File size: 19,785 Bytes
7475c22 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 |
# Copyright 2023 Xueyuan Lin
# Apache 2.0 License
"""Loading script for DiffusionDB."""
from typing import List, Dict
import json
import os
from huggingface_hub import hf_hub_url
import datasets
_CITATION = """\
@inproceedings{
xueyuan2023tflex,
title={TFLEX: Temporal Feature-Logic Embedding Framework for Complex Reasoning over Temporal Knowledge Graph},
author={Lin Xueyuan and Haihong E and Chengjin Xu and Gengxian Zhou and Haoran Luo and Tianyi Hu and Fenglong Su and Ningyuan Li and Mingzhi Sun},
booktitle={Thirty-seventh Conference on Neural Information Processing Systems},
year={2023},
url={https://openreview.net/forum?id=oaGdsgB18L}
}\
"""
_DESCRIPTION = """\
TL;DR: The datasets for temporal knowledge graph reasoning task.
[[Github]](https://github.com/LinXueyuanStdio/TFLEX)
[[OpenReview]](https://openreview.net/forum?id=oaGdsgB18L)
[[arXiv]](https://arxiv.org/abs/2205.14307)
- Built over ICEWS and GDELT, which are widly used benchmarks in TKGC.
- First introduced in paper "TFLEX: Temporal Feature-Logic Embedding Framework for Complex Reasoning over Temporal Knowledge Graph"
- Please refer to the original paper for more details.
"""
_HOMEPAGE = "https://github.com/LinXueyuanStdio/TFLEX"
_LICENSE = "[Apache License 2.0](https://github.com/LinXueyuanStdio/TFLEX/blob/main/LICENSE)"
query_name_to_args: Dict[str, List[str]] = {
# 1. 1-hop Pe and Pt, manually
"Pe": ["e1", "r1", "t1"],
"Pt": ["e1", "r1", "e2"],
# 2. entity multi-hop
"Pe2": ["e1", "r1", "t1", "r2", "t2"],
"Pe3": ["e1", "r1", "t1", "r2", "t2", "r3", "t3"],
# 3. time multi-hop
"aPt": ["s", "r", "o"],
"bPt": ["s", "r", "o"],
"Pt_sPe": ["e1", "r1", "t1", "r2", "e2"],
"Pt_oPe": ["e1", "r1", "e2", "r2", "t1"],
"Pe_Pt": ["e1", "r1", "e2", "r2", "e3"],
"Pe_aPt": ["e1", "r1", "e2", "r2", "e3"],
"Pe_bPt": ["e1", "r1", "e2", "r2", "e3"],
"Pe_nPt": ["e1", "r1", "e2", "r2", "e3"],
"Pt_sPe_Pt": ["s1", "r1", "s2", "r2", "o1", "r3", "o2"],
"Pt_oPe_Pt": ["s1", "r1", "s2", "r2", "s3", "r3", "o1"],
# 4. entity and & time and
"e2i": ["e1", "r1", "t1", "e2", "r2", "t2"],
"e3i": ["e1", "r1", "t1", "e2", "r2", "t2", "e3", "r3", "t3"],
"t2i": ["e1", "r1", "e2", "e3", "r2", "e4"],
"t3i": ["e1", "r1", "e2", "e3", "r2", "e4", "e5", "r3", "e6"],
# 5. complex time and
"e2i_Pe": ["e1", "r1", "t1", "r2", "t2", "e2", "r3", "t3"],
"Pe_e2i": ["e1", "r1", "t1", "e2", "r2", "t2", "r3", "t3"],
