DSBench / data_modeling /evaluation /feedback-prize-english-language-learning_eval.py
liqiang888's picture
Upload 738 files
fe8d248 verified
raw
history blame
1.38 kB
import os.path
import numpy as np
import pandas as pd
import argparse
from sklearn.metrics import roc_auc_score
parser = argparse.ArgumentParser()
parser.add_argument('--path', type=str, required=True)
parser.add_argument('--name', type=str, required=True)
parser.add_argument('--answer_file', type=str, required=True)
parser.add_argument('--predict_file', type=str, required=True)
parser.add_argument('--value', type=str, default="place_id")
args = parser.parse_args()
actual = pd.read_csv(os.path.join(args.path, args.name, args.answer_file))
submission = pd.read_csv(os.path.join(args.path, args.name, args.predict_file))
def mcrmse(y_true, y_pred):
"""
计算Mean Columnwise Root Mean Squared Error (MCRMSE)
"""
assert y_true.shape == y_pred.shape, "The shapes of true and predicted values do not match"
columnwise_rmse = np.sqrt(((y_true - y_pred) ** 2).mean(axis=0))
return columnwise_rmse.mean()
# 提取实际标签和预测结果
actual_values = actual.iloc[:, 1:].values # 假设实际标签文件中第一列是text_id,后面是实际标签值
predicted_values = submission.iloc[:, 1:].values # 假设提交文件中第一列是text_id,后面是预测标签值
# 计算MAP@3
performance = mcrmse(actual_values, predicted_values)
with open(os.path.join(args.path, args.name, "result.txt"), "w") as f:
f.write(str(performance))