import datasets import os import json _CITATION = "" _DESCRIPTION = """ The 2014 Workshop on Statistical Machine Translation: https://aclanthology.org/W14-3302.pdf The scenario consists of 5 subsets, each of which is a parallel corpus between English and another language. The non-English languages include Czech, German, French, Hindi, and Russian. For each language pair, the validation and test set each includes around 3,000 examples, while the training set is usually much larger. We therefore randomly downsample the training set to speedup data processing. Task prompt structure: Translate {source_language} to {target_language}: {Hypothesis} = {Reference} Example from WMT14 Fr-En: Hypothesis: Assemblée générale Reference: General Assembly """ class WMT14(datasets.GeneratorBasedBuilder): VERSION = datasets.Version("1.0.0") BUILDER_CONFIGS = [ datasets.BuilderConfig(name=name, version=datasets.Version("1.0.0"), description="") for name in ["cs-en", "de-en", "fr-en", "hi-en", "ru-en"] ] def _info(self): source_language, target_language = self.config.name.split('-') features = datasets.Features( { source_language: datasets.Value("string"), target_language: datasets.Value("string"), } ) return datasets.DatasetInfo( description=_DESCRIPTION, features=features, homepage="", license="", citation=_CITATION, ) def _split_generators(self, dl_manager): train_json = dl_manager.download(os.path.join(self.config.name, "train.jsonl")) test_json = dl_manager.download(os.path.join(self.config.name, "test.jsonl")) val_json = dl_manager.download(os.path.join(self.config.name, "validation.jsonl")) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={"path": train_json}, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={"path": test_json}, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={"path": val_json}, ) ] # method parameters are unpacked from `gen_kwargs` as given in `_split_generators` def _generate_examples(self, path): with open(path, encoding="utf-8") as f: for key, row in enumerate(f): yield key, json.loads(row)