"Pt_se2i": ["e1", "r1", "t1", "e2", "r2", "t2", "r3", "e3"],
"Pt_oe2i": ["e1", "r1", "e2", "r2", "t1", "e3", "r3", "t2"],
"t2i_Pe": ["e1", "r1", "t1", "r2", "e2", "e3", "r3", "e4"],
"Pe_t2i": ["e1", "r1", "e2", "r2", "e3", "e4", "r3", "e5"],
"Pe_at2i": ["e1", "r1", "e2", "r2", "e3", "e4", "r3", "e5"],
"Pe_bt2i": ["e1", "r1", "e2", "r2", "e3", "e4", "r3", "e5"],
"Pe_nt2i": ["e1", "r1", "e2", "r2", "e3", "e4", "r3", "e5"],
"between": ["e1", "r1", "e2", "e3", "r2", "e4"],
# 5. entity not
"e2i_N": ["e1", "r1", "t1", "e2", "r2", "t2"],
"e3i_N": ["e1", "r1", "t1", "e2", "r2", "t2", "e3", "r3", "t3"],
"Pe_e2i_Pe_NPe": ["e1", "r1", "t1", "e2", "r2", "t2", "r3", "t3"],
"e2i_NPe": ["e1", "r1", "t1", "r2", "t2", "e2", "r3", "t3"],
"e2i_PeN": ["e1", "r1", "t1", "r2", "t2", "e2", "r3", "t3"],
# 6. time not
"t2i_N": ["e1", "r1", "e2", "e3", "r2", "e4"],
"t3i_N": ["e1", "r1", "e2", "e3", "r2", "e4", "e5", "r3", "e6"],
"Pe_t2i_PtPe_NPt": ["e1", "r1", "e2", "r2", "t2", "r3", "e3", "e4", "r4", "e5"],
"t2i_NPt": ["e1", "r1", "t1", "r2", "e2", "e3", "r3", "e4"],
"t2i_PtN": ["e1", "r1", "t1", "r2", "e2", "e3", "r3", "e4"],
# 7. entity union & time union
"e2u": ["e1", "r1", "t1", "e2", "r2", "t2"],
"Pe_e2u": ["e1", "r1", "t1", "e2", "r2", "t2", "r3", "t3"],
"t2u": ["e1", "r1", "e2", "e3", "r2", "e4"],
"Pe_t2u": ["e1", "r1", "e2", "r2", "e3", "e4", "r3", "e5"],
}
query_structures: Dict[str, str] = {
# 1. 1-hop Pe and Pt, manually
"Pe": "def Pe(e1, r1, t1): return Pe(e1, r1, t1)", # 1p
"Pt": "def Pt(e1, r1, e2): return Pt(e1, r1, e2)", # 1p, temporal
# 2. entity multi-hop
"Pe2": "def Pe2(e1, r1, t1, r2, t2): return Pe(Pe(e1, r1, t1), r2, t2)", # 2p
"Pe3": "def Pe3(e1, r1, t1, r2, t2, r3, t3): return Pe(Pe(Pe(e1, r1, t1), r2, t2), r3, t3)", # 3p
# 3. time multi-hop
"aPt": "def aPt(s, r, o): return after(Pt(s, r, o))", # a for after
"bPt": "def bPt(s, r, o): return before(Pt(s, r, o))", # b for before
"Pt_lPe": "def Pt_lPe(e1, r1, t1, r2, e2): return Pt(Pe(e1, r1, t1), r2, e2)", # l for left (as head entity)
"Pt_rPe": "def Pt_rPe(e1, r1, e2, r2, t1): return Pt(e1, r1, Pe(e2, r2, t1))", # r for right (as tail entity)
"Pt_sPe": "def Pt_sPe(e1, r1, t1, r2, e2): return Pt(Pe(e1, r1, t1), r2, e2)", # l for left (as head entity)
"Pt_oPe": "def Pt_oPe(e1, r1, e2, r2, t1): return Pt(e1, r1, Pe(e2, r2, t1))", # r for right (as tail entity)
"Pe_Pt": "def Pe_Pt(e1, r1, e2, r2, e3): return Pe(e1, r1, Pt(e2, r2, e3))", # at
