File size: 48,522 Bytes
62722a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "initial_id",
   "metadata": {
    "collapsed": true,
    "ExecuteTime": {
     "end_time": "2024-07-30T17:54:34.420100Z",
     "start_time": "2024-07-30T17:54:31.587244Z"
    }
   },
   "outputs": [],
   "source": [
    "import os\n",
    "import re\n",
    "import json\n",
    "import base64\n",
    "import tiktoken\n",
    "import time\n",
    "import pandas as pd\n",
    "import openai\n",
    "from tqdm.notebook import tqdm\n",
    "from openai import OpenAI\n"
   ]
  },
  {
   "cell_type": "code",
   "outputs": [],
   "source": [
    "MODEL_LIMITS = {\n",
    "    \"gpt-3.5-turbo-0125\": 16_385,\n",
    "    \"gpt-4-turbo-2024-04-09\": 128_000,\n",
    "    \"gpt-4o-2024-05-13\": 128_000\n",
    "}\n",
    "\n",
    "# The cost per token for each model input.\n",
    "MODEL_COST_PER_INPUT = {\n",
    "    \"gpt-3.5-turbo-0125\": 0.0000005,\n",
    "    \"gpt-4-turbo-2024-04-09\": 0.00001,\n",
    "    \"gpt-4o-2024-05-13\": 0.000005\n",
    "}\n",
    "\n",
    "# The cost per token for each model output.\n",
    "MODEL_COST_PER_OUTPUT = {\n",
    "    \"gpt-3.5-turbo-0125\": 0.0000015,\n",
    "    \"gpt-4-turbo-2024-04-09\": 0.00003,\n",
    "    \"gpt-4o-2024-05-13\": 0.000015\n",
    "}\n",
    "\n"
   ],
   "metadata": {
    "collapsed": false,
    "ExecuteTime": {
     "end_time": "2024-07-30T17:54:34.420796Z",
     "start_time": "2024-07-30T17:54:34.416511Z"
    }
   },
   "id": "707f7b0c807c3293",
   "execution_count": 2
  },
  {
   "cell_type": "code",
   "outputs": [],
   "source": [
    "# If the question is a multi-choice question and you are unsure which one is correct, you must guess an option.  Please don't ask me any questions and give me the answer in the response.\n",
    "\n",
    "def get_gpt_res(text, image, model):\n",
    "    if image and model[:7] != \"gpt-3.5\":\n",
    "        base64_image = encode_image(image)\n",
    "        image_code = {\n",
    "              \"type\": \"image_url\",\n",
    "              \"image_url\": {\n",
    "                \"url\": f\"data:image/jpeg;base64,{base64_image}\"}\n",
    "        }\n",
    "    \n",
    "        response = client.chat.completions.create(\n",
    "          model=model,\n",
    "          messages=[\n",
    "            {\n",
    "              \"role\": \"system\",\n",
    "              \"content\": [\n",
    "                {\n",
    "                  \"type\": \"text\",\n",
    "                  \"text\": \"You are a data analyst. I will give  you a background introduction and data analysis question. You must answer the question.  \"\n",
    "                }\n",
    "              ]\n",
    "            },\n",
    "            {\n",
    "              \"role\": \"user\",\n",
    "              \"content\": [\n",
    "                {\n",
    "                  \"type\": \"text\",\n",
    "                  \"text\": text\n",
    "                },\n",
    "                image_code\n",
    "              ]\n",
    "            }\n",
    "          ],\n",
    "          temperature=0,\n",
    "          max_tokens=2256,\n",
    "          top_p=1,\n",
    "          frequency_penalty=0,\n",
    "          presence_penalty=0\n",
    "        )\n",
    "    else:\n",
    "        response = client.chat.completions.create(\n",
    "          model=model,\n",
    "          messages=[\n",
    "            {\n",
    "              \"role\": \"system\",\n",
    "              \"content\": [\n",
    "                {\n",
    "                  \"type\": \"text\",\n",
    "                  \"text\": \"You are a data analyst. I will give  you a background introduction and data analysis question. You must answer the question. \"\n",
    "                }\n",
    "              ]\n",
    "            },\n",
    "            {\n",
    "              \"role\": \"user\",\n",
    "              \"content\": [\n",
    "                {\n",
    "                  \"type\": \"text\",\n",
    "                  \"text\": text\n",
    "                }\n",
    "              ]\n",
    "            }\n",
    "          ],\n",
    "          temperature=0,\n",
    "          # max_tokens=2256,\n",
    "          top_p=1,\n",
    "          frequency_penalty=0,\n",
    "          presence_penalty=0\n",
    "        )\n",
    "    return response"
   ],
   "metadata": {
    "collapsed": false,
    "ExecuteTime": {
     "end_time": "2024-07-30T17:54:34.429697Z",
     "start_time": "2024-07-30T17:54:34.423485Z"
    }
   },
   "id": "13c11c802e901f74",
   "execution_count": 3
  },
  {
   "cell_type": "code",
   "outputs": [],
   "source": [
    "samples = []\n",
    "with open(\"./data.json\", \"r\") as f:\n",
    "    for line in f:\n",
    "        samples.append(eval(line.strip()))\n"
   ],
   "metadata": {
    "collapsed": false,
    "ExecuteTime": {
     "end_time": "2024-07-30T17:54:34.449313Z",
     "start_time": "2024-07-30T17:54:34.429336Z"
    }
   },
   "id": "959b638b518acaf8",
   "execution_count": 4
  },
  {
   "cell_type": "code",
   "outputs": [],
   "source": [
    "def gpt_tokenize(string: str, encoding) -> int:\n",
    "    \"\"\"Returns the number of tokens in a text string.\"\"\"\n",
    "    num_tokens = len(encoding.encode(string))\n",
    "    return num_tokens\n",
    "\n",
    "def find_jpg_files(directory):\n",
    "    jpg_files = [file for file in os.listdir(directory) if file.lower().endswith('.jpg') or file.lower().endswith('.png')]\n",
    "    return jpg_files if jpg_files else None\n",
    "\n",
    "# Function to encode the image\n",
    "def encode_image(image_path):\n",
    "  with open(image_path, \"rb\") as image_file:\n",
    "    return base64.b64encode(image_file.read()).decode('utf-8')\n",
    "\n",
    "\n",
    "def find_excel_files(directory):\n",
    "    jpg_files = [file for file in os.listdir(directory) if (file.lower().endswith('xlsx') or file.lower().endswith('xlsb') or file.lower().endswith('xlsm')) and not \"answer\" in file.lower()]\n",
    "    return jpg_files if jpg_files else None\n",
