Unnamed: 0
int64
0
40.3k
problem
stringlengths
10
5.15k
ground_truth
stringlengths
1
1.22k
solved_percentage
float64
0
100
22,200
Compute the square of 1033 without a calculator.
1067089
52.34375
22,201
In chess tournaments, each victory is worth 1 point, each draw is worth 0.5 points, and each loss is worth zero points. In the "Magistral Championship" of chess, only International Masters (IMs) and Grand Masters (GMs) participated. The number of GMs was ten times the number of IMs. Each player played only once against all other opponents, and thus, if \( n \) is the number of players, then there were \( \frac{n(n-1)}{2} \) games. The sum of the points of all GMs was 4.5 times the sum of all IMs' points. Therefore, the questions are: a) How many International Masters participated in this competition? b) How many Grand Masters participated in this championship? c) How many games were played in the tournament?
55
85.15625
22,202
Convert the fraction $\frac{123456789}{2^{26} \times 5^{4}}$ to a decimal. How many decimal places does the resulting number have?
26
32.8125
22,203
How many four-digit numbers have at least one 6 or at least one 8 as digits?
5416
97.65625
22,204
Express this sum as a common fraction: $0.\overline{7} + 0.\overline{13}$
\frac{10}{11}
96.09375
22,205
A certain brand of computers has a warranty period of $1$ year. Based on a large amount of repair record data, the maximum number of repairs for this brand of computers within one year is $3$ times, with $15\%$ needing $1$ repair, $6\%$ needing $2$ repairs, and $4\%$ needing $3$ repairs. <br/>$(1)$ If a person buys $1$ of this brand of computer, find the probabilities of the following events: $A=$"needs repair within the warranty period"; $B=$"does not need more than $1$ repair within the warranty period"; <br/>$(2)$ If a person buys $2$ of this brand of computers, and the need for repair within the warranty period for the $2$ computers is independent, find the probability that the total number of repairs for these $2$ computers within the warranty period does not exceed $2$ times.
0.9
0.78125
22,206
A natural number plus 13 is a multiple of 5, and its difference with 13 is a multiple of 6. What is the smallest natural number that satisfies these conditions?
37
0
22,207
Find the smallest positive real number $c$ such that for all nonnegative real numbers $x, y,$ and $z$, the following inequality holds: \[\sqrt[3]{xyz} + c |x - y + z| \ge \frac{x + y + z}{3}.\]
\frac{1}{3}
84.375
22,208
Let $f(x)$ be a function defined on $\mathbb{R}$ with a period of 2. On the interval $[-1,1)$, $f(x)$ is given by $$ f(x) = \begin{cases} x+a & \text{for } -1 \leq x < 0,\\ \left| \frac{2}{5} - x \right| & \text{for } 0 \leq x < 1, \end{cases} $$ where $a \in \mathbb{R}$. If $f\left(-\frac{5}{2}\right) = f\left(\frac{9}{2}\right)$, find the value of $f(5a)$.
-\frac{2}{5}
32.8125
22,209
Given that $n$ is a positive integer, find the minimum value of $|n-1| + |n-2| + \cdots + |n-100|$.
2500
95.3125
22,210
Given the function $f\left(x\right)=x^{2}-2$, find $\lim_{{Δx→0}}\frac{{f(3)-f({3-2Δx})}}{{Δx}}$.
12
99.21875
22,211
Let \( S \) be the set comprising all sides and diagonals of a regular hexagon. A pair of elements from \( S \) are selected randomly without replacement. What is the probability that the two chosen segments have the same length?
\frac{11}{35}
67.1875
22,212
Ninety-nine children are standing in a circle, each initially holding a ball. Every minute, each child with a ball throws their ball to one of their two neighbors. If two balls end up with the same child, one of these balls is irrevocably lost. What is the minimum time required for the children to have only one ball left?
98
60.15625
22,213
In the diagram, \( PQ \) is perpendicular to \( QR \), \( QR \) is perpendicular to \( RS \), and \( RS \) is perpendicular to \( ST \). If \( PQ=4 \), \( QR=8 \), \( RS=8 \), and \( ST=3 \), then the distance from \( P \) to \( T \) is
13
9.375
22,214
Given the volume of the right prism $ABCD-A_{1}B_{1}C_{1}D_{1}$ is equal to the volume of the cylinder with the circumscribed circle of square $ABCD$ as its base, calculate the ratio of the lateral area of the right prism to that of the cylinder.
