|
import os.path |
|
|
|
import numpy as np |
|
import pandas as pd |
|
import argparse |
|
|
|
def rmsle(predictions, actuals): |
|
rmsle_confirmed = np.sqrt(np.mean((np.log1p(predictions['ConfirmedCases']) - np.log1p(actuals['ConfirmedCases'])) ** 2)) |
|
rmsle_fatalities = np.sqrt(np.mean((np.log1p(predictions['Fatalities']) - np.log1p(actuals['Fatalities'])) ** 2)) |
|
return (rmsle_confirmed + rmsle_fatalities) / 2 |
|
|
|
parser = argparse.ArgumentParser() |
|
parser.add_argument('--path', type=str, required=True) |
|
parser.add_argument('--name', type=str, required=True) |
|
parser.add_argument('--answer_file', type=str, required=True) |
|
parser.add_argument('--predict_file', type=str, required=True) |
|
|
|
parser.add_argument('--value', type=str, default="count") |
|
|
|
args = parser.parse_args() |
|
|
|
answers = pd.read_csv(os.path.join(args.path, args.name, args.answer_file)) |
|
predictions = pd.read_csv(os.path.join(args.path, args.name, args.predict_file)) |
|
|
|
performance = rmsle(predictions, answers) |
|
|
|
with open(os.path.join(args.path, args.name, "result.txt"), "w") as f: |
|
f.write(str(performance)) |
|
|