File size: 1,173 Bytes
fe8d248
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
import os.path

import numpy as np
import pandas as pd
import argparse
from sklearn.metrics import f1_score


# 计算多类对数损失
def multiclass_logloss(actuals, predictions):
    epsilon = 1e-15  # 避免对数运算中的数值问题
    predictions = np.clip(predictions, epsilon, 1 - epsilon)  # 限制预测概率的范围,防止对数为无穷
    predictions /= predictions.sum(axis=1)[:, np.newaxis]  # 归一化确保总和为1
    log_pred = np.log(predictions)
    loss = -np.sum(actuals * log_pred) / len(actuals)
    return loss


parser = argparse.ArgumentParser()

parser.add_argument('--path', type=str, required=True)
parser.add_argument('--name', type=str, required=True)
parser.add_argument('--answer_file', type=str, required=True)
parser.add_argument('--predict_file', type=str, required=True)

parser.add_argument('--value', type=str, default="target")

args = parser.parse_args()


answers = pd.read_csv( args.answer_file)
predictions = pd.read_csv( args.predict_file)

performance = f1_score(answers[args.value], predictions[args.value])

with open(os.path.join(args.path, args.name, "result.txt"), "w") as f:
    f.write(str(performance))