    "\n",
    "def read_excel(file_path):\n",
    "    # 读取Excel文件中的所有sheet\n",
    "    xls = pd.ExcelFile(file_path)\n",
    "    sheets = {}\n",
    "    for sheet_name in xls.sheet_names:\n",
    "        sheets[sheet_name] = xls.parse(sheet_name)\n",
    "    return sheets\n",
    "\n",
    "def dataframe_to_text(df):\n",
    "    # 将DataFrame转换为文本\n",
    "    text = df.to_string(index=False)\n",
    "    return text\n",
    "\n",
    "def combine_sheets_text(sheets):\n",
    "    # 将所有sheet的文本内容组合起来\n",
    "    combined_text = \"\"\n",
    "    for sheet_name, df in sheets.items():\n",
    "        sheet_text = dataframe_to_text(df)\n",
    "        combined_text += f\"Sheet name: {sheet_name}\\n{sheet_text}\\n\\n\"\n",
    "    return combined_text\n",
    "\n",
    "def read_txt(path):\n",
    "    with open(path, \"r\") as f:\n",
    "        return f.read()\n",
    "\n",
    "def truncate_text(text, max_tokens=128000):\n",
    "    # 计算当前文本的token数\n",
    "    tokens = text.split()\n",
    "    if len(tokens) > max_tokens:\n",
    "        # 截断文本以确保不超过最大token数\n",
    "        text = ' '.join(tokens[-max_tokens:])\n",
    "    return text"
   ],
   "metadata": {
    "collapsed": false,
    "ExecuteTime": {
     "end_time": "2024-07-30T17:54:34.454285Z",
     "start_time": "2024-07-30T17:54:34.444120Z"
    }
   },
   "id": "41837159d54fe6be",
   "execution_count": 5
  },
  {
   "cell_type": "code",
   "outputs": [
    {
     "data": {
      "text/plain": "  0%|          | 0/35 [00:00<?, ?it/s]",
      "application/vnd.jupyter.widget-view+json": {
       "version_major": 2,
       "version_minor": 0,
       "model_id": "f7f9c1f189cf4b09ab7938cc1eccb88b"
      }
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Total cost:  36.999739999999996\n",
      "Total cost:  38.250449999999994\n",
      "Total cost:  39.498639999999995\n",
      "Total cost:  40.747339999999994\n",
      "Total cost:  41.992529999999995\n",
      "Total cost:  43.23591999999999\n",
      "Total cost:  44.484019999999994\n",
      "Total cost:  45.72899999999999\n",
      "Total cost:  46.97565999999999\n",
      "Total cost:  48.22759999999999\n",
      "Total cost:  49.47311999999999\n",
      "Total cost:  50.719599999999986\n",
      "Total cost:  51.96382999999999\n",
      "Total cost:  53.212769999999985\n",
      "Total cost:  54.45198999999999\n",
      "Total cost:  54.486009999999986\n",
      "Total cost:  54.51985999999999\n",
      "Total cost:  54.55831999999999\n",
      "Total cost:  54.593969999999985\n",
      "Total cost:  54.621729999999985\n",
      "Total cost:  54.65634999999998\n",
      "Total cost:  54.690989999999985\n",
      "Total cost:  54.728549999999984\n",
      "Total cost:  54.76124999999998\n",
      "Total cost:  54.792459999999984\n",
      "Total cost:  54.82964999999999\n",
      "Total cost:  54.867389999999986\n",
      "Total cost:  54.90312999999998\n",
      "Total cost:  54.93681999999998\n",
      "Total cost:  54.969619999999985\n",
      "Total cost:  55.007139999999985\n",
      "Total cost:  55.04078999999999\n",
      "Total cost:  55.076819999999984\n",
      "Total cost:  55.114809999999984\n",
      "Total cost:  55.153359999999985\n",
      "Total cost:  55.220739999999985\n",
      "Total cost:  55.29938999999999\n",
      "Total cost:  55.37173999999999\n",
      "Total cost:  55.445109999999985\n",
      "Total cost:  55.513029999999986\n",
      "Total cost:  55.593209999999985\n",
      "Total cost:  55.666409999999985\n",
      "Total cost:  55.73881999999998\n",
      "Total cost:  55.98776999999998\n",
      "Total cost:  56.24514999999998\n",
      "Total cost:  56.50251999999998\n",
      "Total cost:  56.75385999999998\n",
      "Total cost:  56.992249999999984\n",
      "Total cost:  57.239629999999984\n",
      "Total cost:  57.49024999999998\n",
      "Total cost:  57.738469999999985\n",
      "Total cost:  57.987479999999984\n",
      "Total cost:  58.24189999999999\n",
      "Total cost:  58.88888999999999\n",
      "Total cost:  59.53223999999999\n",
      "Total cost:  60.16538999999999\n",
      "Total cost:  60.79905999999999\n",
      "Total cost:  61.43428999999999\n",
      "Total cost:  62.06920999999999\n",
      "Total cost:  62.70693999999999\n",
      "Total cost:  63.35130999999999\n",
      "Total cost:  63.991719999999994\n",
      "Total cost:  64.63403\n",
      "Total cost:  65.27351\n",
      "Total cost:  65.2993\n",
      "Total cost:  65.32312\n",
      "Total cost:  65.34591\n",
      "Total cost:  65.37329\n",
      "Total cost:  65.39828\n"
     ]
    },
    {
     "ename": "RateLimitError",
     "evalue": "Error code: 429 - {'error': {'message': 'You exceeded your current quota, please check your plan and billing details. For more information on this error, read the docs: https://platform.openai.com/docs/guides/error-codes/api-errors.', 'type': 'insufficient_quota', 'param': None, 'code': 'insufficient_quota'}}",
     "output_type": "error",
     "traceback": [
      "\u001B[0;31m---------------------------------------------------------------------------\u001B[0m",
      "\u001B[0;31mRateLimitError\u001B[0m                            Traceback (most recent call last)",
