Unnamed: 0
int64
0
40.3k
problem
stringlengths
10
5.15k
ground_truth
stringlengths
1
1.22k
solved_percentage
float64
0
100
28,000
Dave's sister Amy baked $4$ dozen pies. Among these: - $5/8$ of them contained chocolate. - $3/4$ of them contained marshmallows. - $2/3$ of them contained cayenne. - $1/4$ of them contained salted soy nuts. Additionally, all pies with salted soy nuts also contained marshmallows. How many pies at most did not contain any of these ingredients?
16
2.34375
28,001
Four friends make cookies from the same amount of dough with the same thickness. Art's cookies are circles with a radius of 2 inches, and Trisha's cookies are squares with a side length of 4 inches. If Art can make 18 cookies in his batch, determine the number of cookies Trisha will make in one batch.
14
96.875
28,002
Given that two children, A and B, and three adults, 甲, 乙, and 丙, are standing in a line, A is not at either end, and exactly two of the three adults are standing next to each other. The number of different arrangements is $\boxed{\text{answer}}$.
48
39.84375
28,003
In the diagram, each of \( \triangle W X Z \) and \( \triangle X Y Z \) is an isosceles right-angled triangle. The length of \( W X \) is \( 6 \sqrt{2} \). The perimeter of quadrilateral \( W X Y Z \) is closest to
23
12.5
28,004
Find \( x_{1000} \) if \( x_{1} = 4 \), \( x_{2} = 6 \), and for any natural \( n \geq 3 \), \( x_{n} \) is the smallest composite number greater than \( 2 x_{n-1} - x_{n-2} \).
2002
11.71875
28,005
Given cos($$α+ \frac {π}{6}$$)= $$\frac {1}{3}$$, find the value of sin($$ \frac {5π}{6}+2α$$).
-$$\frac {7}{9}$$
0
28,006
When $\frac{1}{909}$ is expressed as a decimal, what is the sum of the first 30 digits after the decimal point?
14
3.125
28,007
Let $a_1$, $a_2$, $a_3$, $d_1$, $d_2$, and $d_3$ be real numbers such that for every real number $x$, we have \[ x^8 - x^6 + x^4 - x^2 + 1 = (x^2 + a_1 x + d_1)(x^2 + a_2 x + d_2)(x^2 + a_3 x + d_3)(x^2 + 1). \] Compute $a_1 d_1 + a_2 d_2 + a_3 d_3$.
-1
7.8125
28,008
There is a parking lot with $10$ empty spaces. Three different cars, A, B, and C, are going to park in such a way that each car has empty spaces on both sides, and car A must be parked between cars B and C. How many different parking arrangements are there?
40
3.90625
28,009
Let $\overrightarrow{m} = (\sin(x - \frac{\pi}{3}), 1)$ and $\overrightarrow{n} = (\cos x, 1)$. (1) If $\overrightarrow{m} \parallel \overrightarrow{n}$, find the value of $\tan x$. (2) If $f(x) = \overrightarrow{m} \cdot \overrightarrow{n}$, where $x \in [0, \frac{\pi}{2}]$, find the maximum and minimum values of $f(x)$.
1 - \frac{\sqrt{3}}{2}
6.25
28,010
How many distinct sequences of four letters can be made from the letters in "EXAMPLE" if each letter can be used only once and each sequence must begin with X and not end with E?
80
5.46875
28,011
Given that \( f \) is a mapping from the set \( M = \{a, b, c\} \) to the set \( N = \{-3, -2, \cdots, 3\} \). Determine the number of mappings \( f \) that satisfy $$ f(a) + f(b) + f(c) = 0 $$
37
100
28,012
Given a cone and a cylinder made of rubber, the cone has a base radius of $5$ and a height of $4$, while the cylinder has a base radius of $2$ and a height of $8$. If they are remade into a new cone and a new cylinder with the same base radius, while keeping the total volume and height unchanged, find the new base radius.
r = \sqrt{7}
62.5
28,013
No two people stand next to each other, find the probability that, out of the ten people sitting around a circular table, no two adjacent people will stand after flipping their fair coins.
\dfrac{123}{1024}
0
28,014
Suppose $ABC$ is a scalene right triangle, and $P$ is the point on hypotenuse $\overline{AC}$ such that $\angle{ABP} = 30^{\circ}$. Given that $AP = 3$ and $CP = 1$, compute the area of triangle $ABC$.