"Pe_aPt": "def Pe_aPt(e1, r1, e2, r2, e3): return Pe(e1, r1, after(Pt(e2, r2, e3)))", # a for after
"Pe_bPt": "def Pe_bPt(e1, r1, e2, r2, e3): return Pe(e1, r1, before(Pt(e2, r2, e3)))", # b for before
"Pe_nPt": "def Pe_nPt(e1, r1, e2, r2, e3): return Pe(e1, r1, next(Pt(e2, r2, e3)))", # n for next
"Pt_sPe_Pt": "def Pt_sPe_Pt(s1, r1, s2, r2, o1, r3, o2): return Pt(Pe(s1, r1, Pt(s2, r2, o1)), r3, o2)",
"Pt_oPe_Pt": "def Pt_oPe_Pt(s1, r1, s2, r2, s3, r3, o1): return Pt(s1, r1, Pe(s2, r2, Pt(s3, r3, o1)))",
# 4. entity and & time and
"e2i": "def e2i(e1, r1, t1, e2, r2, t2): return And(Pe(e1, r1, t1), Pe(e2, r2, t2))", # 2i
"e3i": "def e3i(e1, r1, t1, e2, r2, t2, e3, r3, t3): return And3(Pe(e1, r1, t1), Pe(e2, r2, t2), Pe(e3, r3, t3))", # 3i
"t2i": "def t2i(e1, r1, e2, e3, r2, e4): return TimeAnd(Pt(e1, r1, e2), Pt(e3, r2, e4))", # t-2i
"t3i": "def t3i(e1, r1, e2, e3, r2, e4, e5, r3, e6): return TimeAnd3(Pt(e1, r1, e2), Pt(e3, r2, e4), Pt(e5, r3, e6))", # t-3i
# 5. complex time and
"e2i_Pe": "def e2i_Pe(e1, r1, t1, r2, t2, e2, r3, t3): return And(Pe(Pe(e1, r1, t1), r2, t2), Pe(e2, r3, t3))", # pi
"Pe_e2i": "def Pe_e2i(e1, r1, t1, e2, r2, t2, r3, t3): return Pe(e2i(e1, r1, t1, e2, r2, t2), r3, t3)", # ip
"Pt_le2i": "def Pt_le2i(e1, r1, t1, e2, r2, t2, r3, e3): return Pt(e2i(e1, r1, t1, e2, r2, t2), r3, e3)", # mix ip
"Pt_re2i": "def Pt_re2i(e1, r1, e2, r2, t1, e3, r3, t2): return Pt(e1, r1, e2i(e2, r2, t1, e3, r3, t2))", # mix ip
"Pt_se2i": "def Pt_se2i(e1, r1, t1, e2, r2, t2, r3, e3): return Pt(e2i(e1, r1, t1, e2, r2, t2), r3, e3)", # mix ip
"Pt_oe2i": "def Pt_oe2i(e1, r1, e2, r2, t1, e3, r3, t2): return Pt(e1, r1, e2i(e2, r2, t1, e3, r3, t2))", # mix ip
"t2i_Pe": "def t2i_Pe(e1, r1, t1, r2, e2, e3, r3, e4): return TimeAnd(Pt(Pe(e1, r1, t1), r2, e2), Pt(e3, r3, e4))", # t-pi
"Pe_t2i": "def Pe_t2i(e1, r1, e2, r2, e3, e4, r3, e5): return Pe(e1, r1, t2i(e2, r2, e3, e4, r3, e5))", # t-ip
"Pe_at2i": "def Pe_at2i(e1, r1, e2, r2, e3, e4, r3, e5): return Pe(e1, r1, after(t2i(e2, r2, e3, e4, r3, e5)))",
"Pe_bt2i": "def Pe_bt2i(e1, r1, e2, r2, e3, e4, r3, e5): return Pe(e1, r1, before(t2i(e2, r2, e3, e4, r3, e5)))",
"Pe_nt2i": "def Pe_nt2i(e1, r1, e2, r2, e3, e4, r3, e5): return Pe(e1, r1, next(t2i(e2, r2, e3, e4, r3, e5)))",
"between": "def between(e1, r1, e2, e3, r2, e4): return TimeAnd(after(Pt(e1, r1, e2)), before(Pt(e3, r2, e4)))", # between(t1, t2) == after t1 and before t2
