File size: 1,596 Bytes
fe8d248 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 |
import os.path
import numpy as np
import pandas as pd
import argparse
from sklearn.metrics import accuracy_score
from sklearn.metrics import roc_auc_score
# 计算多类对数损失
def multiclass_logloss(actuals, predictions):
epsilon = 1e-15 # 避免对数运算中的数值问题
predictions = np.clip(predictions, epsilon, 1 - epsilon) # 限制预测概率的范围,防止对数为无穷
predictions /= predictions.sum(axis=1)[:, np.newaxis] # 归一化确保总和为1
log_pred = np.log(predictions)
loss = -np.sum(actuals * log_pred) / len(actuals)
return loss
parser = argparse.ArgumentParser()
parser.add_argument('--path', type=str, required=True)
parser.add_argument('--name', type=str, required=True)
parser.add_argument('--answer_file', type=str, required=True)
parser.add_argument('--predict_file', type=str, required=True)
parser.add_argument('--value', type=str, default="NObeyesdad")
args = parser.parse_args()
actual = pd.read_csv(args.answer_file)
submission = pd.read_csv( args.predict_file)
# 定义要计算的类别
categories = ['Pastry', 'Z_Scratch', 'K_Scatch', 'Stains', 'Dirtiness', 'Bumps', 'Other_Faults']
# 提取数据并计算每个类别的 ROC AUC 分数
auc_scores = {}
for category in categories:
y_true = actual[category].values
y_pred = submission[category].values
auc_scores[category] = roc_auc_score(y_true, y_pred)
# 计算平均 AUC 分数
performance = sum(auc_scores.values()) / len(auc_scores)
with open(os.path.join(args.path, args.name, "result.txt"), "w") as f:
f.write(str(performance))
|