Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,218 @@
|
|
1 |
-
---
|
2 |
-
license: apache-2.0
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
task_categories:
|
4 |
+
- graph-ml
|
5 |
+
language:
|
6 |
+
- en
|
7 |
+
size_categories:
|
8 |
+
- 1M<n<10M
|
9 |
+
---
|
10 |
+
|
11 |
+
TL;DR: The datasets for the temporal knowledge graph reasoning task.
|
12 |
+
|
13 |
+
[[Github]](https://github.com/LinXueyuanStdio/TFLEX)
|
14 |
+
[[OpenReview]](https://openreview.net/forum?id=oaGdsgB18L)
|
15 |
+
[[arXiv]](https://arxiv.org/abs/2205.14307)
|
16 |
+
|
17 |
+
- Built over ICEWS and GDELT, which are widely used benchmarks in TKGC.
|
18 |
+
- First introduced in paper "TFLEX: Temporal Feature-Logic Embedding Framework for Complex Reasoning over Temporal Knowledge Graph"
|
19 |
+
- Please refer to the original paper for more details.
|
20 |
+
|
21 |
+
See also: [[ICEWS14]](https://huggingface.co/datasets/linxy/ICEWS14) [[ICEWS05_15]](https://huggingface.co/datasets/linxy/ICEWS05_15)
|
22 |
+
|
23 |
+
## π¬ Usage
|
24 |
+
|
25 |
+
```python
|
26 |
+
>>> dataset = load_dataset("linxy/GDELT", "all")
|
27 |
+
>>> len(dataset["train"]) + len(dataset["validation"]) + len(dataset["test"])
|
28 |
+
1088769
|
29 |
+
>>> dataset["train"][0]
|
30 |
+
{'query_name': 'Pe_aPt',
|
31 |
+
'definition': 'def Pe_aPt(e1, r1, e2, r2, e3): return Pe(e1, r1, after(Pt(e2, r2, e3)))',
|
32 |
+
'query': [6291, 372, 5683, 283, 5264],
|
33 |
+
'answer': [1077],
|
34 |
+
'easy_answer': [],
|
35 |
+
'args': ['e1', 'r1', 'e2', 'r2', 'e3']}
|
36 |
+
>>> dataset["test"][0]
|
37 |
+
{'query_name': 'Pe',
|
38 |
+
'definition': 'def Pe(e1, r1, t1): return Pe(e1, r1, t1)',
|
39 |
+
'query': [1426, 115, 28],
|
40 |
+
'answer': [3697],
|
41 |
+
'easy_answer': [],
|
42 |
+
'args': ['e1', 'r1', 't1']}
|
43 |
+
```
|
44 |
+
|
45 |
+
'args' is the argument list of the query function, where name starting with 'e' is entity, and 'r' for relation, 't' for timestamp.
|
46 |
+
|
47 |
+
assert len(query) == len(args)
|
48 |
+
|
49 |
+
In order to decode query ids into text, we should use a vocabulary (i.e. entity2idx, relation2idx and timestamp2idx).
|
50 |
+
Therefore, we use the code below to load meta info which contains the vocabulary:
|
51 |
+
|
52 |
+
```python
|
53 |
+
>>> dataset = load_dataset("linxy/GDELT", "meta")
|
54 |
+
>>> meta_info = dataset_meta["train"][0]
|
55 |
+
>>> meta_info
|
56 |
+
{'dataset': 'ICEWS14',
|
57 |
+
'entity_count': 7128,
|
58 |
+
'relation_count': 230,
|
59 |
+
'timestamp_count': 365,
|
60 |
+
'valid_triples_count': 8941,
|
61 |
+
'test_triples_count': 8963,
|
62 |
+
'train_triples_count': 72826,
|
63 |
+
'triple_count': 90730,
|
64 |
+
'query_meta': {'query_name': [...], 'queries_count': [...], 'avg_answers_count': [...], ...},
|
65 |
+
'entity2idx': {'name': [...], 'id': [...]},
|
66 |
+
'relation2idx': {'name': [...], 'id': [...]},
|
67 |
+
'timestamp2idx': {'name': [...], 'id': [...]},
|
68 |
+
```
|
69 |
+
|
70 |
+
Since the ids in the vocabulary are already sorted, we directly decode to access the name text:
|
71 |
+
|
72 |
+
```python
|
73 |
+
>>> query
|
74 |
+
[1426, 115, 28]
|
75 |
+
>>> args
|
76 |
+
['e1', 'r1', 't1']
|
77 |
+
>>> for idx, arg_type in zip(query, args):
|
78 |
+
if arg_type.startswith('e') or arg_type.startswith('s') or arg_type.startswith('o'): # s, o, e1, e2, ...