\sqrt{2}
40.625
22,215
Let $p$ and $q$ be real numbers, and suppose that the roots of the equation \[x^3 - 10x^2 + px - q = 0\] are three distinct positive integers. Compute $p + q.$
37
35.9375
22,216
Given that $x = \frac{3}{5}$ is a solution to the equation $30x^2 + 13 = 47x - 2$, find the other value of $x$ that will solve the equation. Express your answer as a common fraction.
\frac{5}{6}
77.34375
22,217
For any $n\in\mathbb N$ , denote by $a_n$ the sum $2+22+222+\cdots+22\ldots2$ , where the last summand consists of $n$ digits of $2$ . Determine the greatest $n$ for which $a_n$ contains exactly $222$ digits of $2$ .
222
63.28125
22,218
The mean (average), the median, and the mode of the five numbers \( 12, 9, 11, 16, x \) are all equal. What is the value of \( x \)?
12
76.5625
22,219
A shop sells two kinds of products $A$ and $B$ at the price $\$ 2100$. Product $A$ makes a profit of $20\%$, while product $B$ makes a loss of $20\%$. Calculate the net profit or loss resulting from this deal.
-175
30.46875
22,220
Calculate the value of $\left(\left((4-1)^{-1} - 1\right)^{-1} - 1\right)^{-1} - 1$.
$\frac{-7}{5}$
0
22,221
Calculate the probability that the numbers 1, 1, 2, 2, 3, 3 can be arranged into two rows and three columns such that no two identical numbers appear in the same row or column.
\frac{2}{15}
6.25
22,222
Let \(S\) be the set of all nonzero real numbers. Let \(f : S \to S\) be a function such that \[f(x) + f(y) = cf(xyf(x + y))\] for all \(x, y \in S\) such that \(x + y \neq 0\) and for some nonzero constant \(c\). Determine all possible functions \(f\) that satisfy this equation and calculate \(f(5)\).
\frac{1}{5}
64.0625
22,223
In a paralleogram $ABCD$ , a point $P$ on the segment $AB$ is taken such that $\frac{AP}{AB}=\frac{61}{2022}$ and a point $Q$ on the segment $AD$ is taken such that $\frac{AQ}{AD}=\frac{61}{2065}$ .If $PQ$ intersects $AC$ at $T$ , find $\frac{AC}{AT}$ to the nearest integer
67
82.8125
22,224
The MathMatters competition consists of 10 players $P_1$ , $P_2$ , $\dots$ , $P_{10}$ competing in a ladder-style tournament. Player $P_{10}$ plays a game with $P_9$ : the loser is ranked 10th, while the winner plays $P_8$ . The loser of that game is ranked 9th, while the winner plays $P_7$ . They keep repeating this process until someone plays $P_1$ : the loser of that final game is ranked 2nd, while the winner is ranked 1st. How many different rankings of the players are possible?
512
78.90625
22,225
Determine the number of ways to arrange the letters of the word "SUCCESS".
420
14.0625
22,226
1. Given that ${(3x-2)^{6}}={a_{0}}+{a_{1}}(2x-1)+{a_{2}}{(2x-1)^{2}}+ \cdots +{a_{6}}{(2x-1)^{6}}$, find the value of $\dfrac{{a_{1}}+{a_{3}}+{a_{5}}}{{a_{0}}+{a_{2}}+{a_{4}}+{a_{6}}}$. 2. A group of 6 volunteers is to be divided into 4 teams, with 2 teams of 2 people and the other 2 teams of 1 person each, to be sent to 4 different schools for teaching. How many different allocation plans are there in total? (Answer with a number) 3. A straight line $l$ passes through the point $P(1,1)$ with an angle of inclination $\alpha = \dfrac{\pi}{6}$. The line $l$ intersects the curve $\begin{cases} x=2\cos \theta \\ y=2\sin \theta \end{cases}$ ($\theta$ is a parameter) at points $A$ and $B$. Find the value of $|PA| + |PB|$. 4. Find the distance between the centers of the two circles with polar equations $\rho = \cos \theta$ and $\rho = \sin \theta$ respectively.