\frac{12}{5}
7.8125
28,015
Given $a\in R$, $b \gt 0$, $a+b=2$, then the minimum value of $\frac{1}{2|a|}+\frac{|a|}{b}$ is ______.
\frac{3}{4}
28.125
28,016
Given $\cos \left( \frac {π}{4}-α \right) = \frac {3}{5}$, and $\sin \left( \frac {5π}{4}+β \right) = - \frac {12}{13}$, with $α \in \left( \frac {π}{4}, \frac {3π}{4} \right)$ and $β \in (0, \frac {π}{4})$, find the value of $\sin (α+β)$.
\frac {56}{65}
16.40625
28,017
Define \[ A' = \frac{1}{1^2} + \frac{1}{7^2} - \frac{1}{11^2} - \frac{1}{13^2} + \frac{1}{19^2} + \frac{1}{23^2} - \dotsb, \] which omits all terms of the form $\frac{1}{n^2}$ where $n$ is an odd multiple of 5, and \[ B' = \frac{1}{5^2} - \frac{1}{25^2} + \frac{1}{35^2} - \frac{1}{55^2} + \frac{1}{65^2} - \frac{1}{85^2} + \dotsb, \] which includes only terms of the form $\frac{1}{n^2}$ where $n$ is an odd multiple of 5. Determine $\frac{A'}{B'}.$
26
0.78125
28,018
Triangle $PQR$ has positive integer side lengths with $PQ = PR$. Let $J$ be the intersection of the bisectors of $\angle Q$ and $\angle R$. Suppose $QJ = 10$. Find the smallest possible perimeter of $\triangle PQR$.
1818
0
28,019
Given that point $M$ lies on the circle $C:x^{2}+y^{2}-4x-14y+45=0$, and point $Q(-2,3)$. (1) If $P(a,a+1)$ is on circle $C$, find the length of segment $PQ$ and the slope of line $PQ$; (2) Find the maximum and minimum values of $|MQ|$; (3) If $M(m,n)$, find the maximum and minimum values of $\frac{n-{3}}{m+{2}}$.
2- \sqrt {3}
0
28,020
A large cube is made up of 27 small cubes. A plane is perpendicular to one of the diagonals of this large cube and bisects the diagonal. How many small cubes are intersected by this plane?
19
11.71875
28,021
Given the function $f(x) = \frac{bx}{\ln x} - ax$, where $e$ is the base of the natural logarithm. (1) If the equation of the tangent line to the graph of the function $f(x)$ at the point $({e}^{2}, f({e}^{2}))$ is $3x + 4y - e^{2} = 0$, find the values of the real numbers $a$ and $b$. (2) When $b = 1$, if there exist $x_{1}, x_{2} \in [e, e^{2}]$ such that $f(x_{1}) \leq f'(x_{2}) + a$ holds, find the minimum value of the real number $a$.
\frac{1}{2} - \frac{1}{4e^{2}}
0
28,022
Given that the sides opposite to the internal angles A, B, and C of triangle ABC are a, b, and c respectively, if -c cosB is the arithmetic mean of $\sqrt {2}$a cosB and $\sqrt {2}$b cosA, find the maximum value of sin2A•tan²C.
3 - 2\sqrt{2}
0
28,023
Let $x, y,$ and $z$ be positive real numbers. Find the minimum value of: \[ \frac{(x^2 + 4x + 2)(y^2 + 4y + 2)(z^2 + 4z + 2)}{xyz}. \]
216
7.03125
28,024
Given that real numbers \( a \) and \( b \) are such that the equation \( a x^{3} - x^{2} + b x - 1 = 0 \) has three positive real roots, find the minimum value of \( P = \frac{5 a^{2} - 3 a b + 2}{a^{2}(b - a)} \) for all such \( a \) and \( b \).
12 \sqrt{3}
2.34375
28,025
Given a moving large circle $\odot O$ tangent externally to a fixed small circle $\odot O_{1}$ with radius 3 at point $P$, $AB$ is the common external tangent of the two circles with $A$ and $B$ as the points of tangency. A line $l$ parallel to $AB$ is tangent to $\odot O_{1}$ at point $C$ and intersects $\odot O$ at points $D$ and $E$. Find $C D \cdot C E = \quad$.