|
79 |
+
print(idx, meta_info['entity2idx']['name'][idx])
|
80 |
+
elif arg_type.startswith('r'): # r, r1, r2, ...
|
81 |
+
print(idx, meta_info['relation2idx']['name'][idx])
|
82 |
+
elif arg_type.startswith('t'): # t, t1, t2, ...
|
83 |
+
print(idx, meta_info['timestamp2idx']['name'][idx])
|
84 |
+
```
|
85 |
+
|
86 |
+
Besides, we also provide query-type-specific subparts.
|
87 |
+
|
88 |
+
```python
|
89 |
+
>>> dataset = load_dataset("linxy/GDELT", "e2i")
|
90 |
+
>>> some_datasets = [load_dataset("linxy/GDELT", query_name) for query_name in meta_info['query_meta']['query_name']]
|
91 |
+
```
|
92 |
+
|
93 |
+
Help yourself!
|
94 |
+
|
95 |
+
<details>
|
96 |
+
<summary>π π Dataset statistics: queries_count</summary>
|
97 |
+
|
98 |
+
| query | ICEWS14| | | ICEWS05_15| | | GDELT | | |
|
99 |
+
| :---- | :---- | :---- | :--- | :---- | :---- | :--- | :---- | :---- | :--- |
|
100 |
+
| | train | valid | test | train | valid | test | train | valid | test |
|
101 |
+
| Pe | 66783 | 8837 | 8848 | 344042 | 45829 | 45644 | 1115102 | 273842 | 273432 |
|
102 |
+
| Pe2 | 72826 | 3482 | 4037 | 368962 | 10000 | 10000 | 2215309 | 10000 | 10000 |
|
103 |
+
| Pe3 | 72826 | 3492 | 4083 | 368962 | 10000 | 10000 | 2215309 | 10000 | 10000 |
|
104 |
+
| e2i | 72826 | 3305 | 3655 | 368962 | 10000 | 10000 | 2215309 | 10000 | 10000 |
|
105 |
+
| e3i | 72826 | 2966 | 3023 | 368962 | 10000 | 10000 | 2215309 | 10000 | 10000 |
|
106 |
+
| Pt | 42690 | 7331 | 7419 | 142771 | 28795 | 28752 | 687326 | 199780 | 199419 |
|
107 |
+
| aPt | 13234 | 4411 | 4411 | 68262 | 10000 | 10000 | 221530 | 10000 | 10000 |
|
108 |
+
| bPt | 13234 | 4411 | 4411 | 68262 | 10000 | 10000 | 221530 | 10000 | 10000 |
|
109 |
+
| Pe_Pt | 7282 | 3385 | 3638 | 36896 | 10000 | 10000 | 221530 | 10000 | 10000 |
|
110 |
+
| Pt_sPe_Pt | 13234 | 5541 | 6293 | 68262 | 10000 | 10000 | 221530 | 10000 | 10000 |
|
111 |
+
| Pt_oPe_Pt | 13234 | 5480 | 6242 | 68262 | 10000 | 10000 | 221530 | 10000 | 10000 |
|
112 |
+
| t2i | 72826 | 5112 | 6631 | 368962 | 10000 | 10000 | 2215309 | 10000 | 10000 |
|
113 |
+
| t3i | 72826 | 3094 | 3296 | 368962 | 10000 | 10000 | 2215309 | 10000 | 10000 |
|
114 |
+
| e2i_N | 7282 | 2949 | 2975 | 36896 | 10000 | 10000 | 221530 | 10000 | 10000 |
|
115 |
+
| e3i_N | 7282 | 2913 | 2914 | 36896 | 10000 | 10000 | 221530 | 10000 | 10000 |
|
116 |
+