\dfrac{ \sqrt{2}}{2}
57.03125
22,227
Determine the value of $b$ that satisfies the equation $295_{b} + 467_{b} = 762_{b}$.
10
94.53125
22,228
In the diagram, $CE$ and $DE$ are two equal chords of circle $O$. The arc $\widehat{AB}$ is $\frac{1}{4}$ of the circumference. Find the ratio of the area of $\triangle CED$ to the area of $\triangle AOB$.
2: 1
0
22,229
Given a triangle \(ABC\) with sides \(AB = 13\), \(BC = 14\), and \(AC = 15\). Point \(K\) is marked on side \(AB\), point \(L\) is marked on side \(BC\), and point \(N\) is marked on side \(AC\). It is known that \(BK = \frac{14}{13}\), \(AN = 10\), and \(BL = 1\). A line is drawn through point \(N\) parallel to \(KL\) which intersects side \(BC\) at point \(M\). Find the area of the quadrilateral \(KLMN\). Answer: \(\frac{36503}{1183}=30 \frac{1013}{1183}\).
\frac{36503}{1183}
42.1875
22,230
Let $a$, $b$, and $c$ be three positive real numbers such that $a(a+b+c)=bc$. Determine the maximum value of $\frac{a}{b+c}$.
\frac{\sqrt{2}-1}{2}
39.0625
22,231
If the inequality system $\left\{\begin{array}{l}{x-m>0}\\{x-2<0}\end{array}\right.$ has only one positive integer solution, then write down a value of $m$ that satisfies the condition: ______.
0.5
37.5
22,232
A writer composed a series of essays totaling 60,000 words over a period of 150 hours. However, during the first 50 hours, she was exceptionally productive and wrote half of the total words. Calculate the average words per hour for the entire 150 hours and separately for the first 50 hours.
600
75
22,233
In triangle \(PQR\), the point \(S\) is on \(PQ\) so that the ratio of the length of \(PS\) to the length of \(SQ\) is \(2: 3\). The point \(T\) lies on \(SR\) so that the area of triangle \(PTR\) is 20 and the area of triangle \(SQT\) is 18. What is the area of triangle \(PQR\)?
80
1.5625
22,234
In triangle $ABC$, the sides opposite to angles $A$, $B$, and $C$ are $a$, $b$, and $c$ respectively. Given that $a^2 + c^2 - b^2 = ac$, $c=2$, and point $G$ satisfies $|\overrightarrow{BG}| = \frac{\sqrt{19}}{3}$ and $\overrightarrow{BG} = \frac{1}{3}(\overrightarrow{BA} + \overrightarrow{BC})$, find $\sin A$.
\frac{3 \sqrt{21}}{14}
72.65625
22,235
What is the sum of the proper divisors of $600$? Additionally, determine if $600$ is a perfect square.
1260
0
22,236
What is the area enclosed by the graph of the equation $(x - 1)^2 + (y - 1)^2 = |x - 1| + |y - 1|$? A) $\frac{\pi}{4}$ B) $\frac{\pi}{2}$ C) $\frac{\pi}{3}$ D) $\pi$
\frac{\pi}{2}
57.8125
22,237
Circles of radius 4 and 5 are externally tangent and are circumscribed by a third circle. Find the area of the shaded region. Express your answer in terms of $\pi$.
40\pi
19.53125
22,238
Let $a_n$ be the closest to $\sqrt n$ integer. Find the sum $1/a_1 + 1/a_2 + ... + 1/a_{1980}$ .
88
91.40625
22,239
Let $f(x)$ and $g(x)$ be two monic cubic polynomials, and let $s$ be a real number. Two of the roots of $f(x)$ are $s + 2$ and $s + 8$. Two of the roots of $g(x)$ are $s + 5$ and $s + 11$, and \[f(x) - g(x) = 2s\] for all real numbers $x$. Find $s$.