36
3.125
28,026
Given the numbers 1, 2, 3, 4, find the probability that $\frac{a}{b}$ is not an integer, where $a$ and $b$ are randomly selected numbers from the set $\{1, 2, 3, 4\}$.
\frac{2}{3}
0
28,027
Solve the application problem by setting up equations:<br/>A gift manufacturing factory receives an order for a batch of teddy bears and plans to produce them in a certain number of days. If they produce $20$ teddy bears per day, they will be $100$ short of the order. If they produce $23$ teddy bears per day, they will exceed the order by $20$. Find out how many teddy bears were ordered and how many days were originally planned to complete the task.
40
50
28,028
Let \( P \) be a point inside regular pentagon \( ABCDE \) such that \( \angle PAB = 48^\circ \) and \( \angle PDC = 42^\circ \). Find \( \angle BPC \), in degrees.
84
6.25
28,029
In a pile of apples, the ratio of large apples to small apples is $9:1$. Now, a fruit sorting machine is used for screening, with a probability of $5\%$ that a large apple is sorted as a small apple and a probability of $2\%$ that a small apple is sorted as a large apple. Calculate the probability that a "large apple" selected from the sorted apples is indeed a large apple.
\frac{855}{857}
59.375
28,030
Consider a central regular hexagon surrounded by six regular hexagons, each of side length $\sqrt{2}$. Three of these surrounding hexagons are selected at random, and their centers are connected to form a triangle. Calculate the area of this triangle.
2\sqrt{3}
5.46875
28,031
In the Cartesian coordinate system \(xOy\), the set of points \(K=\{(x, y) \mid x, y=-1,0,1\}\). Three points are randomly selected from \(K\). What is the probability that the distance between any two of these three points does not exceed 2?
5/14
67.96875
28,032
Let $a,b,c,d$ be positive integers such that $a+c=20$ and $\frac{a}{b}+\frac{c}{d}<1$ . Find the maximum possible value of $\frac{a}{b}+\frac{c}{d}$ .
20/21
3.125
28,033
Let \( M \) be a set of \( n \) points in the plane such that: 1. There are 7 points in \( M \) that form the vertices of a convex heptagon. 2. For any 5 points in \( M \), if these 5 points form a convex pentagon, then the interior of this convex pentagon contains at least one point from \( M \). Find the minimum value of \( n \).
11
5.46875
28,034
Given the function $f(x) = 2\sin\omega x \cdot \cos(\omega x) + (\omega > 0)$ has the smallest positive period of $4\pi$. (1) Find the value of the positive real number $\omega$; (2) In $\triangle ABC$, the sides opposite to angles $A$, $B$, and $C$ are $a$, $b$, and $c$, respectively, and it satisfies $2b\cos A = a\cos C + c\cos A$. Find the value of $f(A)$.
\frac{\sqrt{3}}{2}
0
28,035
A traffic light cycles repeatedly in the following order: green for 45 seconds, then yellow for 5 seconds, and red for 50 seconds. Cody picks a random five-second time interval to observe the light. What is the probability that the color changes while he is watching?
\frac{3}{20}
45.3125
28,036
In the diagram, three circles each with a radius of 5 units intersect at exactly one common point, which is the origin. Calculate the total area in square units of the shaded region formed within the triangular intersection of the three circles. Express your answer in terms of $\pi$. [asy] import olympiad; import geometry; size(100); defaultpen(linewidth(0.8)); filldraw(Circle((0,0),5)); filldraw(Circle((4,-1),5)); filldraw(Circle((-4,-1),5)); [/asy]
\frac{150\pi - 75\sqrt{3}}{12}
0
28,037
A ticket contains six digits \(a, b, c, d, e, f\). This ticket is said to be "lucky" if \(a + b + c = d + e + f\). How many lucky tickets are there (including the ticket 000000)?
55252
97.65625
28,038
Given the function $y=\cos (2x+\frac{\pi }{6})$, a point $P(\frac{\pi }{4},t)$ on its graph is moved right by $m (m>0)$ units to a new point $P'$, where $P'$ lies on the graph of the function $y=\cos 2x$. Determine the value of $t$ and the minimum value of $m$.
\frac{\pi}{12}
43.75
28,039
Given a hyperbola with asymptotes $2x \pm y=0$, that passes through the intersection of the lines $x+y-3=0$ and $2x-y+3t=0$, where $-2 \leq t \leq 5$. Find the maximum possible length of the real axis of the hyperbola.