# 5. entity not
"e2i_N": "def e2i_N(e1, r1, t1, e2, r2, t2): return And(Pe(e1, r1, t1), Not(Pe(e2, r2, t2)))", # 2in
"e3i_N": "def e3i_N(e1, r1, t1, e2, r2, t2, e3, r3, t3): return And3(Pe(e1, r1, t1), Pe(e2, r2, t2), Not(Pe(e3, r3, t3)))", # 3in
"Pe_e2i_Pe_NPe": "def Pe_e2i_Pe_NPe(e1, r1, t1, e2, r2, t2, r3, t3): return Pe(And(Pe(e1, r1, t1), Not(Pe(e2, r2, t2))), r3, t3)", # inp
"e2i_PeN": "def e2i_PeN(e1, r1, t1, r2, t2, e2, r3, t3): return And(Pe(Pe(e1, r1, t1), r2, t2), Not(Pe(e2, r3, t3)))", # pin
"e2i_NPe": "def e2i_NPe(e1, r1, t1, r2, t2, e2, r3, t3): return And(Not(Pe(Pe(e1, r1, t1), r2, t2)), Pe(e2, r3, t3))", # pni = e2i_N(Pe(e1, r1, t1), r2, t2, e2, r3, t3)
# 6. time not
"t2i_N": "def t2i_N(e1, r1, e2, e3, r2, e4): return TimeAnd(Pt(e1, r1, e2), TimeNot(Pt(e3, r2, e4)))", # t-2in
"t3i_N": "def t3i_N(e1, r1, e2, e3, r2, e4, e5, r3, e6): return TimeAnd3(Pt(e1, r1, e2), Pt(e3, r2, e4), TimeNot(Pt(e5, r3, e6)))", # t-3in
"Pe_t2i_PtPe_NPt": "def Pe_t2i_PtPe_NPt(e1, r1, e2, r2, t2, r3, e3, e4, r4, e5): return Pe(e1, r1, TimeAnd(Pt(Pe(e2, r2, t2), r3, e3), TimeNot(Pt(e4, r4, e5))))", # t-inp
"t2i_PtN": "def t2i_PtN(e1, r1, t1, r2, e2, e3, r3, e4): return TimeAnd(Pt(Pe(e1, r1, t1), r2, e2), TimeNot(Pt(e3, r3, e4)))", # t-pin
"t2i_NPt": "def t2i_NPt(e1, r1, t1, r2, e2, e3, r3, e4): return TimeAnd(TimeNot(Pt(Pe(e1, r1, t1), r2, e2)), Pt(e3, r3, e4))", # t-pni
# 7. entity union & time union
"e2u": "def e2u(e1, r1, t1, e2, r2, t2): return Or(Pe(e1, r1, t1), Pe(e2, r2, t2))", # 2u
"Pe_e2u": "def Pe_e2u(e1, r1, t1, e2, r2, t2, r3, t3): return Pe(Or(Pe(e1, r1, t1), Pe(e2, r2, t2)), r3, t3)", # up
"t2u": "def t2u(e1, r1, e2, e3, r2, e4): return TimeOr(Pt(e1, r1, e2), Pt(e3, r2, e4))", # t-2u
"Pe_t2u": "def Pe_t2u(e1, r1, e2, r2, e3, e4, r3, e5): return Pe(e1, r1, TimeOr(Pt(e2, r2, e3), Pt(e4, r3, e5)))", # t-up
# 8. union-DM
"e2u_DM": "def e2u_DM(e1, r1, t1, e2, r2, t2): return Not(And(Not(Pe(e1, r1, t1)), Not(Pe(e2, r2, t2))))", # 2u-DM
"Pe_e2u_DM": "def Pe_e2u_DM(e1, r1, t1, e2, r2, t2, r3, t3): return Pe(Not(And(Not(Pe(e1, r1, t1)), Not(Pe(e2, r2, t2)))), r3, t3)", # up-DM
"t2u_DM": "def t2u_DM(e1, r1, e2, e3, r2, e4): return TimeNot(TimeAnd(TimeNot(Pt(e1, r1, e2)), TimeNot(Pt(e3, r2, e4))))", # t-2u-DM
"Pe_t2u_DM": "def Pe_t2u_DM(e1, r1, e2, r2, e3, e4, r3, e5): return Pe(e1, r1, TimeNot(TimeAnd(TimeNot(Pt(e2, r2, e3)), TimeNot(Pt(e4, r3, e5)))))", # t-up-DM
