File size: 29,237 Bytes
7d4020a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 |
# -*- coding: utf-8 -*-
"""Evaluating models for BibleBERT
Copyright 2021 © Javier de la Rosa
"""
# Dependencies
# !pip install -qU transformers sacrebleu scikit-learn datasets seqeval conllu pyarrow nltk
# Dependencies and helper functions
import argparse
import logging
import os
import random
import sys
from dataclasses import dataclass
from dataclasses import field
from pathlib import Path
from typing import Optional
import datasets
import numpy as np
import pandas as pd
# from datasets import ClassLabel
from datasets import load_dataset
from nltk.tokenize import word_tokenize
from nltk.tokenize.treebank import TreebankWordDetokenizer
from seqeval.metrics.sequence_labeling import accuracy_score as seq_accuracy_score
from seqeval.metrics.sequence_labeling import f1_score as seq_f1_score
from seqeval.metrics.sequence_labeling import precision_score as seq_precision_score
from seqeval.metrics.sequence_labeling import recall_score as seq_recall_score
from seqeval.metrics.sequence_labeling import classification_report as seq_classification_report
from sklearn.metrics import accuracy_score as sk_accuracy_score
from sklearn.metrics import f1_score as sk_f1_score
from sklearn.metrics import precision_score as sk_precision_score
from sklearn.metrics import recall_score as sk_recall_score
from sklearn.metrics import classification_report as sk_classification_report
# from sklearn.preprocessing import MultiLabelBinarizer
from tqdm import tqdm
from transformers import (
AutoConfig,
AutoModelForTokenClassification,
AutoModelForSequenceClassification,
AutoTokenizer,
RobertaTokenizer,
RobertaTokenizerFast,
DataCollatorForTokenClassification,
DataCollatorWithPadding,
PreTrainedTokenizerFast,
Trainer,
TrainingArguments,
pipeline,
set_seed,
)
# from transformers.training_args import TrainingArguments
import wandb
BIBLES_BASE_URI = "https://huggingface.co/datasets/linhd-postdata/stanzas/resolve/main"
BIBLES = {
"validation": f"{BIBLES_BASE_URI}/eval.csv",
"test": f"{BIBLES_BASE_URI}/test.csv",
"train": f"{BIBLES_BASE_URI}/train.csv"
}
# Helper Funtions
def printm(string):
print(str(string))
# Tokenize all texts and align the labels with them.
def tokenize_and_align_labels(
tokenizer, examples, text_column_name, max_length, padding,
label_column_name, label_to_id, label_all_tokens
):
tokenized_inputs = tokenizer(
examples[text_column_name],
max_length=max_length,
padding=padding,
truncation=True,
# We use this argument because the texts in our dataset are lists of words (with a label for each word).
is_split_into_words=True,
)
labels = []
for i, label in enumerate(examples[label_column_name]):
word_ids = tokenized_inputs.word_ids(batch_index=i)
previous_word_idx = None
label_ids = []
for word_idx in word_ids:
# Special tokens have a word id that is None. We set the label to -100 so they are automatically
# ignored in the loss function.
if word_idx is None:
label_ids.append(-100)
# We set the label for the first token of each word.
elif word_idx != previous_word_idx:
label_ids.append(label_to_id[label[word_idx]])