4\sqrt{3}
3.125
28,040
Given unit vectors $\overrightarrow{a}$ and $\overrightarrow{b}$ satisfy $(2\overrightarrow{a}+\overrightarrow{b})\bot \overrightarrow{b}$, calculate the angle between $\overrightarrow{a}$ and $\overrightarrow{b}$.
\frac{2\pi}{3}
96.09375
28,041
Given that $f(x) = \frac{1}{3^x + \sqrt{3}}$, find the value of $f(-12) + f(-11) + f(-10) + ... + f(0) + ... + f(11) + f(12) + f(13)$.
\frac{13\sqrt{3}}{3}
13.28125
28,042
Find the length of side $XY$ in the triangle below. [asy] unitsize(1inch); pair X,Y,Z; X = (0,0); Y= (2,0); Z = (0,sqrt(3)); draw (X--Y--Z--X,linewidth(0.9)); draw(rightanglemark(Y,X,Z,3)); label("$X$",X,S); label("$Y$",Y,S); label("$Z$",Z,N); label("$12$",Z/2,W); label("$60^\circ$",(1.2,0),N); [/asy]
24
9.375
28,043
In a city, a newspaper stand buys the "Evening News" from the publisher at a price of $0.20 per copy and sells it at $0.30 per copy. Unsold newspapers can be returned to the publisher at $0.05 per copy. In a month (considered as 30 days), there are 20 days when 400 copies can be sold each day, and for the remaining 10 days, only 250 copies can be sold each day. However, the number of copies bought from the publisher must be the same every day. How many copies should the stand owner buy from the publisher each day to maximize the monthly profit? And calculate the maximum profit he can earn in a month?
825
10.9375
28,044
Dr. Math's house number $WXYZ$ is a four-digit number where each digit $W$, $X$, $Y$, and $Z$ is non-zero, and the two portions of the house number, $WX$ and $YZ$, form two-digit primes. Every prime number selected must be less than 50. Additionally, the sum of the digits in $YZ$ must be even, and $WX$ and $YZ$ must be different. How many such house numbers $WXYZ$ are possible?
30
0
28,045
In a bag are all natural numbers less than or equal to $999$ whose digits sum to $6$ . What is the probability of drawing a number from the bag that is divisible by $11$ ?
1/7
35.9375
28,046
A line \( l \), parallel to the diagonal \( AC_1 \) of a unit cube \( ABCDA_1B_1C_1D_1 \), is equidistant from the lines \( BD \), \( A_1D_1 \), and \( CB_1 \). Find the distances from the line \( l \) to these lines.
\frac{\sqrt{2}}{6}
0
28,047
Find the smallest positive integer \( n \) such that every \( n \)-element subset of \( S = \{1, 2, \ldots, 150\} \) contains 4 numbers that are pairwise coprime (it is known that there are 35 prime numbers in \( S \)).
111
10.9375
28,048
Given $\overrightarrow{a}=(2\sin x,1)$ and $\overrightarrow{b}=(2\cos (x-\frac{\pi }{3}),\sqrt{3})$, let $f(x)=\overrightarrow{a}\bullet \overrightarrow{b}-2\sqrt{3}$. (I) Find the smallest positive period and the zeros of $f(x)$; (II) Find the maximum and minimum values of $f(x)$ on the interval $[\frac{\pi }{24},\frac{3\pi }{4}]$.
-\sqrt{2}
52.34375
28,049
Sasha and Masha each picked a natural number and communicated them to Vasya. Vasya wrote the sum of these numbers on one piece of paper and their product on another piece, then hid one of the pieces and showed the other (on which the number 2002 was written) to Sasha and Masha. Seeing this number, Sasha said he did not know the number Masha had picked. Upon hearing this, Masha said she did not know the number Sasha had picked. What number did Masha pick?
1001
20.3125
28,050
A box contains 5 white balls and 6 black balls. You draw them out of the box, one at a time. What is the probability that the first four draws alternate in colors, starting with a black ball?
\frac{2}{33}
1.5625
28,051
Consider a rectangle $ABCD$, and inside it are four squares with non-overlapping interiors. Two squares have the same size and an area of 4 square inches each, located at corners $A$ and $C$ respectively. There is another small square with an area of 1 square inch, and a larger square, twice the side length of the smaller one, both adjacent to each other and located centrally from $B$ to $D$. Calculate the area of rectangle $ABCD$.