# 9. union-DNF
"e2u_DNF": "def e2u_DNF(e1, r1, t1, e2, r2, t2): return Pe(e1, r1, t1), Pe(e2, r2, t2)", # 2u_DNF
"Pe_e2u_DNF": "def Pe_e2u_DNF(e1, r1, t1, e2, r2, t2, r3, t3): return Pe(Pe(e1, r1, t1), r3, t3), Pe(Pe(e2, r2, t2), r3, t3)", # up_DNF
"t2u_DNF": "def t2u_DNF(e1, r1, e2, e3, r2, e4): return Pt(e1, r1, e2), Pt(e3, r2, e4)", # t-2u_DNF
"Pe_t2u_DNF": "def Pe_t2u_DNF(e1, r1, e2, r2, e3, e4, r3, e5): return Pe(e1, r1, Pt(e2, r2, e3)), Pe(e1, r1, Pt(e4, r3, e5))", # t-up_DNF
}
union_query_structures: List[str] = [
"e2u",
"Pe_e2u", # 2u, up
"t2u",
"Pe_t2u", # t-2u, t-up
]
train_query_structures: List[str] = [
# entity
"Pe",
"Pe2",
"Pe3",
"e2i",
"e3i", # 1p, 2p, 3p, 2i, 3i
"e2i_NPe",
"e2i_PeN",
"Pe_e2i_Pe_NPe",
"e2i_N",
"e3i_N", # npi, pni, inp, 2in, 3in
# time
"Pt",
"Pt_lPe",
"Pt_rPe",
"Pe_Pt",
"Pe_aPt",
"Pe_bPt",
"Pe_nPt", # t-1p, t-2p
"t2i",
"t3i",
"Pt_le2i",
"Pt_re2i",
"Pe_t2i",
"Pe_at2i",
"Pe_bt2i",
"Pe_nt2i",
"between", # t-2i, t-3i
"t2i_NPt",
"t2i_PtN",
"Pe_t2i_PtPe_NPt",
"t2i_N",
"t3i_N", # t-npi, t-pni, t-inp, t-2in, t-3in
]
test_query_structures: List[str] = train_query_structures + [
# entity
"e2i_Pe",
"Pe_e2i", # pi, ip
"e2u",
"Pe_e2u", # 2u, up
# time
"t2i_Pe",
"Pe_t2i", # t-pi, t-ip
"t2u",
"Pe_t2u", # t-2u, t-up
# union-DM
"e2u_DM",
"Pe_e2u_DM", # 2u-DM, up-DM
"t2u_DM",
"Pe_t2u_DM", # t-2u-DM, t-up-DM
]
_AUTHOR = "linxy"
_DATASET = "GDELT"
_URLS = {
name: hf_hub_url(f"{_AUTHOR}/{_DATASET}", filename=f"zips/{name}.zip", repo_type="dataset")
for name in ["all"] + list(query_name_to_args.keys())
} | {
"meta": hf_hub_url(f"{_AUTHOR}/{_DATASET}", filename="meta.json", repo_type="dataset")
}
class GDELTDataset(datasets.GeneratorBasedBuilder):
VERSION = datasets.Version("1.0.0")
STANDARD_BUILDER_CONFIGS = [
datasets.BuilderConfig(
name=query_name,
version=datasets.Version("1.0.0"),
description=query_structures[query_name],
)
for query_name in list(query_name_to_args.keys())
]
BUILDER_CONFIGS = [
datasets.BuilderConfig(
name="meta",
version=VERSION,
description=f"The meta of data, including entity/relation/timestamp count, entity2idx, relation2idx, timestamp2idx, etc.",
),
datasets.BuilderConfig(
name="all",
version=VERSION,
description=f"All types of queries. Train: {train_query_structures}, Valid | Test: {test_query_structures}",
),
] + STANDARD_BUILDER_CONFIGS
DEFAULT_CONFIG_NAME = "all" # It's not mandatory to have a default configuration. Just use one if it make sense.