| Pe_e2i_Pe_NPe | 7282 | 2968 | 3012 | 36896 | 10000 | 10000 | 221530 | 10000 | 10000 |
|
117 |
+
| e2i_PeN | 7282 | 2971 | 3031 | 36896 | 10000 | 10000 | 221530 | 10000 | 10000 |
|
118 |
+
| e2i_NPe | 7282 | 3061 | 3192 | 36896 | 10000 | 10000 | 221530 | 10000 | 10000 |
|
119 |
+
| t2i_N | 7282 | 3135 | 3328 | 36896 | 10000 | 10000 | 221530 | 10000 | 10000 |
|
120 |
+
| t3i_N | 7282 | 2924 | 2944 | 36896 | 10000 | 10000 | 221530 | 10000 | 10000 |
|
121 |
+
| Pe_t2i_PtPe_NPt | 7282 | 3031 | 3127 | 36896 | 10000 | 10000 | 221530 | 10000 | 10000 |
|
122 |
+
| t2i_PtN | 7282 | 3300 | 3609 | 36896 | 10000 | 10000 | 221530 | 10000 | 10000 |
|
123 |
+
| t2i_NPt | 7282 | 4873 | 5464 | 36896 | 10000 | 10000 | 221530 | 10000 | 10000 |
|
124 |
+
| e2u | - | 2913 | 2913 | - | 10000 | 10000 | - | 10000 | 10000 |
|
125 |
+
| Pe_e2u | - | 2913 | 2913 | - | 10000 | 10000 | - | 10000 | 10000 |
|
126 |
+
| t2u | - | 2913 | 2913 | - | 10000 | 10000 | - | 10000 | 10000 |
|
127 |
+
| Pe_t2u | - | 2913 | 2913 | - | 10000 | 10000 | - | 10000 | 10000 |
|
128 |
+
| t2i_Pe | - | 2913 | 2913 | - | 10000 | 10000 | - | 10000 | 10000 |
|
129 |
+
| Pe_t2i | - | 2913 | 2913 | - | 10000 | 10000 | - | 10000 | 10000 |
|
130 |
+
| e2i_Pe | - | 2913 | 2913 | - | 10000 | 10000 | - | 10000 | 10000 |
|
131 |
+
| Pe_e2i | - | 2913 | 2913 | - | 10000 | 10000 | - | 10000 | 10000 |
|
132 |
+
| between | 7282 | 2913 | 2913 | 36896 | 10000 | 10000 | 221530 | 10000 | 10000 |
|
133 |
+
| Pe_aPt | 7282 | 4134 | 4733 | 68262 | 10000 | 10000 | 221530 | 10000 | 10000 |
|
134 |
+
| Pe_bPt | 7282 | 3970 | 4565 | 36896 | 10000 | 10000 | 221530 | 10000 | 10000 |
|
135 |
+
| Pt_sPe | 7282 | 4976 | 5608 | 36896 | 10000 | 10000 | 221530 | 10000 | 10000 |
|
136 |
+
| Pt_oPe | 7282 | 3321 | 3621 | 36896 | 10000 | 10000 | 221530 | 10000 | 10000 |
|
137 |
+
| Pt_se2i | 7282 | 3226 | 3466 | 36896 | 10000 | 10000 | 221530 | 10000 | 10000 |
|
138 |
+
| Pt_oe2i | 7282 | 3236 | 3485 | 36896 | 10000 | 10000 | 221530 | 10000 | 10000 |
|
139 |
+
| Pe_at2i | 7282 | 4607 | 5338 | 36896 | 10000 | 10000 | 221530 | 10000 | 10000 |
|
140 |
+
| Pe_bt2i | 7282 | 4583 | 5386 | 36896 | 10000 | 10000 | 221530 | 10000 | 10000 |
|
141 |
+
</details>
|
142 |
+
|
143 |
+
<details>
|
144 |
+
<summary>π π Dataset statistics: avg_answers_count</summary>
|
145 |
+
|
146 |
+
| query | ICEWS14| | | ICEWS05_15| | | GDELT | | |
|
147 |
+