      "Cell \u001B[0;32mIn[8], line 57\u001B[0m\n\u001B[1;32m     53\u001B[0m     \u001B[38;5;66;03m# print(len(encoding.encode(prompt)))\u001B[39;00m\n\u001B[1;32m     54\u001B[0m     \u001B[38;5;66;03m# print(prompt)\u001B[39;00m\n\u001B[1;32m     55\u001B[0m \u001B[38;5;66;03m# text = truncate_text(text, 20000)\u001B[39;00m\n\u001B[1;32m     56\u001B[0m     start \u001B[38;5;241m=\u001B[39m time\u001B[38;5;241m.\u001B[39mtime()\n\u001B[0;32m---> 57\u001B[0m     response \u001B[38;5;241m=\u001B[39m \u001B[43mget_gpt_res\u001B[49m\u001B[43m(\u001B[49m\u001B[43mcut_text\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mimage\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mmodel\u001B[49m\u001B[43m)\u001B[49m\n\u001B[1;32m     58\u001B[0m     cost \u001B[38;5;241m=\u001B[39m response\u001B[38;5;241m.\u001B[39musage\u001B[38;5;241m.\u001B[39mcompletion_tokens \u001B[38;5;241m*\u001B[39m MODEL_COST_PER_OUTPUT[model] \u001B[38;5;241m+\u001B[39m response\u001B[38;5;241m.\u001B[39musage\u001B[38;5;241m.\u001B[39mprompt_tokens \u001B[38;5;241m*\u001B[39m MODEL_COST_PER_INPUT[model]\n\u001B[1;32m     60\u001B[0m     answers\u001B[38;5;241m.\u001B[39mappend({\u001B[38;5;124m\"\u001B[39m\u001B[38;5;124mid\u001B[39m\u001B[38;5;124m\"\u001B[39m: sample[\u001B[38;5;124m\"\u001B[39m\u001B[38;5;124mid\u001B[39m\u001B[38;5;124m\"\u001B[39m], \u001B[38;5;124m\"\u001B[39m\u001B[38;5;124mmodel\u001B[39m\u001B[38;5;124m\"\u001B[39m: response\u001B[38;5;241m.\u001B[39mmodel, \u001B[38;5;124m\"\u001B[39m\u001B[38;5;124minput\u001B[39m\u001B[38;5;124m\"\u001B[39m: response\u001B[38;5;241m.\u001B[39musage\u001B[38;5;241m.\u001B[39mprompt_tokens,\n\u001B[1;32m     61\u001B[0m                     \u001B[38;5;124m\"\u001B[39m\u001B[38;5;124moutput\u001B[39m\u001B[38;5;124m\"\u001B[39m: response\u001B[38;5;241m.\u001B[39musage\u001B[38;5;241m.\u001B[39mcompletion_tokens, \u001B[38;5;124m\"\u001B[39m\u001B[38;5;124mcost\u001B[39m\u001B[38;5;124m\"\u001B[39m: cost, \u001B[38;5;124m\"\u001B[39m\u001B[38;5;124mtime\u001B[39m\u001B[38;5;124m\"\u001B[39m: time\u001B[38;5;241m.\u001B[39mtime()\u001B[38;5;241m-\u001B[39mstart, \u001B[38;5;124m\"\u001B[39m\u001B[38;5;124mresponse\u001B[39m\u001B[38;5;124m\"\u001B[39m: response\u001B[38;5;241m.\u001B[39mchoices[\u001B[38;5;241m0\u001B[39m]\u001B[38;5;241m.\u001B[39mmessage\u001B[38;5;241m.\u001B[39mcontent})\n",
      "Cell \u001B[0;32mIn[3], line 42\u001B[0m, in \u001B[0;36mget_gpt_res\u001B[0;34m(text, image, model)\u001B[0m\n\u001B[1;32m     12\u001B[0m     response \u001B[38;5;241m=\u001B[39m client\u001B[38;5;241m.\u001B[39mchat\u001B[38;5;241m.\u001B[39mcompletions\u001B[38;5;241m.\u001B[39mcreate(\n\u001B[1;32m     13\u001B[0m       model\u001B[38;5;241m=\u001B[39mmodel,\n\u001B[1;32m     14\u001B[0m       messages\u001B[38;5;241m=\u001B[39m[\n\u001B[0;32m   (...)\u001B[0m\n\u001B[1;32m     39\u001B[0m       presence_penalty\u001B[38;5;241m=\u001B[39m\u001B[38;5;241m0\u001B[39m\n\u001B[1;32m     40\u001B[0m     )\n\u001B[1;32m     41\u001B[0m \u001B[38;5;28;01melse\u001B[39;00m:\n\u001B[0;32m---> 42\u001B[0m     response \u001B[38;5;241m=\u001B[39m \u001B[43mclient\u001B[49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mchat\u001B[49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mcompletions\u001B[49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mcreate\u001B[49m\u001B[43m(\u001B[49m\n\u001B[1;32m     43\u001B[0m \u001B[43m      \u001B[49m\u001B[43mmodel\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[43mmodel\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m     44\u001B[0m \u001B[43m      \u001B[49m\u001B[43mmessages\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[43m[\u001B[49m\n\u001B[1;32m     45\u001B[0m \u001B[43m        \u001B[49m\u001B[43m{\u001B[49m\n\u001B[1;32m     46\u001B[0m \u001B[43m          \u001B[49m\u001B[38;5;124;43m\"\u001B[39;49m\u001B[38;5;124;43mrole\u001B[39;49m\u001B[38;5;124;43m\"\u001B[39;49m\u001B[43m:\u001B[49m\u001B[43m \u001B[49m\u001B[38;5;124;43m\"\u001B[39;49m\u001B[38;5;124;43msystem\u001B[39;49m\u001B[38;5;124;43m\"\u001B[39;49m\u001B[43m,\u001B[49m\n\u001B[1;32m     47\u001B[0m \u001B[43m          \u001B[49m\u001B[38;5;124;43m\"\u001B[39;49m\u001B[38;5;124;43mcontent\u001B[39;49m\u001B[38;5;124;43m\"\u001B[39;49m\u001B[43m:\u001B[49m\u001B[43m \u001B[49m\u001B[43m[\u001B[49m\n\u001B[1;32m     48\u001B[0m \u001B[43m            \u001B[49m\u001B[43m{\u001B[49m\n\u001B[1;32m     49\u001B[0m \u001B[43m              \u001B[49m\u001B[38;5;124;43m\"\u001B[39;49m\u001B[38;5;124;43mtype\u001B[39;49m\u001B[38;5;124;43m\"\u001B[39;49m\u001B[43m:\u001B[49m\u001B[43m \u001B[49m\u001B[38;5;124;43m\"\u001B[39;49m\u001B[38;5;124;43mtext\u001B[39;49m\u001B[38;5;124;43m\"\u001B[39;49m\u001B[43m,\u001B[49m\n\u001B[1;32m     50\u001B[0m \u001B[43m              \u001B[49m\u001B[38;5;124;43m\"\u001B[39;49m\u001B[38;5;124;43mtext\u001B[39;49m\u001B[38;5;124;43m\"\u001B[39;49m\u001B[43m:\u001B[49m\u001B[43m \u001B[49m\u001B[38;5;124;43m\"\u001B[39;49m\u001B[38;5;124;43mYou are a data analyst. I will give  you a background introduction and data analysis question. You must answer the question. \u001B[39;49m\u001B[38;5;124;43m\"\u001B[39;49m\n\u001B[1;32m     51\u001B[0m \u001B[43m            \u001B[49m\u001B[43m}\u001B[49m\n\u001B[1;32m     52\u001B[0m \u001B[43m          \u001B[49m\u001B[43m]\u001B[49m\n\u001B[1;32m     53\u001B[0m \u001B[43m        \u001B[49m\u001B[43m}\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m     54\u001B[0m \u001B[43m        \u001B[49m\u001B[43m{\u001B[49m\n\u001B[1;32m     55\u001B[0m \u001B[43m          \u001B[49m\u001B[38;5;124;43m\"\u001B[39;49m\u001B[38;5;124;43mrole\u001B[39;49m\u001B[38;5;124;43m\"\u001B[39;49m\u001B[43m:\u001B[49m\u001B[43m \u001B[49m\u001B[38;5;124;43m\"\u001B[39;49m\u001B[38;5;124;43muser\u001B[39;49m\u001B[38;5;124;43m\"\u001B[39;49m\u001B[43m,\u001B[49m\n\u001B[1;32m     56\u001B[0m \u001B[43m          \u001B[49m\u001B[38;5;124;43m\"\u001B[39;49m\u001B[38;5;124;43mcontent\u001B[39;49m\u001B[38;5;124;43m\"\u001B[39;49m\u001B[43m:\u001B[49m\u001B[43m \u001B[49m\u001B[43m[\u001B[49m\n\u001B[1;32m     57\u001B[0m \u001B[43m            \u001B[49m\u001B[43m{\u001B[49m\n\u001B[1;32m     58\u001B[0m \u001B[43m              \u001B[49m\u001B[38;5;124;43m\"\u001B[39;49m\u001B[38;5;124;43mtype\u001B[39;49m\u001B[38;5;124;43m\"\u001B[39;49m\u001B[43m:\u001B[49m\u001B[43m \u001B[49m\u001B[38;5;124;43m\"\u001B[39;49m\u001B[38;5;124;43mtext\u001B[39;49m\u001B[38;5;124;43m\"\u001B[39;49m\u001B[43m,\u001B[49m\n\u001B[1;32m     59\u001B[0m \u001B[43m              \u001B[49m\u001B[38;5;124;43m\"\u001B[39;49m\u001B[38;5;124;43mtext\u001B[39;49m\u001B[38;5;124;43m\"\u001B[39;49m\u001B[43m:\u001B[49m\u001B[43m \u001B[49m\u001B[43mtext\u001B[49m\n\u001B[1;32m     60\u001B[0m \u001B[43m            \u001B[49m\u001B[43m}\u001B[49m\n\u001B[1;32m     61\u001B[0m \u001B[43m          \u001B[49m\u001B[43m]\u001B[49m\n\u001B[1;32m     62\u001B[0m \u001B[43m        \u001B[49m\u001B[43m}\u001B[49m\n\u001B[1;32m     63\u001B[0m \u001B[43m      \u001B[49m\u001B[43m]\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m     64\u001B[0m \u001B[43m      \u001B[49m\u001B[43mtemperature\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[38;5;241;43m0\u001B[39;49m\u001B[43m,\u001B[49m\n\u001B[1;32m     65\u001B[0m \u001B[43m      \u001B[49m\u001B[38;5;66;43;03m# max_tokens=2256,\u001B[39;49;00m\n\u001B[1;32m     66\u001B[0m \u001B[43m      \u001B[49m\u001B[43mtop_p\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[38;5;241;43m1\u001B[39;49m\u001B[43m,\u001B[49m\n\u001B[1;32m     67\u001B[0m \u001B[43m      \u001B[49m\u001B[43mfrequency_penalty\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[38;5;241;43m0\u001B[39;49m\u001B[43m,\u001B[49m\n\u001B[1;32m     68\u001B[0m \u001B[43m      \u001B[49m\u001B[43mpresence_penalty\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[38;5;241;43m0\u001B[39;49m\n\u001B[1;32m     69\u001B[0m \u001B[43m    \u001B[49m\u001B[43m)\u001B[49m\n\u001B[1;32m     70\u001B[0m \u001B[38;5;28;01mreturn\u001B[39;00m response\n",
      "File \u001B[0;32m/opt/anaconda3/envs/dsbench/lib/python3.8/site-packages/openai/_utils/_utils.py:277\u001B[0m, in \u001B[0;36mrequired_args.<locals>.inner.<locals>.wrapper\u001B[0;34m(*args, **kwargs)\u001B[0m\n\u001B[1;32m    275\u001B[0m             msg \u001B[38;5;241m=\u001B[39m \u001B[38;5;124mf\u001B[39m\u001B[38;5;124m\"\u001B[39m\u001B[38;5;124mMissing required argument: \u001B[39m\u001B[38;5;132;01m{\u001B[39;00mquote(missing[\u001B[38;5;241m0\u001B[39m])\u001B[38;5;132;01m}\u001B[39;00m\u001B[38;5;124m\"\u001B[39m\n\u001B[1;32m    276\u001B[0m     \u001B[38;5;28;01mraise\u001B[39;00m \u001B[38;5;167;01mTypeError\u001B[39;00m(msg)\n\u001B[0;32m--> 277\u001B[0m \u001B[38;5;28;01mreturn\u001B[39;00m \u001B[43mfunc\u001B[49m\u001B[43m(\u001B[49m\u001B[38;5;241;43m*\u001B[39;49m\u001B[43margs\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[38;5;241;43m*\u001B[39;49m\u001B[38;5;241;43m*\u001B[39;49m\u001B[43mkwargs\u001B[49m\u001B[43m)\u001B[49m\n",
      "File \u001B[0;32m/opt/anaconda3/envs/dsbench/lib/python3.8/site-packages/openai/resources/chat/completions.py:606\u001B[0m, in \u001B[0;36mCompletions.create\u001B[0;34m(self, messages, model, frequency_penalty, function_call, functions, logit_bias, logprobs, max_tokens, n, parallel_tool_calls, presence_penalty, response_format, seed, stop, stream, stream_options, temperature, tool_choice, tools, top_logprobs, top_p, user, extra_headers, extra_query, extra_body, timeout)\u001B[0m\n\u001B[1;32m    573\u001B[0m \u001B[38;5;129m@required_args\u001B[39m([\u001B[38;5;124m\"\u001B[39m\u001B[38;5;124mmessages\u001B[39m\u001B[38;5;124m\"\u001B[39m, \u001B[38;5;124m\"\u001B[39m\u001B[38;5;124mmodel\u001B[39m\u001B[38;5;124m\"\u001B[39m], [\u001B[38;5;124m\"\u001B[39m\u001B[38;5;124mmessages\u001B[39m\u001B[38;5;124m\"\u001B[39m, \u001B[38;5;124m\"\u001B[39m\u001B[38;5;124mmodel\u001B[39m\u001B[38;5;124m\"\u001B[39m, \u001B[38;5;124m\"\u001B[39m\u001B[38;5;124mstream\u001B[39m\u001B[38;5;124m\"\u001B[39m])\n\u001B[1;32m    574\u001B[0m \u001B[38;5;28;01mdef\u001B[39;00m \u001B[38;5;21mcreate\u001B[39m(\n\u001B[1;32m    575\u001B[0m     \u001B[38;5;28mself\u001B[39m,\n\u001B[0;32m   (...)\u001B[0m\n\u001B[1;32m    604\u001B[0m     timeout: \u001B[38;5;28mfloat\u001B[39m \u001B[38;5;241m|\u001B[39m httpx\u001B[38;5;241m.\u001B[39mTimeout \u001B[38;5;241m|\u001B[39m \u001B[38;5;28;01mNone\u001B[39;00m \u001B[38;5;241m|\u001B[39m NotGiven \u001B[38;5;241m=\u001B[39m NOT_GIVEN,\n\u001B[1;32m    605\u001B[0m ) \u001B[38;5;241m-\u001B[39m\u001B[38;5;241m>\u001B[39m ChatCompletion \u001B[38;5;241m|\u001B[39m Stream[ChatCompletionChunk]:\n\u001B[0;32m--> 606\u001B[0m     \u001B[38;5;28;01mreturn\u001B[39;00m \u001B[38;5;28;43mself\u001B[39;49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43m_post\u001B[49m\u001B[43m(\u001B[49m\n\u001B[1;32m    607\u001B[0m \u001B[43m        \u001B[49m\u001B[38;5;124;43m\"\u001B[39;49m\u001B[38;5;124;43m/chat/completions\u001B[39;49m\u001B[38;5;124;43m\"\u001B[39;49m\u001B[43m,\u001B[49m\n\u001B[1;32m    608\u001B[0m \u001B[43m        \u001B[49m\u001B[43mbody\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[43mmaybe_transform\u001B[49m\u001B[43m(\u001B[49m\n\u001B[1;32m    609\u001B[0m \u001B[43m            \u001B[49m\u001B[43m{\u001B[49m\n\u001B[1;32m    610\u001B[0m \u001B[43m                \u001B[49m\u001B[38;5;124;43m\"\u001B[39;49m\u001B[38;5;124;43mmessages\u001B[39;49m\u001B[38;5;124;43m\"\u001B[39;49m\u001B[43m:\u001B[49m\u001B[43m \u001B[49m\u001B[43mmessages\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m    611\u001B[0m \u001B[43m                \u001B[49m\u001B[38;5;124;43m\"\u001B[39;49m\u001B[38;5;124;43mmodel\u001B[39;49m\u001B[38;5;124;43m\"\u001B[39;49m\u001B[43m:\u001B[49m\u001B[43m \u001B[49m\u001B[43mmodel\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m    612\u001B[0m \u001B[43m                \u001B[49m\u001B[38;5;124;43m\"\u001B[39;49m\u001B[38;5;124;43mfrequency_penalty\u001B[39;49m\u001B[38;5;124;43m\"\u001B[39;49m\u001B[43m:\u001B[49m\u001B[43m \u001B[49m\u001B[43mfrequency_penalty\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m    613\u001B[0m \u001B[43m                \u001B[49m\u001B[38;5;124;43m\"\u001B[39;49m\u001B[38;5;124;43mfunction_call\u001B[39;49m\u001B[38;5;124;43m\"\u001B[39;49m\u001B[43m:\u001B[49m\u001B[43m \u001B[49m\u001B[43mfunction_call\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m    614\u001B[0m \u001B[43m                \u001B[49m\u001B[38;5;124;43m\"\u001B[39;49m\u001B[38;5;124;43mfunctions\u001B[39;49m\u001B[38;5;124;43m\"\u001B[39;49m\u001B[43m:\u001B[49m\u001B[43m \u001B[49m\u001B[43mfunctions\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m    615\u001B[0m \u001B[43m                \u001B[49m\u001B[38;5;124;43m\"\u001B[39;49m\u001B[38;5;124;43mlogit_bias\u001B[39;49m\u001B[38;5;124;43m\"\u001B[39;49m\u001B[43m:\u001B[49m\u001B[43m \u001B[49m\u001B[43mlogit_bias\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m    