def _info(self):
if self.config.name == "meta":
features = datasets.Features(
{
"dataset": datasets.Value("string"),
"entity_count": datasets.Value("int32"),
"relation_count": datasets.Value("int32"),
"timestamp_count": datasets.Value("int32"),
"valid_triples_count": datasets.Value("int32"),
"test_triples_count": datasets.Value("int32"),
"train_triples_count": datasets.Value("int32"),
"triple_count": datasets.Value("int32"),
"query_meta": datasets.Sequence(
feature={
"query_name": datasets.Value("string"),
"queries_count": datasets.Value("int32"),
"avg_answers_count": datasets.Value("float"),
"train": {
"queries_count": datasets.Value("int32"),
"avg_answers_count": datasets.Value("float"),
},
"valid": {
"queries_count": datasets.Value("int32"),
"avg_answers_count": datasets.Value("float"),
},
"test": {
"queries_count": datasets.Value("int32"),
"avg_answers_count": datasets.Value("float"),
},
}
),
"entity2idx": datasets.Sequence(
feature={
"name": datasets.Value("string"),
"id": datasets.Value("int32"),
}
),
"relation2idx": datasets.Sequence(
feature={
"name": datasets.Value("string"),
"id": datasets.Value("int32"),
}
),
"timestamp2idx": datasets.Sequence(
feature={
"name": datasets.Value("string"),
"id": datasets.Value("int32"),
}
),
}
)
else:
features = datasets.Features(
{
"query_name": datasets.Value("string"),
"definition": datasets.Value("string"),
"query": datasets.Sequence(feature=datasets.Value("int32")),
"answer": datasets.Sequence(feature=datasets.Value("int32")),
"easy_answer": datasets.Sequence(feature=datasets.Value("int32")),
"args": datasets.Sequence(feature=datasets.Value("string")),
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager: datasets.download.DownloadManager):
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
url = _URLS[self.config.name]
if self.config.name == "meta":
data_file = dl_manager.download(_URLS["meta"])
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": data_file,
"split": "meta",
},
)
]
data_dir = dl_manager.download_and_extract(url)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": os.path.join(data_dir, "train.jsonl"),
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": os.path.join(data_dir, "valid.jsonl"),
"split": "valid",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": os.path.join(data_dir, "test.jsonl"),
"split": "test",
},
),
]
def _generate_examples(self, filepath, split):
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
# This method yields (key, example) tuples from the dataset.
# The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
if not os.path.exists(filepath):
return
if split == "meta":
with open(filepath, "r", encoding="utf-8") as f:
data = json.load(f)
yield 0, data
return
with open(filepath, "r", encoding="utf-8") as f:
for key, row in enumerate(f):
data = json.loads(row)
query_name = data["query_name"]
easy_answer = data["easy_answer"] if "easy_answer" in data else []
yield key, {
"query_name": query_name,
"query": data["query"],
"answer": data["answer"],
"easy_answer": easy_answer,
"args": query_name_to_args[query_name],
"definition": query_structures[query_name],
}
|