# For the other tokens in a word, we set the label to either the current label or -100, depending on
# the label_all_tokens flag.
else:
label_ids.append(label_to_id[label[word_idx]] if label_all_tokens else -100)
previous_word_idx = word_idx
labels.append(label_ids)
tokenized_inputs["labels"] = labels
return tokenized_inputs
# Metrics
def token_compute_metrics(pairs, label_list):
"""Token metrics based on seqeval"""
raw_predictions, labels = pairs
predictions = np.argmax(raw_predictions, axis=2)
# Remove ignored index (special tokens)
true_predictions = [
[label_list[p] for (p, l) in zip(prediction, label) if l != -100]
for prediction, label in zip(predictions, labels)
]
true_probas = [
[label_list[p] for (p, l) in zip(prediction, label) if l != -100]
for prediction, label in zip(predictions, labels)
]
true_labels = [
[label_list[l] for (p, l) in zip(prediction, label) if l != -100]
for prediction, label in zip(predictions, labels)
]
raw_scores = (
np.exp(raw_predictions) / np.exp(raw_predictions).sum(-1, keepdims=True)
)
scores = raw_scores.max(axis=2)
true_scores = [
[(s, l) for (s, l) in zip(score, label) if l != -100]
for score, label in zip(scores, labels)
]
# mlb = MultiLabelBinarizer() # sparse_output=True
# true_predictions = mlb.fit_transform(true_predictions)
# mlb = MultiLabelBinarizer() # sparse_output=True
# true_labels = mlb.fit_transform(true_labels)
# wandb.log({
# "roc" : wandb.plot.roc_curve(
# labels,
# predictions,
# labels=label_list
# )})
metrics = {
"accuracy": seq_accuracy_score(true_labels, true_predictions),
"precision_micro": seq_precision_score(true_labels, true_predictions, average="micro"),
"recall_micro": seq_recall_score(true_labels, true_predictions, average="micro"),
"f1_micro": seq_f1_score(true_labels, true_predictions, average="micro"),
"precision_macro": seq_precision_score(true_labels, true_predictions, average="macro"),
"recall_macro": seq_recall_score(true_labels, true_predictions, average="macro"),
"f1_macro": seq_f1_score(true_labels, true_predictions, average="macro"),
# "report": seq_classification_report(true_labels, true_predictions, digits=4)
}
reports = seq_classification_report(
true_labels, true_predictions, output_dict=True, zero_division=0,
)
for label, report in reports.items():
for metric_key, metric_value in report.items():
metric_title = metric_key.replace(" avg", "_avg", 1)
metrics.update({
f"label_{label}_{metric_title}": metric_value,
})
# labels_to_plot = label_list.copy()
# if "O" in labels_to_plot:
# labels_to_plot.remove("O")
flat_true_labels = sum(true_labels, [])
flat_true_predictions = sum(true_predictions, [])
wandb.log({
# "roc": wandb.plot.roc_curve(
# labels.reshape(-1),
# raw_scores.reshape(-1, raw_predictions.shape[-1]),
# labels=label_list,
# classes_to_plot=labels_to_plot,
# ),
"matrix": wandb.sklearn.plot_confusion_matrix(
flat_true_labels, flat_true_predictions, label_list
)
})
return metrics
def sequence_compute_metrics(pairs, label_list):
"""Sequence metrics based on sklearn"""
raw_predictions, labels = pairs
predictions = np.argmax(raw_predictions, axis=1)
metrics = {
"accuracy": sk_accuracy_score(labels, predictions),
"precision_micro": sk_precision_score(labels, predictions, average="micro"),
"recall_micro": sk_recall_score(labels, predictions, average="micro"),
"f1_micro": sk_f1_score(labels, predictions, average="micro"),
"precision_macro": sk_precision_score(labels, predictions, average="macro"),
"recall_macro": sk_recall_score(labels, predictions, average="macro"),
"f1_macro": sk_f1_score(labels, predictions, average="macro"),
# "report": sk_classification_report(labels, predictions, digits=4)
}
reports = sk_classification_report(
labels, predictions, target_names=label_list, output_dict=True,
)
for label, report in reports.items():
if not isinstance(report, dict):
report = {"": report}
for metric_key, metric_value in report.items():
metric_title = metric_key.replace(" avg", "_avg", 1)
metrics.update({
f"label_{label}_{metric_title}": metric_value,
})
wandb.log({
"roc": wandb.plot.roc_curve(
labels, raw_predictions, labels=label_list
),
"matrix": wandb.sklearn.plot_confusion_matrix(
labels, predictions, label_list
)
})
return metrics
def write_file(kind, metrics, output_dir, save_artifact=False):
output_file = output_dir / f"{kind}_results.txt"
headers = []
label_headers = []
data = []
label_data = []
with open(output_file, "w") as writer:
printm(f"**{kind.capitalize()} results**")
for key, value in metrics.items():
printm(f"\t{key} = {value}")
writer.write(f"{key} = {value}\n")
title = key.replace("eval_", "", 1)
if title.startswith("label_"):
label_headers.append(title.replace("label_", "", 1))
label_data.append(value)
else:
headers.append(title)
data.append(value)
wandb.log({f"{kind}:{title}": value})
wandb.log({kind: wandb.Table(data=[data], columns=headers)})
if label_headers:
wandb.log({
f"{kind}:labels": wandb.Table(
data=[label_data], columns=label_headers
)
})
if save_artifact:
artifact = wandb.Artifact(kind, type="result")
artifact.add_file(str(output_file))
wandb.log_artifact(artifact)
