | 1.2365 | 0.2599 | 0.4744 | 0.2599 | 0.2522 | 0.6258 | -1.0 | 0.0846 | 0.3217 | 0.361 | 0.354 | 0.7 | -1.0 | 0.005 | 0.1047 | 0.5149 | 0.6173 | | 1.7665 | 7.0 | 602 | 1.2548 | 0.2488 | 0.4689 | 0.2302 | 0.2434 | 0.5622 | -1.0 | 0.0788 | 0.31 | 0.3519 | 0.3446 | 0.6888 | -1.0 | 0.0038 | 0.1012 | 0.4938 | 0.6026 | | 1.7665 | 8.0 | 688 | 1.2031 | 0.2715 | 0.474 | 0.3074 | 0.2664 | 0.6153 | -1.0 | 0.0897 | 0.3309 | 0.3744 | 0.3723 | 0.657 | -1.0 | 0.0058 | 0.1164 | 0.5373 | 0.6325 | | 1.7665 | 9.0 | 774 | 1.2492 | 0.2417 | 0.4715 | 0.2154 | 0.2349 | 0.5753 | -1.0 | 0.0789 | 0.3064 | 0.3503 | 0.342 | 0.686 | -1.0 | 0.0043 | 0.1129 | 0.4791 | 0.5877 | | 1.7665 | 10.0 | 860 | 1.1861 | 0.2752 | 0.4772 | 0.2891 | 0.2683 | 0.6259 | -1.0 | 0.0872 | 0.3342 | 0.3823 | 0.379 | 0.6813 | -1.0 | 0.0061 | 0.1217 | 0.5443 | 0.6429 | | 1.7665 | 11.0 | 946 | 1.1996 | 0.2607 | 0.4605 | 0.2779 | 0.2565 | 0.5972 | -1.0 | 0.085 | 0.326 | 0.3722 | 0.3669 | 0.6813 | -1.0 | 0.0041 | 0.1254 | 0.5173 | 0.6189 | | 1.2663 | 12.0 | 1032 | 1.1664 | 0.2764 | 0.4753 | 0.3137 | 0.2718 | 0.6148 | -1.0 | 0.0892 | 0.333 | 0.3781 | 0.3741 | 0.685 | -1.0 | 0.0054 | 0.1188 | 0.5473 | 0.6375 | | 1.2663 | 13.0 | 1118 | 1.1451 | 0.2804 | 0.4694 | 0.3212 | 0.2732 | 0.6595 | -1.0 | 0.092 | 0.3412 | 0.3852 | 0.3787 | 0.7187 | -1.0 | 0.0051 | 0.1282 | 0.5557 | 0.6421 | | 1.2663 | 14.0 | 1204 | 1.1251 | 0.2889 | 0.4761 | 0.3401 | 0.2835 | 0.6619 | -1.0 | 0.0926 | 0.3496 | 0.3979 | 0.393 | 0.714 | -1.0 | 0.0091 | 0.1391 | 0.5687 | 0.6567 | | 1.2663 | 15.0 | 1290 | 1.1493 | 0.2778 | 0.4695 | 0.3126 | 0.2706 | 0.6531 | -1.0 | 0.0911 | 0.3415 | 0.3881 | 0.3792 | 0.743 | -1.0 | 0.0054 | 0.1382 | 0.5502 | 0.6379 | | 1.2663 | 16.0 | 1376 | 1.1125 | 0.2846 | 0.4799 | 0.3307 | 0.2804 | 0.6415 | -1.0 | 0.0926 | 0.3498 | 0.4005 | 0.3954 | 0.7159 | -1.0 | 0.0075 | 0.1452 | 0.5617 | 0.6558 | | 1.2663 | 17.0 | 1462 | 1.1002 | 0.2909 | 0.4816 | 0.3471 | 0.2859 | 0.6545 | -1.0 | 0.0956 | 0.3554 | 0.4036 | 0.3969 | 0.7421 | -1.0 | 0.0077 | 0.145 | 0.5741 | 0.6622 | | 1.1448 | 18.0 | 1548 | 1.1066 | 0.2853 | 0.484 | 0.3205 | 0.2796 | 0.6647 | -1.0 | 0.0918 | 0.3472 | 0.3944 | 0.3883 | 0.7196 | -1.0 | 0.0092 | 0.1415 | 0.5613 | 0.6474 | | 1.1448 | 19.0 | 1634 | 1.0993 | 0.2933 | 0.4838 | 0.3441 | 0.2884 | 0.6683 | -1.0 | 0.0978 | 0.3581 | 0.401 | 0.3958 | 0.7252 | -1.0 | 0.0079 | 0.1374 | 0.5787 | 0.6645 | | 1.1448 | 20.0 | 1720 | 1.0850 | 0.298 | 0.4855 | 0.3594 | 0.2923 | 0.6669 | -1.0 | 0.0963 | 0.3606 | 0.4011 | 0.3952 | 0.7374 | -1.0 | 0.0093 | 0.1348 | 0.5867 | 0.6675 | | 1.1448 | 21.0 | 1806 | 1.0814 | 0.3006 | 0.4908 | 0.3618 | 0.2951 | 0.6868 | -1.0 | 0.0994 | 0.3628 | 0.4056 | 0.4001 | 0.7355 | -1.0 | 0.0117 | 0.1413 | 0.5896 | 0.67 | | 1.1448 | 22.0 | 1892 | 1.0836 | 0.2975 | 0.495 | 0.3541 | 0.2924 | 0.6712 | -1.0 | 0.0989 | 0.3628 | 0.4084 | 0.4036 | 0.7196 | -1.0 | 0.0135 | 0.1534 | 0.5816 | 0.6633 | | 1.1448 | 23.0 | 1978 | 1.0813 | 0.2996 | 0.4965 | 0.3567 | 0.2941 | 0.6792 | -1.0 | 0.0979 | 0.3625 | 0.408 | 0.402 | 0.7364 | -1.0 | 0.015 | 0.1505 | 0.5842 | 0.6655 | | 1.0601 | 24.0 | 2064 | 1.0707 | 0.3048 | 0.4952 | 0.3624 | 0.2987 | 0.6876 | -1.0 | 0.0981 | 0.3659 | 0.4118 | 0.4054 | 0.7486 | -1.0 | 0.0144 | 0.1501 | 0.5951 | 0.6735 | | 1.0601 | 25.0 | 2150 | 1.0736 | 0.2982 | 0.4935 | 0.3584 | 0.2931 | 0.6732 | -1.0 | 0.0992 | 0.3638 | 0.41 | 0.4053 | 0.7224 | -1.0 | 0.0126 | 0.1521 | 0.5839 | 0.6678 | | 1.0601 | 26.0 | 2236 | 1.0717 | 0.3034 | 0.4978 | 0.3622 | 0.2986 | 0.6788 | -1.0 | 0.0995 | 0.3659 | 0.411 | 0.405 | 0.7421 | -1.0 | 0.015 | 0.1501 | 0.5918 | 0.6719 | | 1.0601 | 27.0 | 2322 | 1.0688 | 0.3025 | 0.4978 | 0.3622 | 0.2975 | 0.6747 | -1.0 | 0.1 | 0.3674 | 0.4108 | 0.4047 | 0.7421 | -1.0 | 0.0161 | 0.1524 | 0.5888 | 0.6693 | | 1.0601 | 28.0 | 2408 | 1.0679 | 0.3031 | 0.4968 | 0.3638 | 0.2976 | 0.6805 | -1.0 | 0.0999 | 0.3679 | 0.4106 | 0.4046 | 0.7421 | -1.0 | 0.0156 | 0.1507 | 0.5905 | 0.6705 | | 1.0601 | 29.0 | 2494 | 1.0669 | 0.3035 | 0.4976 | 0.3717 | 0.2985 | 0.6751 | -1.0 | 0.0999 | 0.368 | 0.4115 | 0.4055 | 0.743 | -1.0 | 0.0156 | 0.1509 | 0.5915 | 0.6721 | | 1.0103 | 30.0 | 2580 | 1.0672 | 0.3032 | 0.4973 | 0.3701 | 0.2981 | 0.6746 | -1.0 | 0.1 | 0.3678 | 0.4114 | 0.4054 | 0.7421 | -1.0 | 0.0156 | 0.1511 | 0.5908 | 0.6716 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1
bsmani/paligemma-3b-ft-scicap-224-caption
bsmani
2024-06-28T09:47:45Z
0
0
null
[ "region:us" ]
null
2024-06-28T09:47:44Z
Entry not found
houbw/llama3_8b_bnb_4bit_ruozhiba_2
houbw
2024-06-28T09:50:38Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "llama", "trl", "en", "base_model:unsloth/llama-3-8b-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-06-28T09:50:27Z
--- base_model: unsloth/llama-3-8b-bnb-4bit language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - llama - trl --- # Uploaded model - **Developed by:** houbw - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3-8b-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
Ziray/lora_model
Ziray
2024-06-28T09:51:36Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "llama", "trl", "en", "base_model:unsloth/llama-3-8b-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-06-28T09:51:15Z
--- base_model: unsloth/llama-3-8b-bnb-4bit language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - llama - trl --- # Uploaded model - **Developed by:** Ziray - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3-8b-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
ai-tools-searchs/soda
ai-tools-searchs
2024-06-28T09:53:22Z
0
0
null
[ "region:us" ]
null
2024-06-28T09:52:41Z
Entry not found
domasin/code-search-net-tokenizer
domasin
2024-06-28T09:52:45Z
0
0
transformers
[ "transformers", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-06-28T09:52:44Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Pingkkkkklksl/my700mdl
Pingkkkkklksl
2024-06-28T10:24:22Z
0
0
null
[ "license:mit", "region:us" ]
null
2024-06-28T09:52:56Z
--- license: mit ---
Kibalama/PixelCopter-02
Kibalama
2024-06-28T09:54:41Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2024-06-28T09:54:38Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: PixelCopter-02 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 34.00 +/- 28.25 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
OmBayus/deneme123
OmBayus
2024-06-28T09:55:37Z
0
0
null
[ "region:us" ]
null
2024-06-28T09:55:37Z
Entry not found