\frac{81}{4}
2.34375
22,240
The value of \(0.001 + 1.01 + 0.11\) is
1.121
84.375
22,241
Let positive numbers $x$ and $y$ satisfy: $x > y$, $x+2y=3$. Find the minimum value of $\frac{1}{x-y} + \frac{9}{x+5y}$.
\frac{8}{3}
47.65625
22,242
A cylindrical water tank, placed horizontally, has an interior length of 15 feet and an interior diameter of 8 feet. If the surface area of the water exposed is 60 square feet, find the depth of the water in the tank.
4 - 2\sqrt{3}
20.3125
22,243
The product of two 2-digit numbers is $5488$. What is the smaller of the two numbers?
56
67.96875
22,244
Find the minimum value of the function $f(x)=\sum_{n=1}^{19}{|x-n|}$.
90
49.21875
22,245
In the sequence $\{a_n\}$, if for any $n$, $a_n + a_{n+1} + a_{n+2}$ is a constant value (where $n \in \mathbb{N}^*$), and $a_7 = 2$, $a_9 = 3$, $a_{98} = 4$, then the sum of the first 100 terms of this sequence, $S_{100}$, equals to ______.
299
73.4375
22,246
Given $\tan \left(α- \frac {π}{4}\right)=2$, find the value of $\sin \left(2α- \frac {π}{4}\right)$.
\frac {\sqrt {2}}{10}
0
22,247
Consider the sequence $\{a\_n\}(n\geqslant 1,n\in\mathbb{N})$ that satisfies $a\_1=2$, $a\_2=6$, and $a\_{n+2}-2a\_{n+1}+a\_n=2$. If $[x]$ represents the largest integer not exceeding $x$, then the value of $\left[\frac{2017}{a\_1}+\frac{2017}{a\_2}+...+\frac{2017}{a\_{2017}}\right]$ is \_\_\_\_\_\_.
2016
39.84375
22,248
Given that the prime factorization of a positive integer \( A \) can be written as \( A = 2^{\alpha} \times 3^{\beta} \times 5^{\gamma} \), where \( \alpha, \beta, \gamma \) are natural numbers. If half of \( A \) is a perfect square, one-third of \( A \) is a perfect cube, and one-fifth of \( A \) is a fifth power of some natural number, determine the minimum value of \( \alpha + \beta + \gamma \).
31
63.28125
22,249
Given vectors $\overrightarrow{a}$ and $\overrightarrow{b}$ that satisfy $|\overrightarrow{a}| = \sqrt{3}$, $|\overrightarrow{b}| = 2$, and $|\overrightarrow{a} + 2\overrightarrow{b}| = \sqrt{7}$. (I) Find $\overrightarrow{a} \cdot \overrightarrow{b}$; (II) If vector $λ\overrightarrow{a} + 2\overrightarrow{b}$ is perpendicular to vector $2\overrightarrow{a} - \overrightarrow{b}$, find the value of the real number $λ$.
\frac{20}{9}
95.3125
22,250
Two positive integers \( x \) and \( y \) are such that: \[ \frac{2010}{2011} < \frac{x}{y} < \frac{2011}{2012} \] Find the smallest possible value for the sum \( x + y \).
8044
47.65625
22,251
In the Cartesian coordinate system $xOy$, the parametric equation of curve $C$ is $\begin{cases} x=1+\cos \alpha \\ y=\sin \alpha\end{cases}$ ($\alpha$ is the parameter), and in the polar coordinate system with the origin as the pole and the positive $x$-axis as the polar axis, the polar equation of line $l$ is $\rho\sin (\theta+ \dfrac {\pi}{4})=2 \sqrt {2}$. (Ⅰ) Convert the parametric equation of curve $C$ and the polar equation of line $l$ into ordinary equations in the Cartesian coordinate system; (Ⅱ) A moving point $A$ is on curve $C$, a moving point $B$ is on line $l$, and a fixed point $P$ has coordinates $(-2,2)$. Find the minimum value of $|PB|+|AB|$.
\sqrt {37}-1
0
22,252
How many unordered pairs of edges of a given square pyramid determine a plane?