def dataset_select(dataset, size):
dataset_len = len(dataset)
if size < 0 or size > dataset_len:
return dataset
elif size <= 1: # it's a percentage
return dataset.select(range(int(size * dataset_len)))
else: # it's a number
return dataset.select(range(int(size)))
def main(args):
# Set seed
if args.run:
seed = random.randrange(10**3)
else:
seed = args.seed
set_seed(seed)
# Run name
model_name = args.model_name
model_name = model_name[2:] if model_name.startswith("./") else model_name
model_name = model_name[1:] if model_name.startswith("/") else model_name
run_name = f"{model_name}_{args.task_name}"
run_name = f"{run_name}_{args.dataset_config or args.dataset_name}"
run_name = run_name.replace("/", "-")
run_name = f"{run_name}_l{str(args.dataset_language)}"
run_name = f"{run_name}_c{str(args.dataset_century)}"
run_name = f"{run_name}_e{str(args.num_train_epochs)}"
run_name = f"{run_name}_lr{str(args.learning_rate)}"
run_name = f"{run_name}_ws{str(args.warmup_steps)}"
run_name = f"{run_name}_wd{str(args.weight_decay)}"
run_name = f"{run_name}_s{str(seed)}"
run_name = f"{run_name}_eas{str(args.eval_accumulation_steps)}"
if args.max_length != 512:
run_name = f"{run_name}_seq{str(args.max_length)}"
if args.label_all_tokens:
run_name = f"{run_name}_labelall"
if args.run:
run_name = f"{run_name}_r{str(args.run)}"
output_dir = Path(args.output_dir) / run_name
# Tokenizer settings
padding = "longest" # args.task_name not in ("ner", "pos") # default: False @param ["False", "'max_length'"] {type: 'raw'}
max_length = args.max_length #@param {type: "number"}
# Training settings
weight_decay = args.weight_decay #@param {type: "number"}
adam_beta1 = 0.9 #@param {type: "number"}
adam_beta2 = 0.999 #@param {type: "number"}
adam_epsilon = 1e-08 #@param {type: "number"}
max_grad_norm = 1.0 #@param {type: "number"}
save_total_limit = 1 #@param {type: "integer"}
load_best_model_at_end = False #@param {type: "boolean"}
# wandb
wandb.init(name=run_name, project="postdata")
wandb.log({
"seed": int(seed),
})
# Loading Dataset
print("\n\n#####################################")
print(args.model_name)
print(args.task_name)
print(args.dataset_config)
print(args.dataset_language)
print(args.dataset_century)
train_split = args.dataset_split_train
test_split = args.dataset_split_test
validation_split = args.dataset_split_validation
if ":" in args.dataset_name:
dataset_name, dataset_config = args.dataset_name.split(":")
else:
dataset_name = args.dataset_name
dataset_config = args.dataset_config
use_auth_token = os.environ.get("AUTH_TOKEN", None)
if dataset_config is None or len(dataset_config) == 0:
dataset = load_dataset(dataset_name, use_auth_token=use_auth_token)
elif dataset_name == "csv" and dataset_config:
dataset = load_dataset(
dataset_name,
data_files={
"train": BIBLES["train"](dataset_config),
"validation": BIBLES["validation"](dataset_config),
"test": BIBLES["test"](dataset_config),
},
use_auth_token=use_auth_token)
else:
dataset = load_dataset(dataset_name, dataset_config, use_auth_token=use_auth_token)
if args.dataset_language and args.dataset_language.lower() not in ("all", "balanced"):
dataset = dataset.filter(lambda x: x["language"] == args.dataset_language)
if args.dataset_century and args.dataset_century.lower() != "all":
dataset = dataset.filter(lambda x: x["century"] in args.dataset_century)
if dataset["train"].shape[0] == 0 or dataset["test"].shape[0] == 0 or dataset["validation"].shape[0] == 0:
print(f"Not enough data for {str(args.dataset_language)} on {str(args.dataset_century)}: {str(dataset.shape)}")
return
column_names = dataset[train_split].column_names
features = dataset[train_split].features
if "tokens" in column_names:
text_column_name = "tokens"
elif "text" in column_names:
text_column_name = "text"
else:
text_column_name = column_names[0]
if f"{args.task_name}_tags" in column_names:
label_column_name = f"{args.task_name}_tags"
elif "label" in column_names:
label_column_name = "label"
else:
label_column_name = column_names[1]
if dataset_name == "csv":
label_list = list(set(dataset[train_split][label_column_name]))
elif isinstance(features[label_column_name], datasets.features.Sequence):
label_list = features[label_column_name].feature.names
else:
label_list = features[label_column_name].names
label_to_id = {i: i for i in range(len(label_list))}
num_labels = len(label_list)
print(f"Number of labels: {num_labels}")
print({label.split("-")[-1] for label in label_list})
# Training
config = AutoConfig.from_pretrained(
args.model_name,
num_labels=num_labels,
finetuning_task=args.task_name,
cache_dir=args.cache_dir,
force_download=args.force_download,
)
tokenizer = AutoTokenizer.from_pretrained(
args.model_name,
cache_dir=args.cache_dir,
use_fast=True,
force_download=args.force_download,
)
if isinstance(tokenizer, (RobertaTokenizer, RobertaTokenizerFast)):
tokenizer = AutoTokenizer.from_pretrained(
args.model_name,
cache_dir=args.cache_dir,
use_fast=True,
force_download=args.force_download,
add_prefix_space=True,
)
tokenizer_test_sentence = """
Ya que el Ángel del Señor tiene nombre propio, y su nombre es Yahveh.
