|
|
|
|
|
import os.path |
|
|
|
import numpy as np |
|
import pandas as pd |
|
import argparse |
|
|
|
from sklearn.metrics import roc_auc_score |
|
from sklearn.metrics import mean_squared_error |
|
|
|
parser = argparse.ArgumentParser() |
|
|
|
parser.add_argument('--path', type=str, required=True) |
|
parser.add_argument('--name', type=str, required=True) |
|
parser.add_argument('--answer_file', type=str, required=True) |
|
parser.add_argument('--predict_file', type=str, required=True) |
|
|
|
parser.add_argument('--value', type=str, default="MedHouseVal") |
|
|
|
args = parser.parse_args() |
|
|
|
|
|
|
|
|
|
def rmsle(y_true, y_pred): |
|
return np.sqrt(np.mean((np.log1p(y_pred) - np.log1p(y_true)) ** 2)) |
|
|
|
|
|
actual = pd.read_csv( args.answer_file) |
|
submission = pd.read_csv( args.predict_file) |
|
|
|
performance = np.sqrt(mean_squared_error(actual[args.value], submission[args.value])) |
|
|
|
|
|
|
|
with open(os.path.join(args.path, args.name, "result.txt"), "w") as f: |
|
f.write(str(performance)) |
|
|