22
7.03125
22,253
A green chameleon always tells the truth, while a brown chameleon lies and immediately turns green after lying. In a group of 2019 chameleons (both green and brown), each chameleon, in turn, answered the question, "How many of them are green right now?" The answers were the numbers $1,2,3, \ldots, 2019$ (in some order, not necessarily in the given sequence). What is the maximum number of green chameleons that could have been present initially?
1010
27.34375
22,254
Tom, Dick, and Harry each flip a fair coin repeatedly until they get their first tail. Calculate the probability that all three flip their coins an even number of times and they all get their first tail on the same flip.
\frac{1}{63}
31.25
22,255
Let $x$, $y$, and $z$ be nonnegative real numbers such that $x + y + z = 8$. Find the maximum value of \[ \sqrt{3x + 2} + \sqrt{3y + 2} + \sqrt{3z + 2}. \]
3\sqrt{10}
89.0625
22,256
The numbers \( a, b, c, \) and \( d \) are distinct positive integers chosen from 1 to 10 inclusive. What is the least possible value \(\frac{a}{b}+\frac{c}{d}\) could have? A) \(\frac{2}{10}\) B) \(\frac{3}{19}\) C) \(\frac{14}{45}\) D) \(\frac{29}{90}\) E) \(\frac{25}{72}\)
\frac{14}{45}
52.34375
22,257
How many 0.1s are there in 1.9? How many 0.01s are there in 0.8?
80
99.21875
22,258
Given the function \( y = \frac{1}{2}\left(x^{2}-100x+196+\left|x^{2}-100x+196\right|\right) \), calculate the sum of the function values when the variable \( x \) takes on the 100 natural numbers \( 1, 2, 3, \ldots, 100 \).
390
25
22,259
From 8 female students and 4 male students, 3 students are to be selected to participate in a TV program. Determine the number of different selection methods when the selection is stratified by gender.
112
0
22,260
An equilateral triangle \( ABC \) is inscribed in the ellipse \( \frac{x^2}{p^2} + \frac{y^2}{q^2} = 1 \), such that vertex \( B \) is at \( (0, q) \), and \( \overline{AC} \) is parallel to the \( x \)-axis. The foci \( F_1 \) and \( F_2 \) of the ellipse lie on sides \( \overline{BC} \) and \( \overline{AB} \), respectively. Given \( F_1 F_2 = 2 \), find the ratio \( \frac{AB}{F_1 F_2} \).
\frac{8}{5}
0.78125
22,261
Given $\sin x = \frac{3}{5}$, with $x \in \left( \frac{\pi}{2}, \pi \right)$, find the values of $\cos 2x$ and $\tan\left( x + \frac{\pi}{4} \right)$.
\frac{1}{7}
67.1875
22,262
Add $45.23$ to $78.569$ and round your answer to the nearest tenth.
123.8
98.4375
22,263
In the rectangular coordinate system $xoy$, the parametric equations of the curve $C$ are $x=3\cos \alpha$ and $y=\sin \alpha$ ($\alpha$ is the parameter). In the polar coordinate system with the origin as the pole and the positive semi-axis of $x$ as the polar axis, the polar equation of the line $l$ is $\rho \sin (\theta -\frac{\pi }{4})=\sqrt{2}$. 1. Find the ordinary equation of the curve $C$ and the rectangular coordinate equation of the line $l$. 2. Let point $P(0, 2)$. The line $l$ intersects the curve $C$ at points $A$ and $B$. Find the value of $|PA|+|PB|$.
\frac{18\sqrt{2}}{5}
15.625
22,264
Given the coordinates of $A$, $B$, and $C$ are $A(4,0)$, $B(0,4)$, and $C(3\cos \alpha,3\sin \alpha)$ respectively: $(1)$ If $\alpha \in (-\pi,0)$ and $|\overrightarrow{AC}|=|\overrightarrow{BC}|$, find the value of $\alpha$; $(2)$ If $\overrightarrow{AC} \cdot \overrightarrow{BC}=0$, find the value of $\frac{2\sin^2\alpha+2\sin\alpha\cos\alpha}{1+\tan\alpha}$.