| :---- | :---- | :---- | :--- | :---- | :---- | :--- | :---- | :---- | :--- |
|
148 |
+
| | train | valid | test | train | valid | test | train | valid | test |
|
149 |
+
|Pe | 1.09 | 1.01 | 1.01 | 1.07 | 1.01 | 1.01 | 2.07 | 1.21 | 1.21|
|
150 |
+
|Pe2 | 1.03 | 2.19 | 2.23 | 1.02 | 2.15 | 2.19 | 2.61 | 6.51 | 6.13|
|
151 |
+
|Pe3 | 1.04 | 2.25 | 2.29 | 1.02 | 2.18 | 2.21 | 5.11 | 10.86 | 10.70|
|
152 |
+
|e2i | 1.02 | 2.76 | 2.84 | 1.01 | 2.36 | 2.52 | 1.05 | 2.30 | 2.32|
|
153 |
+
|e3i | 1.00 | 1.57 | 1.59 | 1.00 | 1.26 | 1.26 | 1.00 | 1.20 | 1.35|
|
154 |
+
|Pt | 1.71 | 1.22 | 1.21 | 2.58 | 1.61 | 1.60 | 3.36 | 1.66 | 1.66|
|
155 |
+
|aPt | 177.99 | 176.09 | 175.89 | 2022.16 | 2003.85 | 1998.71 | 156.48 | 155.38 | 153.41|
|
156 |
+
|bPt | 181.20 | 179.88 | 179.26 | 1929.98 | 1923.75 | 1919.83 | 160.38 | 159.29 | 157.42|
|
157 |
+
|Pe_Pt | 1.58 | 7.90 | 8.62 | 2.84 | 18.11 | 20.63 | 26.56 | 42.54 | 41.33|
|
158 |
+
|Pt_sPe_Pt | 1.79 | 7.26 | 7.47 | 2.49 | 13.51 | 10.86 | 4.92 | 14.13 | 12.80|
|
159 |
+
|Pt_oPe_Pt | 1.75 | 7.27 | 7.48 | 2.55 | 13.01 | 14.34 | 4.62 | 14.47 | 12.90|
|
160 |
+
|t2i | 1.19 | 6.29 | 6.38 | 3.07 | 29.45 | 25.61 | 1.97 | 8.98 | 7.76|
|
161 |
+
|t3i | 1.01 | 2.88 | 3.14 | 1.08 | 10.03 | 10.22 | 1.06 | 3.79 | 3.52|
|
162 |
+
|e2i_N | 1.02 | 2.10 | 2.14 | 1.01 | 2.05 | 2.08 | 2.04 | 4.66 | 4.58|
|
163 |
+
|e3i_N | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.02 | 1.19 | 1.37|
|
164 |
+
|Pe_e2i_Pe_NPe | 1.04 | 2.21 | 2.25 | 1.02 | 2.16 | 2.19 | 3.67 | 8.54 | 8.12|
|
165 |
+
|e2i_PeN | 1.04 | 2.22 | 2.26 | 1.02 | 2.17 | 2.21 | 3.67 | 8.66 | 8.36|
|
166 |
+
|e2i_NPe | 1.18 | 3.03 | 3.11 | 1.12 | 2.87 | 2.99 | 4.00 | 8.15 | 7.81|
|
167 |
+
|t2i_N | 1.15 | 3.31 | 3.44 | 1.21 | 4.06 | 4.20 | 2.91 | 8.78 | 7.56|
|
168 |
+
|t3i_N | 1.00 | 1.02 | 1.03 | 1.01 | 1.02 | 1.02 | 1.15 | 3.19 | 3.20|
|
169 |
+
|Pe_t2i_PtPe_NPt | 1.08 | 2.59 | 2.70 | 1.08 | 2.47 | 2.62 | 4.10 | 12.02 | 11.37|
|
170 |
+
|t2i_PtN | 1.41 | 5.22 | 5.47 | 1.70 | 8.10 | 8.11 | 4.56 | 12.56 | 11.32|
|
171 |
+
|t2i_NPt | 8.14 | 25.96 | 26.23 | 66.99 | 154.01 | 147.34 | 17.58 | 35.60 | 32.22|
|
172 |
+
|e2u | 0.00 | 3.12 | 3.17 | 0.00 | 2.38 | 2.40 | 0.00 | 5.04 | 5.41|
|
173 |
+
|Pe_e2u | 0.00 | 2.38 | 2.44 | 0.00 | 1.24 | 1.25 | 0.00 | 9.39 | 10.78|
|
174 |
+
|t2u | 0.00 | 4.35 | 4.53 | 0.00 | 5.57 | 5.92 | 0.00 | 9.70 | 10.51|
|
175 |
+
