Delete data_analysis/show_result.py
Browse files- data_analysis/show_result.py +0 -73
data_analysis/show_result.py
DELETED
@@ -1,73 +0,0 @@
|
|
1 |
-
|
2 |
-
from tqdm import tqdm
|
3 |
-
import os
|
4 |
-
|
5 |
-
|
6 |
-
samples = []
|
7 |
-
with open("./data.json", "r") as f:
|
8 |
-
for line in f:
|
9 |
-
samples.append(eval(line.strip()))
|
10 |
-
|
11 |
-
def read_txt(path):
|
12 |
-
with open(path, "r") as f:
|
13 |
-
return f.read()
|
14 |
-
|
15 |
-
save_path = "./save_process"
|
16 |
-
# model = 'llava-v1.5-13b'
|
17 |
-
# model = 'llama-3-8b-instruct'
|
18 |
-
model = "gpt-3.5-turbo-0125"
|
19 |
-
# model = 'gpt-4o-2024-05-13'
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
results = []
|
24 |
-
with open(os.path.join(save_path, model, "results.json"), "r") as f:
|
25 |
-
for line in f:
|
26 |
-
results += eval(line.strip())
|
27 |
-
|
28 |
-
costs = []
|
29 |
-
time_cost = []
|
30 |
-
|
31 |
-
id = 0
|
32 |
-
for sample in tqdm(samples):
|
33 |
-
result = []
|
34 |
-
if len(sample["questions"]) > 0:
|
35 |
-
predicts = []
|
36 |
-
with open(os.path.join(save_path, model, sample['id']+".json"), "r") as f:
|
37 |
-
for line in f:
|
38 |
-
pre = eval(line.strip())
|
39 |
-
predicts.append(pre)
|
40 |
-
costs.append(pre['cost'])
|
41 |
-
time_cost.append(pre['time'])
|
42 |
-
id += 1
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
results_c = []
|
48 |
-
for i, result in enumerate(results):
|
49 |
-
if "true" in result.lower():
|
50 |
-
results_c.append(True)
|
51 |
-
else:
|
52 |
-
results_c.append(False)
|
53 |
-
# if i>=11:
|
54 |
-
# break
|
55 |
-
|
56 |
-
idx = 0
|
57 |
-
score4cha = []
|
58 |
-
|
59 |
-
for i, sample in enumerate(samples):
|
60 |
-
if len(sample["questions"]) > 0:
|
61 |
-
score_ = sum(results_c[idx:idx+len(sample["questions"])]) / len(sample["questions"])
|
62 |
-
idx += len(sample["questions"])
|
63 |
-
score4cha.append(score_)
|
64 |
-
|
65 |
-
acc = sum(results_c) / len(results_c)
|
66 |
-
print(f"Accuracy for all the {len(results_c)} questions is {acc}")
|
67 |
-
print(f"Cost for all the {len(results_c)} questions is {sum(costs)}")
|
68 |
-
print(f"Consume time for all the {len(results_c)} questions is {sum(time_cost)}")
|
69 |
-
print()
|
70 |
-
|
71 |
-
|
72 |
-
print(f"Accuracy for each challenge is {score4cha}")
|
73 |
-
print(f"Average accuracy for {len(score4cha)} challenge is {sum(score4cha)/len(score4cha)}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|