-\frac{7}{16}
78.90625
22,265
Given that $\sin x + \cos x = \frac{1}{2}$, where $x \in [0, \pi]$, find the value of $\sin x - \cos x$.
\frac{\sqrt{7}}{2}
82.03125
22,266
A fair coin is flipped 8 times. What is the probability that exactly 6 of the flips come up heads?
\frac{7}{64}
53.125
22,267
What is the maximum number of kings, not attacking each other, that can be placed on a standard $8 \times 8$ chessboard?
16
3.90625
22,268
In the coordinate plane, let $A = (-8, 0)$ , $B = (8, 0)$ , and $C = (t, 6)$ . What is the maximum value of $\sin m\angle CAB \cdot \sin m\angle CBA$ , over all real numbers $t$ ?
3/8
24.21875
22,269
Choose $3$ different numbers from the $5$ numbers $0$, $1$, $2$, $3$, $4$ to form a three-digit even number.
30
87.5
22,270
Given $f(x)$ be a differentiable function, satisfying $\lim_{x \to 0} \frac{f(1)-f(1-x)}{2x} = -1$, find the slope of the tangent line to the curve $y=f(x)$ at the point $(1, f(1))$.
-2
75.78125
22,271
In the diagram below, $WXYZ$ is a trapezoid where $\overline{WX}\parallel \overline{ZY}$ and $\overline{WY}\perp\overline{ZY}$. If $YZ = 20$, $\tan Z = 2$, and $\tan X = 2.5$, then what is the length of $XY$?
4\sqrt{116}
0
22,272
Let's call a number palindromic if it reads the same left to right as it does right to left. For example, the number 12321 is palindromic. a) Write down any five-digit palindromic number that is divisible by 5. b) How many five-digit palindromic numbers are there that are divisible by 5?
100
92.96875
22,273
A company has 200 employees randomly assigned numbers from 1 to 200, and they are evenly divided into 40 groups. If employee number 22 is selected from the 5th group, find the number of the employee to be selected from the 10th group.
47
33.59375
22,274
In triangle \( \triangle ABC \), if \( \sin A = 2 \sin C \) and the three sides \( a, b, c \) form a geometric sequence, find the value of \( \cos A \).
-\frac{\sqrt{2}}{4}
79.6875
22,275
Given the triangular pyramid P-ABC, PA is perpendicular to the base ABC, AB=2, AC=AP, BC is perpendicular to CA. If the surface area of the circumscribed sphere of the triangular pyramid P-ABC is $5\pi$, find the value of BC.
\sqrt{3}
20.3125
22,276
Given that $(2-x)^{5}=a\_{0}+a\_{1}x+a\_{2}x^{2}+…+a\_{5}x^{5}$, find the value of $\frac{a\_0+a\_2+a\_4}{a\_1+a\_3}$.
-\frac{61}{60}
67.1875
22,277
The number of two-digit numbers that can be formed using the digits 0, 1, 2, 3, 4 without repeating any digit must be calculated.
16
75
22,278
Given sets $A=\{1,2,3,4,5\}$, $B=\{0,1,2,3,4\}$, and a point $P$ with coordinates $(m,n)$, where $m\in A$ and $n\in B$, find the probability that point $P$ lies below the line $x+y=5$.
\dfrac{2}{5}
57.8125
22,279
Let $U = \{2, 4, 3-a^2\}$ and $P = \{2, a^2+2-a\}$. Given that the complement of $P$ in $U$, denoted as $\complement_U P$, is $\{-1\}$, find the value of $a$.
a = 2
56.25
22,280
A box contains 6 cards numbered 1, 2, ..., 6. A card is randomly drawn from the box, and its number is denoted as $a$. The box is then adjusted to retain only the cards with numbers greater than $a$. A second draw is made, and the probability that the first draw is an odd number and the second draw is an even number is to be determined.
\frac{17}{45}
26.5625
22,281
Given that $x \in (0, \frac{1}{2})$, find the minimum value of $\frac{2}{x} + \frac{9}{1-2x}$.
25
97.65625
22,282
Let $x$ and $y$ be real numbers satisfying $3 \leqslant xy^2 \leqslant 8$ and $4 \leqslant \frac{x^2}{y} \leqslant 9$. Find the maximum value of $\frac{x^3}{y^4}$.