12
2.34375
28,052
Given the numbers \( x, y, z \in \left[0, \frac{\pi}{2}\right] \), find the maximum value of the expression \[ A = \sin(x-y) + \sin(y-z) + \sin(z-x). \]
\sqrt{2} - 1
61.71875
28,053
The dimensions of a part on a drawing are $7{}_{-0.02}^{+0.05}$ (unit: $mm$), indicating that the maximum requirement for processing this part should not exceed ______, and the minimum should not be less than ______.
6.98
85.9375
28,054
Natural numbers are arranged according to the following pattern: \begin{tabular}{cccc} $1-2$ & 5 & 10 & 17 \\ $\mid$ & $\mid$ & $\mid$ & $\mid$ \\ $4-3$ & 6 & 11 & 18 \\ & $\mid$ & $\mid$ & $\mid$ \\ $9-8-7$ & 12 & 19 \\ & $\mid$ & $\mid$ \\ $16-15-14-13$ & 20 \\ $25-24-23-22-21$ \end{tabular} Then the number at the 2002nd row from the top and the 2003rd column from the left is ( ).
2002 \times 2003
0
28,055
A shape is created by aligning five unit cubes in a straight line. Then, one additional unit cube is attached to the top of the second cube in the line and another is attached beneath the fourth cube in the line. Calculate the ratio of the volume to the surface area.
\frac{1}{4}
1.5625
28,056
How many positive odd integers greater than 1 and less than $200$ are square-free?
82
0
28,057
Given positive real numbers \(a\) and \(b\) that satisfy \(ab(a+b) = 4\), find the minimum value of \(2a + b\).
2\sqrt{3}
31.25
28,058
Determine the sum of all integer values $n$ for which $\binom{25}{n} + \binom{25}{12} = \binom{26}{13}$.
25
46.09375
28,059
Let \( M \) be a set composed of a finite number of positive integers, \[ M = \bigcup_{i=1}^{20} A_i = \bigcup_{i=1}^{20} B_i, \text{ where} \] \[ A_i \neq \varnothing, B_i \neq \varnothing \ (i=1,2, \cdots, 20) \] satisfying the following conditions: 1. For any \( 1 \leqslant i < j \leqslant 20 \), \[ A_i \cap A_j = \varnothing, \ B_i \cap B_j = \varnothing; \] 2. For any \( 1 \leqslant i \leqslant 20, \ 1 \leqslant j \leqslant 20 \), if \( A_i \cap B_j = \varnothing \), then \( \left|A_i \cup B_j\right| \geqslant 18 \). Find the minimum number of elements in the set \( M \) (denoted as \( |X| \) representing the number of elements in set \( X \)).
180
60.15625
28,060
Cube $ABCDEFGH,$ labeled as shown below, has edge length $2$ and is cut by a plane passing through vertex $D$ and the midpoints $M$ and $N$ of $\overline{AB}$ and $\overline{CG}$ respectively. The plane divides the cube into two solids. Find the volume of the smaller of the two solids.
\frac{1}{6}
0.78125
28,061
Pat wrote a strange example on the board: $$ 550+460+359+340=2012 . $$ Mat wanted to correct it, so he searched for an unknown number to add to each of the five numbers listed, so that the example would be numerically correct. What was that number? Hint: How many numbers does Mat add to the left side and how many to the right side of the equation?
75.75
30.46875
28,062
The first three stages of a pattern are shown below, where each line segment represents a straw. If the pattern continues such that at each successive stage, four straws are added to the previous arrangement, how many straws are necessary to create the arrangement for the 100th stage?
400
39.0625
28,063
Compute the integer $k > 3$ for which \[\log_{10} (k - 3)! + \log_{10} (k - 2)! + 3 = 2 \log_{10} k!.\]
10
2.34375
28,064
Find the smallest possible value of $x$ in the simplified form $x=\frac{a+b\sqrt{c}}{d}$ if $\frac{7x}{5}-2=\frac{4}{x}$, where $a, b, c,$ and $d$ are integers. What is $\frac{acd}{b}$?