""".strip()
printm("""Tokenizer test""")
printm(f"> {tokenizer_test_sentence}")
printm(tokenizer.tokenize(tokenizer_test_sentence))
printm(tokenizer(tokenizer_test_sentence).input_ids)
# STILTs
is_stilt = args.model_name in args.stilt.split(",") or args.stilt == "all"
model_config = dict(
from_tf=bool(".ckpt" in args.model_name),
config=config,
cache_dir=args.cache_dir,
force_download=args.force_download,
)
# Token tasks
if args.task_name in ("pos", "ner"):
if is_stilt:
# model = AutoModelForTokenClassification.from_config(
# config=config
# )
model_config.pop("config")
model = AutoModelForTokenClassification.from_pretrained(
args.model_name, num_labels=num_labels, ignore_mismatched_sizes=True, **model_config,
)
else:
model = AutoModelForTokenClassification.from_pretrained(
args.model_name, **model_config,
)
# Preprocessing the dataset
tokenized_datasets = dataset.map(
lambda examples: tokenize_and_align_labels(
tokenizer, examples, text_column_name, max_length, padding,
label_column_name, label_to_id, args.label_all_tokens),
batched=True,
load_from_cache_file=not args.overwrite_cache,
num_proc=os.cpu_count(),
)
# Data collator
data_collator = DataCollatorForTokenClassification(tokenizer)
compute_metrics = token_compute_metrics
# Sequence tasks
else:
if is_stilt:
# model = AutoModelForSequenceClassification.from_config(
# config=config
# )
model_config.pop("config")
model = AutoModelForSequenceClassification.from_pretrained(
args.model_name, num_labels=num_labels, ignore_mismatched_sizes=True, **model_config,
)
else:
model = AutoModelForSequenceClassification.from_pretrained(
args.model_name, **model_config,
)
# Preprocessing the dataset
tokenized_datasets = dataset.map(
lambda examples: tokenizer(
examples[text_column_name],
max_length=max_length,
padding=padding,
truncation=True,
is_split_into_words=False,
),
batched=True,
load_from_cache_file=not args.overwrite_cache,
num_proc=os.cpu_count(),
)
# Data collator
data_collator = DataCollatorWithPadding(
tokenizer,
max_length=max_length,
padding=padding,
)
compute_metrics = sequence_compute_metrics
train_dataset = dataset_select(
tokenized_datasets[train_split], args.max_train_size
)
test_dataset = dataset_select(
tokenized_datasets[test_split], args.max_test_size
)
validation_dataset = dataset_select(
tokenized_datasets[validation_split], args.max_validation_size
)
wandb.log({
"train_size": len(train_dataset),
"test_size": len(test_dataset),
"validation_size": len(validation_dataset),
})
samples_per_batch = (
train_dataset.shape[0] / args.train_batch_size
)
total_steps = args.num_train_epochs * samples_per_batch
warmup_steps = int(args.warmup_steps * total_steps)
wandb.log({
"total_steps": int(total_steps),
"total_warmup_steps": warmup_steps
})
do_eval = args.do_eval and (validation_split in tokenized_datasets)
do_test = args.do_test and (test_split in tokenized_datasets)
do_predict = args.do_predict and (test_split in tokenized_datasets)
training_args = TrainingArguments(
output_dir=output_dir.as_posix(),
overwrite_output_dir=args.overwrite_output_dir,
do_train=args.do_train,
do_eval=do_eval,
do_predict=do_test or do_predict,
per_device_train_batch_size=int(args.train_batch_size),
per_device_eval_batch_size=int(args.eval_batch_size or args.train_batch_size),
learning_rate=float(args.learning_rate),
weight_decay=weight_decay,
adam_beta1=adam_beta1,
adam_beta2=adam_beta2,
adam_epsilon=adam_epsilon,
max_grad_norm=max_grad_norm,
num_train_epochs=args.num_train_epochs,
warmup_steps=warmup_steps,
load_best_model_at_end=load_best_model_at_end,
seed=seed,
save_total_limit=save_total_limit,
run_name=run_name,
disable_tqdm=False,
eval_steps=1000,
eval_accumulation_steps=args.eval_accumulation_steps or None, # it was not set
dataloader_num_workers=64, # it was not set
)
