Datasets:

Modalities:
Text
Languages:
English
ArXiv:
Libraries:
Datasets
License:
File size: 5,581 Bytes
27d6bc8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import csv

import datasets


_CITATION = """\
@article{hendryckstest2021,
      title={Measuring Massive Multitask Language Understanding},
      author={Dan Hendrycks and Collin Burns and Steven Basart and Andy Zou and Mantas Mazeika and Dawn Song and Jacob Steinhardt},
      journal={Proceedings of the International Conference on Learning Representations (ICLR)},
      year={2021}
    }
"""

_DESCRIPTION = """\
This is a massive multitask test consisting of multiple-choice questions from various branches of knowledge, covering 57 tasks including elementary mathematics, US history, computer science, law, and more.
"""

_HOMEPAGE = "https://github.com/hendrycks/test"

_URL = "data.tar"

_SUBJECTS = [
    "all",
    "abstract_algebra",
    "anatomy",
    "astronomy",
    "business_ethics",
    "clinical_knowledge",
    "college_biology",
    "college_chemistry",
    "college_computer_science",
    "college_mathematics",
    "college_medicine",
    "college_physics",
    "computer_security",
    "conceptual_physics",
    "econometrics",
    "electrical_engineering",
    "elementary_mathematics",
    "formal_logic",
    "global_facts",
    "high_school_biology",
    "high_school_chemistry",
    "high_school_computer_science",
    "high_school_european_history",
    "high_school_geography",
    "high_school_government_and_politics",
    "high_school_macroeconomics",
    "high_school_mathematics",
    "high_school_microeconomics",
    "high_school_physics",
    "high_school_psychology",
    "high_school_statistics",
    "high_school_us_history",
    "high_school_world_history",
    "human_aging",
    "human_sexuality",
    "international_law",
    "jurisprudence",
    "logical_fallacies",
    "machine_learning",
    "management",
    "marketing",
    "medical_genetics",
    "miscellaneous",
    "moral_disputes",
    "moral_scenarios",
    "nutrition",
    "philosophy",
    "prehistory",
    "professional_accounting",
    "professional_law",
    "professional_medicine",
    "professional_psychology",
    "public_relations",
    "security_studies",
    "sociology",
    "us_foreign_policy",
    "virology",
    "world_religions",
]


class Mmlu(datasets.GeneratorBasedBuilder):
    """Measuring Massive Multitask Language Understanding, consisting of 57 tasks"""

    BUILDER_CONFIGS = [
        datasets.BuilderConfig(
            name=sub, version=datasets.Version("1.0.0"), description=f"MMLU Subject {sub}"
        )
        for sub in _SUBJECTS
    ]

    def _info(self):
        features = datasets.Features(
            {
                "question": datasets.Value("string"),
                "choices": datasets.features.Sequence(datasets.Value("string")),
                "answer": datasets.features.ClassLabel(num_classes=4, names=["A", "B", "C", "D"]),
            }
        )
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""
        archive = dl_manager.download(_URL)
        return [
            datasets.SplitGenerator(
                name=datasets.Split("auxiliary_train"),
                gen_kwargs={
                    "iter_archive": dl_manager.iter_archive(archive),
                    "split": "auxiliary_train",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={"iter_archive": dl_manager.iter_archive(archive), "split": "test"},
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={
                    "iter_archive": dl_manager.iter_archive(archive),
                    "split": "val",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split("dev"),
                gen_kwargs={
                    "iter_archive": dl_manager.iter_archive(archive),
                    "split": "dev",
                },
            ),
        ]

    def _generate_examples(self, iter_archive, split):
        """Yields examples as (key, example) tuples."""
        n_yielded_files = 0
        for id_file, (path, file) in enumerate(iter_archive):
            if f"/{split}/" in path:
                if split == "auxiliary_train" or (self.config.name in path or self.config.name == "all"):
                    n_yielded_files += 1
                    lines = (line.decode("utf-8") for line in file)
                    reader = csv.reader(lines)
                    for id_line, data in enumerate(reader):
                        yield f"{id_file}_{id_line}", {"question": data[0], "choices": data[1:5], "answer": data[5]}
                #else:
                    #print("KO", path)
            #else:
                #print("KO2", split, path)