-5775
85.15625
28,065
In the 2011 Zhejiang Province Pilot Module Examination, there were a total of 18 questions. Each examinee was required to choose 6 questions to answer. Examinee A would definitely not choose questions 1, 2, 9, 15, 16, 17, and 18, while Examinee B would definitely not choose questions 3, 9, 15, 16, 17, and 18. Moreover, the 6 questions chosen by A and B had none in common. The total number of ways to select questions that meet these conditions is ______.
462
33.59375
28,066
Veronica has 6 marks on her report card. The mean of the 6 marks is 74. The mode of the 6 marks is 76. The median of the 6 marks is 76. The lowest mark is 50. The highest mark is 94. Only one mark appears twice, and no mark appears more than twice. Assuming all of her marks are integers, the number of possibilities for her second lowest mark is:
17
1.5625
28,067
Consider the hyperbola $C$: $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 (a > 0, b > 0)$. Its right focus and one endpoint of its conjugate axis are $F$ and $A$, respectively. Let $P$ be a point on the left branch of the hyperbola $C$. If the minimum value of the perimeter of $\triangle APF$ is $6b$, then find the eccentricity of the hyperbola $C$.
\frac{\sqrt{85}}{7}
9.375
28,068
Given the function $f(x)=\sin \left(2x+\frac{\pi }{3}\right)+\sin \left(2x-\frac{\pi }{3}\right)+2\cos ^{2}(x)-1$, where $x\in R$. (1) Simplify the function $f(x)$ in the form of $A\sin (\omega x+\phi )$ $(A,\omega > 0,0 < \phi < \frac{\pi }{2})$ (2) Find the maximum and minimum values of the function $f(x)$ in the interval $\left[-\frac{\pi }{4},\frac{\pi }{4}\right]$.
-1
55.46875
28,069
Let $ABCD$ and $BCFG$ be two faces of a cube with $AB=10$. A beam of light is emitted from vertex $A$ and reflects off face $BCFG$ at point $P$, which is 3 units from $\overline{BG}$ and 4 units from $\overline{BC}$. The beam continues its path, reflecting off the faces of the cube. The length of the light path from when it leaves point $A$ until it reaches another vertex of the cube for the first time is expressed as $r\sqrt{s}$, where $r$ and $s$ are integers and $s$ is not divisible by the square of any prime. Determine $r+s$.
55
7.03125
28,070
Rhombus $ABCD$ is inscribed in rectangle $WXYZ$ such that vertices $A$, $B$, $C$, and $D$ are on sides $\overline{WX}$, $\overline{XY}$, $\overline{YZ}$, and $\overline{ZW}$, respectively. It is given that $WA=12$, $XB=9$, $BD=15$, and the diagonal $AC$ of rhombus equals side $XY$ of the rectangle. Calculate the perimeter of rectangle $WXYZ$.
66
0.78125
28,071
If two circles $(x-m)^2+y^2=4$ and $(x+1)^2+(y-2m)^2=9$ are tangent internally, then the real number $m=$ ______ .
-\frac{2}{5}
24.21875
28,072
Fifteen square tiles with side 10 units long are arranged as shown. An ant walks along the edges of the tiles, always keeping a black tile on its left. Find the shortest distance that the ant would walk in going from point \( P \) to point \( Q \).
80
6.25
28,073
Let \( x \) and \( y \) be real numbers such that \[ 1 < \frac{x - y}{x + y} < 3. \] If \( \frac{x}{y} \) is an integer, what is its value?
-2
31.25
28,074
Arrange the 9 numbers 12, 13, ..., 20 in a row such that the sum of every three consecutive numbers is a multiple of 3. How many such arrangements are there?
216
0
28,075
Determine the integer $x$ that satisfies the following set of congruences: \begin{align*} 4+x &\equiv 3^2 \pmod{2^3} \\ 6+x &\equiv 4^2 \pmod{3^3} \\ 8+x &\equiv 6^2 \pmod{5^3} \end{align*} Find the remainder when $x$ is divided by $120$.
37
0.78125
28,076
Let $g$ be defined by \[g(x) = \left\{ \begin{array}{cl} x+3 & \text{ if } x \leq 2, \\ x^2 - 4x + 5 & \text{ if } x > 2. \end{array} \right.\]Calculate $g^{-1}(1)+g^{-1}(6)+g^{-1}(11)$.
2 + \sqrt{5} + \sqrt{10}
94.53125
28,077
Given an angle $α$ whose terminal side passes through the point $(-1, \sqrt{2})$, find the values of $\tan α$ and $\cos 2α$.
