|
import os.path |
|
|
|
import numpy as np |
|
import pandas as pd |
|
import argparse |
|
|
|
|
|
def rmsle(predicted, actual): |
|
sum_log_diff = np.sum((np.log(predicted + 1) - np.log(actual + 1)) ** 2) |
|
mean_log_diff = sum_log_diff / len(predicted) |
|
return np.sqrt(mean_log_diff) |
|
|
|
parser = argparse.ArgumentParser() |
|
parser.add_argument('--path', type=str, required=True) |
|
parser.add_argument('--name', type=str, required=True) |
|
parser.add_argument('--answer_file', type=str, required=True) |
|
parser.add_argument('--predict_file', type=str, required=True) |
|
|
|
parser.add_argument('--value', type=str, default="count") |
|
|
|
args = parser.parse_args() |
|
|
|
answers = pd.read_csv( args.answer_file) |
|
predictions = pd.read_csv(args.predict_file) |
|
|
|
performance = rmsle(predictions[args.value], answers[args.value]) |
|
|
|
with open(os.path.join(args.path, args.name, "result.txt"), "w") as f: |
|
f.write(str(performance)) |
|
|