|
|
|
|
|
import os.path |
|
|
|
import numpy as np |
|
import pandas as pd |
|
import argparse |
|
|
|
from sklearn.metrics import roc_auc_score |
|
|
|
parser = argparse.ArgumentParser() |
|
|
|
parser.add_argument('--path', type=str, required=True) |
|
parser.add_argument('--name', type=str, required=True) |
|
parser.add_argument('--answer_file', type=str, required=True) |
|
parser.add_argument('--predict_file', type=str, required=True) |
|
|
|
parser.add_argument('--value', type=str, default="quality") |
|
|
|
args = parser.parse_args() |
|
|
|
|
|
actual = pd.read_csv(args.answer_file) |
|
submission = pd.read_csv(args.predict_file) |
|
|
|
actual.sort_values(by=['Id']) |
|
submission.sort_values(by=['Id']) |
|
|
|
def quadratic_weighted_kappa(actual, predicted, N): |
|
O = np.zeros((N, N), dtype=int) |
|
for a, p in zip(actual, predicted): |
|
O[a][p] += 1 |
|
|
|
w = np.zeros((N, N)) |
|
for i in range(N): |
|
for j in range(N): |
|
w[i][j] = ((i - j) ** 2) / ((N - 1) ** 2) |
|
|
|
actual_hist = np.zeros(N) |
|
for a in actual: |
|
actual_hist[a] += 1 |
|
|
|
pred_hist = np.zeros(N) |
|
for p in predicted: |
|
pred_hist[p] += 1 |
|
|
|
E = np.outer(actual_hist, pred_hist) |
|
E = E / E.sum() * O.sum() |
|
|
|
num = (w * O).sum() |
|
den = (w * E).sum() |
|
|
|
return 1 - num / den |
|
|
|
|
|
performance = quadratic_weighted_kappa(actual[args.value], submission[args.value], 10) |
|
|
|
|
|
|
|
with open(os.path.join(args.path, args.name, "result.txt"), "w") as f: |
|
f.write(str(performance)) |
|
|