-\frac{1}{3}
64.0625
28,078
The union of sets \( A \) and \( B \), \( A \cup B = \{a_1, a_2, a_3\} \), and \( A \neq B \). When \( (A, B) \) and \( (B, A) \) are considered as different pairs, how many such pairs \( (A, B) \) are there?
27
1.5625
28,079
In the Cartesian coordinate system $xOy$, the parametric equation of line $l_{1}$ is $\begin{cases} x=t- \sqrt {3} \\ y=kt\end{cases}$ (where $t$ is the parameter), and the parametric equation of line $l_{2}$ is $\begin{cases} x= \sqrt {3}-m \\ y= \frac {m}{3k}\end{cases}$ (where $m$ is the parameter). Let $p$ be the intersection point of $l_{1}$ and $l_{2}$. When $k$ varies, the trajectory of $p$ is curve $C_{1}$ (Ⅰ) Write the general equation and parametric equation of $C_{1}$; (Ⅱ) Establish a polar coordinate system with the origin as the pole and the positive half-axis of $x$ as the polar axis. Suppose the polar equation of curve $C_{2}$ is $p\sin (\theta+ \frac {\pi}{4})=4 \sqrt {2}$. Let $Q$ be a moving point on curve $C_{1}$, find the minimum distance from point $Q$ to $C_{2}$.
3 \sqrt {2}
0
28,080
Suppose \(a\), \(b\), and \(c\) are real numbers such that: \[ \frac{ac}{a + b} + \frac{ba}{b + c} + \frac{cb}{c + a} = -12 \] and \[ \frac{bc}{a + b} + \frac{ca}{b + c} + \frac{ab}{c + a} = 15. \] Compute the value of: \[ \frac{a}{a + b} + \frac{b}{b + c} + \frac{c}{c + a}. \]
-12
0
28,081
Compute the following expression: \[ 4(1 + 4(1 + 4(1 + 4(1 + 4(1 + 4(1 + 4(1 + 4(1 + 4)))))))) \]
1398100
3.125
28,082
The axis cross-section $SAB$ of a cone with an equal base triangle side length of 2, $O$ as the center of the base, and $M$ as the midpoint of $SO$. A moving point $P$ is on the base of the cone (including the circumference). If $AM \perp MP$, then the length of the trajectory formed by point $P$ is ( ).
$\frac{\sqrt{7}}{2}$
0
28,083
Find the maximum value of the expression \( x + y \) if \( (2 \sin x - 1)(2 \cos y - \sqrt{3}) = 0 \), \( x \in [0, \frac{3\pi}{2}] \), \( y \in [\pi, 2\pi] \).
\frac{8\pi}{3}
57.8125
28,084
A finite set $\{a_1, a_2, ... a_k\}$ of positive integers with $a_1 < a_2 < a_3 < ... < a_k$ is named *alternating* if $i+a$ for $i = 1, 2, 3, ..., k$ is even. The empty set is also considered to be alternating. The number of alternating subsets of $\{1, 2, 3,..., n\}$ is denoted by $A(n)$ . Develop a method to determine $A(n)$ for every $n \in N$ and calculate hence $A(33)$ .
5702887
3.125
28,085
Let $M$ denote the number of $9$-digit positive integers in which the digits are in increasing order, given that repeated digits are allowed and the digit ‘0’ is permissible. Determine the remainder when $M$ is divided by $1000$.
620
91.40625
28,086
Suppose $X$ and $Y$ are digits in base $d > 8$ such that $\overline{XY}_d + \overline{XX}_d = 234_d$. Find $X_d - Y_d$ in base $d$.
-2
2.34375
28,087
A list of seven positive integers has a median of 5 and a mean of 15. What is the maximum possible value of the list's largest element?
87
57.03125
28,088
In a cube \(A B C D-A_{1} B_{1} C_{1} D_{1}\) with edge length 1, \(P, Q, R\) are the midpoints of edges \(A B, A D,\) and \(A A_1\) respectively. A right triangular prism is constructed with \(\triangle PQR\) as its base, such that the vertices of the other base also lie on the surface of the cube. Find the volume of this right triangular prism.