616\u001B[0m \u001B[43m                \u001B[49m\u001B[38;5;124;43m\"\u001B[39;49m\u001B[38;5;124;43mlogprobs\u001B[39;49m\u001B[38;5;124;43m\"\u001B[39;49m\u001B[43m:\u001B[49m\u001B[43m \u001B[49m\u001B[43mlogprobs\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m    617\u001B[0m \u001B[43m                \u001B[49m\u001B[38;5;124;43m\"\u001B[39;49m\u001B[38;5;124;43mmax_tokens\u001B[39;49m\u001B[38;5;124;43m\"\u001B[39;49m\u001B[43m:\u001B[49m\u001B[43m \u001B[49m\u001B[43mmax_tokens\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m    618\u001B[0m \u001B[43m                \u001B[49m\u001B[38;5;124;43m\"\u001B[39;49m\u001B[38;5;124;43mn\u001B[39;49m\u001B[38;5;124;43m\"\u001B[39;49m\u001B[43m:\u001B[49m\u001B[43m \u001B[49m\u001B[43mn\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m    619\u001B[0m \u001B[43m                \u001B[49m\u001B[38;5;124;43m\"\u001B[39;49m\u001B[38;5;124;43mparallel_tool_calls\u001B[39;49m\u001B[38;5;124;43m\"\u001B[39;49m\u001B[43m:\u001B[49m\u001B[43m \u001B[49m\u001B[43mparallel_tool_calls\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m    620\u001B[0m \u001B[43m                \u001B[49m\u001B[38;5;124;43m\"\u001B[39;49m\u001B[38;5;124;43mpresence_penalty\u001B[39;49m\u001B[38;5;124;43m\"\u001B[39;49m\u001B[43m:\u001B[49m\u001B[43m \u001B[49m\u001B[43mpresence_penalty\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m    621\u001B[0m \u001B[43m                \u001B[49m\u001B[38;5;124;43m\"\u001B[39;49m\u001B[38;5;124;43mresponse_format\u001B[39;49m\u001B[38;5;124;43m\"\u001B[39;49m\u001B[43m:\u001B[49m\u001B[43m \u001B[49m\u001B[43mresponse_format\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m    622\u001B[0m \u001B[43m                \u001B[49m\u001B[38;5;124;43m\"\u001B[39;49m\u001B[38;5;124;43mseed\u001B[39;49m\u001B[38;5;124;43m\"\u001B[39;49m\u001B[43m:\u001B[49m\u001B[43m \u001B[49m\u001B[43mseed\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m    623\u001B[0m \u001B[43m                \u001B[49m\u001B[38;5;124;43m\"\u001B[39;49m\u001B[38;5;124;43mstop\u001B[39;49m\u001B[38;5;124;43m\"\u001B[39;49m\u001B[43m:\u001B[49m\u001B[43m \u001B[49m\u001B[43mstop\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m    624\u001B[0m \u001B[43m                \u001B[49m\u001B[38;5;124;43m\"\u001B[39;49m\u001B[38;5;124;43mstream\u001B[39;49m\u001B[38;5;124;43m\"\u001B[39;49m\u001B[43m:\u001B[49m\u001B[43m \u001B[49m\u001B[43mstream\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m    625\u001B[0m \u001B[43m                \u001B[49m\u001B[38;5;124;43m\"\u001B[39;49m\u001B[38;5;124;43mstream_options\u001B[39;49m\u001B[38;5;124;43m\"\u001B[39;49m\u001B[43m:\u001B[49m\u001B[43m \u001B[49m\u001B[43mstream_options\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m    626\u001B[0m \u001B[43m                \u001B[49m\u001B[38;5;124;43m\"\u001B[39;49m\u001B[38;5;124;43mtemperature\u001B[39;49m\u001B[38;5;124;43m\"\u001B[39;49m\u001B[43m:\u001B[49m\u001B[43m \u001B[49m\u001B[43mtemperature\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m    627\u001B[0m \u001B[43m                \u001B[49m\u001B[38;5;124;43m\"\u001B[39;49m\u001B[38;5;124;43mtool_choice\u001B[39;49m\u001B[38;5;124;43m\"\u001B[39;49m\u001B[43m:\u001B[49m\u001B[43m \u001B[49m\u001B[43mtool_choice\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m    628\u001B[0m \u001B[43m                \u001B[49m\u001B[38;5;124;43m\"\u001B[39;49m\u001B[38;5;124;43mtools\u001B[39;49m\u001B[38;5;124;43m\"\u001B[39;49m\u001B[43m:\u001B[49m\u001B[43m \u001B[49m\u001B[43mtools\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m    629\u001B[0m \u001B[43m                \u001B[49m\u001B[38;5;124;43m\"\u001B[39;49m\u001B[38;5;124;43mtop_logprobs\u001B[39;49m\u001B[38;5;124;43m\"\u001B[39;49m\u001B[43m:\u001B[49m\u001B[43m \u001B[49m\u001B[43mtop_logprobs\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m    630\u001B[0m \u001B[43m                \u001B[49m\u001B[38;5;124;43m\"\u001B[39;49m\u001B[38;5;124;43mtop_p\u001B[39;49m\u001B[38;5;124;43m\"\u001B[39;49m\u001B[43m:\u001B[49m\u001B[43m \u001B[49m\u001B[43mtop_p\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m    631\u001B[0m \u001B[43m                \u001B[49m\u001B[38;5;124;43m\"\u001B[39;49m\u001B[38;5;124;43muser\u001B[39;49m\u001B[38;5;124;43m\"\u001B[39;49m\u001B[43m:\u001B[49m\u001B[43m \u001B[49m\u001B[43muser\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m    632\u001B[0m \u001B[43m            \u001B[49m\u001B[43m}\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m    633\u001B[0m \u001B[43m            \u001B[49m\u001B[43mcompletion_create_params\u001B[49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mCompletionCreateParams\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m    634\u001B[0m \u001B[43m        \u001B[49m\u001B[43m)\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m    635\u001B[0m \u001B[43m        \u001B[49m\u001B[43moptions\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[43mmake_request_options\u001B[49m\u001B[43m(\u001B[49m\n\u001B[1;32m    636\u001B[0m \u001B[43m            \u001B[49m\u001B[43mextra_headers\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[43mextra_headers\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mextra_query\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[43mextra_query\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mextra_body\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[43mextra_body\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mtimeout\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[43mtimeout\u001B[49m\n\u001B[1;32m    637\u001B[0m \u001B[43m        \u001B[49m\u001B[43m)\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m    638\u001B[0m \u001B[43m        \u001B[49m\u001B[43mcast_to\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[43mChatCompletion\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m    639\u001B[0m \u001B[43m        \u001B[49m\u001B[43mstream\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[43mstream\u001B[49m\u001B[43m \u001B[49m\u001B[38;5;129;43;01mor\u001B[39;49;00m\u001B[43m \u001B[49m\u001B[38;5;28;43;01mFalse\u001B[39;49;00m\u001B[43m,\u001B[49m\n\u001B[1;32m    640\u001B[0m \u001B[43m        \u001B[49m\u001B[43mstream_cls\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[43mStream\u001B[49m\u001B[43m[\u001B[49m\u001B[43mChatCompletionChunk\u001B[49m\u001B[43m]\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m    641\u001B[0m \u001B[43m    \u001B[49m\u001B[43m)\u001B[49m\n",