# Initialize our Trainer
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=validation_dataset if do_eval else None,
tokenizer=tokenizer,
data_collator=data_collator,
compute_metrics=lambda pairs: compute_metrics(pairs, label_list),
)
if args.do_train:
train_result = trainer.train()
trainer.save_model() # Saves the tokenizer too for easy upload
write_file("train", train_result.metrics, output_dir, save_artifact=args.save_artifacts)
# Need to save the state, since Trainer.save_model saves only the tokenizer with the model
trainer.state.save_to_json(output_dir / "trainer_state.json")
# Evaluation
if do_eval:
printm(f"**Evaluate**")
results = trainer.evaluate()
write_file("eval", results, output_dir, save_artifact=args.save_artifacts)
# Tesing and predicting
if do_test or do_predict:
printm("**Test**")
predictions, labels, metrics = trainer.predict(test_dataset)
if not do_predict:
write_file("test", metrics, output_dir, save_artifact=args.save_artifacts)
if args.task_name in ("ner", "pos"):
predictions = np.argmax(predictions, axis=2)
# Remove ignored index (special tokens)
true_predictions = [
[label_list[p] for (p, l) in zip(prediction, label) if l != -100]
for prediction, label in zip(predictions, labels)
]
else:
predictions = np.argmax(predictions, axis=1)
true_predictions = [
label_list[p] for (p, l) in zip(predictions, labels) if l != -100
]
# Save predictions
output_test_predictions_file = os.path.join(output_dir, "test_predictions.txt")
output_test_predictions = "\n".join(" ".join(map(str, p)) for p in true_predictions)
with open(output_test_predictions_file, "a+") as writer:
writer.write(output_test_predictions)
if args.save_artifacts:
artifact = wandb.Artifact("predictions", type="result")
artifact.add_file(output_test_predictions_file)
wandb.log_artifact(artifact)
# # Log the results
# logfile = output_dir / "evaluation.csv"
# # Check if logfile exist
# try:
# f = open(logfile)
# f.close()
# except FileNotFoundError:
# with open(logfile, 'a+') as f:
# f.write("model_name" + "\t" + "data_language" + "\t" + "task_name" + "\t" "learning_rate"+ "\t" + "num_epochs"+ "\t" + "warmup_steps"+ "\t" + "validation_f1" +"\t"+"test_f1"+"\n")
# with open(logfile, 'a') as f:
# print(results)
# f.write(args.model_name + "\t" + (args.dataset_config or args.dataset_name) + "\t" + args.task_name + "\t" + str(args.learning_rate) + "\t" + str(args.num_train_epochs)+ "\t" + str(warmup_steps)+ "\t" + str(results['eval_f1']) + "\t" + str(metrics['eval_f1']) + "\n")
if __name__ == "__main__":
# yesno = lambda x: str(x).lower() in {'true', 't', '1', 'yes', 'y'}
parser = argparse.ArgumentParser(description=f""
f"Evaluating BERT models for sequence classification on Bibles"""
f"", epilog=f"""Example usage:
{__file__} --task_name sequence --model_name "bert-base-multilingual-cased"
""", formatter_class=argparse.RawTextHelpFormatter)
parser.add_argument('--model_name',
metavar='model_name', help='Model name or path')
parser.add_argument('--dataset_name', default="csv",
metavar='dataset_name', help='Dataset name. It might enforce a config if added after a semicolon: "conll2002:es". This will ignore dataset_config, useful when run in grid search')
parser.add_argument('--dataset_config',
metavar='dataset_config', help='Dataset config name')
parser.add_argument('--dataset_language', default="all",
metavar='dataset_language', help='Dataset language name')
parser.add_argument('--dataset_century', default="all",
metavar='dataset_century', help='Dataset century')
parser.add_argument('--dataset_split_train', default="train",
metavar='dataset_split_train', help='Dataset train split name')
parser.add_argument('--dataset_split_test', default="test",
metavar='dataset_split_test', help='Dataset test split name')
parser.add_argument('--dataset_split_validation', default="validation",