|Pe_t2u | 0.00 | 2.72 | 2.83 | 0.00 | 1.24 | 1.28 | 0.00 | 9.90 | 11.27|
|
176 |
+
|t2i_Pe | 0.00 | 1.03 | 1.03 | 0.00 | 1.01 | 1.02 | 0.00 | 1.34 | 1.44|
|
177 |
+
|Pe_t2i | 0.00 | 1.14 | 1.16 | 0.00 | 1.07 | 1.08 | 0.00 | 2.01 | 2.20|
|
178 |
+
|e2i_Pe | 0.00 | 1.00 | 1.00 | 0.00 | 1.00 | 1.00 | 0.00 | 1.07 | 1.10|
|
179 |
+
|Pe_e2i | 0.00 | 2.18 | 2.24 | 0.00 | 1.32 | 1.33 | 0.00 | 5.08 | 5.49|
|
180 |
+
|between | 122.61 | 120.94 | 120.27 | 1407.87 | 1410.39 | 1404.76 | 214.16 | 210.99 | 207.85|
|
181 |
+
|Pe_aPt | 4.67 | 16.73 | 16.50 | 18.68 | 43.80 | 46.23 | 49.31 | 66.21 | 68.88|
|
182 |
+
|Pe_bPt | 4.53 | 17.07 | 16.80 | 18.70 | 45.81 | 48.23 | 67.67 | 84.79 | 83.00|
|
183 |
+
|Pt_sPe | 8.65 | 28.86 | 29.22 | 71.51 | 162.36 | 155.46 | 27.55 | 45.83 | 43.73|
|
184 |
+
|Pt_oPe | 1.41 | 5.23 | 5.46 | 1.68 | 8.36 | 8.21 | 3.84 | 11.31 | 10.06|
|
185 |
+
|Pt_se2i | 1.31 | 5.72 | 6.19 | 1.37 | 9.00 | 9.30 | 2.76 | 8.72 | 7.66|
|
186 |
+
|Pt_oe2i | 1.32 | 6.51 | 7.00 | 1.44 | 10.49 | 10.89 | 2.55 | 8.17 | 7.27|
|
187 |
+
|Pe_at2i | 7.26 | 22.63 | 21.98 | 30.40 | 60.03 | 53.18 | 88.77 | 101.60 | 101.88|
|
188 |
+
|Pe_bt2i | 7.27 | 21.92 | 21.23 | 30.31 | 61.59 | 64.98 | 88.80 | 100.64 | 100.67|
|
189 |
+
</details>
|
190 |
+
|
191 |
+
<br/>
|
192 |
+
|
193 |
+
## βοΈ Contact
|
194 |
+
|
195 |
+
- Lin Xueyuan: [email protected]
|
196 |
+
|
197 |
+
## π€ Citation
|
198 |
+
|
199 |
+
Please condiser citing this paper if you use the ```code``` or ```data``` from our work. Thanks a lot :)
|
200 |
+
|
201 |
+
(`Xueyuan et al., 2023` preferred, instead of `Lin et al., 2023`)
|
202 |
+
|
203 |
+
```bibtex
|
204 |
+
@inproceedings{
|
205 |
+
xueyuan2023tflex,
|
206 |
+
title={TFLEX: Temporal Feature-Logic Embedding Framework for Complex Reasoning over Temporal Knowledge Graph},
|
207 |
+
author={Lin Xueyuan and Haihong E and Chengjin Xu and Gengxian Zhou and Haoran Luo and Tianyi Hu and Fenglong Su and Ningyuan Li and Mingzhi Sun},
|
208 |
+
booktitle={Thirty-seventh Conference on Neural Information Processing Systems},
|
209 |
+
year={2023},
|
210 |
+
url={https://openreview.net/forum?id=oaGdsgB18L}
|
211 |
+
}
|
212 |
+
```
|
213 |
+
|
214 |
+
---
|
215 |
+
|
216 |
+
TFLEX is released under the [Apache License 2.0](https://www.apache.org/licenses/LICENSE-2.0) license.
|
217 |
+
|
218 |
+
<p align="right">(<a href="#top">back to top</a>)</p>
|