      "File \u001B[0;32m/opt/anaconda3/envs/dsbench/lib/python3.8/site-packages/openai/_base_client.py:1240\u001B[0m, in \u001B[0;36mSyncAPIClient.post\u001B[0;34m(self, path, cast_to, body, options, files, stream, stream_cls)\u001B[0m\n\u001B[1;32m   1226\u001B[0m \u001B[38;5;28;01mdef\u001B[39;00m \u001B[38;5;21mpost\u001B[39m(\n\u001B[1;32m   1227\u001B[0m     \u001B[38;5;28mself\u001B[39m,\n\u001B[1;32m   1228\u001B[0m     path: \u001B[38;5;28mstr\u001B[39m,\n\u001B[0;32m   (...)\u001B[0m\n\u001B[1;32m   1235\u001B[0m     stream_cls: \u001B[38;5;28mtype\u001B[39m[_StreamT] \u001B[38;5;241m|\u001B[39m \u001B[38;5;28;01mNone\u001B[39;00m \u001B[38;5;241m=\u001B[39m \u001B[38;5;28;01mNone\u001B[39;00m,\n\u001B[1;32m   1236\u001B[0m ) \u001B[38;5;241m-\u001B[39m\u001B[38;5;241m>\u001B[39m ResponseT \u001B[38;5;241m|\u001B[39m _StreamT:\n\u001B[1;32m   1237\u001B[0m     opts \u001B[38;5;241m=\u001B[39m FinalRequestOptions\u001B[38;5;241m.\u001B[39mconstruct(\n\u001B[1;32m   1238\u001B[0m         method\u001B[38;5;241m=\u001B[39m\u001B[38;5;124m\"\u001B[39m\u001B[38;5;124mpost\u001B[39m\u001B[38;5;124m\"\u001B[39m, url\u001B[38;5;241m=\u001B[39mpath, json_data\u001B[38;5;241m=\u001B[39mbody, files\u001B[38;5;241m=\u001B[39mto_httpx_files(files), \u001B[38;5;241m*\u001B[39m\u001B[38;5;241m*\u001B[39moptions\n\u001B[1;32m   1239\u001B[0m     )\n\u001B[0;32m-> 1240\u001B[0m     \u001B[38;5;28;01mreturn\u001B[39;00m cast(ResponseT, \u001B[38;5;28;43mself\u001B[39;49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mrequest\u001B[49m\u001B[43m(\u001B[49m\u001B[43mcast_to\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mopts\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mstream\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[43mstream\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mstream_cls\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[43mstream_cls\u001B[49m\u001B[43m)\u001B[49m)\n",
      "File \u001B[0;32m/opt/anaconda3/envs/dsbench/lib/python3.8/site-packages/openai/_base_client.py:921\u001B[0m, in \u001B[0;36mSyncAPIClient.request\u001B[0;34m(self, cast_to, options, remaining_retries, stream, stream_cls)\u001B[0m\n\u001B[1;32m    912\u001B[0m \u001B[38;5;28;01mdef\u001B[39;00m \u001B[38;5;21mrequest\u001B[39m(\n\u001B[1;32m    913\u001B[0m     \u001B[38;5;28mself\u001B[39m,\n\u001B[1;32m    914\u001B[0m     cast_to: Type[ResponseT],\n\u001B[0;32m   (...)\u001B[0m\n\u001B[1;32m    919\u001B[0m     stream_cls: \u001B[38;5;28mtype\u001B[39m[_StreamT] \u001B[38;5;241m|\u001B[39m \u001B[38;5;28;01mNone\u001B[39;00m \u001B[38;5;241m=\u001B[39m \u001B[38;5;28;01mNone\u001B[39;00m,\n\u001B[1;32m    920\u001B[0m ) \u001B[38;5;241m-\u001B[39m\u001B[38;5;241m>\u001B[39m ResponseT \u001B[38;5;241m|\u001B[39m _StreamT:\n\u001B[0;32m--> 921\u001B[0m     \u001B[38;5;28;01mreturn\u001B[39;00m \u001B[38;5;28;43mself\u001B[39;49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43m_request\u001B[49m\u001B[43m(\u001B[49m\n\u001B[1;32m    922\u001B[0m \u001B[43m        \u001B[49m\u001B[43mcast_to\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[43mcast_to\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m    923\u001B[0m \u001B[43m        \u001B[49m\u001B[43moptions\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[43moptions\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m    924\u001B[0m \u001B[43m        \u001B[49m\u001B[43mstream\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[43mstream\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m    925\u001B[0m \u001B[43m        \u001B[49m\u001B[43mstream_cls\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[43mstream_cls\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m    926\u001B[0m \u001B[43m        \u001B[49m\u001B[43mremaining_retries\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[43mremaining_retries\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m    927\u001B[0m \u001B[43m    \u001B[49m\u001B[43m)\u001B[49m\n",
      "File \u001B[0;32m/opt/anaconda3/envs/dsbench/lib/python3.8/site-packages/openai/_base_client.py:1005\u001B[0m, in \u001B[0;36mSyncAPIClient._request\u001B[0;34m(self, cast_to, options, remaining_retries, stream, stream_cls)\u001B[0m\n\u001B[1;32m   1003\u001B[0m \u001B[38;5;28;01mif\u001B[39;00m retries \u001B[38;5;241m>\u001B[39m \u001B[38;5;241m0\u001B[39m \u001B[38;5;129;01mand\u001B[39;00m \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39m_should_retry(err\u001B[38;5;241m.\u001B[39mresponse):\n\u001B[1;32m   1004\u001B[0m     err\u001B[38;5;241m.\u001B[39mresponse\u001B[38;5;241m.\u001B[39mclose()\n\u001B[0;32m-> 1005\u001B[0m     \u001B[38;5;28;01mreturn\u001B[39;00m \u001B[38;5;28;43mself\u001B[39;49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43m_retry_request\u001B[49m\u001B[43m(\u001B[49m\n\u001B[1;32m   1006\u001B[0m \u001B[43m        \u001B[49m\u001B[43moptions\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m   1007\u001B[0m \u001B[43m        \u001B[49m\u001B[43mcast_to\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m   1008\u001B[0m \u001B[43m        \u001B[49m\u001B[43mretries\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m   1009\u001B[0m \u001B[43m        \u001B[49m\u001B[43merr\u001B[49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mresponse\u001B[49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mheaders\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m   1010\u001B[0m \u001B[43m        \u001B[49m\u001B[43mstream\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[43mstream\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m   1011\u001B[0m \u001B[43m        \u001B[49m\u001B[43mstream_cls\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[43mstream_cls\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m   1012\u001B[0m \u001B[43m    \u001B[49m\u001B[43m)\u001B[49m\n\u001B[1;32m   1014\u001B[0m \u001B[38;5;66;03m# If the response is streamed then we need to explicitly read the response\u001B[39;00m\n\u001B[1;32m   1015\u001B[0m \u001B[38;5;66;03m# to completion before attempting to access the response text.\u001B[39;00m\n\u001B[1;32m   1016\u001B[0m \u001B[38;5;28;01mif\u001B[39;00m \u001B[38;5;129;01mnot\u001B[39;00m err\u001B[38;5;241m.\u001B[39mresponse\u001B[38;5;241m.\u001B[39mis_closed:\n",