\frac{3}{16}
0.78125
28,089
A certain middle school assigns numbers to each student, where the last digit indicates the gender of the student: 1 for male and 2 for female. If 028432 represents "a female student who is number 43 in class 8 and enrolled in the year 2002," then the number for a male student who is number 23 in class 6 and enrolled in the year 2008 is.
086231
8.59375
28,090
Square the numbers \(a=1001\) and \(b=1001001\). Extract the square root of the number \(c=1002003004005004003002001\).
1001001001001
78.90625
28,091
In triangle $XYZ$ where $XY=60$ and $XZ=15$, the area of the triangle is given as $225$. Let $W$ be the midpoint of $\overline{XY}$, and $V$ be the midpoint of $\overline{XZ}$. The angle bisector of $\angle YXZ$ intersects $\overline{WV}$ and $\overline{YZ}$ at points $P$ and $Q$, respectively. Determine the area of quadrilateral $PQYW$. A) $110$ B) $120$ C) $123.75$ D) $130$
123.75
18.75
28,092
In the diagram, \(O\) is the center of a circle with radii \(OA=OB=7\). A quarter circle arc from \(A\) to \(B\) is removed, creating a shaded region. What is the perimeter of the shaded region?
14 + 10.5\pi
0
28,093
Two thirds of a pitcher is filled with orange juice and the remaining part is filled with apple juice. The pitcher is emptied by pouring an equal amount of the mixture into each of 6 cups. Calculate the percentage of the total capacity of the pitcher that each cup receives.
16.67\%
96.875
28,094
In $\triangle ABC$, we have $AC = BC = 10$, and $AB = 8$. Suppose that $D$ is a point on line $AB$ such that $B$ lies between $A$ and $D$ and $CD = 12$. What is $BD$?
2\sqrt{15}
2.34375
28,095
Given that $m$ and $n$ are two non-coincident lines, and $\alpha$, $\beta$, $\gamma$ are three pairwise non-coincident planes, consider the following four propositions: $(1)$ If $m \perp \alpha$ and $m \perp \beta$, then $\alpha \parallel \beta$; $(2)$ If $\alpha \perp \gamma$ and $\beta \perp \gamma$, then $\alpha \parallel \beta$; $(3)$ If $m \subset \alpha$ and $n \subset \beta$, then $\alpha \parallel \beta$; $(4)$ If $m \nparallel \beta$ and $\beta \nparallel \gamma$, then $m \nparallel \gamma$. Among these propositions, the incorrect ones are __________. (Fill in all the correct proposition numbers)
(2)(3)(4)
0
28,096
Jia and his four friends each have a private car. The last digit of Jia's license plate is 0, and the last digits of his four friends' license plates are 0, 2, 1, 5, respectively. To comply with the local traffic restrictions from April 1st to 5th (cars with odd-numbered last digits are allowed on odd days, and cars with even-numbered last digits are allowed on even days), the five people discussed carpooling, choosing any car that meets the requirements each day. However, Jia's car can only be used for one day at most. The total number of different car use plans is \_\_\_\_\_\_.
64
1.5625
28,097
Let \(x_{1}, x_{2}\) be the roots of the quadratic equation \(ax^{2} + bx + c = 0\) with real coefficients. If \(x_{1}\) is an imaginary number and \(\frac{x_{1}^{2}}{x_{2}}\) is a real number, determine the value of \(S = 1 + \frac{x_{1}}{x_{2}} + \left(\frac{x_{1}}{x_{2}}\right)^{2} + \left(\frac{x_{1}}{x_{2}}\right)^{4} + \cdots + \left(\frac{x_{1}}{x_{2}}\right)^{1999}\).
-1
3.125
28,098
Determine the maximum number of elements in the set \( S \) that satisfy the following conditions: 1. Each element in \( S \) is a positive integer not exceeding 100; 2. For any two different elements \( a \) and \( b \) in \( S \), there exists another element \( c \) in \( S \) such that the greatest common divisor of \( a + b \) and \( c \) is 1; 3. For any two different elements \( a \) and \( b \) in \( S \), there exists another element \( c \) in \( S \) such that the greatest common divisor of \( a + b \) and \( c \) is greater than 1.
50
60.15625
28,099
Let $S = {1, 2, \cdots, 100}.$ $X$ is a subset of $S$ such that no two distinct elements in $X$ multiply to an element in $X.$ Find the maximum number of elements of $X$ . *2022 CCA Math Bonanza Individual Round #3*
91
59.375