metavar='dataset_split_validation', help='Dataset validation split name')
parser.add_argument('--max_train_size', type=float, default=-1.0,
metavar='max_train_size', help='Percentage of train dataset or number of rows to use')
parser.add_argument('--max_test_size', type=float, default=-1.0,
metavar='max_test_size', help='Percentage of test dataset or number of rows to use')
parser.add_argument('--max_validation_size', type=float, default=-1.0,
metavar='max_validation_size', help='Percentage of validation dataset or number of rows to use')
parser.add_argument('--do_train',
metavar='do_train', default=True, type=bool,
help='Run training',
)
parser.add_argument('--do_eval',
metavar='do_eval', default=True, type=bool,
help='Run evaluation on validation test',
)
parser.add_argument('--do_test',
metavar='do_test', default=True, type=bool,
help='Run evaluation on test set',
)
parser.add_argument('--do_predict',
metavar='do_predict', default=False, type=bool,
help='Run prediction only on test set',
)
parser.add_argument('--task_name',
metavar='task_name', default="ner",
help='Task name (supported in the dataset), either ner or pos',
)
parser.add_argument('--num_train_epochs',
metavar='num_train_epochs', default=4, type=float,
help='Number of training epochs',
)
parser.add_argument('--eval_accumulation_steps',
metavar='eval_accumulation_steps', default=0, type=int,
help='Number of predictions steps to accumulate the output tensors for, before moving the results to the CPU.',
)
parser.add_argument('--cache_dir',
metavar='cache_dir', default="/var/ml/cache/",
help='Cache dir for the transformer library',
)
parser.add_argument('--overwrite_cache',
metavar='overwrite_cache', default=False, type=bool,
help='Overwrite cache dir if present',
)
parser.add_argument('--output_dir',
metavar='output_dir', default="/var/ml/output/",
help='Output dir for models and logs',
)
parser.add_argument('--overwrite_output_dir',
metavar='overwrite_output_dir', default=True, type=bool,
help='Overwrite output dir if present',
)
parser.add_argument('--seed',
metavar='seed', type=int, default=2021,
help='Seed for the experiments',
)
parser.add_argument('--run',
metavar='run', type=int,
help='Control variable for doing several runs of the same experiment. It will force random seeds even across the same set of parameters fo a grid search',
)
parser.add_argument('--train_batch_size',
metavar='train_batch_size', type=int, default=8,
help='Batch size for training',
)
parser.add_argument('--eval_batch_size',
metavar='eval_batch_size', type=int,
help='Batch size for evaluation. Defaults to train_batch_size',
)
parser.add_argument('--max_length',
metavar='max_length', type=int, default=512,
help='Maximum sequence length',
)
parser.add_argument('--learning_rate',
metavar='learning_rate', type=str, default="3e-05",
help='Learning rate',
)
parser.add_argument('--warmup_steps',
metavar='warmup_steps', type=float, default=0.0,
help='Warmup steps as percentage of the total number of steps',
)
parser.add_argument('--weight_decay',
metavar='weight_decay', type=float, default=0.0,
help='Weight decay',
)
parser.add_argument('--label_all_tokens',
metavar='label_all_tokens', type=bool, default=False,
help=('Whether to put the label for one word on all tokens of '
'generated by that word or just on the one (in which case the '
'other tokens will have a padding index).'),
)
parser.add_argument('--force_download',
metavar='force_download', type=bool, default=False,
help='Force the download of model, tokenizer, and config',
)
parser.add_argument('--save_artifacts',
metavar='save_artifacts', type=bool, default=False,
help='Save train, eval, and test files in Weight & Biases',
)
parser.add_argument('--stilt',
metavar='stilt', type=str, default="",
help='Specify models already fine-tuned for other tasks',
)
args = parser.parse_args()
main(args)
|