27
56.25
22,283
When a die is thrown twice in succession, the numbers obtained are recorded as $a$ and $b$, respectively. The probability that the line $ax+by=0$ and the circle $(x-3)^2+y^2=3$ have no points in common is ______.
\frac{2}{3}
25.78125
22,284
Multiply \(333\) by \(111\) and express the result.
36963
0.78125
22,285
John places a total of 15 red Easter eggs in several green baskets and a total of 30 blue Easter eggs in some yellow baskets. Each basket contains the same number of eggs, and there are at least 3 eggs in each basket. How many eggs did John put in each basket?
15
14.84375
22,286
A natural number of five digits is called *Ecuadorian*if it satisfies the following conditions: $\bullet$ All its digits are different. $\bullet$ The digit on the far left is equal to the sum of the other four digits. Example: $91350$ is an Ecuadorian number since $9 = 1 + 3 + 5 + 0$ , but $54210$ is not since $5 \ne 4 + 2 + 1 + 0$ . Find how many Ecuadorian numbers exist.
168
96.09375
22,287
Given that the lengths of the three sides of $\triangle ABC$ form an arithmetic sequence with a common difference of 2, and the sine of the largest angle is $\frac{\sqrt{3}}{2}$, the sine of the smallest angle of this triangle is \_\_\_\_\_\_.
\frac{3\sqrt{3}}{14}
71.875
22,288
Given that $α,β∈(0,π), \text{and } cosα= \frac {3}{5}, cosβ=- \frac {12}{13}$. (1) Find the value of $cos2α$, (2) Find the value of $sin(2α-β)$.
- \frac{253}{325}
68.75
22,289
0.8 + 0.02
0.82
89.84375
22,290
Find the largest value of $n$ such that $5x^2 + nx + 90$ can be factored as the product of two linear factors with integer coefficients.
451
73.4375
22,291
In a triangle with integer side lengths, one side is four times as long as a second side, and the length of the third side is 20. What is the greatest possible perimeter of the triangle?
50
79.6875
22,292
Use the six digits 0, 1, 2, 3, 4, 5 to form four-digit even numbers without repeating any digit. Calculate the total number of such numbers that can be formed.
156
85.15625
22,293
Given the sets $M=\{2, 4, 6, 8\}$, $N=\{1, 2\}$, $P=\left\{x \mid x= \frac{a}{b}, a \in M, b \in N\right\}$, determine the number of proper subsets of set $P$.
63
90.625
22,294
Calculate and simplify (1) $(1\frac{1}{2})^0 - (1-0.5^{-2}) \div \left(\frac{27}{8}\right)^{\frac{2}{3}}$ (2) $\sqrt{2\sqrt{2\sqrt{2}}}$
2^{\frac{7}{8}}
33.59375
22,295
Given six balls numbered 1, 2, 3, 4, 5, 6 and boxes A, B, C, D, each to be filled with one ball, with the conditions that ball 2 cannot be placed in box B and ball 4 cannot be placed in box D, determine the number of different ways to place the balls into the boxes.
252
12.5
22,296
A science student is asked to find the coefficient of the $x^2$ term in the expansion of $(x^2-3x+2)^4$. The coefficient is \_\_\_\_\_\_. (Answer with a number)
248
74.21875
22,297
Let $p,q,r$ be the roots of $x^3 - 6x^2 + 8x - 1 = 0$, and let $t = \sqrt{p} + \sqrt{q} + \sqrt{r}$. Find $t^4 - 12t^2 - 8t$.
-4
69.53125
22,298
Consider the system of equations: \[ 8x - 6y = a, \] \[ 12y - 18x = b. \] If there's a solution $(x, y)$ where both $x$ and $y$ are nonzero, determine $\frac{a}{b}$, assuming $b$ is nonzero.
-\frac{4}{9}
15.625
22,299
In $\triangle ABC$, $A=\frac{\pi}{4}, B=\frac{\pi}{3}, BC=2$. (I) Find the length of $AC$; (II) Find the length of $AB$.
1+ \sqrt{3}
35.9375