      "File \u001B[0;32m/opt/anaconda3/envs/dsbench/lib/python3.8/site-packages/openai/_base_client.py:1053\u001B[0m, in \u001B[0;36mSyncAPIClient._retry_request\u001B[0;34m(self, options, cast_to, remaining_retries, response_headers, stream, stream_cls)\u001B[0m\n\u001B[1;32m   1049\u001B[0m \u001B[38;5;66;03m# In a synchronous context we are blocking the entire thread. Up to the library user to run the client in a\u001B[39;00m\n\u001B[1;32m   1050\u001B[0m \u001B[38;5;66;03m# different thread if necessary.\u001B[39;00m\n\u001B[1;32m   1051\u001B[0m time\u001B[38;5;241m.\u001B[39msleep(timeout)\n\u001B[0;32m-> 1053\u001B[0m \u001B[38;5;28;01mreturn\u001B[39;00m \u001B[38;5;28;43mself\u001B[39;49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43m_request\u001B[49m\u001B[43m(\u001B[49m\n\u001B[1;32m   1054\u001B[0m \u001B[43m    \u001B[49m\u001B[43moptions\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[43moptions\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m   1055\u001B[0m \u001B[43m    \u001B[49m\u001B[43mcast_to\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[43mcast_to\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m   1056\u001B[0m \u001B[43m    \u001B[49m\u001B[43mremaining_retries\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[43mremaining\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m   1057\u001B[0m \u001B[43m    \u001B[49m\u001B[43mstream\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[43mstream\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m   1058\u001B[0m \u001B[43m    \u001B[49m\u001B[43mstream_cls\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[43mstream_cls\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m   1059\u001B[0m \u001B[43m\u001B[49m\u001B[43m)\u001B[49m\n",
      "File \u001B[0;32m/opt/anaconda3/envs/dsbench/lib/python3.8/site-packages/openai/_base_client.py:1005\u001B[0m, in \u001B[0;36mSyncAPIClient._request\u001B[0;34m(self, cast_to, options, remaining_retries, stream, stream_cls)\u001B[0m\n\u001B[1;32m   1003\u001B[0m \u001B[38;5;28;01mif\u001B[39;00m retries \u001B[38;5;241m>\u001B[39m \u001B[38;5;241m0\u001B[39m \u001B[38;5;129;01mand\u001B[39;00m \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39m_should_retry(err\u001B[38;5;241m.\u001B[39mresponse):\n\u001B[1;32m   1004\u001B[0m     err\u001B[38;5;241m.\u001B[39mresponse\u001B[38;5;241m.\u001B[39mclose()\n\u001B[0;32m-> 1005\u001B[0m     \u001B[38;5;28;01mreturn\u001B[39;00m \u001B[38;5;28;43mself\u001B[39;49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43m_retry_request\u001B[49m\u001B[43m(\u001B[49m\n\u001B[1;32m   1006\u001B[0m \u001B[43m        \u001B[49m\u001B[43moptions\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m   1007\u001B[0m \u001B[43m        \u001B[49m\u001B[43mcast_to\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m   1008\u001B[0m \u001B[43m        \u001B[49m\u001B[43mretries\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m   1009\u001B[0m \u001B[43m        \u001B[49m\u001B[43merr\u001B[49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mresponse\u001B[49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mheaders\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m   1010\u001B[0m \u001B[43m        \u001B[49m\u001B[43mstream\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[43mstream\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m   1011\u001B[0m \u001B[43m        \u001B[49m\u001B[43mstream_cls\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[43mstream_cls\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m   1012\u001B[0m \u001B[43m    \u001B[49m\u001B[43m)\u001B[49m\n\u001B[1;32m   1014\u001B[0m \u001B[38;5;66;03m# If the response is streamed then we need to explicitly read the response\u001B[39;00m\n\u001B[1;32m   1015\u001B[0m \u001B[38;5;66;03m# to completion before attempting to access the response text.\u001B[39;00m\n\u001B[1;32m   1016\u001B[0m \u001B[38;5;28;01mif\u001B[39;00m \u001B[38;5;129;01mnot\u001B[39;00m err\u001B[38;5;241m.\u001B[39mresponse\u001B[38;5;241m.\u001B[39mis_closed:\n",
      "File \u001B[0;32m/opt/anaconda3/envs/dsbench/lib/python3.8/site-packages/openai/_base_client.py:1053\u001B[0m, in \u001B[0;36mSyncAPIClient._retry_request\u001B[0;34m(self, options, cast_to, remaining_retries, response_headers, stream, stream_cls)\u001B[0m\n\u001B[1;32m   1049\u001B[0m \u001B[38;5;66;03m# In a synchronous context we are blocking the entire thread. Up to the library user to run the client in a\u001B[39;00m\n\u001B[1;32m   1050\u001B[0m \u001B[38;5;66;03m# different thread if necessary.\u001B[39;00m\n\u001B[1;32m   1051\u001B[0m time\u001B[38;5;241m.\u001B[39msleep(timeout)\n\u001B[0;32m-> 1053\u001B[0m \u001B[38;5;28;01mreturn\u001B[39;00m \u001B[38;5;28;43mself\u001B[39;49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43m_request\u001B[49m\u001B[43m(\u001B[49m\n\u001B[1;32m   1054\u001B[0m \u001B[43m    \u001B[49m\u001B[43moptions\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[43moptions\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m   1055\u001B[0m \u001B[43m    \u001B[49m\u001B[43mcast_to\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[43mcast_to\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m   1056\u001B[0m \u001B[43m    \u001B[49m\u001B[43mremaining_retries\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[43mremaining\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m   1057\u001B[0m \u001B[43m    \u001B[49m\u001B[43mstream\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[43mstream\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m   1058\u001B[0m \u001B[43m    \u001B[49m\u001B[43mstream_cls\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[43mstream_cls\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m   1059\u001B[0m \u001B[43m\u001B[49m\u001B[43m)\u001B[49m\n",
      "File \u001B[0;32m/opt/anaconda3/envs/dsbench/lib/python3.8/site-packages/openai/_base_client.py:1020\u001B[0m, in \u001B[0;36mSyncAPIClient._request\u001B[0;34m(self, cast_to, options, remaining_retries, stream, stream_cls)\u001B[0m\n\u001B[1;32m   1017\u001B[0m         err\u001B[38;5;241m.\u001B[39mresponse\u001B[38;5;241m.\u001B[39mread()\n\u001B[1;32m   1019\u001B[0m     log\u001B[38;5;241m.\u001B[39mdebug(\u001B[38;5;124m\"\u001B[39m\u001B[38;5;124mRe-raising status error\u001B[39m\u001B[38;5;124m\"\u001B[39m)\n\u001B[0;32m-> 1020\u001B[0m     \u001B[38;5;28;01mraise\u001B[39;00m \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39m_make_status_error_from_response(err\u001B[38;5;241m.\u001B[39mresponse) \u001B[38;5;28;01mfrom\u001B[39;00m \u001B[38;5;28;01mNone\u001B[39;00m\n\u001B[1;32m   1022\u001B[0m \u001B[38;5;28;01mreturn\u001B[39;00m \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39m_process_response(\n\u001B[1;32m   1023\u001B[0m     cast_to\u001B[38;5;241m=\u001B[39mcast_to,\n\u001B[1;32m   1024\u001B[0m     options\u001B[38;5;241m=\u001B[39moptions,\n\u001B[0;32m   (...)\u001B[0m\n\u001B[1;32m   1027\u001B[0m     stream_cls\u001B[38;5;241m=\u001B[39mstream_cls,\n\u001B[1;32m   1028\u001B[0m )\n",
      "\u001B[0;31mRateLimitError\u001B[0m: Error code: 429 - {'error': {'message': 'You exceeded your current quota, please check your plan and billing details. For more information on this error, read the docs: https://platform.openai.com/docs/guides/error-codes/api-errors.', 'type': 'insufficient_quota', 'param': None, 'code': 'insufficient_quota'}}"
     ]
    }
   ],
   "source": [
    "client = OpenAI(api_key=\"api\")\n",
    "\n",
    "tokens4generation = 6000\n",
    "# model = \"gpt-3.5-turbo-0125\"\n",
    "model = \"gpt-4-turbo-2024-04-09\"\n",
    "data_path = \"./data/\"\n",
    "total_cost = 0\n",
    "encoding = tiktoken.encoding_for_model(model)\n",
    "for id in tqdm(range(len(samples))):\n",
    "    # print(sample)\n",
    "    sample =samples[id]\n",
    "    if len(sample[\"questions\"]) > 0:\n",
    "        start = sample[\"questions\"][0]\n",
    "        end = sample[\"questions\"][-1]\n",
    "        # print(start)\n",
    "        # print(end)\n",
    "        image = find_jpg_files(os.path.join(data_path, sample[\"id\"]))\n",
    "        if image:\n",
    "            image = os.path.join(data_path, sample[\"id\"], image[0])\n",
    "        \n",
    "        excel_content = \"\"\n",
    "        excels = find_excel_files(os.path.join(data_path, sample[\"id\"]))\n",
    "        if excels:\n",
    "            \n",
    "            for excel in excels:\n",
    "                excel_file_path = os.path.join(data_path,  sample[\"id\"], excel)\n",
    "                # print(excel_file_path)\n",
    "                sheets = read_excel(excel_file_path)\n",
    "                combined_text = combine_sheets_text(sheets)\n",
    "                excel_content += f\"The excel file {excel} is: \" + combined_text\n",
    "\n",
    "        introduction = read_txt(os.path.join(data_path, sample[\"id\"], \"introduction.txt\"))\n",
    "        questions = []\n",
    "        for question_name in sample[\"questions\"]:\n",
    "            questions.append(read_txt(os.path.join(data_path, sample[\"id\"], question_name+\".txt\")))\n",
    "            \n",
    "        # print(workbooks)\n",
    "        \n",
    "        text = \"\"\n",
    "        if excel_content:\n",
    "            text += f\"The workbook is detailed as follows. {excel_content} \\n\"\n",
    "        text += f\"The introduction is detailed as follows. \\n {introduction} \\n\"\n",
    "        answers = []\n",
    "        for question in questions:\n",
    "            prompt = text +  f\"The questions are detailed as follows. \\n {question}\"\n",
    "        \n",
    "            # print(len(encoding.encode(prompt)))\n",
    "            cut_text = encoding.decode(encoding.encode(prompt)[tokens4generation-MODEL_LIMITS[model]:])\n",
    "            # print(len(encoding.encode(prompt)))\n",
    "            # print(prompt)\n",
    "        # text = truncate_text(text, 20000)\n",
    "            start = time.time()\n",
    "            response = get_gpt_res(cut_text, image, model)\n",
    "            cost = response.usage.completion_tokens * MODEL_COST_PER_OUTPUT[model] + response.usage.prompt_tokens * MODEL_COST_PER_INPUT[model]\n",
    "            \n",
    "            answers.append({\"id\": sample[\"id\"], \"model\": response.model, \"input\": response.usage.prompt_tokens,\n",
    "                            \"output\": response.usage.completion_tokens, \"cost\": cost, \"time\": time.time()-start, \"response\": response.choices[0].message.content})\n",
    "            total_cost += cost\n",
    "            print(\"Total cost: \", total_cost)\n",
    "            # break\n",
    "        save_path = os.path.join(\"./save_process\", model)\n",
    "        if not os.path.exists(save_path):\n",
    "            os.makedirs(save_path)\n",
    "        with open(os.path.join(save_path, sample['id']+\".json\"), \"w\") as f:\n",
    "            for answer in answers:\n",
    "                json.dump(answer, f)\n",
    "                f.write(\"\\n\")\n"
   ],
   "metadata": {
    "collapsed": false,
    "ExecuteTime": {
     "end_time": "2024-07-30T19:57:21.359830Z",
     "start_time": "2024-07-30T19:25:26.195520Z"
    }
   },
   "id": "70acf35fbe1b0929",
   "execution_count": 8
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 2
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython2",
   "version": "2.7.6"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}